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CHAPTER I 

INTRODUCTION 

A mechanism consisting of links and_K1ri~matic pairs can generally be 

synthe?iZe<:Lt.Q produce a desired motion with reasonable accuracy. The 
_.. .. ~-' '· ' .. - ... - '' ..... , .......... ".~ .. ··-·-'"'- ......... ~, ... _,_ . .-, .. ~;"~"·~~-·-·'-"·~- ........ _. .. _,,........,, -·..,~--":} 

prescribed path to be generated by a mechanism may be described either 

by a series of finitely or infinitesimally separated positions of a 

point. When such infinitesimally separated positions of a point-path 

are to be satisfied, there exists a need to develop mechanism synthesis 

theory that takes into consideration the higher order properties of the 

point path. A curve or a surface may be generated in general by a point, 

a line, or a plane moving with the coupler-link of a mechanism with four 

or more links. _£Qr.: R.Jari~T ... 11_1.<?tigri_, ___ a line co~_ne_cted to .tb.e ... c.o.u-pler..,l-ink 

tangent- 1 ine. For space motion, a plane connected to the coupler link 
---.~-, ' ........ ~ .. ,.,__.....-----.. --------~~-"'"•<···~--~ .. '>--·----~"· . -··-····' --- -- ··- ___ , -· 

of a m,~c~~nism ~ill erwelop a surface a~" ... t~~,.,Pl.2ne is called the 
.............. ,. ""''•·-.. --.. -.... ~·-,.,·-···"'·-·:''""."'"'" 

tangent-plane. 

The present work will develop the curvature theory and its applica-

tion in mechanism synthesis to generate with a prescribed degree of 

accuracy an enveloping surface drawn by a plane executing space motion. 

1.1 Background Review 

We note that in recent years there appears to be considerable 
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interest in the development of higher order curvature theory. The 

classical curvature theory, also known as the infinitesimal circular 

Burmester theory, provides the necessary tools to synthesize a planar 

mechanism for the generation of circular arc and straight-line segment 

in a coupler curve. This circular Burmester theory was generalized by 

Freudenstein [12], His contribution was to characterize a planar curve 

to the nth order within stretch rotation by (n - 2) dimensionless 

characteristic numbers. The characteristic equations were derived to 

locate on the moving plane those points whose trajectories have the 

same characteristic numbers. The well known inflection circle, cubic 

2 

of stationary curvature and so on of the infinitesimal Burmester theory, 

are special cases of the generalized theory developed by Freudenstein. 

The importance of this generalized theory was highly stressed by 

Veldkamp [51] who examined the problem using instantaneous invariants. 

The concept of instantaneous invariants to study the infinitesimal motion 

of a rigid body was first introduced by Bottema [7]. Veldkamp [48, 50] 

elaborated on it and extended this concept to study three-dimensional 

motion. According to the concept of instantaneous invariants, a set of 

numbers are used to characterize an instantaneous motion. Any mechanism 

reproducing a sufficient number of these characteristic numbers closely 

approximates the reference motion. Hence, the use of instantaneous 

invariants is recognized as one of the most efficient tools to character­

ize a rigid body motion and is frequently used in curvature theories. 

For example, using instantaneous invariants, Kamphuis [22], Roth and 

Yang [54] developed the curvature theory of point-path in spherical 

motion. Using the analogous approach, Veldkamp [47], Siddhanty and 
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Soni [39], and Hsia [16] developed the point-path curvature theory for 

the general space motion. The curvature and torsion including their 

derivatives were used to characteY'ize a twisted curve. The characteris­

tic equations were derived in terms of instantaneous invariants, and some 

results similar to the infinitesimal Burmester theory of planar motion 

were obtained. Veldkamp [47] pointed out that equivalence to Ball 1s 

point and Burmester's point do not exist for space motion generally. 

A first study of line trajectories in space motion appears to be 

due to Disteli [10]. He showed that the line trajectories were the 

spatial analogy of planar path trajectories. Yang, Roth and Kirson 

[24,59] used dual vectors and the principle of transference to dualize 

some of the results from spherical curvature theory to spatial curvature 

theory of ruled surfaces. McCarthy and Roth [29] later reexamined this 

problem without using the principle of transfeY'ence. 

Just as a point traces a path~a l.i~~ ... 1!!.J.>l2.D£! .... IDQ.:U.Q~lQR2 _ _.. 
'l-------·---·--·~··-"""' _____ . 

a curve. This line_ll_f_tl}gJ!_:t,h~ tang,g.rit-li.n.e ... _ The significant contrib-··-· - ~----·-·-----~ ·-'"'--.·----~··--... ·-"'""~ .,._.,.--... -
utions in tangent-line envelope curvature theory ~Rpear.to be d~e.1~--------
Allievi [l] and Bereis l5J. Using instantaneous invariants, Soni, '<:----·-
Siddhanty, and Ting_(41] developed a tangent-line envelope curvature - " 

theory. The approach used in the development of this theory is ana}~_~ous 

to that developed by Freudenstein. For the tangent-line envelope curva­

ture theory, a family of lines can be found to envelop cusps and a 

tangent-line can be located to envelop a double cusp. These properties 

are analogous to the inflection circle and Ball's point of Burmester 

theory. However, nothing similar to the Burmester point can be found. 



A point and a line are dual concepts in planar geometry. For a 

planar figure consisting of a number of points and lines, a dual 

configuration can be formed by replacing every point by a line, and 

4 

every line by a point, Corresponding to a point tracing a path, a moving 

tangent-line envelops a curve. Hence, the dual to a point trajectory is 

a family of tangent-lines which envelop a curve. Using line coordinates, 

Hunt and Fichter [18] derived the equation of the tangent-line envelop 

of a four-bar linkage and showed the similarities between the tangent­

line envelope and point-trajectory theories. 

In space geometry, a point and a plane form the duality, and a line 

is a self-dual construct in the sense that the system of points on a 

line is dual to the system of planes through a line. For a geometrical 

configuration consisting of points, lines, and planes, the dual config­

uration is formed by replacing every point by a plane, every line by a 

line, and every plane by a point. Hence, we may expect that these will 

be analogy existing between the locus of a point and a family of tangent­

planes which envelop a surface. From theoretical point of view, it is 

just as important to study the path of a plane as it is to study the 

path of a point. For example, a surface requiring a high degree of 

accuracy in a localized region may be generated by an envelope of a mov~ 

ing plane guided by a coupler-link of a mechanism. This kinematic 

importance of the tangent-plane envelope has been recognized by Bottema 

and Roth [8] and Hunt [19]. 
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1,2 Organization 

For the reader 1 s convenience, in the present chapter, some back­

ground material is summarized. Chapter II introduces the subjects of 

dual vector calculus. Dual vectors are extremely convenient to describe 

rigid body space motion. They are especially useful in describing the 

motion of a straight line. For more information, References [9] and 

[57] are recommended. 

Chapter III describes the instantaneous invariants of a general 

rigid body. In the derivation of the instantaneous invariants, both 

ordinary vectors and dual vectors are used frequently and the principle 

of transference between them is emphasized. This chapter provides in­

sight into the usefulness of the instantaneous invariants and may be 

suplemented with Reference [24]. 

The kinematics of a moving plane are investigated in Chapter IV. 

It describes the general theory of tangent-plane envelopes. The higher 

order properties of a developable are explicitly described and the 

characteristic equations are derived up to third order. 

Chapter V discusses some special cases of a tangent-plane motion. 

Such special cases are basically the analogy of the subjects in the in­

finitesimal Burmester theory. 

The tangent-plane envelope curvature theory in spherical kinematics 

is presented in Chapter VI. The results of the spherical tangent-plane 

envelope curvature theory are new. Compared to the complexity of 

general space motions, these results promise to have significant import­

ance in understanding spherical motion of a tangent-plane. 



In Chapter VII, a special motion and the general synthesis pro­

cedure of a developable are briefly presented. 
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CHAPTER II 

DUAL VECTORS 

2.1 Dual Numbers 

A dual number a is an ordered pair of real numbers associated 

with an operator E which has the property E2 = 0: 
/\ 

a = a + Ea 0 (2.1) 

where a is the real part and a0 the dual part of the dual number a. 
When a f 0, a is a proper dual and when a= 0, ~becomes a pure dual. 

Any real number is a dual number with a diminished dual part. 

The equality of dual numbers is similar to that of complex numbers. 

Let b = b + Eb 0 be another dual number. 

a = B only when a = b and a0 = b0 (2.2) 

The operations of dual numbers are the same as in the ordinary alge-

bra followed by setting En= 0 (n = 2, 3, ). Therefore, we have 
/\ A 

a ~ b = (a ~ B) + E (a 0 ~ b0 ) 

AA 

ab = ab + E (a 0 b + ab0 ) 

/\ A a + Ea 0 

a/b = b + Ebo 
b - Eb 0 

b - Eb 0 

It is observed that division by a pure dual is not defined. 

(2.3) 

The expansion of a function follows the Taylor's series expansion. 
A, 

f(a) = f(a + Ea 0 ) = f(a) + Ea 0 df(a)/da (2.4) 

for example, 

7 
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A 

ea = e(a + e:ao) = ea t e:aoea 

a =v'(a+ a0 )= {a+ a0 /2{a 
(2.5) 

An example of a dual number is the dual angle subtended by two lines 

in sp~ce. In Figure l the dual angle between the two straight lines is 

e, 
A 

e = e + s8° (2.6) 

where 8 is the projected angle between two lines and 8° is the shortest 

distance between them. In the case of two parallel lines, we have 8 = 0 

and the dual angle between them is a pure dual. If two lines intersect, 

we have 8° = 0 and the dual angle is a real number. 

The trigonometric functions of dual angels can be obtained by fol­

lowing the Taylor 1 s series expansion of Equation (2.4). For example, 
A 

sin e = sin (8 + e:eo) = sin e + e:eo cos e 
A 

cos e = cos (8 + s8°) = cos 8 - s8° sin e ( 2. 7) 

tan § = tan (8 + e:eo) = tan e + s8° sec 8 

All identities for ordinary trigonometry hold true for dual angles. 

2.2 Sliding Vectors 

A vector implies a quantity defined by direction and magnitude, but 

is never restricted in position in any way. A sliding vector is a vector 

confined to a line in space. It can be specified by its vector~ and 

its &i with respect to a point P (the origin, generally). A and A are 
I"' - -p 

the PlUcker vectors of the sliding vector (Figure 2). With the operator 

e:(s2 = 0), the sliding vector may be expressed by a dual vector A. 



9 

Oua 1 a~91e e ~ e + s8° 
figuY'e I. 1 

" 

/' 

figure z. Si idi09 ~ector I\_" I\_+ cl\i 
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A = A + EA (A • A = 0) - - '-'-P - '-'-P 
(2.8) 

The primary part A of the sliding vector gives the direction of the 

sliding vector and the dual part Ap specifies the location of the slid­

ing vector. A dual vector is always referred to a point and one may 

indicate its reference point with a suffix at the dual part. For a 

general dual vector, the restriction A • A = 0 does not need to be 
'-'-P 

true. 

Let the moment of the same sliding vector be taken with respect to 

another point Q. The dual vector becomes 

A =A+ EA (2.9) - - -q 

Assume ! is any point on the line of the sliding vector. The moments of 

the sliding vector with respect to P and Qare respectively, 

Hence, we have 

or 

Ap = PX x 8. 

A = QX x A -q -

Aµ - \ = (PX - QX) x A = PQ x 12 

A = A + pn x A '-'-P -q ~ -

From equations (2.8) to (2. 10), we have 
"' 
A = A + E (A + PQ x A) - - q 

= A + EA 
- '-iJ 

(2.lO) 

( 2. 11) 

Equation (2.11} gives the relationship of two dual vectors which present 

the same sliding vector but are referred to different points P and Q. 

In case that the reference point is on the line of the sliding 

vector, the dual part of the representing dual vector becomes zero and 
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the dual vector has the form of an ordinary vector. However, it is 

still a dual vector, since its zero dual part indicates the location of 

the sliding vector. 
A 

In Equation (2.8), if A is a unit vector (A• A= 1), then A 
represents a unit sliding vector. The dual vector of a unit sliding 

vector will be utilized to represent a unique straight 'line in space and 

it is also called unit screw. 

The operations of dual vectors are summarized in the next section. 

2.3 Dual Vectors 

A dual vector is always referred to a point. It is an ordered 
2 pair of vectors associated with the dual operator E(E = 0). Let A be 

a dual vector referred to the point 0. We have 

A = A + EA ( 2 . 1 2 ) 
-0 

in which A is the primary part and is independent of the reference point; 

~is the dual part. In Equation (2.12), there is no restriction 

A·~= 0 as in the sliding vector. When the reference point is shifted 

from 0 to P, the dual vector becomes 
A 

A = A + E(A + PO x A) = A + EA 
- - -0 - -p (2.13) 

This transformation is called 11 reduction. 11 Since 

A = A +PO x A (2.14) -'P -0 - ....:.. 

we may obtain 

A• A =A •(A +PO x A)= A, A -'P - -0 - - - -0 
(2.15) 

Equation (2. 15) shows that the scalar product of the primary part and 

the dual part is independent of the reference point. 
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Since a dual vector is the combination of two ordinary vectors,. 

the rules for vector albgebra are also valid for dual vector algebra by 

setting E2 = O. The principle of transference of dual vector algebra 

states that all vector identities of ordinary vector algebra are also 

valid for dual vectors if all the vectors and real numbers are replaced 

by dual vectors and dual numbers, respectively. Some rules which may be 

used later are presented in the following. 

Let the dual vector A = A + EA 0 be referred to the origin of the 

coordinate system. 

1. Dual Components: The two vectors A and A0 of the primary and 

dual parts may be expressed as 

A = all_ + a2~ + a3f 

A0 = a0 I + a0 J + a°K - 1 - 2- 3-
} 

where 1_, ~. and K are the unit vectors along the three axes of the 

coordinate system. The dual vector A can be written as 

A = a1 1_ + a 2~ + a3f 

where a. =a. + Ea 0 • (i = 1, 2, 3) are the dual components of A. 
1 1 1 

(2.16) 

(2.17) 

and fare the unit sliding vectors of three coordinates axes with refer-

ence to the origin. 

