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CHAPTER I
INTRODUCTION
Background

The process of determining the water depths, velocities, and

discharges in the channels, rivers, or reservoirs under unsteady con-
ditions arising from flood motions is commonly referred to as flood rou-
ting. Interest in flood routing and in part in unsteady flows in water
resources stems from the need to plan, design, regulate, and manage our
flood prone areas and many other water resource systems.

In a surface water system, runoff, floods, droughts, and stream water
quality interact very closely. When excess rainfall occurs over an area,
runoff contributes to flooding along riveré whereas drought occurrence
due to lack of rainfall results in minimal streamflow, reduced water sup-
ply, and less naviagation. In addition, the water quality of the stream
becomes poor because of the Tow flows of the streams. Thus, the occur-
rence of lack of streamflow or drought affects the management of surface
waters in the stream.

The State of Oklahoma experiences runoff ranging from 0.2 inches in
the Panhandle to 20 inches in the southeast corner, which reflects the
dramatic contrast in precipitation. In the northwestern region an aver-
age runoff amounts to about 820,000 acre-feet per year compared to

6,000,000 acre-feet per year in the southeastern region. Annual average



runoff for the entire state is approximately 22,000,000 acre-feet (Okla-
homa Water Resources Board, 1980).

Flooding has been experienced over the years in Oklahoma. The Water
Resources Council estimates that without increased flood management pro-
grams averade annual flood damages will increase from $2.3 billjon in
1975 to $3.6 billion in the year 2000. These damages occur over a flood
plain of some 140 to 180 million acres. The Arkansas River Basin and the
Red River Basin experiencedan estimated $167,000,000 in flood damages in
the state between 1955 and 1975, with the majority of that attributed to
the Arkansas River (Oklahoma Water Resources Board, 1980).

Some floods occur gradually, as when prolonged steady rainfall satu-
rates a river basin until most of it runs off, creating a greater volume
of water than the natural channe1s~and'dra{nage structures can carry.
Others are the result of sudden heavy rains occurring in a short time
from thunderstorms. The latter is usually experienced in Oklahoma. In
either case, floods are considered a problem only when the result is wid-
ely spread damage to agriculture and structures or when the normal activ-
ities of man are seriously interrupted.

Like other Great Plains States, Oklahoma has scores of extended
droughts on an approximately 20-year cycle (Oklahoma Water Resources
Board, 1980). An analysis of drought conditions from 1931 to 1971 indi-
cates that drought occurred somewhere in the state about 51% of the time,
more frequently in the panhandle and less frequently in northeastern and
southcentral areas.

Water quality of Oklahoma's streams is adversely affected by natural
and man-made pollution. In the west, natural salt springs and salt flats

amit into local streams large quantities of chlorides that are subse-



quently carried downstream, polluting other major streams as they pass.
In central and eastern Oklahoma, municipal and industrial effluents
degrade many streams, restricting their beneficial use.

Thus, the interrelationships among runoff from rainfall, floods,
droughts, and stream quality are predicted only when mathematical models
to simulate the depth of flow and discharge in a stream resulting from

rainfall are available.
Study Objectives

The purpose of this study is to evaluate the discharge in the
streams under the varying conditions of rainfall. The results of the
mathematical models developed using the finite element methods will pre-
dict the depth of flow, velocity of flow, and the discharge in the streams.

Three mathematical flow models have been developed in this study.

The first two are approximate models while the third is a complete model.
They are presented below in the order of increasing comp1ekity:
1. The kinematic flow model, KM, solved explicitly and
implicitly by Galerkin's weighted residual finite
element method. The implicit version is implemented .
using a time weighting factor, and the resulting non-
linear system of a tridiagonal matrix equation is
solved iteratively by the generalized Newton-Raphson
method.
2. The diffusion flow model, DFM, implemented similarly

to the implicit kinematic flow model, except that the

resulting non-linear system is a bi-tridiagonal matrix

equation. Solution is obtained by the Newton-Raphson



technique.

3. The comp]éte flow model, CFM, produces a matrix equation
similar to the implicit diffusion flow model and is éol-
ved using the same technique.

Model performance is evaluated using two forms of channel geometries.
The first is comprised of an artificial stream channel of constant geome-
try with a hypothetical flood hydrograph imposed at the upstream end of
the reach. Simulated flow is compared with the Viessman's solution using
the explicit finite difference scheme. The second model test involves
flow in the I11inois River, a natural river in Oklahoma. The I11inois
River, a tributary of the Arkansas River, originates in northwestern
Arkansas as 0Osage Creek and flows westward into Oklahoma. The flood
recorded on April 10, 1979, for Watts and Tahlequah guaging stations,
50.4 miles apart, and that for Flint Creek, a tributary approximately
13.2 miles downstream of the Watts Station are utilized.

The choice of the natural channel is Timited due to Tack of ade-
quate hydraulic data. Thought the I11inois River seems to exemplify
varying channel geometric and: hydraulic properties inherent in many other
natural rivers in Oklahoma, the availability of data and the excellent
flood hydrographs of 1979 recordkmake it the best choice.

The objective of the first test with an idealized river channel is
to explore the basic principles and to make some appraisal of the sensi-
tivity of the controlling flow parameters in the mathematical models.
The model application to a natural channel checks on the capability of
simulating natural floods of long durations for use in the design of

hydraulic structures as well as for the flood plain zoning.



CHAPTER II
LITERATURE REVIEW
Hydraulic And Hydrologic Routing Methods

Significant studies of unsteady flow in an open channel date back
to the early works of the French mathematicians, Laplace (1775-76) and
Lagrange (1783). The Lagrange celerity formula for small waves in
shallow water provided the first impetus for subsequent studies. Later
the British School of Mathematical Physicists gave some attention to
fluid flow problems with contributions being made by Stokes, Kelvin,
Rayleigh and Lamb (Water Waves, 1965).

The more advanced mathematical treatment of unsteady flow in an
open channel is credited to Barré de Saint Venant (1871), a French
mathematician who developed the complete one-dimensional equations of
unsteady flow. These are two nonlinear hyperbolic partial differential
equations of motion (conservation of mass and conservation of momentum)
that very accuately describe the gradually varied flows in open channels.

The original form of these equations is:

9y v, A .
Bat + Aax v 0 (2.1)
v, v oy - =
TR T g<8x +S¢ So) 0 (2.2)
Where:
A = channel cross-sectional area, ft2;



B = width of channel water surface, ft;

y = depth of flow, ft;

x = distance along the channel, ft;

t = time, sec;
Sf = friction slope, ft/ft;

v = mean velocity across the section, ft/sec;
So = Tlongitudinal bottom channel slope, ft/ft

Two basic techniques for unsteady flow simulation are (1) methods
which approximate a solution to the basic equations of unsteady flow
(Eq. 2.1 and 2.2), and (2) methods which solve the basic equations.

The first methods are sometimes referred to as "hydrologic" routing
methods and the second kind, "hydraulic" routing methods (Thomas, 1975).

The importance of the hydraulic routing method has become increa-
sing evident in the 1ight of the modern high-speed digital computer for
solutions of unsteady partiai differential equations that have no
closed form or analytical solution. Numerous unsteady flow phenomena
such as surges, effects of tidal fluctuations, backwater resulting from
channel junctions or reservoirs, and normal flood waves from excessive
rainfall can be analyzed using the hydraulic routing and numerical
methods such as finiteelement or finite difference methods.

On the other hand, the early development of the hydrologic routing
in the form of a continuity equation is credited to Rippl (1883). In -
working on reservoir capacity problems, he utilized the concept of suc-
cessive approximations to routing streams where the data are average
daily flows, rather than slope, stage, and velocity measurements. Hydro-

logic routing is handy when data for hydraulic routing are not available.



The associated continuity equation is:

ds (2.3a)
dt

—
]
o
fi

or

1(11 + 12) At - .15(01 + 02) At = S, =S (2.3b)

2 1

where, I, 0, t, (S2 - S]) are the inflow into a given reach, outflow
from that reach, time period for the flow to travel through that reach,
and the change in storage during that time period in the reach, respec-
tively. The subscripts 1 and 2 represent conditions at the beginning
and end of the routing periods.

The hydrologic routing is sometimes referred to as hydrograph rou-
ting because of the graphical relationship established between storage
and outflow yields a feasible solution to Equation (2.3b) having two
unknowns, O2 and 52. Puls (1928) established a curve of relation be-
tween inflow and outflow versus storage for a variety of flood on the
Tennessee River.

With some modifications of the continuity Equation (2.3b) to in-
clude the local inflows along the channel, Wisler and Brater (1931) pre-
sented a revised graphical scheme of Puls. This method was the first to
use computed inflow hydrographs from tributaries and unmeasured areas
for which no flow records are available. A number of hydrologic rou-
ting methods have emerged over the years including various coefficient
routing procedures such as the Muskingum technique (McCarthy, 1938).
Interested readers are referred to basic texts on hydrology (Chow, 1964;

Viessman, 1972).



Numerical Methods in Hydraulic Routing

Finite Difference Methods

A large number of schemes have evolved from the finite difference
methods over the years and have been applied with success to equations

of unsteady flows and other engineering problems. For instance, the

explicit, characteristic, and implicit schemes are the major categories.
However, varieties of each group exist, for example the leap frog, dif-
fusion and staggered explicit schemes, method of characteristics with
fixed or characteristic grids, and the implicit scheme with weighted
four-point or six point (Gunaratnan, 1970; Thomas, 1975; Fread, 1976).
A survey of previous literature indicates that many investigators
to date have employed the finite difference schemes in flood routing
problems. Isaacson et al. (1954, 1956) investigated flood routing in
their peoneering work in the Ohio River. Amein (1966) used the method of
characteristics to solve the streamflow problem in an attempt to study
the effects of friction on peak flows. Amein and Fang (1969) also used
an implicit scheme in solving. the streamflow routing problem in natural
channels in North Carolina. Pinder and Sauer (1971) employed the ex-
plicit method in simulating the flood wave modification due to bank
storage effects. Fread (1971, 1973, 1974, 1976, 1978) investigated the
routing problems using the implicit four-point and wieghted four-point
finite difference schemes. Chaudhry and Contractor (1973), Liggett and
Wollhiser (1967), Viessman et al. (1972), and many others have in turn
used finite difference methods to solve approximate and complete routing

equatijons.



It is interesting to remark that some of the finite difference
schemes have some limitations often associated with convergence and
stability problems. The explicit method is subject to a stringent
stability condition imposing a limiting value for the time step in
relation to distance step (Amein and Fang, 1969). The maximum time
step that can be used in the explicit scheme to insure numerical sta-
bility when frictional effects are relatively small is computed using

the Courant condition (Fread, 1973) as:

M. < Xy (2.4)

(lv;l + (g"/8,)*

where:

Ai and Bi area of flow and width of the water surface

in the 1th cross-section, respectively;

Axi = the ith distance step;
AtC = the computational time step;
(A/B)i = the hydraulic depth;
v. = velocity of flow in the ith cross-section.

Although the explicit scheme would not pose much difficulty for in-
vestigation of short time flows, it becomes cumbersome and inefficient
for large flood flows in large rivers.

The method of characteristics is highly suitable for rapidly varied
flows (Amein, 1966). It can be used for flood studies. However, the
scheme is inconvenient in that the results are not obtained at fixed
times and locations. A modification of the scheme employing a fixed

mesh has been applied by Baltzer and Lai (1968) to tidal flows, but it



10

has no significant advantage over the explicit method for large river
flows.

One requirement for the explicit scheme and method of characteristics
is the use of equal distance intervals. This appears disadvantageous for
rivers with irregular geometry (Fread, 1974). Thus, the development of
the implicit schemes arise not only toovercome the equal distance require-
ment but also as a means of negating the restriction of small time steps
imposed on the explicit and characteristic methods for reasons of sta-
vility. The four-point implicit finite difference method appears most
advantageous since it can readily be used with unequal distance intervals
(Fread, 1973, 1974, 1976).

In the 1ight of the inherent advantages of the implicit four-point
scheme, Fread (1973) investigated the influence of the time weighting
factor, 8, for spatial variables along with those of the channel para-
meters, such as the length of the reach, bed slope, roughness coeffic-
jent, and surface width, on the numerical distortion (dispersion and
attenuation of computed stage hydrographs). The definition of 8 is
presented in Figure 1. Among other things, the following observations
were made. The lower range of allowable © values minimizes the distor-
tion which results from the use of large time steps in the integration
of the implicit difference equation. A value of 6 = 0.55 was chosen to
minimize distortion while conservatively insuring theoretical stability
criteria. The tendency for the stability of the numerical computations
to decrease with increasing value of 9 exists,

On the other hand, numerical distortion increases when the channel
length, L, or the Manning roughness factor, n, increases; and it de-

creases when the magnitude of the initial depth of flow, Ygr OF the
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Figure 1. Definitign of the Dimensionless Time
Weighting Factor, 8.
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channel bottom slope, Sgy, increases. The channel width, B, was observed
to have 1ittle or no effect on the magnitude of the numerical distortion.
In general, it is expected that the results obtained by the implicit
method would be no different than those obtained by other numerical meth-
ods for the solution of the complete equation of unsteady flow in open
channels. The main difference is that the implicit method provides the

result faster (Amein and Fang, 1969).

