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CHAPTER I
INTRODUCTION

An important area in the field of Management Science is Inventory
Theory. During the last seventy years many journal articles and textbooks
have been written on this subject matter. Indeed, the field of inventory
theory has been a fertile area of research by mathematicians, engineers,
economists, and computer scientists. Since there are many aifferent def-
initions for inventory theory in the literature, it is necessary to
define the inventory systems that will be dealt with in this disserta-
tion. Paraphrasing Naddor [61]

An inventory system is a system in which only the follow-
ing costs are significant, and in which any two or more
are subject to the control of the decision maker:

1. The cost of carrying or holding inventories.

2. The cost of incurring shortages.
i. The cost of replenshing the inventory system.

. The cost of deterioration/perishing of inven-
tories.

There are various types of costs or expenses that are classified
into the above four major cost categories. The first category includes
the cost of carrying or holding inventories in any inventory or produc-
tion system. It includes:

1. The cost of capital tied up in inventories.

2. The marginal cost of storage space.

3. The marginal cost of insurance and taxes.

4, The marginal cost of handling equipment in the warehouse.



The second category is the cost attributed to shortages when there
is customer demand. This may include:

1. The cost in the loss of sales.

2. The cost in the loss of good will.

3. The cost of special administrative efforts.

The third category is the cost incurred in the replenishment of
inventories. This may include one or more of the following:

1. The cost of ordering a new lot size.

2. The cost of machine set-ups for new production runs.

3. The cost of handling and shipments.

4. The cost of receiving and inspection.

The last category is the cost associated with perishability or
deterioration of items while in stock. Although many authors have
included this cost as a part of carrying or holding cost, this is con-
ceptually and realistically incorrect. Hadley and Whitin [43] have
stated that, wherever applicable, this cost must be considered explic-
itly. Deterioration or perishability is defined as decay, damage,
spoilaae, or obsolescence that prevents the item from being used for its
oriainal intended purpose. This may include:

1. The cost of actual physical depletion of volatile liquids such

as gasoline and alcohol.

2. The cost of spoilage.

3. The cost of obsolescence.

4, The cost of damage and pilferage.

The sum of these four cost categories will be referred to as the "total

cost".



In any inventory problem, decisions are usually made in terms of
time and quantity. These are the basic controllable variables in any
inventory system; that is, the decision maker must specify one or both
of the following:

1.  When should the order be placed?

2. . How much should be added to inventory?

The objective of an inventory problem is to determine the value of the
controllable variable(s) that will minimize the total inventory cost.

Most research in the mathematical inventory models to date have
made the implicit assumption that inventory was "non-perishable"; that
is, the units, once in stock, could be used at anytime to satisfy de-
mand. Almost all items deteriorate over time; if the rate of deterior-
ation is very slow, its effect can be ignored; otherwise the units in
stock might have deteriorated to the point that they may no longer be
able to satisfy demand. The loss due to perishability is quite impor-
tant, and there are various contexts in which it could provide valuable
insights into inventory decision making. This effect is so vital in
many inventory systems that it cannot be 1ightly disregarded. For
example, in the field of perishable foods, especially fruits and dairy
products, one must always consider the effect of spoilage, because not
only do these types of goods become spoiled, but most likely they lose
their value as time passes on. Another example is the case of physical
depletion of volatile liquids such as alcohol and turpentine in the
chemical industry. The effect of deterioration plays a significant role
in other areas such as production and inventory of photographic films,
radioactive substances, nuclear material processing, pharmaceutical

drugs, and electronic components.



1.1 Background

In order to have a clear picture of the effect of perishability on
inventory, consider the following example which is basically due to
Nahmias [62].

Consider a simple EOQ (Economic Order Quantity) Model. This is a
continuous time model where demand is assumed to be constant, and the

following costs to be significant:

i. C0 = unit cost (charge for each unit purchased)

ii. C1 = carrying Eost (cost of holding a unit of inventory for a
unit of time)

iii. C3 = replenishment cost (fixed cost for placing an order)

iv. r = constant demand rate

Let 9% be the optimal lot size which is received into inventory

when the stock level is zero. The following relation then holds:
q, = 2C3r/Ci; t, = 9,/r

Schematically this is depicted in Figure 1.

Now, assume that all unused products will perish at some time t' after
receipt. If t';>t0, then 9 is the optimal lot size and the problem
remains the same. But, if t'< to’ and 9, is ordered, a number of jtems
in stock will no longer be in their useful state. Schematically this
may be presented in Figure 2.

Therefore, qp is the amount of product that perishes every t' units
of time. However if q' is chosen such that q' = 9y - qp (this is equiva-

lent to q' = rt'), Figure 2 can be modified into Figure 3.
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Figure 1. Inventory Level with No Deterioration
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Figure 2. Inventory Level with Deterioration
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Figure 3. Adjusted Inventory Level



In this case no inventory item deteriorates; therefore, the total
inventory cost will be lower than using dy policy; q' is the optimal
policy, and it is always optimal to order in such a way that no inven-
tory item deteriorates.

In recent years, efforts in analyzing mathematical models in which
jtems deteriorate while in storage have drawn attention of various
researchers. However, there are many areas that require additional
exploration, elaboration, and extensions. The purpose of this study is

to undertake such a task.

1.2 Research Objectives

The objective of this dissertation is to derive and present mathemat-
jcal inventory models that include the assumption of deterioration for
various classes of inventories which will be useful in the broad range of
real 1ife inventory situations. To fulfill this objective a number of
models have beén developed to gain additional insight and to incorporate
realism into the existing body of inventory systems. Specifically, the
following inventory models are investigated:

1. Lot size inventory systems incorporating various types of per-

ishability rate function.

2. Order level inventory systems incorporating constant perish-

ability rate and various types of demand rate functions.

3. Probabilistic inventory systems incorporating constant perish-

ability rate.
1.3 Summary of Results

The objectives of this research have been met. Numerous models are



developed which are useful in determination of the optimal replenishment

size, or inventory cycle time. The Models are:

1'

The inventory characteristics for Lot-size inventory Models
(Model I) incorporating various perishability rate functions
have been determined. The inventory fluctuatons of this model
are illustrated by Figure 4. In this model the inventory hold-
ing cost is charged on all the units that remain in inventory,
whether perished or not; and perishability costs are charged at
the end of the inventory cycle time. The perishability rate
functions that are utilized for this analysis are: constant,
linear, and exponential funtions. Depending on how a perish-
ability rate function is applied to the basic lot size system,
various submodels are developed and analyzed. Figure 5 depicts

these subsets of Model I Tot size system.

- The inventory characteristics for Lot size Models (Model II)

incorporating various underlying perishability distribution
functions have been determined. The inventory fluctuation of
this model is illustrated by Figure 6. In this model the inven-
tory carrying cost is charged on all the non-perished units in
inventory, and the perishability costs are charged whenever a
unit perishes. The underlying perishability distribution of
items in inventory that are utilized for this analysis are:
exponential, Weibull, and Rayleigh distribution functions.
These correspond to constant, general, and linear rates of
perishability respectively. Figure 7 depicts the models of
lot size system-Model II. (Model II and Model I differ funda-

mentally in the method of analysis of calculating the average
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Figure 4. Lot Size System--Mode]» I--Inventory Depletion Pattern



MODEL I

Lot Size System

Model I-a
Perishability as a
Function of Initial

Model I-b
Perishability as a
Function of Remain-

Model I-c
Perishability as an
Additional Demand

Modei I-d
Perishability as a
Percentage of Order

Inventory ing Inventory Function Size
Quadratic Constant " Linear Exponential
Perishability Perishability Perishability Perishability
Function Function Function Function

Figure 5. Lot Size

System--Model 1




Total Amount of Non-Perished

Items in Inventory

0 T Time

Figure 6. Lot Size System--Model II--Inventory Depletion Pattern
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Lot Size System
MODEL II

Perishability is ac-

Case 1

cording to Exponential

Case 2

Perishability is ac-

cording to Weibull

Case 3

Perishability is ac-

cording to Rayleigh
Distribution

Distribution Distribution
Case l-a Case 1-b
Exact model Approximate
model

Figure 7. Lot Size System--Model II
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inventory. Due to their assumptions, the analysis of Model I
is based on techniques of differential calculus, and Model II
is based on solving a set of differential equations for deter-
mining the total carrying inventory. In both Model I and Model
II, carrying costs are balanced against replenishment and per-
ishing costs.)

The inventory characteristic for finite production rate inven-
tory models with and without backlogging have been determined
by incorporating various perishabi]ity rates and number of
production rate functions. The demand is assumed to occur at
a constant rate. Figure 8 depicts the various Models of this
inventory system.

The inventory characteristics for the order level inventory
systems incorporating constant perishability rate (i.e. perish-
ability according to exponential distribution) and various
demand patterns have been determined. The case of lost sales
model has also been considered. In addition, a model of
discrete-in-time order level inventory model for noﬁ-constant
demand is discussed.

The inventory characteristics of finite-horizon, increasing
demand models with constant perishability rate are determined.
In these models, the total demand over a given time horizon is
fixed, however, the demand is low in the beginning and increases
as time passes on,

Considerations of quantity discounts when constant rate of
perishability is present have been evaluated.

Inventory characteristics of single period and multiperiod



Finite Production Rate
Inventory Systems
with & without Backlogging

T

Case {

Constant
Perishability
Rate

h(t) = a
Constant
Production Rate

p(t) =p

Case 2

Constant

Perishability

Rate

h(t) = a

Variable
Productio
p(t) = pt

Rate

h(t) = Perishability Rate Function

p(t) = Production Rate Function
* The backlogging case not considered

Figure 8.

Case 3

Constant
Perishability
Rate

h(t) = a
Variable
Production Rate

p(t) = pqt

Case 4

Variable

Perishability
Rate
h(t) = a/(b-t)

Constant
Production Rate

p(t) = p

Case 5

Variable
Perishability
Rate

h(t) = abt? !

*

Constant
Production Rate

p(t) =p

Finite Production Rate Inventory System
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inventory systems with power demand pattern and constant
perishability are determined.

Inventory characteristics of two probablistic inventory sys-
tems; scheduling period system, and order level system with
instantaneous demand, with constant rate of perishability have

been determined.

1.4 Contributions

This research has made a number of contributions.” In addition to

the compilation of comprehensive bibliographic material on age indepen-

dent perishable items and related topics, and presentations of various

types of perishability concepts and assumptions, they include:

1,

The general solution methodology emphasized in this paper is
deriviation and determination of exact total cost equations of
various inventory systems that are subject to perishability.
By knowing this exact cost function, then it is possible to
utilize a number of computer search techniques, specifically
Fibonacci or Hooke and Jeeves' search methods, or a numerical
technique to obtain the optimal solution to the various para-
meters of the inventory system. This approach, while in
someways similar to that of other researchers in this area, is
different in the following way: Typically to obtain "optimal"
results in perishable inventory models approximations have to
be made in the determination of carrying inventory. Also, an
additional number of other numerical approximations are neces-
sary in the course of development of the "optimal" cost equation.

Then, by using analytical and numerical techniques the "optimal"
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results are obtained. No search technique has been utilized.

However, because of this research it is now possible to obtain

the optimal result more directly and more accurately. So,

instead of utilizing optimizing techniques on the "approximate"
cost equation to obtain the optimal solution, one can obtain
the "optimal" solution within a predetermined interval of
uncertainty. When using the Fibonacci search technique this
interval, for all practical purposes, could be assumed negli-
gible for most typical problems.

2. It has been shown that in the scheduling order level inventory
systems the time when the inventory level reaches zero is not
a function of demand pattern, but is a function of carrying
cost, ordering cost, perishability cost, and perishability
rate.

3. - It has been shown in a fixéd horizon and constant perishabil-
ity rate inventory medel where demand is increasing, the total
number of items perishihg is not a function of replenishment

and can be calculated directly.
1.5 Organization of Chapters

Chapter II is devoted to the discussion of the relevent literature
in the area of perishable inventories. It contains various concepts and
classifications of perishability. Chapter III explains the terminology,
and the general notation that is used throughout this research. The
work is organized in such a way that those who are not interested in the
details of various models may read only the third chapter, and then go

directly to the desired model for its assumptions and derivations.
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Chapter IV describes the inventory lot size models with functional
deterioration (Model I); Chapter V presents the inventory lot size -
models with deterioration as a function of inventory level (Model II).
Chapters VI and VII discuss the finite production rate inventory system
without and with backlogging respectively. Chapter VIII is devoted to
various order level inventory models. Chapter IX presents the finite
horizon inventory model and considers two different demand patterns.
Chapter X discusses cases of quantity price discounts. In Chapter XI
power demand pattern inventory models for single and multiple periods

are presented. Chapters XII and XIII are devoted to probabilistic inven-
tory models, and alternative probability distributions have been consid-
ered. Chapter XIV contains the summary and conclusions as well as impli-

cations for future research in the area of perishable inventory items.



CHAPTER 11
LITERATURE REVIEW

This chapter reviews the development of inventory theory and de-
scribes the inventory models relevant to the study of the deteriorating
items.

Mathematical modeling of inventory systems dates back to 1915 when

Harris [43] first published the classical Tot size formula
9 = |2rC3 C1

where d, is the optimal Tot size, r is the rate of demand per time unit,
C1 is the carrying cost of one unit in inventory per unit time, and Csy
is the reorder cost. This is also known as Wilson's formula. In 1926
Cooper [61] analyzed an inventory system with finite rate of production,
and in 1928 Fry [4] studied some probabilistic inventory systems. How-
ever, Raymond [82] was the first to attempt to deal with a large variety
of inventory systems and to present the beginnings of the theory of
inventory systems. He summarized the work in this area prior to 1931.
Interest in the study of inventory systems has increased tremen-
dously since World War II. Arrow et al. [4] published their classical
paper "Optimal Inventory Policy" in 1951, and Dvoretsky et al. [29, 30],
“The Inventory Problem" in 1952. These works mark the beginning of
modern analysis of inventory systems. An excellent review and summary

of the models and systems which were studied from 1923-1951 is presented

17
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by Whitin [100]. (In a later edition he updated his bibliography to the
year 1956.) Veinott [99] published a detailed summary of inventory
research up to 1965, and Fortuin [§§J published the latest summary of
inventory studies up to 1976. As far as the author is aware, there has
not been any major published summary of inventory research since 1976.
However, there is a great deal of information and updated bibliographic
references in inventory theory which can be readily obtained through
various on-line computer terminals.

It should be mentioned that one of the basic, implicit assumptions
of most of these inventory models has been the infinite shelf-life of
products while in stock; thgt is, a product remains unchanged for the
purpose of satisfying demand as long as it is in the "warehouse." As
has been previously mentioned, this assumption is not valid for a number
of very important situations; therefore, it is the purpose of this
research to explicitly analyze the effects of perishability in the var-

ious inventory models.
2.1 Perishability Classification

The analysis of inventories that are subject to perishability
involves different concepts of deterioration. Cohen [18] made the
following distinction. First, there are those problems in which all
jtems in the inventory become simultaneously obsolete at some fiscal
point in time; that is, all the units remaining in inventory at the end
of the planning horizon become useless. This is the case of the style
goods inventory, 1ike fashion merchandising. Second are those problems
in which the items deteriorate throughout the planning horizon. This

latter category is broken into two classes: (1) items whose rate of
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deterioration is age dependent, e.g., inventory items with fixed life
such as blood, and (2) items whose rate of decay is independent of their
age, e.g.; volatile liquids such as gasoline, radioactive chemicals, etc.

Deteriorating items could also be classified as to their utility as
a function of time. Constant utility perishable goods undergo age
dependent decay and face no decrease in value during their useable
lifetime, e.g., prescription drugs. Decreasing utility goods undergo
age dependent decay and lose value throughout their lifetime, e.g.,
fruits such as berries. Increasing utility goods undergo age dependent
decay and increase in value, e.g., some wines appreciate in value.
Naddor [61] briefly mentioned these types of perishability and gave some
general cost equations.

The change in utility for an age independent inventory item is
usually a function of total inventory on hand. These items are usually
grouped together in the inventory for the purpose of determining the
amount of decay during the planning horizon. The above classification

is depicted in Figure 9.
2.2 Age-Dependent Perishable Inventories

Significant research has been done to describe the optimal stocking
policies for items with a fixed 1ife time. In these cases when demand
is deterministic, the problem has a trivial solution; that is, one places
an order so that no item perishes. When demand is random, the solution
becomes very complex.

Most researchers in this area have considered simultaneous obsoles-
cence: i.e., all units remaining in inventory at the end of planning

horizon become useless, e.g., style-goods merchandise. The time horizon
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Perishability Models

Simultaneous Obsolescence Continuous Deterioration
Fixed Time Horizon Stochastic Time Horizon
Age-Dependent Deterioration Age Independent Deterioration
| ] l [ [ 1
Increasing Constant Decreasing Increasing Constant - Decreasing
Utility UtiTity Utility Utility Utility Utility

Figure 9. Classification of Perishability Model
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may be fixed, (Whitin [100], Hadley and Whitin [41], Murray and Silver
[60], Ravindran [83]) or stochastic (Hadley and Whitin [42], Barankin
and Denny [7], Brown, Lu and Wolfson [14], Pierskalla [80]).

Bulinskaya [15] in a part of his paper used a dynamic programming
approach to obtain optimum policies for inventories that have a high
rate of obsolescence which can be used for exactly one period. His
approach is a generalization of the "Newsboy Problem," which is a single
period inventory model in which the item has a lifetime of one period.
Van Zyl [98] analyzed a general model where an item has a lifetime of two
periods. His model does not include a perishability cost; only ordering
and penalty costs due to lost sales are included. Fries [36, 37],
Nahmias [62, 65], and Nahmias and Pierskalla [71, 72] extended the
results of Van Zyl. That is, the model for an item with a lifetime of
two periods has been extended for a product with arbitrary but fixed
lifetime under the assumption of FIFO issuing policy and fresh supply.
Their cost structure is also more general, and they included perishabil-
ity as well as holding cost, lost sales, backlogging, and salvage cost.
These studies basically rely on the analysis of an appropriate dynamic
program functional equation. Cohen [18] has extended the above works,
using similar approaches, and has applied the results to the area of
blood inventory management. Many authors using the above concepts and
incorporating various issuing policies have published a number of papers
dealing with blood inventory management and its specific requirements.
Pegal et al. [77] and Chazan [17] used Markov chains to determine the
issuing policy. Jennings [49] and Brodheim et al. [13] discussed
various aspects of blood bank inventory systems. Additional references

in this area may be obtained from the above publications.
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It should be mentioned that there is a class of inventory problems
that also deals somewhat with the problem of obsolescence, but in a
different context than that used in this study. This class of work has
to do basically with finding the optimal issuing policies which maximize
the total field life for a stockpile; Derman and Klien [26], Lieberman
[56], and Zehna [104] have given conditions as to when to use FIFQ or
LIFO, when the utility characteristics of an item are changing with
time. For example, according to them, if the utility function of an
item is increasing, LIFO is best, and if the utility function is decreasing,
FIFO is best. Eilon [31] discussed the relationship between field life
and issuing policies when items in inventory begin to deteriorate.
Pierskalla [79], Pierskalla and Roach [81] also described the optimal
issuing policies and proved that FIFO is optimal policy for an inventory
where all issued stock is consumed; Klein and Rosenberg [54] discussed
optimal issuing policies, and they used inspection sampling to maintain
a prescribed level of stored goods. Thorburn [97] solved an inventory
problem and showed that in order to maximize the total field life a LIFO
issuing policy should be used.

In this area of age-dependent perishable inventory, there are a
number of specific papers that have been published specially by Nahmias
[63-69]. Others include Cohen [19], Friedman and Hock [36], Nahmias and
Pierskalla [71, 72], Nahmias and Wang [73, 74], Smith [93], and Weiss
[101].

2.3 Age-Independent Perishable Inventories

This study is primarily concerned with inventory models of age-

independent, constant utility, perishable items subject to ongoing
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deterioration; therefore some specifically related literature will be
presented in this part.

The earliest work in this area is due to Ghare and Schrader [36].
They assumed a constant rate of deterioration in the face of constant
demand and derived a relation for optimum cycle time. In their model
the carrying cost is assessed on the average initial and ending invent
ory. The optimum cycle time is obtained iteratively by solving the

following equation:

CRa ClR + ClRTa + C3

Where a is the constant rate of deterioration, R is the constant demand
rate, T is the inventory cycle time, and C, Cl,‘C3 are cost of purchase
price, carrying cost, and ordering cost, respectively. Van Zyle [9%] in
his theéis, briefly formulated a general age-independent perishable
model in which a fixed or stochastic amount of product, depending on the
total inventory, deteriorates.

Emmons [33, 34] considered a problem of exponential decay when one
product decayed at one rate into a new product which decayed at a second
rate. His model was used specifically for radioactive nuclide genera-
tors which are used for diagnosis and treatment of patients. His models
are very useful in inventories of radioactive materials. Covert and
Philip [21] obtained an Economic Order Quantity (EOQ) model for a vari-
able rate of deterioration assuming a two parameter Weibull distribution
for the deterioration time of items in stock. This permits already

deteriorated items to be received by an inventory system as well as
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items which may start deteriorating in the future. Shah [87] gener-
alized the previous works and assumed a general deterioration distribu-
tion and included backlogging under the condition of immediate replen-
ishment. Aggarwal [3] evaluated Shah's paper and made a few correc-
tions. In these two papérs, cases of exponential decay and Weibull decay
are explicitly treated but not others. Tadikamalla [94] in his paper
assumed a gamma distribution for the deterioration time of items in
stock. In comparing Weibull and gamma distributions for variable rates
of deterioration, he observed that even when these two distributions
have similar shapes, their instantaneous failure (decay) functions are
significantly different. Therefore it is quite essential that the
underlying decay distribution be known. Misra [58] developed a produc-
tion lot size model for both a constant and variable rate of deteriora-
tion using a two parameter weibull distribution. In his model he did
not allow for shortages and backlogging. This paper is an extension of
the Ghare-Schrader and Cover-Philip models by assuming a finite produc-
tion rate. Extension of the Misra paper was attempted by an anonymous
author [1] to include shortages and backlogging assuming an exponential
decay distribution.

Shah and Jaiswal [89] developed an order 1eve1 model under constant
and probabilistic demand assuming instantaneous delivery and constant
rate of deterioration. In their model, scheduling period T is a pre-
scribed constant and lead time is zero. Shah and Jaiswal extended the
probabilistic periodic inventory model to include the effect of deterio-
ration for constant and variable deterjoration rate. In this model no

shortages are allowed, and the review period is a prescribed constant.
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Jani et al. [48] developed a probabilistic reorder point inventory
model with constant rate of deterioration. In this model, the lot size
and review period are assumed to be constant and the reorder point is
the decision variable. Lead time is zero and shortages are made up as
soon as new orders arrive. Shah and Jaiswal [91] also considered a prob-
abilistic scheduling inventory model. Dave [23] discussed an order
level inventory model where time is considered as discrete units. In
the model he assumes constant failure rate, and allows for shortages.
Demand is assumed to be constant, lead time is zero, and lot-size is a
prescribed constant. This is a rather interesting paper, because the
method of solution is different from that of the previously mentioned
articles. Dave [21, 22] used the calculus of finite differences to
solve some of the equations, instead of differential equations, because
of the discrete nature of a time variable in the model. Dave [25], in
addition to the above articles, developed an inventory model for deteri-
orating items that operates for exactly m-scheduling periods, under the
assumption of probabilistic demand and constant decay rate. In the same
line, Dave and Jaiswal [24] generalized the previous discrete-in-time
models to a probabilistic inventory model and presented some sensitivity
analyses.

In addition to the above articles, there are several papers that
incorporéte the age-independent decaying inventory models into their own
specific field of interest. For example, Cohen [20] considered the prob-
lem of joint ordering and pricing for an exponentially decaying product
under known demand. Nahmias and Wang [73] calculated the expected number
of shortages during the lead time for an exponentially decaying product.
Also, Nahmias and Wang [74] developed a heuristic lot-size reorder point

model for decaying inventories.
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In summary, the existing literature on perishable inventory has
been gathered and the more relevant papers have been briefly discussed.
It is apparent that a number of extensions and additions to the perish-
able inventory models are possible. Specifically age-independent perish-

able inventory models are considered.



CHAPTER III
INVENTORY TERMINOLOGY, NOTATION AND PROPERTIES

The purpose of the following material is to represent the notation
that is used throughout this research, along with the basic building
blocks of the various inventory properties that are included in some of
these models. These objectives are accomplished by presenting the basic
definitions and by analyzing the various types of replenishment, demands,
and inventory models. However, it must be noted that the author does
not claim any originality in these definitions and terminologies. Some
of these definitions have been modified and rephrased for purposes of

this treatise.
3.1 Definitions and Terminology

According to Naddor [61] for an inventory system to be analyzed,
its characteristic properties must be considered. He suggests that all
the properties of an inventory system can be classified into four cate-
gories: (1) demand properties, (2) replenishment properties, (3) cost
properties, and (4) constraints properties. Each of these classifica-

tions of properties is discussed in detail.

3.1.1 Demand Properties

The demand properties involve information regarding the nature,

size, timing, and the pattern of demand occurences. For example, when
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the demand size is the same from period to period, it is referred to as
a constant (uniform) demand; otherwise, it is called a variable demand.
If the demand size is known in advance with certainty, it is referred to
as a deterministic demand, otherwise it will be referred to as a probabil-
jstic demand. If the demand occurs at a known and non-uniform rate, it

may be classified as a patterned demand.

3.1.1.1 Demand Pattern

There are numerous ways by which stocks can be taken out of the
inventory to satisfy demand. There are essentially five cases that can
be considered, and they are depicted in Figure 10. In all five patterns
the inventory level at the beginning of the demand period is S, the
demand period is T time units, and the total demand during the period is
X number of units. The general equation of the quantity in inventory at

time t during the demand period T is given by

n

Q(t) =S - x t oeteT (3-1)
T

where Q(t) is the inventory level at time t, and n is the demand pattern
index. This equation is due to Naddor [61].
0f course, the demand pattern can be described explicitly, rather

than in the terms of inventory level. For example

d(t) = rt" . 0&t«T (3-2)
o r>0

or

d(t) = pqt . 0¢teT (3-3)
? p>0
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where r, n, p, and g, are the demand parameters. Note, however, that

the total demand is still a known quantity given by x; that is:

X = _ET_ T+l (3-4)
n+

for the demand of equation (3-2), or

X = - (1-pqT) | (3-5)

for the demand of equation (3-3)

3.1.2 Replenishment Properties

The replenishment properties involve information regarding the
nature, timing, quantity and pattern of replenishment activity. In
general, the replenishment properties can be controlled by the decision
maker, and hence, can be used to reduce the total inventory costs. One
important property of replenishment is the lead time factor. Lead time
is defined as the length of time between placing an order and the actual
addition of the order quantity to inventory. In general, lead time is
assumed to be known and constant, or insignificant for deterministic
inventory systems. Lead time becomes important in the probabilistic
models. Similar to the case of demand patterns, replenishments also
have patterns that must be taken into account when analyzing inventory
models. This pattern may be the result of production and shipment

methods.