2. Unit Screw: The unit dual vector of A is 
A A 

a = A /a (2.18) 

where (;. = 
A A 2 A 2 A 2 i IAI = (a1 + a2 + a3 )2 is the dual length of the dual 

vector A. Let(;.= a+ Ea0 • From Equations (2.18) and (2.5), we may 

obtain 
2 2 2 i 

a = (a1 + a2 + a3 ) 2 = IAI 
a 0 = (a1a0 1 + a2a0 2 + a3a0 3)/a = A • Ao/a 

} (2.19) 
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One may observe that since A • ~ is independent of the reference point 

of the dual vector, the dual length of a dual vector is invariant to the 

reference point. 
A 

From Equations (2.18) and (2.19), we have the unit dual vector!' 

a = (A+ sAc)/( a + sac) 

Let 

then 

= 
A + sAc 

a + sac 

A 

a = a + sac 

2 !c = {aAc - acA)/a 

from Equations (2.19), we may obtain 

a • ac = 0 

a - sac 

a - sac 

} (2.20) 

Therefore, a unit dual vector is a unit sliding vector representing a 

line in space. A unit dual vector or a unit sliding vector shall be 

called a unit screw. A unit screw a has the properties, 

a • a = 1 } a • ac = 0 

(2.2la) 

and 

la I = 1 (2.2lb) 

From Equation (2. 18), we may express the dual vector A in terms of 

its dual length and unit screw. Thus, 
~0 A 

A = aa = ( a + sac)! (2.22) 
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Let 

0 = a 0 /a 

we have 
A ,.., 

A = a( 1 + ECJ) a (2. 23) 

a is the pitch of the dual vector A. 

3. The Products of Dual Vectors: Let B = SE_ be another dual 
A 

vectors with dual length S and unit screw b. 
A 

The scalar product of & and ~ is 
A A AA AA, AA A A 

A • B = {a_~_) • (Sb) = aS(~ • _Q_) =as cos e (2.24) 
A 

where e is the dual angle between the lines of unit screws a and b. 
A 

The vector product of A and ~ is 
AA AA AA A A A A 

Ax B = (a~) x (S_Q_) = af3 (~ x _Q_) = (aS sin8).f.. (2.25) 
A A A 

where ~ is the unit screw of the common perpendicular of ~ and b and 

its direction is defined by following the right hand rule as in ordinary 

vector product. 

If more information is needed, the reader is suggested to refer to 

References [9] and [57]. 



CHAPTER III 

INSTANTANEOUS KINEMATICS OF A RIGID BODY MOTION 

For a rigid body motion, time is generally selected as the indepen­

dent parameter and the position,velocity,and acceleration of the rigid 

body are utilized to describe the motion at a certain moment. There are 

cases that two rigid bodies move through the same path with different 

velocities and accelerations. Obviously, there exist common character­

istics between these two motions, such characteristics may be discribed 

in terms of the geometric properties of the motion. 

In this chapter, the geometry of a rigid body moion will be studied. 

The concept of screw motion will be utilized to describe the geometry of 

a general rigid body motion and the motion itself will be characterized by 

a set of instantaneous invariants. Any motion reproducing a sufficient 

number of these instantaneous invariants closely approximates the refer­

ence motion. 

3. 1 Generalized Screw Motion 

A space rigid body motion may be regarded as a generalized screw 

motion in which the screw axis may not be stationary and the geometry of 

the mot ion is represented by its pitch and the location of the screw 

ax i s ( Fi gu re 3 ) . 

15 
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Let a moving coordinate system M be attached to a moving body. The 

motion of the rigid body with respect to a fixed coordinate system F may 

be expressed by 

X = [A] ! + Q (3 .1) 

where [A] is the orthogonal matrix relating the directions of the axes 

of both coordinate systems; Q is the position vector of the origin of 

the moving system M; and! and! are the positions, in systems F and M, 

respectively, of the same point Pon the moving body (Figure 4). In 

Equation (3.1) and the following, a position vector such as!,!' and 

Q also represents a column matrix. The orthogonal matrix [A] represents 

the pure rotational motion of th~ rigid body and the column vector Q 

represents the pure translational motion. Both [A] and D are functions 

of a motion parameter such as time. 

From Equation (3.1), the inverse motion, the motion of F relative 

to M, is expressed as 

x = [Ar l (~ - Q) 

Since [A] is orthogonal, we have 

Differentiating Equation (3.1) with respect to time, we obtain the 

velocity of point P. 
• • • 
X = [A]! + Q 

Substituting Equations (3. 2) into (3.3), we have 

x = [A][A]T (! - Q) + D 

(3.2) 

(3.3) 

(3.4) 
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Since [A] [A]T = [I], differentiating it, we have 

or 

(3.5) 

Therefore, [A][A]T is a skew matrix. Let 

0 -W3 (Jj2 

[l\][A]T = [n] = W3 0 -w1 (3.6) 

-w2 wl 0 

Equation (3.4) becomes 

x = [rt] (! - Q) + o ( 3. 7) 

This equation is equivalent to the vector equation, 

i = g x (! - Q_) + Q (3.8) 

where the vector, g = (w1, w2, w3), is the angular velocity of the 

moving body and Q is the linear velocity of the origin of the moving 

system M. 

In planar motion, the linear velocity Q is always orthogonal to the 

angular velocity g. Hence, the velocity pole !v satisfying 

x = o = n x (X - D) + o -v -v -
(3.9) 

can be found. 

In a general space motion, the velocity D is generally not ortho­

gonal to g and no velocity pole can be found. For a general space 

) 

I 

motion, there are points whose velocities are parallel to the angular~--':>/ ' 

velocity. Let these velocities be og, where o is to be determined. 

From Equation (3.8), the locus of these points can be obtained by solv-

I 



ing 

X = crg = g x (! - Q) + 0 

In Equation (3.10), taking vector product with g, we have 

n x [g x (! - Q)J = - n x o 

It can be rewritten as 

! = [ (g • g) -1 g x Q + Q J + 

(g • gf 1 [g • (! - Q) J g 

It is obvi-0us that Equation (3.10) gives tow linear independent 

20 

(3.10) 

(3.12) 

equations and its solution set is on a straight line. From Equation 

(3.12), we know that this straight line must pass through the point Q 

with position vector, 

Q = (g. g)-l Q x D + D (3.13) 

and have the direction of n. Hence, the solution to Equation (3.10) 

can be expressed by 

! = Q + eg (3.14) 

where e is any real number. 

By taking scalar product with g, Equation (3.10) becomes 

crn • n = n • o 
or 

cr = n • o;g · n (3.15) 

From Equation (3.10), (3.14), and (3. 15), we know that for a 

general rigid body motion (D t 0), there exists a straight line in the 

direction of the angular velocity and all points on it have the same 
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linear velocity og. This straight line is the central axis of the 

system. 

If the origin Q of the moving system M is on the central axis, 

from Equations (3.10), (3.14), and {3.15), we have 
;· .. ,.~·· fi) 

Q = Q + erl 

and 

o = orl 

00 
0 

/!·,>',,,. 

Substituting them into Equation {3.8), we obtain 

X = Q x (! - Q) + orl ( 3 . 16) 

where Q is the position vector of a point on the central axis. Equation 

(3.16) shows that the velocity of any point on the moving body contains 

two components: og is the component in the direction of the central 

axis and it is an invariant for all points on the moving body; the 

other component, g x (! - .Q_) is orthogonal to the central axis and its 

magnitude is proportional to the distance to the central axis. The 

velocity distribution (the velocitjes of all points) of a moving body 

described in Equation (3.16) is exactly the same as that of a rotating 

screw (Figure 3). 

Therefore, a general rigid body motion may be regarded as a gen-

eralized screw motion with the central axis as the instantaneous screw 

axis (ISA) and a as the instantaneous pitch. The ISA, a and g are all 

functions of time and they specify the first order motion of the rigid 

body. Under the rigid body motion, the ISA traces a ruled surface in 

both fixed and moving systems. In the fixed system, this ruled surface 

is called fixed axode and in the moving system, it is called moving 

axode. 
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By using dual vector, the ISA can be represented by a unit screw. 

Since .Q. is the position vector of a point on the ISA, the unit screw 

of the ISA referred to the origin of the fixed system is 
A 

..!5. =JS.+ £.Q. x ..!5. (3.17) 

where _!5_ =Bf~,~= IB.I and .Q. is defined in Equation (3.13). The ISA, 

K is determined if the angular velocity g and the linear velocity of 

any point are known. 

If the origin of the _\"~f(i!_!:~!l~e -~~!_(i!~ is on the ISA, .Q. x _!5_ dimin-
"' ishes and the unit screw K becomes 

K = I( (3.18) 

3.2 Some Geometry in Ruled Suface 

A ruled suface is generated by the motion of a straight line. The 

infinitude of straight lines which lie on the surface are called its 

genrators. If the consecutive generators intersect, a ruled surface 

becomes a developable and if all generators intersect at a point, it 

becomes a cone. 

Let K and K' be the unit vectors along two consecutive generators 

of a ruled surface (Figure 5). We may write 

KI = K + dK ( 3. 19) 

where K • K = 1 and K • dK = 0. dK is orthogonal to K. Take 

l = d..!5.f I df I ( 3. 20) 

as the unit vector along the direction of df. The unit vector along 

the co11111on perpendicular of the two consecutive generators is 

~ = ~ x .!$_I I l..!5. x ..!5.' I ( 3. 21 ) 
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,.. I 

\S 

f\gure 5. Two consecutive Generators on a Ruled surface 



24 

From Equations (3. 19) to (3.20), the above equation may be rewritten 

as 

J = K x I (3.22) 

Let de denote the angular displacement from K to K1 • We have 

jd_!5.j. = de and the following relationships may be obtained [9]. 

df/de = l 

dlf de = y~ - _!5. 

dyde = -yl 

(3.23) 

where the unit vectors l, ~' and _!$.are perpendicular to each other. 

If all the generators intersect at a point, l, ~. and_!$. form a perpen­

dicular trihedron at the vertex of ;th;}one. t..:,rio-.L c-'0>0<~ 7 

~--

In general, consecutive generators do not intersect. Let CC' be 

the shortest distance between the consecutive generators as in Figure 

5. Point C is the central point (or striction point). A perpendicular 

trihedron with the three axes l, ~. and K meet at the central point may 

be identified. These three axes may be identified by the unit screw 

!_, ~' and .!$_, with referenc~ to the origin. _!$. is the generator, ~ is 

the common perpendicular from K to the consecutive generator and l = 
A A A A A 

df/ld.!5.I· l, ~' and_!$. have the same directions of the unit vectors l· ~. 
and _!5. correspondingly and the following relationships. 

A /'\ A 

J = K x I and I = J x K (3.24) 

The following relationships can be obtained directly from Equations 

(3.23) through the principle of transference [9, 24]. 

df!de 
= I I 

/'\A A 

= y~ - .!5. (3.25) dlfde 
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I'\. A /\.A 

dyde = -Yl (3.25) 

where 

de = de + £de 0 (3.26) 
A 

is the dual angle between! and the consecutive generator. We note 
A A 

that de = ld!I and the detail derivation of Equation (3.25) is exactly 

the same as Equations (3.23) except that dual vectors and dual numbers 

are used instead of ordinary vectors and real numbers through the 

whole process. 

Equations (-2.--3:6) are equivalent to (3.23) if all the dual parts 

diminish. 

3.3 Central Point 

On the axode traced by the ISA, the central point is the inter­

section point of the ISA and its common perpendicular with the 

consecutive ISA. On the moving body the central point has the minimum 

acceleration among all points on the ISA. 

In Equations (3.13) and (3.14), the ISA is determined through the 

angular velocity and the linear velocity of any point on the moving 

body. To determine the central point on the ISA, both angular 

acceleration and the linear acceleration are also needed. 

From Equation (3.14), any point X on the ISA is associated with a 

unique number e and its position vector is 

( 3. 27) 

where 

QX = en . 
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The velocity and acceleration of the point corresponding to e are 

! = Q + Q x QX 

! = Q + g x ~ + Q x (g x QX) 

or 

!=.Q. (3.28a) 

. 
! = _q + eg x g (3.28b) 

where Q and _q are the linear velocity and acceleration of the point 

determined in Equation ( 3. 13). From Equation ( 3. 13), let 

we may have 

and 

• 2 
QQ. = Q - Q = g x Qin 

.Q.=Q+QQ. 

g_ = Q + g x QQ. 
ORlf:ilN AT .D · 

.Q. = Q + g x QQ. + Q x (Q x DQ) 

(3.29) 

(3.30) 

Substituting Equation (3.29) into Equation (3.30). _q can be obtained 

as 

• • 2 • 
_q = Q + g x (g x Q)/n - g x Q (3.31) 

The central point, which has the minimum acceleration among all 

points on the ISA, is determined by solving e in the equation 
.. .. 

a(_! • !)/ae = o (3.32) 

From Equations (3.28) and (3.32), we obtain 

_q • (g x g) + e (g x g) • ( 0. x g) = O (3.33) 
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In general space rigid body motion, g x g f 0. Therefore, the number 

e associated with the central point is 

e = - Q • ( ~ x SI) I [ ( ~ x SI) • (g x g)] c - - - - - (3.34) 

where Q is given in Equation (3.31) and g is the angular acceleration 

of the moving body. Hence, the position vector of the central point is 

C = Q + e SI - - c-

Let DC= C - D. From Equations (3. 13) and (3.35), we have 

DC = (~ x D)/S12 + e SI - - c-

The linear motion at the central point can be computed 

• • C = D + SI x DC = crSI 

f = Q + ~ x DC + SI x (B_ x DC) 

·c- = ·5 + TI x DC + 2rt x (£2 x DC) 

+ SI x (g x DC) + SI x [B_ x (f.2_ x DC)] 

and so on. Since 

f = Q + g x QC + B_ x (B_ x QC) 

and Q~ = f - Q = ecSI' f may also be computed through 

C = Q + e ~ x SI - - c-. -

where Q and ec are given in Equations (3.31) and (3.34). 

(3.35) 

(3.36) 

(3.37a) 

(3.37b) 

(3.37c) 

(3.38) 

The relative position of .Q_, Q, and f are shown in Figure 6. 

3.4 Velocity Screw 

A velocity screw is a dual vector referred to a point on a moving 

body, in which the primary part represents the angular velocity of the 



figure 6. The Relative Position of Points D, Q, and the Central 
Point C. 
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moving body and the dual part represents the linear velocity of the 

reference point. Since every point on the ISA has the velocity ag, 

the velocity screw referred to any point X on the ISA is 

(3.39) 

If V designates the linear velocity of an arbitrary point P, the -p 
velocity screw referred to point P can be written as 

n = n + sV 
-·- :;:. -p Vp = (vA'> S + -"'-~ xH'. 

