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CHAPTER I 

INTRODUCTION 

An important area in the field of Management Science is Inventory 

Theory. During the last seventy years many journal articles and textbooks 

have been written on this subject matter. Indeed, the field of inventory 

theory has been a fertile area of research by mathematicians, engineers, 

economists, and computer scientists. Since there are many different def-

initions for inventory theory in the literature, it is necessary to 

define the inventory systems that will be dealt with in this disserta

tion. Paraphrasing Naddor [61] 

An inventory system is a system in which only the follow
ing costs are significant, and in which any two or more 
are subject to the control of the decision maker: 

1. The cost of carrying or holding inventories. 
2. The cost of incurring shortages. 
3. The cost of replenshing the inventory system. 
4. The cost of deterioration/perishing of inven

tories. 

There are various types of costs or expenses that are classified 

into the above four major cost categories. The first category includes 

the cost of carrying or holding inventories in any inventory or produc

tion system. It includes: 

1. The cost of capital tied up in inventories. 

2. The marginal cost of storage space. 

3. The marginal cost of insurance and taxes. 

4. The marginal cost of handling equipment in the warehouse. 

1 
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The second category is the cost attributed to shortages when there 

is customer demand. This may include: 

1. The cost in the loss of sales. 

2. The cost in the loss of good will. 

3. The cost of special administrative efforts. 

The third cateqory is the cost incurred in the replenishment of 

inventories. This may include one or more of the following: 

1. The cost of ordering a new lot size. 

2. The cost of machine set-ups for new production runs. 

3. The cost of handling and shipments. 

4. The cost of receiving and inspection. 

The last cateqory is the cost associated with perishahility or 

deterioration of items while in stock. Although many author~ have 

included this cost as a part of carrying or holding cost, this is con

ceptually and realistically incorrect. Hadley and Whitin [43] have 

stated that, wherever applicable, this cost must be considered explic

itly. Deterioration or perishability is defined as decay, damage, 

spoilaoe, or obsolescence that prevents the item from being used for its 

ori9inal intended purpose. This may include: 

1. The cost of actual physical depletion of volatile liquids such 

as gasoline and alcohol. 

2. The cost of spoilage. 

3. The cost of obsolescence. 

4. The cost of damage and pilferage. 

The sum of these four cost categories will be referred to as the "total 

cost 11 • 
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In any inventory problem, decisions are usually made in tenns of 

time and quantity. These are the basic controllable variables in any 

inventory system; that is, the decision maker must specify one or both 

of the following: 

1. When should the order be placed? 

2. How much should be added to inventory? 

The objective of an inventory problem is to detennine the value of the 

controllable variable(s) that will minimize the total inventory cost. 

Most research in the mathematical inventory models to date have 

made the implicit assumption that inventory was 11 non-perishable 11 ; that 

is, the units, once in stock, could be used at anytime to satisfy de

mand. Almost all items deteriorate over time; if the rate of deterior

ation is very slow, its effect can be ignored; otherwise the units in 

stock might have deteriorated to the point that they may no longer be 

able to satisfy demand. The loss due to perishability is quite impor

tant, and there are various contexts in which it could provide valuable 

insights into inventory decision making. This effect is so vital in 

many inventory systems that it cannot be lightly disregarded. For 

example, in the field of perishable foods, especially fruits and dairy 

products, one must always consider the effect of spoilage, because not 

only do these types of goods become spoiled, but most likely they lose 

their value as time passes on. Another example is the case of physical 

depletion of volatile ljquids such as alcohol and turpentine in the 

chemical industry. The effect of deterioration plays a significant role 

in other areas such as production and inventory of photographic films, 

radioactive substances, nuclear material processing, phannaceutical 

drugs, and electronic components. 
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1.1 Background 

In order to have a clear picture of the effect of perishability on 

inventory, consider the following example which is basically due to 

Nahmias [62]. 

Consider a simple EOQ (Economic Order Quantity) Model. This is a 

continuous time model where demand is assumed to be constant, and the 

following costs to be significant: 

i. c0 =unit cost (charge for each unit purchased) 

ii. c1 =carrying cost (cost of holding a unit of inventory for a 

unit of time) 

iii. c3 =replenishment cost (fixed cost for placing an order) 

iv. r = constant demand rate 

Let q0 be the optimal lot size which is received into inventory 

when the stock level is zero. The following relation then holds: 

Schematically this is depicted in Figure 1. 

Now, assume that all unused products will perish at some time t' after 

receipt. If t'>t0 , then q0 is the optimal lot size and the problem 

remains the same. But, if t' ~ t 0 , and q0 is ordered, a number of items 

in stock will no longer be in their useful state. Schematically this 

may be presented in Figure 2. 

Therefore, qp is the amount of product that perishes every t 1 uni ts 

of time. However if q' is chosen such that q' = q0 - qp (this is equiva

lent to q 1 =rt'), Figure 2 can be modified into Figure 3. 



q' 

t 
0 

Figure 1. Inventory [evel with No Deterioration 

t'---

Figure 2. Inventory Level with Deterioration 

---t'---
Figure 3. Adjusted I"nventory Leve 1 

5 
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In this case no inventory item deteriorates; therefore, the total 

inventory cost will be lower than using q0 policy; q 1 is the optimal 

policy, and it is always optimal to order in such a way that no inven

tory item deteriorates. 

In recent years, efforts in analyzing mathematical models in which 

items deteriorate while in storage have drawn attention of various 

researchers. However, there are many areas that require additional 

exploration, elaboration, and extensions. The purpose of this study is 

to undertake such a task. 

1.2 Research Objectives 

The objective of this dissertation is to derive and present mathemat

ical inventory models that include the assumption of deterioration for 

various classes of inventories which will be useful in the broad range of 

real life inventory situations. To fulfill this objective a number of 

models have been developed to gain additional insight and to incorporate 

realism into the existing body of inventory systems. Specifically, the 

following inventory models are investigated: 

1. Lot size inventory systems incorporating various types of per

ishabi l i ty rate function. 

2. Order level inventory systems incorporating constant perish

abil ity rate and various types of demand rate functions. 

3. Probabilistic inventory systems incorporating constant perish

ability rate. 

1.3 Summary of Results 

The objectives of this research have been met. Numerous models are 
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developed which are useful in detennination of the optimal replenishment 

size, or inventory cycle time. The Models are: 

1. The inventory characteristics for Lot-size inventory Models 

(Model I) incorporating various perishability rate functions 

have been detennined. The inventory fluctuatons of this model 

are illustrated by Figure 4. In this model the inventory hold-

ing cost is charged on all the units that remain in inventory, 

whether perished or not; and peri shabi 1 i ty costs are charged at 

the end of the inventory cycle time. The perishability rate 

functions that are utilized for this analysis are: constant, 

linear, and exponential funtions. Depending on how a perish

ability rate function is applied to the basic lot size system, 

various submodels are developed and analyzed. Figure 5 depicts 

these subsets of Model I lot size system. 

2. ·The inventory characteristics for Lot size Models (Model II) 

incorporating various underlying perishability distribution 

functions have been detennined. The inventory fluctuation of 

this model is illustrated by Figure 6. In this model the inven-... 
tory carrying cost is charged on all the non-perished units in 

inventory, and the perishability costs are charged whenever a 

unit perishes. The underlying perishability distribution of 

items in inventory that are utilized for this analysis are: 

exponential, Weibull, and Rayleigh distribution functions. 

These correspond to constant, general, and linear rates of 

perishability respectively. Figure 7 depicts the models of 

lot size system-Model II. (Model II and Model I differ funda

mentally in the method of analysis of calculating the average 
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Model I-a 
Perishability as a 
Function of Initial 

Inventory 

Quadratic 
Perishabilfry 

Function 
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MODEL I 

Model I-b 
Perishability as a 
Function of Remain

ing Inventory 
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Constant 

Perishab ili ty 
Function 

Model 1-c 
Perishability as an 
Additional Demand 
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Figure 5. Lot Size System--Model I 
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Figure 6. Lot Size System--Model II--Inyentory Depletion Pattern 
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Perishability is ac
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Perishability is ac
cording to Weibull 
Distribution 
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Distribution 

Figure 7. Lot Size System--Model II 

I-' 
I-' 



12 

inventory. Due to their assumptions, the analysis of Model I 

is based on techniques of differential calculus, and Model II 

is based on solving a set of differential equations for deter

mining the total carrying inventory. In both Model I and Model 

II, carrying costs are balanced against replenishment and per

ishing costs.) 

3. The inventory characteristic for finite production rate inven

tory models with and without backlogging have been determined 

by incorporating various perishability rates and number of 

production rate functions. The demand is assumed to occur at 

a constant rate. Figure 8 depicts the various Models of this 

inventory system. 

4. The inventory characteristics for the order level inventory 

systems incorporating constant perishability rate (i.e. perish

ability according to exponential distribution) and various 

demand patterns have been determined. The case of lost sales 

model has also been considered. In addition, a model of 

discrete-in-time order level inventory model for non-constant 

demand is discussed. 

5. The inventory characteristics of finite-horizon, increasing 

demand models with constant perishability rate are determined. 

In these models, the total demand over a given time horizon is 

fixed, however, the demand is low in the beginning and increases 

as time passes on. 

6. Considerations of quantity discounts when constant rate of 

perishability is present have been evaluated. 

7. Inventory characteristics of single period and multiperiod 



Case 1 Case 2 -
Constant Constant 
Perishab ility Perishability 
Rate Rate 
h(t) = a h(t) = a 
Constant Variable 
Production Rate Productiog Rate 
p(t) = p p(t) = pt 

h(t) = Perishability Rate Function 
p(t) = Production Rate Function 
* The backlogging case not considered 

Finite Production Rate 
Inventory Systems 

with & without Backlogging 

Case 3 

Constant 
Perishability 
Rate 
h(t) = a 
Variable 
Production Rate 
p(t) = pqt 

Case 4 

Variable 
Perishab il i ty 
Rate 
h(t) = a/(b-t) 
Constant 
Production Rate 
p(t) = p 

Figure 8. Finite Production Rate Inventory System 

Case 5 
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inventory systems with power demand pattern and constant 

perishability are determined. 
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8. Inventory characteristics of two probablistic inventory sys

tems; scheduling period system, and order level system with 

instantaneous demand, with constant rate of perishability have 

been determined. 

1.4 Contributions 

This research has made a number of contributions.· In addition to 

the compilation of comprehensive bibliographic material on age indepen

dent perishable items and related topics, and presentations of various 

types of perishability concepts and assumptions, they include: 

1. The general solution methodology emphasized in this paper is 

deriviation and determination of exact total cost equations of 

various inventory systems that are subject to perishability. 

By knowing this exact cost function, then it is possible to 

utilize a number of computer search techniques, specifically 

Fibonacci or Hooke and Jeeves' search methods, or a numerical 

technique to obtain the optimal solution to the various para

meters of the inventory system. This approach, while in 

someways similar to that of other researchers in this area, is 

different in the following way: Typically to obtain "optimal" 

results in perishable inventory models approximations have to 

be made in the determination of carrying inventory. Also, an 

additional number of other numerical approximations are neces

sary in the course of development of the "optimal" cost equation. 

Then, by using analytical and numerical techniques the "optimal" 
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results are obtained. No search technique has been utilized. 

However, because of this research it is now possible to obtain 

the optimal result more directly and more accurately. So, 

instead of utilizing optimizing techniques on the "approximate" 

cost equation to obtain the optimal solution, one can obtain 

the "optimal'' solution within a predetermined interval of 

uncertainty. When using the Fibonacci search technique this 

interval, for all practical purposes, could be assumed negli

gible for most typical problems. 

2. It has been shown that in the scheduling order level inventory 

systems the time when the inventory level reaches zero is not 

a function of demand pattern, but is a function of carrying 

cost, ordering cost, perishability cost, and perishability 

rate. 

3. It has been shown in a fixed horizon and constant perishabil

ity rate inventory model where demand is increasing, the total 

number of items perishing is not a function of replenishment 

and can be calculated directly. 

1.5 Organization of Chapters 

Chapter II is devoted to the discussion of the relevent literature 

in the area of perishable inventories. It contains various concepts and 

classifications of perishability. Chapter III explains the terminology, 

and the general notation that is used throughout this research. The 

work is organized in such a way that those who are not interested in the 

details of various models may read only the third chapter, and then go 

directly to the desired model for its assumptions and derivations. 
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Chapter IV describes the inventory lot size models with functional 

deterioration (Model I); Chapter V presents the inventory lot size· 

models with deterioration as a function of inventory level (Model II). 

Chapters VI and VII discuss the finite production rate inventory system 

without and with backlogging respectively. Chapter VIII is devoted to 

various order level inventory models. Chapter IX presents the finite 

horizon inventory model and considers two different demand patterns. 

Chapter X discusses cases of quantity price discounts. In Chapter XI 

power demand pattern inventory models for single and multiple periods 

are presented. Chapters XII and XIII are devoted to probabilistic inven

tory models, and alternative probability distributions have been consid

ered. Chapter XIV contains the summary and conclusions as well as impli

cations for future research in the area of perishable inventory items. 



CHAPTER II 

LITERATURE REVIEW 

This chapter reviews the development of inventory theory and de

scribes the inventory models relevant to the study of the deteriorating 

i terns. 

Mathematical modeling of inventory systems dates back to 1915 when 

Harris [43] first published the classical lot size formula 

q0 = ~2rC 3 c1 

where q0 is the optimal lot size, r is the rate of demand per time unit, 

c1 is the carrying cost of one unit in inventory per unit time, and c3 

is the reorder cost. This is also known as Wilson's formula. In 1926 

Cooper [61] analyzed an inventory system with finite rate of production, 

and in 1928 Fry [4] studied some probabilistic inventory systems. How

ever, Raymond [82] was the first to attempt to deal with a large variety 

of inventory systems and to present the beginnings of the theory of 

inventory systems. He summarized the work in this area prior to 1931. 

Interest in the study of inventory systems has increased tremen

dously since World War II. Arrow et al. [4] published their classical 

paper "Optima 1 Inventory Policy" in 1951, and Dvoretsky et al. [29, 30], 

"The Inventory Problem" in 1952. These works mark the beginning of 

modern analysis of inventory systems. An excellent review and summary 

of the models and systems which were studied from 1923-1951 is presented 
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by Whitin [100]. (In a later edition he updated his bibliography to the 

year 1956.) Veinott [99] published a detailed summary of inventory 

research up to 1965, and Fortuin [35] published the latest summary of 

inventory studies up to 1976. As far as the author is aware, there has 

not been any major published summary of inventory research since 1976. 

However, there is a great deal of information and updated bibliographic 

references in inventory theory which can be readily obtained through 

various on-line computer terminals. 

It should be mentioned that one of the basic, implicit assumptions 

of most of these inventory models has been the infinite shelf-life of 

products while in stock; that is, a product remains unchanged for the 

purpose of satisfying demand as long as it is in the "warehouse." As 

has been previously mentioned, this assumption is not valid for a number 

of very important situations; therefore, it is the purpose of this 

research to explicitly analyze the effects of perishability in the var

ious inventory models. 

2.1 Perishability Classification 

The analysis of inventories that are subject to perishability 

involves different concepts of deterioration. Cohen [18] made the 

following distinction. First, there are those problems in which all 

items in the inventory become simultaneously obsolete at some fiscal 

point in time; that is, all the units remaining in inventory at the end 

of the planning horizon become useless. This is the case of the style 

goods inventory, like fashion merchandising. Second are those problems 

in which the items deteriorate throughout the planning horizon. This 

latter category is broken into two classes: (1) items whose rate of 
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deterioration is age dependent, e.g., inventory items with fixed life 

such as blood, and (2) items whose rate of decay is independent of their 

age, e.g., volatile liquids such as gasoline, radioactive chemicals, etc. 

Deteriorating items could also be classified as to their utility as 

a function of time. Constant utility perishable goods undergo age 

dependent decay and face no decrease in value during their useable 

lifetime, e.g., prescription drugs. Decreasing utility goods undergo 

age dependent decay and lose value throughout their lifetime, e.g., 

fruits such as berries. Increasing utility goods undergo age dependent 

decay and increase in value, e.g., some wines appreciate in value. 

Naddor [61] briefly mentioned these types of perishability and gave some 

general cost equations. 

The change in. utility for an age independent inventory item is 

usually a function of total inventory on hand. These items are usually 

grouped together in the inventory for the purpose of determining the 

amount of decay during the planning horizon. The above classification 

is depicted in Figure 9. 

2.2 Age-Dependent Perishable Inventories 

Significant research has been done to describe the optimal stocking 

policies for items with a fixed life time. In these cases when demand 

is deterministic, the problem has a trivial solution; that is, one places 

an order so that no item perishes. When demand is random, the solution 

becomes very complex. 

Most researchers in this area have considered simultaneous obsoles

cence: i.e., all units remaining in inventory at the end of planning 

horizon become useless, e.g., style-goods merchandise. The time horizon 
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may be fixed, (Whitin [100], Hadley and Whitin [41], Murray and Silver 

[60], Ravindran [83]) or stochastic (Hadley and Whitin [42], Barankin 

and Denny [7], Brown, Lu and Wolfson [14], Pierskalla [80]). 

Bulinskaya [15] in a part of his paper used a dynamic programming 

approach to obtain optimum policies for inventories that have a high 

rate of obsolescence which can be used for exactly one period. His 

approach is a generalization of the 11 Newsboy Problem," which is a single 

period inventory model in which the item has a lifetime of one period. 

Van Zyl [98] analyzed a general model where an item has a lifetime of two 

periods. His model does not include a perishability cost; only ordering 

and penalty costs due to lost sales are included. Fries [36, 37], 

Nahmias [62, 65], and Nahmias and Pierskalla [71, 72] extended the 

results of Van Zyl. That is, the model for an item \·dth a lifetime of 

two periods has been extended for a product with arbitrary but fixed 

lifetime under the assumption of FIFO issuing policy and fresh supply. 

Their cost structure is also more general, and they included perishabil

ity as well as holding cost, lost sales, backlogging, and salvage cost. 

These studies basically rely on the analysis of an appropriate dynamic 

program functional equation. Cohen [18] has extended the above works, 

using similar approaches, and has applied the results to the area of 

blood inventory management. Many authors using the above concepts and 

incorporating various issuing policies have published a number of papers 

dealing with blood inventory management and its specific requirements. 

Pegal et al. [77] and Chazan [17] used Markov chains to determine the 

issuing policy. Jennings [49] and Brodheim et al. [13] discussed 

various aspects of blood bank inventory systems. Additional references 

in this area may be obtained from the above publications. 
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It should be mentioned that there is a class of inventory problems 

that also deals somewhat with the problem of obsolescence, but in a 

different context than that used in this study. This class of work has 

to do basically with finding the optimal issuing policies which maximize 

the total field life for a stockpile; Derman and Klien [26], Lieberman 

[56], and Zehna [104] have given conditions as to when to use FIFO or 

LIFO, when the utility characteristics of an item are changing with 

time. For example, according to them, if the utility function of an 

item is increasing, LIFO is best, and if the utility function is decreasing, 

FIFO is best. Eilon [31] discussed the relationship between field life 

and issuing policies when items in inventory begin to deteriorate. 

Pierskalla [79], Pierskalla and Roach [81] also described the optimal 

issuing policies and proved that FIFO is optimal policy for an inventory 

where all issued stock is consumed; Klein and Rosenberg [54] discussed 

optimal issuing policies, and they used inspection sampling to maintain 

a prescribed level of stored goods. Thorburn [97] solved an inventory 

problem and showed that in order to maximize the total field life a LIFO 

issuing policy should be used. 

In this area of age-dependent perishable inventory, there are a 

number of specific papers that have been published specially by Nahmias 

[63-69]. Others include Cohen [19], Friedman and Hock [36], Nahmias and 

Pierskalla [71, 72], Nahmias and Wang [73, 74], Smith [93], and Weiss 

[101]. 

2.3 Age-Independent Perishable Inventories 

This study is primarily concerned with inventory models of age

independent, constant utility, perishable items subject to ongoing 



deterioration; therefore some specifically related literature will be 

presented in this part. 
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The earliest work in this area is due to Ghare and Schrader [36]. 

They assumed a constant rate of deterioration in the face of constant 

demand and derived a relation for optimum cycle time. In their model 

the carrying cost is assessed on the average initial and ending invent 

ory. The optimum cycle time is obtained iteratively by· solving the 

following equation: 

Where a is the constant rate of deterioration, R is the constant demand 

rate, T is the inventory cycle time, and C, c1, c3 are cost of purchase 

price, carrying cost, and ordering cost, respectively. Van Zyle [9~] in 

his thesis, briefly fonnulated a general age-independent perishable 

model in which a fixed or stochastic amount of product, depending on the 

total inventory, deteriorates. 

Emmons [33, 34] considered a problem of exponential decay when one 

product decayed at one rate into a new product which decayed at a second 

rate. His model was used specifically for radioactive nuclide genera

tors which are used for diagnosis and treatment of patients. His models 

are very useful in inventories of radioactive materials. Covert and 

Philip [21] obtained an Economic Order Quantity (EOQ) model for a vari-

able rate of deterioration assuming a two parameter Weibull distribution 

for the deterioration time of items in stock. This permits already 

deteriorated items to be received by an inventory system as well as 
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items which may start deteriorating in the future. Shah [87] gener

alized the previous works and assumed a general deterioration distribu

tion and included backlogging under the condition of immediate replen

ishment. Aggarwal [3] ev.aluated Shah's paper and made a few correc

tions. In these two papers, cases of exponential decay and Weibull decay 

are explicitly treated but not others. Tadikamalla [94] in his paper 

assumed a gamma distribution for the deterioration time of items in 

stock. In comparing Weibull and gamma distributions for variable rates 

of deterioration, he observed that even when these two distributions 

have similar shapes, their instantaneous failure (decay) functions are 

significantly different. Therefore it is quite essential that the 

underlying decay distribution be known. Misra [58] developed a produc

tion lot size model for both a constant and variable rate of deteriora

tion using a two parameter weibull distribution. In his model he did 

not allow for shortages and backlogging. This paper is an extension of 

the Ghare-Schrader and Cover-Philip models by assuming a finite produc

tion rate. Extension of the Misra paper was attempted by an anonymous 

author [1] to include shortages and backlogging assuming an exponential 

decay distribution. 

Shah and Jaiswal [89] developed an order level model under constant 

and probabilistic demand assuming instantaneous delivery and constant 

rate of deterioration. In their model, scheduling period Tis a pre

scribed constant and lead time is zero. Shah and Jaiswal extended the 

probabilistic periodic inventory model to include the effect of deterio

ration for constant and variable deterioration rate. In this model no 

shortages are allowed, and the review period is a prescribed constant. 
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Jani et al. [48] developed a probabilistic reorder point inventory 

model with constant rate of deterioration. In this model, the lot size 

and review period are assumed to be constant and the reorder point is 

the decision variable. Lead time is zero and shortages are made up as 

soon as new orders arrive. Shah and Jaiswal [91] also considered a prob

abilistic scheduling inventory model. Dave [23] discussed an order 

level inventory model where time is considered as discrete units. In 

the model he assumes constant failure rate, and allows for shortages. 

Demand is assumed to be constant, lead time is zero, and lot-size is a 

prescribed constant. This is a rather interesting paper, because the 

method of solution is different from that of the previously mentioned 

articles. Dave [21, 22] used the calculus of finite differences to 

solve some of the equations, instead of differential equations, because 

of the discrete nature of a time variable in the model. Dave [25], in 

addition to the above articles, developed an inventory model for deteri

orating items that operates for exactly m-scheduling periods, under the 

assumption of probabilistic demand and constant decay rate. In the same 

line, Dave and Jaiswal [24] generalized the previous discrete-in-time 

models to a probabilistic inventory model and presented some sensitivity 

analyses. 

In addition to the above articles, there are several papers that 

incorporate the age-independent decaying inventory models into their own 

specific field of interest. For example, Cohen [20] considered the prob

lem of joint ordering and pricing for an exponentially decaying product 

under known demand. Nahmias and Wang [73] calculated the expected number 

of shortages during the lead time for an exponentially decaying product. 

Also, Nahmias and Wang [74] developed a heuristic lot-size reorder point 

model for decaying inventories. 
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In summary, the existing literature on perishable inventory has 

been gathered and the more relevant papers have been briefly discussed. 

It is apparent that a number of extensions and additions to the perish

able inventory models are possible. Specifically age-independent perish

able inventory models are considered. 



CHAPTER III 

INVENTORY TERMINOLOGY, NOTATION AND PROPERTIES 

The purpose of the following material is to represent the notation 

that is used throughout this research, along with the basic building 

blocks of the various inventory properties that are included in some of 

these models. These objectives are accomplished by presenting the basic 

definitions and by analyzing the various types of replenishment, demands, 

and inventory models. However, it must be noted that the author does 

not claim any originality in these definitions and terminologies. Some 

of these definitions have been modified and rephrased for purposes of 

this treatise. 

3.1 Definitions and Terminology 

According to Naddor [61] for an inventory system to be analyzed, 

its characteristic properties must be considered. He suggests that all 

the properties of an inventory system can be classified into four cate

gories: (1) demand properties, (2) replenishment properties, (3) cost 

properties, and (4) constraints properties. Each of these classifica

tions of properties is discussed in detail. 

3.1.1 Demand Properties 

The demand properties involve information regarding the nature, 

size, timing, and the pattern of demand occurences. For example, when 
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the demand size is the same from period to period, it is referred to as 

a constant (uniform) demand; otherwise, it is called a variable demand. 

If the demand size is known in advance with certainty, it is referred to 

as a deterministic demand, otherwise it will be referred to as a probabil

istic demand. If the demand occurs at a known and non-uniform rate, it 

may be classified as a patterned demand. 

3.1.1.1 Demand Pattern 

There are numerous ways by which stocks can be taken out of the 

inventory to satisfy demand. There are essentially five cases that can 

be considered, and they are depicted in Figure 10. In all five patterns 

the inventory level at the beginning of the demand period is S, the 

demand period is T time units, and the total demand during the period is 

x number of units. The general equation of the quantity in inventory at 

time t during the demand period T is given by 

Q(t) = s - x \If ; (3-1) 

where Q(t) is the inventory level at time t, and n is the demand pattern 

index. This equation is due to Naddor [61]. 

Of course, the demand pattern can be described explicitly, rather 

than in the terms of inventory level. For example 

d(t) = rtn 0!-t ~T (3-2) , 
r> 0 

or 

d(t) = pqt . O't~T (3-3) 
) p >0 

q ~1 
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where r, n, p, and q, are the demand parameters. Note, however, that 

the total demand is still a known quantity given by x; that is: 

x = r Tn+l 
n+l 

for the demand of equation (3-2), or 

x = - ....JL_ (1-pq T) 
ln(q) 

for the demand of equation (3-3) 

3.1.2 Replenishment Properties 

(3-4) 

(3-5) 

The replenishment properties involve information regarding the 

nature, timing, quantity and pattern of replenishment activity. In 

general, the replenishment properties can be controlled by the decision 

maker, and hence, can be used to reduce the total inventory costs. One 

important property of replenishment is the lead time factor. Lead time 

is defined as the length of time between placing an order and the actual 

addition of the order quantity to inventory. In general, lead time is 

assumed to be known and constant, or insignificant for deterministic 

inventory systems. Lead time becomes important in the probabi 1 i stic 

models. Similar to the case of demand patterns, replenishments also 

have patterns that must be taken into account when analyzing inventory 

models. This pattern may be the result of production and shipment 

methods. 

3.1.2.1 Replenishment Pattern 

Consider a period of time over which the replenishment lot size Q 

is being added to the inventory level. Again, there are five cases that 
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can be considered, and they are depicted in Figure 11. In all five 

patterns, the replenishment period is Tr time units, and the replen

ishment lot size is Q number of units. The general equation of inven

tory level at time t during the replenishment period T is given by 

Q ( t ) = Q[Tl rt 
'\J Tr 

where m is the replenishment pattern index. 