3.1.2.1 Replenishment Pattern

Consider a period of time over which the replenishment Tot size Q

is being added to the inventory level. Again, there are five cases that
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can be considered, and they are depicted in Figure 11. In all five
patterns, the replenishment period is T, time units, and the replen-
ishment lot size is Q number of units. The general equation of inven-

tory level at time t during the replenishment period T is given by

Q(t) = qQn '_t_
Tr (3'6)

where m is the replenishment pattern index.
By letting p(t) represent the replenishment rate, the replenishment
pattern can also be described explicitly. For example:

p(t) = lim Q=00 OeteT
Tr"‘bo Tr-

r

indicates instantaneous replenishment which is shown in Figure 11-b, and

p(t) = Q__ = constant

.Tr

which is the case for uniform replenishment, Figure 1l-a.
By using some other functions to represent p(t), other cases can
also be analyzed. Two functions which have practical usefulness in this

context are:

p(t) = btm g‘;-géTr (3-7)
and
p(t) = pqt 04t &T (3-8)
p>0 T
gl
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where b, p, g, and m are the replenishment parameters. Again, note that
the total ordered quantity must be equal to

N e (3-9)

for the replenishment of equations (3-7), and

- —naT -
Q E!fa)(l pq'r) (3-10)

for the replenishment of equation (3-8).

3.1.3 Cost Properties

Costs are measures of performance of controllable variables in an
inventory system. The various categories of costs which are of interest
to this treatise have already been mentioned in Chapter I and will not
be repeated. However, the respective symbols and their associated

dimensions will be given in section 3.2

3.1.4 Constraint Properties

The constraint properties involve placing limitations upon any
pertinent factor of the inventory system which have been mentioned to
this point, such as cost constraints, replenishment constraints, demand

constraints, etc.

3.1.5 Additional Definitions

The following terminology is used throughout this treatise; there-
fore, these definitions are given at this point for the sake of clarity
and completeness:

Scheduling Period: The scheduling period is the length of time,

measured in time units, between consecutive decisions with respect to



34

replenishments. When the scheduling period is prescribed, the decision
maker cannot control it, hence it must be treated as an inventory
parameter, In most situations, scheduling periods are assumed to be
equal., A constant scheduling period is denoted by T.

Reorder Point: Reorder point refers to a specific amount in inven-

tory. An order is placed when the inventory on hand is equal to or
below the reorder point.

Reviewing Period: Reviewing period is the time interval between

consecutive review of the inventory level.
Order Level: Order level refers to a specific amount in inventory
and it is used as a benchmark for ordering the amount of required replen-

ishment.

Optimal Inventory Policy: The set of decision rules which opti-

mizes the performance criteria are referred to as the optimal inventory
policy. These decision rules are obtained by analyzing mathematical

models of the inventory situation.

3.2 Notation

The following notations are used throughout this treatise with no
change in meaning or assumption.

¢, = The unit inventory carrying cost ($/item/unit time).

Cr = The unit inventory shortage cost (back order:
$/item/unit time; lost sale: $/unit).

3 = The unit replenishment cost or set up cost ($/cycle).

C4 = The unit deterioration/perishability cost ($/unit).
[Purchase price + disposal cost - salvage value].

K(.) = Total expect cost.
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c(.) = Total expected cost per unit time.
t,T = Cycle time or scheduling period.
I1(.) = Average carrying inventory per time unit.

12(.) = Average shortage in an inventory per time unit.
I3(.) = Average number of replenishment per time unit.
,14(.) = Average number of items perishing per time unit.
I1 = Total carrying inventory in a cycle.
Io = Total shortage in an inventory cycle.

D(.) = The expected total number of units deteriorating during
a given cycle.
Q(t) = The inventory level at time t.
Q, q= Order quantity/replenishment size.
Qmax = The maximum inventory level.
Qnin = The minimum inventory Tevel.
rsR,d(.) = The demand rate.
p(.) = The replenishment rate.
h(t) = The perishability rate.

3.3 Assumptions

In the analysis of mathematical models of this dissertation, replen-
ishment cycle t rather than the customary replenishment quantity Q is
used for calculating the optimal cost. The replenishment cycle is pref-
erable because of the time dependent nature of perishable inventories.

The following assumptions are implicit in all of the inventory
models that are presented in this treatise.

i.  There is no repair or replacement of any deterijorated items

during a given inventory cycle.



ii.

iv.

vi,

vii.

36

Lead time is zero.

Production rate is greater than the demand rate (applicable
models).

Deterioration begins only after the items are received into
inventory.

Items or products are treated as continuous units.
Replenishment lot size is fixed and will not vary from one
cycle to another.

Infinite demand horizons.



CHAPTER IV
LOT SIZE SYSTEM--MODEL I

In this model the inventory holding cost is charged on all the
units that remain in inventory, whether perished or not; and perishabil-
fty costs are charged at the end of the inventory cycle. This is a very
reasonable assumption since from an accounting point of view one can |
write off (down) the costs of all the units in inventory that are no
Tonger in their original useful state.

Model I is a lot size inventory model for a system of perishable
units and has been developed by rectifying the error in Thomopoulos and
Lehman's [96] analysis in calculating the average inventory holding
cost. This model is more general than their constant demand inventory
model, and provides additional insight into selected inventory policies.
In their paper, they present an inventory situation in the context-of
obsolescence, that is, the more an item remains in stock, the more
likely that it becomes useless. They propose to show this behavior as a
probability function P(T) = kT2; (T=1,2. . .), where P(T) is the
probability of obsolescence at the storage time T and k is a constant

which is determined for a given situation.
4,1 Lot Size Model I-a

In this model, the optimal inventory characteristics will be analyzed

as a function of the initial inventory level, in the subsequent Model I-b,
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the analysis will be preformed on the basis of the remaining inventory,
that is, the inventory level after the demand has been satisfied.
Let h(t) be a monotonically increasing probability function of
perishability at time t. Therefore, in time 1'ntérva1 (t, t +at),
A th(t) indicates the probability that the items in the inventory will
deteriorate. Depending on the shape of h(t), the characteristics of the
inventory model will change, but the underlying method of analysis stays
the same. The whole objective here is to determine the minimum average
total inventory cost. This can be obtained by balancing the inventory
carrying cost, replenishment cost and perishability cost. Now, for

various functions of h(t), this system will be analyzed.

4.1.1 Case l: Constant Perishabjlity Rate

Let h(t) be equal to a constant perishability function, that is;

h(t) = a. - (4.1.1-0)

For this case Figures 12 and 13 depict the inventory situation.

Therefore, the probability of perishing is determined by

t

p =g adT = at (4.1.1-1)
0

If t° is optimal value of inventory cycle time, t, then a l/t*.

The average amount of inventory, average number of replenishments, and

average number of items perishing are given by I,(t), I3(t), and I,(t).

2

I,(t) = 1TRt ]
1(t) "1:‘[_2_ t Rt * at (4.1.1-2)
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I3(t) = 1 (4.1.1-3)
t

I,(t) =1 [Rt* at]

M 5 (4.1.1-4)

The total per unit time cost function is given by

C(t) = CqI (t) + C3I3(t) + Cqly(t) (4.1.1-5)

which for this particular case can be written as

C(t) =Cy Rt + C, + (C, + C4) Rat (4.1.1-6)
s A

Since C(t) is a continuous, differentiable, and convex function, the
optimal cycle time can be obtained by differentiating C(t), setting the
result equal to zero, and then solving for t*:

d_C(t) = C{R/2 = Cs + (Cy + C4)Ra
it 1 3 1 (4.1.1-7)

Ny

£* - C, (4.1.1-8)
ClR
+ (Cl + C4)Ra

If a =0, then t* = \, 2C5/C{R, which is the result of the classical
Economic Lot Size (EOQ) Model.

The lot size in this situation is not equal to Rt, but is equal to
Q =Rt + (Rt * at) (4.1.1-9)
The optimal lot size then can be written as:

*

Q* = Rt* (1 +at”). (4.1.1-10)
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By substituting equation (4.1.1-8) into equation (4.1.1-6) the
optimal cost is obtained.

1
25
* 2

As a matter of comparison, the optimal classical EOQ cost is given by

*

¢ (t) = (26,C4R)* (4.1.1-12)

For this particular case then, the additional cost due to perishability

can readily be observed.

4,1.2 Case 2: Linear Perishability Rate

Let h(t) be equal to a linear perishability function, that is;
h(t) = a + bt (4.1.2-0)

For this case the graph of the inventory level also resembles Figure 13.
Therefore, by utilizing equation (4.1.2-0) the probability of perishing

can be determined by

t
p = S (a + bY)dY= at + bt (4.1.2.1)
0 2

If t* is the optimal value of the inventory cycle time, then:

i) if a 30, b >0; then at t*, a << 1, and b £& 2(1 - 2at*),
t t*2

ii) ifa> 0, b £0; then at t*, a << 1 and -b £& 2(1-2at*),
t* t*z

jii) if a < 0, b >0 then the restrictions of (i) apply to the
integral of equation (4.1.2-1) with the 1imit of integration
from b/a to t instead of O to t.
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The average amount of inventory, average number of replenishment,

and average number of items perishing can be written as

() = 1 [ 3%3 + Rt?a + RtSb ] (4.1.2-2)

I5(t) =1 (4.1.2-3)
3

[h(t) = %_ ‘-tha + Rt3b.] (4.1.2-4)

By using equation (4.1.1-5) the total average cost is determined

c(t) = SRt + L34 (cp + ¢p) (RY) (a + bE/2) (4.1.2-5)

Again, by differentiating C(t) with respect to t, optimal t* may be

obtained as

*

t* <[ C,
[[.50 CiR+ (Cp +Cp) Rla+bt)])

1
%

(4.1.2-6)

Though it fis possible to rewrite this equation as a cubic equation
and solve for t* analytically, it would be more efficient to use a
numerical technique such as Newton's Method or Secant Method to solve
for t*. An algorithm is presented later to solve this class of
equations.

The Tot size in this situation is given by

Q = Rt + (Rta + Rtb/2) (4.1.2-7)
which for optimal lot size is written as
Q" = Rt" (1 + at” +b/2 t7?) (4.1.2-8)

Since t” cannot be obtained in a closed form solution, after obtaining

t* numerically, C*(t) may then be determined by substituting t* in
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equation (4.1.2-5),

4,1,3 Case 3: Quadratic Perishability Rate

Let h(t) be equal to a quadratic perishability function, that is;
h(t) = a + bt + ct? (4.1.3-0)

Therefore, the probability of perishing is given by

t ‘

p = { (a+bY+ cf)dT= at+bt?+ctd (4.1.3-1)
0 2 3

Restrictions on a and b hold as in Case 2 and at t*,

¢ ¢< 3(1-at - bt*?) .

t*a

The average carrying inventory, the average replenishment, and the

average perishing is given by

Ii(t) = 1 [gﬁ + Rt%a + Rt3b + Rthe (4.1.3-2)
T L2 2 3

I3(t) =1 (4.1.3-3)
£

I,(t) = 1 [tha + Rt3b + Rt4C] ‘ (4.1.3-4)
3 7 T |

By using equation (4.1.1-5) the total average cost function is

determined.

C(t) = C]Rt +‘%3_+ (Cqy + Cq) * Rt * (a + %g_+ I;E ) (4.1.3-5)
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By differentiating C(t) with respect to t, optimal t* may be obtained as

. 3
o C. a|
[F'BOCIR + (C1 + C4§Ra + (Cl + C4)Rbt + (C1 + C45Rctli] (4.1.3-6)

By using & numerical technique, t* can be determined. The optimal

lot size is given by

Q% = Rt* 1+ at” + bt*? 4+ ct™3 ‘ (4.1.3-8)
7 3

. *
The optimal cost, C*(t) can be determined by substituting t 1into equation

(4.1.3-5).

4.1.4 Case 4: Polynomial Perishability Rate

Let h(t) be equal to some monotonic polynomial perishability function,

that is,

n (4.1.4-0)

For this generzl case, the procedure in the previous sections indicates
that, optimal t*, and Q* can be determined by using the following general

equation

3
t 4 Cs -] 2 (4.1.4-1)
‘_ 5OCIR + (Cy + Cg) *R* [ag+ .« o o 4 ant"]J

*

Q =Rt""(1+ao‘c"+...+ant"kn+1

R ) (4.1.4-2)
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4.1.5 Case 5: Exponential Perishability Rate

Let h(t) be equai to an exponential perishability function, that is,

h(t) = aePt : (4.1.5-0)
Therefore, the probability of perishing is given by
bobY b -
p = g ae” dY = a/b [e t. 1]- (4.1.5-1)
o _

Where a and b are positive real numbers.

The average amount of inventory, the average repienishment, and the

average perishability can be written as:

I,(t) = 1 TRt + Rta_bt _ Rta _
1 1 {;77. Rte, (4.1.5-2)
t) = 1 )
I3t) T | (4.1.5-3)
I,(t) =1 X.Rta bt _ Rta 4.1.5-4
4 1 ] ( )

The average total cost is

C4Rt Cq (L + Cp)Re .
c(t) 1 _f . (ePt - 1). (4.1.5-5)
2 t b

Optimal inventory cycle time is determined by differentiating C(t)
with respect to t,

bt
d C(t) = -~ +(Cy+ Cy)Rae i
s — " 1% Ly (4.1.5-6)

By setting equation (4.1.5-6) equal to zero and solving for t, one

obtains



46

t* = C, ° 1 *

(.50C,R + (C; + cd)Raebtd

(4.1.5-7)

The value of t* can be obtained numerically, and from’it, the optimal

lot size can be determined.

0* = Rt" ((b-a) + ae®)p - | (4.1.5-8)

The optimal cost is obtained by substituting t* into equation(4.1.5-5).
4,2 Lot Size Model I-b

This model is exactly similar to Model I-a with the exception that
the perishability occurs as a function of the remaining items in inven-
tory after the demand has been satisfied. Let D(t) be the number of
jtems that deteriorate during the inventory cycle t. If t* is the optimal
t, then the initial inventory should be Rt* + D(t*). Assuming the same
perishability rate functions, the same cases afe analyzed under this

new assumption.

4,2.1 Case 1: Constant Perishability Rate

In this, and subsequent cases, the function D(t) must be determined.

Function D(t) can be written implicitly as:

t
D(t) = S [(Rt + D(t)) - RT] h(7)d7Y (4.2.1-1)
0

which upon simplification becomes



D(t)
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t t

h (V)47 - S RTN (Y )dY (4.2.1-2)

- [(Rt + D(t)]s
0

0

For a constant perishability rate function, equation (4.2.1-2)

can be written as

D(t)

= [Rt + D(t)Jat - B%t_z (4.2.1-3)

which simplifies further to

D(t)

= Rat2

o - (4.2.1-5)
(T - at)

Now, the average carrying inventory, the average replenishment, and

the average perishability may be written as:

=1 i Rt + Rat’ ]  (4.2.1-5)
T 2 7271 - at)

-1 (4.2.1-6)
T .

=1 [ Rat? ] ; (4.2.1-7)
t 2(1 - at)

and the average total cost function as:

C(t)

CiRt C (C, + C4q)Rat
= _E__.+ _E.+ 1 . (4.2.1-8)
2 t 2(1 - at)

To find t*, C(t) is differentiated with respect to t, and is set equal

to zero.

C.R C Ra(Cqy + Cy)
dcty= -2 Y - (4.2.1-Q)
dt 2 t2 2(1 - at)

which reduces to
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£* =f 2C, _\ , (4.1.1-10)

lClR +Ra (Cq + Cy)/(q at)z_'

Consequently, the optimal lot size, Q*, can now be determined as:

* * *
Q =Rt 1+ at .
2(1 - at*)

4,2.2 Case 2: Linear Perishability Rate

(4.2.1-11)

By utilizing equation (4.2.1-2) and substituting a linear perisha-

bility rate function, the following can be written:

t t
D(t) = [Rt + D(t)]s (a + b¥) d*r-s RY(a + br)d¥
0 0

which reduces to

2 3 2
D(t) = Rat” , Rbt” . (at + _gt_) D(t)

and upon further simplification to

D(t) = (3Rat2 + Rbt3) /(2 - 2at - btz)
5 3

(4.2,2-1)

(4.2.2-2)

(4.2.2-4)

The average carrying inventory, the average replenishment, and the

average perishability may then be written as

I(t) =1 Rt + rt? (3a + bt)
T 2 B - bat - 3pbte

I5(t) =,%

I(t) =1 Rt2(3a + bt) .
t 3(2 - 2at - bt?)

and the average total cost function as:

c(t) = &Rt +[(C1 * Ca)lRe(3a + bt)/(2 - 2at - bt?) + C3
? 3

3 J

(4.2.2-4)

(4.2.2-5)

(4.2.2-6)

(4.2.2-7)
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By differentiating C(t) with respect to t, setting it equal to zero,

and solving for t, the optimal inventory cycle time can be determined.

That is,
doge) =GR -3, R (G +Cp) (6a+dbt +abtz) (4.2.2-8)
dt 7z 37 - zat - bt)Z

e = o &
| .50 C,R + [R(C; + Cy)(6a +ibt +abt?) / (3(2 - 2at - bt")")
(4.2.2-9)

*
After obtaining t*, the optimal lot size Q is determined by

Q“ =Rt (1+ 3at  +bt*z2 ) . (4.2.2-10)
- 6at* - 3pLF2

4,2.3 Case 3: Exponential Perishability Rate

Again, by utilizing equation (4.2.1-2) and substituting an exponential

perishability rate function the following can be written:

t t
D(t) = [Rt + D(t)]S aeb‘Y dv - g R'I’aebhr d (4.2.3-1)
0 0

which reduces to

(1) 22 [Re + D(1)] [ePF - 1] - Ra &E bt - 1] (4.2.3-2)
and upon further simplification

) Ra[ebt - bt]

= ab + b - abePt

(4.2.3-3)

The average carrying inventory, the average replenishment, and the

average perishability may then be written as:
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I.rt) = 1[Rt2 , Ra[ebt-bt] j] 1.2.3.4
1) t| 2 ab+ b - abedt ( )
I5(t) -1 (4.2.3-5)
t
I,(t) =1 (Ra/b)[ebt = bt ; (4.2.3-6)
t (a+b - ae? &

and the average total cost function as:

bt
C(t) = C1Rt + C3 4 (Cq + Cq)Rale™™ - bt] (4.2.3-7)

2t t(ab+ b2 - apePt)

The optimal t* can be determined by differentiating C(t) with

respect to t, and setting it equal to zero.

dc(t) = R C3 (4.2.3-8)
dt 2tz

+ (C1 + Cn)(Ra/b)(ebt)[tab + th® - a - b + aelt - ab2t2] -0
(ta + tb - taePt)?

’ 1
2
t* =Y C3 _]
1:5C1R + (Cq + C4)(Ra/b)(ebt)(tab - tb? - a - b+ ae’t - abztij
(ta + tb - taebt)2

(4.2.3-9)

The optimal lot size is given by

Q* = Rt* [1 + (Ra/b)(ebt” - bt™) (4.2.3-10)
(a + bt™ + aebt) ]

As is evident, some of these equations are quite involved and too
complex. But, from the practical stand point, these equations can be

readily programmed and analyzed. Because of the flexibility that is
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available in the selection of values for the perishability parameters

(or even costs), adequate "near optimal" results can be obtained for most
situations. An interactive Fortran Program has been developed (see
Appendix A) to provide a simple means of comparing the various perishable
inventory models. In addition, these programs permit a parametric anal-

ysis of the perishability coefficients.
4,3 Algorithm for Determining t*

Because of the nature of the functions in equations (4.1.2-6, 4,1.3-6,
4.1.4-7) of Model I-a and (4.2.1-10, 4.2.2-9, 4.2.3-8) of Model I-b, a
simple algorithm is devised which guarantees a rapid convergence to t*
in only a few iterations. Figure 14 depicts this algorithm.

To solve for t- it is necessary to find the intersection of two

2

functions, Y1 = t°, which is a pure quadratic; and Y2= 1 s which

+ f(t
is a monotonicly decreasing function. Y2 is the square of the right hand
side of the above mentioned equations. Since the optimal t obtained from the
classical EOQ formulation is always larger than t*, thus by using this value
as an initial solution, t* can be obtained rather rapidly using the fol-

lowing steps:

1. Determine t, = \’ 2C3/(C1R)

2. Evaluate Y2 at to, assume the value is F0

3. Determine the new t, t; = \rF;

4, Evaluate Y, at t;, assume the value is Fy
5. If lFl - Foléé or /tl - to/ ¢ % stop. Otherwise set
t, =ty F0 = F1 and go the step 2.
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Figure 14. The Graph of Algorithm for Determining t*
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(€,%are arbitrary small numbers, i.e., .00l& ¢, & ~.005).
4.4 Lot Size Model I-C

Another method for analyzing perishable inventories, (keeping the
assumptions of the previous cases) is to regard perishability as an
addition to regular demand. For the various models the following re-

sults are obtained.

4,4,1 Case 1: Constant Perishabijlity Rate

Let a be the number of units perishing per unit of time. Then the

total demand on inventory can be written as:

R' =R + a (4.4.1-1)
where R' now is the new demand rate. The average total cost of this

model can be written as

C{R't C3
c(t) = + _~ +Cyha (4.4.1-2)
2t
or
CIRt  C3  Cqat (4.4.1-3)
c(t) = + + + Cqa .

Z v T
Now, by taking the derivative of C(t) and setting it equal to zero,

t* and hence Q* can be determined.

4 ocrt) =GR - C3 4 5

a - (4.4.1-4)
I - fz 1 =0

1
* 2 C 2 (4.1.1-5)
’ [EIR +Cpa ]
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The optimal order size is equal to

Q* = R't" = Rt" + at” (4.4.1-6)

In inventory literature, the perishability cost is usually included
in the inventory carrying cost C;. Recall for the standard EOQ model,
the optimal inventory cycle time is give by qrii:;ﬁ;zﬁ. This implies that
the C; used in the EOQ analysis is (1 + a/R) times larger than the ¢y used
in equation (4.1.1-5). Therefore, this explains the reason for the
inclusion of perishability cost into inventory carrying cost, of an EOQ
Model whenever this class of models is considered for the inventory of

perishable items.

4,4,2 Case 2: Linear Perishability Rate

Let h(t) be a linear function indicating number of units perishing
per unit of time during the inventory replenishment cycle. Therefore,

R' is equal to
R' =R+ a+bt=(R+a)+bt (4.4.2-1)

In this case the new demand rate is increasing linearly; however, note
that this does not increase indefinitely in time, and it ceases at the
end of each inventory cycle. By utilizing equation (4.4.2-1) the replen-

ishment size can be determined by

t
Q =So [(R +a) + b ¥I1dY (4,4,2-2)

which simplifies to

Q = (R+a)t + bt? (4.4.2-3)
;



The average carrying inventory is evaluated from the following

- equation:

Ii(t) = %_g [(R +a)t + QEE] - [(R+a)+ b'T']}d’T (4.4.2-4)

which reduces to

I,(t) = (R+a)t + bt .
? ;

(4.4.2-5)

The average number of items perishing is given by
t
Ih(t) =1 (a + bY) d¥ (4.4.2-6)
T )0

which simplifies to
Ih(t) =a +bt/2 . (4.4,2-7)
The average total cost equation is equal to

CiRt C (C,t + 2C4)a bt (C,t + 3Cy)
c(t) = R I 4’c | 1 4

— (4.4.2-8)
2 t 2 6

By differentiating C(t) and setting it equal to zero, t* can be

55

determined.
dc(t) = C1R - C3 4 aCy 4 b(20qt + 3C4) (4.4.2-9)
at 7~ T2 7 3
2C,
t* =f % (4.4.2-10)

C.R + aCq + b (2C{t + 3C,)
\_1 173 o]
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By substituting t* into equation (4.4.2-3) the optimal order size is

determined.

4,4,3 Case 3: Exponential Perishability Rate

Let h(t) be an exponential function indicating number of units
perishing per unit of time during the inventory replenishment cycle.

Therefore, R' is equal to

R' = R + aePt (4.4.3-1)

By utilizing equation (4.4.3-1) the replenishment size can be determined

by:

t b bt
Q = g (R+ ae”") dT=Rt +a [e’ - 1] . (4.4.3-2)

0 b

The average carrying inventory is given by:
t bt bY
I,(t) =_1_§ [Rt + % [e”" - 1] - [(R + ae )’Y]J dY (4.4.3-3)
t)o

which simplifies to

I;(t) =Rt -a+ ae?t . (4.4.3-4)

Z b tb2
The average replenishment size is

I3(t) = ; (4.4.3-5)

1
T

The average number of units perishing is
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t
Ip(t) =1 ae® df = a [P - 17, (4.4.3-6)
t )o bt ’

and the average total cost equation is

bt bt

C.Rt C,ae C.a C C,ae Cpa
C(t) = 1, > - L. 3,4 - > . (4.4.3-7)
2 tb b t bt b=t
This eugation can also be written as:
bt
C].Rt C3 <C1 + bC4)ae - C4a Cla (4.4.3-8)
C(t) = + — + 2 - .
2 t tb bt b
Again by differentiating C(t) optimal t can be found.
CR €3 Cga a (Cp +bCy)ePtIbt-1]
d C(t) = - + + =0 (4.4.3-9)
dt 2tz pt2 t2h2
* C3 "\ L
t = 2 (4.4.3-10)

LsclR + CoabePt + a(c; + bCy)ePt [bt-11/t%° _I

The optimal replenishment size, and the optimal cost can be
determined by substituting t* into equations (4.4.3-2) and (4.4.3-8)

respectively.

