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- CHAPTER I
INTRODUCTION

A mechanism consisting of links and kinematic pairs can generally be
synthesized to produce a desireq‘motion with reasonable accuracy. The
prescribed path to be generated by a mechah{ﬁﬁmﬁ;;wggwaege;f;éaweither
by a series of finitely or infinitesimally separated positions of a
point. When such infinitesimally separated positions of a point-path
are to be satisfied, there exists a need to develop mechanism synthesis
theory that takes into consideration the higher order properties of the
point path. A curve or a surface may be generated in general by a point,
a line, or a plane moving with the coupler-1ink of a mechanism with four

or more Tinks. For planar motion, a line connected to the coupler-link

of a mechanism will generatre an envelope.  The line.is.-called-the

PR————

ta&éggi—1ine. For spaggATQFipp, a p]angmggggggjgdéto the coupler Tink
of a mséiégggm‘wi11 envelop a surface and the plane is called the
tangent-plane.

| The present work will develop the curvature theory and its applica-
tion in mechanism synthesis to generate with a prescribed degree of

accuracy an enveloping surface drawn by a plane executing space motion.
1.1 Background Review

We note that in recent years there appears to be considerable



interest in the development of higher order curvature theory. The
classical curvature theory, also known as the infinitesimal circular
Burmester theory, provides the necessary tools to synthesize a planar
mechanism for the generation of circular arc and straight-line segment
in a coupler curve. This circular Burmester theory was generalized by
Freudenstein [12], His contribution was to characterize a planar curve
to the nth order within stretch rotation by (n - 2) dimensionless
characteristic numbers. The characteristic equations were derived to
locate on the moving plane those points whose trajectories have the

same characteristic numbers. The well known inflection circle, cubic

of stationary curvature and so on of the infinjtesimal Burmester theory,
are special cases of the generalized theory developed by Freudenstein.
The importance of this generalized theory was highly stressed by
Veldkamp [51] who examined the problem using instantaneous invariants.
The concept of instantaneous invariants to study the infinitesimal motion
of a rigid body was first introduced by Bottema [7]. Veldkamp [48, 50]
elaborated on it and extended this concept to study three-dimensional
motion. According to the concept of instantaneous invariants, a set of
numbers are used to characterize an instantaneous motion. Any mechanism
reproducing a sufficient number of these characteristic numbers closely
approximates the reference motion. Hence, the use of instantaneous
invariants is recognized as one of the most efficient tools to character-
jze a rigid body motion and is frequently used in curvature theories.
For example, using instantaneous invariants, Kamphuis [22], Roth and
Yang [54] developed the curvature theory of point-path in spherical

motion. Using the analogous approach, Veldkamp [47], Siddhanty and



Soni [39], and Hsia [16] developed the point-path curvature theory for
the general space motion. The curvature and torsion including their
derivatives were used to characterize a twisted curve. The characteris-
tic equations were derived in terms of instantaneous invariants, and some
results similar to the infinjtesimal Burmester theory of planar motion

~ were obtained. Veldkamp [47] pointed out that equivalence to Ball's
point and Burmester's point do not exist for space motion generally.

A first study of Tline trajectories in space motion appears to be
due to Disteli [10]. He showed that the line trajectories were the
spatial analogy of planar path trajectories. Yang, Roth and Kirson
[24,59] used dual vectors and the principle of transference to dualize
some of the results from spherical curvature theory to spatial curvature
theory of ruled surfaces. McCarthy and Roth [29] later reexamined this
problem without using the principle of transference.

Just as a point traces a path, a line in planar motion.envelops

a curve. This Tine is ca]]éd the tangent-line.. The significant contrib-

A——

utions in tangent-Tine envelope curvature theory appear to be due to

Allievi [1] and Bereis [5]. Using instantaneous invariants, Soni,

Siddhanty, and Ting 41] developed a tangent-line envelope curvature

theory. The approach used in the development of this theory is gnq]qgous
to thgtkdeve1oped by Freudenstgﬁn. For the tangent-1line envelope curva-
ture theory, a family of lines can be found to envelop cusps and a
tangent-Tine can be located to envelop a double cusp. These properties
are analogous to the inflection circle and Ball's point of Burmester

theory. However, nothing similar to the Burmester point can be found.



A point and a line are dual concepts in planar geometry. For a
planar figure consisting of a number of points and 1ines, a dual
configuration can be formed by replacing every point by a 1ine, and
every line by a point. Corresponding to a point tracing a path, a moving
tangent-Tine envelops a curve. Hence, the dual to a point trajectory is
a family of tangent-Tines which envelop a curve. Using line coordinates,
Hunt and Fichter [18] derived the equation of the tangent-Tine envelop
of a four-bar linkage and showed the similarities between the tangent-
line envelope and point-trajectory theories.