Finite Element Methods

Evolution and Extension to Fluid Dynamics

The evolution of the present-day finite element methods has followed
a long but imprecise history (Zienkiewicz, 1977). To date, the unified
efforts of the early mathematicians and those of engineers mostly in the
structural discipline have given rise to a complete picture of finite
element methods. The contributions of the mathematicians are seen in
the area of formula development (the governing differential equations)
for the physical problems and solution techniques such as the variational
principle, Gurtin principle, and the weighted residual principles.

On the other hand, the engineers tend to approach the problem by
establishing a direct analogy between the real discrete element and
finite portions of a continuum domain. As Zienkiewicz (1977) puts it,
it is from this "direct analogy" view that the term finite element was
born. The existence of a unified treatment of the "standard discrete
problems" leads to the first definition of the finite element process
as the method of approximation to continuum problems such as:

1. The continuun is divided into a finite nunmber of eicrents

whose behavior is specified by a finite number of parame-
ters, and
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2. The solution of the complete system as an assembly of its
elements follows precisely the same rules as those appli-
cable to standard discrete problems (p. 3).

For the simple reason that a number of classical mathematical pro-
cedures of approximation fall into this category as well as the various
direct approximations in engineering, Zienkiewicz (1977) states that
the origin of the finite element procedures and the precise moment of
its invention are difficult to determine. A supporting point of view
is held by Oden (1972) who comments on the piecewise approximations
and rudiments of the idea of interpolation supposedly used in ancient
Babylonia and Egypt that preceded the calculus over 2000 years ago.

More recently, the practice of representing a structural system by
a collection of discrete elements was utilized in the early works of the
aircraft structural engineers (Courant, 1943). The formal presentation
of the finite element methods together with the direct stiffneﬁs method
for assembling elements is attributed to Turner, Clough, Martin, and
Topp (1956). It was Clough (1960) who first used the term "finite
elements" in a later paper devoted to plane elasticity problems.

The application of the finite element method to fluid flows began
to assume a degree of importaﬁce in the mid-sixties following the early
works of Zienkiewicz et al. (1965, 1966), Javandel and Witherspoon (1968),
and Tyagi (1971) in porous media flow. For the last decade scores of
papers have emerged applying the finite element methods to surface water
systems for estuaries, reservoirs and streams, and groundwater systems
for flow in saturated and unsaturated zones and groundwater quality
(Gallagher, et al., 1974, 1976; Gray, Pinder, and Brebbia, 1976; Ciriani,
Maione and Wallis, 1974; Tyagi, 1975a, 1975b, 1975c).
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Weighted Residuals Methods, WRM

Elaborate discussion on the basic finite element schemes is found
in literature (Zienkiewicz, 1977; Oden, 1972; Finlayson, 1972; Segerlind,
1976; Ames, 1977; Chung, 1978). Norrie and DeVries (1975) presented a
bibliography covering over 3800 citations during 1956-1974.

As an approximate method of solving differential equations of ini-
tial and/or boundary value problems in engineering and mathematical
physics, the finite element can be implemented via variational principle
or weighted residual principles. The variational principle is based on
the works of Rayliegh (1877) and Ritz (1909). Some classes of problems
can not easily be put into variational form, particu]arly when the gov-
erning differential equations are not self-adjoint. Thus, this method
has 1imited application.

The weighted residual methods (WRM), which include ‘the orthogonal
collocation, Bubnov-Galerkin, Subdomain, and least-squares, are employed
to deal directly with the governing equations of the physical problems
(Finlayson, 1972; Ames, 1977). The weighted residuals in general utilize
the concept of orthogonal projections of a residual of a differential
equation onto a subspace spanned by certain weighting function. Stated
differently, the unknown solution in all the WRM is approximated by a set
of local basis functions containing adjustable constants or functions
(Ames, 1977). These constants or functions are chosen by various criteria
to give the "best" approximation for the selected family. For instance,
the least-squares method requires higher order interpolation functions in
general, even if the physical behavior may be adequately described by low-

er order (linear) functions (Chung, 1978). This restriction limits its
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use. The collocation is the simplest (WRM) to apply, but it has a draw-
back in terms of the number of nodes needed to achieve the same results
as with the Galerkin method.

0f special interest in all the WRM is the Bubnov-Galerkin method
(1913 and 1915, respectively). The method (often referred to as Galerkin
without Bubnov) is the most popular and widely used. Large numbers of
non-linear fluid flow systems are easily transformed into "finite ele-
ment equations" directly. The classical procedures of the Galerkin as-
sume the weighting function and the trial function to be identical
(Zienkiewicz, 1977). Like the variational principle, the Galerkin
always yields a symmetric matrix equation for linear differential oper-

ators.

Approximation of Time Derivatives

The concept of extending the finite element to include the time do-
main is discussed by Oden (1969, 1972) and Chung (1978). The approach
is to regard the basis function as being dependent on time as well as the

spatial domain such that:

av(x,t) . BNi(x,t) v (2.5)
5t 3t 3 ‘
where:
v(x,t) = dependent variable, v, expressed as a
function of space, x, and time, t;
Ni(x,t) = basis function at node, i, as a function

of space and time.

Other investigators have extended this idea in many studies in



water resources*. Zienkiewicz and Lewis (1973) investigated two linear
finite element formulations in the time domain. Grotkop (1973) applied
the Galerkin method in the time domain to estuary modeling; Gray and
Pinder (1974) conducted a numerical experiment on the use of the Galer-
kin finite element method to approximate both the time and space deriv-
atives and thereby study the suitability of using higher order basis
functions in the time domain for solving the transient groundwater flow
equation. Van Genuchten (1977) employed higher basis function (inclu-
ding Hermitean) to a one-dimensional solute transport equation and
studied the accuracy of the resulting schemes.

One major disadvantage of finite element approximations in time
derivatives is the enormous increase in the computational time and
effort. Gray and Pinder (1974) noted the inherent tradeoff between
increased accuracy and decreased computational efficiency associated
with the finite element time derivatives. The optimum scheme for ap-
proximating the time derivative in a groundwater flow problem is de-
pendent on both the behavior of the solution and the method of time
step selection.

The second approach to the time derivative approximation is the
so called "semidiscrete method" in which the time derivative of a var-
iable at nodes is replaced by a tempofa] operator (finite difference

operator) from the relation, (Chung, 1978):

av(x,t) o Vi(xt) L NL(X)v,(t) (2.6)
ot
where:
v.(t) = time derivative of v prescribed at node i

i

*
The author was not able to discover any documentation of FEM in
time derivatives applied to unsteady flows in open channelmodeling.

16
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Many of the finite element models of transient problems adopt the pre-
viously described semidiscrete method. When the time derivatives are
approximated with finite differences, either a central in time (Crank-
Nicolson) or a backward/forward in time (implicit) scheme can be used
(Van Genuchten, 1977). The former results in a second-order accuracy
while the latter yields only a first-order accuracy. If higher order
basis functions are used, it may be important to obtain a higher order
approximation of the time derivatives. This might not be neceséary if

lower basis functions such as the linear types are employed.

Numerical Properties of FEM for Non-Linear Systems

Numerical properties of the finite element method, such as the sta-
bility, convergence, and accuracy, unlike those of the finite difference
methods have not been established adequately although many intuitive
proofs and conclusions have been stated (Desai and Christian, 1977). The
study of the numerical procedures has often been made in a pragmatic man-
ner. When a given scheme is used for a number of problems and it is
found satisfactory, it is considered acceptable. The major criticism of
this approach is that it may not yield a general scheme (Desai and
Christian, 1977).

Error analysis associated with the solution of the non-Tinear hyper-
bolic open channel flow equations may be grouped as: finite element ap-
proximation errors; temporal approximation errors; and errors due to any
iterative non-linear equation solver, such as the Newton-Raphson, pre-
dictor-Corrector, and others. At present, no theoretical finite element
error estimates are available for the unsteady nonlinear two-variable

equations. However, it is possible to perform error analysis due to
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temporal operators, together with the jterative equation solver in a
restricted sense. Adopting a procedure described by Chung (1978, pp.
227), by holding the non-linear terms constant during the iteration
cycle, it is then possible to generate an approximate ampiification
property matrix, a technique reported by Lax-Richtmyer (1956) and
Richtmyer-Morton (1967). Every eigenvalue xi of the amplification
matrix, if made smaller than unity, automatically insures stability.
The largest eigenvalue, called the spectral radius of the amplification
matrix which governs the stability, and the T1imiting value of the time
step, At, can be determined. As the non-linear terms are updated, the
amp]ificatibn changes, thus altering the stability criteria as calcula-
tions progress. This increases the difficulty in the stability analysis
of an unsteady non-linear system.

A slightly different approach to the error analysis for non-linear
hyperbolic equations (Oden and Fost, 1973) requires the finite element
basis functions to satisfy the convergence and completeness criteria as
for linear elliptic problems. The study yields a stability estimate that
is considered to be consistent with the well-known Von Neumann linear
stability criterion which requires the discrete system to propagate
information at a rate greater than or equal to the speed of propagation
of the actual system. The above approach is too narrow in concept, a
linearization technique drawn from elliptic type of problems, and limits
the use to the special c]as; of hyperbolic equation studied, the one-
dimensional homogeneous hyperelastic bodies.

With regard to the finite difference method, Fread (1974) studied
the numerical properties of the St. Venant equations for a four-point

implicit scheme using the Von-Neumann technique. Since this technique



19

is only applicable to linear differential equations, linearization of
the governing equations is adopted with certain terms omitted on the
basis of their relatively small magnitude in order to facilitate the
stability analysis. On the other hand, the convergence criterion was
analyzed by expanding each term in the Taylor series expansion about the
point at which the differential equation is computed. The study con-
cludes that the implicit four-point method is unconditionally stable
provided the time weighting factor, 6 > 0.5, and has a second order
accuracy since time step, At, and distance step, Ax, are quadratic.

Cooley and Moin (1976) studied the numerical properties of the St.
Venant equations using the finite element method* and the predictor-
corrector iterative solving scheme. They adopted the linearization
technique similar to those used by Strelkoff (1970) for stability anal-
ysis. Their concluding remarks are identical to those of Fread (1974).
Error analyses for other classes of differential equations are reported
in literature (Kreig and Key, 1971; Fujii, 1972; Desai, Oden and Johnson,
1975; Desai and Lytton, 1975; and Chung, 1978).

Finite Element Versus Finite Difference

The purpose of resorting to the Numerical Methods is to be able to
solve problems either for which there is no analytical solution or for
which the analytical solution is too hard to obtain. For the last two

decades, attention has been drifting from the finite difference method

* The author observed very astonishingly, the constant use of finite
differencing for time derivatives and finite element for space derivatives
(mostly linear basis functions). This seems to explain the formidable
difficulties associated with a complete finite element error analysis of
unsteady non-linear hyperbolic equations.
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to finite element method in hydrology and water resources. The search
for the most, efficient and accurate simulation model has continued to be
the center of inspiration for this change of attention. The question of-
ten raised is "Is there any real reason for this change of attention?"
Review of major studies in fluid dynamics involving the FDM and FEM sheds
some 1ight on answering the question.

In a very vigorous classification of trial functions, Zienkiewics
(1974) states that within a broad definition, the finite difference tech-
nique falls into a "subclass" of the general finite element methodology,
which indeed embraces many other classical approximation procedures. Nev-
ertheless, both techniques can be considered as distinct in a much nar-
rower perspective. For instance, the two methods differ in a manner in
which the element equations are generated from the governing equation.
While the two adopt the principle of discretization as the initial step
in the numerical procedure, the way the concept of discretization is im-
plemented varies. In the FDM, the governing equation is discretized
whereas in the FEM, the region or continuum of the system is discretized.
In other words, in the FEM the problem is formulated as an integral to be
minimized, and we use a numerical approximation of the integral to obtain
a solution. This step is necessary regardless of the kind of FEM adopted
--variational principle or method of weighted residuals (Myers, 1971).

Another distinguishing feature of the FEM is the difference in the
grid and element numbering system. For instance, a typical element, e,
is the interval between nodal points, i and j. This numbering scheme is

slightly different from the FDM where nodal-point number is also used to
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designate the region surrounding the nodal points. In the FEM, the
nunbering of the nodal points is entirely separate from the numbering
of the elements.

Though it has not been proved technically that any one method is
superior to the other, what seems obvious is that the finite element
method may prove more advantageous for some classes of problems--those
with extremely complex geometry--than FOM. A supporting viewpoint can
be drawn from Myers (1971). In a one-dimensional steady state heat
transfer problem for a thin rod, solution is sought by the variational
principle (FEM) and FDM using the same number of nodal points. It was
observed that the FEM solution falls below the exact nodal values by
about the same amount that the FEM are above the exact values. This was
explained by the fact that FEM was generated by minimizing the integral

(Myers, 1971).
Some numerical studies performed by Pinder and Gray (1976} using

the equation governing the convective -diffusion transport of a conser-
vative contaminant help to illustrate the relationship between FEM and
FDM. By using the Galerkin approximation of the space derivatives and
the finite difference approximation of the time derivatives, they ob-
served that the FEM can be expressed in terms of weighted average fin-
ite difference approximations. However, this observation had been re-
proted by others earlier (Myers, 1971; Finlayson, 1972).