(3.40) 

where Yp = ag + jP x XP and g x ~ is the relative velocity of point P 

to any point X on the ISA. 

Let the unit screw! represent the ISA of the moving body. The 

velocity screw may be written as 
A A 

g = s-2(1 + sa)! (3.41) 

If the unit screw K is referred to a point on the ISA, then K = K is a 

becomes 

S6 = Q(l + sa)_K (3.42) 

which is equivalent to Equation (3.39). If K relates to any other 

point P, then 

K = K + sPX x K (3.43) 

where the dual part PX x ! is the moment of the sliding _K, along 

the ISA, with respect to P. Substituting it into Equation (3.41), we 

have 

A A 

g = s-2(1 + sa H! + £PX x !) 
" (3.44) 

= r2J5. + £ ( as-2 ! + PX x s-2!) 



' 
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= g + E(crg + g x XP) (3.44) 

It is equivalent to the velocity screw of Equation (3.40). Hence, the 

velocity screw of a moving body can be represented by Equation (3.41) 

in which the dual part represents the linear velocity of the reference 

point of the unit screw !· 

Until now, the rigid body motion is considered as the function of 

time. However, we are primarily interested in the geometry of the 

motion which is time independent. Since a general rigid body is a 

generalized screw motion, the angular displacement ¢ of the rigid body 

about the screw axis is a geometrical parameter and can be selected 

as the independent motion parameter to provide a base for the comparison 

of the geometry of motions. In other words, the angular velocity about 

the ISA is nonnalized and remains unity at any time. Thus, g = d¢/d¢ = 

d¢/dt =land from Equation (3.41), the normalized velocity screw is 
A A 

}'.!_ = ( 1 + EO )! (3.45a) 

where cr and Kare functions of¢. In Equation (3.45a), only the 
,.,..~J·-··1: .. --··-;),, ........ ~,-·-;t,.~"·""·,. -, '-~-·· ... .,·~·" ' ,,,.._,,,., ...... -, ' -·-~·---·~ 

A 

instantaneous pitch cr and the ISA, K are needed to describe the 

geometry of the first order general rigid body motion. In case of a 

spherical motion, the pitch a remains zero and the ISA always passes 

through the center of rotation. Therefore, only the unit vector ! along 

the rotational axis is needed and the normalized angular velocity is 

W = K 
. I" 11 

Hold$ O\fvt•1 11· -rv-t 

I;; ./ ~.,/) (Cl\ H.t\.( 

,.9NJA/V O'f> vu-lctl-'- o-r-. 
(3.45b) 

3.5 Higher Order Rigid Body Motion 

On the ruled surface traced by the ISA of a rigid body motion, the 

generator trihedron formed by the three perpendicular axes l, ~, and K 
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is defined in Section 3.2. These three axes meet at the central point 

and from Equations (3.25), we may obtain 
A A A 

dK = dK de 
-

de dt = al dt 

A A 

dl dl de AAA 

- - "'"'"" - = ayJ 
de dt -dt 

A A 

dJ = dJ _. de = 
~ 

dt de dt 

aK = BJ 

- ayl - - BI 

aK (3.46) 

A AA A de 
in which B =ay and a = dt' Equations (3.46) may also be written as 

dK A 

dt = 1T x K 

A 

dl A "' ( 3. 47) 
dt = 'IT x I 

A 

dJ 
-==TixJ dt - -

A AA /\A 

where !. = aJ + Bf is the Darboux screw. 

Let us consider a spherical motion. The instantaneous pitch a 

remains zero and all the instantaneous screw axis pass through the 

center of rotation. If the center of rotation be selected as the 

reference point of the unU screws. Equations (3.46) and (3.47) become . --~·-·-~---•-·'""'""'-······-·-~·~··-···- .. ·······---- ----· .... ···---~······· ·---~~ ...... _,. ___ _ 

dK 
-= = TI x K = al dt - - -

dI 
dt = ~ x l = BJ - aK 

dJ 
dt n x J = -BI 

(3.48) 
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In Equation (3.48), all the dual parts are zero and~= al+ S~ is the 

Darboux Vector which is the angular velocity of the generator trihedron 

formed by I, l, and ~ at the center of rotation. 

Assume that g is the angular velocity of a rigid body executing a 

spherical motion. Since o = 0, from Equation (3.42), we have 

n = nK (3.49) 

where n and K are functions of time t. Let the instantaneous motion to 

be investigated be at zero position, at which t = ¢ = 0, and the sub­

script i associated with any quantity such as n., n. or a. denote the -1 , , 

ith derivative with respect to t at t = 0. From Equations (3.48) and 

(3.49) we obtain 

2 
E2 = (2aon1 + a1no)I + aosonol + (n2 - ao no)~ 

3 2 g3 = (3a0n2 + 3a1n1 +a2n0 -a0 n0 - a0s0 n0)I 

+(2a1s0n0 +a0s1n0 + 3a0s0n1)l 

2 +(D3 - 3a0a1n0 - 3a0 n1)f 

(3.50) 

Each parameter in Equation (3.50) can be determined if D. (i = 0, 3) 
-1 

are known. 

(3.51) 



a = 2 

where 

Dl = B.1 • K 

and 

J = K x I - -
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1. 
( 3. 5i) 

(3.52) 

Consider a general rigid body motion, the first order motion can 

be represented by the velocity screw of Equation (3.41) which may be 

rewritten as 

A AA 

Q = D.!5_ ( 3. 53) 

A 

where D = D(l + Ecr). From Equations (3.46) and (3.53), we may have 
A A A 

" "' /\ (3.54) 
g1 = a0Do! + Dl.!5_ 

A A A A A A A A A A A A2A A 

g2 = ( 2a0D1 + a 1 DO )1_ + a0S0D~ + ( D2 - a 0D0) _!$___ 
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A 

+( 2~1so~o + ~os1~0 + 3~0SoD1)~ 
A A A A A2A A 

+ (n3 - 3a0(31 no - 3a0al ) 15_ 

(3.54) 

where 

A 

n1 = n1 + s(o0n1 + a1n0) 

and the subscript i denotes the ith derivative of the associated 

quantity with respect to t at zero position. Equations (3.54) and 

(3.50) are equivalent if the dual notation are disregarded. 

We may separate Equations (3.54) into primary parts and dual 

parts: The primary parts represent the rotational motion of the 

rigid body, i. e., angular velocity, acceleration and jerk; the dual 

parts represent the linear velocity, acceleration, and jerk of the 
A A 

reference point of the unit screws I, ~, and f. Let these unit screws 

be referred to the central point which is their common point. Then, 

the dual parts of these unit screws diminish and we have 

A A A 

I = I , J = J and K = K (3.55) 

Let 

a. = a. + sa0 • 
1 1 1 

(i = 0, 1, 2, ... ) (3.56) 
(3. = (3. + sS<? 

1 1 1 

Substituting Equations (3.55) and (3.56) into (3.54) and separating the 



35 

primary and dual parts, we have 

( 3. 57) 

where C. (i = 1, 4) represents the linear motion at the central point. 
-1 

The velocity, acceleration and jerk at the central point are shown 

below. 

(3.58a) 

(3.58b) 

(3.58c) 

~can also be obtained similarly. In the above equations, the 

primary part are exactly the same as Equation (3.50). This result is 

consistent with the principle of transference and a., s., Q. can be 
l l l 

obtained from Equations (3.51) and (3.52). Knowing the angular motion 

of the rigid body and the linear motion at any point, we can compute 

C. from Equations (3.37) and (3.38). The instantaneous pitch 0 0 of the 
-1 

rigid body motion can be determined by Equation (3.15) or 
c 

0 o =41 • _!YQO (3.59) 



where Q1 is the velocity at any point. From Equations (3.58), the 

following parameters can be calculated. 
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(3.60) 
a = 

l 

For fourth order motion 

manner if~ is known. 

Bi, a3 , and a~ can be obtained in a similar 

In Equations (3.59) and (3.60), n., s., a. and 
l l l 

the unit vectors l, ;L, and_!$_ are given in Equations (3.51) and (3.52) 

3.6 Geometry of Rigid Body Motion 

We will now study the geometry of motion of a mechanism. For this 

purpose, the rigid body motion will be treated as a normalized motion 

with a constant unit angular velocity. Such a normalized motion is 

equivalent to a motion with ¢ = t, where ¢ is the angular displacement 

about the ISA. To avoid confusion¢ will be used as the independent 

motion parameter. Then, the motion described is equivalent to a time-

based motion with n0 = l and n1 = n2 = ... = O. All the single 

subscripts i (i = 0, 1, 2, ... ) in the following denote the ith 

derivatives of the associates quantities with respect to ~ at zero 

position ~ = 0. 

Let us consider a spherical motion. The normalized angular 

velocity is given in Equation (3.45b). Referring to Equation (3,50) 
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with n0 = 1 and n1 = n2 = ... = 0 or differentiating Equation (3.45b) 

with respect to¢ and referring to Equation (3.48), we have 

where 

W = K 
~ -

!ii = d.!$/d<P = w11 _!_ 

2 2 2 
!i2 = d ~d¢ = W12l + W22~ - W11.!5. 

3 3 w3 = d ~d<P = w 1 ~ + w23~ - 3w11 w12.!5_ 

w,, = a 
0 

w,2 =al; w22 = ao13o 

w,3 
3 2 

W23 = 2a1SO + aoB1 = a,,.. - ao - aaBo; {. 

(3.62) 

a., (3. are determined in Equation (3.51) and they are the quantities 
1 l 

caused by the rotation of the ISA. We note that in Equation (3.61) the 

geometry of a spherical motion is characterized by a; and (3i (i = 0, l, 

2, ..• ) and (2n - 3) numbers are needed to characterize a nth order 

spherical motion (n ~ 2). 

For a general rigid body motion, the normalized velocity screw is 

given in Equation (3.45a). Let the central point be taken as the refer-

ence point of the unit screw I, ~' and 15_. With a normalized constant 

unit angular velocity, we may have, from Equations (3.54) or (3.57) 

and (3.58), 

A 

~1 = !il + E(dl2_!_ + d32_f) (3.63) 

A 

~2 = ~2 + E{d13l + d23~ + d33.!5_) 



and 

I\ 

~3 ~ ~3 + s(d14l + d24~ + d34JS) 

2 
d33 = 02 - a001 - 2aoao 

d14 = 3a002 - a~00 - 3a6ao + 3a.lol + a.200 + a.2 

+ aoS100 + S1ao + aoSl 

2 d34 = 03 - 3a001 - 3a0a1o0 - 3a.0a1 - 3a.0al 
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(3.63) 

(3.64a) 

(3.64b) 

(3.64c) 

(3.64d) 

(3.64e) 

(3.64f) 

(3.64g) 

where the primary parts w. are identical to Equation (3.61). Equation 
-1 

(3.63) may also be obtained by differentiating Equation {3.45a) direct-

ly. 

We note that in Equation (3.63) and (3.64), the geometry of a 
(i.. =-1,Z,0.) 

rigid body motion is characterized by&;, s;, and ~~/at zero position. , 
A A 

For a nth order motion (n ~ 3), five real numbers (an_ 2• Sn_ 3, 0n_1) 

are needed to characterize each additional order of motion. Thus by 

the concept of a generalized screw motion, a general rigid body motion 
AA AA 

is completely specified by the Darboux screw (a.j_ + Sl), the pitch (0) 

and their derivatives. Such concept may be helpful in the visualiza­

tion of the motion of any geometrical element. 
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3.7 Canonical Systems and Instantaneous 

Invariants 

To treat the motion of a rigid body, Equation (3.1) may be more 

convenientto use. The higher order motion of a rigid body can be 

described conveniently by the matrix [A], the column vector D and their 

derivatives with respect to However, such description varies with 

the coordinate systems utilized. It is desirable to use the coordinate 

systems which have geometrical significance and can be duplicated 

universally. It is also desired that the coordinate systems are 

capable to provide the simplest description of the motion. 

Let the instantaneous motion to be investigated be at the zero 
A A A 

position, the three axes j_, l_, and ~of Equation (3.54) serve as a good 

choice for the three perpendicular axes of the two coincident coordinate 

systems. They are the axes of the generator trihedron of the ruled 

surface traced by the ISA. The unit screw ..15_ is the generator of the 

ruled surface at zero position, 4 is the central tangent and i the 

central normal to the surface. 

Let us select the canonical systems for the moving and the fixed 

systems for the moving and the fixed system Mand Fin Equation (3.1). 

Being canonical systems (Figure 7) Mand F, at zero position are 
A A 

coincident and have I, ~. and! as the three mutual perpendicular axes. 

We note that the central point is their common origin. From Equations 

(3.63) and (3.61) we have 

klo = (0, 0, l) 

~l = (14 11 , 0, 0) (3.65) 

~2 
2 = (wl2' w22' - w11) 
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y 

x 

X = [A]x + D 

Figure 7. The Canonical Systems 
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(3.65) 

Since the origin Q of the moving canoncial system is at the central 

point, we have from Equation (3.63), 

D = 0 
~ 

D = -1 (0, 0, dl) 

D = -2 (dl2' o, d32) 

D = -3 (d13, d23' d33) 

D = 
~ (dl4' d24' d34) 

With the normalized motion, we have Q =~and from Equation (3.6), 

[W] = [AJ [A]T ( 3. 67) 

Let the subscript i (i = 0, l, 2, ) denotes the ith derivative 

of the associated quantity with respect to cp at zero position. We 

have from the above equation, 

[W1J = [A2J[A0JT + [A1J[A1JT 

[W2] = [A3J[AO]T + 2[A2][Al]T + [Al][A2]T 

[W3J = [A4J [AO]T + 3[A3J[Al]T + 3[A2][A2]T + [A,J[A3JT 

i 
Since [A0] = [A0}f = [I], the above equation becomes 

[A1J = [W0J 

[A2J = [W1J - [A1J [A1JT (3.68) 

[A3J = [W2J - 2[A2J[A1JT - [A1][A2JT 

[A4J = [W3J - 3[A3J[A1JT - 3[A2J[A2JT - [A1J[A3]T 
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With the notation used in Equation (3.6), we have from Equation (3.65) 

[W J = 1 

[W J = 2 

[W J = 3 

0 

2 
-wll 

-w22 

Substituting them into Equation 

[A0J = [I] 

[Al] = [ : 

-1 

0 

0 

(1.69) 

0 0 

(3.70) 

2 
w,, w22 

0 -w12 (3. 71) 

w12 0 

0 
(3.72) 

(3,68), we obtain 

(3.73) 

: l {3.74) 



[A3J = 

-1 0 0 

[A·] = 0 -1 -w,, 2 

0 w,, 0 

0 2 
+ wll Wll + W22 

-( 1 2 
+ wll) 0 -w12 

-w22 + 2w11 wl2 0 

2 1 + 4w11 3w11 w12 

-3w11 w12 
2 

1 + w, 1 

-w23 + 3wl2 Wl3 + 3w22 - 3w11 

Differenting Equation (3.1) we may have 

X • = [A . ] x + D • 
-1 l - -1 
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(3.75) 

(3.76) 

w23 + w12 

-wl3 + w22 + wll (3.77) 

2 -3w11 

(3.78) 

[A.] and O. (i = 0, 1, ... n) describe the instantaneous motion of l -1 

the rigid body to nth order. In the canonical systems, the elements 

of [A.] and 0. are called the ith order instantaneous invariants of l -1 

the rigid body motion. They represent the geometry of a rigid body 

motion and can be used as the base for the comparison of motions. Any 

motion having the common instantaneous invariants to nth order with a 

reference motion approximates that motion to the same order. 