In space geometry, a point and a plane form the duality, and a line
is a self-duai construct in the sense that the system of points on a
line is dual to the system of planes through a 1ine. For a geometrical
configuration consisting of points, lines, and planes, the dual config-
uration is formed by replacing every point by a plane, every line by a
1ine, and every plane by a point. Hence, we may expect that these will
be analogy existing between the locus of a point and a family of tangent-
planes which envelop a surface. From theoretical point of view, it is
just as important to study the path of a plane as it is to study the
path of a point. For example, a surface requiring a high degree of
accuracy in a localized region may be generated by an envelope of a mov-
ing plane gquided by a coupler-link of a mechanism. This kinematic
importance of the tangent-plane envelope has been recognized by Bottema

and Roth [8] and Hunt [19].



1.2 Organization

For the reader's convenience, in the present chapter, some back-
ground material is summarized. Chapter II introduces the subjects of
dual vector calculus. Dual vectors are extremely convenient to describe
rigid body space motion. They are especially useful in describing the
motion of a straight Tine, For more information, References [9] and
[57] are recommended.

Chapter III describes the instantaneous invariants of a general
rigid body. In the derivation of the instantaneous invariants, both
ordinary vectors and dual vectors are used frequently and the principle
of transference between them is emphasized. This chapter provides in-
sight into the usefulness of the instantaneous invariants and may be
suplemented with Reference [24],

The kinematics of a moving plane are investigated in Chapter IV.

It describes the general theory of tangent-plane envelopes. The higher
order properties of a developable are explicitly described and the
characteristic equations are derived up to third order.

Chapter V discusses some special cases of a tangent-plane motion.
Such special cases are basically the analogy of the subjects in the in-
finitesimal Burmester theory.

The tangent-plane envelope curvature theory in spherical kinematics
is presented in Chapter VI. The results of the spherical tangent-plane
envelope curvature theory are new. Compared to the complexity of
general space motions, these results promise to have significant import-

ance in understanding spherical motion of a tangent-plane.



In Chapter VII, a special motion and the general synthesis pro-

cedure of a developable are briefly presented.



CHAPTER TII
DUAL VECTORS
2.1 Dual Numbers

A dual number a is an ordered pair of real numbers associated
with an operator ¢ Which has the property 52 = 0:
a=a+ea (2.1)
where a is the real part and a° the dual part of the dual number a.
When a # 0, a is a proper dual and when a = 0, a becomes a pure dual.
Any real number is a dual number with a diminished dual part.
The equality of dual numbers is similar to that of complex numbers.
Let B = b + ¢b° be another dual number.
a=b only when a =b and a° = b° (2.2)
The operations of dual numbers are the same as in the ordinary alge-
bra followed by setting &= 0(n=2,3,...). Therefore, we have

a+b=(a+B)+ce (a°+ b°)

ab = ab + € (a°b + ab°) (2.3)
Sn_at+ea® | b-¢€b®_ a a’b - ab°
Wb p¥er® T b-ebe T b 7

It is observed that division by a pure dual is not defined.
The expansion of a function follows the Taylor's series expansion.
f(a) = f(a + €a®) = f(a) + ea®df(a)/da (2.4)

for example,



Q>

a+ €a°) a

a
e + ea’e

i

e = e(
(2.5)

a (a+ a°) = ¥a + a°/2y7

An example of a dual number is the dual angle subtended by two Tlines
in space. In Figure 1 the dual angle between the two straighf lines is
6,

=0 +¢ed° (2.6)

where 6 is the projected angle between two lines and 6° is the shortest
distance between them. In the case of two parallel Tines, we have 6 = 0
and the dual angle between them is a pure dual. If two lines intersect,
we have 6° = 0 and the dual angle is a real number.

The trigonometric functions of dual angels can be obtained by fol-

Towing the Taylor's series expansion of Equation (2.4). For example,

sin 6 = sin (6 + €6°) = sin 6 + €6° cos B
cos 6 = cos (B + €6°) = cos 6 - €6° sin © (2.7)
tan B = tan (6 + €6°) = tan 6 + €6° sec 6

A11 identities for ordinary trigonometry hold true for dual angles.
2.2 Sliding Vectors

A vector implies a quantity defined by direction and magnitude, but
is never restricted in position in any way. A siiding vector is a vector
confined to a line in space. It can be specified by its vector A and
its Ap-with respect to a point P (the origin, generally). A and Ap are
the Pliicker vectors of the sliding vector (Figure 2). With the operator

8(82 = 0), the sliding vector may be expressed by a dual vector A.



Figure 1. Dual angle 6 = 6 + €@°

A r

Ap=rxA P

Figure 2. Sliding Vector A = A + EAp
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= A+ (A=A =0) (2.8)

€A

—P - P

The primary part A of the sliding vector gives the direction of the
sliding vector and the dual part Ap specifies the location of the slid-
ing vector. A dual vector is always referred to a point and one may
indicate its reference point with a suffix at the dual part. For a
general dual vector, the restriction A - Ap = (0 does not need to be
true.