Advantages of one method over the other in terms of the numerical
properties such as convergence and stabi]ity may depend on the nature
of the problem as well as the solution technique adopted, Newton-Raphson
or Predictor-Corrector method for non-linear problems. For simulation

of floods of long duration, a stable algorithm with large distance and



time steps is needed. As Cooley and Moin (1976) and Manan et al. (1977)

indicated, the FEM has some answer.
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CHAPTER III
MATHEMATICAL STATEMENT
Introduction

The mathematical expressions of the unsteady gradually varied stream-
flow hydraulics are afforded by the well-known "Saint Venant Equations,"
named after Barré de Saint Venant (1871) who first derived them. The
original forms of these equations as presented in Chapter II have been
modified to include the lateral flow term. These equations are one-
dimensional non-linear hyperbolic, initial as well as boundary value par-
tial differential equations, which may be derived from the lTaws of con-
servation of mass and momentum.

No attempt is made to re-derive these equations herein, rather inter-
ested readers are referred to any basic text on open channel hydraulics,
such as Chow (1959), Henderson (1966), Viessman et al (1972), Wylie and
Streeter (1978) and many others.

Governing Differential Equations

The distribution of depth of flow and velocity of flow and discharge
in a stream are represented in Figure 2, following. The mathematical mod-
el that predicts the flow on a space and time basis can be represented by
the following equations, Viessman et al. (1972):

Equation for conservation of mass

3y 3V oy Y. =
SE T Y s YV X q(x,t) = 0 (3.1)
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Equation for conservation of momentum

v VoL Y iy 3y - =
3t TYax +~y”Q(X’t)'+ 9 (5% 56 5) =0 (3.2)
where:
q = lateral inflow in the channel reach, Ax, ft per sec;
n12v2
-Sf = 73 (friction slope, derived from Manning's EQ.),
2.2082R ft/ft;
nl = Manning's roughness factor, sec per ft "]/3;
| R = hydraulic radijus, ft;

Other terms are as defined for EQ. (2.1) and (2.2).

The two dependent variables in Equations (3.1) and (3.2) are the
depth of flow, y(x,t), and the velocity of flow, v(x,t). The channel geo-
metry is specified by the area of flow, A(x), the hydraulic width, B(x),
(where A(x) = B(x) - sy/sx) and the slope, S, = So(x). The lateral inflow
q(x,t) has about three possible sources of contribution, namely, the rain-
fall on the stream, overland flow, and the subsurface inflow.

The conservation of mass and momentum equations presented above are
classified as one-dimensional in the sense that flow characteristics such
as depth and velocity are considered to vary on]y‘in the longitudinal X-
direction of the channel. Other simplifying assumptions inherent in their
derivation are as follows: (1) the velocity is constant and the water
surface is horizontal across any section perpendicular to the longitudin-
al axis; (2) the flow is gradually varied with hydrostatic pressure pre-
vailing at all points in the flow such that the vertical acceleration of
water particles may be neglected; (3) the longitudinal axis of the chan-
nel can be approximated by a straight Tine; (4) the bottom slope of the

channel is small; (5) the bed of the channel is fixed, i.e. no scouring
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or deposition is assumed to occur; (6) the resistance coefficient for
steady uniform turbulent flow is considered applicable, and an empirical
resistance equation such as the Manning equation describes the resistance
effects; and (7) the flow is incompressible and horogeneous in density

(Fread, 1976; Freeze, 1972).

Once the velocity of flow and depth of flow are computed from Equa-
tions (3.1) and (3.2), the discharge can be computed from the following
equation:

Q=w (3.3)

where Q =the streamflow volumetric flow rate; cubic feet per sec "per
channel width of flow.

Initial and Boundary Conditions

The essential requirements to initiate any hydraulic routing, be it
open channel or overland flows, "are the initial and boundary conditions.
The distinction between initial and boundary conditions is merely one of
position on the x plane at the commencement of the solution procedure,
(Viessmanet al., 1972). The initial condition on one hand describes the
flow depth, velocity, ordischarge at all points in space at time, t = 0.
If flow is assumed uniform and steady before any flood wave reaches the
point of interest wupstream of the entire channel, then either the Manning
or Chézy's equation is employed to calculate the initial flow parameters.

On the other hand, the boundary condition refers to the depth, velo-
city, or discharge at the up- and down-stream points or other point(s) of
interest on the river reach at all times, t > 0. Examples of boundary
conditions are discussed elegantly by Fread (1976) and summarized in the
following equation:

My + Ny = P (3.4)
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where

M, N and P = known functions of either y or v or both.
Either Mor N is zero at the upstream boundary, and M,
N, and P are segments of a rating curve for the down-
stream boundary.

Important points to keep in mind in boundary condition specification
are as follows: (1) if discharge hydrographs are used for both the up-
stream and downstream boundary conditions, any error in the initial con-
ditions (the initial depth of flow and velocities at all computational
nodes along the stream between the up- and down-stream boundaries when the
simulation is started) will be perpetuated in the computations (Fread,
1976). This is not the case when other possible combinations of the boun-
dary conditions (specified depths or discharges upstream and rating curve
downstream) are used. (2) Associated with the channel hydraulics are two
interacting phenomena, namely, the state of flow (subcritical, critical,
and supercritical) and the boundary conditions (Viessman et al., 1972).
For subcritical flow, boundary conditions are required at both up- and
down-stream of the river reach whereas only two upstream boundary condi-
tions are necessary in supercritical flow. This is because downstream ef-

fects can not be propagated backward.
Simplified Models

The solution of the complete one-dimensional unsteady flow Equations
(3.1) and (3.2) oftentimes results in enormous computer time and storage,
particularly for floods of long durations. In essence, this has attracted
significant interest in the use of simpiified models, such as the kinemat-
ic and diffusion flow models. The mathematical justification in the use

of these simplified models is provided by the slope approximation
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analysis and Froude number order of magnitude analysis (Henderson, 1966).

While the continuity equation is completely retained, the simplify-
ing assumptions are made in the momentum equation. If Equation (3.2) is
re-arranged with the friction slope, Se» being the subject of the formula

and letting q(x,t) equal zero, the resu1t1ng equat1on is:

VO S 8 A T MR T 4 AN S T et S TR

13v (3.5)
g at

= - X._l. -
g ax

ax

steady un1form flow __J

(kinematic flow model)
steady non-uniform flow, I
(diffusion flow model)

Sf

steady non-uniform flow, I st

unsteady non-uniform flow
(complete flow model)

The volumetric flow rate, Q. is obtained by combining Equation (3.5) and

Manning's formula as:

1.486 ,,2/3 _3y _vav _ lav
Q= =7 AR Y// S0~ 3X g 3x g at (3.6)

From Equation (3.6), if the last three slope terms are small compared with

[e%]

Sy? the discharge, Q, can be computed as in uniform flow, and it is depend-
ent on depth only. The resulting relationship is known as the kinematic

model, and its momentum equation is expressed as:
s, =g = n1%y?
R ENPIPYTUA

or (3.7)

ﬂR2/3

The kinematic model has been successfully applied in simulating flows in
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natural floods in steep river slopes of the order of 10 feet per mile or
more, overland flows, and slow-rising hydrographs (Henderson, 1966).

If the longitudinal streambed slope, So’ is very flat, the 5y/sx
term in Equation (3.6) may well be of the same order as Sg- In this case
the Froude numberi, F, will be very low, so that the third term in Equa-
tion (3.6) will be negligible. In fact the third and fourth terms can be
shown to be of the same order of magnitude. Details of the mathematical
proof are discussed by Henderson (1966). However, for F2 << 1, the terms
v/g av/ax and 1/g av/ot are of the same order of magnitude. This flow

condition yields the diffusion flow model. The momentum equation yields:

= N
sf So X (3.8)

Indeed, the kinematic and diffusion flow models are two extreme cases
of slopes--steep and flat--which are frequently encountered in overland
flow on watersheds and natural routing of‘a flood wave in streams. Con-
ceivably, there are possible intermediate values of slope for which all
the four slope terms in Equation (3.6) would be appreciable. This is a

case where the complete flow model is employed.

+ Froude number is a dimensionless flow parameter utilized to char-
acterize the state of flow. If the Froude number is less, equal, or

greater.than unity, the flow is subcritical, critical, and supercritical,
respectively.



CHAPTER 1V
FINITE ELEMENT FORMULATION
Introduction

The finite element method selected here is the Galerkin's weighted
residual principle. This is an excellent choice for the solutions of the
unsteady open channel flow equations that are characterized by the non-
linear hyperbolic behavior. This class of equations cannot easily be ex-
pressed in the variational form because the governing differential equa-
tions are not self-adjoint. Thus, the weighted residual principle, such
as the Galerkin's principle, is employed to solve the governing equations
of unsteady flow. In its final form, the method generates a system of or-
dinary differential equations in time for transient problems.

The weighted residuals utilize the concept of orthogonal projections
of a residual of a differential equation onto a subspace spanned by certain
weighting function. A discussion as it applies to some finite element
problems is given by Chung (1978), Norrie and De Vries (1973), Martin and
Carey (1975), and Zienkiewicz (1977). The implementation of the finite
element formulation of the flow equations is carried out in four basic
steps--(1) channel discretization and selection of approximation functions,
(2) derivation of element equations, (3) assembly of element equations,

(4) transient solution of the system of equations. For sake of clarity,

the continuity Equation (3.1) is chosen to illustrate these steps.
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Channel Discretization and Selection

Of Approximation Function

The natural channel shown in Figures 3a and 3b is idealized as a
straight 1ine as presented in Figure 3c because the flow equations are
one-dimensional. The channel is divided into (N-1) small segments called
elements or reaches where N is the total number of nodes for which the
solution of the dependent variables is sought. Each element will be
modeled with the same flow equation but with different channel geometry
and hydraulic properties. The element equations are later assembled into
global matrix equations for solution.

To initiate the element equations, the approximation of the dependent
variables, such as the velocity of flow,v(x,t), and the depth of flow,
y(x,t), that form continuous functions over the infinite distance into
discrete variables for a finite distance is necessary in the finite ele-
ment method. Approximation functions, also known as shape or basis func-
tions, include linear, quadratic, higher order polynomials or spline func-
tions. The linear shape function is utilized to keep calculations simple.

It is important to note that a single function approximating the en-
tire flow domain is difficult to find. The finite element method simpli-
fies the procedure by breaking down or discretizing the function and do-
main into the elements shown in Figure 4. The characteristics of a shape
function are summarized as follows:

1. Each function denoted as NE is zero, except within the element
e, and k must be a node of e.

2. The function Ni is defined as a continuous function of the inde-

pendent variable X, over the element e in such a manner that the value
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at the nodal point k is unity,and the values at the other nodal points of
thé element are zero.
3. The function y(x,t), or y for simplicity (depth of flow), is
allowed to vary linearly in each element:
y = A + Bx (4.1)
where
A and B = constants
For determining the values of A and B, consider Figure 5 and Equation
(4.1). Two simultaneous equations are generated by substituting into
Equation (4.1) the corresponding values at points Xy and X 41 respective-

ly. These equations are:

Y = A+ Bx, (4.2)
Ve = A+ Bxk+1 (4.3)
Solve for A and B:

Va1 = Yk = B(Xyq - %)

B = Y1 Xe1 T %
Y1 ~ Yk
y, = A+ KTk oy
k Xk+1 xk k
p o e m X)L e - )

k+1 T Xk el T %

h

PR S S

Xee1 = %k

Thus, the Tinear shape function becomes:

N S S S od < N <3 B
o S 8 Al

y (4.4a)
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Xp 4 = X X - X

K+1- k
- e et = Y - (4.40)
- e e

By adjusting the coordinate system in Figure 5 such that the origin is

at x and the distance from the new origin to X +1 is L, Equation (.4b)

reduces to

y= (1 - sy + sy, , (4.5)
where

Nﬁ = (1 -5s), Nﬁ+] = s and s = x/L
when x = X s Ni = 1 and N§+] =0

X = Xegps NE = 0 and N§+] =1

as required part of the characterisitics of the shape function.
Derivation of Element Eduations

The Galerkin's weighted residual method is the basis of the element
derivation equations. The method requires that errors or residual between
the approximate solution and the true solution be orthogonal to the func-
tions used in the approximation. The principle is expressed mathematical-
1y by Segerlind (1976):

Ir NB L(¢)dR =0 8 =1, j, k, . . . (4.6)

=
mw
]

shape function;

©-
[]

unknown parameter and is approximated by

@ [N.i, Nj: Nk, . e -]{¢}; (4’.7)
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L(s)
R

differential equation governing ¢; and

region of interest.

Equation (4.6) implies that the shape function N, must be orthogonal to

B
the residual between the approximate solution and the true solution over

the region R. Inserting the continuity Equation (3.1) into Equation (4.6)

yields:
k;T Xk NT(EX'+ 3V 4+ AL L q(x,thdx = 0 (4.8)
] ‘xk at  I3x ax - d4Xs '
where
k-1

I = expression for summing individual element equations from 1 to
1  (k=1) elements;
T

N' = transpose to the shape function, and other terms are as defined
previously.