In any spherical motion, the pitch a is always zero and the cent­

ral point is a fixed point. Thus, we have D = 0 in the canonical 

systems and Equation (3.77) becomes 

X. = [A.] x 
-1 1 -
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The elements of [A1J are the ith order instantaneous invariants of a 

spherical motion, which appear exactly the same as Equations (3.73) to 

(3.77). 



CHAPTER IV 

KINEMATICS OF A MOVING PLANE 

For one-parameter space motion, a tangent-plane embedded in the 

moving body envelops a developable. In this chapter, the characteris­

tics of developable surfaces will be defined. The characteristic 

equations will be derived to locate those tangent-planes whose envelops 

have the same characteristic numbers. Since the geometry of the motion 

is of our concern, the space motion is assumed to have the normalized 

unit angular velocity at any time and for such a case, the angular 

displacement ¢ about the ISA is considered as the independent motion 

parameter. 

4.1 Tangent-Plane Envelope 

A developable is a surface with a single-infinity of lines and 

each line intersects its neighbor at a point. These lines are the 

generating lines of the developable. By a succession of small succes­

sive rotations about the generating lines, the developable can be 

developed into a plane without any stretching or tearing. 

Let 

f(.0_, ¢) = 0 ( 4. l ) 

represent a single-infinity of planes with ¢ as the parameter. The 

plane (or called t~ngent-plane) intersects its consecutive plane at a 

45 
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line and the family of these intersecting lines for all values of¢ 

is the envelope of these planes. This envelope is a developable and 

these lines are its generating lines (or generators). Any two con­

secutive generators intersect at a point; the locus of the intersec­

tion point is the edge of regression of the developable. Thus, from 

Equation (4.1), one obtains 

af(¢)/a¢ = o (4.2) 

and 

(4.3) 

The function f and its derivative are assumed to be continuous at ¢. 

Equations (4.1) and (4.2) represent the tangent-plane envelope 

and (4.1) through (4.3) represent the edge of regression. The planes 

of Equation (4.1) are the tangent-planes (or osculating planes) of the 

edge of regression, and the enveloped surface is the osculating 

developable. Each generating line of the developable is tangent to 

the edge of regression. Knowing the tangent-planes, the developable 

or the edge of regression, the other two are determined (figure 8). 

4.2 Motion of a Plane 

In the moving canonical system, a plane is expressed uniquely by 

!·~+p=O (4.4) 

where ! = (.Q., m, n) and! • ! = 1; (.Q., m, n, p) is the homogeneous 

coordinates of the plane in the moving system (Figure 9). Substituted 

by Equation (3.2), the same plane is expressed in the fixed canonical 

system by 

.Q. • [A]T (! ~ Q) + p = 0 



generator 

~~ge of regression 

Every two consecutive generators intersect at a point. The 
locus of such point is the edge of regression. 

Figure 8. A Developable 
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• 
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x 

!=(t,m,n) 

Figure 9. Plane Coordinates (.Q,, m, n, p) 



t 

49 

or 

[A] ! · (! - Q) + p = 0 (4.5) 

where [A] and Qare functions of¢. For all values of ¢, Equation 

(4.5) represents a single-infinity of tangent-planes in the fixed 

system. Let the subscript i (i = 0, l, 2, ... ) denote the ith de­

rivative of the associated quantity with respect to¢. The following 

plane equations may be obtained. 

!:.i • ! + pi = 0 ( i ::: 0' 1 ' 2 ' . . . ) 

in which 

and 

L. = [A.] t 
-1 l -

P = -L • 0 - 4L • 0 - 6L • D - 4L • 0 - L • D 4 -'="-4 ~ -3 1 -2 -2 -1 -3 .!:::{) -'=-4 

(4.6) 

( 4. 7) 

(4.8) 

In Equation (4.6), if !:.ax !:_1 t 0, the first two planes intersect 

at a line which is the generator of the tangent-plane envelope and can 

be expressed by the dual vector, 

"' R =!:.ax 1.1 + E(!) x (!:.ax!:.,) 

where X is the position vector of a point common to the two planes and 
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E2 = 0. Since 

we may write 
A 

B. = 1o x !:.1 + E(-Pl 1o + Po!:.1) (4.10) 

As a function of ¢, Equation (4. 10) is the parametric equation of the 

tangent-plane envelope. 

From Equation (4.9), we may have 

or 

( 4. 11) 

where (1oJ=.1_!::2) stands for (ho x !:.1) • !:.2. Si nee 

if (1.o11!:.2) I 0, Equation (4.11) can be written as 

(4.12) 

Equation {4.12) gives the position vector of a point common to the 

three planes (i = 0, 1, 2) in Equation (4.6). This point is the inter~ 

section point of the three consecutive planes expressed in Equation 

(4.5). As a function of , Equation (4.12) is the parametric equation 

of the edge of regression of the tangent-plane envelope and the line 

expressed in Equation (4.10) is tangent to this curve. 

Substituting Equations (3.65) and (3.73) through (3.77) into (4.n 

and (4.8), we have, at zero position, 



-.!:.o = (t, m, n) 

li = (-m, t, O) 

and 

2 2 
_!:_3 = ( ( 1 + w11 )m + ( w11 + w22 ) n - ( 1 + w11 ) ~, - w12n, 

(-w22 + 2w11 )t + w12m) 

2 
~ = ((1 + 4w11 )£ + 3w11 w12m + (w23 + w12 )n, 

p = p 
0 

where 
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(4.13) 

(4.13) 

(4. 14) 
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Thus, from Equation (4.10) and (4.12), at zero positions, the generator 

of the envelope of the tangent-plane (1, m, n, p) is 

A 2 2 2) R(O) = (-1n, -mn, 1 + m ) + E(d11n - mp, d1mn + 1p, d1n (4.15) 

and the point on the edge of regression is 

!S_(O) = -(E/H, F/H, G/H) (4.16) 

where 

(4.17) 

2 2 2 G = w11 mnp - w11 d11n + (p - d121 - d32n) (1 + m ) 

2 2 2 2 2 H = Cb.o!=-1!:..2) = w11 m(1 + m + n ) + n(1 + m ) 

and Hf 0. The point in Equation (4.16) may be expressed using homo-

geneous coordinates and we have 

2S_ (0) = (E, F, G, -H) (4.18) 

in which each coordinate is a cubic polynomial in terms of the coordi-

nates (1, m, n, p) of the tangent-plane. 

4.3 Edge of Regression and 

Its Spherical Indicatrix 

Let X be the position vector of a point on the edge of regresssion 

associated to a developable ands be the arc-length. A unit tangent to 

the edge of regression can be expressed as 

t = d_ljds (4.19) 
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Any tangent to the edge of regression is a generator of the developable. 

From the well-known Serret-Frenet formulae, we have 

dt 
= kn ds 

dn 
= Tb - kt ds 

db 
ds = -Tn 

(4.20) 

in which k and T are the curvature and torsion of the edge of regression 

and_!!, .Q_ are its unit normal and binormal, repsectively. The unit vec-

tors !_, ~. and b are perpedicular to each other and have the relation­

ship, 

t x n = b 

The locus of a point, whose position vector is the unit binormal Q 

of a curve, is called the spherical indicatrix of the binormal to the 

curve. Such a.locus lies on the surface of a unit sphere. Let the suf­

fix s be used to distinguish quantities belonging to this locus. The 

equation to the spherical indicatrix of the binormal to the edge of re-

gression is 

x = b -s -

Therefore, from Equations (4.20), we have 

t -s = 
dx -s 

dss 
-T~/ dss 

ds 

( 4. 21 ) 

(4.22) 
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We may make the unit vectors, 

!s = -n (4.23) 

and obtain 

T = ds/ds {4.24) 

From the above equations, the following relationships can be obtained. 

dX d~ I ds 5 (4.25) = = t 
dSS ds ds T 

dt 
d';_ Id" k 

= = - n = vn 
ds ds ds T -

s 

dn dn ;ds b - Js. t :.: b ... vt = - s 
= (4.25) 

dSS dS ds 't "°"."' -

and 
db db ;ds 

= - s 
= 

dSS ds ds - n 

in which v = k/T. 

4.4 Contact of Developables 

In the line-trajectory curvature theory, Roth, Yang, and Kirson 

[24, 60] defined the mth-order contact of ruled surfaces as having 

(m + 1) common consecutive lines. The order of contract of developable 
A A 

surfaces. may be defined in the same way. Let R(s) and R*(s*), in a 

unit screw form, be the parametric equations of two developables sur­

faces, where s and s* are the suitably chosen geometrical parameters 

of the developable surfaces. For each value s or s*, the unit screw 
A A 

B (s) or R*(s*) represents a generator of the developable. 
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" /\ 

Two developables, B_(s) and R*(s*) have exactly mth order contact, 

if and only if 

= (k = 0, 1, 2, ... m) 

and (4.26) 

= 

Since the generator of the tangent-plane envelope are tangnet to 

the edge of regression, they can be represented by the unit screw, 

R = t + sX x t = t ( 4. 27) 

where X is the position vector of a point on the edge of regression. 

The edge of regression and its osculating developable are enveloped 

by the tangnet-plane which has the direction !?_. The edge of regression 

and the developable are functions of the arc-length ss of the spherical 

indicatrix, X = b. From Equation (4.27), we have -s -

k (.!:!_ + X X n )/T 
A 

= vn (4.28) 

where v = k/T is a dimensionless number representing the first-order in-

trinsic property of a developable. 

Referring to Equations (4.26), (4.27), and (4.28), any two 

developables having first-order contact requires that their edges of 

regression have the same property v and common tangent and normal (hence 

binormal too). However, for any two developables, the tangents, normal 

and binormal, of their edges of regression can be brought to become 

coincident correspondingly through proper rotation. Therefore, develop-
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ables will be said to have first-order contact (or first-order contact 

within rotation strictly) at the contact generator if they have common 

property v. 

Differentiating Equation (4.28) again, we obtain 

(4.29) 

where v~ = dv/dss is a dimensionless number and T is the torsion of the 

edge of regression. v~ and T are the second-order intrinsic properties 

of the tangnet-plane envelope. Any two developables with the same 

values of v, v>, and T have second-order contact (contact at three 

infinitesimal separated generators) along the contact generator. 

4.5 Contact of Developables 

Within Stretch Rotation 

If the developables are stretched proportionally with the scales 

11 e11 equal to the torsion T of their own edges of regression, the 

developable is normalized to have unit torsion and the generator in 

Equation (4.27) becomes 

R = t + cX x t = t -n -n -n (4.30) 

where 

~=ex (4.31) 

Since dss = Tds, we have 

(4.32) 

and referring to Equations (4.25), we obtain 



A 

dR /ds = (K/T)(n + cX x ~) = vn --n s - -n .:..en 

v 11 n -n 

A A 

+ 2v .. n"" + vn" --n - n 
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(4.33) 

(4.34) 

(4.35) 

in which -!!n is the unit screw representing the normal to the edge of 

regression X of the normalized developable and --n 

n.. = b - vt + c[e/T b + X x (b - vt)] -n - - - --n -

~·n = -v--t - (1 + v2)rr - c{(eT .. /T2)_!?_ + 2(e/T)~ 

+ X x [v,.! + (1 + v2)!!_]} --n 

Let e = T. The above equations become 

(4.36) 

(4.37) 

n.. = b - vt + c[b + X x (_!?_ - v!)] (4.38) -n - --n 

; .. n = -v--t - (1 + v2 )~ - du_!?_+ 2n + ~ x [v ... ! + (1 + v2 )~]} (4.39) 

In Equations (4.33) through (4.39), four dimensionless numbers v, 

v .. , v" and u are obtained. They are the first order (v), the second 

order (v""), and the third order (u and v'') characteristic numbers of a 

developable. Any two developables with the common characteristic 

numbers v and v"" have second-order contact within stretch rotation. For 

the third-order contact of developables within stretch rotation, they 

should have four common characteristics numbers \>, v .. , v", and u. With 

each additional order of contact, two more common characteristic numbers 

are needed. 
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4.6 First-Order Characteristic Equation 

In Equation (4.6), 1-0 is the unit normal to the moving plane. Since 

the moving plane is tangent to the edge of regression of its envelope, 

!:.o is also the unit binormal to the edge of regression. Hence, the 

spherical indicatrix of the binormal to the edge of regression is 

X = b = L -s - -=-0 (4.40) 

Differentiating it with respect to ¢ and letting the suffix s distinguish 

the quantities belonging to the spherical indicatrix. we have by Equa-

tions (4.25) 

= L -1 

(4.41) 

where the subscript l denotes the first derivative of the associated 

quantity with respect to¢. From Equations (4.41), we may obtain 

and 

(4.43) 

We note that ssl = dss/d¢ is related to the change of the orientation of 

the tangent-plane. Referring to Equation (4.23), one obtains 

(4.44) 
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and 

(4.45) 

The unit tangent to the edge of regression is then obtained 

(4.46) 

and we have 

( 4. 47) 

We note that all subscripts i (i - 0, 1, 2, . . ) denote the ith 

derivatives of the associated quantities with respect to ~- From 

equ·ations (4.25) and (4.44), we obtain 

(4.48) 

One should note that v is the geodesic curvature of the spherical 

indicatrix. Substituting Equations (4.13) into (4.43) and (4.48), we 

have 

and 

S 2 = n2 + m2 sl x., 

where His given in Equation (4.17). 