{3-6) 

By letting p{t) represent the replenishment rate, the replenishment 

pattern can also be described explicitly. For example: 

p(t) = lim 
Tr~ 0 

indicates instantaneous replenishment which is shown in Figure 11-b, and 

p{t) = g___ = constant 
. Tr 

which is the case for unifonn replenishment, Figure 11-a. 

By using some other functions to represent p{t), other cases can 

also be analyzed. Two functions which have practical usefulness in this 

context are: 

p( t) = btm O~t~T 
b >O r 

(3-7) 

and 

p(t) = pqt o~ t =Tr (3-8) 
p>O 
q >1 
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where b, p, q, and m are the replenishment parameters. Again, note that 

the total ordered quantity must be equal to 

Q = _b_ T m+l 
m+l r 

for the replenishment of equations (3-7), and 

Q = .......L (1-pqTr) 
ln(q) 

for the replenishment of equation (3-8). 

3.1.3 Cost Properties 

(3-9) 

(3-10) 

Costs are measures of perfonnance of controllable variables in an 

inventory system. The various categories of costs which are of interest 

to this treatise have already been mentioned in Chapter I and will not 

be repeated. However, the respective symbols and their associated 

dimensions will be given in section 3.2 

3.1~4 Constraint Properties 

The constraint properties involve placing limitations upon any 

pertinent factor of the inventory system which have been mentioned to 

this point, such as cost constraints, replenishment constraints, demand 

constraints, etc. 

3.1.5 Additional Definitions 

The following tenninology is used throughout this treatise; there

fore, these definitions are given at this point for the sake of clarity 

and completeness: 

Scheduling Period: The scheduling period is the length of time, 

measured in time units, between consecutive decisions with respect to 



34 

replenishments. When the scheduling period is prescribed, the decision 

maker cannot control it, hence it must be treated as an inventory 

parameter. In most situations, scheduling periods are assumed to be 

equal. A constant scheduling period is denoted by T. 

Reorder Point: Reorder point refers to a specific amount in inven

tory. An order is placed when the inventory on hand is equal to or 

below the reorder point. 

Reviewing Period: Reviewing period is the time interval between 

consecutive review of the inventory level. 

Order Level: Order level refers to a specific amount in inventory 

and it is used as a benchmark for ordering the amount of required replen

ishment. 

Optimal Inventory Pol icy: The set of decision rules which opti

mizes the performance criteria are referred to as the optimal inventory 

policy. These decision rules are obtained by analyzing mathematical 

models of the inventory situation. 

3.2 Notation 

The following notations are used throughout this treatise with no 

change in meaning or assumption. 

= 
= 

= 

= 

K(.) = 

The unit inventory carrying cost ($/item/unit time). 

The unit inventory shortage cost (back order: 

$/item/unit time; lost sale: $/unit). 

The unit replenishment cost or set up cost ($/cycle). 

The unit deterioration/perishability cost ($/unit). 

[Purchase price + disposal cost - salvage value]. 

Total expect cost. 



C(.) = 

t,T = 

11(.) = 
12(.) = 

13(.) = 
·I4(.) = 

11 = 

I2 = 
D(.) = 

Q(t) = 

Q, q = 

Qmax = 

Qmin = 
r,R,d(.) = 

p(.) = 
h(t) = 

Total expected cost per unit time. 

Cycle time or scheduling period. 

Average carrying inventory per time unit. 

Average shortage in an inventory per time unit. 

Average number of replenishment per time unit. 

Average number of items perishing per time unit. 

Total carrying inventory in a cycle. 

Total shortage in an inventory cycle. 
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The expected total number of units deteriorating during 

a given cycle. 

The inventory level at time t. 

Order quantity/replenishment size. 

The maximum inventory level. 

The minimum inventory level. 

The demand rate. 

The replenishment rate. 

The perishability rate. 

3.3 Assumptions 

In the analysis of mathematical models of this dissertation, replen

ishment cycle t rather than the customary replenishment quantity Q is 

used for calculating the optimal cost. The replenishment cycle is pref

erable because of the time dependent nature of perishable inventories. 

The following assumptions are implicit in all of the inventory 

models that are presented in this treatise. 

i. There is no repair or replacement of any deteriorated items 

during a given inventory cycle. 
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ii. Lead time is zero. 

iii. Production rate is greater than the demand rate (applicable 

models). 

iv. Deterioration begins only after the items are received into 

inventory. 

v. Items or products are treated as continuous units. 

vi. Replenishment lot size is fixed and will not vary from one 

cycle to another. 

vii. Infinite demand horizons. 



CHAPTER IV 

LOT SIZE SYSTEM--MODEL I 

In this model the inventory holding cost is charged on al 1 the 

units that remain in inventory, whether perished or not; and perishabil

ity costs are charged at the end of the inventory cycle. This is a very 

reasonable assumption since from an accounting point of view one can 

write off (down) the costs of all the units in inventory that are no 

longer in their original useful state. 

Model I is a lot size inventory model for a system of perishable 

units and has been developed by rectifying the error in Thomopoulos and 

Lehman's [96] analysis in calculating the average inventory holding · 

cost. This model is more general than their constant demand inventory 

model, and provides additional insight into selected inventory policies. 

In their paper, they present an inventory situation in the context,of 

obsolescence, that is, the more an item remains in stock, the more 

likely that it becomes useless. They propose to show this behavior as a 

probability function P(T) = kT2 ; (T = 1,2 ••• ), where P(T) is the 

probability of obsolescence at the storage time T and k is a constant 

which is detennined for a given situation. 

4.1 Lot Size Model I-a 

In this model, the optimal inventory characteristics will be analyzed 

as a function of the initial inventory level, in the subsequent Model I-b, 
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the analysis will be prefonned on the basis of the remaining inventory, 

that is, the inventory level after the demand has been satisfied. 

Let h(t) be a monotonically increasing probability function of 

perishability at time t. Therefore, in time interval {t, t +At), 

A th(t) indicates the probability that the items in the inventory will 

deteriorate. Depending on the shape of h(t), the characteristics of the 

inventory model will change, but the underlying method of analysis stays 

the same. The whole objective here is to determine the minimum average 

total inventory cost. This can be obtained by balancing the inventory 

carrying cost, replenishment cost and peri shabil i ty cost. Now, for 

various functions of h(t), this system will be analyzed. 

4.1.1 Case 1: Constant Perishability Rate 

Let h(t) be equal to a constant perishability function, that is; 

h(t) = a. (4.1.1-0) 

For this case Figures 12 and 13 depict the inventory situation. 

Therefore, the probability of perishing is detennined by 

(4.1.1-1) 

If t* is optimal value of inventory cycle time, t, then a * 1/t • 

The average amount of inventory, average number of replenishments, and 

average number of items perishing are given by r1(t), I3(t), and I4(t). 

11(t) = {[R~2 +Rt* a~ (4.1.1-2) 
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I4(t) = 1 [Rt * at] 
t 

The total per unit time cost function is given by 

which for this particular case can be written as 
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(4.1.1-3) 

(4.1.1-4) 

(4.1.1-5) 

(4.1.1-6) 

Since C(t) is a continuous, differentiable, and convex function, the 

optimal cycle time can be obtained by differentiating C(t), setting the 

* result equal to zero, and then solving for t : 

* t = 

(4.1.1-7) 

(4.1.1-8) 

If a = 0, then t* = ~ 2c3;c1R, which is the result of the classical 

Economic Lot Size (EOQ) Model. 

The lot size in this situation is not equal to Rt, but is equal to 

Q = Rt + (Rt * at) (4.1.1-9) 

The optimal lot size then can be written as: 

* * * Q =Rt (1 +at ). (4.1.1-10) 
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By substituting equation (4.1.1-8) into equation (4.1.1-6) the 

optimal cost is obtained. 

!.:: 2 

(4.1.1-11) 

As a matter of comparison, the optimal classical EOQ cost is given by 

(4.1.1-12) 

For this particular case then, the additional cost due to perishability 

can readily be observed. 

4.1.2 Case 2: Linear Perishability Rate 

Let h(t) be equal to a linear perishability function, that is; 

h(t) = a + bt (4.1.2-0) 

For this case the graph of the inventory level also resembles Figure 13. 

Therefore, by utilizing equation (4.1.2-0) the probability of perishing 

can be detennined by 

p = ~:(a+ b'l')d'l'= at+ b~2 (4.1.2.1) 

If t * is the optimal value of the inventory cycle time, then: 

i) if a ~ 0, b > O; then at t*, a ' ' h and b .t..<:. 2{1 - 2at*~, 
t t*2 

i i) if a ~ 0, b LO; then at t*, a ~ '- 1 and -b L..~ 2{1-2at*}, 
t* t*2 

iii) if a~ O, b > 0 then the restrictions of (i) apply to the 
integral of equation (4.1.2-1) with the limit of integration 
from b/a to t instead of 0 to t. 

... 
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The average amount of inventory, average number of replenishment, 

and average number of items perishing can be written as 

I 1(t) = 1 [ Bf + Rt2a + ~] (4.1.2-2) 
t 

I 3(t) = 1 
t 

(4.1.2-3) 

I 4( t) = 1 
t 

l Rt2a + R~3 b 1 (4.1.2-4) 

By using equation (4.1.1-5) the total average cost is determined 

C(t) = C1Rt + C3 + (C1 + c4) (Rt) (a + bt/2) 

2 t 

(4.1.2-5) 

* Again, by differentiating C(t) with respect to t, optimal t may be 

obtained as 

(4.1.2-6) 

Though it is possible to rewrite this equation as a cubic equation 

* and solve for t analytically, it would be more efficient to use a 

numerical technique such as Newton 1 s Method or Secant Method to solve 

* for t • An algorithm is presented later to solve this class of 

equations. 

The lot size in this situation is given by 

Q = Rt + (Rta + Rt2b/2) 

which for optimal lot size is written as 

Q* = Rt* (1 + at* + b/2 t*2) 

(4.1.2-7) 

(4.1.2-8) 

Since t* cannot be obtained in a closed form solution, after obtaining 

t* numerically, c*(t) may then be determined by substituting t* in 
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equation (4.1.2-5). 

4.1.3. Case 3: Quadratic Perishability Rate 

Let h(t) be equal to a quadratic perishability function, that is; 

h(t) = a + bt + ct2 

Therefore, the probability of perishing is given by 

p = f: (a + b'Y + c.f )d'Y = at + bt2 + ct3 
-z- -3-

. * Restrictions on a and b hold as in Case 2 and at t , 

c <::.<. 3(1 - at* - bt*2) . 
t*3 

(4.1.3-0) 

( 4 .1. 3-1) 

The average carrying inventory, the average replenishment, and the 

average perishing is given by 

I1(t) = 1 [ Rt2 + Rt2a + Rt3b + Rt4c ] (4.1.3-2) 
t 2 2 3 

I 3(t) = 1 (4.1.3-3) 
t 

[ Rt2a + R~3 b + R~4cJ 
. 
(4.1.3-4) I4(t) = 1 

t 

By using equation (4.1.1-5) the total average cost function is 

detennined. 

C(t) = c1§t + p + (C 1 + c4) * Rt * (a + ¥- + * ) (4.1.3-5) 
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.. 
By differentiatino C(t) with respect to t, optimal t may be obtained as 

,.. 
By using a numerical technique, t can be detenni ned. The optimal 

1 ot size is given by 

·--.. _ 

o* * * + bt""2 + ct*3 (4.1.3-8) = Rt 1 + at 
2 j 

Th t · 1 c* ( t ) * e op ima cost, can be detennined by substituting t into equation 

(4.1.3-5). 

4.1.4 Case 4: Polynomial Perishabil-ity Rate 

Let h(t) be equal to some monotonic polynomial pertshabi1ity function, 

that is, 

h(t) .. ao + ••• + a tn 
n (4.1.4-0) 

For this general case, the procedure in the previous sections indicates 

that, optimal t*, and o* can be detennined by using the following general 

equation 

t* = 1--------=c3:;.,___ ___ J ~ 
.50C 1R + (C 1 + c4) * R * [a 0 + ••• + antn] J 

(4.1.4-1) 

Q* * ( * = Rt 1 + a0 t + ant*n + 1 ) . + • • • 
n + 1 (4.1.4-2) 
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4.1.5 Case 5: Exponential Perishability Rate 

Let h(t) be equal to an exponential perishability function, that is, 

h(t) = aebt ( 4 .1. 5-0) 

Therefore, the probability of perishing is given by 

( 4 .1. 5-1) 

Where a and b are positive real numbers. 

The average amount of inventory, the average replenishment, and the 

average perishability can be written as: 

I 1(t) :: l lRt2 + R~acbt Rtal 
t 2 --rJ (4.1.5-2) 

13 (t) = l 
t (4.1.5-3) 

14(t) = i ~ R~.aebt _ ~ J ( 4 .1. 5-4) 

The average total cost is 

(4.1.5-5) 

Optimal inventory cycle time is determined by differentiating C(t) 

with respect to t, 

(4.1.5-6) 

By setting equation (4.1.5-6) equal to zero and solving for t, one 

obtains 
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t* =~ c 
( Soc R + (c~ + c4)Raebt) 
• 1 1 

( 4 .1. 5-7) 

* The value of t can be obtained numerical~y, and from it, the optimal 

lot size can be detennined. 

Q* = Rt* ('.-~b-a) + aebt*)/b ( 4 .1. 5-8) 

* The opti~al cost is obtained by substituting t into equation(4.1.5-5). 

4.2 Lot Size Model I-b 

This model is exactly similar to Model I-a with the exception that 

the perishability occurs as a function of the remaining items in inven-

tory after the demand has been satisfied. Let D(t) be the number of 

* items that deteriorate during the inventory cycle t. If t is the optimal 

* * t, then the initial inventory should be Rt + D(t ). Assuming the same 

perishability rate functions, the same cases are analyzed under this 

new assumption. 

4.2.1 Case 1: Constant Perishability Rate 

Jn this, and subsequent cases, the function D(t) must be determined. 

Function D(t) can be written implicitly as: 

D(t) = ~: [(Rt+ D(t)) - Ri] h('l')d'J' {4.2.1-1} 

which upon simplification becomes 



D ( t) = [ (Rt + D ( t)] 1: h('t')d 'I' -1: Rfh('l' )d'Y (4.2.1-2) 

For a constant perishability rate function, equation (4.2.1-2) 

can be written as 

D(t) = [Rt + D(t)Jat - Rat2 
z-

which simplifies further to 

D(t) = Rat2 
2(1 - at) 

(4.2.1-3) 

(4.2.1-5) 
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Now, the average carrying inventory, the average replenishment, and 

the average perishability may be written as: 

I1(t) = 1 t Rt2 Rat2 1 
t 2 + 2(1 - at) 

I3(t) = 1 
t 

I 4(t) = 1 ( Rat2 J ; 
t 2(1 - at) 

and the average total cost function as: 

C(t) 
(C1 + c4)Rat 

2(1 - at) 

(4.2.1-5) 

(4.2.1-6) 

(4.2.1-7) 

(4.2.1-8) 

To find t*, C(t) is differentiated with respect tot, and is set equal 

to zero. 

C1R . c3 Ra(C 1 + C4) 
d C(t) = - + = 0 

Cit T t2 2(1 - at) 
(4.2.1-Q) 

which reduces to 
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t* = f 2C, r', 
ClR +Ra (Cl+ C4)/(1 - at)2 

(4.1.1-10) 

* Consequently, the optimal lot size, Q , can now be detennined as: 

Q = Rt 1 + at • * * l * J 
2(1 - at*) 

(4.2.1-11) 

4.2.2 Case 2: Linear Perishability Rate 

By utilizing equation (4.2.1-2) and substituting a linear perisha

bility rate function, the following can be written: 

D(t) =[Rt+ D(t)] l: (a+ b'\') d'I'-~: R'l'(a + b'r)d'f (4.2.2-1) 

which reduces to 

2 3 2) 
D(t) =-¥- + ~ + (at + F- D(t) (4.2.2-2) 

and upon further simplification to 

D(t) = ( 3Rat26+ Rbt3 ) I (2 - 2at - bt2) (4.2.2-4) 

The average carrying inventory, the average replenishment, and the 

average perishability may then be written as 

I 1( t) = 1 [ Rt2 + Rt2 (3a + bt~ J (4.2.2-4) 
t ~ 6 - 6at - 3bt 

I 3(t) = 1 {4.2.2-5) 
t 

I 4(t) = 1 [ Rt2(3a + bt) J {4.2.2-6) 
t 3(2 - 2at - bt2) 

and the average total cost function as: 

(4.2.2-7) 
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By differentiating C(t) with respect to t, setting it equal to zero, 

and solving for t, the optimal inventory cycle time can be determined. 

That is, 

.!..c(t) = C1R _ .:.i + R (C1 + c4) (6a + 4bt +abt2) = 
dt 2 t 2 3(2 - 2at - bt2)2 O 

(4.2.2-8) 

* t = 

,50 c1R + [R(C1 + c4)(:a +4bt +abt2) I (3(2 - 2at - bt 2 ) 2 ~ ~ 
(4.2.2-9) 

* * After obtaining t , the optimal lot size Q is determined by 

* * * Q = Rt (1 + 3at + bt*2 ) (4.2.2-10) 
6 - 6at* - 3bt*2 

4.2.3 Case 3: Exponential Perishability Rate 

Again, by utilizing equation (4.2.1-2) and substituting an exponential 

perishability rate function the following can be written: 

D ( t) = [Rt + D( t)) ~: aeb'I' d'I' - C R 'I' aeb"I' d 'I' 

which reduces to 

D(t) _ a [Rt + D(t)] [ebt - 1] - Ra ebt [bt - 1] 
- b b2 

and upon further simplification 
bt 

Ra[e - bt] 
D(t) = ab + b2 - abebt 

(4.2.3-1) 

(4.2.3-2) 

(4.2.3-3) 

The average carrying inventory, the average replenishment, and the 

average perishability may then be written as: 



= lfBt2 + Ra[ebt-bt] ] 
tl2 ab + b2 - abebfj 

:l 
t 

14(t) = l f .(Ra/b)[ebt - bt] J 
t L (a + b - aebt) 

and the average total cost function as: 

C(t) = C1Rt + ~ + (C 1 + c4)Ra[ebt - bt] 

2 t t(ab + b2 - abebt) 

(4.2.3-4) 

{4.2.3-5) 

(4.2.3-6) 

(4.2.3-7) 

* The optimal t can be determined by differentiating C(t) with 

respect to t, and setting it equal to zero. 

(4.2.3-8) 

+ (C1 + c4)(Ra/b)(ebt)[tab + tb2 - a - b + aebt - ab2t 2J = 0 
(ta + tb - taebt) 2 

t* = C3 

.5C1R + (C 1 + Cq)(Ra/b)(ebt)(tab - tb2 - a - b + aebt - ab2t 2) 

(ta + tb - taebt) 2 
{4.2.3-9) 

The optimal lot size is given by 

50 

Q* =Rt* [l + {Ra/b)(ebt* - bt*)) 
(a + bt* + ae6t) 

(4.2.3-10) 

As is evident, some of these equations are quite involved and too 

complex. But, from the practical stand point, these equations can be 

readily programmed and analyzed. Because of the flexibility that is 
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available in the selection of values for the perishability parameters 

(or even costs), adequate "near optimal" results can be obtained for most 

situations. An interactive Fortran Program has been developed (see 

Appendix A) to provide a simple means of comparing the various perishable 

inventory models. In addition, these programs permit a parametric anal-

ysis of the perishability coefficients. 

4.3 Algorithm for Determining t* 

Because of the nature of the functions in equations (4.1.2~6, 4.1.3-6, 

4.1.4-7) of Model I-a and (4.2.1-10, 4.2.2-9, 4.2.3-8) of Model I-b, a 

* simple algorithm is devised which guarantees a rapid convergence to t 

in only a few iterations. Figure 14 depicts this algorithm. 

* To solve for t it is necessary to find the intersection of two 

functions, v1 = t 2, which is a pure quadratic; and Y2= 1 , which 
A + f(t) 

is a monotonicly decreasing function. v2 is the square of the right hand 

side of the above mentioned equations. Since the optimal t obtained from the 

* classical EOQ formulation is always larger than t , thus by using this value 

* as an initial solution, t can be obtained rather rapidly using the fol-

lowing steps: 

1. Determine t 0 = '12c3;(c1R) 

2. Evaluate Y2 at t 0 , assume the value is F0 

3. Determine the new t, t 1 = ~ 

4. Evaluate v2 at t 1, assume the value is Fl 

5. If /F1 - F0 / !: E: or /t1 - to/ ~ f> stop. Otherwise set 

t 0 = tl' Fo =Fl and go the step 2. 



y 

--·· 

1 y =---
2 A + f (t) 

t =t~OQ c .!:'. 

Figure 14. The Graph of Algorithm for Determining t* 
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( E ,~are arbitrary small numbers, i.e., .001~ l, a ~.oos). 

4.4 Lot Size Model I-C 

Another method for analyzing perishable inventories, (keeping the 

assumptions of the previous cases) is to regard perishability as an 

addition to regular demand. For the various models the following re

sults are obtained. 

4.4.1 Case 1: Constant Perishability Rate 

Let a be the number of units perishing per unit of time. Then the 

total demand on inventory can be written as: 

R' = R + a (4.4.1-1) 

where R1 now is the new demand rate. The average total cost of this 

model can be written as 

C(t) (4.4.1-2) 

or 

{4.4.1-3) 

Now, by taking the derivative of C(t) and setting it equal to zero, 

t* and hence q* can be determined. 

d C(t) = C1R - C3 + .SC a = O 
dt 2 12 1 

(4.4.1-4) 

t* = (4.1.1-5) 
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The optimal order size is equal to 

Q* * * * = R't = Rt + at (4.4.1-6) 

In inventory literature, the perishability cost is usually included 

in the inventory carrying cost c1• Recall for the standard EOQ model, 

the optimal inventory cycle time is give by ~ 2c3;c1R. This implies that 

the c1 used in the EOQ analysis is (1 + a/R) times larger than the c1 used 

in equation (4.1.1-5). Therefore, this explains the reason for the 

inclusion of perishability cost into inventory carrying cost, of an EOQ 

Model whenever this class of models is considered for the inventory of 

perishable items. 

4.4.2 Case 2: Linear Perishability Rate 

Let h(t) be a linear function indicating number of units perishing 

per unit of time during the inventory replenishment cycle. Therefore, 

R' is equal to 

R' = R + a + b~ = (R + a) + bt (4.4.2-1) 

In this case the new demand rate is increasing linearly; however, note 

that this does not increase indefinitely in time, and it ceases at the 

end of each inventory cycle. By utilizing equation (4.4.2-1) the replen

ishment size can be determined by 

Q =~: [(R + a) + b 'l']d'Y 

which simplifies to 

Q = (R+a)t + bt2 
-2 

(4.4.2-2) 

(4.4.2-3) 



The average carrying inventory is evaluated from the following 

equation: 

which reduces to 

The average number of items perishing is given by 

I 4 ( t) = 1 (t (a + b"r) d "( 
t )o 

which simplifies to 

I4(t) = a + bt/2 • 

The average total cost equation is equal to 

(4.4.2-4) 

(4.4.2-5) 

(4.4.2-6) 

(4.4.2-7) 

(4.4.2-8) 

* By differentiating C(t) and setting it equal to zero, t can be 

determined. 

(4.4.2-9) 
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(4.4.2-10) 



* By substituting t into equation (4.4.2-3) the optimal order size is 

determined. 

4.4.3 Case 3: Exponential Perishability Rate 

Let h(t) be an exponential function indicating number of units 

perishing per unit of time during the inventory replenishment cycle. 

Therefore, R' is equal to 

R' = R + aebt (4.4.3-1) 
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By utilizing equation {4.4.3-1) the replenishment size can be determined 

by: 

Q = ( t (R + aeb"J') di= Rt + ~ [ebt - 1] • 
)o b 

(4.4.3-2) 

The average carrying inventory is given by: 

(4.4.3-3) 

which simplifies to 

(4.4.3-4) 

The average replenishment size is 

(4.4.3-5) 

The average number of units perishing is 



and the average total cost equation is 

bt c1a c3 c4ae 
--+-+--

b t bt 

This euqation can also be written as: 

C(t) 
C1Rt c3 (C 1 + oC4)aebt _ c4a 

= - + - + ----.--- --
2 t tb2 bt 

(4.4.3-6) 

( 4. 4.3-7) 

(4.4.3-8) 

Again by differentiating C(t) optimal t can be found. 

d C(t) = 
at 

C1R C3 c4a a (C1 + bC4)ebt[bt-1] 
- - - + - + ---------

2 t 2 bt2 t 2 b2 
= 0 (4.4.3-9) 
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(4.4.3-10) 

The optimal replenishment size, and the optimal cost can be 

* determined by substituting t into equations (4.4.3-2) and (4.4.3-8) 

respectively. 

4.4.4 Case 4: Quadratic Perishability Rate 

Let h(t) be a quadratic function indicating number of units perishing 

per unit of time during the inventory replenishment cycle. Therefore, R' 

is equal to: 
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R' = R +a+ bt + ct2 (4.4.4-1) 

The equation for replenishment size then becomes equal to 

Q = (t R' a1' = Rt + at + bt2 + ct3 
}o 2 3 

(4.4.4-2) 

The average carrying inventory is obtained by 

I1(t) = 1 (t [[Rt+ at+ bt2 + ct3] - R'] d'l' 
t)o 2 3 

(4.4.4-3) 

which simplifies to 

I1(t) = Rt + at + bt2 + ct3 • (4.4.4-4) 
2 2 6 12 

The average number of replenishments is 

(4.4.4-5) 

the average number of units perishing is 

I4(t) = 1 (t (a +bi+ c{J-) d'l'= a+ bt + ct2 , 
't )o 2 3 

(4.4.4-6) 

and the average total cost equation is 

CiRt c3 [Cit + 2C4J a [Cit + 3C 4] bt [Cit + 4C 4] ct2 
+ + + + C(t) = 

-2- t 2 ---1-2---

( 4. 4.4-7) 

Optimal inventory cycle time can now be detennined by differentiating 

C(t) and setting it equal to zero. 



(4.4.4-8) 

* t = 

(4.4.4-9) 

o* may be found by substituting t* from the above equation into 

equation (4.4.4-2). 

4.5 Lot Size Model I-d 
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By adopting and modifying a recent inventory model by Shih [102], 

an interesting lot size perishable inventory model is obtained. He com

bined the EOQ System with probabilistic percentage defective items in 

the lot. 

Assume a percentage of the order quantity perishes during the 

inventory cycle time. This would be similar in concept as Model I-C, 

Case 1. In order to avoid shortages, one must order a large enough quan-

tity so that the demand can be met during the inventory cycle time. For 

this model assume a periodic inventory model so that the perishing costs 

will be calculated at the end of the cycle. 

The average carrying inventory during an inventory cycle is equal 

to 

(1 - a) q/2 + aq = (1 + a)q/2. (4.5-1) 



60 

The first term is the average carrying inventory of non-perished items, 

and the second, the average carrying inventory of perished units. 

The length of an inventory cycle is given by 

[(1-a)q]/R (4.5-2) 

and hence, the holding cost per inventory cycle is given by 

cl (1 + a)(q)(l - a)(q) = ~ q2 (1 - a2) 
2R 2R 

(4.5-3) 

Replenishment cost is equal to c3, and perishing cost is equal to 

(4.5-4) 

The total inventory cycle cost function is therefore equal to 

(4.5-5) 

In order to obtain the total cost per unit time C(q), one must 

divide K(q), the total cost per cycle, by the mean of the inventory 

cycle time. Assume a is a random variable with probability distribution 

function of g(a). Then by utilizing equation (4.5-2), the mean cycle 

length can be determined. 

Mean cycle length = ~: [(1 - a)q/R]g{a)da 

= q/R [1 - a], 

where a is the mean of a. 

(4.5-6) 
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The average total inventory cost can now be detennined by dividing K(q) 

by equation (4.5-6). 

(4.5-7) 

C(q) is also a random variab~e, since a is a random variable. 