Let the moment of the same sliding vector be taken with respect to

another point Q. The dual vector becomes

|>=>

= A+ (2.9)

chA
—q
Assume X is any point on the line of the sliding vector. The moments of

the sliding vector with respect to P and Q are respectively,

Ap=E.)£XA_’
A =0Xx A
Ag = W x
Hence, we have
- = - :P
A_p Aq (PX-QX) xA=PQxA
or
A=A +PQxA
B B (2.10)

From equations (2.8) to (2.10), we have

A Ate (A +PQxA) (2.11)

1]

+ €A
A+ e,
Equation (2.11) gives the relationship of two dual vectors which present
the same sliding vector but are referred to different points P and Q.
In case that the reference point is on the line of the sliding

vector, the dual part of the representing dual vector becomes zero and
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the dual vector has the form of an ordinary vector. However, it is
still a dual yector, since its zero dual part indicates the location of
the sliding vector.

In Equation (2.8), if A is a unit vector (A + A = 1), then A
represents a unit sliding vector. The dual vector of a unit sliding
vector will be utilized to represent a unique straight line in space and
it is also called unit screw.

The operations of dual vectors are summarized in the next section.
2.3 Dual Vectors

A dual vector is always referred to a point. It is an ordered
pair of vectors associated with the dual operator 8(82 = 0). Let A be

a dual vector referred to the point 0. We have

|>=>

= A+ eAO (2.12)

in which A is the primary part and is independent of the reference point;
Ao is the dual part. In Equation (2.12), there is no restriction
A - Ao= 0 as in the sliding vector. When the reference point is shifted

from 0 to P, the dual vector becomes

|=>

= A+ e(A +POxA)=A+eh (2.13)

This transformation is called "reduction." Since

Ap A, + PO x A (2.14)

we may obtain

A

=A (A +POXA)=AvA (2.15)

- A
-
Equation (2.15) shows that the scalar product of the primary part and

the dual part is independent of the reference point.
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Since a dual vector is the combination of two ordinary vectors,
the rules for vector albgebra are also valid for dual vector algebra by
setting 82 = 0. The principle of transference of dual vector algebra
states that all vector identities of ordinary vector algebra are also
yalid for dual vectors if all the vectors and real numbers are replaced
by dual vectors and dual numbers, respectively. Some rules which may be
used later are presented in the following.

Let the dual vector A = A + €A° be referred to the origin of the
coordinate system.

1. Dual Components: The two vectors A and A° of the primary and

dual parts may be expressed as

A=al+a,d+ank
SR R } (2.16)
A® =ay I +a5) +azk

where I, J, and K are the unit vectors along the three axes of the

coordinate system. The dual vector A can be written as

=a; I +a,d+aK (2.
1,

|=>

~

7)

> —

where ;i = a, + ani (i =1, 2, 3) are the dual components of A.
and E.are the unit sliding vectors of three coordinates axes with refer-
ence to the origin.
2. Unit Screw: The unit dual vector of B_is
a = A/a (2.18)
where o = [A| = (a;” + ;22 +a3)* s the dual length of the dual
vector B, let & = o + ea®. From Equations (2.18) and (2.5), we may

obtain

Q
o
I
—~
[s1)
—
fe}}
—
+
Q
nN
V]
N
+
Q
w
Q
w
N
~
Q
p~]
L ]
=
~
Q
-
—~
nN
—
O
S
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One may observe that since A -+ Ao is independent of the reference point
of the dual vector, the dual length of a dual vector is invariant to the
reference point.

From Equations (2.18) and (2.19), we have the unit dual vector @,

AN

a=(A+eh)/( a+ea®)

A+eA’ | a- ea°

o + ea’ o - €a

= Mo +e (ah° - a®A)/ o

Let
a=a+ ea
then
a = A/a
9 (2.20)
a® = (0A° - a°A)/o '

from Equations (2.19), we may obtain

Therefore, a unit dual vector is a unit sliding vector representing a
line in space. A unit dual vector or a unit sliding vector shall be

called a unit screw. A unit screw a has the properties,

a-a-=1 } (2.21a)
0

and

la| =1 (2.21b)

A~

From Equation (2.18), we may express the dual vector A in terms of

its dual length and unit screw. Thus,

A AN

A=o0a=(at+ €oc°)§ (2.22)
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Let
o = a%/o
we have

(1 + €0) a (2.23)

| >=>
It

o is the pitch of the dual vector A.