Using the shape function, Equation (4.5) into Equation (4.8) gives

] 3 ]
% g] NT(3E + y3% + vaL - q(x,t))Lds = 0 (4.9)

Contribution of terms from left to right in Equation (4.9) is given be-

Tow:
Term (1):
é] NT(%%)Lds = fl E];sﬂ [(1-9) §]§§1E Lds
0 2
L f21 y
-¢ [} %y%
where

} = %%, time derivative of y.



Term (2):
For the second term, first consider the following analysis:
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Term (3):

The third term is

(2vy + vy)(y, = yq)
TR Lds = 1/6 [ 17272 1}
0

(V1 + 2V2)(Y2 = y]) (4.9C)
Term (4):
The last term is
I]NT(q(x,t))Lds = q(x,t)f][(];sﬂ Lds
0 0
= %—;}% q(x,t) (4.9d)

Combining each of the evaluated terms yields the following element equa-

tion:
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N
- N

=

O ———A ey,
<
N_J

} } + 176 i?2y1 ¥l - V1)J + 176 |(2Vva) (vp-yy)
(¥1 *+ 2¥5)(vy = vy) (vy+2v,) (¥p-y7)

- Z ;ﬂ} = 0 (4.10)

Multiplying the Equation (4.10) by a factor of 6 and adding ub the two

middle terms, we obtain:

2 1 ty Vo=dv, 2V, v y 3
] [ J 17 Lt 2t { 1} e ; }
1 92 |evgm2vy dv,evy y 3

2 i

"
o

(4.11)

In a manner analogous to the above procedure, the momentum Equation (3.2)

for an element can be derijved as:

-
. -2V, =V -V, =2V v =1 1 N
L2 1 Y 172 1 2 1 1
£ E J {Y%}'+ 1712 ; £+-9/2[ \ 5 %

2v]+v2_ v1+2v2‘ Vo -1 1 Yo
2 1 { (v, 2 111{s.]  gs.L (1]
L 1 L f1y _ 0 =
¥ [l 2}{(v/y)2 * 96-[1 Z_isfzg 2 }1! 0
(4.12)

Assembly of Element Equations

The element properties originally expressed in local coordinates need
to be transformed into global coordinates before solution algorithm is
initiated. Based on the node-to-node relationship (Figure 3c), it is pos-
sible to generate an overall element property matrix for the entire domain.,
& process called assembling of element equations.

The concept of discretization employed earlier is based on the fact
that a domain with varying geometric and hydraulic properties can be treat-
ed independently as subdomains but systematically from one subdomain to

another. Assuming that the elements are of variable lengths and that
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there are N nodes,the assembled global matrix equation for the continuity

Equation (4.11) becomes:

ZL] L] 0 0
L] 2(L1+L2) L2 0
0 L2 2(L2+L3) L3
0 0 0 Li Z(Li+
0 0 0 0
v2-4v] 2v2+v] 0 0
0 -v.3-2v2 v4-v2 2v4-v3
0 0 -vi+]-2vi v +27Y;
_ 0 0 0 0
a1ty ‘
d1Lytasl,
Aplotasls
R e

0 0 0 ;1
0 0 0 Y9
0 0 0 J I
List) Ligg O] ¥
O bva el
0 0
0 0
0 0
2Visp"Vin 0
'VN'ZVN-1 4VN'VN-1
= 0

.13)
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The general form of the above assembled global continuity equation can be

expressed as:
[AI{y} + (BI{y} - {(C} = O (4.14)

where
A, B are matrices and C is a column vector;
y is the time derivative;
y and v are dependent variables.

The momentum equation follows the same pattern of aséembly.
Transient Solution Approach

The solution to the time-dependent global matrix Equation (4.13) is
sought through a "semi-discrete" approach. This approach requires the
time derivative of the dependent variable at each node to be replaced by
a finite difference scheme in time domain. A simple illustration of the
semi-discrete approach can be demonstrated by considering Equation (4.14).
The time derivative,y, will be replaced by a finite difference scheme,
such as the forward, backward, and central difference. These are res-
pectively given below:

Forward Difference y= L= (4.15a)
K_ K1
Backward Difference y = Loy (4.15b)

Central Difference y = (4.15¢)

where:
K= time level.

Substitution of Equation (4.15a) into Equation (4.14) yields

k+1_ K ¢
Al (=1 + By - (0 =0 (4.16)



An implicit equation can be generated from Equation (4.16) with the aid
of the time weighting factor. This subject is discussed elegantly in

Chapter V.

42



CHAPTER V
NUMERICAL FLOW MODELS
Introduction

Three distinct deterministic streamflow routing models are investi-
gated and are discussed in this chapter in their order of increasing com-
plexity: (1) The kinematic flow model comprises (a) the simplified ver-
sion of the momentum Equation (3.2) that neglects pressure and inertia
terms as compared to friction and gravity terms (see Equation 3.7) and
(b) the complete form of continuity Equation (3.1); (2) the diffusion
flow model combines (c) the simplified momentum equation that accounts
only for pressure, friction,and gravity terms, Equation (3.8),and (d) the
complete form of continuity Equation (3.1); and (3) the complete flow
model comprises the complete forms of both continuity Equation (3.1) and
momentum Equation (3.2).

The kinematic flow model is investigated in both am explicit and im-
plicit sense. The explicit kinematic flow model leads to linear-equations.
They are solved using a direct method similar to the tridiagonal matrix
algorithm set-up by Varga (1962). Solution proceeds by matrix reduction
similar to Gaussian elimination. In contrast to the explicit model, the
weighted implicit kinematic model yields a set of non-linear tridiagonal
matrix equations which are solved by the functional Newton-Raphson jtera-
tive method. This method is known as implicit because the set of equa-

tions are solved by an indirect metnod.
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The diffusion flow model, as well as the complete flow model each re-
sults in a non-linear bi-tridiagonal matrix equation: The functional
Newton-Raphson's method, along with the direct solution algorithm*, tri-
angular decomposition technique that yields a recursion algorithm (Doug-
las et al., 1959; Von Resenberg, 1975), is utilized to predict depth and

velocity of flow for each model.
Explicit Kinematic Finite Element Model, EKFEM

The non-linear continuity Equation (3.1) is easily converted to

linear form by use of geometric and flow relations:
A3
28+ % - q(x,t) = 0 (5.1a)

where
A = area of flow, ft2;

Q

The appropriate simplified momentum equation for coupling with the conti-

volumetric flow rate, ft3/sec.

nuity Equation (5.71a) has been obtained and is presented below:

= = 12,2 4/3
Sf = So = nl"v~/2.22R

or (5.1b)

_ 1.ﬁ$6 AR2/3301/3

O
I

Applying the Galerkin's weighted residual method to Equation (5.1a) re-
sults in the following Tinear first order ordinary differential equation

(see Equation 4.11):

* Direct solution algorithm for a linearized bi-tridiagonal matrix
equation stored in compact (2Nx6) matrix, where N is total number of
nodes, was originally developed by Douglas et al. (1959) and is present-
ed in Appendix B.
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14 1
} - ql/2 { % = 0 (5.2)

2 1 (A 1
Y+ 172
1 2 |a ), 1

2

N

For the entire channel reach the assembled matrix equation becomes:

il - .o ’
2L L
1 1 O 1
o 2yty) L Ay
2k L As
1/6 U <_-> s
L 2Ll Ly A,
i e | P
4 M . \
Qz'Q] L-Iq-]
%-Q Lotz + Lyd;
€ -meme ) = /2 emmmmeeees £= 0 (5.3)
Q541704 Li95 * Lisn9ia
Oy-Qy- bn-19N-1
- Y, /

Equation (5.3) is equivalently expressed in a matrix form:

[K1{A} + {D} - {F} = O (5.4)
The time solution of Equation (5.4) is possible upon implementation of
the forward differencing in time domain.

K™ = kA # atR" - ateD}" (5.5)
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The solution of the area of flow at various nodes proceeds forward in time
with the right hand side evaluated at a previous time level, n. Thus, the

Equation (5.5) can be expressed in a more compact form:

(k1AM

= " (5.6)
where

X = known column vector at previous time level.
The matrix, K, is a linear and tridiagonal type that easily leads to a di-
rect solution algorithm. The computer program solving Equation (5.6) is
facilitated by the use of the compact tridiagonal algorithm proposed by
Varga (1962). The computed area of flow at current time level, n+l, is
used to update the volumetric flow rate, Q, Equation (5.1b). The solution
cycle is repeated as new time level is reached. The coded explicit finite
element scheme exhibits dynamic stability due to restrictions on time step.
This drawback inherent in explicit numerical schemes is expected regard-

less of the finite element approach. However, the stability problem is

corrected in the weighted implicit flow model.

Weighted Implicit Kinematic Finite

Element Model, WIKFEM

The implicit kinematic flow model begins by combining the non-linear
continuity matrix Equation (4.14) with the modified momentum Equation (5.8)
(with velocity the subject of the formulation rather than the volumetric
flow rate). The introduction of the dimensionless time weighting factor,
8, Figure 1, and the forward differencing to Equation (4.14) yeilds the
following:

n+l

[A+ateBi{y} - eAt{C}"H = [A+At(1-e)83{y}"+At(1-e){C}" (5.7)

And the modified momentum equation is repeated here for convenience as:
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_ 1.486 2/3
L1286 g2/3g,1/2 (5.8)

where all terms are as previously defined for Equations (3.1), (3.2), and
(4.14).
The expanded form of Equation (5.7) for the upstream, interior,.and

downstream nodes, respectively, are given below:

Fi = [(ZL]+AtB(V2-4V1))y] + (L]+Ate(2v2+v1))y21n+1-[3ateL]q1]n+1

+ 1(-2Ly+at(1-8) (vp=8vy) )y + (-Ly*at(1-8)(2vptvy))y,p1"

- 13at(1-8)Lyq.1" = 0 (5.9a)
F. =

= (L prate(avi-2vy 1))y g * (2045 q#Ly)Hate(vy q-v; _1))y;

n+1 n+1

+(Lyrate(2v, o))y 17 - 388810, Ly q*asLy)
+ [(-Li_]“'At(]-6)(-V_i-2V1-_-l)).Yi_] + (‘Z(L_i_]"'l.i)+Ad]"e)(v,i+]'vi_'l))y'i

+ (-Lyrot(1-8)(2v, 1 #vi))yy,q0" - 3at(1-0) [qy qL; _q*a;Li1" = 0

(5.9b)
Fy 2 [(Ly_qp=stalvyr2vy )y g + (ZLN_]+Ats(4vN-vN_]))yN]n+]
- [3At9LN_]qN_1]n+1 + =Lyyrat(1-e) (-vy-2vy 1))y
+ (=2Ly_yrat(1-0) (dvy-vy 1))yyl" - 138t(1-8)Ly qay11" = 0 (5.9¢)

The solution of Equation (5.9) is obtained through the generalized
functional iterative method known as the Newton-Raphson method, first
used by Amein and Fang (1969) and later by Fread (1971, 1976). Equation

(5.9) expressed in functional form is as follows:
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F] (y]a Yz) =0 (5.10a)
Fi (yi-]’ M y1+]) =0 (5.10b)
FN (yN_]s yN) =0 - (5.]0C)

The y terms in the parentheses are the depth of flow, the dependent variable
to be solved. The subscript associated with each y denotes the nodal lo-
cation. The computed values of y are utilized in Equation (5.8) to gener-
ate the corresponding values of velocity of flow, v. For the system of N
non-1inear equations with N unknowns, computation is initijated by assign-
ing trial values to the N unknowns. The substitution of the trial values
into the system of non-linear equations yields a set of N residuals. In
fact, the residual is thevalueof'the right-hand side of the equation after
the trial values are substituted in Equation (5.10). The final solution
is obtained when the residuals are reduced to a suitable tolerance level.
If it is assumed that the computations have been carried through the

jth iteration, in other words the values of the unknowns have been approx-

h

imated through the jt iteration, then is possible to estimate the value

of the residual as follows:

F](Y1Js sz) = R1J (5.11a)
Fivides vi7s vyag) = Ry (5.11b)
FN(yNi]’ yNJ) = RNJ (5.17¢)

th th

where R1.J is the residual at the j~ iteration cycle for the i~ node.
The Newton-Raphson algorithm ties up the residual and partial derivatives

- of the system of Equations (5.11) in the following manner:



BF] oF, i
3y 3,
oF, 3F, 3F, CD
3y, 3, Y,
3Fy oFy  oF,
3Yy 3Y;3 3y
oF; aF;  oF;
<::> Vi1 Wy Wy
Oy Fy
SYN-1 BN

-

N

Ay2

Ay
Ay} 1
Yin
AYN-1
AyN

/
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(5.12)

where Ay =yJ+]- yJ (the difference between current and previous iterates

of y).

The matrix to the left-hand side of Equation (5.12) is the tridiagon-

al Jacobian matrix of size (NxN).