Therefore, the expected average total cost for this model is given by 

(4.5-8) 

which simplifies to 

2 C3R C4Ra RC1q 
E[C(q)] = + + 

-q .,....( 1---a: ),_. q (1 - a) ......,2....,R__,q (...,...f __ ....,a'. ...... ) 
(01 2 ) (1-a )g (a )da 

(4.5-9) 

By differentiating equation (4.5.9) with respect to q, and setting 

it to zero, the optimal lot size can be determined. 

C3R 
d E[C(q)] - ----
dq 

c1( 1 0(1 - a2)g(a)da 
+ )o ---- = 0 

(1 - a)q2 (1 - a)q2 2(1 - a) 

(4.5-10) 

(4.5-11) 

The second derivative of E [C(q)] with respect to q is given by: 



62 

dz 2C3R 
E [C(q)] = ___ + (4.5-12) 

dq2 (1 - a)q3 (1 - a)q3 

which is positive for every q. Hence, the expected average total cost will 

* be at the minimum for q = q • 

Now, if a is a given constant, then 

q * = r_2_R_( c_3_+_ac_4_) -] \ 

[ C1(1- a2) 

(4.5-13) 

If a is beta distributed with parameters m, and n, then g(a) and a can 

be written as: 

g(a) = (m + n + 1)! am(l-a)n 
m!n! 

a = m+l 
m+n+2 

(4.5-14) 

(4.5-15) 

Then by substituting these into the denominator of equation (4.5-11), 

that is, 

f ~ (l-a 2 ) g(a)da = 1 -

The optimal q is obtained 

m+2 a 
1 - m+n+3) 

(m+l) (m+. 2) 
(m+n+2) (m+n+3) 

(4.5-16) 

( 4. 5-17) 

In this chapter various lot size Models for perishable items have been 

considered. The inventory carrying cost has been applied to all the units 
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in stock, whether perished or not, in addition to the perishability cost 

which is charged to the individual items that perish at the end of the 

inventory cycle ti~e. In most of the models it is necessary to obtain 

the optimal inventory cycle time through ~ numerical technique. An 

algorithm is devised to accomplish this requirement. In this class of 

models, when perishahility rate is constant, by adjusting the inventory 
·-

carrying cost, one can obtain the equivalent results by utilizing the 

EOQ analysis. 



CHAPTER V 

LOT SIZE SYSTEM--MODEL II 

In this model the inventory carrying cost is charged on all the 

non-perished units in inventory, and the perishability costs are charged 

whenever a unit perishes. This model may be looked upon as a "continuous 

review" inventory model, as to the "periodic review" of model I. This 

class of models is the one that has been addressed more extensively in 

the literature, and the methodology used in this section is due primar

ily to Shah [87] and Aggarwal [3]. In this model, inventory items 

perish (deteriorate) continuously in time in accordance with some prob

ability distribution function f(t). All the assumptions of Model I 

holds except for the definition of h(t). For this model h(t) is defined 

as 

h(t) = f(t) 
....-1 ---F--( t-...) 

t ~ 0 {5-1) 

where F(t) is the cumulative distribution function of f(t). 

In this instance h(t) is the instantaneous or age-specific deteri

oration rate function of an item. This means that h(t)dt indicates the 

probability of perishability of an item during the period (t, t + dt), 

given that it has not failed prior to t. h(t) is called the hazard 

function in reliabiliy tenninology. The cumulative deterioration rate 

function is given by 

H(t) = r: h(~)d~ = -ln (1 - F(t)). (5-2) 
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Solving for F(t), 

F(t) = 1 - e-H(t) (5.3) 
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Therefore, the total percentage of items deteriorating by a given time 

t, can be determined through equation (5-3). 

An inventory cycle for Model II inventory systems is depicted in 

Figure 6. The order quantity at the beginning of the inventory cycle 

must be sufficient for the real demand, RT, plus the amount of items 

that will perish during T. 

Let Q(t) denote the inventory level of the system at time t (0 ~ t~ 

T). Q(t) is a function of the demand rate R and the deterioration func

tion h(t). The differential equation that describes the instantaneous 

states of Q(t) over the inventory cycle (O,T) is given by 

d Q(t) = -Q(t) h(t) - R ; 
dt 

0 ~ t ~ T (5-4) 

Equation {5-4) indicates that during a small interval of time dt, 

the level of inventory will decrease by an amount equal to the sum of 

real demand and the number of units that perish. The number of units 

that perish is a function of the level of non-perished units in inven

tory at time t. Now, by rewriting equation (5-4) as 

Q'(t) + h(t)Q(t) = -R, O~ t f T 

and letting 

u(t) = exp [ h(t)dt] t ~ 0 

equation (5-4) can be solved for Q(t), 

Q(t) = l [ (t -Ru(x)dx + k] um Jo 0 ~ t ~ T 

where k is a constant of integration. Let 

(5-5) 

(5-6) 

(5-7) 
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U(t) = J
0
t u(x)dx ; (5-8) 

Equation (5-7) may now be written as 

Q ( t) = ~ l -RU ( t) + k ] 0 ~ t {, T (5-9) 

The value of the constant of integration, k, can be found at boun

dary conditions. That is, when t = 0, Q(t) = Q, the initial inventory 

(lot size); and when t = T, Q(t) = 0, since by definition the inventory 

is depleted. Therefore, the initial inventory is equal to 

Q = Q(O) = RU(T) = R }:u(t)dt. 

Equation (5-9) can now be written as 

R Q(t) = 
unT 

[U(T) - U(t)] 0 ~ t ~ T. 

(5-10) 

( 5-11) 

By utilizing equation (5-11) the average inventory can be calculated by 

I1(T) = l (T Q(t)dt 
t }o 

which reduces to 

The average number of items perishing is given by 

r4(T) = (Q - RT)/T. 

Thus the total average cost for this model is obtained by 

(5-12) 

(5-13) 

{5-14) 

{5-15) 

The optimal inventory cycle time, can be found by differentiating K(T) 

with respect to T, and setting the result equal to zero. 



d K(T) = - C1R 
dT f2 

(T U(T)-U(t~dt + C1R (T u(T) dt _ ~ 
) o u ( t) ""j T ) O u ( t) T2 

Rewriting this equation, by multiplying by (-T 2/R) yields: 

(5-16} 

c fT f u(T) - U(t) - Tu(T)Jdt + c [U(T) - Tu(T)] + C3 = o. (5-17) 
1 o l: u ( t) 4 R 
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The optimal value of T, can be detennined iteratively for various functions 

of h(t), by utilizing equation (5-17). Several functions of h(t) will now 

be considered in the following sections. 

5.1 Case 1-a: Constant Perishability 

Rate Function h(t) = a 

Since h(t) is constant,- by definition of perishability equation (5-1), 

this implies that f(t) is exponentially distributed. That is, 

f(t) = ae-at; and F(t) = 1 - e-at t ~ O. 

Using equations (5-6) and (5-8} the following can be written: 

u(t) = exp [at] 

U(t) = 1 [exp(at) - 1] 
a 

{5.1-la) 

(5.1-2a) 

Hence, the average carrying inventory can be calculated by using equation 

(5-13). 

I l (T) = R r exp{aT) - exp{at)}t (5.1-3a) 
aT 0 exp at 

which simplifies to: 

I l (T) = R ~:~xp[a(T - t)] - 1] dt = R [eaT - aT - 1] • 
aT a2T 

(5.1-a) 
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The inventory lot size, Q, can be obtained readily through equations 

{5-10) and (5.l-2a); and the average total perishing per cycle is obtained 

through equation {5-14). The total average cost function then becomes 

C R c4Ra C 
K(T) = 1 [eaT - aT - l] + [eaT - aT - l] + 3 

a2T a2T T 
(5.l-5a) 

which simplifies to 

K(T) = l C1 :/c4 ) { f) (eaT - aT - 1) + ~ (5.l-6a) 

By using equation (5-17) or differentiating (5.l-6a) with respect to 

* T, the optimal inventory cycle time, T can be determined. 

d K(T)= (Cl + aC4) r-R (eaT - aT - 1) + ~ (aeaT - a~ - .:.:.. = O. 
d'r az ~ T ~ T2 

Rewriting equation (5.1-?a) as: 

R (Cl + aC4) (aTeaT - eaT - 1) = C3 , 
\ az 

and simplifying 

a2c 
eaT (aT - 1) = 3 - 1 • 

R(C 1 + ac4) 

An implicit function of T can be written as 

T = ~ ( r a2C3 11 e-aT + 1 ] 
a ~ L R(C 1 + ac4) J 

(5.l-7a) 

(5.l-8a) 

(5.l-9a) 

(5.1-lOa) 

The form of this function is given in Figure 15, where f(T) is equal to 

the right hand side of equation (5.1-lOa). 

If in equation {5.l-9a), eaT is approximated by 1 + aT + a2T2 , 
~ 

then by rewriting equation (5.l-9a) the following simple equation is 

obtained: 



y 

T* 

Figure 15. Inventory Cycle Function of a Lot-Size Model 
with Constant Perishability Rate 
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(5.1-lla) 

* Note that if a = 0 in (5.1-lla) the classical Wilson's fonnula for T is 

obtained. Equation (5.1-lla) is much simpler than equation (5.1-lOa) 

* and can be easily remembered. T can be initially approximated as 

* T = (5.1-12a) 

The inventory lot size and the total number of units perishing are 

given by: 

* Q = R/a [exp(aT) - 1], 

and 

D{T) = R/a[exp{aT)-aT-1] 

5.1' Case 1-b: Constant Perishability Rate 

Function h(t) =a (approximate model) 

{5.l-13a) 

(5.l-14a) 

In some models in the literature the average carrying inventory is 

approximated by Q(0)/2. By using equation (5.1-13a) the average 

inventory then is equal to: 

I1(T) = 0(0) = R [exp{aT) - 1]; 
2"'" Ia 

(5.1'.l-b) 

and the total number of units perishing in an inventory cycle is 

D(T) = R/a[exp{aT)-1]-RT. 

The total average cost function may now be written as: 

K(T) = c1 I l (T) {c3 + c4o (T~ IT 

which for this case is equal to 

(5.1'.2-b) 

(5.1'.3-b) 
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_ Cl R [ aT ] ~ f aT ;)] 
K(T) -~ e - 1 + ~ c3 + c4 l: (e - 1) - R~ /T ( 5. l 1 • 4-b) 

Now by taking the derivative of K(T) and setting it equal to zero, 

the optimal T can be obtained. 

C R aT C C R C R 
,Q_ K(T) = ~e - 2. - _j_ [eaT _ l] + 4 eaT = 0 
dt 2 T2 ar2 I 

This equation can be simplified and rewritten as 

~ T2 + (C 4R/a)(eaT +aT - 1) - c3 e-aT = 0 

from which an implicit function of T may be obtained, 

[ c3e-aT + (C 4R/a)(l-aT-e-aT)J ~ 
T* = 

.5C1R 

( 5. l'. 5-b) 

(5.1' .6-b) 

(5.1'.7-b) 

By approximating the exponential in equation (5.1'.6-b), the following 

equation is obtained which is much simpler than equation (5.1'.7-b). 

T* _y_2c3e-aT ] ~ 
L R(C 1+ac4) 

( 5 .1. 8-b) 

Note as a approaches zero, r* =y2c3;c1R which is the classical result for 

the EOQ Mode 1 • 

5.2 Case 2: Weibull Distribution 

Deterioration -- h(t) = abtb-l 

Covert and Philip [21]. in the development of their model assumed 

arbitrarily that the average inventory on hand is equal to one half of the 

initial level of inventory although they recognized that the inventory 

depletion curve is not a straight line. Aggarwal [3] also recognizes 

the same problem in the analysis of Shah's model [87] without actually 

deriving the exact equations. Following Covert and Philip [21], ignoring 
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their assumption of linearity, and utilizing equations (5-6) and (5-8) 

the following equations may be written: 

u(t) = exp(atb) (5.2-1) 

dx (5.2-2) 

Interchanging the order of integration and summation 

°"° 
U(t) = 2. (5.2-3) 

n=o 

and then integrating 

~ ant(nb + 1) 
U(t) = L- = W(a,b,t) n=o --(n_b __ +_l_)_n_! __ (5.2-4) 

The inventory lot size using equation (5-10) is then equal to 

Q = Q(O) = RU(T) = RW(a,b,T) (5.2-5) 

and hence the total number of units perishing is detennined by 

D(T) = Q - RT (5.2-6) 

The average carrying inventory may be obtained by utilizing equation 

(5-13), that is, 

J
T tW(a,b,T) - W(a,b,t)] 

I l (T) = R dt 
T b 

o eat 

(5.2-7) 

This can be written as: 

I1 (T) = R \ W(a,b,T) W(-a,b,T) - (T [I. a"t(nb + 11r ~ (-l)kaktkb 1 Tl ) o n=o (nb + l)nijl k=o--_,.k...,..!--J 
(5.2-8) 

The integral can be written as: 
04 

L. 
n=o 

! 
k=o 

(-l)k a(n + k) t(nb + kb + 1) 

( nb + 1) n ! k ! 
dt • 

(5.2-9) 

d~ 
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Interchanging the integration and the summations, and then perfonning 

integration, the following equation is obtained. 

~ f (-l)k a(n + k) rnb + kb + 2 

n=o k=o (nb + kb + 2) (nb + 1) n! k! 
(5.2-10) 

Now,by substituting the above equation and equation (5.2-4) into 

equation (5.2-8) one obtains 

= R[~ ~ (-l) k an + k rnb + kb + 2 
I1(T) LL 

T n=o k=o (nb + l)(kb + 1) n! k! (nb + l)(nb + kb+ 2) n! 

which simplifies to 

( _ 1 ) k an + k Tn b + kb + 2 { 

(kb+ l)(kb + nb + 2) n! k(~ • 

(5.2-11) 

(5.2-12) 

By expanding the terms of the double summation and adding the tenns of 

similar exponents, equation (5.2-12) simplifies to 

r1(T) = R L rr i 00 m 

T m=o J=o 
f ab)m rmb+21 ; 
mb+2) (mb-j) 

The cost function may now be written as: 

K(T) = c1r1(T) + ~ + ~ W(a,b,T) - c4R 

(5.2-13) 

(5.2-14) 

* To find T ; equation (5.2-14) may be differentiated or the respective 

fonnulas may be substituted into equation (5-16). 

°"" m 
_Q. K(T) = C1R L TT 
dT m=o j=o 

cP 

+ C4R L antnb)Tnb-1 
n=o nb+l)n! 

Thus, the optimal T is equal to 

= 0 
(5.2-15) 
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m 

TT 
J=O 

a"(nb)Tnb-lil i, 
(nb+l)n! jJ 

(5.2-16) 

T* can now be determined numerically as accurately as desired and 

thereby the optimal inventory lot size can be detennined through 

equation (5-10). 

5.3 Case 3: Rayleigh Distribution Deterioration 

-- h(t) = at 

A special case of the Weibull distribution is the Rayleigh distribu

tion which has--a linearly increasing perishability rate. Using the same 

methodology for this case as before, the following can be written 

immediately: 

u(t) = exp(at2/2) 

Let A=a/2, and rewrite the equation (5.3-1) as 

u(t) = exp(At2) 

Equation (5-8) can now be written as 

which reduces to 
~ 

U(t) = L Ant2n+l 
n=o (2n+l)n! 

C:P 

L n=o n! 

= W(A,2,t) 

The inventory lot size then is equal to 

Q = Q(O) = RU(T) = RW(A,2,T) 

dx 

(5.3-1) 

(5.3-1') 

(5.3-2) 

(5.3-3) 

(5.3-4) 

which is obtained by utilizing equation (5.2-5). The total number of 

units perishing is given by 

D(T) = Q-RT (5.3-5) 
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By utilizing equation (5.2-13), the average carrying inventory becomes 

Amr2m+2 ( 
(2m+2)(mb-j) J (5.3-6) 

The cost function for this case is equal to: 

K(T) = c1r1(T) + c3 + c4 W(A,2,T) - c4R 
- -
T T 

and the optimal T is given by: 

r* = c 

CiRl k }I rn:1~~ (~~:j)) +c4R ( ia 

(5. 3-7) 

An(2n)T2n-1)-l 12 
(2n+l)n! J 

(5.3-8) 

* By finding T from (5.3-8), the optimal lot size and optimal cost can 

be determined by utilizing equations (5.3-4) and (5.3-7). 

In this chapter a general methodology is developed for determining 

the optimal inventory ·characteristics of items that are subject to a given 

perishability distribution function. Corrections are made in the determ

ination of the total carrying inventory with respect to the models of other 

researchers. Results are also obtained for the case of the Rayleigh dis

tribution, which can be considered as a special case of a Weibull distri-

bution function. The Rayleigh distribution has a special property of 

having a linearly increasing perishability function. 



CHAPTER VI 

FINITE PRODUCTION RATE INVENTORY 

CONTROL SYSTEM 

The behavior of the inventory level for a finite production rate 

model is depicted in Figure 16. The inventory level at the beginning, 

and the end of the inventory cycle is zero. Following Misra [58], and 

Shah and Jaiswal [88], let T be the inventory cycle length, then the 

inventory cycle will consist of two segments. 

During the first segment (O,T1), the production occurs at a rate of 

p(t) units per time unit, and demand occurs at a rate of d(t) units per 

time unit. In the second segment (T 1, T) there is no production and 

demand is satisfied at a rate of d(t) from the inventory. 

Let h(t) be the instantaneous deterioration rate function for the 

items in inventory, and let Q(t) be the inventory level at time 

t(O t T). The change in the inventory level during a small interval 

of time can be represented mathematically as: 

-d Q(t) = Q(t)h(t)dt + d(t)dt-p(t)dt, 

and 

-d Q(t) = Q(t) h(t)dt + d(t)dt 

These equations can be rewritten as 

.2_ Q1(t) + h(t) Q1(t) = (p(t) - d(t)), 
dt 
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(6-1) 

(6-2) 

(6-3) 

(6-4) 
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Figure 16. Finite Production Rate Inventory Model 
with No Shortages 
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The solutions to the general first order linear differential equa

tion is given by Boyce and DiPrima [12]. For the above equations they· are: 

(tl 
)o [(p(t)-d{t))]exp ( { h{t)dt)dt+k1 

exp (~:! h(t)dt) 

and 

f ~2 (-d(t)) exp ( J h(t)d{t)) dt+k2 
02{ t2)= \_l ___________ _ 

exp ({t2h(t)dt) 
)Tl 

The values for the constants of integration k1 and k2 are determined by 

using the boundary conditions. That is, at t 1=o, Q1(0)=0, and at 

t2=T1, Q2(T1)=Qmax· Applying these boundary conditions results in k1=0, 

and k2=Qmax· Equations {6-5) and (6-6) can be rewritten as: 

(p{t)-d(t)) exp { f h(t)dt)dt 

exp( ):1 h(t)dt) 

(t2 (-d(t)) exp ( h(t)dt) dt+Qmax 
02(t2) =)Tl---....--------

exp ( 2 h(t)dt) 

1 

In order to evaluate equations {6-7) and {6-8), specific cases must be 

considered. 

6.1 Case 1: p(t), d(t) and h(t) 

Are Constants 

In this case the production rate and demand rate are constant, and 

items in inventory are being perished according to the exponential 
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distribution function. Let p(t)=p, d(t)=d, and h(t)=h. Then substitut

ing these values into equations (6-7) and (6-8) yields: 

J>p-d) exp ( J hdt) dt ' 

exp (fol hdt) , 

(6.1-1) 

(t2 (-d) exp (shdt) dt+Qmax 
Q2(t2) =)...;..T ____ -.,..-______ .T1 .{. t 2 f T 

exp( ct2hdt) J 

Jr1 

(6.1-2) 

which can be solved and simplified further as: 

(6.1-3) 

(6.1-4) 

Since at t 2=T, Q2(T)=O, this implies that 

Q = .Q. eh(T-T1) 
max ' h 

(6.1-5) 

and equation (6.1-4) becomes: 

02(t2) = ~ l exp[h(T-t2)J-1] (6.1-6) 

The inventory level Q(t) at the tennination of the first segment of the 

inventory cycle is equal to the initial inventory level of segment two. 

Therefore, by using equations (6.1-3) and (6.1-6), T1 can be determined; 

¥ [l-exp(-hT1)J = ~(exp[h(T-T 1 )]-l] (6.1-7) 

T1 = 1 ln [l + .Q. (ehT - l)] (6.1-8) 
n P 



Since production rate is a constant rate of p, the production lot 

size and hence the number of items that deteriorate is determined 

readily. Let q be production lot size, then 

q = pT1 = .E. ln [1 + .£. (ehT - 1)] 
h p 

(6.1-9) 

The number of items perishing, D(t), during the cycle time Tis 

determined by: 

D(T) = q - dT = .E. ln [1 + .£. (ehT - 1)] - dT • (6.1-10) 
h p 
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In order to determine the optimal T for this case two subcases must 

be analyzed: (a) carrying cost is applied to the average total number of 

units in stock; (b) carrying cost is applied only to the nonperished 

items in stock. These subcases are illustrated in Figure 17. 

To determine the inventory carrying cost during a cycle for each sub

case the areas under the curves must be calculated. 

6.1.1 Subcase a. Inventory Carrying Cost on 

Total Units in Inventory 

Total carrying inventory during the cycle is given by 

I1 = ~(p-d) T1 + ~(d)(T-T 1 ) + D(T)(T-T1). 

which can be written as 

I I = ¥ - dT2+T I [ p T + dT + ~ - d - p T !1 . 

(6.1.1-1) 

(6.1.1-2) 

By substituting equation (6.1-8) into (6.1.1-2), the total carrying 

inventory is obtained as a function of T, that is, 



0 Tl T 

(a) Total Number of 
in Stock 

Units 

(b) Non Perished Number 
of Units in Stock 

Figure 17. Inventory Level of 
a Finite Produc
tion Model 
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I l = ¥ - dT' + k r n [ 1 + ~ (eh T - 1) ]1 { p T + dT + % - d 

-p [ k ln[l + ~ (ehT - l)lJ]. (6.1.1-3) 

The total average cost per unit time equation of the system is: 

C(T) 
c c 

+ _1_ + ~ D(T) (6.1.1-4) 
T T 
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Since C(T) is a convex function the optimal cycle time T* can be deter

mined analytically. However, because of the form of the equation an 

* easier method of finding T is to use the Fibonacci Search Technique. 

* By determinin9 T ; T1 and q can be readily calculated utilizing equations 

(6.1-8) and (6.1-9). 

6.1.2 Subcase b. Inventory Carrying Cost on 

Non-Perished Units in Inventory 

The total carrying inventory during the cycle is given by integrat-

ing equations (6.1-3) and (6.1-6), that is, 

I1 =(Tl [ £=£ (1-exp(-ht))] dt +CT [ £ (exp(h(T-t))-l]dt 
)o h )T1 h (6.1.2-1) 

Integrating and collecting similar terms results in: 

T -hT h(T-Tl) 
r1 = .!Ll. - £ T - f + £=£ e 1 + d e (6.1.2-2) 

h h h2 h2 h2 

Since the value of T1 as a function of Tis known from equation 

(6.1-8), equation (6.1.2-2) can be rewritten as a function of T only. 

Equation (6.1.1-4) remains the same for the average total cost function 

equation of this subcase, and only an appropriate r1 must be utilized in 

the equation. 
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The results that have been derived for this case are equivalent to 

those of Misra [58] if the series fonn of the exponential is used, and 

terms with second and higher powers of h are ignored in the above equa-

tions. The optimal cost and cycle time should be obtained through a 

search technique. Misra [58], through exponential approximation of 

equivalent of equation (6.1-7), has tried to establish an analytical 

relationship between T1 and (T-T1). His approximations for the result

ing quadratic equation implicitly assumes that h(T-T1)2/2 is approxi

mately zero. By substituting these results into the cost equation, he 

* * differentiates and then further simplifies to obtain T1 and Q • The 

results that he has obtained for an example problem are incorrect; 

however, if the proper calculations are made, the results would be 

"good" or 11 close 11 only if T 1. That is, one must normalize inventory 

parameters in such a way that this condition would hold. 

6.1.3 Approximation of Optimal Q 

Using the series form of the exponential, logarithms, and ignoring 

terms with second and higher powers of h under the assumption that l/h~'-T, 

the following results can be obtained. First, rewrite equation (6.1-8) 

as: 

T1 = 1 ln [l + d (hT + h2T2)] 
n iJ -z ( 6 .1. 3-1) 

Then, expand the logarithm as 

d (hT + h2T 2) p -2-
(6.1.3-2) 

2 + d (hT + h2T2) 
p -2-



the approximate optimal rl* is then equal to 

* (2/h) J Tl =i--~~~~~~ 
1 + 2 

d (T + hT 2 ) 

p 2 

The optimal order quantity, Q*, can be determined by: 

* * Q = pT 1 • 

6.2 Case 2: d(t) and h(t) are constant, 

p(t) = ptb 
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(6.1.3-3) 

(6.1.3-4) 

In this case the production rate is increasing according to a 

polynomial function, demand rate is constant, and perishability of items 

in inventory are characterized by the exponential distribution. Let 

d(t)=d, h(t)=h, and p(t) = ptb, where b is a nonnegative integer. Sub

stituting these values into equations (6-7) and {6-8) and simplifying 

yields: 

. b!(t1)b-i] (d) -ht 
(-1 1 ) • - [1-e 1]; 

(b-i)!h 1 i . 

(6.2-1) 

Equation (6.2-2) is the same as equation (6.1-6) of the previous model. 

Again at t 1=T1 and t 2=T1, equations (6.2-1) and (6.2-2) are equal, 

therefore: 

b I T (b-i) 
' 1 J-<d) [l-e-hTl] = (dh) [eh(T-T1)_l] 

(b-i) ! h l Ti 

(6.2-3) 

This simplifies further to: 
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/pehT1\\t. (-l)ib! '.i(b-i)J _ hT 
\ d ·J c =O ( b-i) ! h, - e - l 

(6.2-4) 

Solving equation (6.2-4) for Tin tenns of T1 yields 

T = ~ 1 n ~ 1 ) peh Tl)[ t (-1); b ! Tl ( b- ~ ) J { 
h l l d 1=0 (b-i)!h1 ) {6.2-5) 

In production situations where learning curve effect is present, 

the replenishment rate p(t) can be approximated closely by adjusting p 

and b. By utilizing equation (6.2-5), the problem can be solved as a 

function of r 1 rather than T. Special subcases of interest would be 

when b=l, or b=2, that is when the production rate is increasing 

linearly or quadratically. In these special cases equation {6.2-5) 

reduces to: 

T = ~ ~n l + (P•:T1}r1 -f,l] for b = 1 (6.2-6) 

T = ~ lnt 1 +~ ~hT1)(T12 - 2~1 + ~)} for b = 2 (6.2-6) 

Now, the total carrying inventory can be calculated for the respec-

ti ve va 1 ues of b. For b=l, 

)~1 ~)(eh(T-t2) - 1) dt, . (6.2-7) 

This simplifies to: 

11 = *lr;- f1)-(i)r1. * (•-hT1 - l)J 
+(~)ltT-T) - ~ - (T-T ilJ (6.2-8) 



By regrouping the similar tenns 
.f -hT 1 hT ,l 

I1 = .izn. Ti - .eti -E_h T + ~~ [1-e :U 
{6.2-9) 

Since the value of T can be detennined from (6.2-6), equation (6.2-9) 

can be solved explicitly as a function of T1. 

The amount of deterioration is given by: 

T b+l 
p 1 

D(T1) = ___ - dT 

b+l 

(6.2-10} 
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Hence, the average total cost equation can be detennined as a function 

of T1; that is, 

C I 
C(Tl) = 1 1 

T 

When b=2, the total carrying inventory is equal to: 

+ ~ \ }: l (eh ( T - t) - 1 ) dt] 
This reduces to: 

lpl T21 2T 11 -hT hT I 1 = .Q. - - - + - + £ e 1 ( e - 1) - dT 
11 3 h h2 h2 h 

(6.2-11) 

(6.2-12) 

(6.2-13} 

The deterioration and cost functions remain the same as (6.2-10) and 

(6.2-11). 