(4.49) 

(4.50) 

Equation (4.50) is the first-order characteristic equation of 

tangent-plane envelopes. Since (i, m, n) is the common normal to all 

parallel tangent-planes, Equation (4.50) shows that all parallel-tangent-

plane envelopes h~ve the common characteristic number v and hence have 

first-order contact. 
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4.7 Second-Order Characteristic Equation 

The second-order characteristic equation is obtained from Equation 

(4.48) 

\),.. = ( 4. 51) 

where 

is obtained from Equation (4.43). Substituting Equations (4. 13) into 

them, we have the second-order characteristic equation, 

(22 + m2) [(2w11 - w22 )Q, + w12mJ + 

(4.53) 
2 ,.. 2 2 3 3w11 imn - v (£ + m ) = 0 

Since Equations (4.50) and (4.53) contain variables i, m, and n only and 

a11 parallel tangent-planes in the moving system have the common normal 

(£, m, n), therefore parallel-tangent-plane envelopes have the common 

characteristic number v and \),.. and hence have second-order contact with-

in stretch rotation. Equation (4. 10) or (4. 15) also shows that the 

generators of these parallel-tangent-plane envelopes are parallel to 

each other. 

The intrinsic property T of a tangent-plane envelope can be found 

from the following derivation. By the edge of regression in Equation 

(4.12), we have 

d!Jd¢ = {-(!::o.h1!:.2)(Po1:.1 x !:.3 + P1!:.3 x !:.o + P3-'=D x !:.1) + 

(!:.o-b.1!:.3HPo1:.1 x !:.2 + P1!:.2 x !:.o + P2(!:.o x !:.1 )}/ 

( 1.o!=-11.2 ) 
2 

(4.54) 
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. which can be simplified to 

(4.55) 

where 

and s1 is the first derivative of the arc-length of the edge of regres­

sion with respect to¢. By Equation (4.46), we may obtain 

( 4. 57) 

Since 1.o • 1.o = l, we have, at zero position, 

L • L = 0 -=o -1 
(4.58) 

and therefore, 

(4.59) 

Thus, we have 

(4.60) 

and 

(4.61) 

With v = k/T, we can also find 

(4.62) 

Substituting Equations (4. 13) and (4.14) into Equations (4.61) and 

(4.62), we have the properties T and k of the tangent-plane envelope at 

zero position. 



. ,, 

where 

in which 

c, =-f7 dl2 

c2 =-w,2dl2 + wlldl3 

C3 =-f7 d32 + dl3 

c4 = Cl + Cg 

C5 = f5 - f 4 

C6 = f6 - Wll f7 dl + (wll + W22) dl2 
2 

c7 = 3 Wl 1 

c8 = wl2 dl + (wll + w22) d32 

Cg = -w11 f 4 

fl = Wll ( Wl l + w22 ) dl + f 6 + Cg 

f2 = (wll + W22) dl + f 5 

f 3 = Wll (w11 + W22) dl 

f4 = 3 dl2 - 3 w,, dl - d23 

fs = wll f6 - wl2 d32 
2 

f 6 = ( 1 + w, 1 ) dl + d33 

f 7 = 2 w11 - w22 

f 8 = wl2 
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(4.63) 

(4.64) 

(4.65) 
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Equations (4.63) and (4.64) are functions of the plane coordinates (1, 

m, n, p). 

4.8 Third-Order Characteristic Equations 

The two third-order characteristic numbers·are 

Therefore, from Equations {4.61) and (4.48), we may have 

9 \!" = d \! 1 /ds = A/s 1 s s 

u = 

where U is defined in Equation (4.56) and 

Substituting Equations (4.13) and (4.14), Equations (4.66) and 

(4.66) 

(4.67) 

(4.68) 

(4.69) 

(4.67) can be expressed in terms of the plane coordinates (£, m, n, p). 

Just as the\! and v• -characteristic equations, Equation (4.66) con-

tains only three variables, £, m, and n. We note that all parallel-

tangent-plane envelopes have the common characteristic numbers v, \! 1 , \) 11 

(n)( _ n n) . . . v - d\! Ids • s 
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Equation (4.67) contians i, m, n, and p of the plane coordinates. 

In a family of parallel-tangent-plane envelopes, all the envelopes 

generally have different characteristic number u. Among the parallel­

tangent-planes with the common normal (i, m, n), the only tangent-plane 

whose envelope has the characteristic number u may be found from Equa-

tion (4.67). Since P0 = p, if C 1 0, Equation (4.67) may be rewritten 

as 

p = B/C 

where 

B = - 2(!:oh1h3) [-Pl (!:o!:.2!:.3) + P2(!:oh1!:.3) - P3(!:oh1h2) J 

+ (!:o!:.1!:.2) [-Pl(!:o~~) + P2(!:oh1~) - P4(!:oh1~)] 

(4.70) 

+ u(!:_l • !:.1) 112 (!:o!:.1~) [-Pl(~~!:.3) + P2(~!:.1!:.3) - P3(~!:.1!::_2)J 



CHAPTER V 

SPECIAL CASES 

In the planar point-path curvature theory, the various cases of 

singularities such as inflection circle, Ball's point have been studied 

extensively and applied in mechanism synthesis. In space point-path, 

the analogy of these singularities leads to the generation of point 

paths with flex (zero curvature), planar flex (zero torsion) and 

stationary curvature. The motion of a point and a tangent-plane are 

somewhat analogous. In the following, some special cases analogous to 

these singularities are discussed. 

5.1 Stationary Planes 

For the motion of a plane and a point, a stationary plane and a 

cusp point (stationary point) are dual configurations. It is obvious 

that in a planar motion, the point at the instant center is stationary 

and is a cusp point. In a general space motion, the points on the ISA 

have the minimum velocity among all points on the moving body. There­

fore, one can assure that the existence of a stationary point is possib­

le only when the instantaneous pitch is zero and the locus of stationary 

points is the ISA, which in the canonical system is 

x = y = 0 (d1 = 0 or 0 0 = 0) (5. l) 

Apparently, the points on the ISA of a moving body executing spherical 
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motion are all stationary points. 

A stationary point becomes a double station~ry point if the follow­

ing condition is also satisfied. 

!2 = [A2] ~ + .Q.2 

= (-x + d12 , -y ~ w11 z, w11y + d32 ) = 0 

This leads to 

(5.2) 

If w11 r 0, the central point (0, 0, O) is the only stationary point. 

If w11 = 0, then the ISA becomes stationary and all points on it are 

double stationary points. 

In a general space motion, the above motion conditions are usually 

not satisfied and hence no stationary point exists. 

Let (i, m, n, p) be a plane on the moving body .. From Equation 

(4.6) the plane is stationary if .!:.1 = 0 and P1 = 0. This requires that 

i = m = 0 (5.3) 

and 

dl = 0 (or cro = 0) (5.4) 

Equations (5.3) and (5.4) represent th~ planes perpendicular to the ISA 

of the moving body which has zero instantaneous pitch (Figure 10). 

A double stationary plane exists if !:_2 = 0 and P2 = 0 in Equation 

(4.6). From Equations (4.13) and (4.14), this leads to 
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Figure 10. A Stationary Plane 
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Therefore, for the existence of a double stationary plane. the moving 

body should have 

(or a0 = a0 = cr1 = O) (5.5) 

and the double stationary planes are those planes orthogonal to the ISA. 

5.2 Stationary Generators 

Under one-parameter motion, a plane generally intersects its con-

secutive plane at a straight line, which is the generator of the tangent-

plane envelope surface. For three consecutive planes, two generators may 

be obtained. However, there are cases that three consecutive planes 

intersect at a common line which becomes a stationary generator of the 

enveloped surface. 

Equation (4.4) represents a plane in the moving system. If the 

three consecutive planes intersect at a common straight line, the coef­

ficient matrix of the three plane equations (i = 0, 1, 2) in Equation 

(4.6), 

,Q, m n p 

-m ,Q, 0 -d1n (5.6) 

-,Q, -m-w11 n w11 m -dl 2,Q, - d32n 

should have rank 1 ess than 3. This condition is satisfied if 

.Q, m p 

-m .Q, -d1 n ( 5. 7) 

-9., -m-w11 n -d12.Q, - d32n 

2 
(p - dl 2.Q, - d32n) (.Q.2 + m2) = w11 mnp - w11 d1,Q,n + = 0 



69 

and 

(5. 8) 

These are third degree homogeneous equations in terms of the plane co­

ordinates. The locus of the planes (t, m, n, p) satisfying Equations 

(5.7), (5.8), and the constraint, 

£2 + m2 + n2 = 1 (5.9) 

is a single-infinity of planes and each plane envelopes a stationary 

generator at zero position. 

Excluding the case i 2 + m2 = O,the following cases are distinguish-

ed. 

From Equations (5.7) to (5.8), with n as the parameter, we have 

2 m =-n(l - n )/w11 

2 2 2 2 2 2 t = (1-n ) [w11 - n (1-n )]/w11 (5.10) 

- 2 2 2 2 p - [w11 d1tn + (d12i + d32n)(l-n )]/(1-n ) 

For any value n, two tangent-planes may be found to envelop a station-

ary generator. 

2. wl l = 0 

From Equations (5,7) and (5.8), we have 

n = O 

and (5.11) 



The above equations represent the family of tangent-planes which are 

parallel and have a distance ld121I to the ISA. 

We note that there exists analogy between point-path and tangent-

plane motion. On a moving body, there exist points which are colinear 

with their two consecutive points and on the point pahts, points of 

inflection appear. For tangent-plane motion, we have from the above 
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discussion, tangent-planes which have common straight lines with their 

two consecutive planes and on the tangent-plane envelopes, stationary 

generators appear. Such analogy also exists in the following double 

stationary generator and the straight line segment traced by a Ball's 

point. Since (1.o!=-1..!:..2) = 0, the point on the edge of regression cannot 

be determined. For any plane cutting through the stationary generator, 

the intersection curve with the tangent-plane envelope has a double 

point or a cusp at the stationary generator. 

5.3 Double Stationary Generators 

A double stationary generator exists when four consecutive planes 

intersect at a common straight line. In such a case, the coefficient 

matrix. 

1 m n p 

-m 1 0 -d1m 

-1 ~rn-w11 n wllrn -d121-d32n 

2 2 (2w11 -w22 )i+w12m 
(5J2) 

(l+w11 )m+(w11 +w22 )n -(l+w11 )1-w12n P3 

of the plane equations (i = o, 1, 2, 3) in Equations (4.6) should have 

rank less than three. Thus in addition to Equations (4.7) and (5.8), 



the following two more conditions must be satisfied. 

m n 

-m 0 

m p 

-m i 

2 2 (l+w11 )m+(w11 +w22 )n -{l+w11 )i - w12n 

2 
= [w12m - (w11 + w22 )n]np - [(w11 + w22 )m + w12iJd1n 

2 
+ {(3dl2 - 3wlldl - d23)m - [(l - W11)dl + d33]n - d131} 
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( 12 + m2) = 0 (5. 14) 

where P3 is given in Equation (4.14). A tangent-plane is determined by 

only three independent data. For a general space motion, we are general­

ly not able to find a plane whose coordinates satisfy Equations (5.7), 

(5.8), (5.13), and (5.14) simultaneously and hence in general, a doulbe 

stationary generator is not available. 

A double stationary generator may exist in some special motions. 

Assume w11 has a non-zero value. Eliminating i and m from Equations 

(5.8), (5.13), and (5.9) and excluding the case n2 = 1, we have 

(5.15) 

where 



s3 = 9wj1 + (2w11 - w22 )2 + w~2 + 6w11 (2w11 - w22 ) 

2 3 2 s4 = -(2w11 - w22 ) - 6w11 (2w11 - w22 ) - w12 

- 2 2 B5 - w11 (2w11 - w22 ) 

This is an eighth degree polynomial. For each existing solution 

n(lnl < 1), we may find t and m from the following equation. 
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(5.16) 

Once i, m, and n are known, a double stationary generator may be found 

if a value of p exists to satisfy Equation (5.7) and (5.14) simultane-

ously. However, such a solution (t, m, n, p) is unlikely to exist in a 

general space motion. Hence, in general, a double stationary generator 

does not exist. In a spherical motion, we can always find p = 0 satis-

fying Equations (5.7) and (5.14) and therefore, from Equation (5.15), at 

most eight tangent-planes may be found to envelop doulbe stationary 

generators. 

If w11 = 0, we have also w22 = 0. Thus, from Equation (5.7), (5.8), 

(5.13), or (5.14) and (5.9), we may obtain 

n :;: 0 

p = dl2t 

i 2 + m2 = 1 

{5.17) 
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(5.17) 

The following cases may be distinguished. 

No double stationary generator exists. 

2. w12 ~ 0 and d13 = 0 

(1, 0, 0, d12 ) is the only tangent-plane to envelop a double 

stationary generator 

From Equations (5.17), we have 

n = 0 

Hence, a tangent-plane exists to envelop a double stationary generator. 

We have, 

n = 0 

(5.18) 

Any tangent-plane {t, m, n, p) satisfying the above equations envelopes 
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a double stationary generator. Equations (5.18) represent a family of 

tangent-planes which are parallel and have the distance jd 12~1 to the 

ISA. 

5. w12 = d13 = 0 and 3d12 - d23 f 0 

The plane (1, 0, 0, d12 ) envelopes a double stationary gener-

a tor. 

From Equations (5.8) and (5.13) we have (!:.oh1.h2) = (!:.oh1!:.3) = O 

Hence, the characteristic numbers v = v~ = 0. With the consecutive 

generators being coincident, the point on the edge of regression is 

indeterminate. However, for any plane cutting through the double 

stationary generator, the intersection curve with the tangent-plane 

envelope has a triple point or a double cusp at the double stationary 

generator. 

5.4 Stationary Points 

The stationary point of a tangent-plane envelope is a cusp point 

on the edge of regression. It is a point common to four consecutive 

planes an.d may be considered as the analogy of the planar flex (T = 0, 

k f 0) [47] which has four consecutive points on the same plane. 

For a tangent-plane envelope a stationary point exists if the 

change of the arc-length of the associated edge of regression is zero 

or the determinant of the coefficient matrix in Equation (5.12) is 

zero. This leads to 

u = 0 (5.19) 

where U is given in Equation (4.65). 