It is possible to store the matrix in

a compact (Nx3) form as shown in Equation (5.13) following:

- -
O 3F;  oF \ (
—_— — Ay R
3Y7 ayz 1 1
BFZ BFZ BFZ sy .
3)’] 3.V2 3}’3 2 2
oF, 3F, of
3 ? 3 : ay3 { by3 > < Ry
Y1 Xg n‘ =
—— e o o ——
aFi aFi aFi Ay}] y
Wi Yy Wiy Mi4 !
AR S e |
BIN-1 N 1| A L N

\

(5.13)
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The right-hand side of Equation (5.13) comprises the column vector gener-
ated upon substitution of the trial values of the unknowns into Equation
(5.9). The individual terms of the Jacobian are generated from Equation

(5.9) and written below as:

3F1
5-)’— = ZL-I + FAC(VZ - 4V-l)

1
BF]
W; = L] + FAC(ZVZ + V1)
537;-] = L'I-] + FAC(-Vi - ZV_i_-l)
aFi
sy; = 2(L1._1 + Li) + FAC(vi+] - vi) (5.14)
aFi
7 I G R I
BFN
m-] = LN_] + FAC(-VN - 2VN_1)
BFN
'a"yi = ZLN_] + FAC(4VN = VN_])

where FAC = 8at.

Equation (5.13) is a linearized form of the non-linear weighted
implicit kinematic model similar to Equation (5.6) and is solved in the
same manner. The computer program for Equation (5.13) does not require
the Jacobian matrix to be up-dated for every iteration, rather after every
three iterations. The approach seems reasonable in terms of minimizing

the computer time because convergence is achieved with relatively few
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iterations for most time steps employed. For the guess values of the de-
pendent variable, y, required to initiate the iterative Newton-Raphson
equation solver, the initial uniform flow depths are utilized. The ini-
tial depths of flow prior to the flood into the channel are the best
guess to use. Proper upstream and downstream boundary conditions, such
as discharge hydrograph and loop-rating curve, are incorporated in the
model. The solution is then sought for a prescribed convergence error
criterion. 3

The effectiveness of the weighted implicit model as compared to the
explicit version,along with the other two flow models, is discussed in

Chapter VI.

Weighted Implicit Diffusion Finite
Element Model, WIDFEM

Another simplified model is the diffusion flow model. The model is
developed by coupling the continuity Equation (3.1) and the simplified
momentum Equation (3.8). The finite element transformation procedure
for Equationi{3.1)is given in Equations:(4.8) through (4.14). The same prin-

ciples are applied to Equation (3.8), resulting in the following element

equation:
]/2{-1 1} Y’% N BL_F 1} i | %So§17=0
-1 Yy 12 Sep 1 K |
(5.15)
where
S¢ = R v2/Ra’/3 and

FR = n1%/2.2082.
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The assembled matrix equation of Equation (5.15), along with the dimension-

less time weighting factor and the forward time differencing, becomes:

ats (F1Ly™ 1y + ate __FR 0102 L aeeu!

— s }
(RT)

= -at(1-8) (F1{y™ - at(1-8) z—£§17§ 01(v™2 + t(1- )M
R

(5.16)
where the superscripts (n+1) and (n) for the variables y, vsand R are the
current and previous iterations, respectively. The expanded forms of
Equation (5.16) similar to Equation (5.9) for the upstream, interior, and

downstream nodes are respectively given as:

4/3]n+1 n+1

2,5, 4/3 2
L](FR)Ate[ZV1 /Ry + vy /Ry + 3818 [Yp-yq]

n+l 4/3 n

+ Ly (FR)at(1-8) t2v, 2/R, ™3 + v, 2/R3 )

3Ate[SoL]1

+

30t(1-8) 1y,-yq1" - 3at(1-6) (S Lq1" (5.17a)

4/3 n+1
/R

o
tH

4/3 2,0 43,
ate(FR) (L _qv,iC ]/R + 2(Ls L)V T/R, Lvst

n+1 n+1

+

+

at(l e)(FR)[L -1Vi- 1/R4/3 ¥ 2(L1 1 )V /R Yo 1+1/R?i?]n

+

n n
30£(1-8) [y; 1-¥5 _q1" - 3at(1-8) ((L;_1+L,)S ] (5.17b)

= Ly (FR)atetva_/Ry/3 + 2v, B/ H/3)0] n+1

=
Hi

n+l 4/3 n . n
- 3at8 (S LN ]] + LN_](FR)At(T -9) [V ]/R + 3At(1-e)[JN YN-1]

38t(1-8) (SyLy_q! 15.17¢)
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The simultaneous solution of Equations (5.9) and (15.17) is possible
using the generalized functional iterative method, known as the Newton-
Raphson method discussed earlier in the implicit kinematic flow model.

The functional representations of Equations (5.9) and (15.17) are as fol-

Tows:
Fi (Y15 Vs Yas Vo) =0
upstream 15 e 72r 72 {5.18a)
nodes Gl (y], Vis Yoo v2) =0
interior "1 Wia1r Ve Yoo Vi Yige Vin) = 0 (5158
nodes _ 5.18b
S Yy Vicrs Yoo Vs Vi Vin) = O
Fy (Yy 15 Vy 79 Yus Vy) = 0
downstream NV N-17 “N-T7ON7ON (5.18¢)
nodes Gy (yN_], -1 YN VN) =0

Similar to the implicit Kinematic model, the substitution of the trial
values for v and y into the system of non-linear Equations (5.18) yields
a set of 2N residuals. Furthermore, the computations are carried through

the jth

iteration cycle; then the estimates of the residuals areas folTows:
J J J Jy = npd
F] (y] ) V] ’ yZ s V2 ) RF]

J J J Jy 2 pd
G] (y] ’ V] s YZ s V2 ) = RG]

" (y1§1’ Viil’ yij’ Vij’ yiil’ V1£1) = Rgi

5 (y1{1’ Viél’ yij’ v yii]’ Vii1) Réi RS
Py (yNii’ VN{]’ YNJ’ VNj) = R%N

Gy Uyl wydys s o) = RéN
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Where Ré. and Ré_ are the residuals at the jth

i i
continuity and momentum equations, respectively, at i

interation cycle for the
th node.
The Newton-Raphson algorithm couples the residuals and the partial

derivatives of the systems of Eﬁuation (15.19) in the following form:

(3F,  oF,  3Fy  oF T 8y oo J
3y 3y 3y2 . av2 (::> ’ AV, RF]
, Ay
aG1 BG] | aG1 361 sz RG]
3y vy Y, 3V, 2
BF i BF- BF:'- aF- QF‘;’\ aF';' A_y- - l.
ayi e ay]i TR AV}-}3 Re
-1 %=1 L Yia Y5, %Y Ay i
3Gy, 3G; . 36 3G, ~ 3G 3G, ;< avy > = 4 Rg ’
i i K » Ayi+1 i
i1 i g VG gy Wiy | Vg
BFN BFN .BFN aFN AyN_] R
O BYN-1 dVNop BN 3V AV Fy
Ay
a6y 9Gy 3Gy 3Gy AVN RGN
N VN YN vy | N )
- (5.20)
1 . " . v
where Ay = yJ - yJ and av = v37' oy,

The matrix to the left-hand side of Equation (5.20) containing the
partial derivatives of the functions F and G is the bi-tridiagonal Jaco-
bian matrix of size (2N x2N). The maximum non-zero elements in any single
row is six. Thus, the Jacobian matrix is stored in a compact (2N x 6) ma-
trix. The individual terms of the Jacobian matrix for the function G

are given below whereas those of F are noted in Equation (5.14).
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26, 8L (FR)v, % aR, ]
v = ~FAC 773 + 3.0
N 3R, 3y,
e Y (FR) (FAC)v,/R,*/3 (5.21a)
3, 1 1™
2
3G 4L, (FR)v,° 3R
1 _ 1 2 9%
- = -FAC 73 - 3.0
Y2 3R, 3,
3G
1 _ 4/3
w, " 2L, (FR)(FAC)v,/R,
3G, 4L, L (FR)V® . R
L i-1 -1 *§-1
VoL - -FAC 773 + 3.0
Yi-1 3R] 3¥; 1
3G,
1 = : 4/3
el 2L, _(FR)(FAC)v; 1/R{’3
aGi 8(L1-_]+L1.)(FR)V.]2 aRi
s = -FAC 73 (5.21b)
Y 3R, 3y,
3G,
— = 4/3
v, 4(L;_1*+Ly) (FR)(FAC)v, /R,
3G, 4L, (FR)VZ.. 3R,
1 = _FAC i i+] i+] - 3.0
i R
3G,
i 4/3
IV..q ZLi(FR)(FAC)ViH/RiH
O S
2
aGN ) 4LN_](FR)VN_-| aRN_1 (5.21¢)
—— = =FAC 773 5 + 3.0 .
IN-1 3R IN-1
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3G :
N 4/3
EVE;] = ZLN_](FR)(FAC)VN_]/RN_]
3G 8L, ,(FR)v,® 3R
N | NN N3
Yy 3R7/3 3y ’ (5.21¢c)
N=-1 ‘e
3G
N _ 4/3
EVE = 4LN_](FR)(FAC)VN/RN
where
FAC =6At;
%§-= rate of change of hydraulic radius with depth.
For a natural channe1; R = A/P (area, A, divided by the wetted perimeter,
P), then
3A 3P
3R/3y = IRy Aa_x)y
P2
For a rectangular channel, R = By/B+2y, and
R _B°
Y (B+2y)2

The solution af Equation (5.20) is initiated iteratively by evaluat-
ing the right hand column vector and the Jacobian matrix using the pre-
vous nodal values of depth, y, and velocity, v. Good starting values for
nodal depths and velocities are those of the uniform flow before the flood
wave arrives at the upstream section of thé channel.

At the upstream boundary node, if the flood discharge hydrograph is
imposed as a known condition, then the corresponding upstream velocity,
Vi, at any time level is evaluated as:



On the other hand, the simplified momentum equation adopted for the
diffusion model adequately describes the downstream boundary condition

as a loop rating curve. Thus, no further modification is necessary.

Weighted Implicit Complete Finite
Element Model, WICFEM

Solution of the complete flow model follows the same basic steps
as the implicit diffusion flow model. The significant difference between
the two models resides in the total number of terms in the momentum
Equation (3.2). For this reason, only the manipulation of the complete
momentum equation deserves further discussion. The finite element trans-
formed version of the complete momentum Equation (3.2) is presented in
Chapter IV as Equation (4.12).

The assembled matrix equation (Equation 4.12), together with the di-
mensionless time weighting factor, 6, and forward time differencing
yields:

n+l n+1

ML eat i y™hy 4 OALIGI{Yy T + eat[DI(S." '}
y

(D + (8at)El{v

n

- SAt{Mn+]} = (D-at(1-0)E1{v"}- At(]-e)[F]{yn} - At(]-e)[G]{lﬁ }
Y
- at(1-8) (DI{S."} + at(1-6)(M"} (5.23)
where
D, E, F and D = assembled matrices of Eq. 4.12 from left to right,

respectively;

M = assembled vector of Eq. 4.12.
Letting S; = FR V2R3 where FR = g n1%/2.2082,

then Equation (5.23) becomes:

57
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n+l n+1 yH FR
(D + (eat)El{v '} + eAt(Fi{y '} + eAt[Gl{y—n¢T} t 80t | — g7y | (D

(R™7)

™2 gt y= Do at(T-0)E1CV™) - at(1-8)TF1(y™ - at(1-8) (6]
n
v , FR n,2 n
{jy‘ﬁ'} - At(]‘@) W (Di{v}™ + At(]-e){M } (5.24)

The expanded forms of Equation (5.24) for the upstream, interior and
downstream nodes are given as:

G] z [(4L]+eAt(-2v]-v2))v] + (2L]+9At(-v]-2V2))V2}n+]»

v v n+1 n+1
" 1 2 FR 2 FR 2
1 2

+

eAt[Gg(.Yz‘.V-l )] o gat [GgSOL.l] oy l:(-4[:l+At(] -8)( -ZV] _vz)-)-v1

+

(=2L,+at(1-8) (~v4-2v,))v,| " + 2at(1-6)]2L lI-]—+ L -‘2 n
1 17¢V2/ 1V 1y; T My,

) n

+

2A1:(1-e)[2L1 E-%F-g- 2L R—Q% VZZJ + at(1-0) Eig(yz-y])]"
1 2

at(1-8) [GgSOL]] L) (5.25a)

[ep)
11}

5 [(ZLi_]+eAt(2v1._]+v1.))vi_] + (4(L1._]+L1.)+eAt(v1._]-v1.+]))v1.

n+1 Yi-1
+ (2L1.+eAt(-v1.-2v1.+]))viﬂ] + ZeAt[qi_]Li_] y—1'_—]' + 2(L1._]q1._]+L1.q1.)