6.3 Case 3: d(t) and h(t) are Constant; 

p(t) = pqt 

In this case, the production rate is increasing as an exponential 
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function of time, demand rate is constant, and perishability is according 

to an exponential distribution function. Let d(t)=d, h(t)=h, and 

p(t)=pqt; p )0, q ~1. Substituting these values into equations (6-7) and 

(6-8) and simplifying yields: 

At t 1=T1 and at t 2=T1 equations (6.3-1) and (6.3-2) are equal; there

fore, after simplification the following relationship is obtained. 

T = l ln } ph (qTlehT1 - 1) + lJ (6.3-3) 
h l d ( h+ 1 nq) 

Again, total carrying inventory can be calculated by integrating 

equations (6.3-1) and (6.3-2), that is: 

Il = _L._ ~ 1 (elnqTl - 1) + l (e-hT1 
( l nq+h) l TriCj h 

Tl+~ (e-hT1 _ 1)] + ~ t e~T (e-hT _ .-hTl) _ (T-T l ~ 
j(6.3-4) 

which reduces to 

Il =_Q_ {L_ (T1 - 1) +l (e-hT1 - 1) t 
(Tnq+ff) l l nq h j 

+ d e-hTl (ehT - 1) - dT 
h2 Tl 

(6.3-5) 

By substituting equation (6.3-3) into equation (6.3-5), the total 

carrying inventory function is obtained as a function of T 1• Equation 

(6.2-1) for the average total cost function will be used again for 

deteriming r*. The optimal production lot size, q*, and deterioration, 

o*(T) can be determined by: 
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{6.3-6) 

D{T) = Q* - dT * ( 6. 3-7) 

6.4 Case 4: d(t) and p{t) are Constant, 

h(t) = a 
b-t 

An interesting result is obtained if it is assumed that demand and 

production rate are costant, and perishability rate function is a speci

fic increasing function. Let d(t)=d, p(t)=p, and h(t)= a , where a and 
b-t 

b are positive; and b is greater than TEOQ" The shape of the deterior-

ation rate function of this case is given in Figure 18. 

The integral of h(t) is given by: 

{ h(t)dt = SL dt = -a ln (b-t) 
) b-t 

{6.4-0) 

Now, by substituting the respective values for d(t), p{t), and h(t) 

into equations {6.7) and {6.8) the following equations are obtained. 

{p-d) [b(l-a) - (b-t1)(l-a)] o,t1fT1 (6.4-1) 
G1(t1) = ---------

{1-a) (b-t1)-a 

-d [(b-t2)l-a - (b-Tl)l-a] + Q - max = 1-a 

(b-t2)-a (b-T1)a 

Since, at t 2=T, Q2(T)=O, this implies Qmax is equal to: 

Qmax = - d [(b-T)l-a - (b-T1)l-a] 
r-a 

{6.4-2) 

{6.4-3) 

{6.4-2), and simplifying yields: 

(6.4-4) 



h(t) 

a/bl------------------

a 
Figure 18. Deterioration Rate When h(t) - ~

b-t 
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At t 1=T1 and t 2=T1, equations (6.4-1) and (6.4-4) are equal, there

fore T, or T1 may be determined explicitly, that is, 

{p-d) [bl-a - (b-T1)l-a] (-d) [(b-Tl)l-a - (b-T)l-a] 
= (6.4-5) 

(l-a)(b-T1)-a 

Simplifying further and Solving for T yields 

T = b - i (b-T1)l-a + (pdd) [bl-a (b-T1)" - (b-T1lJll/{l-a) • 

{6.4-6) 

Now, all that remains to be determined is the total carrying 

inventory, which is obtained by integrating equations {6.4-1) 

and (6.4-4): 

11= foll (~)[{b-t)•b{l-a)_{b-t)~ dt 

+ (T } ( -d J[(b-t)-(b-T) 1-a(b-t)a]) dt 
jT1 l (l-a)(b-T1)aJ ) ( 6. 4-7) 

This reduces to: 

r1 =r (p-d) 1 ~ \ b(l-a) J [b(l+a) - (b - T )(l+.a)l -(bT - T2/2)] + 
[ (1-a) tl(l+a) 1 ~ 1 1 

¥ /~) (b-T 1 )-a] ( i,[ (b-T)2-(b-T 1) 2] + (b-T) {1-a) [ (b-T) (l+a) -
Lt1-a l l+a 

(b-T 1) {l+a)]} (6.4-8) 

Again, by substituting T of equation (6.4-6) into this equation and 

* utilizing the cost equation (6.2-11), the optimal T 1, can be found. 

* . Using this result, T can be detenn1ned. 

6.5 Case 5: d(t) and p{t) are Constant, 

h(t) = abtb-l 

In this case the production and demand rate are constant, and the 
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items in inventory perish according to a Weibull distribution function. 

Let p{t}=p, d(t)=d, and h(t)=abtb-l, where a and bare positive numbers. 

This is the case of varying rate of deterioration, and the solution is 

obtained similar to previous cases; therefore: 

=~t~ -d exp (atb) dt + Qmax 

exp [a(tb2-r1b)] 

at t 2=T, Q2(t2) in equation (6.5-2) is equal to zero, hence 

(6.5-1) 

(6.5-2} 

Qmax = (T d exp (atb) dt Jr1 (6.5-3) 

Substituting this in equation (6.5-2} yields: 

(~2 -d exp (atb) dt + (~ d exp (atb) dt 
= \ 1 ) 1 ( 6. 5-4) 

exp [a ( t b 2 -T 1 b) ] T 1 " t 2 ~ T 

At t 1=T1, and t 2=T1, equations (6.5-1) and (6.5-4) are equal and 

hence the following relationship exists: 

fT
0
1 b T 

{p-d) exp (at ) dt ) 
--""'---------- = d exp (atb) dt 

b T 1 
exp (aT1 ) 

(6.5-5) 

Because of the difficulty in integration, equation (6.5-5) cannot be 

simplified any further. 

By integrating equations (6.5-1) and (6.5-4), the total carrying 

inventory can be obtained, and hence the average total cost equation 

becomes: 
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Equation (6.5-6) is a function of two variables, T1 and T; however, 

these two variables are not independent and are related by equation 

(6.5-5). Theoretically, it should be possible to solve for Tor T1 of 

equation (6.5-5) and substitute the value in the cost equation of 

* * (6.5-6); then, by differentiating, the optimal T or T 1, would be 

determined. Unfortunately, this is not practical because the value of T 

or T1 can not be determined explicitly; and in addition, the integrals 

in equation (6.5-6) cannot be integrated analytically. To solve these 

equations, one must expand the exponential tenns into their respective 

series form, and then use numerical techniques to obtain the solution. 

In this chapter the methodology of Chapter V is extended to encom

pass the finite production rate inventory systems. In addition to the 

models that have been developed in the literature, various cases of non

constant production rate have been considered. These models are especi-

ally significant in situations where the production rate is increasing 

during the inventory cycle time, or where learning curve effect is 

present. They are also useful in such areas as nuclide pharmacuetical 

drugs production where the half life of various isotopes have a major 

bearing on the amount and the rate of production. 

Also a case of an increasing perishability rate function with 

interesting analytical characteristics has been considered. 



CHAPTER VII 

FINITE PRODUCTION RATE INVENTORY CONTROL 

SYSTEM WITH BACKLOGGING 

These models are a further generalization of the previous models of 

Chapter VI, and Figure 19 depicts the inventory level of this system of 

inventory. In these models, the inventory cycle consists of four phases: 

1) (O,T1) production and demand taking place simultaneously; 2) (T1,T2) 

demand is satisfied from the stock; 3) (T2,T3) demand is being backlogged; 

and 4) (T3,T) production and demand taking place simultaneously with the 

reduction of backlogs. There is no deterioration in phases three and 

four, and deterioration is only taking place in the first two phases. 

As in the models of Chapter VI, the differential equations that 

describe the system are given by: 

__.!!. Q(t) + h(t) Q(t) = p(t) - d(t) O~t~Tl (7-1) 
dt 

__.!!. Q(t) + h(t) Q(t) = -d(t) T 1 ~t~T2 (7-2) 
dt 

__.!!. Q(t) = -d(t) T2 ~t:T3 (7-3) 
dt 

__.!!. Q(t) = p(t)-d(t) T3 ~t~T (7-4) 
dt 

Solution of these equations are: 
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f [(p(t1) - ~(t 1 )) exp (jh(t)dt)]dt1 + K1 
Q1 ( t) = )_oo ______________ _ 

exp ( J: h(t)dt) 

= J~l [(-d(t2) exp ( Jh(t)dt)]dt2 + K2 

'- exp ( r h(t)dt) -
Tl 

Q3(t) = (t -d(t3)dt3 + K3 
) T 2 

Q4(t) = (t (p(t4) - d(t4)) dt4 + K4; 
) T 3 

Oft~Tl 

(7-5) 

(7-6} 

(7-7) 

{7-8) 

The values of constants of integrations are obtained using the 

boundary conditions. Therefore, K1=o, K2=Qmax' K3=o, K4'=Qmin" Now, 

specific cases will be considered. 

7.1 Case 1: p(t), d(t), and h(t) are Constant 

95 

In this case the production and demand rate are constant and items 

in inventory are being perished according to an exponential distribution 

function. Let p(t)=p, d(t)=d, and h(t)=h. Substituting these values 

in equations (7-5) through (7-8), and utilizing the results of Chapter VI 

the following equations are obtained. 

01(t) = E.:S! [1-exp(-ht)] 
h 

= -d + [Qmax exp (h(T1-t))]; n 

03(t) = -d(t-T2); 

0 ft fT1 (7.1-1) 

(7.1-2) 

(7.1-3) 



(7.1-4) 

At t=T, Q4(t)=O; therefore, Qmin=-(p-d)(T-T3). At t=T2, Q2(t)=O; 

therefore, Qmax = d exp (h(T2-T1)). So, n 
04(t)=(p-d)(t-T). (7.1-5) 

At t=T1, equations (7.1-1) and (7.1-2) are equal; and hence, 

T1 = ~ ln [1 + ~ (exp (hT2) - l)J. (7.1-6) 

At t=T3, equations (7.1-3) and (7.1-4) are equal; therefore, 

T3 = .£. T2 + (p-d) T 
p p (7.1-7) 

Production lot size, Q, is obtained by: 

(7.1-8) 

which can be rewritten as: 

Q = d(T-T2) + t ln [l + (d/p) (exp(hT2) -1)] • (7.1-9) 

Note that this is a function of T2 and T. 
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The total number of items that deteriorate during a cycle is equal 

to the difference of total production and total demand during the 

inventory cycle time, that is, 

D(T,T2) = Q - dT. (7.1-10) 

Now, all that remains to be calculated is the total carrying inventory and 

the total backlogs. By utilizing equation (6.1.1-2) of Chapter VI models, 

the total carrying inventory can be written as: 

(7 .1-11) 

To calculate the total backlog, equations (7.1-3) and (7.1-5) are 

integrated, that is, 
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I2 = ( 13_ d(T 2-t) dt :+ f T - (p-d)(t-T) dt 
Jr2 T3 

(7.1-12) 

By simplifying and substituting into equation (7.1-7) the following 

equation is obtained: 

I2 = d (T-T2)2 (1-d/p) (7.1-13) 
~ 

The av~rage total cost f~nction can be written as a function 

of T and r2, that is, 

C(T2,T) = (C 1I1 + c2I2 + c3 + c4 D(T2,T))/T (7.1-14) 

A search technique such as Hooke and Jeeves may now be used to find 

the optimal r* and r*1• Of course, one could take the partial of C(T 2,T) 

with respect to r 2 and T; however, this process is too cumbersome and 

inefficient for obtaining the optimal results. 

7.2 Case 2: d(t) and h(t) are Constant 

p(t) = btb 

In this case the production rate is increasing according to a poly-

nomical function, demand rate is constant, and perishability of items in 

inventory are characterized by an exponential distribution. Let d(t)=d, 

h(t)=h, and p(t)=ptb, where bis a nonnegative integer. Again, using 

the results of Chapter VI, that is, utilizing equation (6.2-5), T2 can 

be detenni ned. 

T =I ln L {ehT1) ±. (-l)i b!Tl(b-i) ( 

2 h l d i=O {b-i)!h1 J 
(7.2-1) 

Using equations (7-7) and (7-8) and noting that at t=T 3 they are equal, 

the following is obtained. 

[ b+l J 1/b+l T3 = T - d(~+l) (T-T2) (7.2-2) 
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The production lot size is then obtained by integrating the production 

rate in phase one and phase four, that is, 

Q = -12...... (T b+l + Tb+l _ T b+l) 
b+l 1 3 

(7.2-3) 

Total backlogging is obtained by integrating -Q(t) between T2 and T. 

-p (Tb+2 - T b+2) + t.Tb+J [T-T] + d [T-T J2 
(b+l)(b+2) 3 b+l 3 2 3 

(7.2-4) 

The total carrying inventory and the total backlog can now be stated 

for specific values of b. 

For b=l, by utilizing equations(6.2-9) and (7.2-4) the following 

can be written: 

(7.2-5) 

(7.2-6) 

The production lot size is then equal to: 

(7.2-7) 

For b=2, equations (6.2-13) and (7.2-4) are utilized to obtain the 

total carrying inventory and the total backlog. 

(7.2-8) 

(7.2-9) 
The production lot size for this case is then equal to: 

(7.2-10) 
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The amount of deterioration is given by 

(7.2-11) 

where Q is given by equation (7.2-7) or (7.2-10). The cost equation 

* * (7.1-14), is then used to find the optimal ._T2 and T. 

7.3 Case 3: d(t), h(t) are Constant_ p{t) = pqt 

. - -·- -
In this case the production rate is increasing as an exponential 

function of time, demand rate is constant, and perishability is according 

to an exponential distribution function. Let d(t)=d, h(t)=h, and 

p{t)=pqt; p 0, q 1. By utilizing equation (6.3-3) the equation for 

r2 can be written as: 

T 2 = 1 l n ~ ph [ ( q T 1 eh T 1) - 1] + 1] . 
h t d(h+lnq) 

(7.3-1) 

By utilizing equations (7-7) and (7-8), and noting that at t=T3 they are 

equal; the value of r 3 can be detennined. 

T3 = 1 ln [-.£ ln q (T-T2) + qT] 
rnq p 

(7. 3-2) 

The total carrying inventory is obtained by using equation (6.3-5), 

11 = ........--P....,......... 
(l nq+h) l 1 (T 1-l) + ]_ (e-hTl-1)] + _d_ [ehTl (eh12-1)] - dT2 

Triq h h2 h 
(7.3-3) 

and the total backlogging is obtained by integrating -Q(t) in phase three 

The production lot size is equal to: 

Q = ~: 1 
pqt dt +)T pqt dt, (7.3-5) 

T3 



which simplifies to 

Q = _£_ ( q Tl + q T _ ~T 3• _ l) 
lnq 

(7.3-6) 

The total deterioration function, and the average total cost function 

are the same as equations (7.1-14) and (7.2-11). 

7.4 Case 4: d(t), p(t) are Constant h(t} = a 
b-t 
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In this case the production and demand rates are constant, however, 

the perishability of items in inventory is according to a specific per-

ishability rate function. Let d(t)=d, p(t)=p, and h(t)= a , where 
b-t 

a and b are positive; and b is greater than TEOQ" By using equation 

(6.4-6) value of T2 can be written as: 

T2 • b -l(b-T1)l~a + (pdd) [bl-a (b-T1l" - (b-Tl)~l/(l~a) 
(7.4-1) 

Again, by utilizing equations (7-7) and (7-8), the value of T3 can be 

written as: 

(7.4-2) 

The total carrying inventory is obtained by utilizing equation 

(6.4[-~s;~ d) ! [ b(l-a) J . j 1 
I = - [b(l+a) - (b - T )(l+a) -(bT - T 2/2) 

1 {1-a) (l+a) 1 1 1 

r d J f ( b-T ) {1-a) 
+ (~) (b-T1)-a +~[(b-Tz)2-(b-T1)2] + 2 [(b-T2)(l+a) 

1-a l+a 

(b-T 1)(l+a)] 1 (7.4-3) 

The total backlog is obtained by integrating -Q{t) in phase three and 

phase four of the inventory cycle, that is, 
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I2 = (d/2) (T-T2)2 (1-d/p). (7.4-4) 

The production lot size is equal to 

(7.4-5) 

and the perishability function is the same as equation (7.2-11) 

The average total cost function is 

C(T,T1) = t f c1 11 + c2r2 + c4D(T,T1) + c3} 
(7. 4-7) 

In thts chapter, the results of Chapter VI are extended to include 

the case of backlogging of demand. In addition to the case of constant 

production rate, various nonconstant production rates have been analyzed. 

The average total cost equations of these models are essentially functions 

of two independent variables; the inventory cycle time, T, and the production 

cycle time, T1• To determine the optimal inventory characteristics, one can 

resort to and benefit from search techniques. The Hooke and Jeeve's search 

technique seems especially appropriate for this class of ~roblems. 



CHAPTER VI I I 

ORDER-LEVEL INVENTORY SYSTEMS 

Order level inventory systems are deterministic systems in which 

the carrying costs are balanced against shortage costs. The only var

iable subject to control is the order level S. The scheduling period is 

a prescribed constant. Figure 20 depicts the inventory situation of 

this system. Two cases will be analyzed; constant demand and pattern 

demand under the assumption of constant deterioration rate. 

8.1 Case 1: Constant Demand and Constant 

Deterioration Rate 

For this case, Figure 20 will be used to describe the model deriva

tion process. Following Shah and Jaiswal [89], at time t=O of an inven

tory cycle, a replenishment of size q enters the inventory system from 

which (q-S) units are used to satisfy the backlog, leaving a remainder 

of S units as the initial inventory level. As time passes, the inven-

tory level decreases due to demands and deterioration up to time T 1• 

From time T 1 to T, demands are then backlogged. Replenishment size, q, 

is given by: 

q = S + R (T-T1) = S +RT -RT1 (8.1-1) 

The differential equations describing the inventory level are: 

d Q(t) + aQ(t) = -R 
dt 
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(8.1-2) 
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d Q(t) = -R 
cit 

The solutions to the above equations are determined to be 

104 

(8.1-3) 

Q ( t) = (- : ) ( e -at) (eat -1 ) + k 1 e -at 0 f t f T 1 ( 8. 1-4) 

Q(t) = -R(t-T1) + k2 T 1 ~ t ~T (8.1-5) 

Since at t=O, Q(t)=S, and at t=T1, Q(t)=O, one can solve for the 

constants of integration, that is, k1=s, and k2=o. Rewriting equations 

(8.1-4) and (8.1-5) as: 

Q(t) = LS - E. (eat_l) Je-at 
a 

Q(t) = RT1 - Rt 

one can find the following useful identities: 

S = (:) (eaT1 - 1) 

T1 = l ln (1 + aS ) 
a R 

(8.1-6) 

(8.1-7) 

(8.1-8) 

(8.1-9) 

Now, by substituting equation (8.1-9) into equation (8.1-1), one can 

determine q as a function of S, 

q = S- R ln (1 + aS) + RT • 
a R 

(8.1-10) 

The total carrying inventory is detennined by integrating equation (8.1-6), 

that is, 

I 1 = (- n (e -aT 1-1) {~Y 1 -(~1[e -aT 1-1] (8.1-11) 

This equation can be further simplified by using equation (8.1-8), 

aT 
11 = B__ (e 1-1) - E_ Tl 

a2 a 

or can be written as: 

11 = S/a - (R/a 2 ) ln (1 + aS) 
R 

(8.1-12) 

(8.1-13) 
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Equations (8.1-12) and (8.1-13) are exact calculations for the carry

ing inventory as opposed to the calculation of Shah and Jaiswal [89]. 

The total number of items deteriorating is given by: 

D = q - RT = S - R ln (1 + aS), a R 
or 

R aTl 
D = - (e -1) -RT1 

a 

(8.1-14) 

(8.1-15) 

The total backlog is calculated by integrating equation (8.1-7), that is, 

The average total cost equation of the system is: 

C(T1) = [c1r1 + c2r2 + c4DJ/T , 

which can be written as 

Equation (8.1-18) can also be written as a function of S, 

C(S) =fc1s - C1R ln (1 + ~) + C2R (T - ..: ln (1 + ~) )2 r. a2 R 2 a R 

C4R S J + C 4 S - -a- 1 n ( 1 + !-) /T 

(8.1-16) 

(8.1-17) 

that is, 

(8.1-19) 

For optimum value of T1 or S, equations (8.1-18) or (8.1-19) can be 

differentiated and set equal to zero, that is; 

(8.1-20) 
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which upon further simplification becomes 

(8.1-21) 

Though the calculation for the total carrying inventory has been exact 

rather than approximate, the resulting equation (8.1-21) is 11 simpler 11 

than the one derived by Shah and Jaiswal [89]. Their equation is 

S(C1+2aC 4) + l (C 1R+2C 2R+C1Sa) ~n [ 1 + asll 2C 2RT = 0 (8.1-22) 
a R u 

The second derivative of equation (8.1-21) is positive for positive 

S values and therefore optimal s* can be determined by using a search or 

a numerical __ technique on equation (8.1-21). Note, when a=O in equation 

(8.1-21), meaning no deterioration, one can solve for Sand obtain the 

order level system for non-deteriorating items, which is: 

(8.1-23) 

The following relationship is used to obtain the above equation. 

lim l 1n(l+aS)=i 
a~O a R R (8.1-24) 

Some approximate results can be obtained using assumptions 

a L.(..l/T, and aS/R~ 1. By using series form of logarithmic and expo

nential terms, and ignoring second and higher order terms of a, the fol

lowing equations can be written. 

Tl = ~ (1- ~~) 

RaT 12 

S = RT 1 + __ 

2 

(8.1-25) 

(8.1-26) 



or 

q = RT + Q 2 

2R 

The average total cost function is then equal to: 

Also, equation (8.1-21) can be written as: 

c2as 2 

S(C1+c 2+aC4) - 2R - C2RT = 0 
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( 8.1-27) 

(8.1-28) 

(8.1-29) 

(8.1-30) 

Equation (8.1-30) is a 11 better 11 approximation than the one which is 

obtained by differentiating equation (8.1-24). Similar derivations for 

this particular case were also obtained by Aggarwal [2]. 

8.2 Case 2: Non-Linear Deterministic Demand 

and Constant Deterioration Rate 

Let the demand rate r = pqt. The differential equations for this 

model are: 

d~ Q(t) + a Q(t) = -pqt 0 ~t ~ T1 (8.2-1) 

_Q. Q(t) = -pqt 
dt Tl ft ~T (8.2-2) 

The solutions of these equations are: 

Q{t) = -E (qte-at) + K e-at 0 ~t f Tl (8.2-3) lnq+a 1 

Q(t) =~ )0t - qTl) + K2 T1-bt ~ T (8.2-4) 
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Solving for constants of integration and noting that at t=O, Q(t)=S, 

and at t=T 1, Q(t)=O, 

Q(t) = [s -~n~+a) (e (a+lnq)t -1)] e-at 

Q(t) = .JL (qTl - qt) 
lnq 

(8.2-5) 

(8.2-6) 

From the above equations, the fol lowing useful identities are obtained. 

S = P (eaT1 qTl - 1) 
lnq+a (8.2-7) 

T = 1 1 n (l + Spl ng + aps ) 
1 1 nq+a (8.2-8) 

The inventory lot size, q, can now be determined. 

q = S + ( T pq tdt = S + ~) ( q T - q T 1) • 

) T 1 
(8.2-9) 

The total carrying inventory is determined by integrating equation (8.2-5). 

t S ) -aT l p ) [ T . -aT ] I1 = - (e 1 -1) - 1 + g 1 - 1 + e 1 -1 
a nq a 1 nq a (8.2-10) 

Substituting for S and simplifying this equation further, one obtains: 

I ='- p/a \ qTl(eaTl-1) - _Pq_T_1-_P __ 
1 ~ lnq(lnq+a) (8.2-11) 

which can also be written as: 

I =f- p ) qTl [(eaTl-1) - 1 1 + p 
1 \lnq+a a lnq lnq(lnq+a) (8.2-12) 

The total number of items that deteriorate is given by: 

0 = S - _l!_fqTl-1)= (_ P ) f eaTl qTl - 1)- J!_ (qTl -1) , 
lnq \ \l.:nq+a ' lnq (8.2-13) 

and the total backlog is given by: 

12 = p (qT-qTl) + (T1-T) .JL qTl • 
(lnq) 2 lnq (8.2-14) 
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The average total cost function is the same as equation (8.1-17), 

therefore, 

C(T l) =~~1 Ela qTl (eaTl-1) - ClpqTl-Clp 1 + 
lnq+a lnq(lnq+a) 

~2 E 
(lnq) 2 

T T ) (q -q 1) + c2(T1-T ....L.qT1J+ l nq 

(c4 E (eaT 1 q T 1 -1) - c4 ( ,%q-)(q T 1-1)1} IT l nq+a (8.2-15) 

By differentiating equation (8.2-15) with respect to T 1 and setting it 

equal to zero, the following equation is obtained: 

Note 

Using 

aT 
l im 
a ... o 

e 1-1 _ T 
a - 1 • 

equation (8.2-17) in equation (8.2-16) will result ln 

C2 T 
C1+C2 

(8.2-16) 

(8. 2-17) 

(8.2-18) 

which is the standard result for non-perishable items. An interesting 

point of observation is that T 1 is not a function of the demand patter-_~-~·------- _ 

and is only a function of c1, c2, c4, and a. 

8.3 Case 3: Nonlinear Deterministic Demand, r=btn 

and Constant Deterioration Rate 

Let the demand rate r=btn, where b and n are positive constants. 

The differential equations of this model are: 

..Q. Q(t) + a Q(t) = -btn 
dt 

(8.3-1) 



The solution of these equations are: 
00 

Q(t) = -be-attn+l '7 (at)i + k e-at 0 ft ~T 1 
f;rr" (i+n+l)i 1 

Q ( t) = - E_ ( tn+ 1 - T 1n+:1) + k2 T 1 f. t !: T 
n+l 
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(8.3-2) 

{8.3-3) 

(8.3-4) 

Again, at t=O, Q(t)=S, and at T1, Q(t)=O, therefore; the values for the 

constants of integration, k1 and k2 can be determined. 

Q(t) = [s-btn+l 2 (atf i J e-at o ~t ~T1 (8.3-5) 
i=O (i+n+ )i! 

Q{t) = b (Tt+l - tn+l) T 1 ~t~T {8.3-6) 
n+l 

The order level S can now be determined. 

~ 
i=O 

( (aT1)i ) 
( i +n+ 1) i ! 

{8.3-7) 

The replenishment, q, is determined by: 

JT o0 (aT1)i 
q = S + btn dt = (bT1n+l) ~ + b (Tn+l_T1n+l) 

T 1 i=O -( i_+_n_+ l_)_i_! n+l (8 _3_8) 

The total carrying inventory is determined by integrating equation (8.3-5), 

that is, . . · · · 2 .. oo (-l)J (a)l-J T i+J+n+ 
I = .: (e-atl - 1) - b ~ ~ 1 
1 a j=O i=O (i+j+n+2)(i+n+l)i!j! 

Deterioration is given by: 

D = S -

And the total backlog is equal to 

(aT1)1 

(i+n+l)i ! -n~l] 

I n+l ( 
2 = -b Tl T-T1) 

n+l 
+ b [Tn+2 _ T n+2] 

(n+1)(n+2) 1 

The average total cost function then becomes: 

C(T I) = t c1 I I + c2I 2 + c4D 1 IT 

{8.3-10) 

(8. 3-11) 

(8.3-12) 

(8.3-13) 



111 

By differentiating equation (8.3-13) with respect to T1 and setting 

it equal to zero, the following equation is obtained, through which 

optimal T1 can be detennined. 