AN

3. The Products of Dual Vectors: Let B = gb be another dual
b.

vectors withdual Tength B and unit screw

The scalar product of A and B is

AN AN AN A AN AN

A - B=(ca) - (8b) = aB(a - b) =oB cos 6 (2.24)
where 8 is the dual angle between the lines of unit screws g_and E.
The vector product of g_and E_is
AxB=(aa)x (8b) = aB (axb)= (aB sind)c (2.25)
where g'is the unit screw of the common perpendicular of E_and E_and
its direction is defined by following the right hand rule as in ordinary
vector product.

If more information is needed, the reader is suggested to refer to

References [9] and [57].



CHAPTER III
INSTANTANEOUS KINEMATICS OF A RIGID BODY MOTION

For a rigid body motion, time is generally selected as the indepen-
dent parameter and the position}ve]ocity,and acceleration of the rigid
body are utilized to describe the motion at a certain moment. There are
cases that two rigid bodies move through the same path with different
velocities and accelerations. Obviously, there exist common character-
istics between these two motions;such characteristics may be discribed
in terms of the geometric properties of the motion.

In this chapter, the geometry of a rigid body moion will be studied.
The concept of screw motion will be utilized to describe the geometry of
a general rigid body motion and the motion itself will becharacterized by
a set of instantaneous invariants. Any motion reproducing a sufficient
number of these instantaneous invariants closely approximates the refer-

ence motion.
3.1 Generalized Screw Motion

A space rigid body motion may be regarded as a generalized screw
motion in which the screw axis may not be stationary and the geometry of
the motion is represented by its pitch and the location of the screw

axis (Figure 3).

15
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Let a moving coordinate system M be attached to a moving body. The
motion of the rigid body with respect to a fixed coordinate system F may

be expressed by
X = [Alx + D (3.1)

where [A] is the orthogonal matrix relating the directions of the axes
of both coordinate systems; D is the position vector of the origin of
the moving system M; and X and x are the positions, jn systems F and M,
respectively, of the same point P on the moving body (Figure 4). 1In
Equation (3.1) and the following, a position vector such as X, x, and
D also represents a column matrix. The orthogonal matrix [A] represents
the pure rotational motion of the rigid body and the column vector D
represents the pure translational motion. Both [A] and D are functions
of a motion parameter such as time.

From Equation (3.1), the inverse motion, the motion of F relative

to M, is expressed as

x=[01" x-D (3.2)
Since [A] is orthogonal, we have

(A1 = 1Al

Differentiating Equation (3.1) with respect to time, we obtain the
velocity of point P.
X=[Alx +D (3.3)

Substituting Equations (3.2) into (3.3), we have

X = [AJIA]T (X - D) +D
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Since [A] [A]T = [I], differentiating it, we have

[A1 [A1T + [A] [A]T = O
or

[AIATT + ([A] [AID)T = 0 (3.5)

Therefore, [A][A]T is a skew matrix. Let

i 0 -Wg Wy
[AIATY = [o] = wy 0wy | (3.6)

~Wo wy 0

Equation (3.4) becomes

X = [ (x-D)+D (3.7)
This equation is equivalent to the vector equation, )
X=ax (X-D)+D (3.8)

where the vectof, Q= (w], Wo s w3), is the angular velocity of the
moving body and @_13 the Tinear velocity of the origin of the moving
system M.

In planar motion, the linear velocity Q_is always orthogonal to the

angular velocity Q. Hence, the velocity pole Zv satisfying

x,=0=ax (X, -D+D (3.9)
can be found.

In a general space motion, the velocity Q.is generally not ortho-
gonal to © and no velocity pole can be found. For a general space
motion, there are points whose velocities are parallel to the angular = .
velocity. Let these velocities be of, where o is to be determined.

From Equation (3.8), the locus of these points can be obtained by solv-
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ing
X= og=02x(X-D) +D (3.10)

In Equation (3.10), taking vector product with Q, we have

ax[ex (X-Dl=-a2xb (3.11)
It can be rewritten as T
R ONR
- . P
Xx=[@- -2 exb+Dl+ >
B T (3.12)
(-9 '[2-(X-D]g

It is obvious that Equation (3.10) gives tow linear independent
equations and its solution set is on a straight line. From Equation

(3.12), we know that this straight line must pass through the point Q

. .y fPer  (1-24) OF NAYAL.
with position vector, ReFer

Q=(2-92 'axh+D (3.13)

and have the direction of 2. Hence, the solution to Equation (3.10)

can be expressed by

X = g + e& (3.]4)

where e is any real number.