4.4.4 Case 4: Quadratic Perishability Rate

Let h(t) be a quadratic function indicating number of units perishing
per unit of time during the inventory replenishment cycle. Therefore, R'

is equal to:
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R' =R + a + bt + ct?2 (4.4.4-1)

The equation for replenishment size then becomes equal to

t 2 3
Q =5 R'at = Rt + at + btZ + ctd (4.4.4-2)
0 2 3 4

The average carrying inventory is obtained by

t
I(t) = 1 Rt + at+ btZ + ct3] - R'] &7 (4.4.4-3)
1(t) 'fgo [RE + ate bf + o

which simplifies to

+ bt® + ct . (4.4.4-4)

The average number of replenishments is

I5(t) = 1, (4.4.4-5)

1
t
the average number of units perishing is

t
I -1 bY d¥=a + bt + ct? , 4.4.4-6
4(t) f(o(w + ) 2+ b+ ct? ( )

and the average total cost equation is

2
C4Rt C [C,t + 2C4] a [Cqt + 3C,] bt [Cqit + 4C,] ct
cr) = 143 T T AL R T A R 4

t 2 6 17

(4.4.4-7)

Optimal inventory cycle time can now be determined by differentiating

C(t) and setting it equal to zero.
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C:R ¢ aC;  (2C4t + 3C,)b  (3C4t - 8C,)ct
4 o) = L N 1,44 4% 4 4
dt 2 tZ 2 3 q
(4.4.4-8)
" = 2,C3 %

l'CIR +aCq + b(C,t + 3C,) + ct(3C1g + 8(:11)_{
- 3 L} £ T
(4.4.4-9)

Q* may be found by substituting t* from the above equation into

equation (4.4.4-2).
4,5 Lot Size Model I-d

By adopting and modifying a recent inventory model by Shih [102],
an interesting lot size perishable inventory model is obtained. He com-
bined the EOQ System with probabj]istic percentage defective items in
the Tot.

Assume a percentage of the order quantity perishes during the
inventory cycle time. This would be similar in concept as Model I-C,
Case 1. In order to avoid shortages, one must order a large enough quan-
tity so that the demand can be met during the inventory cycle time. For
this model assume a periodic inventory model so that the perishing costs
will be calculated at the end of the cycle.

The average carrying inventory during an inventory cycle is equal

to

(1 -a)qg/2+aq-=(1+a)g/2. (4.5-1)
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The first term is the average carrying inventory of non-perished items,
and the second, the average carrying inventory of perished units.

The length of an inventory cycle is given by
[(1-a)ql/R (4.5-2)
and hence, the holding cost per inventory cycle is given by

C C
L a)@ - a)g) = L q? (1 - a?) (4.5-3)
2R 2R

Replenishment cost is equal to C3, and perishing cost is equal to
C429 - (4.5-4)

The total inventory cycle cost function is therefore equal to

=

2 (1 - a?)

K (q) 1-a

q + Cy + Chaq (4.5-5)

In order to obtain the total cost per unit time C(q), one must
divide K(q), the total cost per cycle, by the mean of the inventory
cycle time. Assume a is a random variable with probability distribution
function of g(a). Then by utilizing equation (4.5-2), the mean cycle

length can be determined.

1
Mean cycle length S [(1 - a)gq/R]lg(a)da (4.5-6)
0

g/R [1 - a],

where a is the mean of a.
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The average total inventory cost can now be determined by dividing K(q)

by equation (4.5-6).

R, [ 1-4° C,R C4aR (4.5-7)

Clq) = __q . +
R |q(T-73) q(T -3a) q(I-3)

C(q) is also a random variable, since a is a random variable.

Therefore, the expected average total cost for this model is given by

R 1{c,q?
E[C(a)] = g Y 1 (1-a%) + Cy + C;% g(a)da (4.5-8)
q<1 - a) OLZR

which simplifies to

C.R C,RE RC;q2 1
Efe(@]=_ > o+ 4 s 2 S (1-a%)g(a)da
q(l - a) q(l - 3a) 2Rq({T -3) )o

(4.5-9)

By differentiating equation (4.5.9) with respect to q, and setting
it to zero, the optimal lot size can be determined.
- 1 2
CsR C4RT clg o(1 - a%)g(a)da
d E[C(q)] = - - + 10
dq <\nl =y.2 -
(1-3)q (1 -3)g 2(1 - )

(4.5-10)

. 2R(C, + C4a) 1
q = (€3 * Ca? /// 5 (1 - az)g(a)da s (4.5-11)
¢y 0

The second derivative of E [C(q)] with respect to q is given by:




62

___E[C(g)] = + (4,5-12)
dq

N
]
w

which is positive for every q. Hence, the expected average total cost will
be at the minimum for q = q*.
Now, if a is a given constant, then

2R(C4 + aC,)
* = 3 4 (4.5-13)

£0
i
.

cy(1 - a?)

If a is beta distributed with parameters m, and n, then g(a) and a can

be written as:

gla) = (m +|"l+ 1)! am(1-a)" (4.5-14)
min!
3= _Eilz (4.5-15)
m+n+

Then by substituting these into the denominator of equation (4.5-11),

that is,

1
f (1-a2) g(a)da = 1 - (ML) (m+ 2) (4.5-16)
0 (m+n+2) (m+n+3)

The optimal q is obtained
q* =Y2R(C3+3C4)/C1 Y (4.5-17)
1 - m+2)a
m+n+3)

In this chapter various lot size Models for perishable items have been

considered. The inventory carrying cost has been applied to all the units
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in stock, whether perished or not, in addition to the perishability cost
which is charged td the individual items that perish at the end of the
inventory cycle time. In most of the models it is necessary to obtain
the optimal inventory cycle timeithrough a numerical technique. An
algorithm is devised to accomplish this requirement. In this class of
models, when perishability rate is constant, by adjusting the inventory
carryinj‘cost, one can obtain the equivalent results by utilizing the

EOQ analysis.



CHAPTER V
LOT SIZE SYSTEM--MODEL II

In this model the inventory carrying cost is charged on all the
non-perished units in inventory, and the perishability costs are charged
whenever a unit perishes. This model may be looked upon as a "continuous
review" inventory model, as to the "periodic review" of model I. This
class of models is the one that has been addressed more extensively in
the literature, and the methodology used in this section is due primar-
ily to Shah [87] and Aggarwal [3]. In this model, inventory items
perish (deteriorate) continuously in time in accordance with some prob-
ability distribution function f(t). A1l the assumptions of Model I

holds except for the definition of h(t). For this model h(t) is defined

as
n(t) =t .t 0 (5-1)
T - F(t)

where F(t) is the cumulative distribution function of f(t).

In this instance h(t) is the instantaneous or age-specific deteri-
oration rate function of an item. This means that h(t)dt indicates the
probability of perishability of an item during the period (t, t + dt),
given that it has not failed prior to t. h(t) is called the hazard
function in reliabiliy terminology. The cumulative deterioration rate
function is given by

t
H(t) = SO h(#)de = -1n (1 - F(t)). (5-2)
64
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Solving for F(t),

F(t) = 1 - (%) (5.3)
Therefore, the total percentage of.items deteriorating by a given time
t, can be determined through equation (5-3).

An inventory cycle for Model II inventory systems is depicted in
Figure 6. The order quantity at the beginning of the inventory cycle
must be sufficient for the real demand, RT, plus the amount of items
that will perish during T.

Let Q(t) denote the inventory level of the system at time t (0 ¢ t¢
T). Q(t) is a function of the demand rate R and the deterioration func-
tion h(t). The differential equation that describes the instantaneous
states of Q(t) over the inventory cycle (0,T) is given by
d Qt) =-Qt) h(t) -R; 0&t&T (5-4)
dt ’

Equation (5-4) indicates that during a small interval of time dt,
the level of inventory will decrease by an amount equal to the sum of
real demand and the number of units that perish. The number of units
that perish is a function of the level of non-perished units in inven-
tory at time t. Now, by rewriting equation (5-4) as
Q'(t) + h(t)Q(t) = -R, 04t <T (5-5)
and Tetting
u(t) =exp [ h(t)dt] . t20 (5-6)

equation (5-4) can be solved for Q(t),

t
Qt) = m%y [/0 —Ru(x)dx + k] . 0Lt eT (5-7)

where k is a constant of integration. Let
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t
u(t) = J- u(x)dx ; (5-8)
0

Equation (5-7) may now be written as

Q(t) =%L-Ru(t) + k} D&t &T (5-9)

The value of the constant of integration, k, can be found at boun-
dary conditions. That is, when t = 0, Q(t) = Q, the initial inventory
(1ot size); and when t =T, Q(t) = 0, since by definition the inventory

is depleted. Therefore, the initial inventory is equal to

T
Q = Q(0) = RU(T) =R g u(t)dt. (5-10)
0

Equation (5-9) can now be written as

R

Q(t) = [U(T) - u(t)] 0 &t 4T. (5-11)
u(t)
By utilizing equation (5-11) the average inventory can be calculated by
T
Il(T) =1 g Q(t)dt (5-12)
T Jo _

which reduces to
T
I.(T) =R U(T) - U(t) dt . (5-13)
T 0 u
The average number of items perishing is given by
1,(T) = (Q - RT)/T. (5-14)
Thus the total average cost for this model is obtained by

- C C4R
K(T) = C4R ST {U(T) U(t)]dt PR B Y (T) - CpR (5-15)
T 0 u(t) T T

The optimal inventory cycle time, can be found by differentiating K(T)

with respect to T, and setting the result equal to zero.
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d 1) = - CR Mom-uey) g+ R (T u(0) 4 c3
ar = o v T | ult) T

+ % oy - SR oy =0
T T

(5-16)
Rewriting this equation, by multiplying by (-T2/R) yields:
T
C, f {?(T) - U(t) - T”(T)]dt +Cp [U(T) - Tu(T)] + E§_= 0. (5-17)
0 u(t) R

The optimal value of T, can be determined iteratively for various functions
of h(t), by utilizing equation (5-17). Several functions of h(t) will now

be considered in the following sections.

5.1 Case l-a: Constant Perishability

Rate Function h(t) = a

Since h(t) is constant, by definition of perishability equation (5-1),
this implies that f(t) is exponentially distributed. That is,

f(t) = ae"d%; and F(t) = 1 - 2% t 3 0.
Using equations (5-6) and (5-8) the following can be written:
u(t) = exp [at] (5.1-1a)
u(t) = %_[exp(at) - 1] (5.1-2a)

Hence, the average carrying inventory can be calculated by using equation

(5-13).

(m =~ fTF"p(a” - e"F’("“)]dt (5.1-3a)
al JO|_ exp(at)

which simplifies to:

T
Il(T) = R go%xp[a(T - t)] - 1] dt = R [eaT -aT -1].

at azT
(5.1-a)
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The inventory lot size, Q, can be obtained readily through equations
(5-10) and (5.1-2a); and the average total perishing per cycle is obtained
through equation (5-14). The total average cost function then becomes
C3

C4R CaRa
K(T) = _i_ [eaT -al - 1] + 4 [eaT -al - 1]+ =

—_— (5.1-5a)
a7 a2T T

which simplifies to

K(T) = (Cl ;’ aCy )(13_) (T - aT - 1) +f|3'§ (5.1-6a)

By using equation (5-17) or differentiating (5.1-6a) with respect to

T, the optimal inventory cycle time, T* can be determined.

Cy + aC R R c
4 y(m)= (1+a4)[ (a7 aT-1)+_(aeaT-a8- 3 -0,

daT T aZz T2 T T2
(5.1-7&)
Rewriting equation (5.1-7a) as:
C,. + aC
R(l 4) (aTedT - T - 1) = ¢, , (5.1-8a)
a2
and simplifying
2
a-C
el (aT - 1) = 3 -1, - (5.1-9a)

An implicit function of T can be written as

2 .
1 aC
T=_ S afedT 4 (5.1-10a)
a R<C1 + aC4)

The form of this function is given in Figure 15, where f(T) is equal to

the right hand side of equation (5.1-10a).

aT

If in equation (5.1-9a), e’ is approximated by 1 + aT + a2T2 ,

2
then by rewriting equation (5.1-9a) the following simple equation is

obtained:
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Y=£(T)

\

[ || e e
I

aC
R(Cl+ aC4 )

T* EOQ

Figure 15. Inventory Cycle Function of a Lot-Size Model
with Constant Perishability Rate
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* 2C3 Y |

T = - aTs (5.1-11a) .
(Cl + aC45 )

Note that if a = 0 in (5.1-1la) the classical Wilson's formula for T is

obtained. Equation (5.1-1la) is much simpler than equation (5.1-10a)

and can be easily remembered. T* can be initially approximated as

™ = 2C3 3 (5.1-12a)
RC1+RC4a

The inventory lot size and the total number of units perishing are

given by:

Q" = R/a [exp(aT) - 11, (5.1-13a)
and

D(T) = R/a[exp(aT)-aT-1] (5.1-14a)

5.1' Case 1-b: Constant Perishability Rate

Function h(t) = a (approximate model)

In some models in the literature the average carrying inventory is
approximated by Q(0)/2. By using equation (5.1-13a) the average

inventory then is equal to:

I,(T) = Q%QL = %a[exp(aT) - 1% (5.1'.1-b)

and the total number of units perishing in an inventory cycle is

D(T) = R/a[exp(aT)-1]-RT. (5.1'.2-b)
The total average cost function may now be written as:

K(T) = ¢y14(T) 4 c3 + ¢d(M) /T (5.1'.3-b)

which for this case is equal to
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C4R

1 aT aT
K(T) = - 1]+ C C R - 1) - RT T 5.1'.4-b
= {“ RBET-D ]}/ ( )

Now by taking the derivative of K(T) and setting it equal to zero,
the optimal T can be obtained.

ClReaT _ C3 _ E&i C4R

d K(T) = 17 23 [eaT _ 17 +

d_ el = ¢ (5.1'.5-b)
dt 2 T2 aT2

This equation can be simplified and rewritten as

E%R T2 + (C4R/a)(eaT +aT - 1) - Cy e3l = ¢ (5.1'.6-b)

from which an implicit function of T may be obtained,

o _[ C3e'aT + (C4R/a)(1-aT-e'aT)J 3
05C1R

(5.1'.7-b)

By approximating the exponential in equation (5.1'.6-b), the following
equation is obtained whi;h is much simpler than equation (5.1'.7-b).
2C3e-aT %
T* = (5.1.8-b)
R(Cq+aCy)
Note as a approaches zero, 7" =,/2C3/C1R which is the classical result for
the EOQ Model.

5.2 Case 2: Weibull Distribution

Deterioration -- h(t) = abtP-1

Covert and Philip [21] in the development of their model assumed
arbitrarily that the average inventory on hand is equal to one half of the
initial Tevel of inventory although they recognized that the inventory
depletion curve is not a straight line. Aggarwal [3] also recognizes
the same problem in the analysis of Shah's model [87] without actually

deriving the exact equations. Following Covert and Philip [21], ignoring
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their assumption of linearity, and utilizing equations (5-6) and (5-8)

the following equations may be written:

u(t) = exp(atb) (5.2-1)
t b t & :

u(t) ={ e¥dx = S Z_ a"x™  dx (5.2-2)
0 0 n=o nt

Interchanging the order of integration and summation
o £ anxnb

u(t) = :2; dx (5.2-3)
n=0 0 n!

and then integrating
o a”t(nb + 1)

U(t) = = W(a,b,t) (5.2-4)
n=o (nb + 1)n!

The inventory lot size using equation (5-10) is then equal to
= Q(0) = RU(T) = RW(a,b,T) (5.2-5)
and hence the total number of units perishing is determined by
D(T) =Q - RT (5.2-6)
The average carrying inventory may be obtained by utilizing equation
(5-13), that is,

T ¢ W(a,b,T) - W(a,b,t
Ya ) - e )Tdt (5.2-7)

0 L eatb J

This can be written as:

oo (nb + 1)ar o k_k, kb

a't (-1)"a"t
T=R;w ,b,T) W(-a,b,T) - dt
Il() T (@ ) - go[nzz) nb+1n!}(§3 k‘ ] }

The integral can be written as:

Il(T) = %

T i i (_1)k a(n + k) t(”b + kb + 1)
dt .
g’o n=o k=0 (nb + 1) n! k!

(5.2-9)
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Interchanging the integration and the summations, and then performing

integration, the‘fo11owing equation is obtained.

haad &0 (-l)k a(n + k) Tnb + kb + 2
Z Z (5.2-10)
n= k=0 (nb+ kb+2) (nb+ 1) n! k!

Now, by substituting the above equation and equation (5.2-4) into

equation (5.2-8) one obtains
S < (-1)k gn * k b + kb + 2 (-1)K an * k b + kb + 2

n=0 k=0 (nb + 1)(kb + 1) n! k! (nb + 1)(nb + kb + 2) n! k!)
(5.2-11)
which simplifies to

© o (-l)k a" * k qnb + kb + 2
I.(T) = R X (5.2-12)
1 T{nzﬁ :éo K6 T I)(Kb ¥ b + 2) 1l k!}

By expanding the terms of the double summation and adding the terms of

similar exponents, equation (5.2-12) simplifies to

oo
m
+
I,(T) =R Z T éab)m L
T )] m=0o j=o mb+2) (mb-j (5.2-13)

The cost function may now be written as:

Cy ,C
K(T) = C;I,(T) + 23 + “4 W(a,b,T) - C,4R
(T) 1 2 4

T (5.2-14)

To find T*,' equation (5.2-14) may be differentiated or the respective

formulas may be substituted into equation (5-16).

o2 m

_d K(T) = CqR (mb+1) (ab)™T™ - 3
aT L % TJ; CEAICE) Tz

o

+ C4R Z_ anaanTnb'l =0
¢ n=0 nb+1)n! (5.2-15)

Thus, the optimal T is equal to
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Cs

T CcO m & .
CIR T (mb+1) (ab)™T™ T +c R Npp)Tnb-1
{ [ ;4:-0 Mo Tmeme ¢ nZG "(L‘)‘ha ¥ J

(5.2-16)

T can now be determined numerically as accurately as desired and
thereby the optimal inventory lot size can be determined through

equation (5-10).

5.3 Case 3: Rayleigh Distribution Deterjoration

-- h(t) = at

A special case of the Weibull distribution is the Rayleigh distribu-
tion which has a linearly increasing perishability rate. Using the same
methodology for this case as before, the following can be written
immediately:

u(t) = exp(at2/2) (5.3-1)
Let A=a/2, and rewrite the equation (5.3-1) as
u(t) = exp(At2) : (5.3-1")

Equation (5-8) can now be written as

t t & AN@n
u(t) = S X%y = g ZZ; dx
0 0 n=o0 nl (5.3-2)
which reduces to
[2~]
ut) = 2. AMEML a2t (5.3-3)
n=o (2n+1)n!
The inventory lot size then is equal to
Q = Q(0) = RU(T) = RW(A,2,T) (5.3-4)

which is obtained by utilizing equation (5.2-5). The total number of
units perishing is given by

D(T) = Q-RT (5.3-5)
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By utilizing equation (5.2-13), the average carrying inventory becomes

s m _
Lm=r2Z T py2m+2
T ) m=0 j=0 (2m+2) (mb=3) (5.3-6)
The cost function for this case is equal to:
K(T) = CqI{(T) + C3 + Cy W(A,2,T) - C4R (5.3-7)
T T
and the optimal T is given by:
T* - C3 l'/2
[ 2 m [
CRI 2. T (emaA™ T2 (Z A“(Zn)TZ"'l)
m=o j=o (2m+2)(2m-j) +C4R n= 2n+1)n!
(5.3-8)

By finding T* from (5.3-8), the optimal lot size and optimal cost can
be determined by utilizing equations (5.3-4) and (5.3-7).

In this chapter a general methodology is developed for determining
the optimal inventory -characteristics of items that are subject to a given
perishability distribution function. Corrections are made in the determ-
ination of the total carrying inventory with respect to the models of other
researchers. Results are also obtained for the case of the Rayleigh dis-
tribution, which can be considered as a special case of a Weibull distri-
bution function. The Rayleigh distribution has a special property of

having a linearly increasing perishability function.



CHAPTER VI

FINITE PRODUCTION RATE INVENTORY
CONTROL SYSTEM

The behavior of the inventory level for a finite production rate
model is depicted in Figure 16. The inventory level at the beginning,
and the end of the inventory cycle is zero. Following Misra [58], and
Shah and Jaiswal [88], let T be the inventory cycle length, then the
inventory cycle will consist of two segments.

During the first segment (O,Tl), the production occurs at a rate of
p(t) units per time unit, and demand occurs at a rate of d(t) units per
time unit. In the second segment (T{,T) there is no production and
demand is satisfied at a rate of d(t) from the inventory.

Let h(t) be the instantaneous deterioration rate function for the
items in inventory, and let Q(t) be the invenfory level at time
t(0 t T). The change in the inventory level during a small interval

of time can be represented mathematically as:

-d Q(t) = Q(t)h(t)dt + d(t)dt-p(t)dt, Ogt el (6-1)
and

-d Q(t) =Q(t) h(t)dt + d(t)dt TieteT (6-2)
These equations can be rewritten as

4 0y(6) + h(t) Qy(8) = (p(t) - d(2), 02t ¢T, (6-3)
d_Qy(t) + h(t) Qy(t) = -d(t) TieteT (6-4)

dt
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Figure 16.

T Time

Finite Production Rate Inventory Model
with No Shortages
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The solutions to the general first order linear differential equa-

tion is given by Boyce and DiPrima [12]. For the above equations they are:

t
t
exp (S 1 h(t)dt) (6-5)
0
and
2 (4()) exp (§h(£)4(E))
-d(t h(t)d(t)) dt+k
Qz(t2)=<T1( exij Jalt) | 2 ; ](_6-6)
yA Z
exp (S 2h(t)dt) 1£ %25
T

The values for the constants of integration kl and k, are determined by
using the boundary conditions. That is, at t;=0, Q;(0)=0, and at

tr=T1s QZ(T1)=Qmax' Applying these boundary conditions results in k=0,

and k2=Qmax' Equations (6-5) and (6-6) can be rewritten as:

Bl
| g (p()-d(£)) exp ( { h(t)dt)dt
Qq(tq) =10 - 0¢teT, (6-7)

exp( j 1 h(t)dt)
0
t2 :

g (-d(t)) exp ( h(t)dt) dt+Qmax

Qg(tg) =)T Tlé tzﬁT
4:2 (6-8)
exp h(t)dt)

1
In order to evaluate equations (6-7) and (6-8), specific cases must be

considered.
6.1 Case 1: p(t), d(t) and h(t)

Are Constants

In this case the production rate and demand rate are constant, and

items in inventory are being perished according to the exponential
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distribution function. Let p(t)=p, d(t)=d, and h(t)=h. Then substitut-

ing these values into equations (6-7) and (6-8) yields:

t
s 1(p—d) exp (fhdt) dt

Q(tq) =)o ' P (6.1-1)
exp (5 1 hdt)
0
t2
(-d) exp ( fhdt) dt+Q.y

Qy(ts) =)T ToetyeT (6.1-2)

2\ -2 ) 1= "2

exp(Stzhdt)
N

which can be solved and simplified further as:
Q(tq) = p_—hg [1-exp(-ht{)] 04ty 4Ty (6.1-3)
uty) = -4+ eN(T1-t2) Tiet,6T  (6.1-4)

Since at t,=T, Q,(T)=0, this implies that
Qpay = % eh(T-Ty), (6.1-5)

and equation (6.1-4) becomes:

Oa(ty) = ¢ { exlh(T-tp) 1] T et eT (6.1-6)

The inventory level Q(t) at the termination of the first segment of the
inventory cycle is equal to the initial inventory level of segment two.

Therefore, by using equations (6.1-3) and (6.1-6), T, can be determined;

p=d [1-exp(-1Ty)] - %{exp[h(ml)]-l} (6.1-7)
To=11n[1+d (" -1)] (6.1-8)
h p
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Since production rate is a constant rate of p, the production lot
size and hence the number of items that deteriorate is determined
readily. Let g be production lot size, then

_ - hT 6
q=pTy = %_1n [1+d (e -1)] . (6.1-9)
p .

The number of items perishing, D(t), during the cycle time T is
determined by:
D(T) =q - dT -2 n[1+d (" -1)]-dr. (6.1-10)
p

In order to determine the optimal T for this case two subcases must
be analyzed: (a) carrying cost is applied to the average total number of
units in stock; (b) carrying cost is applied only to the nonperished
items in stock. These subcases are jllustrated in Figure 17.
To determine the inventory carrying cost during a cycle for each sub-

case the areas under the curves must be calculated.

6.1.1 Subcase a. Inventory Carrying Cost on

Total Units in Inventory

Total carrying inventory during the cycle is given by
Iy = %(p=d) Ty + 3%(d)(T-Ty) + D(T)(T-T;). (6.1.1-1)
which can be written as

I, = dT - dT2+T {pT +dT +p-d - pTq{ . (6.1,1-2)
1 - 1 g 1

By substituting equation (6.1-8) into (6.1.1-2), the total carrying

inventory is obtained as a function of T, that is,
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0 Tl T
(a) Total Number of Units
in Stock

0 Tl T

(b) Non Perished Number
of Units in Stock

Figure 17. Inventory Level of
a Finite Produc-
tion Model
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I1=dT-dT2+ 1{1n[1+d ]}{pT+dT+%-d
r h

_p[%_ In[1 + % ]]} (6.1.1-3)

The total average cost per unit time equation of the system is:

Cqil C C
o(ry =—LL  + 3+ Ap (6.1.1-4)
T T T
Since C(T) is a convex function the optimal cycle time T* can be deter-
mined analytically. However, because of the form of the equation an
easier method of finding'T* is to use the Fibonacci Search Technique.

By determining T, T1 and q can be readily calculated utilizing equations

(6.1-8) and (6.1-9).

6.1.2 Subcase b. Inventory Carrying Cost on

Non-Perished Units in Inventory

The total carrying inventory during the cycle is given by integrat-

ing equations (6.1-3) and (6.1-6), that is,

T T
I S 'L pd (L-exp(-t))] +ST [ (exp(n(T-))-11e¢
‘ 1

0 (6.1.2-1)
Integrating and collecting similar terms results in:
h(T-T,)
11=J£1_-£T-_P.+M eMM1+4d e ! (6.1.2-2)
h h hz  h2 h2

Since the value of T1 as a function of T is known from equation
(6.1-8), equation (6.1.2-2) can be rewritten as a function of T only.
Equation (6.1.1-4) remains the same for the average total cost function
equation of this subcase, and only an appropriate I1 must be utilized in

the equation,
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The results that have been derived for this case are equivalent to
those of Misra [58] if the series form of the exponential is used, and
terms with second and higher powers of h are ignored in the above equa-
tions. The optimal cost and cycle time should be obtained through a
search technique. Misra [58], through exponential approximation of
equivalent of equation (6.1-7), has tried to establish an analytical
relationship between T; and (T-T). His approximations for the result-
ing quadratic equation implicitly assumes that h(T-Tl)Z/Z is approxi-
mately zero. By substituting these results into the cost equation, he
differentiates and then further simplifies to obtain Tl* and Q*. The
results that he has obtained for an example problem are incorrect;
however, if the proper calculations are made, the results would be
"good" or "close" only if T 1. That is, one must normalize inventory

parameters in such a way that this condition would hold.