V. V.
._1_+ qL 1+I}n+1 + 29At{L1_] _.E_R_. ? + 2(L1_]+L1) FR 2

TP b 7 R/ ah 273
i- 1
FR 2 n+1 n+l n+1
* L =73 vm} R CICIRE Y] T LX)
T4

e (2L qae(1-0) (2vy _ywvy)hvy y + (-A(L

1-
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Yi-1
V. V. n
1 FR 2
+ 2(L; 19 ,+L:q.) 1 q.L. s + 2at(1-9) Ly =177 Vi
T=17-1 7147y, 71 ¥in i ]R?{? i=1

2

+

FR FR_.2 |n n+l
2bia*til s Yyt g Vi+1] + st(1-0) [Baly;.14.1)]
:

i+l

st(1-9) ESgSO(Li_ﬁL].)]n = 0 (5.25b)

n+1
N [(ZLN-]+eAt(2VN-1+VN))Vn—] + (4LN-1+eAt(VN-1+2VN))VN]

v v

N-1 N+l FR 2
vasatily Oy yoo T eIt Tl T 28t Ly VN

N-1 N Ry S

FR . 2{n+] }nﬂ ) ]nﬂ
+ ZLN_]Em vy :l + 8At ESg(yN-yN_1) oAt [6950LN_]
N

+ [(-ZLN_]Mt(]-6)(2vN_]+vN))vN_1 + (-4LN_]+At(1-e)(vN_]+2vN))vN}n

+ 2at(1-9) |L Nl g N aas(-e) L, B2
atit=-s N-]qN-1yN 1 N-19N-17, N-12273 YN-1
) N-1

FR 2{n n n
N-1473 Vi } + at(1-9) Eg(yN-yN_])] - at(1-8) [GgSOLN-lj\
N

(5.25¢)

+ 2L

By replacing all the Jacobian terms associated with the momentum
equation for the diffusion flowmodel in Equation (5,20) with those of the
complete flow model, the solution thereafter follows the same routine.
However, it is possible to modify the downstream boundary condition for
the momentum equation similar to the diffusion flow model as an adequate
loop rating curve, (Equation 15.17¢c). The upstream momentum Equation
(5.25a) needs no modification if Equation (5.22) is employed to update

the upstream velocity, vy
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The required Jacobian-momentum terms to replace those in Equation

(5.20) are as follows:

3G 16(FR)L,v<2 3R,  4L,qqv

1. A R
-B-)T_ = -FAC 773 + 5 + 649

1 3R W1 N
e - 8L, (FR)v,  4Liq

1. 1RV 4Lgy
E‘ = 4L-l + FAC[( ‘4V‘1 "2V2) + R 4/3 +

1 N
) (5.26a)

BG] ) 8(FR)L]V2 3R2 2L]q1v2
2y, = ~FAC 73 Ttz t o

2 3R2 3Yp Yo
56 v 4L (FR)v, 2L.g
L= 2L, + FAC|(<2vy-dv,) + —lope s 1]

v, - 2h 174, =73

2 Y2

.......................... R i —
3G, B(FR)Li-1V1-1 aR1-1 2L1 19i-1"4-1
A -FAC T + > + 69

i-] 3y 3¥5.1 Yi-1
3G, 4L. (FR)v. 2L. Q.

i _ i-1 i-1 j-17-1
g hat FAC[(4V1-1+2"1) 7 R ]

i-1 Yi-1
2
36i ol BOPRILy vy aRy Ly 1951 *L494)Yy
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Similar to the weighted implicit kinematic and diffusion flow models,
the Jacobian terms of Equation (5.26) are up-dated after every three iter-
ations. The numerical performance of the complete flow model and simpli-
fied models in predicting the depth of flow. and velocity of flow is the
subject of Chapters VI and VII.



CHAPTER VI
VERIFICATION OF MODELS
Introduction

Although the use of numerical methods for unsteady flow investiga-
tions has increased tremendously in recent years, most of the investi-
gations are still exploratory, and serious attempts at making them
accessible to the users in the field have not yet been made. The re-
sponsibility for developing an efficient numerical model that needs
minimal or no modification, except the insertion of input data, is
partly the objective of this study. However, further testing of the
models with different problems and with a variety of boundary conditions
is necessary for general use.

The performance of each model, particularly the weighted implicit
diffusion and complete flow models in predictihg flows in a natural
channel, was assessed by comparing simulated and observed hydrographs.
Possible discrepancies between simulated and observed flows are attrib-
utable to the following sources: errors in field measurements of the
flows, survey errors in the measurement of channel sections, errors in
estimating resistance coefficients, and, most importantly, changes in
the channel properties before and during the unsteady flow event (Amein
and Fang, 1969). Other sources of errors are associated with the numer-
ical method itself, namely: finite element approximation errors, tempo-

ral approximation errors, and errors due to any iterative non-linear
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equation solver (Chung, 1978). To eliminate the contribution of the
first kind of sources of errors, it was necessary to verify the models
in two parts.

The first part involves simulation of flow in an idealized chan-
nel of rectangular geometry. Simulated hydrographs were compared with
similar results from those predicted using an explicit finite differ-
ence scheme (Viessman et al., 1972). This approach helps to explore
the basic principles in the numerical development of the individual
models. As a result, any discrepancies observable on application to
natural channels should not be all blamed on the mathematical model
development. The second part involves simulation of a flood in a natu-
ral channel, the I1linois River located in Oklahoma. Limited data in
other major streams in Oklahoma, mostly cross sections, roughness co-

efficients and recorded floods made the I11inois River the best choice.
Application to Idealized Channel

The computer programs of the explicit, weighted implicit kinematic,
diffusion, and comnlete flow models have been written in FORTRAN IV for
an IBM 360 model 75. The models were applied separately to simulate the
hypothetical flood in a rectangular channel presented by Viessman et al.
(1972) using the explicit finite difference scheme. The example problem
considers a 2-mile long and 2-ft wide rectangular channel having a depth
of flow of 6 ft. It is subjected to an upstream increase in flow to
2000 cfs 1in a period of 20 minutes, and then it decreases uniformly to
the initial depth of flow in an additional period of 40 minutes. The

channel has a bottom slope of 0.0015 ft/ft and an estimated Manning co-
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efficient, n, of 0.02.

Similar to the example of Viessman et al. (1972), a distance step
of 528 ft was used in the simulation, although the four medels can
accept variable distance steps. Also, the weighted implicit kinematic
model has a built-in option to route the flood in a trapezoidal, tri-
angular, or rectangular channel. For the first two geometries, the
right- and left-side slopes captioned as ZRS and ZLS should have as-
signed values other than zeros, except for a rectangular channel. The

triangular geometry will have zero width for input value.

Hydrographs from EXFEM and WIKFEM

The flow hydrographs for upstream, midreach, and downstream sec-
tions are predicted by the explict and weighted implict kinematic mod-
els. These hydrographs are plotted along with those predicted by
Viessman et al. (1972), shown in Figure 6. It should be noted that the
explicit difference scheme of Viessman et al. (1972) solves the contin-
uity and momentum equations completely. The kinematic flow models de-
pict attenuations in the peak flows at midreach as well as the down-
stream section. This performance is acceptable since the longitudinal
channel slope utilized for the simulation falls within 10 feet per mile
(10.3%) for which the use of kinematic approximation is justified. De-
tails of the slope approximation for use of simplified models are dis-
cussed by Henderson (1966).

While the explicit kinematic finite element model is limited to a
time step of 2 seconds because of stability considerations, the weighted
implicit scheme appears to be unconditionally stable. The influence of

the time weighting factor, 8, on the numerical distortion (dispersion and
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attenuation of computed stage or discharge hydrographs) is shown in
Figure 7. The plotted discharge hydrograph indicates that the lower
range of the allowable 6 values, such as 0.75, as compared to the upper
limiting value of 1.00 minimized the attenuation of the peak flowwhich
results from the use of a large time step, At of 300 seconds. This
observation is not unique but confirms that of Fread (1973). The
weighted implicit kinematic flow model was run for At = 180, 300, and
600 seconds with various values of the weighting factor 6, such as
0.55, 0.75, and. 1.0, respectively. In all time steps, fastest conver-
gence was obtained with 8 = 1.0, and it is recommended for use with
this routine. It is not surprise that 6 = 1.0 affords rapid convergence
because the scheme becomes fully implicit. However, instability results
in WIKFEM with 8 < 0.55. Thus, the allowable range of the time weigh-

ting factor, 6, is 0.55 <8 < 1.0.

Hydrographs from WIDFEM

Simulated discharge hydrographs for a time step of 60 seconds and
time weighting factors of 0.55 and 1.0, respectively, along with those
of Viessman et al. (1972) are compared in Figure 8. The predicted hydro-
graphs denoted as plots B and C in the figure are in close agreement
with those of Viessman et al. (1972). However, the slight influence of
the time weighting factor in the predicted peak flows at mid-reach and
down-stream locations can be observed.

Though the difference in peak flows with 6 values of 0.55 and 1.0
is minimal for a time step of 60 seconds, significant differences for
larger time steps such as 300 secondsor more are apparent. Figure 9

illustrates very clearly the iteractive effect of the time weighting
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factor, 9, and the numerical dispersion resulting from use of large
time steps. Values of 6 greater than 0.55 tend to attenuate the peak
discharge. This observation equally validates that of the weighted
implicit kinematic finite element model discussed earlier.

Like the WIKFEM, the weighted implicit diffusion is uncondition-
ally stable for the time weighting factor in the range of 0.55 < 6 <
1.0. In spite of the numerical distortion associated with the use of
large time steps, only a & value of 0.55 predicted hydrographs identical
to Viessman et al. (1972). As a result, subsequent simulations of the
WIDFEM for time steps large than 60 seconds were executed with a 8 value

of 0.55.

Hydrographs from WICFEM

Applications of the weighted implicit complete finite element model
to the idealized channel using a time step of 60 seconds and a 9 value
of 0.55 predicted the discharge hydrographs shown in Figure 10. Hydro-
graph results are identical to those of Viessman et al. (1972) on the
rising 1imbs but differ slightly on the receding limbs. On the aver-
age this difference is insignificant. The WICFEM affords an uncondi-
tionally stable solution for the time weighting factor in the range of
0.55 <6 <1.0. Also the model shares the same basic characteristic

as the WIDFEM discussed earlier.
Flow Simulation in a Natural Channel

The second test analyzed flow through a natural river channel. The
I11inois River between Watts and Tahlequah gaging stations (Sta. 1955

and 1965, respectively) in Oklahoma, shown in Figure 11, was chosen.
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Geometric cross-sectional data (developed from topographic maps) were
collected from Weigant (1982) along with the flood data of April 10,
1979, and were used in predicting the flow hydrograph at the Tahlequah
station. Figure 11 shows the IT11inois River and locations of the
stations.

Owing to the nature of the available topographic data, simulation
was executed using a composité channel section. The changes from sec-
tion to section in some locations are significant enough that smaller
distance steps are necessary to adequately represent them in the model.
Thus, the channel sections were averaged with a single Tongitudinal bot-

tom siope of 4.5 feet per mile (Weigant, 1982).

Initial and Boundary Conditions

Initial depths of flow were generated by backwater calculation
starting from a downstream depth. Discharge values at intgrmediate nodes
were estimated by linear interpolation applied to the two initial dis-
charges at up-and down-stream locations. Nodal velocities corresponding
to initial depths are calculated by dividing the nodal discharge by cor-
responding cross section. At the upstream point, the discharge was pre-
scribed as a function of time. At the downstream boundary, a loop rat-
ing curve was imposed.

For the 1979 flood, the initial discharge values are given by the
unsteady nonuniform flow of 482 cfs at the Watts station and 596 cfs at
the Tahlequah station at time 't = 9. The discharge hydrograph at the
Watts Station increased from 482 to 22980 cfs in 28 hr and then decrea-
sed to 1722 cfs in additional 68 hr. Figures 12 and 13 show the observed

discharge hydrographs at Watts and Tahlequah and the rating curves at the
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stations, respectively. Computed flow at Tahlequah, 50.4 miles from

Watts, was compared to the observed flow at the same station.

Determination of Flow Parameters

The flow parameters necessary for simulation in natural channels
are the channel cross sections, A; top widths, B; Manning's roughness
coefficient, n; and lateral inflow, q.

Average cross-sectional and top width data were utilized to gener-
ate a fourth-order polynomial equation, using a least square fitting
program (Davis, 1973). A fourth-order polynomial yielded the best fit
from the analysis of variance. By increasing the order of the poly-
nomial beyond fourth, it was necessary to see if the increase in the
degree of the polynomial significantly improved the fit of the regres-
sion. Such statistics as the sum of square due to deviation defined
as the difference between tota1 sum of square (SST) and sum of square

due to regression (SSR) and the goodness-of-fit defined as SSR/SST

were used for assessment. The general form of the equation adopted to

model the averaged cross section areas and top width® is represented as:
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where A(Y) and B(Y) implies that the area and top width are functions
of depth of flow only. Figure 14 illustrates a typical cross section
geometry of the I11inois River as given in Equation (6.1). Results are
included in the computer sample output.

The initial estimated Manning's roughness coefficient variation
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against discharge for the I1linois River as provided is plotted in

Figure 15. Also shown are the fitted third-order polynomial regres-
sion equations of the initial estimated roughness coefficient and of
the modified coefficient values. The fitted regression curves are

necessary because the plot of the initial estimates of roughness co-
efficient versus discharge depicts shape variations in some adjoining
corners. Thus, a smooth curve was deemed necessary to better repre-

sent actual roughness coefficient variations Equation (6.2).
n = 0.03713 + 0.14097E-05Q + 0.41739E-10Q° - 0.23004E-14Q°  (6.2)

The modified initial estimates of the roughness coefficient varia-

tion are represented as:
n = 0.02615 + 0.42801E-05Q —O.21618E-OQQ2 + 0.39355E-14Q3 (6.3)

The lateral inf1ow‘hydrograph at Flint Creek, a tributary of the
I1Tinois River 13.2 miles downstream of the Watts Station, recorded
during the same date, was imposed as a function of time, Figure 12.
The main channel reach corresponding.to 13.2 miles from Watts was al-
Towed to receive the lateral inflow frbm Flint Creek. The inflow is

represented in cubic feet per second per area of reach.