Let us exclude the cases of stationary plane and stationary gener-
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ator from Equation (4.19) and consider only the situation, 

in the rest of this section. A stationary point on the edge of regres­

s ion is a cusp point which as shown in Equations (4,63) and (4.64) has 

the properties 

- 1 -1 k = '"[ = 0 

A double stationary point exist if five consecutive planes inter­

sect at a common point. Thus, on the edge of regression, a double 

cusp appears and the second order derivative s2 of the arc-length of the 

edge of regression becomes zero. Differentiating Equation (4.60) with 

respect to ¢ and with U = 0, we have 

u = 0 ( 5. 20) 1 

where u1 is given in Equation (4.69). Substituting Equations (4.13) and 

(4. 14), Equation (5.20) becomes 

4 3 3 2 2 2 2 2 u1 = g1i + g2i m + g3i n + g4i m + g5i mn + g6i n 

3 2 2 3 4 3 +g7 m +g8im n + g9imn + g10in + g11 m + g12m n (5.21) 

2 2 3 4 3 2 2 2 +g 13m n + g14mn + g15n + p(a3i + h1i m +c3i n + h2im 

3 2 2 +h3£mn + h4m + h5m n + h6mn ) 

in which 

91 = -a3dl2 

92 = -elwll - b3dl2 

93 =-el - a3d32 - (c3 - al)dl2 



94 = -e2wll + 91 

95 = -e3wll - e2 - b3d32 - a2wlldl 

95 = -(a2 + a3wll)dl + cldl2 - (c3- a,)d32 - e3 

97 = 92 

98 = (a1w11 - b2w11 )d1 + a1d12-a3d32 - e1 

9g = (a1 - b2 - b3w11 - c2w11 )d1 + c2ct12 - e1w11 

910 = c1ct 32 + (-c 2 + a1w11 - c3w11 )ct1 

911 = -e2wll 

912 = blwlldl - b3d32 - e3wll - e2 

913 =(bl+ clwll)dl - (c3-b2) d32 - e2wll - e3 

914 = (blwll + c,)dl + c2d32 -e3wll 

915 = clwlldl 

h1 = b3 + a1w11 

h2 = a3 + a2w11 + b1w11 

h3 = (a3 + c1)w11 

h4 = b3 + b2wll 

h5 = c3 + b3wll + c2w11 

h6 = c3wll 

where a;, bi, and ci are the fourth order instantaneous invariants, 
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and 

(e1, e2, e3) = (6d 12 - 4d 23 - d14 -4(2w11 - w22 )d1, 

4dl3 - d24 - 6w1ld32 - 4wl2dl' - d34) 

in which [A4] is given in Equation (3.77). 
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Equations (5.19) and (5.20) represent on the moving system, a 

single-infinity of tangent-planes which envelop double stationary points 

at zero position. A triple stationary point may be obtained with the 

additional conditions s3 = O or u2 = 0, where 

u 2 = Po C!:.11-~ ) - P 1 (.!:.oJ=.3-'=-4 ) + P 3 (.!:.oJ=.1-'=-4 ) -

p 4 (.!:.oJ=.11-3) + p 0 (1-11-21-s) - p 1 (.!:.oJ=.2-'=-5) + 

p2 (loh11-5) - P5 (.!:.oJ=.11-2) 

5.5 Helical Developables 

(5.22) 

A curve is a helix if and only if its curvature and torsion are in 

a constant ratio. On a helical curve, the angle between its tangents 

and the axis of the helix are constant. A helical developable shall be 

referred to a developable with a helical edge of regression. It may be 

called helical osculating developable more properly. 

A tangent-plane envelopes a helical developable if the second order 

property v~ = 0. Hence, from Equation (4.53), we have 
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Equation (5.23) represents the family of tangent-planes enveloping hel­

ical developables. 

To synthesize a helical tangent-plane envelope with the specified 

first order property v(=k/T), the tangent-plane can be found by solving 

Equations (4.50) and (5.23) simultaneously. The helical axis is per­

pendicular to the normal (_!! = -..!:_1/ss1) of the curve and has the direction 

(ho x ..!:_1)/ssl + v1o· The angle between the generator of the helical 

developables and the axis is cos- 1 (1 + v2)-112 [61]. 

A better helical developable may be obtained if the characteristic 

number v11 = 0 is also satisfied. From Equation (4.66), we obtain A= 0 

which with v,. = 0 in Equation (4.51), may be written as 

2 2 Ch, • ..!:.1) [(1o-'::-2l3)+(~-1bt)J - 3[(11 • ..!:.2) + (11 • 11 Hl2· ..!:.2 + 

..!:.1 • h)] (loh1..!:.2) = 0 (5.24) 

From Equations (4.13), Equation (5.24) can be expressed in terms of 

~' m, and n. For a tangent-plane satisfying Equations (5.23) and (5.24), 

the envelope has the properties v,. = v 11 = 0. Once the normal (~, m, n) 

of the tangent-pl an es is determined, one can genera 11 y find the tangent­

p lane whose envelope has the desired characteristic number u from Equa-

tion (4.70). 

5.6 Cylindrical Developables 

From Equation (4.46), we have 

(5.25) 

where t is the unit vector along the generator of a tangent-plane envel-
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ope. 

If the consecutive generator also has the same direction, then the 

two consecutive generators are parallel and the tangent-plane envelope 

is a first-order cylindrical surface. In such a case, the derivative of 

t is zero. Thus, from the above equation, we obtain 

and 

or 

Since ho f 0, we have 

s ,s 2 t x t = 0 s s - -

(5.26) 

( 5. 27) 

which is the condition for a tangent-plane to envelop a first-order 

cylindrical surface (Figure 11). 

If one more consecutive generator also has the direction_!_, then by 

differentiating Equation (5.26), we have 

(5.28) 

Taking a vector product with Equation (5.25), we obtain 

(-'=-0 x 1-1) x (-'=-0 x 1-3 + .h1 x 1-2) = 0 

or 

Since i 2 + m2 f 0, ho and .hi are nonzero vectors. From Equation (5.27) 

and (5.29), we have the following cases. 
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a) A General Case 

b) First Order Cylinqrical Developable 

Fi9ure 11. The Intersection of Three Consecutive Planes. 
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The first two consecutive generators are parallel and the tangent­

plane envelope is a first-order cylindrical surface. Equation (5.8) 

gives the family of tangent-planes enveloping first-order cylindrical 

• surfaces. 

If Equation (5.7) is also satisfied, the two parallel cylindrical 

generators are coincident and become a stationary generator. 

The first three consecutive generators are parallel and the tangent-

plane envelope is a second-order cylindrical surface. From Equations 

(5.8} and (5. 13), the following cases may be distinguished. 

Equations (5.15) and (5.16) give the tangent-planes enveloping 

second-order cylindrical surface. 

Any tangent-plane with the normal (1, 0, 0) envelops a second-order 

cylindrical surface. 

(b.3) w11 = w22 = w12 = O (i. e. a0 = a1 = O) 

We have from Equations (5.8) and (5.13), 

n = 0, i 2 + m2 = 1 

Thus, any tangent-plane parallel to the ISA envelops a second-order 

cylindrical surface. 

In the above cases, if Equations (5.7) and (5.14) are also satis-
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fied, the three consecutive cylindrical generators are coincident and 

become a double stationary generator • 
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CHAPTER VI 

SPHERICAL TANGENT-PLANE MOTION 

A spherical tangent-plane motion is basically a special case of a 

general space motion discussed in the previous chapters. However, it 

possesses some distinct properties and deserved special attention. In 

this chapter, a tangent-plane executing a spherical motion is analyzed. 

One may also find the analogy between the spherical point path and 

tangent-plane envelope curvature theories. 

6.1 Characteristic Equations 

In a space rigid body motion, if the instantaneous pitch is zero, 

the motion is a spherical one and all the translational instantaneous 

invariants diminish (Figure 12). Thus. in Equation (4.14), we have, 

Po = p, p, = 0 
1 

(i > 0) ( 6.1) 

Let (i, m, n, p) be a tangent-plane on a moving system. The edge 

of regression of its envelope is 

(6.2) 

and the point on the edge of regression at zero position is 

2 2 2 X = (-w11 .RJnp/H, -w11 m P/H, -(w11 mn + i + m )P/H) (6.3) 

where 

(6.4) 
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Figure 12. .4 SpherfcaJ l:otfon 
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The generator of the tangent-plane envelope can be obtained frQm Equa-

tion (4.10) 

(6.5) 

Substituted by Equation (4,13), the generator at zero position is 

A 2 2 
_8_{0) = (-in, -mn, £ + m ) + E(-mp, £p, 0) (6.6) 

The characteristic numbers v and its derivatives. v,., v" with re-

spect to ss are independent of the translational motion of the general 

space motion. Hence, we can have the following first- and second-order 

characteristic equations which are identical to Equations (4.50) and 

(4.53). 

2 2 2 2 3/2 ( w11 m + n(£ + m) - v(£ + m) = 0 6.7) 

2 2 2 (£ + m ) [2w11 - w22 )£ + w12mJ + 3w11 mn 

The second-order intrinsic property of the tangent-plane envelope 

is found from Equation (4.63). 

(6.9) 

where 

(6.10) 

Substituted by Equations (4. 13), the above equations become 

2 2 2 
T = [w11m + n(£ + m )] /U ( 6. 11) 

where 

(6.12) 



86 

With k=vT, the curvature of the edge of regression can be compu­

ed from Equations (6.7) and (6.11). 

k = [wllm + n(i2 + m2)]3 /[U(22 + m2)3/2] (6. 13) 

The third-order v" characteristic equation is identical to Equa­

tion (4.66). Since from Equation (4.69), we have 

the u-characteristic Equation (4.67) can be rewritten as 

u = [ 2(!:.11-2!:.3Hio11.!::.3) - (1112~)(1o111-2)J/ 

[11 • -'=-1) 112 (1112!:.3H.bo!=.11.2)J 

(6.14) 

(6.15) 

From the above characteristic equations. one may find that for 

parallel-tangent-plane envelopes, their generators are parallel at any 

moment and all of them have common characteristic numbers. These enve-

lopes may be termed as 11 parallel envelopes." However, the radii of tor­

sion and the radii of curvature, T-l and k- 1, of the edges of regression 

of these parallel envelopes are proportional to the distance, IP!, be­

tween tangent-plane and the origin if (!::_1!:_2.!::_3) f 0. 

With the constraint, ~2 + m2 + n2 = 1, we note that there are only 

two independent variables in each characteristic equation. Hence, tan-

gent-plane envelopes can only be synthesized through Equations (6.7) and 

(6.8) to have second-order contact within stretch rotation with a refer-

ence developable. Assume the edge of regression of the reference develop-

able has torsion and curvature, Td and kd' respectively. For the tangen­

plane envelope, T and k are calculated from Equations (6.11) and (6.13) 

If the tangent-plane envelope and its associated system were stretched 



with the scale T/Td' the tangent-plane envelope and the reference de­

velopable would have the same geometrical properties, v, v~, Td' and 

kd' to second order and hence a second-order contact (three generator 

contact) would be achieved. 

6,2 Special Cases 
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In the following, the special cases of tangent-plane envelopes are 

investigated. 

6.2. 1. Stationary Planes 

In Equation (4. 6), we know that for a plane to remain stationary, 

!:_1 must be zero. This leads to 

9,=m=O (6.16) 

which represents the parallel planes orthogonal to the axis of rotation. 

The stationary planes become double stationary planes (second-order 

stationary planes) if 12 is also equal to zero, that is, w11 = 0 (i. e. 

a 0 = o). 

In a spherical motion all the points along the rotational axis are 

stationary, which are the duals to the stationary planes. 

6.2.2 Stationary Generators 

From Equations (5.7) through (5.10), a tangent-plane(£, m, n, p), 

(i2 + m2 1 0), envelopes a stationary generator if 

9, 2 + m2 + n2 = 1 

w11 m + n(l - n2) = 0 
(6.17) 
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and 

p = 0 (6.17) 

Equations (6.17) represent in the moving system the family of tangent-

planes which envelop stationary generators. Since p = 0, the tangent­

plane envelope is a cone with vertex at the center of rotation. 

if w11 I 0, Equation (6.17) represents an assemblage of tangent­

plane, tangent to a cone with vertex at the center of rotation. The 

direction vector at zero-position is 

and 

2 2 1o x !:_1 = (-in, -mn, i + m ) 

If w11 = 0, we have, from Equation (6,17), 

i 2 + m2 = 1 

n = p = 0 

(6.18) 

(6.19) 

which represent a pencil of planes passing through the axis of rotation 

and the stationary generator is coincident with the axis of rotation. 

The analogy between the motion of a point and of a plane has been 

pointed out in Section 5.6. It is interesting to see that for a spher­

ical motion, the locus of the point tracing an inflection point is the 

inflection cone [22, 55] while the family of tangent-plane enveloping 

stationary generators is an assemblage of planes tangent to a cone. On 

the other hand, we note that to envelop a stationary generator, the tan­

gent-plane always passes through the center of rotation and the edge 

of regression is degenerated to a point, while in point path, a point 

on the inflection curve may not move on the same plane except for some 

special motions. 



6.2.3. Double Stationary Generators 

With the additional condition (!:.o!=-1.!::_3) = 0 in Equation (5.13) sat­

isfied, a stationary generator becomes a double stationary generator. 
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The family of tangent-planes which envelop double stationary generators 

is distinguished in the following. 

(a) wll r 0 (i. e. ao r 0) 

We have 

2 m = -n (1 - n )/w11 

p = 0 

where B. (i = l, 5) are given in Equation (5.15). 
l 

(6.20a) 

(6.20b) 

(6.20c) 

(6.20d) 

There exists at most eight tangent-planes which envelop double 

stationary generators. 

(b) w11 = w22 = o (i. e. a0 = O) 

If w12 = 0 {i.e. a1 = 0), the same tangent-planes described in Equa­

tion (6.19) envelop double stationary generators. 

If w12 t 0, the tangent-plane (1, 0, 0, 0) is the only one to envel­

op a double statonary generator which is the axis of rotation. 

6.2.4 Stationary Points 

The statinary point of a tangent-plane envelope appears as a cusp 

point on the edge of regression. It is a point common to four consecu-
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time pl an es. 

For a tangent-plane envelope, a stationary point exists if on the 

edge of regression, 

sl = 0 

From Equations (4.56) and (6,10), this leads to 

( 6 .21 ) 

It is obvious that any plane passing through the center of rotation 

has a fixed point on it. Excluding the case p = 0. We have from Equa-

tion (6.12) 

(!:.1l2!:.3) = [(2wll - w22) £ + wl2m](£2 + m2) + 3w~l£mn = 0 (6.22) 

There exists an infinite number of solutions in Equation (6.22). 