By taking scalar product with 2, Equation (3.10) becomes
Q=00

or
c=0-+D0/9-0 (3.15)

From Equation (3.10), (3.14), and (3.15), we know that for a
general rigid body motion (2 # 0), there exists a straight 1ine in the

direction of the angular velocity and all points on it have the same



21

Tinear velocity oQ. This straight Tine is the central axis of the
system.
If the origin D of the moving system M is on the central axis,

from Equations (3.10), (3.14), and (3.15), we have

. - . s
D = Q_ + ef :Jg VN ) \‘\’31&#‘ ETRPNVE 1197 itA v B } fonls ¢
— _ oy pLo B fre 15A
and
D L e ? g pt ow fine §5 A
=0
= 36 ﬁ/

Substituting them into Equation (3.8), we obtain
X=0x (X-0) +o0 (3.16)

where Q is the position vector of a point on the central axis. Equation
(3.16) shows that the velocity of any point on the moving body contains
two components: oQ is the component in the direction of the central
axis and it is an invariant for all points on the moving body; the

other component, @ x (X - Q) is orthogonal to the central axis and its
magnitude is proportional to the distance to the central axis. The
velocity distribution (the velocities of all points) of a moving body
described in Equation (3.16) is exactly the same as that of a rotating
screw (Figure 3).

Therefore, a general rigid body motion may be regarded as a gen-
eralized screw motion with the central axis as the instantaneous screw
axis (ISA) and ¢ as the instantaneous pitch. The ISA, ¢ and Q are all
functions of time and they specify the first order motion of the rigid
body. Under the rigid body motion, the ISA traces a ruled surface in
both fixed and moving systems. In the fixed system, this ruled surface
is called fixed axode and in the moving system, it is called moving

axode.
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By using dual vector, the ISA can be represented by a unit screw.
Since Q is the position vector of a point on the ISA, the unit screw

of the ISA referred to the origin of the fixed system is

K =K+eQx K (3.17)

where K = 9/Q, Q = [2| and Q is defined in Equation (3.13). The ISA,
_E is determined if the angular velocity @ and ihe linear velocity of
any point are known.

If the origin of the reference system is on the ISA, Q x K dimin-

ishes and the unit screw K becomes

|=>

= K (3.18)
3.2 Some Geometry in Ruled Suface

A ruled suface is generated by the motion of a straight 1ine. The
infinitude of straight lines which 1lie on the surface are called its
genrators. If the consecutive generators intersect, a ruled surface
becomes a developable and if all generators intersect at a point, it
becomes a cone.

Let K and K' be the unit vectors along two consecutive generators

of a ruled surface (Figure 5). We may write

K' = K + dK (3.19)

where K = K =1 and K »+ dK = 0. dK is orthogonal to K. Take

I = dK/[dK]| (3.20)

as the unit vector along the direction of dK. The unit vector along

the common perpendicular of the two consecutive generators is

J =KxK'/[KxK'| (3.21)



Figure 5.

{x>

Two Consecutive Generators on a Ruled Surface
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From Equations (3.19) to (3.20), the above equation may be rewritten
as

Jd=KxI (3.22)

Let d® denote the angular displacement from K to K'. We have

|dK| = d6 and the following relationships may be obtained [9].

dK/de = I
dI/de = yJ - K (3.23)
dJ/de = -yI

where the unit vectors I, J, and K are perpendicular to each other.
If all the generators intersect at a point, I, J, and K form a perpen-
dicular trihedron at the vertex ofﬁgggjkone. el oo |

In general, consecutive generators do not intersect. Let CC' be
the shortest distance between the consecutive generators as in Figure
5. Point C is the central point (or striction point). A perpendicular
trihedron with the three axes I, J, and K meet at the central point may
be identified. These three axes may be identified by the unit screw
i; é; and E, with reference to the origin. E is the generator, ilis
the common perpendicular from E_to the consecutive generator and i_=

dK/ |dK]. i, J, and K have the same directions of the unit vectors I, J,

and K correspondingly and the following relationships.

(3.24)

| >
|=>

=KxI and I =

| >

X

The following relationships can be obtained directly from Equations

(3.23) through the principle of transference [9, 24].

dk/do = 1

AN

vd - K (3.25)

d1/de
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AN

d3/do = —y1 (3.25)

where

A

dé = do + edo® (3.26)

is the dual angle between_g and the consecutive generator. We note
that da = [dgl and the detail derivation of Equation (3.25) is exactly
the same as Equations (3.23) except that dual vectors and dual numbers
are used instead of ordinary vectors and real numbers through the
whole process. B

978

Equations (2.35) are equivalent to (3.23) if all the dual parts

diminish.
3.3 Central Point

On the axode traced by the ISA, the central point is the inter-
section point of the ISA and its common perpendicular with the
consecutive ISA. On the moving body the central point has the minimum
acceleration among all points on the ISA.

In Equations (3.13) and (3.14), the ISA is determined through the
angular velocity and the linear velocity of any point on the moving
body. To determine the central point on the ISA, both angular
acceleration and the linear acceleration are also needed.