(8.3-14) 

Note that this equation is again the same as equation (8.2-16). There-

fore, it can be concluded that for power demand, determination of T1 

is not a function of demand but only the function of its cost parameters 

and the deterioration rate. 

8.4 Lost Sales 

The system to be considered here is an extension of the order-level 

system when the cost of shortage depends only on the quantity short and 

not on the duration of shortages. The dimension of the shortage cost is 

$/unit instead of the usual $/unit/unit-time. Therefore, if there are X 

number of units short at the end of the prescribed scheduling period, the 

shortage cost would be c2x. 
Applying this cost measure to the results obtained in this chapter, 

one finds that the optimal T1 is also independent of the demand pattern. 

The cost structure of this system differs from the previous section due 

to the shortage cost dimension. For the following demand patterns the 

expected total shortage per inventory cycle is: 

12 (T1) = R (T - T1) Demand Rate Constant(R) (8.4-1) 

I2 (T1) = b/2 (T2 - T12 ) Demand Rate Li near (bt) (8.4-2) 

I2 (T1) =ma- (qT - qTl) Demand Rate Nonlinear {pqt) (8.4-3) 
nq 
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By substituting these equations into the respective cost equations 

of the previous section, one can detennine the average total cost equation 

for the lost sales models. By differentiating and solving for T1, one 

obtains: 

ac2 
T1 = (l/a) ln (1 + ). 

c1+ac4 
(8.4-4) 

for all the above cases. Note as a approaches zero, equation (8.4-4) 

becomes 

C2 
Tl= -

cl 
(8.4-5) 

which is the standard result for the non-perishable inventory systems. 

If equation (8.4-4) is written in the following format, 

-C2 = 0 (8.4-6) 

one can compare it to the case for backlogging, equation (8.2-16), 

which is repeated here as: 

aT 
(Cl + aC4) ( e ~-l ) + C2 (T 1 - T) = 0 (8. 4-7) 

Equations (8.4-6) and (8.4-7) are quite different. Equation 

(8.4-6) is a function of the cost parameters, and the deterioration 

rate while equation (8.4-7) also involves the scheduling period T. 

It is possible to rewrite equations {8.4-6) and (8.4-7) into simple 

forms if one approximates the exponential by the first two terms 

of its series expansion, that is, 

C2 
Tl=----- (8. 4-6 I) 
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and 
C2 

Tl=----- T (8.4-7') 

c1 + c2 + ac4 

Equations (8.4-6') and (8.4-7 1 ) clearly show this structural difference. 

Therefore, by changing the property of unit cost of shortage, or by 

having different assumptions of backlogging or lost sales, totally 

different results are obtained for T1• 

8.5 A Discrete-in-Time Order Level Inventory 

Model for Non-Constant demand 

In this model, it is assumed that time can be treated as discrete 

points and that the deterioration rate is constant. Scheduling period 

T, is a given constant. Demand is given by the following equation; 

;p >O, q ~ (8.5-1) 

The difference equation for the inventory level can be written by 

letting Q(t) be the inventory level at time t, and deterioration 

rate be a. 

Q(t+l) = Q(t) - a Q(t) - pqt (8.5-2) 

or 

ll.Q(t) + a Q(t) = -pqt (8.5-3) 

Notice that this relation holds only fort= 0,1, .•. T1-l. The 

following difference equation describes the inventory level for 

t =Tl' • T. 

A Q(t) = -pqt (8.5-4) 

Solving difference equations (8.5-3) and (8.5-4), the following 

is obtained 



Q(t) = K1(1-a)t - P 1 qt-(1-a)t 
q+a- t = 0,1, ••• T1-l 

t = T1, ••• T 
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(8-5) 

(8-6) 

Where K1 and K2 are constants of finite integration. Using the boundary 

conditions one can solve for K1 and K2• At t = T1, Q(t) = 0, and therefore 

K1 =(q+tl ){1-a)-Tl [qTl - (1-a)Tl] {8.5-7) 

(8.5-8) 

By substituting for K1 and K2 in equations {8.5-5) and {8.5-6) respec

tively, the following equations are obtained: 

Q(t) = ( P ) (l-a)t-T1 [qTl - (1-a)Tl] - [qt - (1-a)t] 
q+a-1 (8.5-9) 

t = 0, 1, ••• T1-l 

t =Tl' ••• T 
(8.5-10) 

At t = 0, Q(t) = S, and hence, the order level is equal to 

{8.5-11) 

and the replenishment size is equal to 

(8.5-12) 

The number of items that deteriorate can now be found as a function of T1• 

T . 1 
D(T1) = Q - p L ql-

i=l 
(8.5-13) 

Since the second term on the right hand side is a geometric series, it 

can be simplified further and be written as: 

(8.5-14) 
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The average total carrying inventory during the cycle is equal to 

T1-l 

I1(T1) = T~l L Q(t) 

t=O 

which upon substitution for Q(t) is equal to 

(8.5-15) 

I1(T1l =(lli)(q+tJ) i(-1/a) [1-(1-a)-Tl] [qTl - (1-a)Tl] 

. + (-1/a) [(1-a)Tl - 1] -(q\) (qTl - 1)1 

(8.5-16) 
The average total backlog during the inventory cycle is given by 

I2(T1) J::L) fJL.) {qTl (T - T1 +1) - 9T - f 1 I 
\T+l \q-1 r (q-l j (8.5-17) 

The average total cost as a function of T1 is given by 

C(T1) = c1r1(T1) + c2I2(T1) + c4 D(T1)/T (8.5-18) 

In order to find the optimal value of T1, it is necessary to deter

mine the first difference of equation (8.5-18), that is, 

{8.5-19) 

which is equal to 

~ C ( T ) = pC 1 [ T · . T -T -1 T ] 1 a(T+l){q+a-I) q 1(1-q) - q 1(1-a) 1 {q+a-1) -aq 1 

_/PC2 (qTl) (T-T1) + C4 {pqTl) [(1-a) l -lJ] ) ~ -T -1 

lm I (8.5-20) 

The second difference of equation (8.5~18) is equal to 

&c(Tl) = pCl [ qT1{1-q) 2 + qT1{1-a)-Ti-2{q+a-1)2-aqT1(1-q) 
a (T +l )( q+a-1) 

+/PC2) {qTl) [q-{T-T1){q-l)] 
~t+l 

+~ct) [qT1c1-qJ + qT1c1-ai-T1-2 {q+a-1U (a.s-21) 

which for all T1= 0,1, ••• ,T; is positive, that is 

~C(T1 ) ~ 0 for all T1 = 0,1, ••• ,T (8.5-22) 
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Therefore, the necessary conditions for optimality is given by: 

* C(T l -1) 0 (8.5-23) 

* where T1 is the optimal solution. Then using equation (8.5-20) in 

{8.5-23) the condition for optimality beGomes 

* M(T1 -1) 

where ·-

C2aT M(T *) 
c2T+C4a(T+l) l 

= [(1-a}Ti-l -1] 
T-T1 

, * * 

{8.5-24) 

(8.5-25) 

By knowing T1 , the optimal replenishment size Q can be detennined by 

utilizing equation (8.5-11) and {8.5-12). 

Again, it can be seen as in the continuous order-level Inventory 

* Model, T1 is not a function of demand pattern. Note that equations 

{8.5-24) and {8.5-25) are the same as equations {17 and 18) of Dave's 

[22] paper for constant demand rate. In the author's.opinion, similar 

results would also hold for linear and other deterministic power demands. 

The proofs for this conjecture will be left for further research. 

In this chapter, the order-level inventory systems are analyzed. 

Aside from the constant demand rate, two nonconstant deterministic 

demand rate models are considered. In each model two distinct cases 

are presented; the case of backlogging, and the case of lost sales. The 

results of the analysis indicate, although the solution structure of the 

two cases are different for these models, the point T1, that is, the point 

where the inventory level first reaches zero within the inventory cycle 

time is independent of the demand pattern. This is a rather unexpected 

result, since one would expect the demand pattern would also be involved. 

In this chapter a case of discrete-in-time order level inventory system is 

also analyzed with the similar conclusion. 



CHAPTER IX 

FINITE HORIZON INCREASING DEMAND MODELS WITH 

CONSTANT PERISHABILITY RATE 

In these models, the total demand required to be satisfied over a 

given time horizon is fixed with demand low in the beginning and increas

ing as time passes by. These models would be appropriate, for example, 

for items that are new to the market, and demand for them increases with 

time as people become more familiar with them. Note that the rate of 

demand is changing throughout the horizon, however the total requirement 

is constant. The basic objective of these inventory models is to find 

the optimal number of replenishments such that the total cost is minimized 

throughout the horizon. The inventory situation for these models is 

depicted in Figure 21. 

To develop and present the models the following definitions are in 

order. Let the number of replenishments be denoted by J (J=l,2, ••• ), the 

total demand by R, the horizon time by T, and the cycle time by t'. By 

definition, the following equation can be written. 

t' = T/J J = 1, 2, ••• 

and the total number of replenishments then is equal to 

I3 = J 

(9-1) 

(9-2) 

Two cases of interest would be considered at this time; linear 

demand and non-linear demand. Deterioration takes place at a constant 

rate, a, throughout the horizon. 
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9.1 Case 1: Linear Demand 

For this case let the demand rate r be given by 

r = bt 
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(9.1-1) 

where b is a positive constant, and t is a point of time within the time 

horizon. Therefore, the total required demand is equal to 

R = ) : btdt = 'obT' (9.1-2) 

This implies by knowing or estimating the total demand, R, and the horizon, 

T, b can be readily calculated. 

Let Qi be the replenshiment size for each inventory cycle (i=O, 

l, ••• J-1). The differential equation describing the inventory level 

is given by 

d Q(t) + a Q(t) = -bt 
dt 

which upon solving becomes 

it'~ t !-(i+l)t' (9.1-3) 

Q(t) = e-a(t-it') [K; - (b/a) [eat (t-1/a) - eait' (it'-1/a)] 
(9.1-4) 

Assuming at t=(i+l)t', Q(t) is zero or approximately zero, Ki and Qi 

can be detennined. 

Ki =Qi = (b/a) (eait') [(it'-l/a)(eat'_1) + t'eat']; i=O, ••• ,J-1 
(9.1-5) 

By integrating equation (9.1-4) and using the results of equation (9.1-5), 

total carrying inventory, r1, can be detennined. 

~ r K.fl-e-at')_ /!__.) (eait') [(2it'-2/a)(at'+e-at'-l)+at' 2 ] 

i=O l 1 ~ a \2a2 

(9.1-6) 



- z t(eaT_l) [(1-eat')(l-at') J 
r1 - (b/a ) t' ------ + (3/2at'2-t') 

(ea -1) a 

[ 
JeaT(e-at'-.1) + (eaT_l) J 1 

[(eat'+at'-l)(t'eat')] 

(eat _ 1) 2 

The total number of items that deteriorate is determined by: 

J-1 
D = i~ Qi - lzbT 2 

which reduces to 

D = (b/a 2 ) [eaT (aT-1)+1] - ~bT 2 
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(9.1-7) 

(9 .1-8) 

(9.1-9) 

Note that as a approaches zero, the first tenn of equation (9.1-9) 

approach ~bT 2 , indicating that there is no deterioration. Also, note 

that total number of items deteriorating is not a function of replenish-

ment; therefore in order to determine optimal t' or J, one must balance 

the costs of ordering and replenishments only. 

9.2 Case 2: Non-Linear Demand 

For this case let the demand rate be given by 

r = pqt (9.2-1) 

where p is a positive constant; q has a value greater than or equal to 

one, and t is a point of time within the time horizon. The total actual 

demand for the horizon is then given by 

The differential equation describing the inventory level is 

d Q(t) + a Q(t) = -pqt 
dt 

which upon solving becomes 

it' !:tf(i+l)t' 

(9.2-2) 

(9.2-3) 



Q(t) = e-a(t-it 1
) ~Ki _ __._p_ 
l lnq+a 

[e(lnq+a)t _ e(lnq+a)it']l 
J (9.2-4) 
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It is desirable to have zero or negligible amount in inventory at 

the end of each inventory cycle. Therefore, at t=(i+l)t', (i=O,l ••• J-1), 

Q(t)=O. By this assumption one can solve for Ki 1 s, which are the con

stants of integration and are equal to the required replenishment sizes. 

K. = Q· =( p ) [e(lnq+a)it'] (qt'eat•_1) 
1 1 lnq+a 

(9.2-5) 

By substituting equation (9.2•5) into (9.2-4), integrating equation 

(9.2-4) for it'f.t~(i+l)t' (i=O, ••• J-1), and summing over i's, one can 

obtain the total carrying inventory. 

_ J-1 ll-e-at)' ( p )[~lnq+a) (i+l)t 1 
- ~lnq+a)it' 

I 1 -L_K· -
1 =O 1 a 1 nq+a 1 nq+a 

- t'e(lnq+a)it']] (9.2-6) 

This simplifies further to 

[
(qt' eat' -1i[{lnq+a) ~1-eat )- 1] -(lnq+a)t' 7 

Il = ( p \ (qTeaT_l) a 
lnq+a ·1 (qt'eat'-l)(lnq+a) :J 

(9.2-7} 

The total number of items that deteriorate is determined by: 

J-1 
D = z Qi - _p_ (qT-1) 

1 =O 1 nq 
(9.2-8) 

which reduces to 

D = [ P (qTeaT_l)l- p (qT-1) (9.2-9) 
lnq+a 'J lnq 

An interesting point of observation regarding equations (9.2-9) and 

(9.1-9) is that the total number of items perishing is independent of 

the number of replenishments. Therefore, perishing cost is a given 

constant and will not affect the solution of the problem of finding the 
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number of optimal replenishments. Hence, for these models one must 

balance the costs of carrying and replenishments such that the resulting 

cost would be minimized. That is, 

C(t') = c1r1(t') + c3r3(t') (9.2-10) 

where 11 and r3 are both functions oft'. Consequently, to minimize 

the total cost for the above models, one must determine the value of 

t 1 , and substitute into equation (9.2-10). This procedure must be done 

iteratively by utilizing equation (9-1). The above cost equation, though, 

is not a function of c4; it is a function of perishability rate a. 

In this chapter two finite-horizon inventory models with constant 

deterioration rate are considered. The first model assumes linearly 

increasing demand, and the second assumes an exponentially increasing 

demand function during the specified horizon. It is shown that under the 

assumptions of these models the optimal replenishment and the optimal lot 

sizes are not a function of deterioration cost, but only a function of 

inventory carrying cost, replenishment cost and perishability rate 

function. 



CHAPTER X 

QUANTITY DISCOUNTS 

Inventory systems in which the purchasing price per unit quantity 

depends on the amount purchased are referred to as systems with quantity 

discounts. In these systems the unit purchasing price decreases as the 

quantity purchased increases. 

An extension of a lot-size system with quantity discount is consid

ered at this time. Now, instead of having constant costs of purchasing, 

carrying and perishing, the costs are all non-constant and are a function 

of the replenishment size. Let q be the size of replenishment, then the 

purchasing cost for this quantity can be written as qb(q). The function 

b(•) describes the per unit purchase price whenever a lot size is pur

chased. Also, let the carrying cost fraction be f, and perishing cost 

fraction will be g per unit time. Then the unit carrying and perishing 

cost will be equal to 

c1 = f b(q) 

c4 = g b(q) 

(10-1) 

(10-2) 

By rewriting equation (5.1-6a) and assuming a constant perishing 

rate of a, and demand rate of R, the average total cost equation as a 

function of q can be written as: 

f+ag 
(R) (eaT_aT-1) + c3 /T K(q) = qb (q) + b(q) 

a2 (10-3) 
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Note however, that q is itself a function of T. Its value is given by 

q = R/a [eaT _1] (10-4) 

In order to obtain the optimal result for equation (10-3), the 

function b(q) must be transformed and rewritten as a function of inven

tory_ cycle, T, so that the entire equation (10-3) would be explicitly 

a function of T. 

Two functional price relationships of interest are: (1) the case 

of a linearly decreasing per unit cost as a function of the order size; (2) 

the case of a hyperbolic decrease in unit cost after an initial price 

break. The equations for these two cases are given as equations (10-5) 

and (10-6), respectively. 

b(q) = K-bq (10-5) 

b(q) (10-6) 

In the above equations K, K1, K2, and bare all positive constants; qc 

is an arbitrary quantity defining the quality of the initial price break. 

Equations (10-5) and (10-6) can be rewritten as a function of T by 

utilizing equation {10-4). Let b'(.) be the transformation for b(.). 

Therefore: 

b'(T) = K - bR (eaT_l) 
a 

ab 

R(eat_l) 

where Tc = 1/a ln (1 + aqc). 
-R-

(10-7) 

(10-8) 
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Equations for discrete quantity discounts along with the two above 

mentioned cases will now be presented. 

10.1 Case 1: Linear Discount 

By substituting equation (10-7) into equation (10-3) the average 

total cost equation as a function of T is determined. 

C(T) = L[K - ~R (eaT_l)] [(R/a) (eaT_l) + (R/aZ) (f+ag) 

(e•T-aT-1)] + c3 ~ I T (10.1-1) 

The optimal value for T can be obtained by taking the derivative of 

C(T), setting it equal to zero and then solving for T* by a numerical 

method. However by using the Fibonacci search technique one will be able 

to obtain the same results in a more direct and efficient manner. By 

knowing T optimal, the optimal order size can be found through equation 

{10-4). 

10.2 Case 2: Hyperbolic Discount 

By substituting equation (10-8) into {10-3) the average total cost 

equation as a function of T is determined. 

C(T) = Kl ~R/a) (eaT_l) + (R/a 2 ) (f+ag) (eaT_aT-1) + c3 5 /T; 

O'-Tf.Tc (10.2-1) 

C(T) = [ K2 + ab1 ~R/a) (eaT _l) + (R/a 2 ) (f+ag)(e•t-aT-l)+c 3} IT; 

Tc~ r.t. o:;, (10.2-2) 

Again by using a Fibonacci search technique the optimal T may be obtained. 

10.3 Case 3: Discrete Quantity Discount 

In systems with discrete quantity discounts function b(q) is generally 

given in the following form. 



b(q) = 

ql f q = q2 

q2~q fq3 
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bn q0 ~qn (10.3-1) 

In this case, n prices are specified. Lot sizes smaller than q1 

are not allowed. The quantities q1,q 2, ••• are increasing and the 

prices b1,b2, ••• are decreasing in general. The average total cost of 

the system can be obtained by utilizing equations (10-3), (10-4), and 

(10.3-1). 

C(T) = ~:1 (e•T -1) + bitf:ag] (R) 

where Ti is given by 

T. = 1 ln (1 + aqi) 
1 a tr 

(eaT _aT-l)+C3] /T; 

Ti~TfTi+l 

i = 1; ... ,n-1 

{10.3-2) 

(10.3-3) 

Now, the solution procedure for this system is exactly the same as for 

nonperishable items with the exception that the cost function must be 

evaluated as a function of T rather than q. The procedure is as follows: 

1 Let C(T') be the cost of the system for T'=Ti, (i = 1, ••• ,n) 

2 Let T6 be a specific T' such that C(T0 ') ~ K(T') 

3 Let T0
11 be the largest T for which T. = T" ~ T-' T·+l 

1 0 - - 1 

where T is determined through evaluation of equation (10.3-2). 

4 Compare C(Tb) and C(T~') and select the smaller of the two. 

By knowing the optimal T, the order quantity can be determined 

by utilizing equation (10.4) 

In this chapter the problem of quantity discounts is discussed when 

perishability rate is constant. In order to solve this class of problems, 
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one must transfonn the original price break function into an equivalent 

equation which is a function of time. The analysis then follows steps 

similar to those of nonperishable inventory items. In these problems, not 

only the inventory carrying cost is balanced against the additional price 

discount, but the perishability cost is also included. Although it is 

known that a greater number of units will perish and become useless, it 

is still less costly to order more units because of the discount embedded 

in total purchasing cost. Moreover, the average number of replenishments 

decreases as in the case of nonperishable items. However, as the perish

abil ity rate increases, the number of replenishments per unit time 

increases at a decreasing rate. This decrease is due to an increase in 

inventory cycle time, more units become deteriorated, and therefore, 

shortening the inventory cycle time is not as cost effective as otherwise 

might have been anticipated. 



CHAPTER XI 

POWER DEMAND PATTERN INVENTORY MODELS WITH 

CONSTANT PERISHABILTY RATE 

In these models, though the demand is known during a given inventory 

cycle time, its rate of occurrence is not constant. For example, this 

demand pattern exists at many supermarkets, where the demand rate 

increases at the latter part of the week while the total demand during 

the week stays relatively constant from week to week. To describe the 

demand pattern assume that the demand rate is given by the following 

equation: 

. X (tn-1 ) 1/n 
d(t) = - - ~ 

n T 
(11.1) 

where X is the demand size during a fixed period T. Note when n=l, that 

is when demand rate is constant, then X=RT. Equation (11-1) is obtained 

by differentiating the inventory status equation for non-perishable 

items which is 

Q(t) = S-X ~· ( 11-2) 

(This is the same equation as equation (3-1)). S is the amount of inven

tory at the beginning of the inventory cycle and n is the index of the 

demand pattern. 

Perishability of inventory items is a function of the demand-pattern 

index. Depending on when the inventory items are removed from the stock, 

the number of items that perish will be affected. 
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11.J _Case 1: Single Period Inventory Model 

with Power Demand Pattern 
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The differential equation describing the inventory level is given as 
· n-1 )1/n 

Q(t) + (a)Q(t) = -~ ( ;-

In order to simplify the equation, let 

A = x 

nTl/n 

Equation (11.1-1) may now be written as: 

/!]-1) 
Q'(t) + aQ{t) =-At ~-n-. 

(11.1-1) 

(11.1-2) 

(11.1-3) 

The solution to this first order linear differential equation is given by: 

Q ( t) = e -at ) : 

n-1 
eay [-Ayn] dy + ke-at; 0 ft f.T (11.1-4) 

where k is the constant of integration. At t=O, Q(t) is equal to the 

the initial inventory, which is equal to the inventory lot size q0 , that 

is, 

Q(O) = k = q0, 

At t = T, it would be desirable to have no item in inventory, i.e., 

Q(T) = O. 

By using the above boundary conditions, equation (11.1-4) can be 

rewritten as 

T n-1 
0 c .-aT )o e•Y [-A Y--ri"l dy + qo .-•T (11.1-5) 

n-1 
eay y-n- dy (11.1-6) 

Now, expand the exponential into its series form, 



this can be written as: 

(ay) i J 
- dy 

. I 1 . 

ni+n-1 
a i Y n 
-----dy 

. I 1. 

Interchanging the integration and summation signs, 

ni+n-1 

----dy 

and then integrating 

. I 1. 

. I 1. 

ni+2n-1 
T n 

ni+2n-1 
n 

Now, substitute for A in equation (11.1-10), 

ni+2n-1 

qo =( n ~1/n ) ~ t:: 
which reduces to 

ni+2n-2 
oa 

(~ T 
qo = x L . I ni+2n-1 i =O 1. 

) 
and upon further simplification, to 

~ 2(n-1) )~ 
qo = XT L 

i=O i ! (ni+2n-1) 
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(11.1-7) 

(11.1-8) 

(11.1-9) 

(11.1-10) 

(11.1-11) 

(11.1-12) 

(11.1-13) 

Note when n=l, that is considering the case of uniform demand, 

equation (11.1-13) reduces to: 



0.0 z_ 
i=O i! (i+l) 

and substituting for X, the value RT, 

RT 

aT 
l_ 
i=O 

(aT) i+l 

(i+l)! 
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(11.1-14) 

. (11.1-15) 

(11.1-16) 

which is exactly the same result as of the previously obtained equation 

(5.1. -13~ for the uniform demand and constant perishability rate. 

11.2 Multiple Period Inventory Model 

W1th Power Demand Pattern 

Let the inventory cycle be denoted by T1 = mT, (m=l, 2, ••• ). Figure 

22 depicts the inventory level for this case. By using equation (11.1-3) 

the following can be written: 

t (n-1) 
Q(t) = -e-at A ( eay Y n dy + kme-at 

) (m-1 )T 
. 
' (m-1) T~t {mT 

(11.2-1) 

where km is the constant of integration. Note that at t=mT, Q(t)=O; and 

at t=(m-l)T, Q(t) = qm-1· 

Q[(m-l)T] = q = k e-a(m-l)T 
m-1 m (11.2-2) 

Solving for km by using equations (11.2-1) and (11.2-2), qm-l is obtained. 

= e-a(m-l)T AjmT 
qm-1 ) m-1 T 

(.n-1) 
eay ~ n dy (11.2-3) 

Following the same procedure in the interval, (m-2) T f t~(m-l)T, the 

above process can be repeated. 



132 

(JJ 

s .,.., 
H 

H 
II 

E-' s 

-0 
c 
co 
E 
(lJ 
Ci 

s... 
(lJ 

H 3: 
0 

,..., Q.. 

I ...i::: s ._, .jJ 
•r-
3: 

r-
QJ 

-0 
N 0 
I ::::: 
El c 'C' 

H 0 
.jJ ,......_ 
c N 

I 
(lJ 

s > ._, c ...... 
-0 
0 

•r-
s... 
QJ 

CL 

QJ 
r-
a.. 

•r-
.jJ 
r-
::s 

::iE: 

N 
N 

(lJ 
$.... 
::s 
01 
·r-
LL. 

0 



133 

J
(m-l)T 

Q [(m-l)T] = qm-1 = -e-a(m-l)T A 
(m-2)T 

I n-l) 
eay 'y--rl" dy + k e-a(m-l)T 

m-1 

Substituting for qm-l and simplifying 

f (m-l)T n-l fm mT 
k = A eay y n dy + 
m-l (m-2)T (m-l)T 

(.!!::l) 
eay Y n dy 

which reduces to 

k - A (mT 
m-l - ) (m-2)T 

~n-1) 
eay y n dy 

The inventory level and the lot size at t=(m-2)T can 

Q [(m-2)T] = qm-2 = km-le-a(m-2)T 

mT tn-1) 
q = e-a(m-2)T f eay y n dy 
m-2 A (m-2)T 

By repeating this process q0 is determined to be 

mT (n-1) 
qo = A ~ O e•Y Y n dy' 

(11.2-4) 

( 11.2-5) 

(11.2-6) 

now be written as: 

(11.2-7) 

(11.2-8) 

(11. 2-9) 

Substituting for A, and solving the integral by expanding the expo

nential, the following equation is obtained: 

Q;O 
ai x 

~ q = 
0 

nrl/n i=O . I 1. 

which reduces to 
_ (2n-1) 2(n-l) 

qo -
mn X Tn 

ni+2n-1 

(mT) n 
(11.2-10) 

ni+2n-1 
n 

~ 

~ (amT) i (11.2-11) 
i=O i!(ni+2n-1) 

Again, by substituting one for the value of m, equation (11.2-11) 

reverts back to equation (11.1-13). As a approaches zero, equations 

(11.2-9) or (11.2-11) reduces to 
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(2n-1) 2(n-1) 
m n X T n /(2n-1) (11.2-12) 

Note if n is equal to 1, equation (11.2-12) reduces to mX which is the 

required amount of inventory for m periods of T duration. 

If the average total inventory could be approximated by q0/2, 

the optimal m, that is, the optimal number of periods for which items 

should be kept in inventory can be detennined through the following cost 

function. 

C(m) = C3 C4 + __ + _ (q0-mx) (11.2-13) 
mT mT 

this can be rewritten as 
(2n-1} 2{n-l} "' i 

Cl C4 ~ C3 c4x 
C(m) n x T n (amT) = + m + 

2 i1ii i=O i!(ni+2n-1) mT T 

(11.2-14) 

The optimal value of m can now be determined numerically by evaluating 

c(m) such that the average total cost is minimized. 

In this chapter, inventory models with power demand are considered. 