Hydrographs from WIDFEM and WICFEM

Application of the flow models to the I11inois River was 1limited
to WIDFEM and WICFEM because of the inherent flat slope of the channel.
Use of the kinematic flow models would not be adequately justified in
this particular example based on the slope approximation analysis (Hen-

derson, 1966).
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The depth of flow at the Tahlequah Station for Fhe WICFEM using a
time step of 30 minutes and a time weighting factor of 0.55 is predicted
and compared with that measured in Figure 16. Simulated results are in
excellent agreement with observed flow. The marginal difference between
computed and actual depths at the early portion of the rising limb and
at the tailing edge of the hydrograph reflects the uncertainity of the
input data. Among other things, the models are sensitive to variations
of the Manning's roughness coefficients in predicting flows. Higer rough-
ness coefficients imply reduced flows and vice versa. Thus, close pre-
dictions are possible as long as the roughness coefficient and other in-
put data are accurate.

Figure 16 also illustrates the response of the WICFEM to a modified
Manning's roughness coefficient regression Equation (6.3) in predicting
depths of flow. The predicted stage hydrograph indicates a slightly
high peak, at six hours earlier than the previous prediction using eg-
uation (6.2). Indeed, the simulated depths of flow using Equation (6.2)
yielded the time of the peak that are more similar to those observed
than to those from Equation (6.3). Thus, Equation (6.2) is more repre-
sentative of the actual roughness variation in the I11inois River. Fig-
ure 17 shows the depth of flow predicted using the weighted implicit dif-
fusion finite element model, WIDFEM. The same observations are valid as
discussed above using WICFEM. Comparison of the computed flows from
WIDFEM and WICFEM using Manning's regression Equation (6.2) against the
observed records at the Tahlequah Station is provided in Figures 18 and
19. Discharge hydrographs depict a compounded error of the computed
depth of flow and velocity of flow for a given location in the stream.

For instance, the difference in peak flows as indicated in Figure 16 is
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about 7% considering prediction with Equation (6.2), while Figure 18
shows an error of 15% for WICFEM. Apparently, the error distribution
amongst the predicted depth and velocity as illustrated in the dis-
charge hydrograph are bound to be uneven.

Simulated results of the WIDFEM and WICFEM as shown in Figure 19
for a time step of 15 minutes and weighting factor 0.55 are exactly the
same. However, a comparison of the two models for At of 30 minutes and
8 of 0.55 indicates a slight difference only at the peaks, Figure 18.
Invariably, the WICFEM seems to sustain Tlesser numerical distortion for
larger time steps than the WIDFEM. Still, there is much to be gained
in the use of WIDFEM. Hydrograph results from WIDFEM are more compar-
able to those from WICFEM. In addition, the computer time and cost are
slightly less for WIDFEM. Appendix K compares computer CPU time and

cost of modeis.



CHAPTER VII

SUMMARY AND CONCLUSIONS

Numerical Performance of Models

The numerical properties of the flow models--EKFEM, WIKFEM, WIDFEM,
and WICFEM--such as rate of convergence, accuracy, and stability,
need to be assessed through well established mathematical relations. For
instance, the Courant condition is employed in the exp]itit finite dif-
ference technique to evaluate the dynamic stability condition arising
from the size of the time steps. Since similar conditions in the finite
element techniques are not versatile and few in use are formulated under
1imited assumptions, we are therefore encouraged to draw comparisons from
documentations established for the finite difference schemes at least for
the time being.

The convergence criterion is a condition in which the solution of
the finite element equation for a finite grid size approaches the true
solution of the original partial differential equation. For the weigh-
ted implicit finite difference scheme proposec¢ by Fread (1974}, the con-
vergence criterion was developed by determining the functional form of
the truncation error through the Taylor series expansion about the point
at which the difference equation js computed. The truncations error,

TR, can be expressed as:

2

TR = (26 - 1)0(at) + o0(at?) + 0(ax?) (7.1)
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where 0 indicates "arder of", and when 8 = 1, the truncation error is:
_ 2 2
TR = 0{at) + 0(at™) + 0(ax™) (7.2)

Equation (7.2) shows that the fully implicit difference scheme is only
first order accurate due to At term. However, when 6 = 0.5, the error
shows a second order accuracy for At and Ax.

The WIKFEM, WIDFEM, and WICFEM converge to the true solution for
various values of the weighting factor ranging from 0.55 to 1.00. For
® less than 0.55, the models are completely unstable and invariably do
not converge. This leads to the concept of numerical stability, de-
fined as a condition whereby the numerical round-off errors introduced
in a computational procedure fail to be amplified into an unlimited er-
ror. If errors generated at time level (t + At) are smaller than the
errors at time t and not vice versa, the solution is said to be stable.

Stability of the non-linear difference equations of Saint Venant
has been investigated by fourier analysis (Fread, 1973, 1974). This
analysis is known as the Von Neumann method. In general, results in-
dicate that an implicit difference formulation of the unsteady flow
equation is unconditionally stable for any ratio of Ax/At, when the
weighting factor, 6, is restricted to the range 0.5 <6< 1.0. The anal-
ysis proves also that stability of the implicit difference equation
does not depend on the ratio Ax/At like the explicit method and meth-
od of characteristics. The weighted implicit finite element flow mod-
els--WIKFEM, WIDFEM, and WICFEM--are found to be unconditionally sta-

ble for the weighting factor in the range of 0.55 <6< 1.0. However,
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The EKFEM bears similar restrictions as the explicit finite dif-
ference scheme. Numerical stability is conditional as defined by the
Courant condition. Also, the WIKFEM, WIDFEM, and WICFEM reflect simi-
lar numerical properties as the implicit finite difference routine. The
concept of explicit and implicit schemes applied to the finite element,
FE, and finite difference, FD, formulations tends to tie the FE and FD

in the same numerical subset.

Conclusions

Based on the results of the finite element modeling of the stream-

flow routing for idealized and natural channels, the following conclu-
sions can be drawn:

1. Explicit and weighted implicit kinematic, weighted implicit
diffusion, and complete flow models have been developed to
predict the velocity of flow, depth of flow, and discharge
in a stream.

2. The explicit kinematic finite element model, EKFEM, solves
the flow routing problemﬁ, having a maximum time step of
two seconds.

3. The weighted implicit kinematic finite element model, WIKFEM
yields accurate results, with a maximum time interval of ten
minutes and weighting factor in a range of 0.55 to 1.00 for
a rectangular channel.

4. Both the weighted implicit diffusion and complete finite
element models yield accurate and unconditionally stable

solutions.
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A11 the models--EKFEM, WIKFEM, WIDFEM, and WICFEM--have been
tested against a problem presented by Viessman et al. (1972).
The comparisons of the flood hydrographs are in close agree-
ment, and the observed difference resides on the speed and
stability. In this regard, the weighted implicit models excel.
Use of a simplified model such as WIKFEM and WIDFEM in terms
of computer storage and cost will be preferred provided good
engineering judgement is exercised in their application. For
this reason, these models will be favored over the complete
solution of the unsteady flow eduations.

Only the weighted implicit diffusion and complete finite
element models were applied to a natural channel, the I1linois
River in Oklahoma, for a flood observed on April 10, 1979.
Simulated discharge hydrographs at the Tahlequah station,
50.4 miles downstream from the Watts Station, with time steps
of 15 and 30 minutes and.a weighting factor of 0.55 are in
close agreement . with the observed flows. A discrepancy of

8 percent in the maximum stage and 15 percent in the maxi-
mum discharge is attributed to the degree of accuracy of the
input data, especially the roughness coefficient.

Not much observable difference existS between the simulated
results of the WIDFEM and WICFEM for the natural channel
flood routing test. For these particular test results, there
is more to be gained in using the simplified diffusion model

" as discussed earlier in (6) above.



_CHAPTER VIII
SUGGESTIONS FOR FUTURE STUDY

The following suggestions for future study would belhe1pfu1 in
using the flow models for predicting the depth, veloeity, and volum-
etric flow rate in a natural channel.

1.. Modify the present flow models to incorporate boundary
geometry at bridges showing contracting and expanding
flow. In addition, field surveys of the hydraulic rough-
ness values for various channel reaches are vital. Vari-
ation should be indicated.in terms of longitudinal chan-
nel distance as well as the depth of flow or volumetric
flow- rate. Roughness coefficient values imposed on each
cross section are usually helpful in locating where a
cross section should be subdivided to determine dis-
tributed properties. For instance, values of 0.3 and
0.1 are assumed for the expansion and. contraction co-
efficients, respecti&e]y.

2. Determine what portion of the cross section conveys flow
and what portion stores water, particularly for smaller
flood events. This might not be necessary for a very
large flood wave. For instance, in the present study,
it was assumed that the entire cross section conveyed

flow for the flood of April 10, 1979, in the I1linois
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River. For smaller events, it is assumed that all con-
veyance occurs in or near the main channel (Thomas, 1975).
Study other possible forms of modeling the flow cross sec-
tions and the corresponding top width besides using high-
er order bolynomial curve fitting methods. Clearly, there
are many possible approaches such as: (a) higher order
spline function (cubic spline), (b) logarithmic or expon-
ential regression equations, and (¢) simple averaging and

interpolation of the input data for intermediate values.
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A. Single Variable Equation
Consider a single non-linear variable equation expressed in function-
al form as follows:
f(x)=20 (A.1)
where
x = a real variable;
f(x) = any reaéonab]y well-behaved function.
The solution of the variable x of Equation (A.1) is obtained in an
iterative manner, proceeding from the first solution estimate, x", towards

n+l

the succeeding improved estimate, x ~, which tends to converge toward the

solution variable x. The orderly procedure by which the improved solution

. +
estimate xn 1

is sought, such that it converges to the true solution x, is
known as Newton-Raphson Iteration and is described as follows.
Let the non-linear equation f(x) be expanded using its Taylor series
for an initial jterate x°.
i.e.

2 3
f(x) = 100 + L) 150 o LX) g0y 4 L) cw 0y (4.2

The linear function of x° that best approximates the non-linear func-
tion f(x), evaluated at xo, is obtained by retaining only the first order
terms of Equation (A.2) such as:

f(x) = £(x%) + axf' (x°) (A.3)

ax = x-x° (correction value);

0y = af(x%) : 0
fr{x") o (Jacobian term evaluated at x ).
An iteration procedure is desired which will cause the function f(xo)
to approach zero as ax approaches zero. Thus, theleft-hand side of Equa-

tion (A.3) is made equal to zero with the following resulting generalized
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jteration algorithm:

£ M M) = A () (A.4)
where:

n and n+l are previous and current iterates respectively.

The Jacobian f'(xn) needs to be updated at every iteration cycle.
However, the initial Jacobian can be kept and used for all cycles or up-
dated at selected iteration cycles at the expense of slow convergence.
The iteration process is stopped when convergence is achieved. This can
be checked in two ways--the absolute and relative tests. The former re-
quires the absolute difference between the current and previous iterates
to be less or equal to a specified value called error criterion.

n+l nl

| x - x| < e (A.5)

where:
31 = error criterion
The relative test is expressed as:

n+l n
I x - x| - <5
Max (<", [x"T))

(A.6)

The relative error test is usually preferred to the absolute test because
while the latter requires the knowledge of the size of x", the former
takes that already into account.
B. Multi-vVariable Equation

For a system of non-linear multi-variable cquations, the Newton-
naphson methed is equally efficient in providing the roots or solutiorn of
such a system (Amein and Fang, 1969; Fread, 1976). Consider the following

N-dimensional system of non-1linear algebrai¢ equations:
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f'[(X-Is Xz, X3, - - - XN) =0
folxys Xp0 X35 = = =5 %) = 0
, (A.7)
fN<X1’ Xos X35 = = =, xN) =0
or in a vector notation:
fi(x) =0 (A.8)

where:

subscript i denotes a particular equation.

In a manner analogous to the steps discussed for a single variable
equation (EQ. A.1 through A.6), the linearized form of equation A.8 is
as follows (see EQ. A.4):

£ MM ) = e ) (A.9)

Express EQ. (A.9) in a more concise form as:

fs (xMax = -fi(x") (A.10)
where:

n+1 / n
Xy - Xy f1(x )

n+l n n
Xo - X, fz(x )

AX = , fi(xn)

‘an+] - an \fN(xn)
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afl af1 af] e Eil
BX] 3X2 8X3 BXN
8f2 3f2 af2 . .. Efg
BX] 3x2 3X3 BXN
' ny _
afy  ofy oy ofy
_BX-I 3X2 8X3 BXN |

The solution of the linear system of equation represented in vector
form by Equation @.10) is sought for the unknown linear correction vector
AX by a suitable matrix solution technique. For a system of (N x N) mat-
rix equation, Gaussian elimination may be employed. However, the most
efficient triangular decomposition solution technique for a compact bi-
tridiagonal matrix (Douglas et al., 1959) 1is presented in Appendix B.