Each solution £:m:n represents a family of parallel planes and all these 

parallel tangent-iplanes envelop stationary points. We note that at a 

stationary poi.nt k- l = T- l = O. 

A double stationary point may be obtained if the tangent-plane also 

satisfies u1 = 0 or 

3 2 2 
(.!:_1 .!:_2~) = (3w12 - w23 )£ + [w11 (1 + 4w11 ) + (w13 + 3w22 - 3w11 TI£ m 

2 2 2 ( - 3w11 1 n + (-w23 + 3w12 )im + w11 w23+ w12 )imn 

2 3 + [w11 (1 + w11 ) +(w13 + 3w22 - 3w11 )Jm 

2 2 + [w11 (-w13 + w22 + w11 ) - 3w11 Jm n = 0 (6.23) 

Equations (6.22) and (6.23) are cubic homogeneous equations. Any solu­

tion (i:m:n) represents a family of parallel tangent-planes and all these 

planes envelop double stationary points at zero position. 
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In general, a triple stationary point cannot be obtained. 

6.2.5 Helical Developables 

The characteristic equations related to the characteristic number 

v, v ... , v11 and so on are identical to those of general space motion. 

Therefore, the conditions for the existence of helical developables 

enveloped by tangent-planes in spherical motion are the same as the 

conditions described in Section 5.5 However, the characteristic number 

u is independent of p of the tangnet-plane coordinates. Hence, one can 

only find tangent-plane envelopes with two prescribed characteristic 

numbers among v, v ... , v", and u. 

6.2.6. Cylindrical Developables 

The conditions for a tangent-plane envelope to envelop a first-or 

second-order cylindrical surfaces are identical to that in Section 5.6. 

Among all these first- or second-order cylindrical surfaces, the one 

which is enveloped by the tangent-plane passing through the center of 

rotation has a stationary generator or a double stationary generator. 



CHAPTER VII 

EXAMPLES 

In this chapter, two examples are presented. The first one shows 

that a tangent-plane on a rigid body executing the Darboux motion 

envelops a helical developable. This is another case showing that a 

tangent-plane under various special motions may provide distinct feat­

ures. The other exqrnple demonstrates the synthesis procedure or a tan­

gent plane envelope in a general space motion. 

7.1 Darboux Motion 

In the following, a tangent-plane embedded in a rigid body execut­

ing Darboux motion is discussed. For a rigid body executing Darboux 

motion, every point on the moving body traces a planar path. A trivial 

example is the planar motion in which all the planes of the paths are 

parallel. In the canonical systems, a general space Darboux motion can 

be expressed as Equation (3.1) with 

cos cp -sin cp 0 

[A] = sin ¢ cos ¢ 0 ( 7. 1 ) 

0 0 

and Q = (f(l - cos¢), 0,gsin¢ + h (1 - cos ¢)) (7.2) 

where g2 + h2 1 0 and ¢ is the angular displacement about the instant­

aneous screw axis [8, 48]. 
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have 

and 
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Differentiating Equations (7.1) and (7.2) with respect to¢, we 

-sin ¢ 

[Al J = cos ¢ 

0 

-cos <P 

[A2] = -sin ¢ 

0 

[Ai + 2J = -[Ai] 

D = -1 (f sin ¢, 

D = -2 (f cos ¢. 

D. + 2 = -D. -1 -1 

-cos ¢ 0 

-sin ¢ 0 

0 0 

(7.3) 

sin ¢ 0 

-cos <P 0 

0 0 

( i = 1 ' 2' . . ) 

0, g cos ¢ + h sin ¢) 

0, -g sin ¢ + h cos ¢) (7.4) 

(i=l,2, ... ) 

We observe that the rotational matrix [A] is exactly the same as 

that of a planar. The instantaneous screw axis of a Darboux Motion is 

always in the same direction and translates in a parallel direction. 

Since L.=[A.] £ (referring to the above equations) we may have the -1 l -

parametric equation of the tangent-plane envelope from Equations (4.10) 

and (4. 12). 

At zero position ¢ = 0, the motion is characterized by the instant­

aneous invariants as shown in Equations (3.64) through (3.77) in which 

w .. = 0 
lJ 

D · = 0 .:'..() 

(i, j = 1, 2 ... ) (7. 5) 

(7.6) 
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D = -1 (0, 0, dl) = (O? 0, g) 

D = -2 (dl2' o, d32) = (f, 0, h) 
(7.6) 

D = (dl3' d23' d33) = (0, 0, -g) -3 

.!4 = (dl4' d24' d34) = (-f, 0, -h) 

and so on. 

For a tangent-plane (1, m, n, p) in the moving system, tf n(12 + 

m2) f 0, the point on the edge of regression and the generator of the 

tangent-plane envelope at zero position are, respectively, 

and 

R ( 0) 

where 

X(O) = -(E/H, F/H, G/H) 

= (-1n, -mn, 12 + m2) + s(g1n - mp, gmn + 1p, gn 2) 

2 2 2 E = gmn + f 1 n + h1n 

2 2 F = f 1mn - g1n + hmn 

G = (p - f 1 - hn)(12 + m2) 

H = n(12 + m2) 

(7. 7) 

(7.8) 

The above equations are obtained by substituting Equations (7.5) and 

(7.6) into (4.15) and (4. 16). 

By substituting Equations (7.3) and (7.4) into (4.7) and (4.8), 

Equation (4.50) becomes 

(7.9) 

Equation (7.9) is the characteristic equation at any position and hence, 
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v~ = v 11 = • • • = 0 (7,10) 

If n(12 + m2) f 0, Equations (7,ll) shows that the edge of regression 

of any tangent-plane envelope is a helix and all the tangent-plane 

envelopes are helical developables (Figure 13). 

The torsion of the edge of regression of a tangent-plane envelope 

at zero position may be obtained by substituting Equations (7.5) and 

(7.6) into Equation (4.63). Thus, we have 

T = -n(12 + m2)/3fm (7. 11) 

and the curvature k, 

(7.12) 

Similarly, the third order characteristic numbers may be obtained 

from Equation (4.67) 

(7.13) 

We note that Equations (7.9) to (7.13) contain only two independ­

ent variables. In fact, all parallel tangent-planes in the rigid body 

executing Darboux motion envelop identical parallel helical develop-

ables. Therefore, in a system executing Darboux motion. Equations 

(7.9) and (7.11) are the only two characteristic equations. 

For the Darboux motion, each point traces a planar path but any 

tangent-plane other than n(12 + m2) = 0 envelops a helical developable 

and does not always pass through a fixed point. Hence, it is dubious 

to relate the motion,of a point and a plane through the duality. How-

ever, in such a motion each plane in the fixed system does always pass 

through the same point in the moving system. 
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HELICAL 
EDGE OF REGRESS ION 

DEVELOPABLE SURFACE 

Figure 13. Part of a Helical Developable Surface 
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7.2 Synthesis of Developables 

In a general space motion, Equations (4.50) and (4,53) ~re the two 

synthesis equations for a second order developables. Eliminating Q, and 

m from them, with the constraint 

Q,2 + m2 + n2 = l (7.14) 

we can obtain the following sixteenth degree polynomial in terms of the 

n-coordinate of a tangent-plane. 

where 

16 
2: E.ni=O 

i = l 1 
(7.15) 

E1 = 2(c1c0 - o1o0) 

2 2 2 
E2 = c, + Do - o, + 2(C2CO - D2Do) 

E3 = 2(C3Co + C2C1 + o,oo - D3Do - D2D1) 

2 2 . 2 
E4 = c2 + o, + 2(C4Co + C3C1 + D2Do - D4Do - D3D1) - D2 

E5 = 2(C5Co + C4C1 + C3C2 + D3Do - D2D1 - D5Do - D4D1 - D3D2) 

2 2 2 E6 = c3 + o2 - o3 + 2(C6c0 + c5c1 + c4c2 + o4o0 + o3o1 - o5o1 -

E7 = 2(C6Cl + c5c2 + C4C3 + 0500 + D4D1 + 0302 - 0700 - 0502 -

D4D3) 
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Eg = 2(C8Cl + c6c3 + C5C4 + 0700 + 0502 + 0403 - 0702 - 0504) 

2 2 2 
ElO = C5 + 04 - 05 + 2(C8C2 + C5C4 - 0701 - 0503 - 0703) 

Ell = 2(C8C3 + c6c5 + 0702 + 0504 - 0704) 

2 2 2 
El2 = C6 + 05 - 06 + 2(C8C4 + 0703 - 0705) 

El3 = 2(C8C5 + 0704) 

2 
E14 = -07 + 2{C8C6 + 0705) 

2 2 
E16 = CS + 07 

2 4 2 c8 = -9 w11 (v - 6v + 1) 

c6 = wi1 (27v4 - v2 - 108v2 + 9) + 6Bw11 (1 - 3v2) 

c5 = 2\»w11 w12 

c4 = 3w~ 1 (-9v4 + l8v2 + v-" 2) + 6Bw11 (6v2 - 1) + (v2 - 1)(9wi1 + 

2 2 
Wl2 + B ) 

c3 = -2C 5 

2 4 ,.2 2 2 2 2 2 c2 = 3w11 (3v - v - 3v w11 ) + 6Bw11 Cw11 - 3v) + (l - 2v) 

2 2 
(w12 + B ) 
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Cl = C5 

2 ~2 2 2 2 2 
Ca= wll(v - B ) + v (W12 + B ) 

2 2 o7 = 36vw11 (v - 1) 

• 2 2 2 o5 = 36vw11 (1 - 2v ) + 6vBw11 (3 - v ) 

o4 = vc5 

o3 = ..:2v(B2 + wi2) + 12'v3w11 (3w11 + B) - 18vw11 (B + w~ 1 ) 

2 2 2 2 o1 = 2v(B + w12 ) + 6vBw11 (w11 - v ) 

and 

The coefficients of the above equation are functions of the char-

acteristic numbers.v, v~, and the rotational instantaneous invariants 

~ up to third order. Knowing n-coordinate of a tangent-plane from Equa-

tion (7.15), we may obtain~ and m from Equations (4.50) and (4.53) 

which may be expressed explicity by 

and 

2 
3w11mn] 

(7.16) 

(7.17) 
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The p-coordinate of the tangent-plane may be selected arbitrarily 

or determined through Equation (4,70) if the characteristic number u is 

prescribed. For the obtained tangent-plane (1, m, n, p), the property 

T of its envelop can be calculated from Equation (4.63). 

Let the desired torsion be Td' The tangent-plane and the associat­

ed mechanism can be stretched (or scaled) proportionally by the scale 

e = T/Td. In the st~etched mechanism the tangent~plane will envelop a 

developable with the prescribed properties v, v ... , (and u if any). A 

simple example is given below. 

Let an RCCC mechanism be used to synthesize a second order helical 

developable with the properties v = 0.9, v ... = 0 and T = 0.2. The RCCC 

mechanism has correspondingly the input, coupler, output and fixed 

1 in ks: 

&, = 30° + s2 i3 = 55° + 8.4 

A 

T = 45° + e:3 o = 60° + s5 

The zero position is assumed at the input link position¢= 60°. From 

Reference [16], we have the instantaneous invariants in the canonical 

systems. 

wll = 1.83 

W = o. 38 
12 

W + w = 3.23 11 . 22 

dl = 4.58 

d12 = 9.96 

d13"' -14.21 d23 = ... 9,93 d33 = -14.45 

Using Equations (7.15) to (7.17), we obt~in four solution sets 1 = 
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(R.,m,n): 

!, = ( .. 0.7560, 0.5758, -0 .. 3083) 

.&2 = ( 0,.7293, 0,5662, -0.3832) 

!3 = (-0,3858, -0.0548, 0.8882) 

~ = ( 0,3941, -0 .. 0556, 0.8813) 

Let us take the solution set ! 1 and assume p = 2.0.(.Q,, m, n, p) = 

(-0.7560, 0.1578, -0.3083, 2.0) is the homogeneous coordinates of a 

tangent-plane in the canonical system. We note that p can be calculated 

from Equation (4.76) if the property u is prescribed. The property T of 

the envelope is found from Equation (4.63) and we have 

T = 0.05 

and 

e = T/Td = 0.2497 

After being stretched with the scale 11 e", the RCCC mechanism has the 

links: 

& = 30° + E0.4994 B = 55° + E0.9988 

"' T = 45° + E0.7491 8 = 60° + El.2485 

and in the associated moving canonical system on the coupler link, the 

tangent-plane is located by the homogeneous coordinates, 

(R., m, n, p) = (-0.7560, 0.5758, -0.3083, 0.4993) 

whose envelope has the prescribed properties v = 0.9, v~ = 0 and T = 

o .. 2. 



CHAPTER VI II 

SUMMARY AND CONCLUSION 

This dissertation represents the first extensive study on the 

motion of a plane. It extends the curvature theory from the traditional 

point path to tangent-plane envelope. Although the motion of a plane 

is complicated, this dissertation provides a handy tool to analyze and 

synthesize a tangent-plane motion. 

A rigid body motion is considered as a screw motion and the canon­

ical systems related to the motion of the screw axis are established to 

simplify the description of motion. A series of numbers, such as 

v, v', v11 , u and so on were defined to characterize a tangent-plane 

envelope. The family of tangent-planes whose envelopes have the common 

characteristic numbers are located through the characteristic equations. 

These characteristic equations can be used for synthesis purpose. 

It was found that parallel-tangent~plane envelopes have not only 

parallel generators but also common characteristic number v and its 

derivatives. Parallel-tangent-plane envelopes have second order con­

tact within stretch rotation with each other. For a general motion, 

one may find tangent-plane envelops which have at most three common 

characteristic numbers, say v, v' an u, with a reference developable. 

For a spherical motion, all the dimensionless characteristic numbers 

depend only on the orientation of the tangent-plane and the best 

tangent-plane envelope one may find is a second order developable. 

102 
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Several special cases were investigated. No stationary plane can 

be found unless the motion is spherical or have zero instantaneous 

pitch. F01r a space motion, one may find eight families of parallcl­

tangent-planes which envelop second order cylindrical surfaces and 

generally only first order stationary generator can be obtained. In a 

spherical motion, among all the second order cylindrical surfaces, the 

one with tangent-plane passing through the central point has a double 

stationary generator. For the stationary point which is a cusp point 

on the edge of regresssion, one may find tangent-planes associated with 

edges of regression having triple cusps. However, in spherical motion 

excluding the fixed point, we can find only double stationary point or 

double cusp. The generation of helical developables is also i~vesti­

gated. In Darboux motion, any plane not parallel or perpendicular to 

the direction of the angular velocity envelopes a helical developable. 