From Equation (3.14), any point X on the ISA is associated with a

unique number e and its position vector is

X =0Q+ QX (3.27)
where

QX

it
(1]
)
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The velocity and acceleration of the point corresponding to e are

X=0+2xQ
. origin AT &
X=0Q+2xQX+8ax (2 xQX)

or
X =0 3.28
X=0Q g (3.28a)
e e M so 6—7‘_’/
X=Q+e2xQ > (3.28b)

where Q and Q are the linear velocity and acceleration of the point

determined in Equation (3.13). From Equation (3.13), let

DO =Q-D=gax /e (3.29)
we may have

Q=D+DQ

4=2+ax00 e T
and

Q=D+&xDQ+8x (2x D) (3.30)

Substituting Equation (3.29) into Equation (3.30). Q can be obtained

as

Q=D+ax (@x D)/ -axh (3.31)

|

The central point, which has the minimum acceleration among all

points on the ISA, is determined by solving e in the equation
3(X + X)/%e = 0 (3.32)
From Equations (3.28) and (3.32), we obtain

Q- (@ x ) +e(@x®) - (Bxg) =0 (3.33)
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In general space rigid body motion, Q x 2 # 0. Therefore, the number

e associated with the central point is
e =-0- (@x/[@x0) - @x2)] (3.34)

where Q is given in Equation (3.31) and { is the angular acceleration
of the moving body. Hence, the position vector of the central point is

C=0+eg (3.35)
Let DC = C - D. From Equations (3.13) and (3.35), we have

DC = (2 x Q)/sz2 tef (3.36)

The Tinear motion at the central point can be computed

C=D+2xDC=o (3.37a)
C=D+@xDC+ax (2xDC) (3.37b)
€= +%x0C+ 2R x (2xDC)
+9x (2 xDC) +ax [2x (2 xDC)] (3.37¢)
and so on. Since
§_= §_+_Q x QC +Qx (2 xQC) & & A5 orad

and QC=C-Q-= e C may also be computed through
C=0+elxg (3.38)

where Q and e, are given in Equations (3.31) and (3.34).

The relative position of Q, D, and C are shown in Figure 6.
3.4 Velocity Screw

A velocity screw is a dual vector referred to a point on a moving

body, in which the primary part represents the angular velocity of the



Figure 6.

[SA

The Relative Position of Points D, Q, and the Central
Point C.
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moving body and the dual part represents the linear velocity of the
reference point. Since every point on the ISA has the velocity o,

the velocity screw referred to any point X on the ISA is

o>

= 0 + eof at (50 (3.39)

If yp designates the Tlinear velocity of an arbitrary point P, the

velocity screw referred to point P can be written as

A~ \
franly s -3
g=0+el, ou [ EET2) (3.40)
Vo = frandT o+ 2%

where Qp = qg.+/%9 x XP and @ x XP is the relative velocity of point P

L2

2

to any point X on the ISA.

Let the unit screw K represent the ISA of the moving body. The

velocity screw may be written as

Q= 001 +eo)k (3.41)

N

If the unit screw K is referred to a point on the ISA, then K = K is a

P e
degenerated unit screw with zero dualMpaﬁt and the above equation

e e e g

NPT,
o ,_f re 5"/‘

becomes L a wyony Contharglon ‘
poyeant b TN evdrasloyan (Fﬁm ( 342y

/ . "
Coannd 5’ f A

Q = Q( -l + 0 )E | { TR = H,J;‘,’\_f,,é.- &Le ) (3 . 42)

7 oa
1

which is equivalent to Equation (3.39). If K relates to any other

point P, then

|7 >

=K+ ePX x K (3.43)

where the dual part PX x K is the moment of the sliding K, along

the ISA, with respect to P. Substituting it into Equation (3.41), we

have

Q1 + eo)(K + ePX x E)

|20
I

(3.44)

QK + e(of K + PX-x  QK)
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=0 +e(oR + 92 x XP) (3.44)

It isAequiva]ent to the velocity screw of Equation (3.40). Hence, the
velocity screw of a moving body can be represented by Equation (3.41)
in which the dual part represents the Tinear velocity of the‘reference
point of the unit screw_ﬁ.

Until now, the rigid body motion is considered as the function of
time. However, we are primarily interested in the geometry of the
motion which is time independent. Since a general rigid body is a
generalized screw motion, the angular displacement ¢ of the rigid body
about the screw axis is a geometrical parameter and can be selected
as the independent motion parameter to provide a base for the comparison
of the geometry of motions. In other words, the angular velocity about
the ISA is normalized and remains unity at any time. Thus, Q@ = d¢/d¢ =

d¢/dt = 1 and from Equation (3.41), the normalized velocity screw is

= (1 + eo)K (3.45a)

|1=>

| where gmapdbEuargwfynctignsﬂqfx¢LWAIn Equation (3.45a), only the
’Ninstantaneous pitch o and the ISA, E_are needed to describe the
geometry of the first order general rigid body motion. In case of a
spherical motion, the pitch o remains zero and the ISA always passes
through the center of rotation. Therefore, only the unit vector K along