6.1.3 Approximation of Optimal Q

Using the series form of the exponential, logarithms, and ignoring
terms with second and higher powers of h under the assumption that 1/h<<T,
the following results can be obtained. First, rewrite equation (6.1-8)
as:

Ty =11n[1+d (hT + h2T2)]
19 D 2 (6.1.3-1)

Then, expand the logarithm as

d (hT + h2T2)
p 2

T, =(2) (6.1.3-2)
R L2+g_ (hT + h2T2)
P v
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the approximate optimal Tl* is then equal to

« T (2/h)
T1 = (6.1.3-3)
1+ 2
L d (T + hT?)
D 2
The optimal order quantity, Q*, can be determined by:
Q" = pT7. (6.1.3-4)

6.2 Case 2: d(t) and h(t) are constant,

p(t) = ptb

In this case the production rate is increasing according to a
polynomial function, demand rate is constant, and perishability of items
in inventory are characterized by the exponential distribution. Let

b

d(t)=d, h(t)=h, and p(t) = pt”, where b is a nonnegative integer. Sub-

stituting these values into equations (6-7) and (6-8) and simplifying

yields:
-\ 2 —————b!(tl)b-i] ) [1-e7"1 04t,4T
it —(F) = e _(F) ok “hfh
(6.2-1)
- d h(T-ty)1-1 T 4tyeT
Q,(t5) Fgexxa[( 2)]} €557 g

Equation (6.2-2) is the same as equation (6.1-6) of the previous model.

Again at t;=T; and t,=T1, equations (6.2-1) and (6.2-2) are equal,

therefore:

(b-i
(P) Zb_ (-1)1 LlL_1) -(d)[l-e'th] = (d) N (T-T1) 17
nl] i=0 (b=1)th? R n

(6.2-3)

This simplifies further to:
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b .
( ) Z_ 1)ib! Tl(b'”] _ T (6.2-4)

(b-i)! h’

Solving equation (6.2-4) for T in terms of T, yields

hT (b-1)
pe" "1\l b . b!T
=11 ( )2 L ]
h " =0 (b=1)!h’ (6.2-5)

In production situations where learning curve effect is present,

the replenishment rate p(t) can be approximated closely by adjusting p
and b, By utilizing equation (6.2-5), the problem can be solved as a
function of Ty rather than T. Special subcases of interest would be
when b=1, or b=2, that is when the production'rate is increasing
linearly or quadratically. In these special cases equation (6.2-5)

reduces to:

hT
T=141n 1+ (pe 1)”1 -1) ; for b =1 (6.2-6)
h d 1) '
T=11n}1 +‘? eth)(le - 2T + 2 )05 for b = 2 (6.2-6)
h d ht R

Now, the total carrying inventory can be calculated for the respec-

tive values of b. For b=1,

T 51 “ht
_ o1 - d 1-e"Nt1) gt, +
g go%tl P Fgo e ay
T
S (%)(eh”'tz) - 1) dt, . (6.2-7)
T

This simplifies to:

I = %[Tz - Tl]_<h_ [T +1 (e - 1)]
@4 o) 6.2
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By regrouping the similar terms

-hT

h2 (6.2-9)

Since the value of T can be determined from (6.2-6), equation (6.2-9)
can be solved explicitly as a function of Tl'
The amount of deterioration is given by:
+
D(T,) = o - dT (6.2-10)
b+1
Hence, the average total cost equation can be determined as a function

of Tys that is,
I C C
ety =~ 3w o (6.2-11)
T T T
When b=2, the total carrying inventory is equal to:

T T
1, -P j Mz 22t 4 2y g - d f H1-ety at
h2

h 0 “h hJ]o

.
+d S (e"(T-t) _ 1) at (6.2-12)
h [Ty

This reduces to:

T3, T2, 2T
Il:%i 1T, 1}+ge'”1(e”-1)-g1
3 h  hz) R h (6.2-13)

The deterioration and cost functions remain the same as (6.2-10) and

(6.2-11),

6.3 Case 3: d(t) and h(t) are Constant;
p(t) = pqt

In this case, the production rate is increasing as an exponential
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function of time, demand rate is constant, and perishabi]it} is according
to an exponential distribution function. Let d(t)=d, h(t)=h, and
p(t)=pqt; p>0, q>1. Substituting these values into equations (6-7) and
(6-8) and simplifying yields:

0y(tq) = ége'htl) [elMIna)ty _ 17 0 d (g g-hty) 04ty £T,
h+1ng h

(6.3-1)
0p(t,) -4 ):exp [h(T-t,)] - 1] Tiet, £T (6.3-2)

At t1=T; and at t,=T; equations (6.3-1) and (6.3-2) are equal; there-

fore, after simplification the following relationship is obtained.
T=11n Y ph (qT1eMT1 - 1) +1 (6.3-3)
h idihﬂnq)

Again, total carrying inventory can be calculated by integrating

equations (6.3-1) and (6.3-2), that is:
I, = _op 1 (MM +1 (M- -4
(Ing+h) | Tnq h h

Tp+1 (1 - 1{} +d g~ el (e o Ty o (T-le)
1) (6.3-4)

h h
which reduces to
R R e
(6.3-5)

By substituting equation (6.3-3) into equation (6.3-5), the total
carrying inventory function is obtained as a function of Tl' Equation
(6.241) for the average total cost function will be used again for
deteriming T*. The optimal production lot size, Q*, and deterioration,

D*(T) can be determined by:
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*
T T *

Q* = Pq dt = (6'3-6)
0 Inq

D(T) = Q* - dT" (6.3-7)

6.4 Case 4: d(t) and p(t) are Constant,
h(t) =a_

b-t
An interesting result is obtained if it is assumed that demand and
production rate are costant, and perishability rate function is a speci-

fic increasing function. Let d(t)=d, p(t)=p, and h(t)=a , where a and

-t
the deterior-

o

b are positive; and b is greater than Tqu. The shape o
ation rate function of this case is given in Figure 18.
The integral of h(t) is given by:

jmtmt= j%__dt=-a In (b-t) 02t 2Lb (6.4-0)
X

Now, by substituting the respective values for d(t), p(t), and h(t)

into equations (6.7) and (6.8) the following equations are obtained.

(p-d) [6{1-3) - (bt )(1-2); 04ty 2T)  (6.4-1)

Ql(tl) =
(1-a)(b-t,)~2
:g.[(b-tz)l'a - (b-Tl)l'aJ *+ Qax
(b-t5)™ (b-T;)? (6.4-2)

Since, at t,=T, Q,(T)=0, this implies Quax 1S equal to:
Q . =-d [(b-T)I"2 - (b-T;)1-2 6.4-3
max = [(b-T) )77 ( )

Substituting this equation into equation (6.4-2), and simplifying yields:

d \[(b-t,)1"2 - (b-T)1-2]
Qz(tz) '-‘(—].—-Ey:( 2

. T4 to2 T (6.4-4)
(b'tz)-u (b_Tl)’!I




h(t)

a/b

Figure 18.

Deterioration Rate When h(t) =

a

b-t
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At t1=T{ and t,=T;, equations (6.4-1) and (6.4-4) are equal, there-
fore T, or Tl may be determined explicitly, that is,

(p-d) [b1"2 - (b-T;)1-2] (=d) [(b-T))1"2 = (b-T)172]
= . (6.4-5)

(1-a)(b-T;)=2 (1-3) (b-T;)™%(b-T;)?

Simp1ifying further and Solving for T yields
T=25Hb - g\ (b_Tl)l-a + (Ead) [bl-a (b_-l-l)a - (b_Tl)]}l/(l-a)
(6.4-6)
Now, all that remains to be determined is the total carrying
inventory, which is obtained by integrating equations (6.4-1)

and (6.4-4):

_
1= J ! i(-i”—)[(b-t)ab(l'a)-(b-t)]} dt
0 1-a

.
+ s ( -d )[(b-t)-(b-T)l'a(b-t)a] dt
T (1-a) (b-T{)" (6.4-7)

This reduces to:

(p-d) p(1-2) [ :
I, = p{l¥a) o (b -7 (1‘“&)] ~(bT, - T2/2
' [ (l-a')] I(Ha) ] e T

d (b_T)(l—a)

1-a 1+a
(b-Tl)u'*a)]} | (6.4-8)
Again, by substituting T of equation (6.4-6) into this equation and
utilizing the cost equation (6.2-11), the optimal T*l, can be found.

Using this result, T can be determined.

6.5 Case 5: d(t) and p(t) are Constant,
h(t) = abtP-!

In this case the production and demand rate are constant, and the
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items in inventory perish according to a Weibull distribution function.

b'l, where a and b are pdsitive numbers.,

Let p(t)=p, d(t)=d, and h(t)=abt
This is the case of varying rate of deterioration, and the solution is
obtained similar to previous cases; therefore:

t
S 1 (p-d) exp (atb)dt
0

exp (atlb)

t2 b
5 -d exp (at”) dt + Qax
Qo(to) =/ T4 ;o TietoeT (6.5-2)

exp [a(t?)-T;)]

at t,=T, Q,(t,) in equation (6.5-2) is equal to zero, hence
T b

Qrax = STld exp (at”) dt (6.5.9)

Substituting this in equation (6.5-2) yields:

tZ b T b
-d exp (at”) dt + d exp (at”) dt
T1 T

Qp(ty) = g L ;  (6.5-4)

exp [a(t?, -1,")] T €t 6T

At t=T; and t,=T;, equations (6.5-1) and (6.5-4) are equal and

hence the following relationship exists:

T
5’1 (p-d) exp (atb) dt yT

0 = d exp (atb) dt (6.5-5)
]

exp (ale)

Because of the difficulty in integration, equation (6.5-5) cannot be
simplified any further.

By integrating equations (6.5-1) and (6.5-4), the total carrying

inventory can be obtained, and hence the average total cost equation

becomes:
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T T C C

T ()t +j 0y(t)dt] + >+ _* (pTj=dT)
T T T

G
(1) = 1 5
1

0
(6.5-6)
Equation (6.5-6) is a function of two variables, T, and T; however,
these two variables are not independent and are related by equation
(6.5-5). Theoretically, it should be possible to solve for T or T, of
equation (6.5-5) and substitute the value in the cost equation of
(6.5-6); then, by differentiating, the optimal 7" or T*l, would be
determined. Unfortunately, this is not practical because the value of T
or Tl can not be determined explicitly; and in addition, the integrals
in equation (6.5-6) cannot be integrated analytically. To solve these
equations, one must expand the exponential terms into their respective
series form, and then use numerical techniques to obtain the solution.

In this chapter the methodology of Chapter V is extended to encom-
pass the finite production rate inventory systems. In addition to the
models that have been developed in the literature, various cases of non-
constant production rate have been considered. These models are especi-
ally significant in situations where the production rate is increasing
during the inventory cycle time, or where learning curve effect is
present. They are also useful in such areas as nuclide pharmacuetical
drugs production where the half 1ife of various isotopes have a major
bearing on the amount and the rate of production.

Also a case of an increasing perishability rate function with

interesting analytical characteristics has been considered.



CHAPTER VII

FINITE PRODUCTION RATE INVENTORY CONTROL
SYSTEM WITH BACKLOGGING

These models are a further generalization of the previous models of
Chapter VI, and Figure 19 depicts the inventory level of this system of
inventory. In these models, the inventory cycle consists of four phases:
1) (O,Tl) production and demand faking place simultaneously; 2) (Tl,Tz)
demand is satisfied from the stock; 3) (TZ,T3) demand is being backlogged;
and 4) (T3,T) production and demand taking place simultaneously with the
reduction of backlogs. There is no deterioration in phases three and
four, and deterioration is only taking place in the first two phases.

As in the models of Chapter VI, the differential equations that

describe the system are given by:

_d Q(t) + h(t) Q(t) = p(t) - d(t) Oet 2Ty (7-1)

t e e
_d Q(t) + h(t) Q(t) = -d(t) TieteT, (7-2)

dt

d Q(t) = -d(t) Toet 2T (7-3

3 2 3 )

_d Q(t) = p(t)-d(t) TaeteT (7-4)

dt

Solution of these equations are:

93
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S" [{p(ty) - d(t))) exp (fh(t)dt)ldtl + Ky

Q;(t) =lo ; 04teT,
t
exp ( 5 h(t)dt) (7-5)
0 .
jtu() ( fn(t)dt)] ‘
-d(t h(t)dt)]dt, + K
Q,(t) = " 2t > ¢, Ti¢teT,
e (f nit)en)- (7-6)
T -
t
Qs(t) = jT -d(t3)dt3 + Ky 3 Toét £74 (7-7)
2
t
Qq(t) = fT (p(ty) - d(ty)) dty + Ky Tyt t &7 (7-8)
3

The values of constants of integrations are obtained using the

Now,

boundary conditions. Therefore, K1=O, K2=Q K3=O, K4=Q

max? min®

specific cases will be considered.
7.1 Case 1: p(t), d(t), and h(t) are Constant

In this case the production and demand rate are constant and items
in inventory are being perished according to an exponential distribution
function. Let p(t)=p, d(t)=d, and h(t)=h. Substituting these values
in equations (7-5) through (7-8), and utilizing the results of Chapter VI

the following equations are obtained.

0y(t) = 2= [l-exp(-nt)] 02t £Ty (7.1-1)
h

Q(t) = =4+ [y &0 (h(Ty-0))]; T LteT,  (7.1-2)

Q3(t) = -d(t-Tp); ToeteTy (7.1-3)
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Q(t) = (p-d) (£-T3) + Quips Tyet 2T (7.1-4)

At t=T, Qq(t)=0; therefore, Qs =-(p-d)(T-Ts). At t=T,, Q,(t)=0
therefore, Q .. = %_exp (h(T5-T;)). So,

Qu(t)=(p-d) (t-T). : (7.1-5)

At t=T;, equations (7.1-1) and (7.1-2) are equal; and hence,

T =11 [1 +d (exp (hT)) - 1)]. (7.1-6)
h p

At t=T,, equations (7.1-3) and (7.1-4) are equal; therefore,

To=dT,+ (p-d) T

35l P (7.1-7)

Production lot size, Q, is obtained by:

Q =pTy + p(T-T3) = p(T+T1-T3), (7.1-8)

which can be rewritten as:

Q =d(T-T,) + %_1n [1+ (d/p) (exp(hT,) -1)] . (7.1-9)

Note that this is a function of T, and T.

The total number of items that deteriorate during a cycle is equal
to the difference of total production and total demand during the
inventory cycle time, that is,
D(T,TZ) =Q - dT. (7.1-10)
Now, all that remains to be calculated is the total carrying inventory and
the total backlogs. By utilizing equation (6.1.1-2) of Chapter VI models,
the total carrying inventory can be written as:
=gl - 4T - p, 4(e=)e SULE ¢, e"(T2-Ty) (7.1-11)
To calculate the total backlog, equations (7.1-3) and (7.1-5) are

integrated, that is,
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T T
3
12 = - d(Tz-t) dt + - (p-d)(t-T) dt (7.1-12)
2 T3

By simplifying and substituting into equation (7.1-7) the following
equation is obtained: |

I, = g_(T-TZ)Z (1-d/p) (7.1-13)

The average total cost function can be written as & function
of T and T,, that is, |
C(To,T) = (Cq1y + Cpl, + C3 + Cy D(T,,T))/T (7.1-14)
A search technique such as Hooke and Jeeves may now be used to find
the optimal T and T*l' Of course, one could take the partial of C(T,,T)
with respect to T, and T; however, this process is too cumbersome and

inefficient for obtaining the optimal results.

7.2 Case 2: d(t) and h(t) are Constant

p(t) = btP

In this case the production rate is increasing according to a poly-
nomical function, demand rate is constant, and perishability of items in
inventory are characterized by an exponential distribution. Let d(t)=d,
h(t)=h, and p(t)=ptb, where b is a nonnegative integer. Again, using
the results of Chapter VI, that is, utilizing equation (6.2-5), T2 cén

be determined.
hT (b-1)
i pe''1l b (-1)i b!T1
T,=11n{1 z —
h d i=0 (b-i)!h

Using equations (7-7) and (7-8) and noting that at t=T, they are equal,

(7.2-1)

the following is obtained.

Ty = [Tb+1 - d(g+1) (T—Tz)j] 1/b+1 (7.2-2)
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The production Tot size is then obtained by integrating the production
rate in phase one and phase four, that is,

Q = __L (T1b+1 + Tb+1 - T3b+1) (7.2_3)
b+1

Total backlogging is obtained by integrating -Q(t) between T, and T.

I, = —=B (192 | 1.0%2) 4 prber [1-T,] + g [T-T, 0
(b+1) (b+2) b+1 2
+d (T5-Tp)? (7.2-4)
g T3 Ty

The total carrying inventory and the total backlog can now be stated
for specific values of b,

For b=1, by utilizing equations(6.2-9) and (7.2-4) the following
can be written:

[ =p Ty -ply-dT+ %2[(e'hT1)(1-ehT2)] (7.2-5)

I, = %2_(T3-T33) + 2%3 (T-T5) + (d/2)(T-T3)2 + %(T3-T2)2 (7.2-6)

The production lot size is then equal to:
Q = (p/2) (Ty2 + T2 - T4?) (7.2-7)
For b=2, equations (6.2-13) and (7.2-4) are utilized to obtain the

total carrying inventory and the total backlog.

T.3 71,2 2T dT
I;=p LI L g__[(e'th)(ehTZ -1)] - ___?
h kK h h?2 h2 h
(7.2-8)
Iy =p (15134 + P (ToTg) + d (T-Tp)2 + d (T,-T,)2,
% 3 2 2
(7.2-9)
The production lot size for this case is then equal to:
Q = p_ (T13+T3_T33) . (7.2-10)

3
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The amount of deterioration is given by
D(T,Ty) = Q=dT; (7.2-11)
where Q is given by equation (7.2-7) or (7.2-10). The cost equation

' ' *
(7.1-14), is then used to find the optima]sz* and T .

7.3 Case 3: d(t), h(t) are Constant. p(t) = pqt

In th§§ case the product%on rate is increasing as an exponential
function of time, demand rate is constant, and perishability is according
to an exponential distribution function. Let d(t)=d, h(t)=h, and
p(t)=pqt; p 0, g 1. By utilizing equation (6.3-3) the equation for

TZ can be written as:

T, =11 i oh [(q1eM1) - 17+ 1} . (7.3-1)
1) d(h+Inqg)

By utilizing equations (7-7) and (7-8), and noting that at t=T, they are
equal; the value of T3 can be determined.

:
T=1'In[-d]nq(T-T)+q] (7.3-2)

The total carrying inventory is obtained by using equation (6.3-5),

1= o (1) + 1My {vg [ (M- 2
(Tng+h) Inq h h? h
(7.3-3)

and the total backlogging is obtained by integrating -Q(t) in phase three

and phase four.

= _ _ T_ T 312 _ T_ T3
I, % (T3-Tp)2 + (T TS)( 2 q dT)+ (d/2) (T-T3) [(TE%VJ;: 2) )

The production lot size is equal to:

T T
Q = S ! pqt dt +5 pqt dt, (7.3-5)

0 T3
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which simplifies to

TR (@'1+4q' - q's-1) (7.3-6)
ng

The total deterioration function, and the average total cost function
are the same as equations (7.1-14) and (7.2-11).
7.4 Case 4: d(t), p(t) are Constant h(t) = a
. . b-t
In this case the production and demand rates are constant, however,
the perishability of items in inventory is according to a specific per-
ishability rate function. Let d(t)=d, p(t)=p, and h(t)= _a , where
. b-t
a and b are positive; and b is greater than TEOQ' By using equation
(6.4-6) value of T, can be written as:
T, = b §(b-T7)1"2 + (p-d) [b1"2 (b-T;)? - (b-T,) 341/ (1-2)
2 ! : ! ! (7.4-1)

Again, by utilizing equations (7-7) and (7-8), the value of T3 can be

written as:
T3=T- % (1-T,) . (7.4-2)

The total carrying inventory is obtained by utilizing equation

(6.4-8).
(p-a) “ [b(l-a)] (1+
I, = p(1+a) _p -1y (I b1, - T.22
! (l—a)J (1+a) [ ) ] ! 1/2)
d (b-75){1-2) (14
— ) (b1 L(b-T,)2=(b-T,)2] + —2—— [(b-T,){1*)
+{(1_a)(b 7)) ]{w[(b = (-TYE) + —E—— LT,
- (b1 17)] } (7.4-3)

The total backlog is obtained by integrating -Q(t) in phase three and

phase four of the inventory cycle, that is,
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I, = (d/2) (T-T5)2 (1-d/p). (7.4-4)
The production lot size is equal to

Q = p(T+T4-T5) | (7.4-5)

and the perishability function is the same as equation (7.2-11)

The average total cost function is

C(T,Ty) = 1{c Iy 4 Cyl, + C,0(T,Ty) + Cq0
1 T 1°1 2°2 4 1 3 (7.4-7)
In this chapter, the results of Chapter VI are extended to include

the case of backlogging of demand. In addition to the case of constant

production rate, various nonconstant production rates have been analyzed.

The average total cost equations of these models are essentially functions

of two independent variables; the inventory cycle time, T, and the production

cycle time, T;. To determine the optimal inventory characteristics, one can

resort to and benefit from search techniques. The Hooke and Jeeve's search

technique seems especially appropriate for this class of problems.



CHAPTER VIII
ORDER-LEVEL INVENTORY SYSTEMS

Order level inventory systems are deterministic systems in which
the carrying costs are balanced against shortage costs. The only var-
jable subject to control is the order level S. The scheduling period is
a prescribed constant. Figure 20 depicts the inventory situation of
this system, Two cases will be analyzed; constant demand and pattern

demand under the assumption of constant deterioration rate.

8.1 Case 1: Constant Demand and Constant

Deterioration Rate

For this case, Figure 20 will be used to describe the model deriva-
tion process. Following Shah and Jaiswal [89], at time t=0 of an inven-
tory cycle, a replenishment of size q enters the inventory system from
which (g-S) units are used to satisfy the backlog, leaving a remainder
of S units as the initial inventory level. As time passes, the inven-
tory level decreases due to demands and deterioration up to time T1e
From time T, to T, demands are then backlogged. Replenishment size, g,
is given by:
q=S+R(T-T;) =S +RT -RT; . (8.1-1)

The differential equations describing the inventory level are:

d_Q(t) +aQ(t) = -R
dt 0£teT, (8.1-2)

102
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d Q(t) = -R

dat Tiet eT (8.1-3)

The solutions to the above equations are determined to be

ot) = (— g) (e72%) (e?®-1) + kpe?t 0¢t £T, (8.1-4)
a

Qt) = -R(t-Ty) +k, Tietel (8.1-5)

Since at t=0, Q(t)=S, and at t=Tqs Q(t)=0, one can solve for the
constants of integration, that is, k1=S, and k2=0. Rewriting equations

(8.1-4) and (8.1-5) as:

Qt) = [S -R (e"°"°-1)]e‘at Ogt £y (8.1-6)
a

Q(t) =RT) - Rt TieteT (8.1-7)
one can find the following useful identities:

S = (B.) (edT1 - 1) (8.1-8)

a

Ty =11n (1 +aS) (8.1-9)
173 7

Now, by substituting equation (8.1-9) into equation (8.1-1), one can
determine q as a function of S,

qg=S-R1n (1+aS)+RT . (8.1-10)
a R

The total carrying inventory is determined by integrating equation (8.1-6),

that is,

= (5) € (B (e 10

This equation can be further simplified by using equation (8.1-8),

1, =& (*11-1) <R Ty (8.1-12)
a2 a

or can be written as:

1, = S/a - (R/a2) 1n (1 + 2%) (8.1-13)
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Equations (8.1-12) and (8.1-13) are exact calculations for the carry-
ing inventory as opposed to the calculation of Shah and Jaiswal [89].

The total number of items deteriorating is given by:

D=q-RT=S5-RT1n(l+aS), (8.1-14)
| 3 F

or
R aT1

D =R (e *1) Ty (8.1-15)
a

The total backlog is calculated by integrating equation (8.1-7), that is,
I, =_|; (T-Tl)z. (8.1-16)

The average total cost equation of the system is:

C(Tq) = [CqIg + Cpl, + COVT (8.1-17)
which can be written as
C4R C4R CoR . C,R
C(Tl) -1 (eaTl-l) - —E;—-Tl v 2 (T-Tl)2 + _f__ (eaTl_l) - C4RTEyT
az a 2 a

(8.1-18)
Equation (8.1-18) can also be written as a function of S, that is,

;S CqR CoR 1

C(S) =f— - Tn (1+3) + X (T-Z1n (1+2 )2
a a2 R 2 a R
C4R
+ S ——— Tn (1 + ) t] /T (8.1-19)
a

For optimum value of Ty or S, equations (8.1-18) or (8.1-19) can be

differentiated and set equal to zero, that is;

C
_d c(s) =(C /a) -(1R>Q 1 ) (g)f C2R (T 1 In(1 + as ))
ds a“ +§_S R a R
-1 1 S C4R 1 a) _
(_;)(1 +%.5. (ﬁ) Y (1+as)(ﬁ>— °

R

(8.1-20)
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which upon further simplification becomes
CoR aS
s(CyraCy) A= | (1 +38) - CRT = 0 (8.1-21)

Though the calculation for the total carrying inventory has been exact
rather than approximate, the resulting equation (8.1-21) is "simpler"

than the one derived by Shah and Jaiswal [89]. Their equation is

S(C1+2ac4) + l.(C1R+2C2R+CISa)[1n[;1 +_g§1]- 2C2RT = Q (8.1-22)
a R

The second derivative of equation (8.1-21) is positive for positive
S values and therefore optimal s* can be determined by using a search or
a numerical technique on equation (8.1-21). Note, when a=0 in equation
(8.1-21), meaning no deterioration, one can solve for S and obtain the
order level system for non-deteriorating items, which is:

1+ G (8.1-23)
The following relationship is used to obtain the above equation.

lim Lo+ =3

a0 2 R° R (8.1-24)
Some approximate results can be obtained using assumptions

a ««1/T, and aS/R<& 1. By using series form of logarithmic and expo-

nential terms, and ignoring second and higher order terms of a, the fol-

lowing equations can be written.