A model is derived for a single period power demand, and then it is 

extended to a multiperiod model. This class of models are applicable 

to situations where the total demand stays relatively constant from one 

given fixed period to another; however, the demand rate is changing 

within the prescribed period. Potential savings are possible by consider

ing this demand pattern in many inventory situations. 



CHAPTER XII 

PROBABILISTIC ORDER-LEVEL SYSTEM WITH INSTANTANEOUS 

DEMAND AND CONSTANT PERISHABILITY 

RATE FUNCTION 

In this class of inventory systems, the costs of the inventory 

carrying cost, the shortage cost and the perishability costs are balanced 

in such a way that the optimal order level S0 is detennined. Scheduling 

period is a prescribed constant T. Demand occurs instantaneously at the 

beginning of each scheduling period immediately after the inventory has 

been raised to the level S. Demand x (x ~ O) has a probability density 

function f(x) during the scheduling period T. The inventory fluctuations 

of this system are described in Figure 23. 

Whenever there are stocks in inventory, there will be a certain amount 

of deterioration that takes place. Thus, one must calculate the expected 

number of items that deteriorate given a particular demand density during 

T. 

The change of inventory level, right after the demand has been satis

fied, given that demand x is less than the order level S is given by: 

d Q(t) = -aQ(t) 
cit 

(12-1) 

Solving this equation, and considering the boundary conditions, the 

inventory level during the cycle T is given by 

Q(t,x) = ~s t 
L{S-x)e-a 

t=O 
x t..S (12-2) 
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When the demand exceeds the order level during the cycle time, the equa-

tion for inventory level becomes; 

Q(t,x) = ~ S 
Ls-x 

t=O 
(12-3) 

Now, the average carrying inventory and the average shortage can be cal-

culated as a function of demand x. 

= T
l (To t ( 1 -at) r1(x) ) (S-x) e-a dt = (S-x) -e /(aT) 

(12-4) 

and 

I2(x) = l ( T - (S ... x) dt = x-S 
T ) 0 

(12-5) 

The expected average amount in inventory and the expected shortage 

can now be determined to be 

I 1(T) J
0
5 (S-x) (1-e-aT) f(x)dx 

) at (12-6) 

and 

I 2(T) = }~ (x-S) f(x) dx (12-7) 

The total number of units that deteriorate during the inventory cycle, 

given that there are units in stock, is given by: 

D(T,x) = (S-x) (1-e-aT) (12-8) 

The expected total number of deteriorating units can be obtained by: 

D(T) = s: (S-x) (1-e-•T) f(x) dx (12-9) 

The expected average total cost of the system can now be obtained 

by utilizing equations (12-6), (12-7) and (12-9). 



C( S) = c1 f: (S-x) [(1-e-aT) /aT] f (x) dx + 

c2 (~ (x-S) f(x) dx + .:± 5s(S-x)(l-e-aT) 
Js T 0 
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f(x)dx 
(12-10) 

By differentiating C(S) with respect to S and setting it equal to zero, 

the optimal S can be determined. 

~ = c1[(1-e-aT)/aT] ~05 f(x) dx - c2 ~~ f(x) dx 

+ (C4a) [(1-e-aT)/aT] ~: f(x) dx = 0 (12-11) 

Simplifying further, the optimal order level s0 can be obtained from 

the following relationship. 

(12-12) 

As a matter of interest, note that as a approaches zero, equation (12-12) 

reduces to: 

(so 
) 0 f(x) dx = 

(12-13) 

which is the standard formula for finding the optimum value of S for a 

probabilistic-order-level system for non-deteriorating items, as given 

by Naddor [61, p. 136]. 

The right-hand side equation of (12-12) can be readily evaluated, 

and the result would be equal to some constant g. The difficulty arises 

in determining the value of s0• This can be done explicitly only for a 

limited number of probability distribution functions that have a closed 

form cumulative distribution function; otherwise s0 must be determined 

numerically, though this approach may not be very elegant. 



For some specific cases of interest, the value of Sa is evaluated. 

12.1 Case 1: Demand is Exponentially Distributed 

Let f(x) be an exponentially distributed density function with 

parameter (b), then 

f(x) = (l/b) e-x/b ; x 0 
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By substituting this function into equation (12-12), Sa can be obtained. 

[ 
(c1+ac4) [(1-e-aT)./(aT)] + c2 l 

s0 = b 1 n J 
(c1+ac4) (1-e-aT)/(aT) 

(12.1-1) 

By substituting the above value of s0 into the equation (12-la), the 

expected average minimu~-cost as a function of s0 is obtained. 

(12.1-2) 

Equation (12.1-2) may also be rewritten as: 

K = [b(C1+ac4) (1-e-aT)/(aT)] ln __ 1 __ 4 ______ _ t (C +ac ) [(1-e-aT)/(aT)] + c2] 

(C 1+ac 4) (1-e-aT)/(aT) · 
(12.1-3) 

Note as the perishability rate approaches zero, equation (12.1-3) 

reduces to: 

(12.1-4) 

which is the cost function for nonperishable items as obtained by Naddor 

[61, p. 137]. 

12.2 Case 2: Demand is Unifonnly Distributed 

Let f(x) be a unifonn density function with parameter (b), then 

f(x) = l/b ; 0 ~x .fb 
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Now, by substituting this function into equation (12-12), s0 can be 

determined. 

bC2 
Sa = ----------- (12.2-1) 

[(C1+ac4) (1-e-aT)/(aT)] + c2 

The expected average total cost function as a function of s0 then can be 

written by using equation {12-10). 

This equation may also be written as: 

.Sb c2 {C1+aC4)(1-e-aT) 
K = 

--.....-----~~ 

12.3 Case 3: Demand is Weibull Distributed 

(12.2-2) 

{12.2-3) 

Let f(x) be a Weibull density function with parameters {b,c), then 

f(x) = [c/bc] xc-l e-(x/b)c ; x ~ 0 

Again, by substituting the above equation into equation (12-12), s0 

can be determined. 

f [ (C1+aC4) [(1-e-aT)/(aT)] + C2 Jj 1/c 
s0 = b l ln 

(C1+ac4) (1-e-aT)/(aT) (12.3-1) 

Note, when c=l, the Weibull distribution is the same as an exponential 

distribution, and equation {12.3-1) would be the same as equation 

(12.1-1). 

Unfortunately, the total cost function for this distribution cannot 

be written in a closed form for a general value of parameter c. 
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13.4 Case 4: Demand is Nonnally Distributed 

Let f(x) be a normal density function with parameters (u,(j). Then 

1 
f(x) = --

{21T 

(x-u) 2 

- 20'2 e ; X? 0 

Cummulative nonnal distribution cannot be written in a closed fonn; 

however, since normal tables are widely available the s0 can be readily 

determined. Equation (12-12) can be rewritten as: 

F (S0) = g (12.4-1) 

Where F(x) is a cummulative normal distribution, and g is a constant 

obtained through the evaluation of the right hand side equation of 

(12-12). Since g is known, the Z value from the nonnal table can be 

readily determined, and hence s0, i.e., 

S0 = Z ()+ u (12.4-2) 

In order to determine the value of the expected average total cost, one 

must revert totally to a numerical technique for evaluating the integrals 

of equation (12-10). 

In this chapter a probabilisti(J inventory model with constant perish-

ability rate is developed. The optimal order level has been determined 

for exponential, unifonn, weibull, and nonnal distribution functions. It 

is shown that as perishability rate approaches zero, the models reduce to 

the inventory models of nonperishable items as developed by Naddor [66]. 



CHAPTER XI I I 

PROBABILISTIC SCHEDULING SYSTEM WITH 

CONSTANT PERISHABILITY RATE FUNCTION 

In this class of inventory systems, the cost of the inventory 

carrying cost, perishability cost, and ordering cost are balanced in 

such a way that the optimal ordering interval, T, is determined. Demand 

x occurs uniformly during each scheduling period T. Demand x 

(xmin~ x ~ xmax) has a probability density function f(x). The replen

ishment size is a variable quantity ordered at the beginning of every 

scheduling period so that the inventory level reaches S. In this system 

no shortages are allowed. The inventory fluctuations of this system are 

described in Figure 24. 

Since no shortage is allowed in this model, the order level must be 

large enough to satisfy the maximum demand, xmax' and the total amount 

that deteriorates during such demand period. Therefore, using the results 

of Chapter V models; specifically equation (5.l-13a), the following can 

be written: 

S = xmax(T) [exp(aT)-1]/(aT) (13-1) 

The differential equation describing the inventory level during the 

scheduling period is given by: 

Q'(t,x) +a Q(t,x) = ~ 
T 

0 ~ t ~ T 
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(13-2) 
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where Q(t,x) denotes the inventory level at time t when the demand of x 

units occur during the scheduling period T. The solution of this equa

tion is given by: 

Q(t,x) = [se-at - ~ (1-e-at)] 
aT 

0 ~t f:T (13-3) 

The average carrying inventory during any scheduling period, I1(x), 

is then determined by integrating Q(t,x) of equation (13-3). 

I1(X) = l(T Q(t,x)dt 
T} o . 

(13-4) 

The expected average carrying inventory can now be detennined. 

= l~s + x(T}.) (1-e-aT )ia - x(T)/a J 
TL aT 

(13-5) 

Where i(T) is the mean demand during the scheduling period. Let R be 

the average rate of demand, therefore, 

R = x(T)/T • (13-6) 

The average replenishment is given by 

(13-7) 

The average deterioration during any scheduling period is determined by: 

D(x) = l [S - x - Q(T,x)J • 
T 

The expected average deterioration then becomes, 

D(T) Jxmax = D(x) f (x)dx 

xmin 1 r -
= rlS - x(T) 

( 13-8) 

(13-9) 



Now, the expected average total cost of this system can be written 

as a function of T. 

C(T) = (C1+aC4) {[•max(T)(eaT_l)+RT](l-e-aT)/(aT)2 - : l + :.y. 

(13-10) 
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In order to find the optimal schedulng period, it is necessary to 

know only the function xmax(T)• Following Naddor [61], let 

Xmax(T) = x(T)A(T) = RTA(T) (13-11) 

where A(T) is some function relating the maximum demand during any 

period T to the average demand during that period. Substituting the 

value of xmax of equation (13-11) into equation (13-10), yields the 

following useful equation. 

K(T) = (C1+aC4) ~ RT[l+A(T)eaT_A(T)](l-e-aT)/(aT)2 - R/a ~ 

(13-12) 

Two special cases of A(T), will now be considered. 

13.1 Case 1: A(T) = k 

This is the case when the ratio of maximum demand to the average 

demand during any period T is assumed to be a constant k. By substi

tuting this value into equation (13-12), one obtains the following 

equation: 

c (T) = R ( c1 + ac 4) ) l-aT-e-aL2k+2kcosh(aT) ( + ~ 
a2 l T 5 T 

(13.1-1) 

* The optimal inventory cycle time, T , can be readily detennined using 

the Fibonacci search technique; knowing T*, the val~e of S can be 

detenni ned by 



S = .'5E. ( eaT* -1) 
a 
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(13.1-2) 

When k=l, that is when demand is detenninistic, equation (13.1-1) reverts 

to the lot size system of Chapter V. (See equation (5.l-6a)). 

13.2 Case 2 A(T) = 1 + b/T 

This is the more realistic situation where the ratio of the maximum 

demand to average demand during the inventory cycle, T, is dependent on 

the value T. In this case b is a positive constant. Substituting this 

equation into equation (13-12), one obtains the following equation: 

C(T) = R(C 1+aC4) [2b cosh(aT)+TeaT-Tb-aT2-T-b]+ c3 
a2 T2 T (13.2-1) 

* . Similarly optimal inventory cycle Time, T can be detennined using 

Fibonacci technique. The value of order level S is given by 

S = (R/a)(l+b/T*)(eaT*-1) (13.2-2} 

In this chapter the objective is to detennine the optimal inventory 

cycle time when the order level is prescribed and demand is probabilistic. 

For the models developed, it is not necessary to know the probability 

distribution of demand explicitly, only the functional relationship 

between the maximum demand and the average demand is all that is required 

to find the optimal inventory characteristics. As in previous models, 

as the perishability rate approaches zero, the inventory models of 

nonperishable items are obtained. 



CHAPTER XIV 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

The purpose of this concluding chater is to summarize the research 

efforts, draw conclusions, and make recommendations for future research. 

First, a review and summary of each chapter is presented; then findings 

and relevant results are discussed; and finally, recommendations for 

future research are stated. 

14. 1 Summary 

The efforts of this dissertation represent an attempt to develop 

mathematical inventory models that can be used to obtain optimal replen

ishment policies for products which are subject to a continuous deterior

ation (perishability) while in stock. Consideration of peris'hability in 

mathematical modeling and management of perishable items is one of the 

most challenging and potentially fruitful areas of research. 

Chapter I serves to introduce the inventory problem. In partic

ular, the general effect of perishability on items while in stock is 

discussed. Also, the research objectives of the dissertation are stated. 

Chapter II reviews the pertinent inventory literature on the topic of 

perishable items and represents the various classifications of perish

abil ity. Chapter III defines and explains the specific terminology, 

notation, and the various common assumptions that are utilized in the 

development of inventory models in the subsequent chapters. 
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Chapters IV and V describe the mathematical models of inventory lot 

size systems with alternative types of perishability functions. The 

models developed in Chapter IV are better-suited for inventory situations 

with high obsolescence, especially models I-a and I-b. In contrast, the 

models derived in Chapter V are more appropriate for items that are subject 

to physical deterioration. In the case of models of Chapter IV, when the 

perishability rate is constant, it is shown that similar results can be 

obtained by using the standard EOQ model with an adjusted inventory carry

ing cost. 

Chapters VI and VII develop the finite production rate inventory 

system with and without backlogging considerations. A number of pro

duction rate functions have been investigated. The analysis of varying 

production rates is an important factor in determining the optimal inven

tory characteristics especially when the learning (improvement) curve 

is present in a production system. 

Chapter VIII discusses the order level inventory models with constant 

perishability rate. Both linear and nonlinear deterministic demand have 

been examined. A discrete-in-time order level inventory model has also 

been analyzed through the use of calculus of finite differences. 

Chapter IX presents two unique finite horizon inventory models. 

Linearly increasing, and exponentially increasing demand functions with 

a constant perishability rate are analyzed. The objective is to deter

mine the optimal number of orderings within the specified time horizon 

and the corresponding replenishment size. 

Chapter X discusses the effect of quantity price discounts on the 

inventory analysis of perishable items. In order to solve this class of 

problems, quantity price breaks must be transformed to a new equation 
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which is a function of time. The optimal inventory characteristics then 

can be solved using steps similar to the nonperishable items. 

Chapter XI presents a special case of power demand pattern. The 

effect of demand pattern and perishability is analyzed for a single 

period model and then it is extended to a multiperiod model. 

Chapters XII and XIII each describes a probabilistic inventory 

system. For the model developed in Chapter XII, a number of probability 

distributions are considered for determining the optimal inventory 

characteristics. For the model of Chapter XIII, no specific knowledge 

of the demand distribution is required, albeit the relationship between 

the maximum demand and average demand must be specified. These two 

models are extensions of nonperishable inventory models as developed by 

Naddor. 

14.2 Conclusions 

Based on the results of inventory models derived in this research 

the following statements can be made: 

1. Perishability has a significant economic impact on the optimal 

inventory cost. The possible savings associated with the models 

developed in this research as compared to EOQ models is dependent 

on the cost parameters and the perishability rate of each 

specific problem. For example, given a set of cost parameters 

in a constant perishability model (see Appendix A), a cost 

reduction between .45% to 15.65% occurs as the rate of perish

abil ity increases from .1% to 1%. Because the cost savings is 

chiefly problem-specific, an interactive FORTRAN program is 

developed to calculate the optimal inventory characteristics 
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and make comparisons with the EOQ model. The program also 

conducts a sensitivity analysis for a range of perishability 

rates. In addition, it furnishes a menu for selecting other 

perishability models so that the user can decide on the proper 

model and the proper perishability function. 

2. The solution methodology of this paper has emphasized the 

determination of the exact total cost equation. By obtaining 

such equations, search techniques can be used to obtain the 

optimal inventory chracteristics such as optimal replenishment 

size, cycle time, etc. An example, a problem presented by Shah 

and Jaiswal [88], is solved using this methodology (see Appendix 

B). The results indicate that the proposed methodology is 

superior to the EOQ model, and in comparison to Shah and Jaiswal 

methodology, cost improvements of .49% to 11.1% are possible 

depending on the perishability rate (.02 a .10)). 

3. In the order level inventory systems, it is shown that the time 

at which the inventory level reaches zero is not a function of 

the demand pattern. However, the demand pattern must be con

sidered for determining the optimal replenishment size. 

4. The sensitivity analysis of perishable models indicate that as 

the perishability rate, or perishability cost increases, the 

replenishment size, q (or order level S), and the inventory 

cycle time T decrease. But q and T increase, with an increase 

in replenishment cost. The average total cost, as expected, 

increases as any of the inventory parameters increases, though 

it is less sensitive to the inventory holding cost. 
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14.3 Recommendations 

In order to reduce inventory costs, it is expedient for those in 

charge of inventory management of perishable items to use the findings 

of this research in their decision making process. For future research, 

it is recommended that further efforts be devoed to the following areas. 

1. Development of mathematical methodology for discrete items that 

are subject to deterioration. 

2. Investigation of Detenninistic and Probabilistic Reorder-Point, 

Order-Level System (i.e., (s,S) inventory policy) for perishable 

items. 

3. Comprehensive sensitivity study of each model and its relation 

compared to other models developed in this paper, similar to the 

efforts of Jones [51], for inventory models of perishable items. 

4. Investigation of discrete-in-time order-level inventory models 

. for linear and various types of power demand for perishable items. 

5. Investigation could be pursued in the analysis of additional 

demand patters in the order level inventory system. Also, 

extensions of finite production rate inventory systems are 

possible by considering additional nonlinear production rate 

functions. 

6. Development of probabilistic inventory models for perishable 

items may be a rewarding possibility. Excepting the references 

[48], [90], and [91], there has not been much work done in this 

area. 

7. Application of these models to non-inventory situations, such as 

financial analysis. Since money can be considered a perishable 
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item, especially during high inflationary periods and high inter

est rates. Under these severe economic conditions the methodology 

and models of this research are even more useful for decision

making purposes than before, especially in banking and fianancial 

markets. 

8. An interesting but probably a difficult generalization would be 

to allow the items arriving into inventory to have a mixed 

perishability distribution function. For example, for the 

simplest case of exponentially distributed deterioration, items 

are subject to two or more different rates of deterioration due 

to environmental, manufacturing, or other reasons affecting 

them. 
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Program Description 

This appendix describes the computer program used to evaluate the 

optimal inventory characteristics of the models developed in Chapter IV. 

A description is made of the output from the program. A sample of out

puts and the listing of the program is presented at the end of this 

appendix. 

The program consists of a short main program and one major subrou

tine. The main program asks for the inputs consisting of purchasing 

cost, carrying cost, ordering cost, perishability cost, and the demand 

rate. The program then provides the user with a menu, so that he may 

use the desired initial model. Upon selection of a model, the program 

is transferred to subroutine MODEL I. In this subroutine, appropriate 

calculations for the chosen model are made, and the program transfers 

back to the main program. Then, the user is asked if additional anal

ysis with a different model is desired. If yes; he is given an oppor

tunity to change any of his input parameters. Since the program is 

interactive, there are no user requirements for this program. 

Program Output 

A definition of the variables in the output tables is given below, 

with the subsequent example outputs of the program. 

1. A,B,C parameters of perishability 

2. OPT T* optimal inventory cycle time 

3. OPT Q* minimum average total cost 

4. MIN COST minimum average total cost 

5. OPT PER optimal number of units perishing 



6. COST-EOQ 

7. PER-EOQ 
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average total cost, if an EOQ model is used 
instead of the perishable model 

Number of units perishing, if an EOQ model is 
used instead of the perishable model 



LOT SIZE INVENTORY--MODEL I 

INPUT YOUR UNIT COST1HOLDING COST,ORDERING COST 
AND PERISHABILITY COST<TtiIS MAY BE EQUAL TO THE UNIT COST), 
AND YOUR DEMAND RATE IN THE FOLLOWING ORDER; 

co ,c1 ,c3 ,c4 ,R 
I 

THEN PRESS THE ENTER KtY 
! 

? 
.s,.oos,50,.s,100 

UNIT COST = 
HOLDING COST -
ORDERING COST = 
PERISHING COST -
DEMAND RATE = 

0. ~50 
0. OO~'iO 

50.00 
0.50 

100.00 

H; EVEF~YTHING COl=i:F:ECT ? IF YES~ TYPE 1 
OTHERWISE TYPE 0 AND PRESS THE ENTER KEY 

? 
1 
SELECT THE DESIRED MODEL FROM THE MENUE & TYPE IN 
ITS RESPECTIVE NUMBER; THEN PRESS THE ENTER KEY 

........ 
O'\ 
tn 



***** MODEL I-A ***** 
1. CONSTANT PERISHABILITY RATE 

2. LINEAR PERISHABILITY RATE 

3. QUADRATIC PERISHABILITY RATE 

4. EXPONENTIAL PERISHABILITY RATE 

***** MODEL I-B ***** 
5. CONSTANT PERISHABILITY RATE 

6. LINEAR PERISHABILITY RATE 

? 
cc 
J 

TYPE IN YOUR ESTIMATE OF THE VALUE A, 
THE PERISHABILITY CONSTANT C 0 < A <.9 % > 

A ··
r,, 
() 

I--' 
CJ) 
CJ) 



MODEL I-A--CONSTANT PERISHABILr·ry RA'fE 

() Of"f T * CWT O* MI~ COST OPT PER COST-EOQ 

.o 14.142 1414.214 7.07 

.0010 12.!399 1306.558 7. 7'.~i 

.0020 11.935 1222.0l~) B.JB 

.0030 ll.159 1153.303 B • 9 .~1 

.0040 io.::;1s 1096.005 9. 5:1. 
,0050 9. 975 1047.261 l0.02 
,0060 9.509 1005.122 10. '.~i2 
.0070 9. 10'..c'. 968.21:'.'i l0.9<J 
.OOBO B.744 935.534 :L 1. 44 
.0090 8.425 90f.i. 326 :L1 • 87 
.0100 8. 138 880.013 12.29 

DO YOU WANT TO TRY ANOTHER VALUE FOR A ? 
YESCl>INOCO> 

"j) 

0 

0. () 
16.64 
28.49 
37.36 
44. 2'.5 
49. 7'.5 
'.54. 25 
57.99 
61.16 
l.i3. 87 
66.22 

DO YOU WANT TO TRY A DIFFERENT MODEL ? IF YES, 
TYPE 1, OTHERWISE TYPE 0 AND THEN PRESS THE ENTER KEY 

'? 

1 
SELECT THE DESIRED MODEL FROM THE MENU & TYPE IN 
ITS RESPECTIVE NUMBER; THEN PRESS THE ENTER KEY 

7.071 
7. 78'.'-.J 
8.499 
9.214 
9.928 

10.642 
11. 356 
12.070 
12.784 
13.499 
14.213 

PEF<--EOO 

0. () 
20.00 
40.00 
60.00 
so.oo 

100.00 
120.00 
140.00 
160.00 
180.00 
200.00 

._. 
°' '-I 



MiJflEL. I ·-·(-1-··-L I NE ti I~ F'EI~ I ~)Ji(1B IL I TY l=\'(:1 TE 

,'.') B OF' T T::i< DPT Dile MIN COST OPT PER 

• 0 .o 14.142 1414.:214 /,O? o.o 
.o .0010 8.560 8!37. 39'.:; <y, 83 31.3l· 
.o .0020 l. 166 753.401 11.~!,,S 36.80 
t () .0030 /.i. 40'..:'. C>}<.t. ~::;42 1 '") "~ ') . ,,.._ • .. .J ...... 39 + 3f.> 
• 0010 • 0 12.U(?<? L306. !5~)8 7. "7'.5 16.64 
.0010 .0010 8.327 fif.1B, '.'53!'5 :t.O. 26 3!5, EH 
.0010 . oo:w 7,033 743,0::)6 11.72 39,74 
.0010 .0030 6.309 67:?.!.."i02 12.84 41.64 
.0020 t 0 11. 935 1222.015 8.3B 28.49 
.0020 .0010 8, 1 O(J 850.672 10.67 39.81 
.0020 .0020 6.906 733.047 12.07 42.47 
.0020 .0030 6.219 665.659 13.15 43.80 
.0030 • 0 11. l 59 :L 1!53. 30~5 8.96 37.36 
.0030 .0010 7.903 B33.700 11.os 43. 4 :L 
.0030 .0020 6.783 723.336 12.42 45.01 
.0030 .0030 6.131 658.926 13.46 45.84 

DO YOU WANT TO TRY ANOTHER VALUE FOR A & B 7 

YES<1>/N0(0) 

C0~3T-EUO 

7,0/1 
12.121 
17+1/1 
22.2;.:i1 

7. 7U'.') 
l ~Z. B3'."i 
17.BB'.:'.i 
22.935 

8. 499 
13.'.549 
lB.!'.599 
23.649 
?.214 

14.264 
19.314 
24.364 

F'EF~·-EOO 

o.o 
.141. 42 
~~02, B<1 
424. 26 
20.00 

161.42 
302,B4 
444. 2.~ 

40.00 
181.42 
322.!34 
464. :~6 

60.00 
201.42 
342.84 
484.26 

........ 
0"1 
CX> 



MODEL I-A--QUADRATIC PERISHABILITY RATE 

---------------------------------------------------------------------------------
A B c OPT T* OF'T·Q* MIN COST OPT PER COST-··EOQ F'El=i:-EC 

---------------------------------------------------------------------------------

.o .o .o 14.142 1414.214 7+07 o.o 7.071 o.o 
• 0 • 0 .0002 7.685 791.744 9.96 2~3. 25 16.'.593 2(:.6.6~ 

• 0 • 0 .0004 6.630 688.720 11.16 25.76 26.116 533. 3~ 
.o .o .0006 6.059 632.846 12.01 :~6.95 35.638 800. 0( 
.o .o ,()008 5.676 595.280 12.69 27.68 45.161 1066.61 
• 0 .0010 ,() 8.560 887. 39'.5 9.83 31.36 12.121 141.4: 
.o .0010 .0002 6.841 714.724 11.28 30.61 21.643 408. OS . () .0010 .0004 6.147 645.323 12.19 30. 6~.'i 31.166 674.7~ . () .0010 , OOOf.i ~"i.718 602.547 12.89 30.73 40.6B8 941. 4::: 
,() .0010 .ooou '.:'.i. 412 572.011 LL47 30.80 50.:211 1208.0S 
.0010 • 0 • 0 12.899 1306.558 7.75 16.64 7.785 :::20.0< 
.0010 .o .0002 7.552 782.600 10.34 2/ + 3~-; 1/.308 28f>.b·; 
.0010 • 0 .0004 6.54B 6 0 ·~ c;· c.- -~ 

\J~ .. _1._J,j 11.49 :w. 79 '..2(S, 830 5~j3. 3~ 

.0010 • 0 . ooo~·i 5 + 99fl 6~!9. 22.~) L~.32 ~:29.4~1 36. 3:=i2 B20. O< 

.0010 .o , 0 0 Of:l 1::- ~ .... ) ·7 
... J+\"':J ... ·_/ 592.583 12.98 29.(7'0 45.f.l/~) 1Oi36,6·; 

.0010 .00:1.0 + () B.3'..U 86B.535 10.26 3!5. B 1 12.U3'."j 161.4: 
• 001 () • 001.() .0002 6.742 70?. 8~'i4 11.62 33.64 22.358 •128. OS 
.0010 .001.0 .0004 6.078 640.9113 12.50 33. 1.2 31 • !JtlO 694. J~ 
.0010 .0010 • 000,.1) 5,664 :_;9c;, 23B L5.17 32, f:P 41.402 <J61. 4::. 
.0010 .0010 .OOOB '.'.'it 36'7 56?.456 13.74 3'..2. 7 4 c:· '\ C> ,..> '--:· Jl.. .. J ... ·_,_) 1228.()<j 