the rotational axis is needed and the normalized angular velocity is

Holds oty if Hre comlen op wolaton

W=K (3.45b)

ve Ak an Hea vﬂ??\v

3.5 Higher Order Rigid Body Motion

On the ruled surface traced by the ISA of a rigid body motion, the

generator trihedron formed by the three perpendicular axes I, J, and K



is defined in Section 3.2. These three axes meet at the central point

and from Equations (3.25), we may obtain

dk _ dK do .
dt § dat - oL
4L dL 96 gy - ok = 8J - ok (3.46)
dt do dt
.
dt do dt
in which B =ay and o = g%- Equations (3.46) may also be written as
A
a TTxK
a ~ .
dg— ey AN
Tomxd
where m = aJ + BK is the Darboux screw.

Let us consider a spherical motion. The instantaneous pitch o

remains zero and all the instantaneous screw axis pass through the

center of rotation. If the center of rotation be selected as the

reference point of the unit screws. Equations (3.46) and (3.47) become

dK

SeTxK=ol

dI

dt - I x1=8J- oK (3.48)
dJ

qg-Txd=-8l
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In Equation (3.48), all the 5ua1 parts are zero and m = aJ + BK is the
Darboux Vector which is the angular velocity of the generator trihedron
formed by I, J, and K at the center of rotation.

Assume that © is the angular velocity of a rigid body executing a

spherical motion. Since o = 0, from Equation (3.42), we have

Q=K

(3.49)

where Q@ and K are functions of time t. Let the instantaneous motion to
be investigated be at zero position, at which t = ¢ = 0, and the sub-
script i associated with any quantity such as Qi’ Qi or o denote the
ith derivative with respect to t at t = 0. From Equations (3.48) and
(3.49) we obtain

g = ok
9 = agfpl + K
2
Sy = (2040 + a190)1_+ agBoitgd + (2 - ag 29)K
.(3.50)
3 2

93 = (3&092 + 3@191 +u290 -0 QO - uOBO Qo)l

+(2u18090 tagBi9g + SQOBOQ])Q

+(Q, = 30,040, - 3@2 Q,)K

3 7 %Mty T % /R

Each parameter in Equation (3.50) can be determined if Q2 (i =0, 3)

are known.

"
be]

ks
o

I}

o)

= 0y * 9/ (04) (3.51)

ag = (0« 1 - 2050,)/9



where

and

[
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= (23 - J - 20480y - ey )/ (o) 1
, (3.58)
- CT o _ 3
= (25 0 1 - 30g - 3uq@ + agy * apBy%)/ 9
= Iﬁol
=% K
_ 2
=& s Krag &y
=Q, « K+ 3 a,0,0, + 3@2 Q
3 - K o*1¥% + 3%
(3.52)
= 89/%
= (9 - K719 - 9K]
=Kx1I

Consider a general rigid body motion, the first order motion can

be represented by the velocity screw of Equation (3.41) which may be

rewritten as

|0>

K

(3.53)

where @ = Q(1 + o). From Equations (3.46) and (3.53), we may have

go>

|20

- (3@032 + 3

A A A A A (3-54)
aoﬂol + 915

AN A A N AN AN AN AN /\2/\ N
(2009, + 0q9g)L+anBygd + (2, - ag2g)K

19+ ey - agly —agB)L
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+(2u1BOQO + aOB]QO + 30
~ A A A PN (3.54)

2
+(Q3 - 30849 - 3a0a])£

where

D>
]

0 QO(1 + 800)

D>
i

1= 9 *elogy + 0y5)

D>
1

o = 0y + 8(0092 + 20191 + 0290)

3 = Qg ¥ 6(0093 + 3070, + 30,0, + 0390)

and the subscript i denotes the ith derivative of the associéted
quantity with respect to t at zero position. Equations (3.54) and
(3.50) are equivalent if the dual notation are disregarded.

We may separate Equations (3.54) into primary parts and dual
parts: The primary parts represent the rotational motion of the
rigid body, i. e., angular velocity, acceleration and jerk; the dual
parts represent the linear velocity, acceleration, and jerk of the
reference point of the unit screws i} ﬁﬁ and E} Let these unit screws

be referred to the central point which is their common point. Then,

the dual parts of these unit screws diminish and we have

I=1, J=J and K=K (3.55)
Let
&i = ai-Fsa°i
(i=0,1,2,...) (3.56)
By = 8y + e

Substituting Equations (3.55) and (3.56) into (3.54) and separating the
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primary and dual parts, we have

2 = 9 + <,

. .

& =4 +ely

. (3.57)
= 8 * ey

2 = 9y + <t

where'gi (i = 1, 4) represents the Tinear motion at the central point.