S asS
T = > 1_ —
1 R ( 2R (8.1-25)

RaTl2
S=RT1+

5 (8.1-26)
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RT12
q = RT + > (8.1"27)
or
as?
q =RT + 352 R (8.1-28)
The average total cost function is then equal to:
S2(Cq,+aCy) CoR
C(s) =——=>t 4 22 p_S_as*?%
2RT 2T R 2Rz (8.1-29)
Also, equation (8.1-21) can be written as:
c2a32
S(Cq+CytaCq) - —p— = CRT =0 (8.1-30)

Equation (8.1-30) is a "better" approximation than the one which is
obtained by differentiating equation (8.1-24). Similar derivations for

this particular case were also obtained by Aggarwal [2].

8.2 Case 2: Non-Linear Deterministic Demand

and Constant Deterioration Rate

Let the demand rate r = pqt. The differential equations for this
model are:
20(t) +aQ(t) = -pq* 02t eT, (8.2-1)
-4 g(t) = -pq* - Tzt 2T (8.2-2)
dt 1===

The solutions of these equations are:

(t) = __=p at

t_-at
Thata (g e™®")

+ Kle' (8.2-3)

= Lt & 2~
Q(t) ]nq (9 ) + K, T et &7 (8.2-4)
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Solving for constants of integration and noting that at t=0, Q(t)=S

and at t=Ty, Q(t)=0,

Q(t) =[s -(Ta-g%—) (e (a+Tnq)t 1)] et 0gt 2T (8.2-5)
at) = (q'1 - qb) T eteT (8.2-6)

From the above equations, the following useful identities are obtained.

s=-—0  (e2T14"1 - 1)
Tng+a (8.2-7)

1ng + aS aS
Tl ]nq+a 1" (1 ¥ ) (8.2"8)
The inventory lot size, q, can now be determined.
a=s+{ patat s (i) (o7 - ")
nq (8.2-9)
T

The total carrying inventory is determined by integrating equation (8.2-5).

Iy =Q %) (e (1nq+a )[q =l te aTl -1] (8.2-10)

Inq

Substituting for S and simplifying this equation further, one obtains:

pqT,-P
I =(Tﬁzﬁi_) qT1(eaT1-1) I S
ng+a Tng(1ng+a) (8.2-11)

which can also be written as:

b\ e 1 i]
h (1nq+a ) q'1 [ Tnq Tnq(Tng+a) (8.2-12)
The total number of items that deteriorate is given by:

D=5 - Tﬁa(qu-l\k (IﬁgTa') Q%aTl q'1 - 1)" T% @'L-1) (8.2-13)

and the total backlog is given by:

I, =—B — (q'-q"1) + (T;-T) &~ qT1 .
(1nq)? 1nq (8.2-14)
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The average total cost function is the same as equation (8.1-17),

therefore,

¢(T) = i& LA Ty (eT1-1) - € pg "¢ P.]

1 Tna+a Thq(Tngray 1nq+a
PN B | -

Ty T T
[c4 T (111 - c4(Tg—q)(q 1-1)]}”

By differentiating equation (8.2-15) with respect to T, and setting it

(8.2-15)

equal to zero, the following equation is obtained:

aT
(Ci+aCy) &——== + C,(T;-T) =0 (8.2-16)
1taly 2t
Note
aT
im &1l oo
a-»0 a (8.2-17)

Using equation (8.2-17) in equation (8.2-16) will result 7in

= S 7
C1*C, (8.2-18)

which is the standard result for non-perishable items. An interesting
point of observation is that T1 is not a function of the demand pattern

and is only a function of Cl’ CZ’ C4, and a.

8.3 Case 3: Nonlinear Deterministic Demand, r=bt"

and Constant Deterioration Rate

Let the demand rate r=bt", where b and n are positive constants.

The differential equations of this model are:

d Q(t) + aQ(t) = -bt" 04t 4T, (8.3-1)
dt
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d_ Q(t) = -bt" T Ltel (8.3-2)
dt E

The solution of these equations are:

Q(t) = -attn+12i} (at)i + le-at 0t £T, (8.3-3)
T+

- b (t"+1 - T.ntll

Q(t) b 1 ) + k2 Tl_A_th (8.3-4)
n+l

Again, at t=0, Q(t)=S, and at Ty Q(t)=0, therefore; the values for the

constants of integration, kl and k, can be determined.

Q(t) = [_S-b'c"”1 s {at%" '_\e'at 04t 2T, (8.3-5)
i=0 i+n+l)q!

a(t) = B (1™ - e T2t 2T (8.3-6)
n+l

The order level S can now be determined.

[+ .
T,)i
s=pr," > (aTy ) (8.3-7)
1 i=0 ( T+ )T
The replenishment, q, is determined by:
T o (aT,)!
q=5 +jT bt" dt = (bT,"1) & U+ b (MM
< - -
1 i=0  (i+n+l)i! n+l (8.3-8)
The total carrying inventory is determined by integrating equation (8.3-5),
that 1s, o 133 (a)i=d 11434042
he SEtan-b TS :
a j=0 i=0 (i+j+n+2)(i+n+l)ilj! (8.3-10)

Deterioration is given by:

T
1 o0 i
(aTq)
D=5 - f bt"dt =(bT1"+1) Z L -
0 i=0 (i*n*1)iT  n*l (8.3-11)

And the total backlog is equal to

= b1 (T-T) + b ™2 L7, (8.3-12)
n+l (n+11(n+2)

The average total cost function then becomes:

C(Tl) = {5111 + Col, + C4D} /T (8.3-13)
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By differentiating equation (8.3-13) with respect to T, and setting
it equal to zero, the following equation is obtained, through which
optimal T1 can be determined.

ey .1
(C; + aCy) 7 C, (T-T;) =0 (8.3-14)
Note that this equation is again the same as equation (8.2-16). There-
fore, it can be concluded that for power demand, determination of T,

is not a function of demand but only the function of its cost parameters

and the deterioration rate.
8.4 Lost Sales

The system to be considered here is an extension of the order-level
system when the cost of shortage depends only on the quantity short and
not on the duration of shortages. The dimension of the shortage cost is
$/unit instead of the usual $/unit/unit-time. Therefore, if there are X
number of units short at the end of the prescribed scheduling period, the
shortage cost would be C2X.

Applying this cost measure to the results obtained in this chapter,
one finds that the optimal Tl is also independent of the demand pattern.
The cost structure of this system differs from the previous section due
to the shortage cost dimension. For the following demand patterns the

expected total shortage per inventory cycle is:

I, (Ty) =R (T -Ty) Demand Rate Constant(R) (8.4-1)
I, (Ty) = b/2 (T2 - T{?) Demand Rate Linear (bt) (8.4-2)
I, (Tq) = (¢ - q'1) Demand Rate Nonlinear (pq‘) (8.4-3)
2 V11 %FE
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By substituting these equations into the respective cost equations
of the previous section, one can determine the average total cost equation
for the lost sales models. By differentiating and solving for Tl’ one
obtains:

aC2

Tl = (1/a) In (1 +
C1+aC4

). (8.4-4)

for all the above cases. Note as a approaches zero, equation (8.4-4)

becomes
C

T,= " (8.4-5)
Cq

which is the standard result for the non-perishable inventory systems.

If equation (8.4-4) is written in the following format,

el .1
(Cl + aC4) (—-—i———) "Cz =0 (8.4—6)

one can compare it to the case for backlogging, equation (8.2-16),

which is repeated here as:

aT
(Cy + aCy) (e -1 ) +Cy (T =T) =0 (8.4-7)
a

Equations (8.4-6) and (8.4-7) are quite different. Equation
(8.4-6) is a function of the cost parameters, and the deterioration
rate while equation (8.4-7) also involves the scheduling period T.
It is possible to rewrite equations (8.4-6) and (8.4-7) into simple
forms if one approximates the exponential by the first two terms
of its series expansion, that is,

Cs
T, = (8.4-6")

C]. + aC4
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T, = T (8.4-7")

C]. + C2+ aC4
Equations (8.4-6') and (8.4-7') clearly show this structural difference.
Therefore, by changing the property of unit cost of shortage, or by
having different assumptions of backlogging or lost sales, totally

different results are obtained for Tl'

8.5 A Discrete-in-Time Order Level Inventory

Model for Non-Constant demand

In this model, it is assumed that time can be treated as discrete
points and that the deterioration rate is constant. Scheduling period

T, is a given constant. Demand is given by the following equation;

r = pqt ;p>0, q31 (8.5-1)
The difference equation for the inventory level can be written by

letting Q(t) be the inventory level at time t, and deterioration

rate be a.

Q(t+1) = Q(t) - a Q(t) - pq* (8.5-2)
or

AQ(t) + a Q(t) = -pqt | (8.5-3)

Notice that this relation holds only for t = 0,1, . . . Tl-l. The
following difference equation describes the inventory level for
t=Tp .. Te
AQ(t) = -pqt (8.5-4)
Solving difference equations (8.5-3) and (8.5-4), the following

is obtained
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= t t t =
Q(t) = Kl(l-a) - E;E:T qg--(1-a) »t = 0,1, . .. Tl-l (8-5)
= - t.. =

Where K; and K, are constants of finite integration. Using the boundary

conditions one can solve for Kl and K. At t = T Q(t) = 0, and therefore
_ B PR Y | -

Ky °(F§L-—1)(1'a) 1‘[q 1 - (1-a)'1] (8.5-7)

Ky = ( (q'1-1) (8.5-8)

By substituting for K; and K, in equations (8.5-5) and (8.5-6) respec-

tively, the following equations are cbtained:

o(t) = (2= ) (1-a)*T1 [q"1 - (1-a)"1] - [q® - (1-2)%]

(q+a-1 ) (8.5-9)
t=0,1,...T-1
Q(t) = (q'1 - qt t =Ty, T
o ) ! (8.5-10)
At t = 0, Q(t) = S, and hence, the order level is equal to
T -T

(q,,a i 1(l-a)"'1 -1, (8.5-11)

and the replenishment size is equal to

=5 +(af_lT)QT-qT1) : (8.5-12)

The number of items that deteriorate can now be found as a function of Tl‘

T .
O(T) =0 -p Z o' (8.5-13)
'I=

Since the second term on the right hand side is a geometric series, it

can be simplified further and be written as:

=5 - &y (q'1 - 1) (8.5-14)
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The average total carrying inventory during the cycle is equal to

Tp-1
1,(T =TL Z Q(t) (8.5-15)
t=0

which upon substitution for Q(t) is equal to

() = () (a;g—l) i(-l/a) [1-(1-2)7"1] [q'1 - (1-a)"1]

+ (-1/2) [(1-)T1 - 11 - (T 1)}

' (8.5-16)
The average total backlog during the inventory cycle is given by

I L )iqT (T - -gq - TZ
2T1) T+1)(q )i EER gﬁ'-_f?'i (8.5-17)

The average total cost as a function of T1 is given by
C(Tl) = Clll(Tl) + Col 2( ) + Cq D(Tl) (8.5-18)
In order to find the optimal value of Tl, it is necessary to deter-
mine the first difference of equation (8.5-18), that is,
Ac(T)) = c(Ty+1) - C(Ty) (8.5-19)

which is equal to

- pC T,
AC(Tl) (T+1)(é+a » T1( 1-q) - T1(1-a) Ty-1 (g+a-1) -aqu :]
T, -1

-_‘;_2_2[ [(q 1) (T-T;) + 21" (pq'1) [(1-a) ! -17]

The second difference ofrequation (8.5-18) is equal to

2 C 2 -T,-2 2
C(T,) = PY T.(1-q)° + qT,(1- 17%(q+a-1)“-aqT,(1-q)
AC(TY) T [q 1(1-q qT;(1-a) q+a qT,(1-q

+(*%2) (@) [a-(T-T;)(g-1)]
T+1

+(—$—) [qu(l-q) +q'1(1-a)"T172 (q+a-1)] (8.5-21)

which for all T,= 0,1,...,T; is positive, that is
AC(T) 20 for all Ty = 0,1,...,T (8.5-22)
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Therefore, the necessary conditions for optimality is given by:
. )
¢ty <) 0 ¢(1;") (8.5-23)
where Tl* is the optimal solution. Then using equation (8.5-20) in

(8.5-23) the condition for optimality becomes

* C.aT *
M7y - c T+c2 T+l MT) 8.5-24
2 4a( ) (8.5- )
where .
wr.y = [a-ay'17! -1
1 =T, (8.5-25)

By knowing Tl*’ the optimal replenishment size Q* can be determined by
utilizing equation (8.5-11) and (8.5-12).

Again, it can be seen as in the continuous order-level Inventory
Model, Tl* is not a function of demand pattern. Note that equations
(8.5-24) and (8.5-25) are the same as equations (17 and 18) of Dave's
[22] paper for constant demand rate. In the author's opinion, similar
results would also hold for linear and other deterministic power demands.
The proofs for this conjecture will be left for further research.

In this chapter, the order-level inventory systems are analyzed.
Aside from the constant demand rate, two nonconstant deterministic
demand rate models are considered. In each model two distinct cases
are presented; the case of backlogging, and the case of lost sales. The
results of the analysis indicate, although the solution structure of the
two cases are different for these models, the poinf Tl’ that is, the point
where the inventory level first reaches zero within the inventory cycle
time is independent of the demand pattern. This is a rather unexpected
result, since one would expect the demand pattern would also be involved.
In this chapter a case of discrete-in-time order level inventory system is

also analyzed with the similar conclusion.



CHAPTER IX

FINITE HORIZON INCREASING DEMAND MODELS WITH
CONSTANT PERISHABILITY RATE

In these models, the total demand required to be satisfied over a
given time horizon is fixed with demand low in the beginning and increas-
ing as time passes by. These models would be appropriate, for example,
for items that are new to the market, and demand for them increases with
time as people become more familiar with them. Note that the rate of
demand is changing throughout the horizon, however the total requirement
is constant. The basic objective of these inventory models is to find
the optimal number of replenishments such that the total cost is minimized
throughout the horizon. The inventory situation for these models is
depicted in Figure 21.

To develop and present the models the following definitions are in
order, Let the number of replenishments be denoted by J (J=1,2,...), the
total demand by R, the horizon time by T, and the cycle time by t'. By
definition, the following equation can be written.

t' =T/d Jd=1,2, ... (9-1)
and the total number of replenishments then is equal to
I; =1 (9-2)

Two cases of interest would be considered at this time; linear

demand and non-linear demand. Deterioration takes place at a constant

rate, a, throughout the horizon.
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9.1 Case 1: Linear Demand

For this case let the demand rate r be given by
r = bt (9.1-1)
where b is a positive constant, and t is a point of time within the time
horizoh. Therefore, the total required demand is equal to

T .
R = S btdt = %bT2 (9.1-2)

0
This implies by knowing or estimating the total demand, R, and the horizon,
T, b can be readily calculated.

Let Qi be the replenshiment size for each inventory cycle (i=0,

1,...J-1). The differential equation describing the inventory level

is given by
d_Q(t) +aQ(t) = -bt it'e t 2(i+1)t" (9.1-3)
dt

which upon solving becomes

a(t) = ea(t=T8) [k . (b/a) [e?® (t-1/a) - 1T (it'-1/a)]
(9.1-4)

Assuming at t=(i+l)t', Q(t) is zero or approximately zero, K; and Q;
can be determined.

K = Q; = (b/a) (31%) [(it'-1/a)(e?t'-1) + t'e?'1; i=0,..,,d-1
(9.1-5)

By integrating equation (9.1-4) and using the results of equation (9.1-5),

total carrying inventory, Il’ can be determined.

3-1(  f1-e3ty b » ‘
h=2Z 4 -(22)<ea‘t) [(2it'-2/a) (at'+e™" -1)+at'2]
1= a a

(9.1-6)
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(e2T-1) [(1-eat')(1-at')

at'_l) + (3/2at'2-t') :] -

1, = (b/a?)

(e a

. . JeaT( -at'_l) + aT_1
[(et +at'-1)(t'edt )] [ ) (e” 1) ] (9.1-7)

(eat'_l)z

The total number of items that deteriorate is determined by:
J-1
D = ;z; Q; - 172 (9.1-8)
which reduces to
D = (b/a2) [edT (aT-1)+1] - 4bT2 (9.1-9)
Note that as a approaches zero, the first term of equation (9.1-9)
approach %bT2, indicating that there is no deterioration. Also, note
that total number of items deteriorating is not a function of replenish-
ment; therefore in order to determine optimal t' or J, one must balance

the costs of ordering and replenishments only.
9.2 Case 2: Non-Linear Demand

For this case let the demand rate be given by
r= pqt (9.2-1)
where p is a positive constant; q has a value greater than or equal to
one, and t is a point of time within the time horizon. The total actual
demand for the horizon is then given by

T T
R = rdt = —B— (q'-1) (9.2-2)

0 Ing

The differential equation describing the inventory level is

%_Mt>+aou)=-mﬁ it' et (i+l)t (9.2-3)
t

which upon solving becomes
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Qt) = e-a(t-it') &Ki _ 19 [e(lnq+a)t _ e(]nq+a)it'i}
ng+a

(9.2-4)

It is desirable to have zero or negligible amount in inventory at
the end of each inventory cycle. Therefore, at t=(i+1)t', (i=0,1...J-1),
Q(t)=0. By this assumption one can solve for Ki's, which are the con-
stants of integration and are equal to the required replenishment sizes.
Ki = Q; =(—2—) [elTna*a)it’y (qt'eat’ ) (9.2-5)

Tng+a

By substituting equation (9.2-5) into (9.2-4), integrating equation
(9.2-4) for it'€t &(i+1)t' (i=0,...J-1), and summing over i's, one can
obtain the total carrying inventory.

J-1 1-e'at' p é]nq+a) (i+1)t é]nq+a yit!
R e N | ‘

Tng+a Tng+a
-t (1nq+a)1‘t']} (9.2-6)

This simplifies further to

t tl 1_ at'
L AT (q° e? -1)[(1nq+a)( e___)_ 1] -(Tng+a)t' 7
1 (_P___) (q'e a |
Ing+a

(qt'e?t'-1) (Tng+a)

(9.2-7)
The total number of items that deteriorate is determined by:
J-1 T
D = :Z: Q; - £ (q'-1) (9.2-8)
1=0 Tng
which reduces to
D = P (qTeaT-l)]- RN CUSY (9.2-9)
Ing+a Inq

An interesting point of observation regarding equations (9.2-9) and
(9.1-9) 1is that the total number of items perishing is independent of
the number cf replenishments. Therefore, perishing cost is a given

constant and will not affect the solution of the problem of finding the
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number of optimal replenishments. Hence, for these models one must
balance the costs of carrying and replenishments such that the resulting
cost would be minimized. That is,

C(t') = CqI (t') + C3I5(t") (9.2-10)
where Il and 13 are both functions of t'. Consequently, to minimize

the total cost for the above models, one must determine the value of

t', and substitute into equation (9.2-10). This procedure must be done
iteratively by utilizing equation (9-1). The above cost equation, though,
is not a function of Cy3 it is a function of perishability rate a.

In this chapter two finite-horizon inventory models with constant
deterioration rate are considered. The first model assumes linearly
increasing demand, and the second assumes an exponentially increasing
demand function during the specified horizon. It is shown that under the
assumptions of these models the optimal replenishment and the optimal lot
sizgs are not a function of deterioration cost, but only a function of
inventory carrying cost, replenishment cost and perishability rate

function.,



CHAPTER X
QUANTITY DISCOUNTS

Inventory systems in which the purchasing price per unit quantity
depends on the amount purchased are referred to as systems with quantity
discounts. In these systems the unit purchasing price decreases as the
quantity purchased increases.

An extension of a 1p§;size system with quantity discount is consid-
ered at this time. Now, instead of having constant costs of purchasing,
carrying and perishing, the costs are all non-constant and are a function
of the replenishment size. Let g be the size of replenishment, then the
purchasing cost for this quantity can be written as gb(q). The function
b(*) describes the per unit purchase price whenever a lot size is pur-
chased. Also, let the carrying cost fraction be f, and perishing cost
fraction will be g per unit time. Then the unit carrying and perishing
cost will be equal to

¢

f b(q) (10-1)
g b(q) (10-2)

By rewriting equation (5.1-6a) and assuming a constant perishing

Cq

rate of a, and demand rate of R, the average total cost equation as a
function of g can be written as:

f+ag T
K(q) = qb (q) + b(q) (R) (e?'-aT-1) +Cy /T

a2 (10-3)
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Note however, that q is itself a function of T. Its value is given by

q = R/a [e?T-1] (10-4)

In order to obtain the optimal result for equation (10-3), the
function b(q) must be transformed and rewritten as a function of inven-
tory cycle, T, so that the entire equation (10-3) would be explicitly
a function of T.

Two functional price relationships of interest are: (1) the case
of a linearly decreasing per unit cost as a function of the order size; (2)
the case of a hyperbolic decrease in unit cost after an initial price
break. The equations for these two cases are given as equations (10-5)

and (10-6), respectively.

b(q) = K-bq (10-5)
K 02949

b(q) = ! ¢ (10-6)
K2 +% qe4q ¢ @ '

In the above equations K, Kl’ Ky, and b are all positive constants; de
is an arbitrary quantity defining the quality of the initial price break.
Equations (10-5) and (10-6) can be rewritten as a function of T by

utilizing equation (10-4). Let b'(.) be the transformation for b(.).

Therefore:
b'(T) = K - PR (edT.1) (10-7)
a
Ky 04T T,
b*(T) =§K2 + ab (10-8)
R(e2t-1) T.£T< e

where T = 1/a 1n (1 + 39c).
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Equations for discrete quantity discounts along with the two above

mentioned cases will now be presented.
10.1 Case 1: Linear Discount

By substituting equation (10-7) into equation (10-3) the average
total cost equation as a function of T is determined.

{[K - bR (€T-1)] [(R/a) (e¥T-1) + (R/a?) (fag)
d

(e8T-aT-1)] + C4 z /T (10.1-1)
The optimal value for T can be obtained by taking the derivative of
C(T), setting it equal to zero and then solving for T* by a numerical
method. However by using the Fibonacci search technique one will be able
to obtain the same results in a more direct and efficient manner. By
knowing T optimal, the optimal order size can be found through equation

(10-4).
10.2 Case 2: Hyperbolic Discount

By substituting equation (10-8) into (10-3) the average total cost

equation as a function of T is determined.

C(T) = Kq {}R/a) (e?T-1) + (R/a2) (f+ag) (eaT-aT-l) + C3} /T3
0eTeT (10.2-1)

c(T) = [KZ + ab]%R/a) edT-1) + (R/a? ) (f+ag)(eat-aT-1)+C3} /T3
T.ET4é (10.2-2)

Again by using a Fibonacci search technique the optimal T may be obtained.
10.3 Case 3: Discrete Quantity Discount

In systems with discrete quantity discounts function b(g) is generally

given in the following form.
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by 9149 £4q,
b 9249 £93
b(q) =
by 9n-149%2¢ 9
b, G2y (10.3-1)

In this case, n prices are specified. Lot sizes smaller than 9q
are not allowed. The quantities q;,9ps... are increasing and the
prices bl,bz,... are decreasing in general. The average total cost of
the system can be obtained by utilizing equations (10-3), (10-4), and
(10.3-1). ,

o(m) = R0i (2T -1 +b1.[fi29] (R) (eaT-aT-1)+C3}/T;
: : T1.4T£-T1-+1 (10.3-2)
i=15...,n=1
where Ti is given by

T o=Lan 1+ 39%)
2 e (10.3-3)

Now, the solution procedure for this system is exactly the same as for
nonperishable items with the exception that the cost function must be
evaluated as a function of T rather than q. The procedure is as follows:
1 Let C(T') be the cost of the system for T'=Ti, (i = 1,...450)
2 Let T) be a specific T' such that C(T,"') é.K(T')
3 Let T)' be the largest T for which T, =T.' &T<T,
where T is determined through evaluation of equation (10.3-2).
4 Compare C(T}) and C(T)') and select the smaller of the two.
By knowing the optimal T, the order quantity can be determined
by utilizing equation (10.4)
In this chapter the problem of quantity discounts is discussed when

perishability rate is constant. In order to solve this class of problems,
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one must transform the original price break function into an equivalent
equation which is a function of time. The analysis then follows steps
similar to those of nonperishable inventory items. In these problems, not
only the inventory carrying cost is balanced against the additional price
discount, but the perishability cost is also included. Although it is
known that a greater number of units will perish and become useless, it
is still less costly to order more units because of the discount embedded
in total purchasing cost. Moreover, the average number of replenishments
decreases as in the case of nonperishable items. However, as the perish-
ability rate increases, the number of replenishments per unit time
increases at a decreasing rate. This decrease is due to an increase in
inventory cycle time, more units become deteriorated, and therefore,
shortening the inventory cycle time is not as cost effective as otherwise

might have been anticipated.



CHAPTER XI

POWER DEMAND PATTERN INVENTORY MODELS WITH
CONSTANT PERISHABILTY RATE

In these models, though the demand is known during a given inventory
cycle time, its rate of occurrence is not constant. For example, this
demand pattern exists at many supermarkets, where the demand rate
increases at the latter part of the week while the total demand during
the week stays relatively constant from week to week. To describe the
demand pattern assume that the demand rate is given by the following
equation:

‘ X /th-1 >1/n '

d(t) = - — \— (11.1)

n T
where X is the demand size during a fixed period T. Note when n=1, that
is when demand rate is constant, then X=RT. Equation (11-1) is obtained
by differentiating the inventory status equation for non-perishable
items which is
Q(t) = S-X ."] t/T . (11-2)
(This is the same equation as equation (3-1)). S is the amount of inven-
tory at the beginning of the inventory cycle and n is the index of the
demand pattern.