,_. 
O"'I 
l.O 



MODEL I-A--EXPONENTiAL PERISHABILITY RATE 

A B OPT T* OPT Q* MIN COST OPT PER 

• 0 .0050 14.142 1414.214 7.07 (). 0 
.o .0150 14.142 1414.214 7.07 o.o 
.o .0250 14+142 1414.214 7.07 o.o 
.o .0350 14.142 1414.214 7.07 o.o 
.0010 .0050 12.828 1299.793 7.77 16.99 
.0010 • 0150 . 12.678 1285.502 7.82 17.70 
.0010 .0250 12.518 1270.245 7. 8".7 HL40 
.0010 • 03~)0 12.3!'.'iO 1254.106 7.92 19.08 
.0020 .0050 11.83~2 1212.038 B.41 213.84 
.0020 .0150 11.b21 1191.615 8.49 2<;>. 51 
.0020 • 0::'.:50 11.406 1170.713 8. ~5? 30.ll 
.0020 .0350 11. lf:l9 1149.499 B.65 30. 6~.J 
,0030 .0050 11. 042 1141.786 9.01 37.60 
.0030 .0150 10.S()6 1118.674 <J,11 3B.03 
.0030 .0250 10.572 1095.615 9.21 38.38 
.0030 ,0350 10.341 1072.750 9.31 38.65 

COST-EOQ 

7.071 
7.071 
7.071 
7.0?1 
7.B11 
7.B67 
7.928 
?.995 
B. '.551 
8./162 
8. /B~i 
iJ. <j> l 9 
9.291 
<;>.458 
9.641 
9.843 

f'ER-EOQ 

o.o 
o.o 
o.o 
o.o 

20.72 
22.28 
23.99 
25.88 
41.45 
44.56 
47.98 
51.75 
62.17 
66.84 
71.97 
Tl.63 

I-' 
-.....J 
0 



MODEL I-B --CONSTANT PERISHABILITY RATE 

A OPT T* OPT Wt: MIN COST OPT PER COST-EOQ 

.o 14.142 1414.214 7.07 o.o 7.071 

.0010 12.899 12<18.348 7.42 8.43 7.423 

.0020 l1. 935 1208.118 7.76 14.59 7.765 

.0030 11.159 1135.270 8.09 19.33 ti. 097 

.0040 10.:SlB 1074.853 8.40 23.09 8.419 

.0050 9.9'75 1023.690 8.70 26. HJ 8.730 

.0060 9~509 ?79.63B 8.99 28.77 9.032 

.0070 9. 102 941.1</0 9.28 30.97 9.323 

.0080 B.744 907. 2~)3 9.55 32.BB 9.605 

.0090 H. 4~!~.'i f:i/7. 009 9.81 34.~';f.) 9.876 

.0100 8. 138 B49.C34 1. 0. 07 36. 0'.5 1 (). 137 

PEF~·-EDQ 

0. () 
10.14 
20.58 
31.33 
42.40 
53.BO 
65.56 
77.69 
90.20 

103.13 
116.4/ 

I-' 
......... 
I-' 



MODEL I-B--LINEAR PERISHABILITY RATE 

A B OPT l* OPT O* MIN COST OPT PER 

• 0 .o 14.142 1414.214 7.07 o.o 
.o .0010 14.087 14~31.079 8. !:'i9 42.38 
.o .0020 14.050 14!32.178 9, S~"i 77.20 . () .0030 14.0::~4 1508.913 10.91 106.49 
.0010 t 0 14.13~) 1423.329 7.42 9.85 
.0010 .0010 14.0f:l::'. 1.45!3. 860 D.89 50.71 
.0010 .0020 14.046 1488.980 10.11 84.40 
.0010 .0030 14.022 1514.964 11+13 112+81 
.0020 • 0 14. 127 1432.112 7.76 19.41 
.0020 .0010 14.076 l 4c;f;. 392 9. HI ~if:l + 81 
.oo:w .0020 14.04:2 14 9'.::.i + '.591 10. 3,.s 91.41 
.0020 .0030 1'1.019 1520,872 11. 36 118.9<.? 
.0030 • 0 14.119 1440.568 8.10 28.69 
,()030 .0010 14.070 1473.681 <].', 4 7 66.70 
.0030 .0020 14.038 1502.017 10.61 98+26 
.0030 .0030 14.016 1526.632 :I. 1 • '.5f:l 125.03 

COST-EOG 

7.0/1 
8.601 
9. GT? 

10.956 
7.423 
8.902 

10.13B 
11.1B6 

7+766 
<?. 196 

10.393 
11.411 
8. 09<; 
9.4B2 

1.0.643 
1l. 631 

PEf(-EOG 

o.o 
42.85 
"78.57 

108.78 
9.86 

51.29 
u::;. 89 

11:7i.22 
:1. <; + 45 
::59.~'jl 

<j>J. 04 
121.~)3 

28.78 
6"7.52 

100.03 
12/,69 

,._. 
--.J 
N 



.,'f>•·· 

,)\!().I.() ' 

()() () :.~ 0 
()()030 
00040 
() () () ~~; () 

() () () c', () 
000/() 
ooono 
000'?0 
00100 
00110 
00120 
OO:l 30 
00140 
OO:l '.7i0 
00160 

. OO:L '/O 
i')OlBO 
OOl?O 
00200 
00:~:1.o 
.::rc2::::0 
...... ,f\_."'\'"'J'I' 

·,, \i .. :. ,:; \} 

c 
r . 
c 
c 
r . 
c 
c 
c 
c 
c 
r . 
r 
c 
c 
c 
c 
r 
r 
c 
r 
c 
r 

I Ul\fl•:1dl LUflr<:; FOi( ] IF.n::i».!I Ul\Y iiOOEL.'.3 OF 
l TLil:3 bUB JLC T l 0 liE TLf:: I Clf~i='.1 TI ON 

PROGRAMMED BY 
FERAIDOON RAAFAT 

MtinCH 19B1 

************************~** 
* * * LOT SIZE SYSTEMS * 
* * :}. 

MCJI:JEL I 
!}~ 

~¥ ,,, 
/j• 

*********************t***** 

:•02·10 
co:·1 ~:.;o 

C SET THE INPUT-OUTPUT UNIT NUMBERS 
c 

0 0 ;:.~ (.,() 
002'?0 
00:.:00 r 

I N····~S 
I CUT===,~) 

002~0 C RE~D ·r1~E INVENTORY PARAMETERS- SEE GLOSSARY FOR DEFINITIONS 
00300 c 
00310 
00320 
00330 
00340 
<>Cl3~)0 

i; . ,, " .... , 
·'"'" ~,' •,.> .::. (;) 0 

l..Jf~ITC \ IOUT r 100) 
100 f Of?i·ltiT (HU , /, L:1X l' I LDT s J ZE I NV Un t:m·.-. ....... jjCJflEL I . r //) 

104 WRITECIOUT,105) 
10~) nrntil1T(:LX, 1 INF'UT YOLJf~ UNIT COSTYHOL..DING co:n, ,, 

l'ORDERING COST',/1Xr'AND PERISHABILITY COST'r 
2 .. <THIS 11r1Y BL r::nutiL TO THE UNIT CDST)v"/lXi· 

t-' 
........ 
w 



00370 
J0380 
00390 
00400 r 
00410 
J0420 c 

3'AND YOUR DEMAND RATE IN THE FOLLOWING ORDER~ /, 
4/' co ,c:t ,c3 rC4 rR I /y 
::)/ 1 x, 'THElJ Pf<Ei:;s TllE ENT Er< KEY'/> 

READ<IN,*>co,c1,c3,c4,R 

00430 C VAl_IDATE INPUT DATA<ECHO PRINT> 
00440 c 
00450 WRITECIOUT,112) COPCl1C3,C4rR 
00460 112 FORMATC1X/1X1'UNIT COST= ',F10.2r/1X1'HOLD', 
00470 1'ING COST~ 'PF10.4r/1X,'ORDERING COST= '1Flo.2, 00180 2/JX,'PERISHING COST= 'vF10.21/1X1~DEMAND RATE= 
(}().-=-: 90 3F10.2//) 
•;)()'.')()() c 
00510 WRITECIOUTrl15) 
00520 115 FORMAl'ClX1'IS EVERYTHING CORRECT? IF YESr TYPE'v 

, 

00530 1' 1'/1X1'0THERWISE TYPE 0 AND PRESS THE ENTER l\EY'//) 
0 () !'.'i 4 () c 
00~5~'i0 C f<ERE?d) THE F'f.1RAMETEf<S IF THEF~E IG ~~1NY Ef<fWfl'. IN INPUT 
0056() c 
00570 READ<IN,*>IWORD 
00580 IF<IWORD.NE.1>GO TO 104 
0()~)7'0 c 
00600 C THIS IS THE MENUE OF AVAILABLE MODELS 
()()(;1.() c 
00620 118 WRITE1IO~f,120) 
006~50 120 FOFrnr-iT ( 1 x, 'SELECT THE DE~HRED MODEL. FROM THE ,·, 
00640 ____ J_'_ M~~_NlLE & TYPE 1-N'/_ll(r_' IGi REfif'ECTIVENill1B£l~; THEU- f'UE~)S-:'¥ 
006~.'iO 3 I Tl·IE ENTEf~ l<FY , / / 1. x, '***** MODEL T .... ;::i *****,I/ 00\'..(,0 41.Xr':l., CON:.;Tt1NT f'Ef~J!:;11t.1Bil ... ITY f~(1T[','/ 
00(;"70 '.':ilJ::, "2. l...Ii'JFtiF: f'Lf~I'.:)l·li'.:iBIL.ITl f::tiTE'.// 
006UO 
()(){j90 
()()/()() 
()()7:f () 

o o ·.? :~~o 

.;, 1 X t ':'.'). UIJtiDnti TIC PFf< I '.:!Ht":1B l L l TY Ht1 TL'// 
81Xr'4. E\PONLNTIAL PERISHABILITY RAlE'// 91X,'***** MODEL 1-B *****'/; 
J. :l )'., y , '.) • c u j) : ; T ,:-:, N T p L r~ :r n H {1 B I I... I T '( r< ti T [ ,' / .... 
:·:· 1 >< , .. ..:. • 1.. J 1 1 L ,: , i:.· r· c 1:~ 1 s H ,:, n 1 1... 1 r Y 1:;: 1-; 1 · E · / .. ·· .i 

,._. 
......., 
~ 



00730 c 
00740 C SELECT A MODEL FROM THE MENUE 
00750 c 
007~0 READ<IN,*>KK 
00770 c 
00780 C CALL THE SLJBRIOUTINE MODEL! TO MAKE THE APPROPRIATE 
00790 C CALCULATIONS AND PRINT THE RESULTS. 
00800 c 
00810 CALL MODELI<IN,IOUJ,co,c1,c3,c4,R,KK> 
00020 r 
oon:·~o 

OOU40 
,,. / 

008~50 

oon,:io 
OOB/O 
OOUGO f" 
00890 
00900 
00910 
00920 
00930 
00940 
00950 
00960 
00970 c 
00980 c 
00990 c 
01000 c 
01010 c 
01020 c 
01030 c 
01040 
01050 c 

tmITE<IDLJT,125) 
:!.:)'. .. ; FOfa .. lt,T< V'./1Xr 'DO YOU WtiNT TO TRY 1:i IHFFEJU~NT l'iGDEL '!' IF YE~:;~ 

·I,., ... , 
.L .:·. I 

11Xr 'TYPE 1, OTHERWISE TYPE 0 AND THEN PRESS T•1C ENTER KEY'/) 
READ<IN,*>IWORD 
IFCIWORD.EQ.l)GO TO 118 

WRITECIOUT,127) 
FORMATC1X/1Xr'DO YOU WANT TO CHANGE YOUR INPUT'/ 

1' PARAMETERS? IF YES TYPE lr OTHERWISE TYPE 0 
2' AND THEN PRESS THE ENTER KEY'//) 

READCIU,*>IWORD 
IFCIWORD.E0.1)GO TO 104 
STOP 
END 

**************************** * * • 
:t. 
·.11 
~r" 

SUBROUTINE MODELI 4~ 
•.t.• 
If. 

~~;: ~:: ::-: .. :·::: :::< ~:·~ :¥ :* * ;-:< j:< ~;.: ~~{ * ~-~ :~ * * ;~ * * ;.:-~ * ::}: * * ;:{:: ~-: 
~:;ur:r::OUT J (.![ 11.JDLL I< IN, IOUT, CO, Cl, C3, C4, J:;;, l<l·~) 

..... 

....... 
U1 



01060 c 
01070 c--
01080 c 

---->FUNCTION DEFINITION BLOCK 

010?0 C THE CHW[f{ OUNTITY FUNCTIONS OF MODELS 1····;'.; 
01100 c 
01110 
01120 
01130 
01140 
01150 
01160 
0117C C 

Ql(T,A>=R*T*<1.+A*T> 
Q2CT,AtB>=R*T*<1.fA*Tt.50*B*T**2> 
Q3CTrA,B,C>=R*T*C1.tA*T+.50*B*T**2+C*T**3/3.> 
CH ( T, (y, B > ::::f~*T* ( 1. ·U\;fcEXP <·D*T) /B····A/B) 
Q5(T,A>=R*T*<1.t.50*A*T~<1.-A*T>>· 
Q6(T,ArD)=R*T*<1.+C3.*A*T+B*T**2>1<6.t6.*A*T+3.*B*l**2>> 

C THE F'FFnSHf.1lHLITY FUNCTIONS OF MODELS :I.····{; 01180 
01190 c 
01200 
01)10 
01220 
01230 
01240 
01 ~.~ ~'j() 
01260 c 

D1CT,A>=U1(T,A>-R*T 
D2CT,A,D>=Q2CT~A,B>-·R*T 
D3CT,A,DrC)=QJ(T,A1BrC>-R*T 
D4CT,ArB)=04CTrA,B>-R*T 
D5CTrA)=Q5CTrA>-R*T 
D6CTvArB)=Q6(TrArB>-R*T 

012'?0 C THL COST FUNCTIONS OF MODELS 1--6 
Ol.2BO C 
01290 
01.300 
01310 
01320 
01330 
01340 
01350 c 

C1T<TrA)=+50*G1*R*TtC3/Tt<C1tC4)*R*A*T 
C2TCTrArBl=C1TCTrA}t.50*<CltC4>*R*B*T**2 
C3T<TrA,B,C>=C2TCTrArB>t<C1tC4>*R*C*T**313. 
C4TCTrA,B>=.50*C1*R*T+<C1+C4>*<R*AIB>*<EXP<B*T>-1>tC3/T 
C5TCTrA>=.50*C1*R*Tt.50*CC1tC4>*C1.-A*T>*R*A*TtC3/T 
C6T(T,A1B>=.50*C1*R*TtC3/Tt<CC1tC4>1T>*D6CTrA,B> 

01360 C T•iE OF'TIMAL CYCLE FUNCTIONS OF MODELS 2-6 
01110 r 
01380 
01390 
01400 
01410 

12CTrA,D)~C3iC.50*Cl*RiCC1tC4>icR*A+R*Btf)) 
YJCTYArDrC)=CJ,'(.50%C1%RtCC1tC4)%(R*A1R*B~T}R4C414t2)) 

Y 4 ( T , ti ~ H ) : C :·~ / ( • ' .. 'i 0 * C I. * h l· ( C 1. + C 4 ) * R ;J< t1 4 E X r· ( D :t:: T :; 1 
y ~.; ( T y (1 ~ :c ;. :: ; 2 • * c ::j / ( c :I. ;f:: r~ · l ( c l + c 4 ) * r~ *ti/ ( :I. • .. t. :1: T ) l ,;:: :.:: ) 

...... 
--.i 

°' 



. . 

01420 Y6CTvA,B>=C3/C.50*C1*Rf((C1tC4>*<6.*At5.*A*B+4.*B*T-10. 
01430 1*A*B*T**2>/C3.*C2.-2.*A*T+B*T**2>**2))) 
01440 C······· ············ ·· ······> 
014~".() c 
01460 C CYCLE TIME IF EOQ MODEL IS USED 
014"70 c 
014fl() 
014</() 
()J~.~00 c 
01:'.'dO 
01 ~.'i20 c 

TEOQ=SQRTC2.*C3/CC1*R>> 
TlNV~l./lEOQ 

GO TOC1-0,20r30,40r50r60r70)rKK 

01530 C ----->CONSTANT MODEL I-A . 
Ol'.:)40 C 
01550 10 WRITE<IOUTrlOO> 
Ol~)t;O :l.00 FOf::ti1°:;TC 1X/1Xr 'TYPE IN YOUF~ ESTIMr~iTE OF THE 1.)f.1LUE t1~· ··· Y 

01!:'i70 1/1Xr 'TllE F'[JUSHABILITY cmmTt1NT ( 0 < (1 <.9 ;:~ ) '//) 
01580 WRITE<IOUTr101> 
01 ~:i?O 
01600 
01610 
01620 
01630 
01640 
016~.rn c 

101 FORMATC1X,'A = ') 
READ<INr*>A 
IFCA~LE.TINV>GO TO 106 
WRITE<IOUT,107>TINV 

107 FORMAT<1X/1Xr'PERISHABILITY COEFFICIENT(S) MUST BE', 
1/1X' SMALLER THAN= 'rF5.4r//) 

0:1.660 C DETERMINE THE RANGE & INCREMENT OF A 
01670 c roR THE PRINTOUT 
o :1. .sno c 
0:1.690 106 AA=A/2. 
01700 DELl=.001 
0:1.?1.0 c 
01720 WRITE<IDLJT,1.10) 
0:1.730 :1.10 FORMAT<ltl1//,:l.7Xr'MODEL I-A--CONSTANT PERISHABILITY RATE', 
0:1.740 l/.iJ\,72( '·· ')/:JX, ·,~i' ,9;:, 'CJPT T>l::' ,~)Xv ·'OPT Q>:;' i·4X, 
01750 2'MIN cosr·,2x, 'OPT PER',2X. 'COST-EOQ',JX,'PER-EOQ'/ 
01/(:;() ?; l \" ' ·7 ;_·~ ( . ... • ) / ) ...... 

" " 



01770 c 
01780 C THE FOLLOWING LOOP CALCULATES THE INVENTORY 
01790 C C•1ARACTERISTICS FOR THE VARIOUS VALUES OF A 
01000 r 
01810 
01820 
01830 
01840 
01850 
01860 
01870 
01880 
01890 
01900 
01910 
rF7.2) 
01920 

1;.)o 

no ::.:oo J===1, :1.1 
f':1==(i(1 

IF<A.GT.TINV>GO TO 123 
TOPT~SQRT(2.*C3/(C1*R+2.*A*<C1iRtC4*R>>> 
QOPT=QlCTOPTrA> 
COPT=ClT<TOPT,A> 
DOPT=DlCTOPTfA> 
CEOQ=C1T<TEOQrA> 
DEOQ=D1<TEQQ,A) 
WRITE<IOUTv120>ArTOPT,QOPT,COPT,DOPTrCEOQ,DEOQ 
FORMATC1XrF5+4•3XrF9.3r3XrF9.3v3XrF8.2rJX,F5.2v3XrF9.3,JX 

(:1 ,::1 {·1 /:i 1· r:1 EL. J 
01. ?~:SO ::)oo CDNT I r!UL 
01940 c 
Cl950 C CHECK TC SEE IF ANOTHER TRIAL IS REQUIRED 
C· :!. <) /..() C WITH ti I: I Fr-·:·:: l~:L:;!T f't1Rf:iMETEr;: 
01970 c 
0:1.980 123 WRITE(10UTv124) 
01990 124 FORMATC1X/1Xr'DO YOU WANT TO TRY ANOTHER', 
o 2 o o o 1 ' '·' r~ L.. uE n:m A '? , / , l x , , YE G < t ; /No < o > , / > 
02010 READ<IN1*>IWORD 
02020 IFCIWORD.EQ.l)GO TO 10 
02030 RETURN 
02()4() c 
020~)() C .......... ········>LI NEt1f~ iiUDEL.. I····{) 
02()(:;() c 
020?0 
0200() 
0?090 

20 WRITECIOUT~130) 
130 FORMATClX/lX1'TYPE IN YOUR ESTIMATE OF THE VALUES Av'v 

1/1X•'AND B T•~E PERISHABILITY COEFFICIENTS ( A,B < .9 % 0 )'/)' 
....... ....., 
00 



() :::~ 1 () () 
o::~ :L :I. 0 
021.20 

WRITECIOUT1101> 
READCINv*>A 
WRITECIOUTY102) 

02130 102 FORMATC1Xr'D = ') 
02140 READCINY*>B 
02150 IFCA.LE.TINV.OR.B.LE.TINV>GO TO 206 
02160 WRITECIOUTY107)TINV 
0217() c 
()2:1.HO c DETEF~MINL TllE Rf.1NGE & INCREMENT or f.1 & B 
02190 C FOR THE PRINTOUT 
0:?200 c 
02210 206 AA=A/2. 
02220 DEll=.001 
02230 BD=B/2. 
02240 BT=BB 
02250 DEL2=.001 
02260 WRITECIOUT1135) 
02~:?70 

022CO 
() 22</() 
02:·:~00 

02310 c 

135 FORMATC1111//v1/X,'MODEL I-A--LINEAR PERISHABILITY RATE', 
1//:1.J:d]O( '··-' )/SXr, f.i,. ,6)<, 'B' ,7x, 'OPT l*' ,5x, 'OPT fU::' v3Xv 
2'MIN COST'v2X,'OPT PER',4X, 'COST-EOQ',3X, 
3 ,. p EI~ .... E CJ u I ./:I. ;:: y 8 () ( , ... I ) I ) 

02320 C T•1E FOLLOWING LOOP CALCULATES THE INVENTORY 
02330 C CHARACTERISTICS FOR THE VARIOUS VALUES OF A 
02340 r 
02350 
02360 
02370 
02380 
02390 
02400 
02410 
02420 
02430 
02440 
02450 

21 <;> 

DO 202 J::::l v 4 
(i::::(jj'.) 

IrCA.GT.TINV>OO TO 223 
DO 204 K ~1,4 

B=BB 
IF(B.GT.TINV>GO TO 204 
TO=TEOQ 
FO=Y2CTO,A,B> 
Tl=SQRTCFO) 
F1=Y2<T1,A,B> 
IFCABS<Fl-FO>.LT •• 001.0R.ABS<T1-TO>.LT •• 001>GO TO 22:1. 

~ 

....... 
~ 



02•160 
02470 
02480 
O'.?:l'i·'O ~~21 

0:~500 

0 ::~ ~:) 1 0 
o:-~~)20 

02530 
02540 

TO::::T1. 
F()o::F 1 
GD TO 21? 
TOf'T::::T 1 
QOPT=02CTDPT,A,B) 
COPT=C2T<TDPT,A,B> 
DOPT~D2<TOPTrA,B> 

CEOQ=C2TCTECJQ,A,B> 
DEOQ=D2CTEOQ,A,B> 

o::.~~.~~so 
02~'j.:)0 

WHITE ( U:JUT' :I. 21) A, B' TOPT' lWF'T 'COF'T, IHJF'T 'cu:m, DEDO 
:1.2:1. FORMATC1X,F5.4r2X,F5.4,1X,F9.3,3X,F9.3,2XrF8.2,4Xr 

() ~:~ ~:; ? () 
..... ·"")r.:· c~ t) 
Va·.,,Ju;.., 

0~!~.~90 

02i>00 
02610 
02620 
02630 c 

1 F1.2,3x,r9.3,3x,F7.2> 
BB=BBtDEL2 

204 CONTINUE 
BB=BT 
AA~~A+DEL:I. 

202 CONTINUE 

02640 t: CllEct~ TO SEE IF tiNOTHEH nnr..L. l:S F~Ecwn;:ED 
02650 C WITH {1 DIFFEf~ENT PtirUH·1ETER 
02(>60 c 
026?0 
026HO 
02690 
02700 
02710 
02720 
02730 c 

223 WRITECIOLJTv224) 
224 FCJRMATC1X/:LX,'DO YOU WANT TO TRY ANOTHER', 

1' VALUE FDR A & B ?'/,1X,'YESC1)/NOC0)'/) 
READ<IN,*>IWORD 
IFCIWORD.EQ.l>GO TO 20 
RETURN 

02740 C----->QLJADRATIC MODEL I-A 
02750 c 
02760 
02770 
02780 
02790 
02800 
0~010 

30 WRITECIOUTv132) 
132 FORMATC:l.X/1Xv'TYPE IN YOUR ESTIMATE OF THE VALUES 

1/1X,'D, AND C THE PERISHABILITY COEFFICIENTS '/ 
1'< A ( .9 % , D <.9 % , C < .07 % > '/) 

WRITECIOUT1101) 
HFr1I:t ( l 1J v :.y;) (1 

(.~ y y 

I-' 
00 
0 
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OJl/O 
03180 
03190 
03200 
03210 
0 :-.~ ::~20 
0:?:230 • 
03:;:~40 

032~.:;o 

03260 
)32 .. ?0 
!J ::) ::.~ B 0 
03290 
03300 
03310 
03320 
03330 
03340 
03350 
()~}:·.~60 

03370 
03;:~00 c 
03390 
03400 
03410 
03420 
03430 
03440 
03450 c 

331 

J40 
:I. 

30~'i 

;:)04 

IFCABSCF1-FO>.LT •• 001.0R.ABSCT1-lO>.Ll •• 001>GO TU J31 
TO::==T1 
FO=:::F1 
GO TO 319 
TOPT=:::T1 
QOPT=Q3CTOPT,ArB,C) 
COf'."f::::C3T ( TOPT, ,-; , D, C) 
DDPT::::It3 < TOf'T, A, B, C) 
CEOQ=CJT<TEOQ,A,n,c> 
DEOQ=lt3(TEOQrA,e~c> 

WRITECIOUT1340>A,B,C,TOPT,QOPTrCOPT,DOPTrCEOQ,DEOQ 
FORMATC1x.Fs.4,2x,rs.4,2x.r5.4,1x,FB.3r3XrF9.J,2x, 
F8.2,4X,F5.2r3XrF9.3r3XvF7.2> 
CC::::CC+DEL3 

CONTINUE 
CC::::C"f 
[llJ::::BJ:I+ DEL.2 

CDtHINIJE 
Bfl::::BT 
AA:::=AA+DEL1 

~!i<L.5 CONTINUE 

323 WRITE<IDUT,324) 
324 FORMAT<1X/1Xr'DO YOU WANT TO TRY ANOTHER'v 

1' VALUE FOR A & B & C ?'/r1Xr'YES(1)/NOC0)'/) 
READCIN,*>IWORD 
IFCIWORD.EU.1>GO TO 30 
RETURN 

03460 C----->E~PONENTIAL MODEl_ I-A 
034?0 c 
03400 
() :.") 11 '? () 
1.) :.~~; ~.:.:_; 0 () 
l O*t1 ' ~· 
:) :.":) ~:_; 1 () 

40 WRITECIOUT,430) 
.:)::}() FURM1n·c:1.X/1.Xr 1 T .. (FE IN YOl.m EST:CMt1TE OF THE 1)t1L.UF~:; (:1,'v 

1/1XrJAND B THE PERISHABILITY COEFFICIENlS ~O t·. ::~ .,. (j> ;:. ~~ :c 

1/' & D NOT EOU~L TO ZERO ) 1 //) 

....... 
CX> 
N 



0~520 

03530 
03540 
03550 
oJ56o r 
03570 
03580 
03590 
03600 
03610 
03620 
03630 

' 03640 
03650 
03660 
03670 c 
03680 
03690 
03700 
03710 
03720 
03730 
03740 
03750 
03760 
03770 
03780 
037~0 

03800 
03810 
03820 
03830 
03840 
03850 
03860 

WRITECIOUT,101) 
READCIN~*>A 

WRITECIOUT,102) 
READCJN,t)B 

A~=A/2. 