The velocity, acceleration and jerk at the central point are shown

below.
Gy = 92K (3.58a)
Cy = (affy + o)L *+ (o + 079)K (3.58b)
C3 = [ZuO(GOQ] t099y) * 2009 + 0040y + aQylL
+ OglagBag + agly + agp )d (3.58¢)
+ (0092 tO,0g * 20191 - Zaoaaﬂo - aBaOQO)E
C, can also be obtained similarly. In the above equations, the

24
primary part are exactly the same as Equation (3.50). This result is

consistent with the principle of transference and 0y Bi’ Qi can be
obtained from Equations (3.51) and (3.52). Knowing the angular motion
of the rigid body and the linear motion at any point, we can compute

gj from Equations (3.37) and (3.38). The instantaneous pitch % of the

rigid body motion can be determined by Equation (3.15) or

C
o = * K9, L s (3.59)
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where QJ is the velocity at any point. From Equations (3.58), the

following parameters can be calculated.

ag = G + 1/%p - agay

(3.60)
o = (G + K - 0gfy)/%
Bo = (Lg = 9/% - agByog - aghy)/ag
0y = (93 . EjGOQZ - 20191 + Zaouaﬂo + aBOOQO)/QO
a = (G5 I - 2%(0091 +0y8g) - 2009 - 07049)/9

For fourth order motion B?, 03, and “5 can be obtained in a similar
manner if §4 is known. In Equations (3.59) and (3.60), 2 B> o and

the unit vectors I, J, and K are given in Equations (3.51) and (3.52)
3.6 Geometry of Rigid Body Motion

We will now study the geometry of motion of a mechanism. For this
purpose, the rigid body motion will be treated as a normalized motion
with a constant unit angular velocity. Such a normalized motion is
equivalent to a motion with ¢ = t, where ¢ is the angular displacement
about the ISA. To avoid confusion ¢ will be used as the independent
motion parametér. Then, the motion described is equivalent to a time-
based motion with 2 = 1 and Q =8, = .. .= 0. A1l the single
subscripts i (i =0, 1, 2, . . . ) in the following denote the ith
derivatives of the associates quantities with respect to ¢ at zero
position ¢ = 0.

Let us consider a spherical motion. The normalized angular

velocity is given in Equation (3.45b). Referring to Equation (3.50)
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with QO = 1 and 9 = Q= . . .= 0 or differentiating Equation (3.45b)

with respect to ¢ and referring to Equation (3.48), we have

Wy =K
Wy = dK/dg = Wi T
_ 42 2 _ 2

Wy = d"K/dg™ = WpoL + Wpod - WK

W, = d3K/deS = Wool + Wood = 3W. Wy oK

Wy = d'K 131 + Wozd = 3WpqHy oK
where

Wy = o

Wyp = o3 Wop = 9By

(3.62)
W

1
Q
>

3 2. _
13 T O 7 O " GgBgs  Wp3 = 20484 + 0By

Qs Bi are determined in Equation (3.51) and they are the quantities
caused by the rotation of the ISA. We note that in Equation (3.61) the
geometry of a spherical motion is characterized by o, and Bi (i =0, 1,
2, . . . ) and (2n - 3) numbers are needed to characterize a nth order
spherical motion (n > 2).

For a general rigid body motion, the normalized velocity screw is
given 1in Equatfon (3.45a). Let the central point be taken as the refer-

ence point of the unit screw I, J, and K. With a normalized constant

unit angular velocity, we may have, from Equations (3.54) or (3.57)

and (3.58),
ﬁo = Wy + ediK . ivv(z.w.i'e\
Wy = Wy + e(dy,l + dyok) (3.63)
ly = My + (djl + dpgd + dyak)
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Wy = Wy + e(dy,I +d,y,d + dy,K - (3.63)
and
d-I = 0, (3.64a)
dy5 = 2000y + 005 * o] dys = agBaoy + gy + aghg (3.64c)
d,, = o, - azc - 20,00 (3.64d)
33 2 071 070 :
3 2 o o
d]4 = 3@002 - agoq - 3u0u6 + 3@10]-+u200 taj (3.64¢)
2 o 2 o
~%oBT0 = %Py = 2%pRoly
dyy = 3aOBOG] + 2&18000 + 2a160 + 2&180 (3.64f)
t ogBiog * Byag + aghy
2 o
dyy = 03 = a0y - 3ag0q0g - 3agaq - 3a0a? (3.64q)

where the primary parts W. are identical to Equation (3.61). Equation

(3.63) may also be obtained by differentiating Equation (3.45a) direct-

ly.

We note that in Equation (3.63) and (3.64), the geometry of a

e =

rigid body motion is characterized by &i’ @1, and g¢ _at zero position.

~

 For a nth order motion (n > 3), five real numbers (a

n-2° Bn—3’ On—1)

are needed to characterize each additional order of motion. Thus by

the concept of a generalized screw mo