Perishability of inventory items is a function of the demand-pattern
index. Depending on when the inventory items are removed from the stock,

the number of items that perish will be affected.
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11.1 Case 1: Single Period Inventory Model

with Power Demand Pattern

The differential equation desbribing the inventory level is given as

X tn-l 1/n .
Q(t) + (a)a(t) = =
n T (11.1-1)

In order to simplify the equation, let
A= X

nTi/n (11.1-2)
Equation (11.1-1) may now be written as:

-1

Q'(t) +aQ(t) =-At \Un ). (11.1-3)

The solution to this first order linear differential equation is given by:

n-1

t _
Q(t) = et 5 e [-Ayn]dy + ke @ 02t 2T (11.1-4)
0

where k is the constant of integration. At t=0, Q(t) is equal to the

the initial inventory, which is equal to the inventory lot size 9> that
is,

Q(O) = k = qo,

At t = T, it would be desirable to have no item in inventory, i.e.,
Q(T) = 0.
By using the above boundary conditions, equation (11.1-4) can be

rewritten as

T n'l
0 =e-al g e [-A yn ]dy+ qq e~al (11.1-5)
0

n-1
9p = A S e yn dy (11.1-6)
0

Mow, expand the exponential into its series form,
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T Mlfe (e
q0=A 0 yn Z -—';'—- dy s A (11.1-7)

this can be written as:

ni+n-1
T & aly M
99 = A jzs —— dy (11.1-8)
0 1= il
Interchanging the integration and summation signs,
ni+n-1
= (T &ty
g = AZ —dy (11.1-9)
il
i=0 JO

and then integrating

o0 3 ni+2n-1
a T n
dg = A jz: (11.1-10)
i=0 1§l ni+2n-1
n

Now, substitute for A in equation (11.1-10),
n1+2n 1

X
= —— 11.1-11
10 (n Ti/n ) X/ (ni+2n-1)/n l ( )

which reduces to

ni+2n-2
oo ai T
9 = X Z ( (11.1-12)
i=0 il ni+2n-1

and upon further simplification, to

2(n-1) & (aT)i
90 Q(T " )Z T (11.1-13)

i=0
Note when n=1, that is considering the case of uniform demand,

equation (11.1-13) reduces to:
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N8
5

g = X S AT (11.1-14)
and substituting for X, the value RT,
RT & (am)itl
9 = —_ - (11.1-15)
aT i=0 (1+1)!
qp = R [T - 1] (11.1-16)
a

which is exactly the same result as of the previously obtained equation

(51 -139 for the uniform demand and constant perishability rate.

11,2 Multiple Period Inventory Model

With Power Demand Pattern

Let the inventory cycle be denoted by T' = mT, (m=1, 2, ...). Figure
22 depicts the inventory level for this case. By using equation (11.1-3)

the following can be written:

e, (F &) :
Q(t) = -e3t A e YN Jdy + ke . (11.2-1)
(m-1)T (m=-1) T4t &mT
where km is the constant of integration. Note that at t=mT, Q(t)=0; and

at t=(m-1)T, Q(t) = qu_q-

QL(m-1)T] = q._; = k e"‘('“'”T (11.2-2)
Solving for kp by using equations (11.2-1) and (11.2-2), U1 is obtained.
mT —_
Gpeq = ema(m=1)T KV g, dy (11.2-3)
m=-1)T

Following the same procedure in the interval, (m-2) T&£t4 (m-1)T, the

above process can be repeated.
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(m-1)T (n=L)

Yy M Y4y 4 km-le-a(m-l)T

} - = _e-a(m=1)T »
Q [(n-1)T] = gy = -e j -

(11.2-4)
Substituting for q._; and simplifying
(m-1)T n=1 mT (ﬂll)
Kpop = A Y y M dy + e y N gy (11.2-5)
(m=2)T (m-1)T
which reduces to

T n-1
= ASm ey y(" )dy (11.2-6)
(m=2)T :

km-l

The inventory level and the lot size at t=(m=2)T can now be written as:
)T

0 [(m-2)T] = q_p = k. _je2(M (11.2-7)
mT (a=1)

= ~a(m=2)T ay n
Ip-2 = © eV y o dy (11.2-8)
m-2 Af(m-Z)T

By repeating this process qg is determined to be

Ty (5

qg = Ago Y ¥y dy, (11.2-9)

Substituting for A, and solving the integral by expanding the expo-

nential, the following equation is obtained:

ni+2n-1
e i n
Gy = " Z 2 m (11.2-10)
nTi/n o 5T0 9 ni+2n-1
n
which reduces to o0
qo = & x Zi:‘l) 2 (an)’ (11.2-11)
m

i=0 i!(ni+2n-1)

Again, by substituting one for the value of m, equation (11.2-11)
reverts back to equation (11.1-13). As a approaches zero, equations

(11.2-9) or (11.2-11) reduces to
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(2n-1) 2(n-1
= m " xT1 /(2n-1) (11.2-12)

Note if n is equal to 1, equation (11.2-12) reduces to mX which is the
required amount of inventory for m periods of T duration.

If the average total inventory could be approximated by qO/Zs
the optimal m, that is, the optimal number of periods for which items

should be kept in inventory can be determined through the following cost

function,
Cqq C C
cm = 10+ 341 (qg-mX) (11.2-13)
2 mT mT
this can be rewritten as
o6 .
Ci G4 (2n;1) Zinﬁll ZE: (anT). C3 Gyt
C(m) = + m X T +° -
Z  m i=0 iT(ni+2n-1) mT T
(11.2-14)

The optimal value of m can now be determined numerically by evaluating
c(m) such that the average total cost is minimized.

In this chapter, inventory models with power demand are considered.
A model is derived for a single period power demand, and then it is
extended to a multiperiod model. This class of models are applicable
to situations where the total demand stays relatively constant from one
given fixed period to another; however, the demand rate is changing
within the prescribed period. Potential savings are possible by consider-

ing this demand pattern in many inventory situations.



CHAPTER XII

PROBABILISTIC ORDER-LEVEL SYSTEM WITH INSTANTANEQUS
DEMAND AND CONSTANT PERISHABILITY
RATE FUNCTION

In this class of inventory systems, the costs of the inventory
carrying cost, the shortage cost and the perishability costs are balanced
in such a way that the optimal order level So'is determined. Scheduling
period is a prescribed constant T. Demand occurs instantaneously at the
beginning of each scheduling period immediately after the inventory has
been raised to the level S. Demand x (x=0) has a probability density
function f(x) during the scheduling period T. The inventory fluctuations
of this system are described in Figure 23f

Whenever there are stocks in inventory, there will be a certain amount
of deterioration that takes place. Thus, one must calculate the expected
number of items that deteriorate given a particular demand density during
T.

The change of inventory level, right after the demand has been satis-
fied, given that demand x is less than the order level S is given by:

d q(t) = -aq(t) (12-1)
T

Solving this equation, and considering the boundary conditions, the
inventory level during the cycle T is given by
S t=0

Q(t,x) = X £S (12-2)
(S-x)e~at 02teT
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When the demand exceeds the order level during the cycle time, the equa-
tion for inventory level becomes;
S t=0
Q(t,x) = XS (12-3)
S-x OcteT
Now, the average carrying inventory and the average shortage can be cal-

culated as a function of demand x.

T -
,(x) = 2 S (5x) 2t dt = (sx) (1))
T 0 (12-4)
and
T
Ir(x) =1 5 - (S=x) dt = x-S (12-5)
T Jo

The expected average amount in inventory and the expected shortage

can now be determined to be

S
I.(T) -x) (1-e73T) f(x)d
1(T) 50 (S-x) (1_%,_) (x)dx (12-6)

and

I,(T) = gs (x-5) (x) dx (12-7)

The total number of units that deteriorate during the inventory cycle,

given that there are units in stock, is given by:

D(T,x) = (S-x) (1-e~3T) (12-8)

The expected total number of deteriorating units can be obtained by:
S

D(T) f (5-x) (1-e72T) f(x) dx (12-9)
0

The expected average total cost of the system can now be obtained

by utilizing equations (12-6), (12-7) and (12-9).
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S
c(s) = cly (5-x) [(1-e7T)/aT] £(x) dx +
g ¢ (° -aT
c, f (x-5) £(x) dx + (4 5 (5-x) (1-e72T) #(x)dx
S T Jo (12-10)
By differentiating C(S) with respect to S and setting it equal to zero,

the optimal S can be determined.

S o0
dc(s) = ¢,[(1-e2T)/aT] J/ f(x) dx - C, /f f(x) dx
0 s

S
+ (C4a) [(1-e72T)/aT] So f(x) dx = 0 (12-11)

Simplifying further, the optimal order level 5, can be obtained from
the following relationship.

C
Sso f(x) dx = 2

0 (Cp+acy) [(1-e73T)/(aT)] + C, (12-12)

As a matter of interest, note that as a approaches zero, equation (12-12)

reduces to:

S C
go £(x) dx = 2

¢+ ¢y (12-13)

which is the standard formula for finding the optimum value of S for a
probabilistic-order-level system for non-deteriorating items, as given
by Naddor [61, p. 136].

The right-hand side equation of (12-12) can be readily evaluated,
and the result would be equal to some constant g. The difficulty arises
in determining the value of SO' This can be done explicitly only for a
1imited number of probability distribution functions that have a closed
form cumulative distribution function; otherwise SO must be determined

numerically, though this approach may not be very elegant.
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For some specific cases of interest, the value of SO is evaluated.
12,1 Case 1: Demand is Exponentially Distributed

Let f(x) be an exponentially distributed density function with
parameter (b), then
f(x) = (1/b) e/ s x 0
By substituting this function into equation (12-12), SO can be obtained.

(Cy+aCy) [(1-e73T)/(aT)] + Co
Sp=b In :] (12.1-1)

(Cq+aCy) (1-e72T)/(aT)

By substituting the above value of SO into the equation (12-10), the

expected average minimum cost as a function of $ is obtained.
C(Sg) = (Cy+aCy) [(1-e73T)/(at)]sy . (12.1-2)

Equation (12.1-2) may also be rewritten as:

(Cq+aCy) [(1-e72T)/(aT)] + C,

K = [b(Cp+aCq) (1-e73T)/(aT)] 1n

-aT
(C1+aC4) (1-e”2")/(aT) (12.1-3)

Note as the perishability rate approaches zero, equation (12.1-3)

reduces to:

Ci +¢C
K=bc;n|_L 2 ]
5 (12.1-4)

which is the cost function for nonperishable items as obtained by Naddor

[61, p. 137].
12.2 Case 2: Demand is Uniformly Distributed

Let f(x) be a uniform density function with parameter (b), then

f(x) =1/b; 04xé£b
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Now, by substituting this function into equation (12-12), SO can be
determined.

bCy
SO = (12.2"1)

[(Cp*aCy) (1-e73T)/(aT)] + ¢,

The expected average total cost function as a function of S0 then can be

written by using equation (12-10).

C

C (Sg) = [(1-e73T) (C +aC,)/(2abT)] Sp? + 2 (b-5¢)? (12.9.2)
This equation may also be written as:
. .5b C, (c1+ac4)(1-e'aT)
(Cy+aCy) (1-e73T)+aTC, (12.2-3)
12.3 Case 3: Demand is Weibull Distributed
Let f(x) be a Weibull density function with parameters (b,c), then
£(x) = [c/b¢] x¢-1 e~(x/b)c x30

Again, by substituting the above equation into equation (12-12), SO

can be determined.
(Cy+aCy) [(1-e7T)/(am)] + ¢, ) V/C
S0 = b In

(Cqtacy) (1-e73T)/(aT) (12.3-1)

Note, when c=1, the Weibull distribution is the same as an exponential
distribution, and equation (12.3-1) would be the same as equation
(12.1-1).

Unfortunately, the total cost function for this distribution cannot

be written in a closed form for a general value of parameter c.
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13.4 Case 4: Demand is Normally Distributed

Let f(x) be a normal density function with parameters (u,J). Then

1 gx-u22

- 202
«7?TF'

e y x20
Cummulative normal distribution cannot be written in a closed form;

F(x) =

however, since normal tables are widely available the S0 can be readily
determined. Equation (12-12) can be rewritten as:

F (Sg) =4 (12.4-1)
Where F(x) is a cummulative normal distribution, and g is a constant
obtained through the evaluation of the right hand side equation of
(12-12). Since g is known, the Z value from the normal table can be
readily determined, and hence S, i.e.,

Sp =1 O+u (12.4-2)

In order to determine the value of the expected average total cost, one
must revert totally to a numerical technique for evaluating the integrals
of equation (12-10).

In this chapter a probabilistig inventory model with constant perish-
ability rate is developed. The optimal order level has been determined
for exponential, uniform, weibull, and normal distribution functions. It
is shown that as perishability rate approaches zero, the models reduce to

the inventory models of nonperishable items as developed by Naddor [66].



CHAPTER XIII

PROBABILISTIC SCHEDULING SYSTEM WITH
CONSTANT PERISHABILITY RATE FUNCTION

In this class of inventory systems, the cost of the inventory
carrying cost, perishability cost, and ordering cost are balanced in
such a way that the optimal ordering interval, T, is determined. Demand
x occurs uniformly during each scheduling period T. Demand x

(X s 2 X & ) has a probability density function f(x). The replen-
mins

*max
ishment size is a variable quantity ordered at the beginning of every
scheduling period so that the inventory level reaches S. In this system
no shortages are allowed. The inventory fluctuations of this system are
described in Figure 24.

Since no shortage is allowed in this model, the order level must be

large enough to satisfy the maximum demand, x___, and the total amount

max
that deteriorates during such demand period. Therefore, using the results
of Chapter V models; specifically equation (5.1-13a), the following can

be written:

S = X2y (T) [exp(aT)-11/(aT) (13-1)

The differential equation describing the inventory level during the

scheduling period is given by:

Q'(t,x) + a Q(t,x) = 02t 2T (13-2)

X
T
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where Q(t,x) denotes the inventory level at time t when the demand of x
units occur during the scheduling period T. The solution of this equa-
tion is given by:

Q(t,x) = [Se™@t - X_(1-e73YH)] 0 2t &7 (13-3)
aT

The average carrying inventory during any scheduling period, Il(x),

is then determined by integrating Q(t,x) of equation (13-3).

.
I, (X) = l{ Q(t,x)dt

-1 [ (s« Sa-eTyra]) -(a ] (13-4)

The expected average carrying inventory can now be determined.

I,(T) =}Xmax I () F(x)dx
Xmin

= -1-[(5 + m) (1-e‘aT)/a - x(T)/a_J (13-5)
T aT

Where X(T) is the mean demand during the scheduling period. Let R be
the average rate of demand, therefore,

R = x(T)/T . (13-6)

The average replenishment is given by

Iy(m) = y1 . | | (13-7)
The average deterioration during any scheduling perijod is determined by:
D(x) =[S -x-Q(T,x)] . (13-8)

T

The expected average deterioration then becomes,
Xmax
D(T) =j D(x) f(x)dx

{F - X(T) - [seal - x(T)(l-e'aT)/aT{Z (13-9)
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Now, the expected average total cost of this system can be written

as a function of T.

C(T) = (Cy+aCy) {[Xmax(T)(eaT-1)+RT](l-e‘aT)/(aT)Z ) g; Jr_c_.?r
a

(13-10)
In order to find the optimal schedulng period, it is necessary to
know only the function Xnax (T)* Following Naddor [61], let

X . (T) = x(T)A(T) = RTA(T) (13-11)

max
where A(T) is some function relating the maximum demand during any
period T to the average demand during that period. Substituting the
value of Xmax Of equation (13-11) into equation (13-10), yields the
following useful equation.

K(T) = (Cy+aCy) g‘RT[1+A(T)eaT-A(T)](l-e'aT)/(aT)Z - R/a } + 5_3

(13-12)

Two special cases of A(T), will now be considered.
13.1 Case 1: A(T) =k

This is the case when the ratio of maximum demand to the average
demand during any period T is assumed to be a constant k. By substi-
tuting this value into equation (13-12), one obtains the following

equation:

C(T) = R (C1 + aC4) il-aT-e-aT-2k+2kcosh(aT)}+ Cs (13.1-1)
3z T T

The optimal inventory cycle time, T*, can be readily determined using
the Fibonacci search technique; knowing T*, the value of S can be

determined by
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s = kKR (g3T* 1) (13.1-2)
a
When k=1, that is when demand is detemministic, equation (13.1-1) reverts

to the lot size system of Chapter V. (See equation (5.1-6a)).
13.2 Case 2 A(T) =1+ b/T

This is the more realistic situation where the ratio of the maximum
demand to average demand during the inventory cycle, T, is dependent on
the value T. In this case b is a positive constant. Substituting this

equation into equation (13-12), one obtains the following equation:

o(T) = R(Cyracy) [2b cosh(aT)+TeaT-Tb-aT2-T-b]+ o

a2 T2 T (13.2-1)

Similarly optimal inventory cycle Time, T can be determined using

Fibonacci technique. The value of order level S is given by
S = (R/a)(1+b/T") (e3T"-1) (13.2-2)

In this chapter the objective is to determine the optimal inventory
cycle time when the order level is prescribed and demand is probabilistic.
For the models developed, it is not necessary to know the probability
distribution of demand explicitly, only the functional relationship
between the maximum demand and the average demand is all that is required
to find the optimal inventory characteristics. As in previous models,
as the perishability rate approaches zero, the inventory models of

nonperishable items are obtained.



CHAPTER XIV
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The purpose of this concluding chater is to summarize the research
efforts, draw conclusions, and make recommendations for future research.
First, a review and summary of each chapter is presented; then findings
and relevant results are discussed; and finally, recommendations for

future research are stated.
14,1 Summary

The efforts of this dissertation represent an attempt to develop
mathematical inventory models that can be used to obtain optimal replen-
ishment policies for products which are subject to a continuous deterior-
ation (perishability) while in stock. Consideration of perishability in
mathematical modeling and management of perishable items is one of the
most challenging and potentially fruitful areas of research.

Chapter I serves to introduce the inventory problem. In partic-
ular, the general effect of perishability on items while in stock is
discussed. Also, the research objectives of the dissertation are stated.
Chapter II reviews the pertinent inventory literature on the topic of
perishable items and represents the various classifications of perish-
ability. Chapter III defines and explains the specific terminology,
notation, and the various common assumptions that are utilized in the

development of inventory models in the subsequent chapters.
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Chapters IV and V describe the mathematica] models of inventory lot
size systems with alternative types of perishability functions. The
models developed in Chapter IV are better-suited for inventory situations
with high obsolescence, especially models I-a and I-b. In contrast, the
models derived in Chapter V are more appropriate for items that are subject
to physical deterioration. In the case of models of Chapter IV, when the
perishability rate is constant, it is shown that similar results can be
obtained by using the standard EOQ model with an adjusted inventory carry-
ing cost.

Chapters VI and VII develop the finite production rate inventory
system with and without backlogging considerations. A number of pro-
duction rate functions have been investigated. The analysis of varying
production rates is an important factor in determining the optimal inven-
tory characteristics especially when the learning (improvement) curve
is present in a production system.

Chapter VIII discusses the order level inventory models with constant
perishability rate. Both Tinear and nonlinear deterministic demand have
been examined. A discrete-in-time order level inventory model has also
been analyzed through the use of calculus of finite differences.

Chapter IX presents two unique finite horizon inventory models.
Linearly increasing, and exponentially increasing demand functions with
a constant perishability rate are analyzed. The objective is to deter-
mine the optimal number of orderings within the specified time horizon
and the corresponding replenishment size.

Chapter X discusses the effect of quantity price discounts on the
inventory analysis of perishable items. In order to solve this class of

problems, quantity price breaks must be transformed to a new equation
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which is a function of time. The optimal inventory characteristics then
can be solved using steps similar to the nonperishable items.

Chapter XI presents a special case of power demand pattern. The
effect of demand pattern and perishability is analyzed for a single
period model and then it is extended to a multiperiod model.

Chapters XII and XIII each describes a probabilistic inventory
system. For the model developed in Chapter XII, a number of probability
distributions are considered for determining the optimal inventory
characteristics. For the model of Chapter XIII, no specific knowledge
of the demand distribution is required, albeit the relationship between
the maximum demand and average demand must be specified. These two
models are extensions of nonperishable inventory models as developed by

Naddor.
14,2 Conclusions

Based on the results of inventory models derived in this research

the following statements can be made:

1. Perishability has a significant economic impact on the optimal
inventory cost. The possible savings associated with the models
developed in this research as compared to EOQ models is dependent
on the cost parameters and the perishability rate of each
specific problem. For example, given a set of cost parameters
in a constant perishability model (see Appendix A), a cost
reduction between .45% to 15.65% occurs as the rate of perish-
ability increases from .1% to 1%. Because the cost savings is
chiefly problem-specific, an interactive FORTRAN program is

developed to calculate the optimal inventory characteristics
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and make comparisons with the EOQ model. The program also
conducts a sensitivity analysis for a range of perishability
rates. In addition, it furnishes a menu for selecting other
perishability models so that the user can decide on the proper
model and the proper perishability function.

The solution methodology of this paper has emphasized the
determination of the exact total cost equation. By obtaining
such equations, search techniques can be used to obtain the
optimal inventory chracteristics such as optimal replenishment
size, cycle time, etc. An example, a problem presented by Shah
and Jaiswal [88], is solved using thfs methodology (see Appendix
B). The results indicate that the proposed methodology is
superior to the EOQ model, and in comparison to Shah and Jaiswal
methodology, cost improvements of .49% to 11.1% are possible
depending on the perishability rate (.02 a .10)).

In the order level inventory systems, it is shown that the time
at which the inventory level reaches zero is not a function of
the demand pattern. However, the demand pattern must be con-
sidered for determining the optimal replenishment size.

The sensitivity analysis of perishable models indicate that as
the perishability rate, or perishability cost increases, the
replenishment size, q (or order level S), and the inventory
cycle time T decrease. But q and T increase, with an increase
in replenishment cost. The average total cost, as expected,
increases as any of the inventory parameters increases, though

it is less sensitive to the inventory holding cost.
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14.3 Recommendations

In order to reduce inventory costs, it is expedient for those in
charge of inventory management of perishable items to use the findings
of this research in their decision making process. For future research,
it is recommended that further efforts be devoed to the following areas.

1. Development of mathematical methodology for discrete items that
are subject to deterioration.

2. Investigation of Deterministic and Probabilistic Reorder-Point,
Order-Level System (i.e., (s,S) inventory policy) for perishable
jtems.

3. Comprehensive sensitivity study of each model and its relation
compared to other models developed in this paper, similar to the
efforts of Jones [51], for inventory models of perishable items.

4, Investigation of discrete-in-time order-level inventory models

_for linear and various types of power demand for perishable items.

5. Investigation could be pursued in the analysis of additional
demand patters in the order level inventory system. Also,
extensions of finite production rate inventory systems are
possible by considering additional nonlinear production rate
functions.

6. Development of probabilistic inventory models for perishable
items may be a rewarding possibility. Excepting the references
[48], [90], and [91], there has not been much work done in this
area.

7. Application of these models to non-inventory situations, such as

financial analysis. Since money can be considered a perishable
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item, especially during high inflationary periods and high inter-
est rates. Under these severe economic conditions the methodology
and models of this research are even more useful for decision-
making purposes than before, especially in banking and fianancial
markets.

An interesting but probably a difficult generalization would be
to allow the items arriving into inventory to have a mixed
perishability distribution function. For example, for the
simplest case of exponentially distributed deterioration, items
are subject to two or more different rates of deterioration due
to environmental, manufacturing, or other reasons affecting

them.
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Program Description

This appendix describes the computer program used to evaluate the
optimal inventory characteristics of the models developed in Chapter IV.
A description is made of the output from the program. A sample of out-
puts and the listing of the program is presented at the end of this
appendix.

The program consists of a short main program and one major subrou-
tine., The main program asks for the inputs consisting of purchasing
cost, carrying cost, ordering cost, perishability cost, and the demand
rate. The program then provides the user with a menu, so that he may
use the desired initial model. Upon selection of a model, the program
is transferred to subroutine MODEL I. In this subroutine, appropriate
calculations for the chosen model are made, and the program transfers
back to the main program. Then, the user is asked if additional anal-
ysis with a different model is desired. If yes, he is given an oppor-
tunity to change any of his input parameters. Since the program is

interactive, there are no user requirements for this program.
Program Output

A definition of the variables in the output tables is given below,

with the subsequent example outputs of the program.

1., A,B,C parameters of perishability
2. OPT T* optimal inventory cycle time
3. OPT Q* minimum average total cost
4, MIN COST minimum average total cost

5. OPT PER optimal number of units perishing



6.

7.

COST-EOQ

PER-EOQ
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average total cost, if an EOQ model is used
instead of the perishable model

Number of units perishing, if an EOQ model is
used instead of the perishable model



LOT SIZE INVENTORY--MODEL I

INFUT YOUR UNIT COSTyHOLDING COST»ORDERING COST
ANLDY FERISHARILITY COST(THIS MAY RE EQUAL TO THE UNIT COST).,
ANDN YOUR DEMAND RATE IN THE FOLLOWING ORIDER;

co +C1 »C3 yC4 yR

|
THEN FRESS THE ENTER KﬁY
7
+37.005,50,.5,100

UNIT COST = 0.50
HOLDING COST = 00,0050
ORDERING COST = G50.00
FERISHING COST = 0.50
DEMAND RATE = 100,00

IS EVERYTHING CORRECT 7 IF YESy TYFE 1
OTHERWISE TYFE O AND FRESS THE ENTER KEY

7

1

SELECT THE DESIRED MODEL FROM THE MENUE & TYFE IN
ITS RESFECTIVE NUMREBER: THEN FRESS THE ENTER KEY

691



KKK K MODEL. I-A KKK K

1+, CONSTANT FERISHAERILITY RATE

2, LINEAR FERISHAEILITY RATE

3. QUADRATIC FERISHARILITY RATE
4, EXFONENTIAL FERISHAERILITY RATE
KKAOKX MODEL I-H KK KKK

S+ CONSTANT FERISHARILITY RATE

6. LINEAR FERISHARILITY RATE

?

9

TYFE IN YOUR ESTIMATE OF THE VALUE Ay

THE FERISHARILITY CONSTANT ( O < A <.9 X )

991



MODEL I-A--CONSTANT FERISHABILITY RATE

n OFT Tx OFT Qx MIN COST OFT FER COST-EOQ

) 14,142 1414,214 7.07 0.0 7.071
+0010 12,899 1306.55¢E 775 16.64 7.785
«0020 11,935 1222.015 8.38 28.49 8.499
L0030 11.15% 1153.,303 .94 37,364 2.214
+0040 14,518 1096.008 ?.G1 44,25 ?.928
+0050 .975 1047.261 10.02 49,75 10,642
0060 Y.509 1005.122 10,52 34,25 11.334
<0070 ?.102 268,215 10.99 0799 12,070
0080 8.744 $35.534 11.44 41416 12,784
0020 8.425 06,326 11.87 63.87 13.499
» 0100 8.138 880.013 12,29 66,22 14.213

00 YOU WANT TO TRY ANOTHER VALUE FOR A 7
TES (1) /NO(D)

"

O

00 YOU WANT TO TRY A DIFFERENT MODEL 7 IF YES»
TYFE 1, OTHERWISE TYFE O AND THEN FRESS THE ENTER KEY

?