The analogy between the motion of a point and that of a tangent~ 

plane has been stressed. Such analogy may stimulate one fo find, in 

the tangent-plane envelopes, the properties or applications analogous 

to those of point trajectories. However, it is improper to use dual­

ity to relate point trajector and tangent-plane envelope. For example, 

in Darboux motion, any point traces a planar path but any tangent-plane, 

which is dual to a point, not parallel or perpendicular to the ISA 

envelops a helical developable instead of passing through a fixed point. 

A contrary situation to such duality is also exhibited in the Ball 1 s 

point and the tangent-plane which envelops a stationary generator. 

The theory developed here can be applied to any one-parameter 

space motion. In planar motion, a similar approach can be utilized to 

develop a tangent-line envelope curvature theory. A general case in 
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in tangent-plane envelope curvature is a two-parameter motion. For a 

two-parameter motion, an ordinary suface can be generated through a 

tangent-plane envelope and one may synthesize any surface with high 

accuracy in the vicinity of a point. Such a study, however, is con­

sidered beyond the scope of the present dissertation. 



A SELECTED BIBLIOGRAPHY 

1. Allievi, L. Cinematica della Biella Piana. Naples: Gianini, 1895. 

2. Ball, R. S. A Treatise on the Theory of Screws. Cambridge: 

v 3. 

V4. 

5. 

University Press, 1900. 

Basset, A. B. A Treatise on the Geometry of Surfaces. Cambridge: 
Deighton Bell and Company, 1910. -

Bell, Robert J. T. Coordinate Geometry of Three Dimensions. 
London: MacMillan and Company, 1949. 

Berei s, R. 11 Uber die Geraden-Hu 11 bahnen bei der Beweguang ei nes 
starren ebenen Systems. 11 OsL Ing. Arch., Vol. 9, 1955, 
44-55. 

v 1 6. Beyer, R. Applied Space Kinematics. Berlin: Springer Verlag, 
1963. 

7. Bottema, 0. 11 Qn Instantaneous Invariants, 11 Proceedings of Inter­
national Conference for Teachers of Mechanisms, Yale University, 
New Haven, Connecticut, 1961, 159-164. 

8. Bottema, 0. and B. Roth. Theoretical Kinematics. Amsterdam: North­
Hol land Publishing Co., 1979. 

9. Dimentberg, F. M. The Screw Calculus and Its Applications in 
Mechanics. Izdat, 11 Nauka, 11 Moscow, USSR, 1965, English Trans­
lation: AD680993, Clearinghouse for Federal and Scientific 
Technical Information, 1968. 

10. Disteli, M. "Uber des Analogon der Savaryschen Formel and Konstruk­
tion in der Kinemati schen Geometri e des Raumes. 11 Zeitschrift 
Fur Mathematikund Physik, Vol. 62, 1914, 261-309. 

v 11. . h . E1 sen art, L. P. Differentia 1 Geometry. Boston: Ginn, 1909. 

13. 

Freudenstein, F. "Higher Path-Curvature Analysis in Plane Kine­
matics." Journal of Engineering for Industry, Trans. of ASME, 
Vol. 86, Series B, No. 1, 1965, 184.,.190. 

Garnier, R. Cours de Cinematique. Paris: Gauthier-Villars, Vol. 2, 
1956. 

105 



v 

v 

v 

106 

14. Guggenheimer, H. W. Differential Geometry. New York; McGraw-Hill 
Book Company, Incorporated: 1963. 

15. Hilbert, D. 
York: 

16' Hsia, L. M, 
sional 
ornia, 

and S. Cohn-Vossen. Geometry and the Imagination. New 
Chelsea Publishing Company, 1952. 

"Curvature Theory of Point ·Trajectories in Three Dimen­
Kinematics.11 (Ph.D. Dissertation, University of Calif­
Davis, September, 1979~) 

17. Hsia, L. M. and A. T. Yang. "One the Principle of Transference in 
Three-Dimensional Kinematics.n Journal of Mechanical Design, 
Transactions of ASME, Vol, 103, No, 3, July 1981, 652-656. 

18. Hunt, K. H., and E. F. Fichter. "Equations for Four-Bar Line­
Envelopes.11 Journal of Mechanical Design, Transactions of 
ASME, Vol. 103, No. 4, October, 1981. 743-749. . 

19. Hunt, K. H. Kinematic Geometry of Mechanisms. Oxford: Clarendon 
Press, 1978. 

20. Hunt, K. H. "Geometry-The Key to Mechanical Movement." Mechanism 
and Machine Theory, Vol. 11, 1976, 79-89. 

V 21. Hunt, K. H. 11 Envelopes and Line-Loci from the Planar Four-Bar 
Linkage; Introductory Theory and Applications." Proceedings 
of the Fifth World Congress on the Theory of Machines and 
Mechanisms, Montreal, 1979, 522-525. 

v 

v 22. 

23. 

24. 

Kamphuis, H. J. "Application of Spherical Instantaneous Kinematics 
to the Spherical Slider-Crank Mechanisms." Journal of 
Mechanisms, Vol. 4, 1969, 43-56. 

Kimbrell, J. E. and K. H. Hunt. "Coupler Point-Path and Line­
Envelope of Four-Bar Linkages in Asymptotic Configurations." 
Proceedings of the 6th Q_~_tp_plied Mechanisms Conference. 
Denver, Colorado, 1979, XIV, 

Kirson, Y. "Higher Order Curvature Theory in Space Kinematics. 11 

(Ph.D. Dissertation, University of California, Berkeley, 1975.) 

25. Kreyszig, E. Differential Geometry. Toronto: University of 
Toronto Press, 1959. 

~ 26. Maxwell, E. A. The Methods of Plane Projective Geometry Based on 
the Use of General Homogeneous Coordinates. Cambridge: 

27. 

University Press, 1946. 

Maxwell, E. A. General Homogeneous Coordinates in Space of Three 
Dimensions. Cambridge: University Press, 1951. 



107 

v 28. McCarthy, J. M., and B. Roth. "Instantaneous Properties Generated 
by Planar, Spherical, and Spatial Rigid Body Motions." Journal 
of Mechanical Design~ Ttalis~ctions of ASM~~ Vol, 104, No. 1, 
1982, 39-51. 

v 29. McCarthy, J._ M. and B. Roth. "The Curvature Theory of Line Traject­
ories in Spatial Kinematics." JournQl. ofM~chanical Design, 
Transactions of ASME, Vol. 103, No, 4, October 1981; --718-724. 

30. 

v 31. 

32. 

Mueller, R. 11 Ueber die Kruemmung der Bahnevoluten bei starren 
ebenen Systemen." Z. Math; Phys., Vol.. 36, 1891, 193-205. 

Nayak, J. H., and B. Roth, ''Instantaneous Kinematics of Multiple­
Degree-of-Freedom Motion." Journal of Mechanical· Design, 
Transactions of ASME, Vol. 103, No. 3, July 1981, 608-620. 

Ohwovoriole, M. S., and B. Roth. 11 An Extension of Screw Theory." 
Journal of Mechanical Design, Transactions of ASME, Vol. 103, 
No. 4, October 1981, 725-735, 

\I 33. Primrose, E. J. F. Plane Algebraic Curves. London: MacMillan 
Company, 1955. 

34. Roth, B., and A. T. Yang. "Application of Instantaneous Invariants 
to the Analysis and Synthesis of Mechanisms. 11 Journal of 
Engineering for Industry, Transactions of ASME, Vol. 99, 
Series B., No. 1, February 1977, 97-103. 

~ 35. Salmon, G. A Treatise on the Analytic Geometry of Three Dimensions. 
London: Longmans, Green and Company, 1915. 

36. Sandor, G. N., and F. Freudenstein. "Higher-Order Plane Motion 
Theories in Kinematic Synthesis. 11 Journal of Engineering for 
Industry, Transactions of ASME, Vol. 89, Series B, No. l, 
1967' 223-230. 

37. Skreiner, M. 11 A Study of the Geometry and Kinematics of Instan-
taneous Spatial Motion." Journal of Mechanisms, Vol. l, 
No. 2, 1966, 115-143. 

38. Skreiner, M. "On the Point of Inflection in General Spatial 
Motion, 11 Journal of Mechanisms, Vol. 2, No. 4, 1967, 429-433. 

v 40. 

Siddhanty, M. N., and A.H. Soni. "Intrinsic Invariants of Rigid 
Body Motion and Higher Path Curvature Theory in Spatial 
Kinematics." Proceedings of the Fifth World Congtess on 
Theory of Machines and Mechanisms, Montreal, 1979, 1440-1443. 

Sommerville, D. M. Y. Analytical Geometry of Three~Dimensions. 
Cambridge: University Press, 1934. 



v 41. 

108 

Soni, A. H., M. N. Siddhanty, and K. L. Ting. "Higher Order, 
Planar Tangent-Line Envelope Curvature Theory. 11 Journal of 
Mechanical Design,· TransactiOns of ASME, Vol. 101, No.-~ 
October 1977, 563-568. 

42, Soni, A. H. Mechanism Syhthesis and Analysis. New York: McGraw­
Hill, 1979. 

43. Struik, D. J. Differential Geometry. Reading, Massachusetts: 
Addison-Wesley Publishing Company, Inc., 1961. 

V 44. Suh, C. H. "Higher Order Analysis of Spatial Coupler Curves. 11 

Journal of Mechanisms, Vol. 6, 1971, 81-95. 

45. Tolke, J. "Contributions to the Theory of the Axis of Curvature." 
Mechanism and Machi~e Theory, Vol. 11, No. 2, 1976, 123-130. 

46. Tolke, J. "The Roll-Sliding Number of Associate Curves. 11 Mechanism 
and Machine Theory, Vol. 11, No. 6, 1976, 419-424. 

v47. Veldkamp, G. R. "Curvature Theory in Spatial Kinematics. 11 Pro­
ceedings of Fifth World Congress on the Theory of MachTneS and 
Mechanisms, Montreal, Canada, July 1979, 565-570. 

48. Veldkamp, G. R. "Canonical Systems and Instantaneous Invariants in 
Spatial Kinematics. 11 _Journal of Mechanisms, Vol. 2, 1967, 329-
388. 

49. Vedlkamp, G. R. "On the Use of Dual Number, Vectors, and Matrices 
in Instantaneous, Spatial Kinematics.'' Mechanism and Machine 
Theory, Vol. 11, No. 2, 1976, 141-156. 

50. Veldkamp, G. R. Curvature Theory in Plane Kinematics, (Ph.D. Disser­
tation, Technical University, Delft, Holland, 1963.) 

V 51. Veldkamp, G. R. 11 Some Remarks on Higher Curvature Theory, 11 Journal 
of Engineering for Industry, Transactions of ASME, Vol. 89, 
Series B., No. 1, February 1967, 84-86. 

V 52. Veldkamp, G. R. 11 An Approach to Spherical Kinematics Using Tools 
Suggested by Plane Kinematics." Journal of Mechanisms, 
Vol. 2, 1967, 437-450. 

v 53. Yang, A. T., Y. Kirson, and B. Roth. 11 0n a Kinematic Curvature 
Theory for..J~_yl.e.cLS.u.rt~~es. 11 Proceed 1 ngs ·of the Fourth War 1 d 
Congress on the Theory of Machines and Mechanisms, Vol. 4, 
New Castle upon Tyne, England, September 1975, 737-742. 

\( 54. Yang, A. T. and B. Roth "Higher Order Path Curvature in Spherical 
Kinematics." J. of Engineering for Industry, Transactions of 



109 

ASME, Vol. 95, Series B, No. 2, May 1973, 612-616. 

55. Yang, A. T. and F. Freudenstein. ''Application of Dual Number 
Quaternion Algebra to the Analysis of Spatial Mechanisms. 11 

J. of Applied Mechanics, Transactions of ASME, Series E, 
Vol. 86, No. 2, 1965, 300-308. 

56. Yang, A. T. "Calculus of Screws, 11 Basic Question of Design Theor~ 
New York: American Elsevier Publishing Company, Inc., 1974, 
265-281. 

57. Yang, A. T. 11 Application of Quaternion Algebra and Dual Number 
Quaternion Algebra to the Analysis of Spatial Mechanisms. 11 

(Ph.D. Dissertation, Columbia University, New York, 1963.) 

58. Yang, A. T. 11 Analysis of an Offset Unsymmetric Gyroscope with 
Oblique Rotor Using (3 x 3) Matrices with Dual Number 
Elements." J. of Engr. for.Industry, Transactions of ASME, 
Series B, Vol. 91, No. 3, 1969, 635-642. 

59. Yang, A. T., Y. Kirson, and B. Roth. "On a Kinematic Curvature 
Theory for Ruled Surfaces. 11 Proceedings of Fourth World 
Congress on the Theory of Machines and Mechanisms. Newcastle 
Upon Tyne, England, September 1975, 737-742. 

60. Weatherburn, C. E. Differential Geometry of Three Dimensions. 
Cambridge: University Press, 1927. 



1--­
VITA 

Kwun-Lon Ting 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: THREE DIMENSIONAL KINEMATIC ANALYSIS OF TANGENT-PLANE MOTION 

Major Field: Mechanical Engineering 

Biographical: 

Personal Data: Born in Huwei, Tawian, October 1, 1948, the son 
of Mr. and Mrs. Yin Ting. 

Education: Received Bachelor of Science in Engineering degree 
from National Taiwan University, Taipei, Taiwan, in 1972; 
received Master of Science in Mechanical Engineering degree 
from Clemson University, Clemson, South Carolina in 1977; 
completed requirements for the Doctor of Philosophy degree 
at Oklahoma State University in May, 1982. 

Professional Experience: Instructor, Army Ordance School, Taiwan, 
1973-74; Mechanical Engineer, Toyo Bearing Company, 1974; 
Mechanical Engineer, Taiwan Polymer Incorporated, 1974-75; 
graduate research assistant, Department of Mechanical 
Engineering, Clemson University, 1976-77; graduate teaching 
assistant and research assistant, School of Mechanical and 
Aerospace Engineering, Oklahoma State University; Member of 
American Society of Mechanical Engineers. 