DELl=.001 
BD=B/2. 
BT~DB 

DEL2~.01 

WRITE<IOUTr435) 
435 FORMATC1H1//,17Xr'MODEL I-A--EXPONENTIAL PERISHABILITY RATE' 

1//1X,80('-')/3Xv'A',6X,'B',7x,·orr T*',5X,'OPT Q*',4x, 
2'MIN COST'rlX,'OPT PER'r4Xr'COST-EOQ',3Xr 
3'PER-EOQ'/1~,80C'-')/) 

DU 40 i J::::l, 4 
f'1::::{:i(1 

I:O 40i, I<; ::: 1, 4 
f:.: DB 
T(i::::TEC:U 
F D .::: '( 4 ( T 0 v t"1 , B ) 

419 T1=SQRT<FO> 
F1=Y4<T1,AvB> 
IF<ABS<F1-FO>.LT •• 001.0R.ABS<T1-TO>.LT •• 001)G0 TO 441 
TO= Tl 
FO=Fl 
GO TO 419 

441 TOPT=Tl 
QOPT=Q4(TOPT,ArD> 
COPT=C4T<TOPT,A1B) 
DOPT~D4<TOPTrA,B) 

CEOQ=C4T(TEOQ,A,B> 
DEOQ=D4<TEOQ~ArB) 
WRITE(IOUTr121)A,e,roPT,QOPT,COPT,DOPTrCEOQ,DEOQ 

..._. 
co 
w 



03870 
03880 
03890 
03900 
03910 
03920 c 
03930 
03940 
03950 
03960 
03970 c 

40.S 
BB~BBtDEL2 

CONTINUE 
F;[l::[:l 

AA=AA+DEL1 
404 CUNTI~UE 

WRITECIOUJ,224> 
READ<IN,*>IWORD 
IF<IWORD.EQ.1)60 
RETURN 

;ro 40 

03980 C----->CONSTANT MODEL I-B 
03990 c 
04000 
()40:1.0 
04020 
04030 
04040 
040:~)() 

04060 
040/() 
040CO 
o 4 o s:·o 
04100 
0411.0 
04120 
04130 
04140 
04:1.~5() 

041.110 
041?0 
01nno 
04190 
04200 
04:d () . 
04:?.20 

50 WRITE<IOUT,100) 
READ<IN,*>A 
IF~A.L~.TINVJGO TO 506 
WRITE<IOUJ,107>TINV 

~5()(.; tiA:==ti/2. 
DEL 1 ::::. 001 
WR I TE ( I our, '.'.'i:L ()) 

510 FORMAT<1Ji1//,17X,'MODEL I-B --CONSTANT PERISHABILITY RATE'• 
1//1.X·r72( ..... ' )/3)(, ·';:~' r9X, 'OPT T*' v:'.)X, 'OPT Q*,. ~~;x, 
2'MIN COST'v1Xr'OPT PER',2X,'COST-EOQ',3Xr'PER-EOO'/ 
:51)<,·?:::~( l .... t )/) 

DO !'.'iOO ,J:::: 1 Y 1.1 
A=AA 
IF<A.GT.TINV>GO T0523 
TOPT~SQRT<2.*C3/(C1*R+2.*A*CC1*R+C4*R))) 
QOPT=Q5(TOPTrA> 
COPT=C5TCTOPT,A> 
DOPT=D5<TOPT,A> 
CEOQ=C5TCTEOQrA> 
DEOQ=D5CTEOQ,A) 
WRITECIOLJT,120)A,TOPTrQOPTrCOPTrDOPTrCEOQ,DEOQ 
AA=AA1DEL1 

500 CONTINUE 

...... 
CX> 
.Po 



G .. : .'.·.~ ~-./ :.:: 
523 WRITE<IOLJT,124> 

1:~EM:r < :r N 1 :~) :i: worw 
IFCIWORD.EQ.1)00 TO 50 
f~ETUf~il 

04249 
04250 
04260 
04270 
04280 c 
04290 C----->LINEAR MODEL I-B 
04~50() c 
04310 
04320 
04330 
04340 
0 .-:1 ~:) ~:=j () 

04360 
04S70 
043DO C 

60 WRITECIOUT,130) 
WRITE<IOUT,101) 
READCIN,*>A 
WRITE<rour.1oi> 
READCINr*>B 
IFCA.LE.TINV.OR.D.LE.TINV>GD TO 606 
WRITECIOUT,107lTINV 

0 4 :~~~;'O C DET Ffi'.ii I NL THE Rtii!CIE K I NCf~'.EMENT CJF ti & D 
04-'100 c ru:::.: TllL r·r::INTOUT 
044:1.0 c 
044::.'0 
() ·~l .:·13 () 
c1 .··i4.=~-o 

0 ·=·l .·:~ !=s 0 
() -~ 4 ,/; () 
04470 
04480 
04490 
04500 
045:1.0 
04520 c 

(.,()6 r . . •. ···. /···, 
1··H·1:::.d/ .... :.·. + 

DLL. :I.:::·. OC 1 
:c:r:::::J::/:::::. 
f; ·-:- :c:: r: I.: 
DEL 2·:::. ()01 
WfUTE C IOUT v 6::5{;) 

636 FORMATC1H1//,17X,'MODEL I-B--LINEAR PERISHABILITY RATE'• 
:I. / / :I. x , 0 () ( I ... , ) / 3 x , ' (.1 , ' 6 x ' , B , , 7 x ' , Cl p T T * ' , ::'ix ' . D p T Q * , ' 3X 9 

2'MIN cos1··,2x,'OPT PER',4Xv'COST-·EOQ',JX, 
3'PER-EOQ'/1Xf80<'-')/) 

04530 C THE FOLLOWING LOOP CALCULATES THE INVENTORY 
04540 c CHARACTERISTICS roR THE VARIOUS VALUES OF A 
04550 c 
04~5(.() 

() 4 ~)/() 
(1 /1~500 

DD .;";.()::.' J:::1Y4 
A=AA 
IF<A.GT.TINV)GO TO 623 

...... 
co 
U1 
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APPENDIX B 

TABLES OF COMPARATIVE RESULTS OF 

AN EXAMPLE PROBLEM 
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To illustrate the results of the methodology of this paper in com

parison to the methods of other researchers and the EOQ analysis, the 

following finite production rate example which is due to Shah and Jaiswal 

[88] is considered. 

Assume: 

p = 625 Items/Month 

d = 200 Items/Month 

C1 = $.05/Item/Month 

c3 = $50.00/0rder 

C4 = $3.00/Item 

a = .02; .05; .10 

(Production Rate) 

(Demand Rate) 

(Carrying Cost) 

(Replenishment Cost) 

(Perishing Cost) 

(Perishability Constant) 

The results in the following tables are based on the calculations 

made on an IBM/3031 computer utilizing Shah and Jaiswal 's equations, 

and the equations derived in this research. (For the case a = .02; this 

author was unable to duplicate the results, as stated in Shah and Jaiswal's 

paper [88], by utilizing their equations. Their stated results are 

slightly different from the ones stated in Table I.) 



TABLE I 

COMPARATIVE RESULTS FOR PERISHABILITY RATE = • 02 

Inventory Results of this Results of EOQ Results of 
Parameters Methodology Analysis Shah and Jaiswal 

T*{Inventory 
Cycle) 2.5070 3.8348 2.7946 

T 1 (Production 
Cycle) .8156 1. 2594 .9114 

q (Replenishment 
Size) 509.7604 787.1460 569.6040 

o1(Items perishing 
per year) 40.9876 63.1667 45.8464 

D2(Items perishing 
per cycle) 8.5629 20.1860 10.6770 

C*(Optimal cost) 38. 7572 41.9865 38.9484 
I--' 
co 
l.D 



TABLE II 

COMPARATIVE RESULTS FOR PERISHABILITY RATE = i05 

Inventory Results of this Results of EOQ Results of 
Parameters .Methodology Analysis Shah and Jaiswal 

T*(Inventory 
Cycle) 1.8900 3.8348 2.4752 

T1(Production 
Cycle) .6246 1.3089 .8259 

q (Replenishment 
Size) 390.3659 818.0596 516.1706 

o1(Items perishing 
per year) 77.9314 159.9028 102.3970 

o2(Items perishinq 
per cycle) 12.2742 51. 0996 21.1211 

C*(Optimal cost) 52.4239 66.3394 54.3954 
....... 
\.0 
0 



TABLE III 

COMPARATIVE RESULTS FOR PERISHARILITY RATE = .10 

Inventory Results of this Results of EOQ Results of 
Parameters Methodology Analysis Shah and Jaiswal 

T*{Inventory 
Cycle) 1. 8280 3.8348 2.4076 

T1{Production 
Cycle) .6221 1.3938 .8352 

q {Replenishment 
Size) 388.8420 871.1329 522.0031 

o1(Items perishing 
per year) 152. 3113 325.9818 201.7890 

D2{Items perishing 
per cycle) 23.2021 104.1729 40.4856 

C*(Optimal cost) 71. 7685 108.1165 79. 7288 

I-' 
l.O 
I-' 
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Program Description 

This appendix describes the computer programs used to evaluate the 

optimal inventory cycle time through search routines. The two programs 

that are utilized for this purpose are Fibonacci and Hooke and Jeeves' 

search routines. The FORTRAN programs are based on the codes of Keuster 

and Mize [56]. 

Fibonacci Search Procedure 

This program consists of a main program and a user-supplied subrou

tine, FUNC, which contains the objective function to be optimized. The 

main program reads the inputs consisting of inventory parameters and 

specifications for the search routine. The program then provides the 

user with the optimal inventory cycle time and optimal cost. 

User Requirements for Fibonacci Program 

The evaluation of the optimal inventory cycle time requires the inputs 

of the following variables in the.format described below: 

Card Type 

1 

2 

Format 

(3El0.4) 

(8E10.4) 

The required variables are defined as follows: 

Variables 

ALPHA, A, B 

H , P , D , C , C 1, C2, C3, C4 

ALPHA -- Desired accuracy specified as a fraction of the 
original search interval. The recommended value 
of alpha is .01 or less. 

A -- Lower constraint. The recommended value is (B/4). 

B -- Upper constraint. The recommended value is equal to 
(2C3/ClD). 
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H Perishability Constraint 

P -- Production Rate 

D -- Demand Rate 

C Purchase Cost 

Cl Carrying Cost 

C2 Shortage Cost 

C3 Replenishment Cost 

C4 -- Perishing Cost 

The objective function must be set equal to variable Y in the sub

routine FUNC. 

Hooke and Jeeves' Search Procedure 

This program consists of a main program, subroutine Hooke, and user

suppl ied subroutine OBJECT which contains the objective function to be 

optimized. The main program reads the inputs consisting of inventory para

meters and specification for the search routine, and subroutine Hooke 

perfonns all searches and provides the printout. 

User Requirements for Hooke and Jeeves' Program 

The input variables and the required format for this program are: 

Card Type Format Variable 

1 2110 ITMAX, NKAT 

2 2E10. 4 (RK(J), J=l,2) 

3 2E10.4 (EPS(J) ,J=l,2) 

4 (3El0.4) ALPHA, BETA, EPSY 

5 ( 8E10. 4) H,P,D,C,Cl,C2,C3,C4 
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The objective function must be set equal to variable SUMN in the 

subroutine OBJECT. 

The variables are defined as follows: 

ITMAX Maximum number of times the objective function is 
called. 

NKAT Maximum number of times the initial step size is 
to be reduced. 

RK Nector of initial guesses for decision variables, 
that is, the inventory cycle time, and the production 
cycle time. 

EPS -- Vector of initial step size to be used for each of 
the variables. 

ALPHA -- Factor for extending the size of initial setps, 
greater than 1.0. 

BETA Factor for reducing the initial step size, greater 
than zero and less than 1.0. 

EPSY -- Error in objective function to be reached before 
program terminates. 

Program Output 

These programs provide the user with optimal inventory cycle time 

and 11 optimal 11 inventory cost. In addition, they provide information as 

to number of function evaluations, and the degree of accuracy at the 

final stage of calculations. 



l 
2 

3 
4 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
(. 

c 
c 

******************* 
* * * SEARCH KuUTINES * 
* * ******************* 

THlSE: ROUTINES AkE ~ASEO LAK~ELY O~ THE CODES PRESENTED 
IN UPTIMIZATIL~ TECHNl~Ut~ ~ITH FukTRAN BY KUESTER & MIZE. 

C-·--->f-1 Cl.Jl\1ACC L SE: ARCH PRUCtDUKc. 
c 
c 

c 

c 

DIMlNSILN fl8(50) 
CUMM~h/PARAM/H,P,o,c,c1,c2,C3,L4 

f'I I = 'J 
f'.l.J=6 

5 f~ EA 0 ( NI , 0 16 ) Al PH A , A, t:i 
6 Olli FLJ-.:.MAT ({;ll0.4) 

c 
C RtAD l~VENTORY PARAMETEK~ 

c 
7 REAU l~l ,8lb)H,P,o,c,c1,c~,cJ,C4 

L 

....... 
~ 
CJ) 



8 ull = b - A 
9 ~KITE (~U,001) 

10 001 f-GkMAl (1Hl 1 lOX 1 3SHfltiuNA~Ll Sl~bLE-VARIAOLE PROCEDURE ) 
c 
C uEfl~E THE FIRST THREc fltiLlNACCl NUMBERS 
c 

11 f-IBG = l.J 
12 t-1~11' = 1.0 
13 flb(2) = 2.0 

c 
C CALC0LATE ThE KEMAlNiNG fltiUNALLl NUMBERS 
c 

14 ~Gd= 1.0/ALPHA 
15 if- (l:iB - 2.0) 10, 10, ll 
16 10 GG 10 14 
17 11 CGNTINUE 
lB JJ=l. 
19 12 jj=JJ+l 
20 flb(JJ)=FlB(JJ-l)+flB(JJ-l) 
21 CC=FIB(JJ) 
L2 1f(CC-8B) 13,15,15 
23 13 GU TO 12 
24 14 WRITE (N0,002) 
25 002 rLRMAT (///,lOX,42HACCURACY SPECIFIED IN FUNC NOT SUFFICIENT. , 

l //,lOX,34HPROGRAM RESET Al~HA, ALPHA= 0.005) 
26 ALPHA = 0.005 
27 GL TU 5 

28 
29 
30 
31 
32 
33 

c 
C FIRST STEP IN THE TABLEAU 
c 

l~ 1=0 
KK=.JJ-2 
IK=JJ-2 
BL=b-A 
ALL=f-1 B( lK)*BL/FlB( JJ) 
~=A•All ........ 

l.O 

" 



34 V=B-ALL 
35 CALL fUNC(~,TJ 

36 CALL fUNClV,U) 
37 JK=l 
38 ~RITE (NL,003) 
39 003 fORMAT (//,lX, lHK,5X,2HLK 1 luX,2HAK 1 llX,2HBK,09X,3HLLK,llX,lHX, 

l 12X,1HY ) 
40 hklTE (~G,004) JK, HL, A, 5, ALL, ~, T 
41 ~kITE (NU,006) V, U 
42 CJ4 fORMAT (/,lX, ll,2X,Ell.4,lX,fll.4,2X,Ell.4,2XrEll.4, 

l 2X,Ell.4,2X,Ell.4) 
43 Cu6 FORMATl5?X,Ell.4,2X,Ell.~) 

44 
45 
46 
47 
48 
49 
50 
~l 

52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 

c 
C SUCCEEDING ST~PS IN THE JA~L~AU 

c 
lK=lK-1 
J.J=JJ-l 
OL 70 l=l ,KK 
lflU-T) 20,20,22 

20 A=A+ALL 
BL=B-A 
11= v 
LALL FUt\iC{w,Tl 
ALL=fHH IKJ*BL/FIB(JJJ 
V=B-ALL 
CALL FUNC(V,U) 
Il=l+l 
lK=lK-1 
.JJ=JJ-1 
lf( lK-1) 26,29 1 29 

L 8 l K= 1 
29 CONT lf'lUE 

WRITE (t~U,OJ4) II, 5L, A, u, .\LLr r., T 
WklTE (NL,006) V, U 
CL llJ 7J 

2.2 IJ=l:'.-ALL 
,_.. 
l.O 
00 



65 bl= ti-A 
66 V=r. 
bl CALL fUNC(V,U) 
68 ALL=Flb( IK)*BL/flfHJJJ 
69 ~=A+ALL 
70 CALL FUNl(W,T) 
71 II~I+l 
72 lK=lK-1 
73 JJ=JJ-1 
74 IFllK-1) 30,31,31 
75 _jQ lK= 1 
76 ~l CONTINUE 
17 1-ilUTE (N0,004) II, BL, Ar tl, ALL, V, U 
78 hkITE lNU,006) hi T 
79 GO 10 70 
80 70 CLNTINUE 

IH 
82 
83 
84 
85 
86 
87 

88 
89 
90 
91 
92 
93 

94 
95 

c 
C LALCULATION OF THt FINAL ~A~GE uF THE DEPENDENT VARIABLE 
c 

EPS = 0.001 * n 
iJL=h+EPS 
CALL FUNC(OL,YU 
lf(YL-T) 80,80,81 

80 LALL FUNC(B,Bfl 
~RITE (Nu,007) w, B 

C07 FORMAT(/// 26H THE t-H-4AL ft::AS1BLE REG10Nr2X,ZHX=, 
1 tll.4,2X 1 2HX=,Ell.4J 
~RITE {M:..1,008) T, BF 

008 FLRMAT!/ 21H WITH FUNlllGN VAL0ES,7X,2HY=,Ell.4,2X,2HY=rEll.4) 
Gu TO 87 

81 CALL fUNC(A,AFJ 
rilU TE l tlO, o o 9 > "' , A 

C09 FO~MATl/// 26H INl flNAL FEASIBLE REGION,2X,2HX=, 
l lll.4r~X,2HX=,Ell.4) 

r;R.lTE (N0,017) T, AF 
Cl7 H1kMAT(! ~lH 1-.ITH FUNC.ftON VALulS,7X,2H't.:;;;rEll.4,ZX,2HY=,Ell.4) 

....., 
<.O 
<.O 



96 /j 7 
97 
98 Clu 
99 

100 Cl9 
101 S99 
102 
103 

c 
104 

c 
c 

105 
106 
107 
108 
109 
110 
111 
112 
113 

c 
114 

AlC= ( .,..-AJ/ ( Ot:L J 
~RllE (NU,Ol8J ACC 
f u RM AT II t l 6 H T HE Al.CUR. AC. Y l S , l 2 X , E ll • 4 ) 
nfdH: <N0,019) ALPHA 
FuRMAT(/ 26H THE kE~U!REU ACCURACY wAS,2X,Ell.4J 
CfJNT'l\iUE 
1-<KITE lNO,OOl) 
ST GP 

Ef'..10 

SUBRUUTl~E FUNC(X,Y) 
CCMMGN/PAKAM/H,P,o,c,c1,cL,C3,C4 
T2=X 
Tl=(l./h)*ALUGll.+(D/P)~(tXP(H*T2l-l.l) 

Xll=(P*Tl-b•T2l/H+(-P+lP-u1•~XPl-H*Tll+U*EXP(H*(T2-Tl) )l/H**2 
Q=P*Tl \ 
DT=P*Tl-D*t2 
Y=(C3+Cl*X!l+C4*DT)/T2 
RETURN 

END 

N 
0 
0 



l 
2 
3 
4 

5 
6 
1 
8 

9 
10 
11 
12 
13 
14 

15 

16 

c 
c 
c 

I 

C----->HOOKE 
c 

l JEEVES SEARCH ~ROCEDURE 
I 

I. c 
c 

c 

c 
c 

c 

c 
c 
c 

c 

5 

001 

002 

IMPLICIT REAL*8 (A-H,O-lJ 
DlMENSIGN EPSl2J, RK{2J, W(.2J, Qi,;.(2~, W(2J 
COMMO~ NI ,NO 
CUMMON/PAkAM/H,P,u,c,c1,c2,cJ,L4 

NI=~ 
N0::6 
NSTAGE=2 
IPRINT=O 

CONTINUE 
READ <NI,001,END=4) ITMAX,NKAT 
FORMAT ( 8 110 ) 
READ INI,002) lRK(II), ll=l,NSTAGE) 
FORMAT (8El0.4) 
READ lNI,002) (EPSIJJ), JJ=l,NSTAGE) 

READ (Nl,003) ALPHA, BETA, EP~Y 

READ INVENTORY PARAMETERS 

READ (NI,002lH,P,O,C,Cl,L2,C3,C4 

17 003 FORMAT t8El0.4) 
18 OD= O.O 

c 
19 CALL HOOKE (RK,EPS,NSTAGt,lTHAX,~KAT,EPSY,AlPHA,RETA,QO,Q,QQ,W, 

I IPRlNT) N 
C) 
........ 



c 
20 
21 
22 

23 

c 
24 
25 

26 
21 

c 
c 

28 
29 
30 
31 

32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

GO TO 5 
4 STOP 

END 

SUBROUTINE HOOKE CRK,EPS,NSTAGE,MAXK,NKAT,EPSY,ALPHA,BETA,QD, 
l Q,QQ,h,IPRlNT) 

IMPLICIT REAL*8 (A-H,0-l) 
DIMENSION RK lNSTAGE), LPSCNSTAGE), W (NSTAGE), QQ(NSTAGE), 

1 WtNSTAGEl 
CUMMON/PARAM/H,P,o,c,c1,cL,CJ,C4 
CGMMGN NI,NO 

WRITE CN0,001) . 
001 FORMAT (1HlrlOX,37HHOOKE ANO JEEVES OPTIMIZATION ROUTI~E) 

WRITE (N0,002) ALPHA, dETA, MAXK, NKAT 
002 FORMAT (//,2X,10HPARAMETEKS,/,2X,8HALPHA = ,Fs.2,4x, 

1 7HBETA = 1 F5.2r4X,SHITMAX = 1 14,4X,7HNKAT = rl3) 
~RITE CN0,0031 NSTAGE 

003 FORMAT (/,2Xr22HNUMBER UF VARIABLES = ,13) 
WRITE lN0,004) 

004 fORHAT (/,2X,18HINITIAL STEP SILES) 
DO 6 l=l,NSTAGE 
WRITE (N0,005J I, EPS(l) 

005 FORMAT (/,2X,4HEPSC,I2,4HJ = ,El&.8) 
6 CONTINUE 

~RITE IN0,007) EPSY 
007 FORMAT (/,2X,43HERROR IN FUNCTlON VALUES FOR CONVERGENCE= ,El6.6) 

KFLAG = 0 
DO 601 l=l,NSTAGE 
Q(I) =RK(I) 
W(I) = O.O 

601 CONTINUE 
KAT =O.O N 

C> 
N 



48 KKl =O 
49 TO KCOUNT =O 
50 ~BEST = W(NSTAGE) 
51 CALL LBJECT (SUM,RK,NSTAGtJ 
52 KKl= KKl+ l 
53 BO =SUM 
54 If (KKl.EQ. lJ QD =SUM 
55 IF (KK l. EQ. l) GO Tu 201 
56 lf(tlO.GT.QD) KFLAG = l 
5 7 IF ( 80 • LT. UD ) QO = Bu 

58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
10 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

c 
C ESTABLISHING THE StAHCH PATT~RN 
c 

201 00 55 l = l,NSTAGE 
~W ( I ) ;;-; Rt( ( I ) 
TSRK = RK(l) 
RK(l) = RK(Il + EPS(U 
CALL GBJECT {SUM,RK,NSIAbt) 
KKl= KKl+ l 
WI I) = SUM 
IF Odl) .LT.QD) GO TO 58 
RK l I ) = RK C I ) - 2 • 0 * EP S { I J 
CALL OBJECT (SUM,RK,NSTAGE) 
KKl= KKl+ l 
w ( I) = SUM 
If (k(I) .LT.QO) GU TO 58 
RK ( IJ = TSRK 
IF (l.EQ. lJ GO JO 513 
W(I) =\-dl-1) 
GO TO 613 

513 W(JJ =BO 
613 CONTINUE 

KCOUNT =l+ KCGUNT 
GO TO 55 

58 QD= W ( I ) 
iJQ C I ) = R K ( l J 

N 
0 
w 



81 5~ CONTI~UE 

82 IF fIPRINTl 60, 65, 60 
.83 60 hlUTE. (NO,lOJJ KKl 

c 
C KECORD RESPUNSES ANO LGCAT10N 
c 

84 wRlTEIN0,102) 
85 wRlTE(N0,207) (RK(I), I=l1NSrAGEh QD 

c 
C TEST TO DETERMINE TEKMlNATION OF PKOGRAH 
c 

86 65 If (KKl.GT.HAXK) GO TU 94 
87 IF (KAT .~E. NKAT) GU TO 94 
BB lf(DABS(WCNSTAGE)-WBESTJ.LE.EPSYl GO TO 94 

c 
C IF ALL AXES FAIL REUUCE STEP SIZE 
c 

89 If lKCOUNT .GE. NSTAGE J GO TO 28 
9 O DO 2 6 l = l , NS TAG E 
91 KKtIJ =RK(I) + ALPHA*lRKCll - IJ(lJ) 

92 26 CONTINUE 
9 3 DO 2 5 I = l , NS TAG E 
94 Q(I) =QQCI) 
95 25 CONTINUE 
96 GO TO 70 

97 
98 
99 

100 
101 
102 
103 

c 
c 
c 

kEOUCE STEP SIZE 

2 8 KA T = KA T + l 
IF lKFLAG .EQ. 1) GO TO 202 
GU TO 204 

202 KFLAG = 0 
DO 203 I = l,NSTAGE 
kK ( I ) = Q l I J 

203 CONTINUE 

N 
0 
-J::>. 



104 204 00 BO I=l,NSTAGE 
105 · EPStlJ =EPS(l) *BETA 
106 80 CONTINUE 
107 IF (!PRINT) 85, 70, 8~ 
108 85 ~RITE lN0,101) KAT 
109 GO TO 70 
110 94 wRITE (N0,460) (EPS(I), l=l,NSTAGEl 
111 hRITE (~0,461J (RK{l ), 1=1,NSTAGE) 
112 WRITE <N0,462) QO 
11 3 DO l 04 l = 1 , N 5 TAG E 
114 104 ~RITE {N0,103) Ir RKll) 
115 ~RITE {NO,lOOJ KKl 
116 100 fORMAl (//,2X 1 33HNUMBEK Of- fU11C.TlUN EVALUATIONS== ,18) 
117 101 FORMAT (/,2X,18HSTEP SIZE REDUCED ,IZ,6H TlMESJ 
118 102 FORMAT(lX,26HEND OF EACH PATTERN SEARCH/) 
119 103 FORMAT (//,2X,8HFINAL X( ,I2,41iJ = ,lPE16.8) 
120 207 FORMAT(lX,lBHVARIABLES ANil ~UMN,3Xr9El2.4//) 
121 460 fORMAT(lX, l8H THE FINAL EPS ARE, 4f20.8/) 
122 461 FORMAT ( lX, lBH THE FINAL kK ARE , 5F20.8/J 
123 462 FORMAT (lX, 24H THE MINIMUM kcSPDNSE IS, F20.8/) 
124 WRITEtNO,ll 
125 RETURN 
126 END 

127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 

SUBROUTJNE OBJECT (SUMN,AKE,NSTA~E> 
IMPLICIT REAL*8 (A-H,0-l) 
DIMENSION AKE{NSTAGE) 
COMMON/PARAM/H,P,o,c,c1,c2,c3,c4 
T2=AKEll) 
T=AKEl2) 
ll=(l./H)*DLUG{l.+(0/P)*(UEXP(H*T2)-l.)) 
Xll=(P*Tl-D*T2)/H+l-P+(P-U)*UEXP(-H*Tll+D*DEXP(H*(T2-Tl)))/H**2 
X12=tD/2)*(T-T2)**2*1l.-(u/P)J 
Q=P*Tl+D*(T-T2) 
OT=(.1-D*T 
Y=IC3+Cl*Xll+C4*DT+C2*XlLJ/T 

N 
0 
<.J1 
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