1 - - - . -
SELECT THE DESIRED MODEL FROM THE MENU & TYFE IN
ITS RESFECTIVE NUMBER: THEN FRESS THE ENTER KEY

FER--EOQ

0.0
20.00
40,00
50,00
80,00

100.00
120,00
140.00
16G.00
180,00
200,00

L91



MODEL I-A--LINEAR FPERISHABILITY RATE

A E OFT T OFT Q% MIN COST OFT FER COST-EOQ FER-EOQ

.0 .0 14,142 1414,214 7.07 0.0 7,071 0.0

¢ +0010 8,380 887,395 9.83 31.34 12,121 141,42
.0 0020 7166 733.401 11,38 36.80 17171 282.84
e L0030 5402 H7¢ . 542 12,52 39.36 22,221 424,26
JO010 L0 12,899 1306.558 7475 146,464 727805 20.00
+0010 L0010 8.327 868,535 10,26 35,81 12,835 161.42
L0010 L0020 7.033 743,006 11,72 39.74 17.885 302,84
L0010 ,0030 6+309 672,502 12.84 41.464 22,935 444,25
L0020 L0 11.935 1222,013 8.38 28.49 B.,499 40.00
«0020 .0010 8.109 850,672 10.67 392.81 13.549 181,42
+0020 ,0020 6.906 733.047 12.07 42,47 18,599 322.84
+0020 L0030 6+219 665,659 13.15 43,80 23.649 464.26
«0030 O 11.15¢9 1153,303 8.96 37.36 P.214 60.00
.0030 .,0010 74+903 833,700 11.08 43.41 14,264 201.42
.0030  ,0020 6.783 723.33 12,42 5,01 19.314 342.84
+0030 .0030 6.131 658,926 13.46 45.84 24,364 484,26

[0 YOU WANT TO TRY ANOTHER VALUE FOR A & B 7
YES(1)/NOC0O)

891



MODEL TIT-A—-—QUADRATIC FERISHABRILITY RATE

A

R

c

OFT Tx

OFT Q%

MIN COST

OFT FER

COST~EOQ

FER-EC

et et e o hone et e et e e fome s ot Se Seu mes sees Seee e ews Seen ss s ewe et St S804 Siee Gwme Sems Sse bt et e e ame et o e e Svee $et PAeS Ve Seve Soae Sews e Pt o Seoe ewe Sit beee beve Geen fea beve beae boms ea e e ees bome e e ot end Soe s Tt Seme beve meee seee ems e m Set o

OO
.0
+0
.0
QO
+0
00
.0
+ 0
<0
.0010
0010
.0010
0010
0010
0010
0010
0010
. 0010
L0010

+0010
.0010
0010
+0010
0010

.0

+0002
L0004
+ 0006
0008
+ 0

L0002
+0004
0006
L0008
«0

L0002
+ 2004
L0006
L0008
. O

«0002
0004
L0008
L0008

14,142
74689
64630
6.05
5.676
8.560
&.841
b.147
5.718
He412
2,899
7.952
&Ee548
5.998

ury

H.H27
8,327
be742
65.078
S.564
be 367

1414.214
791.744
688.720
632.8446
595.280
887.395
714,724
645,323
60~ + d4}
572,011

13046.55
782,600
683,553

")\;) ’7’)6
592.583
868.535
707,854
640,218
599,233

S569.456

7.07
?.96
11.16
12,01
2,69
?.83
11.28
12,19
12.89
13.47
7475
16,34
11,49
12,32
12.98
10.2
110\.).'_
12,50
13.17
13.74

0.0
23,25
25.76
26,95
27 .68
31.36
30.61
IO, 65
3G.73
30.80
16,64
27,39
28,79
29,47
)(" O
35.81
33.44
33,12
32.87
32.74

7,071
16,593
26,116
35,638
45,161
12,121
21,643
31,166
40,4688
50,211

7,785
17.308
26,830
36,352
45,875
12,835
22,358
31,880

41,402

50.925

0.0
266467
533.3¢
800 .0O(

1066.67
141,42
408.09
674,78
P41.4:

1208.,0¢

20.0¢
286447
3553.3:
820, 0¢
1088.67
161.4:2
428,09
624,78
P61, 4%
1228.09

691



MODEL I-A-~EXPONENTIAL FERISHARILITY RATE

A E OFT Tx OFT Qx MIN COST OFT FER COST-EO0Q FER-EOQ
+0 + 0030 14,142 1414.214 7,07 0.0 7,071 0.0
+0 0150 14,142 1414.214 7.07 0.0 7.071 0.0
+0 0250 14,142 1414.214 7.07 0.0 7.071 0.0
+ 0 . 035 14,142 1414.214 7.07 0.0 7.071 0.0
+0010 .0050 12. 28 1299.793 7477 16.99 7.811 20.72
+0010 .0150 678 1285.502 7.82 17.70 7.867 22,28
+0010 L0250 - 2.518 1270.245 7.87 18.40 7,928 23.99
+0010  .0350 2,350 1254.,106 7.92 19.08 7995 25.88
.0020 L0035 11.832 1212.038 8.41 28.84 8.551 41.45
0020 L0115 11,621 1191.615 8.49 29,51 8.5662 44,56
0020 L0250 11.40& 1170.713 8.47 J0.11 8./83 47 .98
L0020  .0330 11,189 1149.499 8.65 30.65 8,919 91.75
0030 .00350 11,042 1141.786 ?.01 37,60 P.291 52417
0030 .0150 10.806 1118.674 ?.11 38.03 ?.458 66.84
,0030 .0250 10.572 1095.615 ?.21 38.38 ?.641 71.97
0030 ,0350 10.341 1072.750 ?.31 38.65 ?.843 77.63

0L1



MODEL I-E —-—-CONSTANT FERISHABILITY RATE

A OFT Tx OFT Qx MIN COST OFT FER COST-EOQ FER-EOQ
) 14,142 1414.214 7.07 0.0 7.071 0.0
.0010 12.899 1298.348 7442 8.43 7423 10.14
.0020 11,935 1208.118 776 14,59 7765 20,58
0030 11.159 1135.270 8.09 19.33 8.097 31,33
0040 10,518 1074.833 8.40 23.09 8.419 42,40
005 9975 1023.,690 8.70 26,18 8.730 53,80
00560 ?.509 79,638 8.99 28.77 ?.032 65,56
0070 ?.102 941,190 +28 30.97 ?.323 774469
.0080 8.744 207,253 ?.95 32.68 ?.605 ?0.20
«0090 8.425 877,009 ?.81 34,56 ?.874 103,13
0100 65.133 849,834 10,07 34605 10.137 116.47

1.1




MODEL I-B--LINEAR FERISHAEBILITY RATE

A 3] OFT Tx OFT Qx MIN COST OFT FER COST-EOQ FER-EOQ
) .0 14.142 1414.214 7407 0.0 7.071 0.0
.0 0010 14,087 1451.079 8.59 42.38 8.601 42,85
.0 + 0020 14,050 1482.178 2.85 77,20 ?.877 78.57
0O +0030 14,024 1508.913 10.91 106,49 10.956 108.78
.0010 O 14,135 14323,329 7.42 ?.85 7,423 ?.86
+0010 .0010 14,082 1458.860 5.89 30,71 8.902 91.29
0010  .0020 14,046 1488.980 10.11 84.40 10.138 85.89
.0010 .,0030 14,022 1514,964 11,13 112.81 11.186 115,22
0020 O 14,127 1432,112 7476 19.41 7786 19,45
L0020  .0010 14,076 1466 .392 ?.18 08.81 ?.196 G92.51
Q020 L0020 14,042 1495,591 10.34 ¢1.41 10,393 ?3.04
+0020 .0030 14,019 1520.872 11.36 118.99 11.411 121,53
+0030 .0 14,119 1440,568 8,10 28.69 8,099 28.78
+Q0030 .,0010 14,070 1473,681 947 66,70 ?.482 67452
.0030 ,0020 14.038 1502.017 10.61 28,25 10,643 100,03
«0030  ,0030 14.016 1526.632 11,58 125.03 11.631 127,69

eLT
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QCO20
Q0G30
QG040
00050
00040
00070
30080
QG050
00100
20110
Go120
GO1L30
D140
Qo150
00140

00170

20180
30190
QO200G
GOILG

)

GO2UEG
SO2EQ
0270
Qo280
002%0
Q0300
DOJLO
00320
00330

tf:
e
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L1
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FORTRAMN CONES FOR THYEHTORY HO0ELS OF
TTERS SUBJECT TO LETERIDRATION

: FROGRAMMED RY
\ FERAIDOON RAAFAT

‘ i MARCH 1981
Kok R OK R RO R HORR KRR

¥
LOT SIZE SVSTEMS

T

3o M O MR K

*
X
MODEL I *
*
&

SET THE THFUT-OUTFUT UNIT NUMEBERS

TOUT=&
READ THE TRVENTORY PARAMETERS- SEE GLOSSARY FOR DEFINITIONS

WRITESCTOUTy100) ,
100 FORMATCOIHL 7y 1aX ey TLOT SIZE INVENTORY--HODEL 17772
104 WRITECIOUTy108) :
105 FORNATCLXy “INFUT YOUR UNIT COST»HOLDING COSTy "y
TAORDERTING COST/» /10Xy 76ND PERISHARILITY COST
2OUTHIS HaY BE FQUAL TO THE UNIT CO8TYe 771Xy

€Ll




I7AND YOUR DEMAND RATE IN THE FOLLOWING ORDERS 7"/

477 GO +0CL vyU3 vCA sR 7/

971Xy TTHEN FRESS THE ENTER REY'/
READCINYKICOsCLyC3yCAvR

G VALTDATE THFUT DATACECHO FRINT)

'UQHO WRITE(TOUT»112) CO»C1yCIol4vk
0340 112 FORMATCLXAZ1Xs PUNIT COST = “yF10.2s /1Ky "HOLII? »
Q0470 17ING COST = “yF10.4y/1Xy "ORDERTHEG COST = “4yF10.,2y
H& _@/1Xy "PERTISHING COST = “yF10.2y /11Xy "IEMAND RATE = 7,
JF10.2/7)

”OUUU [
DOH10 WRITECIOUT»115)

00"0 115 FORMAT(1Xy 718 EVERYTHING CORRECT @ IF YESy TYFE' s

5 17 17/71Xs "OTHERWISE TYFE 0 AND FRESS THE ENTER KEY'//)

uU;lu ¢
Q0IED € REREAD THE FARAMETERS IF THERE I8 ANY FRROR IN INFUT
QOHLO ‘

QOE70 READCIN X)) IWORD

00580 IF(TWORD.NE.1)GO T0O 104

DOEHG0

DGEO0 € THIS IS THE MENUE OF AVA&ILARLE HMODELS

Q0&10 € :

DO&20 118 WRITESIOUT» 120

120 FORMAT(LXy “SELECT THE DESTIRED MODEL FROM THE v

37 THE ENTER KEY /71Xy S fkE¥k MODEL T-~@ CORKERX S
ALKy 71 CONOSTENT PERISHABILITY RATE ./

G172 LINE uf\ FLR l‘")lluIt LTy F\n'l'lff.' e

S RN AN b L CSHABILITY K
Oy 74 ERPONENRTIAL PERISHARILITY Ratl /7
PLAy THFERE MOGEL T-1 b 3 XS
Tixy 7%, COMNSTANT FERISHABILITY R i

PR A LTiak PERISHABTLITY RaTE /0

g s
|

8

v .

17 MENUE & TYPE IN’/1Xs ITS RESFECTIVE HUMEER: THEN PRESSHS .

1ZA¢



QO730
QO74AG

Q0760

UOuUU
GOB1a
00820
Q0830
‘Uu A

ﬁﬁﬂ,u
008! ’()
\)f)ir

(0)\'
00210
Q0%20
009230
00940
DOG0
00240
Q0?70
00" ’tl()
00990
01000
01010
01020
010Z0
01040
D050

[
¢

QOFH0

[

(

C

G
(1
¢
l

oo OO s

SELE

Cal.l.

124G

127 FORMAT (1X/1Xy 'II0 YOU WANT TO CHANGE YOUR INFUT S

17 TOIF OYES TYFE 1y OTHERWISE TYRE

”~y
A

CT & MODEL FROM THE MENUE

REATICINY ¥)KK

THE SUEBRIOUTINE MODRELI TO HAKE
D CalTCULATIONS AND FRINT THE RESULTS.

THE

Call. MODELICIN,IOUT»CO»CLyT3yTAyRyRK)

WRITECIOUT»125)

FORMGT CLXS

TV

1y

11X 700 YOU WanNT TO TRY

OTHERWISE TYFE O AND

TIN5 TWORD

TF(IWORDILEQ.1)G0O TO 118

WRITE(TOUT»127)

FARGIHETERS

ﬁ»

T

COAND THEN PRESS THE ENTER KEY”//)
READCIHy %) TWORI
IFCIWORD.EQ.1)60 TO 104

S5TOF
END

HEN FRESS

**##******k***********k%&*r*

-r?c'é'.‘ﬂé*

“t
“

SUEROUT THE

SUBROUTINE MODELT

e by e ebe ke «.{, PUPRUPRY IR PRTPRY IR
DDA N S A A PR N A

,_
.,
-ﬁ
#t
3
s
-,;-

HOGELT (IR TOUT»CO»CL o O

==

S SR S
e W &4

.\-

e Ay Ry KIK )

DIFFERENT

AFFROFRIATE

violizl, T OIF VER

THIE

O

ENTER KEY

L

£

SL1



010560
GLO70
01080
DLOPG
¢1100
01110
01120
31130
01140
01150
01L1&Q
GlLi7¢
or1ad
01190
G1L200
012210
01220
01230
01240
01230
012560
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01
13

01400
01410

C

oo EwEw]
[ B A A B A |

THE

THE

THE

THE

~=FFUNCTION DEFINITION RLOCK
ORDER QUNTITY FUNCTIONS OF MODELS 14

QLCTrA)=REXTHRCL  +AXKT)

Q2CT»As BI=RETXCL o +AXTH  SORKBATHKE)
Q3CTeAYByCI=RETHECL o FARKTH L SORERTEKZFOKTHXI AT )
RQACTy Ay EY=RETR (1o +AKEXF (BXT) /BE-A/R)

QE Ty A =RETHCL o 4+, S5OKAXT /(L. ~AXT) )

RaiT Ay BI=RETHCL.H (3, *é*T!B*T?*’)x(u..n.kﬁ*T+3e$E$T**ﬁ)f

FERISHABILITY FUNCTIONS OF HMODELS 1-6

DL{Ty &) =QLCT vy ) ~RET

LTy BY)=QI(Ts Ay R)-RXT
DE3CTyAsBCI=QR3{TyAs B+ CI)-RXT
DACTyAYB)=QA(TyAy B ~RXT
DECT e AY=Q3(TrH)~RXT

DECT Ay BY=QE(Tr Ay B)~RXT

COST FUNCTIONS OF MODELS 1-6

CITC(TyA) = SOXCLARXTHCI/THCLHCA) KRKAKT
C2TCT»AYBY=CIT(TsA) . S50XKCLICAI KREBET R KL
CITITyAYByCI=C2TATyAsRIF(CLECAI KRAXCKTRXI/ 3,
C?T(Trh!ﬁ):.;OKFI*R*Ti(F]+F4)*(R$A/B)*(EKF(B*T) -1 +C3/T
COTAT»AB) = GOKCLARKT+ . S0K(CIHCA K (L. ~AXTIKRKAXTHCI /T
Jml(frnvh)u'qO*Ll*ﬁ*TiLJ/Ii((LliL4)’T)*Dé«Trurh

OFTIMAL CYCLE FUNCTIONS OF MODELS 2-&

TA2CT e D030, IUH LARRACCLHCA Y % (R ll‘”\ !\In T3

(Tolivle (G (e f]?hlk(]fVﬂ IR T e A T e
THCT vy =07 ¢ 3
VO e el

9.1



01420 Y6(TrArE) =03/ ( SOKCIARH (CCLHCAI K (S KAHS . KAKE+4  KEXT-10,
01430 LRAKBRTARD )/ (Fk (202 KAKTHEKTHKD I K%2)))
01450
01460
01470
01480 TEOR=SORT (2, #C3/ CCLER) )
01450 TINV=L, /TEOR
01500 ¢

01510 GO TOCLO»20y 305409505607 70) 1KK

CYCLE TIWME IF EOQ MODEL IS USED

£ e CONSTANT MODEL I-A

10 WRITECIOUTy100)

100 FORMATOLXZ1Xy “TYFE IN YOUR ESTIMATE OF THE VALUE &’y
1/1Xe “THE FERISHABILITY CONSTANT ( O < & <.9 % 0 77

01 no WRITECIOUT»101)

01590 101 FORMAT(LXs 7A = )

01400 READCINy %) i

01610 IFCALLE.TINVGO TO 106

01620 WRITECIOUT» 107 TIRY

01630 107 FUhMuI(l(ziny’PERISHﬁBILITY COEFFICIENT(S) MUST RE‘,

01640 171X SMALLER THAN = “yFS5.4+//)

01&.)\)

") l \)nU

DETERMINE THE RANGE & INCREMENT OF &
FOR THE PRINTOUT

——
SO0

QL&D 106 Ab=a/2
01700 DEL 1=, ()k) 1
f) 1 ,’J 0 C :
’ WRITECTOUT » 1 103 ,
110 FORE ’l.uf CLHL A2 17Ky “HODEL IT-A--CONSTANT PERISHABILITY RATE»
VAV E 203Ky Ty RXy TOFT TR Sy TOPT Qi v 45y

H I ll l (l*,l y 2Ky TOFT FPER»2Xy "COST-EOQ " » 3xy "FER-EQQ" S

LLT



01776 €

01780
01790
01800
01810
01820
01830
01840
01850
Q186G
Q1870
01880
018%0
01700
01910
yF7.2)
01920
017230
01940
TLR50

D170
01980
01690
Q2000
02010
02020
QG330

Q2040

02050

02040

02070
Q2080
D2020

G THE FOLLOWING LOOF CALCULATES THE INVENTORY
L CHARACTERISTICS FOR THE VarRIOus ValUES OF &
G :
ng 200 J=lyld

f=lib

TF(ALGTWTINWD GO TO 123 ’

TOPFT=5QRT{(2.KC3/CCLRRF2 kAR CCLRRYCARR Y )

QOFT=Q1(TOFT A ;

COFT=CITLTORT v &)

HOFT=D1CTOPT &)

CEOQ=CLT(TEOQ &)

DEOQ=D1(TEQQ»A)

)

WRITECTOUT 12006y TOFPT s QOFT» COPTy DOFT » CEQG» DEOQR

120 FORMATOLXNpFO 33X FP 33Ky FP 3B FE 2y 3 FE 23Xy 303X

Fora FDEL

200 CONTINUE

IF aMOTHER TRIAL I8 REQUIRED
WNT PARAMETER

P CHECK TG SEL
WITH & LIFTT

— ey g
TP R U

123 WRITECTOUT 12490

124 FORMAT(LX/71Xy 710 YOU WANT TO TRY ANOTHER? »
T2 VabLUE FOR A B/ LXy "VES L2 AN0C0Y 7 )
REATICIN %) TWORD :
ITFCTWORDLEQR. 160D TO 10
RETURN

oL INEAR HODEL L
20 WRITECIOUT130)
130 FORMAT (1X/1X, TYPE IN YOUR ESTIMATE OF THE
1/10 7 aN0 BOTHE PERTSHARILITY COEFFICIENTS

¢

WAl UES

1y s

X
iy

@

Q)

¥

v

4

AR

8L1




02100 WRITE (IOUT»101)

02110 REALCINY ¥ A

02120 WRITE (TOUT»102)

02130 102 FORMATC(1Xy ‘L = 7)

02140 READNCINy KO T

02150 IF (A LE.TINVLORLELLE. TINVIGO TO 206

02160 WRITECIOUT»107) TINV

02170 C

02180 € DETERMINL THE RANGE & INCREMENT OF A & B

02190 C FOR THE FRINTOUT

02200 C
; 206 OA=ASD.

DEL1=,001
RE=E/2,

BT=EE

DEL 2%, 001
WRITECIOUT135)

125 FORMAT CLHL/ /517K *MODEL [-A--LINEAR FERISHALILITY RATE
1/ /1%y BOC =) /3y "B y6Xy "Ry 72Xy "OFT TR’ y5Xs OFT QK ¢ 5X»
2YMIN COST/y2Xy ‘OFT FER’»4Xy ‘COST-EDQ’ » 3Xy
3 FER-EOR’ /1y BOC =) /)

THE FOLLOWING LOOF CHLCULATES THE INVENTORY
SO CHARACTERISTICS FOR THE VARIOUS VALUES OF A

ook
L LD

Q2340
02350 ' nog 202 J=1e4
023860 AEOi
0037 IFCALGT.TIRWGD TO 223
oo 204 K o=1e4
E=RE
02400 IFCB.GT.TINVIGO TO 204
02410 i TO=TEOQ
00420 FO=Y2¢TOvArR)
02430 219 T1=8QRT(FG)
{ S0 FlﬂYﬁ(leﬁyB)
Q2AE0 TFCABSCFL-FO)Y o LT e s Q0L ORVABSCTLI-TO) LT, +0010G0 TO 221

6L1



02440 TO=T1

02470 FO=F1
02480 GO TO 2179

02470 221 TOPT=T

Q20 0() QOPFT=Q2CTOFTy Ay B

2 COFT=C2TCTOFTyA Y R)

2 LDOPT=D2ACTOFT»Ay R

2530 CEOQ T{TEOQy &y R)
02 40 RBEOQ=D2(TEOQy Ay B)
3¢ NRTTV«TUUTv121)HrﬂvTﬁFTyGOFvaDFTyﬂUrTyFFUQvHEUG
ey f(lfﬁnfkl\ F"?.Qy, yl‘3.$v1xyffﬂ.¥rfkrl 2 A 2N FB v 4Ky

l. . F.le 9' ))

¢ ' bx 34

() ";‘?0 204 L(]NIINUI

02600 LBE=LT

02610 Af=aa+DELL

02620 203 CONTINUE

024630
024640
024630

02660 .
02670 223 WRITECIOUT»224)

02680 224 FORMAT(1XSLEy 700 YOU WAENT TO TRY ANOTHER »
026920 12 VALUE FOR A & B T//»1 %y "YES{1)/NOCO)Y 7/
02700 READCIHy %3 TWORTD

02710 TFOITWORDLEQ. 1XGO TO 20

02720 RETURN

02730 C

02740
2750 C

02760 0 WRITECIOUT132)

02770 132 FORMAT(LX/71K "TYFE IN YOUR ESTIMATE OF THE VALUES &y 7y
02780 1/1Xy "By AHLO © THE PERISHARILITY COEFFICIENTS 7/

02770 A O N TR 2 | B - T M ¢ A e

02800 WRITECTOUT: 1019

QR0 RESDTTH %30

CHECK TO SEE IF ANOTHER TRIAL IS REQUIRED
WITH & DIFFERENT P&aRAGMETER

ooOon o

~
193

= FQUADRATIC MODEL XA

081
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OUS170 IFCABS(F1-FO) o LT+ ¢ Q01 ORWABSITL-TO) o LT, 001006G0D TO 331
03180 TO=T1
03 l“() FO=F1
. GO TO 319
331 TOFT=T1
, QOPT=Q3CTOFTsA+ByC)
- COFT=C3T(TOFTyAr Ry )
DOFT=03CTOFTsArE»C)
CEOQQ=C3IT(TEOQyA»EY )
DEQQ=D3(TEORyAv B L)
WRITECTIOUT v"54())ﬁ‘1ybv[‘v TORF l sQOFTy COFTDOFT {'IFSIO(MIHET[HJ

T34 FORMATCLA o FO s 2X o FE Ay QR e FO oA v IR FE, 39 35 F
1 FOo2rAdX s PO 2y3XyFP03y 349 F7 )

(‘"57()0 CC=CCHIEL3

') :;l() 305 (UIHINU[

II‘ 1:} I-DELZ

13344 304 CONTINUE

03 3‘10 BR=RT

03360 Af=AA+RELL

03370 03 CONTINUE

03380 C

03390 323 WRITECIOUT,324)

03400 324 FORMATC(LXA1Xy 10 YOU WANT TO TRY ANOTHER? »
03410 17 VALUE FOR A & E & C ?//91Xy "YESCLI/NOCO)Y /)
03420 REAINCINY ¥) TWORD

03430 IF(IWORD.EQ.1)GO TO 30

03440 RETURN

03450 C

D3460 o B FFOMENT DAL MOLEL I-A

03470 €

A0 WRITECIOUT»A30)
430 FORMATCLX/Z71LXy "TYRE TR YOUR ESTIRATE OF THE VALUES ay 'y
1ALy 7aMD B OTHE PERISHABILITY COEFFICIENTS (O of'. -'?f P A &

147 & B ONOT EQUAL TO ZERD 777

¢81



US520 WRITECIQUT 1012
03530 READINY XA
03540 WRITECIOUT»102)
DAHG0 READCTINFO R
03560 €
03570
() 580
3520 :
()J-u(z() BT= IiB
"""').)1\'} DEL2=,01
S620 WRITECIOQUT »435 . ,
] \.n.)\.)o 435 FORMAOTCLIHLY /7y 17Xy "MODEL I-A-~EXFOHENTIAL PERISHARILITY RATE-

. ¥
034640 L//Z1Xy80C = 3 /3Xs "A7 v 86Xy ‘B’ y 77Xy OPT TX’ 95X 0FT QK7 »4Xs
()36 50 2MIN COST v 13y "0FT FPER 24X "COST-EO0Q7 ¢ 3Xy

YFEE0 FOPER-EQQ /128007270
():‘)'n; 0 G
03880 )
‘"1 5‘3 20
\)U

I“‘}\T Oefie i

SARTFO)

FiTLleie )

IFCABSIFLI-FO) LT+ 001 .(JR.ABSJ(H TOY LT..001)G0 TO 441
TO=T1

FO=F1

co o Ta 419

419

VN 3,";\)

'\) S0 () 0 441 TOFT=T1
03810 ROFT=QA(TOFTrA»E)
03820 COPT=CAT(TOFTyAYE)

03830 DOPT=D4CTOFTyA Y B
03840 CEOR=CAT{TEORyAB)
(3850 DEOQ=D3(TEOQy & 1)
@’.)38(30 . WRITECIOUT»1210AyRyTOFTyQOFTyCOFTyDOFT » CEOQ» DEOQ

€8l



03900
03910

03920 C

03930
03940
03950
039460
02970
03980
03990
04¢00
04010
04020
04030
04040
04050
04060
DA070
DA080
040%0
G410G
04110
04120
04130
34140
041350
Q4140
04170
Q4180
04190
0A200

04210 -

04220

BR=RESDELS
404 CORTINULE
El=RT
Adc=natDELL
A04 CONTINUE

WRITECIOUT y224)
REAINCINy %) TWORD o
IFCIWORDLEQR, 1)GO TO 40
RETURN '

e CONSTANT MODEL IR

B0 WRITECIOUTY»100)
READCINS XA
IFCA,LELTIRVIGO TO 506
WRITE(TIOUT»10G7)TINY

S04 R6E=AS2
DEL1=.001
WRITECIOUT»510)

5107FDRN&T(iHlfﬁyl?Xy’HGDEL I-B ~~CONSTANT FERISHABILITY RATE

VALK P20 73 //3Ky " #X e TOPT TR OXe 7OFT QK7 20Xy

2OHMIN COST v 1Xy 70FT FPER T »2Xy " COST-EDQ’ »3Xs "FER-EOQQ” /

JLRy 7207727

oo S60 J=1.11
A=AA
IF{AWGT.TINMGD TOS23
TOPT=SQRT2, %03/ (CLARI2 . KAKCCLERYCAXRY 1)
QOPT=QECTOFTyA)
COPT=CST(TORTyA)
DOFT=DSCTOFRT A)
CEOQ=CET(TEORYA)
NEOQR=DEH{TEOQ»A)
WRITESTOUT »1200AyTOPT»QOFTyCOFTyROFT » CEDG » DEOR
fd=nAtDEL ]

500 CONTIMUE

¥81




04250
(\ 3.\ tl
2/0
04280
04270
04300
04210
01'51’0
01\} .‘
Q‘JQU

043¢

onzuo
04370
04380
f)~3\52‘(1

04400

04480
04450

@qmwm

W R A

04550
hqrzo

wdl

L‘~}h1{s\!

047240

A

—~

»}

™
e L

t

L.
{
[

G253 WRITECIOUT»124)
READCINy %) TWORD
IFCTWORDLEQ.LIGO TO GG
RETURH

5L TNEAR. MODEL -1

GO WRITECIOUT» 130)
WRITECIOUT»101)
READ(INGEIA )
WRITECIOUT» 102
READCIHNs %O E
IF(ANETIHVLORGEBCLESTINVIGD TO 606
WRITECIOUT 1073 TINY

DETERDTNE THE RANGE & THCREMENT OF & % B
For THD PRINTOUTY

p e e e e
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APPENDIX B

TABLES OF COMPARATIVE RESULTS OF
AN EXAMPLE PROBLEM
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To illustrate the results of the methodology of this paper in com-
parison to the methods of other researchers and the EOQ analysis, the
following finite production rate example which is due to Shah and Jaiswal

[88] is considered.

Assume:

p = 625 Items/Month (Production Rate)

d = 200 Items/Month (Demand Rate)

C; = $.05/Item/Month (Carrying Cost)

C3 = $50.00/0rder (Replenishment Cost)

Cy = $3.00/Item (Perishing Cost)
a=,02; .05; .10 (Perishability Constant)

The results in the following tables are based on the calculations
made on an IBM/3031 computer utilizing Shah and Jaiswal's equations,
and the equations derived in this research. (For the case a = .02; this
author was unable to duplicate the results, as stated in Shah and Jaiswal's
paper [88], by utilizing their equations. Their stated results are

s1ightly different from the ones stated in Table I.)



TABLE I

COMPARATIVE RESULTS FOR PERISHABILITY RATE = .02

Inventory Results of this Results of EOQ Results of
Parameters Methodology Analysis Shah and Jaiswal

T*(Inventory

Cycle) 2.5070 3.8348 2.7946
Tl(Production

Cycle) .8156 1.2594 9114
a (Replenishment

Size) 509.7604 787.1460 569.6040
D, (Items perishing

per year) 40,9876 63.1667 45,8464
D,(Items perishing

per cycle) 8.5629 20.1860 10.6770
C*(Optimal cost) 38.7572 41,9865 38.9484
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TABLE II

COMPARATIVE RESULTS FOR PERISHABILITY RATE = .05
Inventory Results of this Results of EOQ Results of

Parameters ‘Methodology Analysis Shah and Jaiswal
T*(Inventory

Cycle) 1.8900 3.8348 2.4752
T, (Production

Cycle) .6246 1.3089 .8259
q (Replenishment

Size) 390.3659 818.0596 516.1706
Dl(Items perishing

per year) 77.9314 159.9028 102.3970
D,(Items perishing

per cycle) 12,2742 51,0996 21.1211
C*(Optimal cost) 52.4239 66.3394 54,3954
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TABLE III

COMPARATIVE RESULTS FOR PERISHABILITY RATE = _1p

Results of EOQ

Inventory Results of this Results of

Parameters Methodology Analysis Shah and Jaiswal
T*(Inventory

Cycle) 1.8280 3.8348 2.4076
Tl(Production

Cycle) .6221 1.3938 .8352
q (Replenishment

Size) 388.8420 871.1329 522.0031
Dl(Items perishing

per year) 152.3113 325.9818 201.7890
DZ(Items perishing

per cycle) 23.2021 104.1729 40.4856
C*(Optimal cost) 71.7685 108.1165 79,7288
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DESCRIPTION AND SOURCE LISTING OF FORTRAN
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Program Description

This appendix describes the computer programs used to evaluate the
optimal inventory cycle time through search routines. The two programs
that are utilized for this purpose are Fibonacci and Hooke and Jeeves'

search routines. The FORTRAN programs are based on the codes of Keuster

and Mize [56].

Fibonacci Search Procedure

This program consists of a main program and a user-supplied subrou-
tine, FUNC, which contains the objective function to be optimized. The
main program reads the inputs consisting of inventory parameters and
specifications for the search routine. The program then provides the

user with the optimal inventory cycle time and optimal cost.

User Requirements for Fibonacci Program

The evaluation of the optimal inventory cycle time requires the inputs

of the following variables in the. format described below:

Card Type Format Variables
1 (3E10.4) ALPHA, A, B
2 (8E10.4) H, P, D, C, C1, C2, C3, C4

The reauired variables are defined as follows:

ALPHA -- Desired accuracy specified as a fraction of the
original search interval. The recommended value
of alpha is .01 or less.

A -- Lower constraint. The recommended value is (B/4).

B -- Upper constraint. The recommended value is equal to
(2€3/C1D).



Cl --
€2 --
€3 --
c4 --
The objective

routine FUNC.

Perishability Constraint
Production Rate

Demand Rate

Purchase Cost

Carrying Cost

Shortage Cost
Replenishment Cost

Perishing Cost

194

function must be set equal to variable Y in the sub-

Hooke and Jeeves' Search Procedure

This program consists of a main program, subroutine Hooke, and user-

supplied subroutine OBJECT which contains the objective function to be

optimized. The main program reads the inputs consisting of inventory para-

meters and specification for the search routine, and subroutine Hooke

performs all searches and provides the printout.

User Requirements for Hooke and Jeeves' Program

The input variables and the required format for this program are:

Card Type Format
1 2110
2 2E10.4
3 2E10.4
4 (3£10.4)
5 (8E10.4)

Variable

ITMAX, NKAT

(RK(J), J=1,2)
(EPS(J),d=1,2)
ALPHA, BETA, EPSY
H,P,D,C,C1,C2,C3,C4
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The objective function must be set equal to variable SUMN in the

subroutine OBJECT.

The variables are defined as follows:

ITMAX --

NKAT --

RK ==

EPS --

ALPHA -~

BETA --

EPSY --

Maximum number of times the objective function is
called.

Maximum number of times the initial step size is
to be reduced.

Nector of initial guesses for decision variables,
that is, the inventory cycle time, and the production
cycle time.

Vector of initial step size to be used for each of
the variables.

Factor for extending the size of initial setps,
greater than 1.0.

Factor for reducing the initial step size, greater
than zero and less than 1.0,

Error in objective function to be reached before
program terminates.

Program Qutput

These programs provide the user with optimal inventory cycle time

and "optimal" inventory cost. In addition, they provide information as

to number of function evaluations, and the degree of accuracy at the

final stage of calculations.
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THELSE ROUTINES AKRE BASED LARGELY ON THE CODES PRESENTED
IN GPTIMIZATION TECHNIQUES wITH FUKTRAN BY KUESTER & MIZE.

-=—=>F1BUNACCI SEARCH PROUOCEDUKRE

[aEaEaleleNaleNaNaNololaNelalaNeloNaNaNeNaNal el

DIMENSIUN FIB(50)
CUMMUN/PARAM/H P 4DsCoLL,yC24Co,y0L4

NI=5
KREAD (NI,016) ALPHA, A, B
Cloé FURMAT (CL10.4)

READ INVENTOKY PARAMETEKS

oo

READ (N1 ,216)HP4D4yC4CLl,yC2si 3404
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11
12
13

l4a
15
16
17
18
19
20
21
22
23

24
25

26
27

28
29
30
31
32
33

akaks

bel = b - A
a1 TE (NU,001)

001 FURMAT (1H1,10X,35HFIBUNALLL SINLLE-VARIABLE PROCEDURE )

VEFINE THE FIRST THREc FIBUNACCI NUMBERS

Flo(l)

FiBL = 1.
FIBLZ) =

J
1.0
2.0

CALCULATE THE REMAINING FIBUNALCLL NUMBERS

S b = 1.0/ALPHA
IF (B8 - 2.0} 10, 10, 11
L0 Gu 10 14
11 CuNTINUE
Ju=2
12 Ju=dJd+1
FIt(dJd)=FIBIJJ-1)+FIB(JI-2)
CC=FIBtIJ)
IF{CcC-88) 13,15,15
13 GU TO 12
14 WRITE (NG,002)

002 FULKMAT (///,10X,42HACCURACY SPECIFIED IN FUNC NOT SUFFICIENT.

1 //+10X,34HPRUGRAM RESET ALPHA, ALPHA
ALPHA = 0.005 :
GL TU 5

FIRST STEP IN THE TABLEAU

15 =0
KRK=uJ-2
IK=4J-2
BL=b—-A
ALL=FIB(IK})*BL/FIB(JJ)
w=A+ALL

0.005%)
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34 . V=B-ALL

35 CALL FUNC{W,T)
36 CALL FUNCI(V,U)
37 JK=1
38 ARITE (NG,003)
39 CO03 FORMAT (//+1Xy L1HK5Xy2HLK 1 0X,2HAK, 11X 2HBK,09X3HLLK,11X,1HX,
L 12X,1HY )
40 WRITE (NG,O04) JKy BLy Ay By ALLy W, T
41 ARITE (NG,006) V, U
42 CI4 FORMAT (/4 1Xy 11 92XsEllaéelXsblle442X9ELlle442XyE1L144,
1 2X3ELlla402X3ELL.4)
43 CO6 FURMAT(55XyE114442XeELL %)
C
C SUCCEEDING STEPS IN THe TABLEAU
C
44 Ik=1K-1
45 Jd=dJd-1
46 DL 70 I=1,KK
47 IF{U-T) 20,420,22
48 20 A=A+ALL
49 BL=B-A
50 W=V
51 CALL FUNC(Ww,T)
52 ALL=FIBUIK)*BL/FIB(JJ)
53 v=B-ALL
54 CALL FUNCI(V,U)
55 [1=1+1
56 IK={K-1
57 Jd=dJd-1
58 IF(1K-1) 26,29,29
59 28 1k=1
60 29 CONTINUE
61 WRITE (NO,004) 11y BLy Ay By ALL, Wy T
62 WK1TE (NG,OO6) V, U
63 6L Tu 79

64 22 B=E—-ALL
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65
66
ol
68
69
70
71
72
73
T4
15
76
17
78
79
80

31
82
83
84
85
86
87

88
89
90
91
92
93

94
95

[aNaNe]

bL=B—A
V=mn
CALL FUNCI(V,U)
ALL=FIBIIK)*BL/FIB(JJ)
n=A+ALL
CALL FUNC(W,T)
[[=1+1
IK=1K-1
Ja=JdJ-1
IFLIK-1) 30,31,31

30 IK=1

31 CONTINUE
WRITE (ND)OO") i, BL, Ay, By, ALL,s V, U
WKITE (NU,006) Wy T
GG 10 70

70 CONTINUE

CALCULATION OF THE FINAL RANGE UF THE DEPENDENT VARIABLE

EPS = 0.001 * W
LL=W+EPS
CALL FUNC{ODL,YL)
IF{YL-T) 80,80,81
80 CALL FUNC{(B,BF)
WnRITE (NU,007) W, B
CO7 FURMAT(/// 26H THE FLINAL FEASIBLE REGION,2X,2HX=,
L Elle4ys2Xy32HX=9ELlLl.4)
wRITE (NUL,OO8) T, BF
C08 FOURMAT(/ 21H WITH FUNCTIUON VALUES s7X32HY=3ELlle4,2Xy32HY=yELL.4)
Gu TO 87
81 CALL FUNCU(A,AF)
WRITE (MO,009) w, A
C09 FORMATL(/// 26H Tnk FINAL FEASIBLE REGION,2X,2HX=,
1l €lle4y2Xy2HX=9ELL.4)
WwRITE (NO,O17) T, AF
Cl7 FGRMAT(/ 21H WITH FUNCTLIUN VALUESyTX,2HY=yE1l.4,2X,2HY=4ELl1l.4)

661



96
97
98
99
100
101
102
103

104

105
106
107
108
109
110
111
112
113

114

.87

Cl9
599 -

ACC=(w—A)/ (DEL)

WRITE (NU,018) ACC

FURMAT { / ’ 16H THE ACCURALY 1S5,12XyE1ll.4)
nKITE (NGC,019) ALPHA

FURMAT (/ 26H THE REWQUIRED ACCURACY WAS,2X,Ell.4)
CONTYNUE

WKITE tNG,O0O01)

STGP

END

SUBROUTINE FUNC(X,Y)

COMMON/PARAM/H P yDsCyC1l4C2,C3,C4%

12=X

Tl=(1./h)*ALUG(Ll.+(D/P)*(EXP(H*T2)-1.))
Xll=(P*Tl"b*TZ)/H*(“P+(P‘U)*EKP(—H*T1)+U*EXP(H*(T2’71)))/H**Z
Q=PxT1 é :

UT=p*Tl—D*T2

Y=(C3+C1*X[1+4C4%DT) /T2

RETURN

END

00¢
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10
11
12
13
14

15

16

17
18

19

[aEaNeEnEaNalal

001

002

1

———=—2>HOOKE & JEEVES SEARCH PRUCEDURE

IMPLICIT REAL*8 (A—H,0-2) 3
DIMENSIGN EPSI2), RKI2), Wl2), G&l2), W(2)
COMMGN NI,NO !
COMMON/PARAM/H, P yDyC,CL,C2,C3,04 |

NI=5 i
NO=6 i
NSTAGE=2
IPRINT=0

CONTINUE ! .

READ (NI,001,END=4) ITMAX,NKAT
FORMAT (8I110)

READ (NI+002) (RK(II)y 1I=1,NSTAGE)
FORMAT (8E10.4)

READ (NI,002) (EPS(JJ) s JJ=1,NSTAGE)

READ (NI,003) ALPHA, BETA, EPSY
READ INVENTORY PARAMETERS
READ (NI,002)H4P,D,C4CLl,02,C3,04

FORMAT (8E10.4)
QD = 0.0

CALL HOOKE (RK,EPS,NSTAGt,ITMAX,NKAT,EPSY,ALPHA,BETA,QO,Q.QO,H,
[PRINT)

10¢



20
21
22

23

24
25

26
27

28
29
30
i1

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

4

001

002

003

004
005
6

007

601

GO TO 5
STQP
END

SUBROUTINE HOOKE (RKEPS¢NSTAGE ,MAXK {NKAT,EPSY,ALPHA,BETA,GD,

1 G,GQywy IPRINT)

IMPLICIT REAL*8 (A-H,0-Z2)

DIMENSION RKINSTAGE), EPS{NSTAGE), WQWINSTAGE),

1 WINSTAGE)
CUMMON/PARAM/H,P,D,C,C1,C2,C3,C4
CCMMGN NI ,NO

WRITE (NGO,001)

QQINSTAGE),

FORMAT (1Hl,10X,37HHOOKE AND JEEVES OPTIMIZATION ROUTINE)

WRITE (NO,002) ALPHA, SBETA, MAXK, NKAT

FORMAT (// 42X, lOHPARAMETERS,/,2X,BHALPHA =

1 THBETA = 4F5.2:4X,BHITMAX = ;14 44X, THNKAT
WRITE (NG,003) NSTAGE

FORMAT (/,2X422HNUMBER UF VARIABLES = 513)
WRITE (NO,004)

FORMAT (/42X 18HINITIAL STEP SIZES)
DO 6 I=1,NSTAGE

WRITE (NO,005) I, EPSLIL)

FORMAT (/,2X,4HEPS(,1244H) = ,E16.8)
CONTINUE

WRITE (NO,007) EPSY

1FS5.294X,
2y 13)

FORMAT (/,2X,43HERROR IN FUNCTION VALUES FOR CONVERGENCE = ,El6.8)

KFLAG = O

DO 601 [=1,NSTAGE
QUlI) =RK{(I)

W(I) = 0.0
CONTINUE

KAT =0.0

¢0¢



48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
12
73
14
15
16
77
78
79
80

OO0

. KK1 =0

70

201

513
613

58

KCOUNT =0

WBEST = W(NSTAGE)

CALL UBJECT (SUM,RK,NSTAGE)
KK1= KK1+ 1

BG =SUM

[F (KK1.EG. 1) QD = SUM

IF (KK1.,EQ. 1) GO Tu 201
IF(BG.GT.QD) KFLAG = 1

IF {(BO0.LT.QD) GO = Bu

ESTABLISHING THE SEARCH PATTERN

Do 55 I = 1,NSTAGE
Quii)=RK(]l)

TSRK = RK{(1)

RK{I) = RK(I) + EPS(I)

CALL CBJECT {SUM,RK,NSTAGE)
KK1= KK1+ 1

Wi{I) = SUM

IF (W(l) .LT.QD) GO T0 58
RKII)} = RK{I) - 2.,0%EPS(I])
CALL OBJECT (SUMsRKyNSTAGE)
KKl= KK1+ 1

W(iI) = SUM

IF (Ww(I) .LT.QD) GO TO 58
RK{I) = TSRK

IF (1.EQ. 1) GO TO 513

WiI) =wll-1)

GO TU 613

W(Il) =80

CONTINUE

KCOUNT =1+ KCGUNT

GO TO 55

QD= Wi(l)

QL) =RKI(1)

€0¢



81 55 CONTINUE

82 IF [IPRINT) 60, 65, 60
.83 60 WRITE (NO,100) KK1
c
C RECORD RESPUNSES AND LGCATIDN
C
84 WRITE(NO,102)
85 WRITE(NO,207) (RK(I), I=1,NSTAGE), QD
C
C TEST TO DETERMINE TERMINATION OF PROGRAM
C .
86 65 IF (KK1.GT.MAXK) GO Tu 94
87 IF (KAT .GE. NKAT) Gu TO 94
88 IF(DABS{WINSTAGE)-WBEST) .LE.EPSY) GO TO 94
C
C IF ALL AXES FAIL RELDUCE STEP SILZE
c
89 IF (KCOUNT .GE. NSTAGE ) GO TO 28
90 DO 26 I = 1,NSTAGE
91 RK{I) =RK(I) + ALPHA*(RK(I) - all))
92 26 CUNTINUE
93 Do 25 I = 1.NSTAGE
94 Q(I) =QQ(I)
95 25 CONTINUE
96 GO 10 70
C
C REDUCE STEP SILE
C
97 28 KAT = KAT + 1
98 IF (KFLAG .EQ. 1) GO TO 202
99 Gu TO 204
100 202 KFLAG = 0
101 DO 203 I = 1,NSTAGE
102 kK{I) = Q(I)

103 203 CONTINUE

¥0¢



104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134
135
136
137
138

204
80
85

94

104

100
101
102
103
207
460
461
462

bu 80 I=1,NSTAGE

- EPS(I) =EPS(I) *BETA

CONTINUE

IF (IPRINT) 85, 70, 85

WRITE (NG,101) KAT

GO 10 70

WRITE (NO,460) (EPS{I), [=1,NSTAGE)

WRITE (NO,461) (RK(I)y, I=1,NSTAGE)

WRITE (NO,462) QD

DO 104 I=1,NSTAGE

wRITE (NO,103) I, RK{l)

mRITE (NG,100) KKl

FORMAT (//42X,33HNUMBER UOF FUNCTIUN EVALUATIONS = ,I8)
FORMAT (/,2Xs18HSTEP SIZE REDUCED ,12,6H TIMES)
FORMAT (L X,26HEND OF EACH PATTERN SEARCH/)
FORMAT (//22X,8HFINAL X{(,12,4H) = ,1PEl6.8)
FORMAT(1X, 18HVARIABLES ANO SUMN,3X,9El2.4//)
FORMAT(L1X, 18H THE FINAL EPS ARE, 4F20.8/7)
FORMAT (1X, 18H THE FINAL RK ARE , 5F20.8/7)
FORMAT (11X, 24H THE MINIMUM KcSPOUNSE IS, F20.8/)
WRITE(NO,1) '
RETURN

END

SUBRUOUTINE OBJECT (SUMN,AKE,NSTAGE)
IMPLICIT REAL*8 (A-H,0-2) -

DIMENSION AKE{NSTAGE)

COMMON/PARAM/H P +D,4C,C1, C2,C31C4
T2=AKE(1)

T=AKE(2)
Tl=(1e/H)*DLOG (L. +(D/P)*(VDEXP{H*T2)-1.))
XI1={(P*T1-D*T2)/H+(-P+(P-D}I*DEXP(-H*T1)+D¥DEXP(H*{T2-T1)))/H%%2
X12=AD/2)*{T-T2)*%2%(1l.-{L/P))
Q=P*T1+D*{(T-T2)

DTI=G-D*T

Y=(C3+4CL%X11+C4*DT+C2%X12)/1

50¢



206

aN3
NyNnt3yd

A=NWNS

%1
o%1

6¢t1



VITA
Feraidoon Raafat
Candidate for Degree of

Doctor of Philosophy

Thesis:  ANALYSIS OF AGE-INDEPENDENT PERISHABLE ITEMS SUBJECT TO ON-
GOING DETERIORATION INVENTORY SYSTEM

Major Field: Industrial Engineering and Management
Biographical:

Personal Data: Born in Tehran, Iran, January 5, 1953, the son of
Manucher and Parvaneh Raafat.

Education: Attended six years of elementary schooling at Ghodosi
Elementary School, Tehran, Iran; then entered Aloroy (College)
High School for the seventh and eighth grades. The ninth
grade was completed at Frenwood Junior High in Biloxi, Missi-
ssippi, and the tenth grade at Thomas Jefferson High School
in San Antonio, Texas. Graduated from Enid Senior High
School, Enid, Oklahoma, in May, 1971. Attended Phillips Uni-
versity, Enid, Oklahoma, from June, 1971, to May, 1974, and
received the Bachelor of Science degree in Industrial Engineer-
ing and Management at Oklahoma State University, December,
1975, Began graduate studies in January, 1976, and received
the Master of Industrial Engineering degree in May, 1977.
Started the doctoral program in fall of 1977 at Oklahoma State
University; and completed the requirements for the degree of
Doc;or of Philosophy at Oklahoma State University in December,
1982.

Professional Experience: Worked at Fort Smith Structural Steel
Corporation in the summer of 1975 as a general trainee.
Employeed as a junior engineer at William Brothers Engineering
Company from June, 1976, to January, 1977, where he did his
graduate internship. Employed by Oklahoma State University as
a Graduate Assistant, Graduate-Associate, Instructor from 1977
to 1981. Employed by Wichita State University as Assistant
Professor of Decision Science from August, 1981, to present.



Professional Activities: Member of American Institute of
Industrial Engineering (AIIE), The Institute of Management
Science (TIMS), Operations Research Society of America
(ORSA), American Institute of Decision Sciences (AIDS);
American Production & Inventory Control Society (APICS);
Registered Professional Engineer (Oklahoma); Alpha Pi Mu,
An Honorary Industrial Engineering Fraternity.



VITA
Feraidoon Raafat
Candidate for Degree of

Doctor of Philosophy

Thesis:  ANALYSIS OF AGE-INDEPENDENT PERISHABLE ITEMS SUBJECT TO ON-
GOING DETERIORATION INVENTORY SYSTEM

Major Field: Industrial Engineering and Management
Biographical:

Personal Data: Born in Tehran, Iran, January 5, 1953, the son of
Manucher and Parvaneh Raafat.

Education: Attended six years of elementary schooling at Ghodosi
Elementary School, Tehran, Iran; then entered Aloroy (College)
High School for the seventh and eighth grades. The ninth
grade was completed at Frenwood Junior High in Biloxi, Missi-
ssippi, and the tenth grade at Thomas Jefferson High School
in San Antonio, Texas. Graduated from Enid Senior High
School, Enid, Oklahoma, in May, 1971. Attended Phillips Uni-
versity, Enid, Oklahoma, from June, 1971, to May, 1974, and
received the Bachelor of Science degree in Industrial Engineer-
ing and Management at Oklahoma State University, December,
1975, Began graduate studies in January, 1976, and received
the Master of Industrial Engineering degree in May, 1977.
Started the doctoral program in fall of 1977 at Oklahoma State
University; and completed the requirements for the degree of
?oggor of Philosophy at Oklahoma State University in December,

982,

Professional Experience: Worked at Fort Smith Structural Steel
Corporation in the summer of 1975 as a general trainee.
Employeed as a junior engineer at William Brothers Engineering
Company from June, 1976, to January, 1977, where he did his
graduate internship. Employed by Oklahoma State University as
a Graduate Assistant, Graduate-Associate, Instructor from 1977
to 1981. Employed by Wichita State University as Assistant
Professor of Decision Science from August, 1981, to present.