The convergence of the iteration process, Equation (A.6), depends on
a good initial solution vector estimate x°. If the initial iterates are
sufficiently close to x, convergence is attained at a quadratic rate since
the iterative procedure is second order, that is, involves the first de-

rivative.
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Consider the following system of linear algebraic equations generat-
ed by weighted implicit diffusion- or complete-flow models of the finite
element approximations of Saint-Venant equations and the Newton-Raphson

iterative method as a bi-tridiagonal system:

(1) (2) Mmoo@ M @
YT T Vi T 0y Yy Dy VG Yy TG Vi T Yy -
B.1
(3) (4) (3) (4) (3) 4y (2
R I B I I T A T IR P B I Bl

for T <1 <N

with agm) = c&m) =0forl <m< 4

Equation (B.1) is an equivalent form of Equation (A.10), Appendix A,

and can be conveniently expressed in a compact (2Nx6) matrix form as fol-

Tows:
; .
N ~ - - 4 - .
1 2) (1) (2 1)
oo bl {8 (D ((2) 9 a
1
3) (4) (3) (4 a 2
o0 bi3) p(8) (3 (&) A{g a{?)
T o -
a{l) 42 i1 5{?) {1 {2 ig}:} . | all) (8.2)
P4 o o] |H] e
i+
e e e e R -
-—- - o -— -— -— -— ---)
- 1
a{l) {2 1) b2 o o BN d(éi
ROERORRORRONTE 25:-] L?N_]
; : N .




The compact solution algorithm developed by Douglas et al (1959)

and later used by Von Rosenberg (1969)
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is a direct solution technique

for a system of linear equations. The algorithm is an efficient triangu-

lar decomposition method that yields a recursion equation, thus substan-

tially reducing computations and computer core storage.

The algorithm is as follows:

First Computer

0000
LRI
RGN
90 .8 0 8
with 8{™ = b{M for 1 <m < 4
and
SRR R L
ORI
with 5{1= al1) ang 5{2) = of2)
and ;= 8{1) g4 5(2) 5(3)

(8.3)

The S(m), 5(m), and u; are computed to aid in the computation of the

1 1

following functions and need not be stored after the computation of

i i i i i
V(D)2 (o) _ (2@,

"
—
(o8]

(8.4)



and
A = g1
Ygzi NEORORNONUIY
The values of xim)

back solution. This is

and Y

'yN Y‘g])
N Y§2)
and
= (1) ()
A TS B TS B
= (2) _.(3)
Vi T3 T A Y T

(m)

i
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must be stored as they are used in the
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The 1ist of subroutines and their corresponding functions is
given below. The list of major variables and symbols used in the com-
puter program is provided in the comment page of computer program
1isting, Appendix E. Any temporary storage variables are not included

because their definitions are obvious.
Subroutines

MAIN Coordinates the functions of the other subprograms, and

prints converged solutions for prescribed time increments.

READW Reads and echo-checks all the input data.

JACOBI Evaluates and updates the Jacobian matrix of (2Nx6) terms.
VECTR Evaluates and updates the column vector of size (2Nx1).
GEOMTR Evaluates and updates the nodal flow area, wetted peri-

meter, variation of Manning's roughness coefficient with
discharge, and the change of hydraulic radius with respect
to depth of flow.

BTRIDG Solves the compact (2Nx6) bi-tridiagonal matrix equations.
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The formats for entering the data are given below. The same for-

mat statements for READ and {RITE are applicable to both diffusion and

complete flow models as provided in the subprogram READW. The data deck

for the particular example of the I11inois River flood of April 10, 1979,

is presented. However, data for the Flint Creek as lateral inflow for a

single reach is entered via the MAIN program as a DATA STATEMENT. The

reader should refer to Appendix E for the definition of the variables.

CARD COLUMNS

1 1 -10

11 - 20

21 - 30

31 - 40

2 1-10

11 - 20

21 - 30

31 - 40

41 - 50

51 - 60

3 1-72

4 1-72

5 1-72

6 1-72
7 1-5

3 1 -50

FORMAT
F 104
F 10-4
F 10.4
F 10-4
F 10.4
F 10-4
F 10-4
F 10-4

110

110
6F12-5
6F12.5
6F12.5

6F12-5
I5

5F10-5

VARIABLE
TPRINT
TTA
TSUM

TETHA
DETA
DETV

S0
IMAX
N1
YO(J)
QRE(J)
QLAT(J)

XL(J)
JORD

ASF(J)
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CARD COLUMN FORMAT VARIABLE
9 1 - 50 5F10-5 PSF(J)

Note: QSTR(J) and TRS(J) are included in the main
program in DATA STATEMENTS.



APPENDIX E

COMPUTER PROGRAM LISTING FOR WICFEM
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sTIME=S
SUISS0EE SV LESE IS I0SSSISSEREIENESRESESISESEISEE IS 448SSIN S
L ]
. 1 = DIMENSIONAL STREAMFLON ROUTING MODEL s
* . .
L ] L ]
SSSSULUME LAV ISSN SRS AVESEFERFECAS IR CISEVINIINSSAE I SRS IR S
] L ]

COMPLETE FLOW FINITE ELEMENT STREAMFLOW ROUTING
SOLYED IMPLICITLY BY ITERATIVE NEWTON~RAPHSON MTO,
SREIRIPEEISVSSETE SIS ISRSSIETEERREIEIFESTNIELSTSEREIL S 4SSN S

vee DEFINITION OF TERMS oee

L 2R IR BE BE BN BN BN J

*VARIABLES UNITS ARE AS FOLLOWSS TIME(SEC)ILENGTH(FT)
*DETPHIF T )aVELOCITY(FTe PER SEC)sDISCHARGE(CFS)

sACC IS THE ACCELERATION OF GRAVITY32,2FT. PER SEC PER SEC

sACF+sPCF ARE POLYNO., COEFF, FOR AREA £ WETTED PERIMETER

sANsPN ARE THE AREA & WETTED PERIMETER OF FLOW RESPECTIVELY

sHYD 1S THE RATE OF CHANGE OF HYDR.RADIUS wlTH DEPTH

sQSTR IS THE UPSTREAM INFLON DISCHARGE HYDRCGRAPH

#*QLAT IS THE LATERAL FLOW TERM.FT. PER SEC

#QFL IS THE LATERAL INFLOW HYDROGRAPH AT FLINT CREEK

#50 IS THE CCNSTANT CHANNEL SLOPE

#RN IS THE MANNING RQUGHNESS COEFF.

sXL IS THE NCDAL SPACING.

#«Y¥Y0 IS THE INITIAL UNIFORM NORMAL DEPTH,.

sV0 IS THE INITIAL UNIFORM NORMAL VELOCITY

sN1 IS THE TOTAL NUMBER OF NGDES

T IS THE TIME STEP (SECONDS)

#TSUM IS THE ENTIRE FLOOD DURATION IN SECONOS,

«TSR IS THE TIME FOR UPSTREAM INFLOR HYDROGRAPH

#TFL 1S THE TIME FCR LATERAL INFLOW HYOROGRAPH AT FLINT

sTPRINT IS THE TIME FOR INITIAL PRIANTING (SECONDS)

*TTA 1S THE INCREMENTAL PRINTING TIME (SECOANDS)

s=e=IF TIME STEP IS GREATER THAN TTA PRINTIAG WILL BE ===

. PERFORMED AT THE INCREMENT OF THE TIRE STEP 9T we-

*IMAX IS THE PAX. ITERATION LIMIT

eNT 1S THE NUMBER OF POINTS FOR UPSTREAM INFLOW HYDROGRAPH

sNTP IS THE UPSTREAM INFLOW HYDROG POINT FOR THE PEAK FLOuW

*JGeJGP ARE SAME AS NTSNTP FOR LATERA INFLOM HYDROG FOR FLINTs

*JORC IS THE CRDER OF POLYNCMIAL EQe FOR AREA £ We PERIMETER =

sDETA IS THR CONVERGENCE CRITERIA FGR DEPTH ]

STETHA IS THE TIME WEIGHTING FACTOR.

sYN IS THE CALCULATED OETH OF FLON

sVN IS THE CCRRESPONDIANG VELOCITY OF FLOW

*BSR 1S THE JACOBIAN NMATRIX OF DIMENSION ¢ 2N1 X 6 )

sCXV1l £ CXV2 ARE THE (MN1X1) COLUMN VECTORS EVALUATED AT ]

s(1-TETHA ) & TETHA RESPECTIVELY. ]

*LDIM)LOIN ARE THE VARIABLE DIMENSIONING PARAMETERS L

*READN IS THE SUBPROGRAM TO READ € ECHOE CHECK INPUT OATA .

SGEOMTR IS THE SUBPROGRAM TO UPDATE FLOW AREASNETTEDS ]
]
*
.

IR IE B BE B N R N B N I NE NE B BE R BE K BE B R BN BE BE BN BE BN R B BK BE AN

% ® @

* MAAKING®*S ROUGHNESS COEFF, & RATE OF CHAMNGE HYDRe RALIUS
s

LA I A AR R EREZFIEL R R LRI R 2R 2 R TR R RS R AR RS ERY RS R R R R 2 Y

DIMENSION ACF(S5)sAN(26)3sBSR(5226235CSVI(SZ2)sCSV2(S521+FCFL5),
1 OTPH(263sHYDC26)9QLAT(25)sQRE( 26 IePN(26)VELY(26)
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A d>WN

®~

10
i1

12
13

14

16
17
18

20
21
22

23
24
25
26
27
28
29

30
31
32

33
34
35
36
37
38

39

41
42
43
LL}

[ aXal

100

140

145

150

155

160
180
190
200
220

230
2+0Q
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2 VOL26)2YNE26)9XLL125)9Y0L26)9YN(26)

DIMENS ION QFL(7)sQSTRU11)sTFLUT)IsTSR{11)sRN(26)

DATA QFL9JG3JGP/78140540809629¢39316+56603318e316803447/
DAYA TFL/04094320043504004557600,586400,313680009345600,7/
DATA ACCoLDIMLOINSNReLPILK/32629523269522%57

DATA NT oNTP/1156/

we=READ € ECHOZ~CHECK INPUT DATA FROM SUEBPROGRAM.

LON = LOIN - 1}

CALL REAORCACFSDETASDETYsQLATSGRESPCF2QASTRsTSReNT
TPRINT s TTAsTSUMS»ToTETHAS SOy IMAXs XL s YOsNL1sNRsLPSLONsLCINY

JSIZE = TSUM/T
NS 2 UG + 1}
MC = NTP + 1

TRRIT = TPRINMT
JSTP 3 N1 - 2

===CALCULATE INITIAL GEQMETRIC PARAMETERS FROM SUBPRCGRAM,

CALL GEOMTR(ACFsANsHYDSQREsPCFsPNsYQsRNsALsLDIN)

PR = 2,73, ’

D0 100 J = 1sN1L

Va{J) = QRE{JIZANCLJ)

90 = QRE(1)

MRITE(LPs140)
FORMAT(/77728X9s *UPSTREAM®924Xs *MIDSTREAM®*524X3* DOUNSTREAN?)
RRITE(LPs14S)

FORMAT L AXs*TIME(HRe 1® 9 TXs *OXSCHARGE ®s4X s *DEPTH® 33Xy *YVELOCITY®3€X>»
*OISCHARGE ®*34Xs *DEPTH®sIXs *VELOCITY® 96X DISCHARGE® 34X¢*DEPTH"
3XsSVELOCITY?)

-e=USE INITIAL VELOCITY £ DEPTH CF FLOW AS GUESS VALLES
TO INITIATE SIMULATION.

D0 150 KX = 1sN1

YN(K) = YO(K)

VN(K) = VO(K)

FACL = TETHAST

FAC2 = (1le ~ TETHA)T

00 155 L =3 1sN1

RNC(L) = ACC*RN(L)*+2/2,2082

ee= SET LCOP FOR TIME SIMULATION.
QR = Q0

00 900 JL =1»JSIZE

TIFPE = FLOAT(JLI=T

«==UPDATE THE LATERAL INFLOW HYOROGRAPH FOR REACHs?
TCK = TIME = TFL{JG)

IF(TCX 16021605200

00 180 KC = 2546

IF(TIME = TFL(KC))190,190,180

CONTINUE

QFw = QFLUIKC=1) + (QFL(KC) =« QFLI(KC=1))7
(TFLIKC) = TFL(KC=1))s(TIME = TFL(KC~1))
GG 10 329

IFCTCK - TFLEJGP))220,220,5300

00 230 KS = MSsJGP

IF{TIME = TFL(KS) 124052405230

CONTINUE

QFR = QFL(KS=1) = (QFL{KS=1) = QFLI(KS})/



45
46
47

65
66

67
68

70
71

72
73
74

75

76
77
78
79
80
81

82
83
84
85
86
87

(a2l 2]

[s X2 N3}

300
320

350
360
370
380
400
420
450

500
520

530

550

1 (TFLIKS ) « TFLUIKS=1))s{TIME « TFLI{KS=1))

GO 10 320
QFh = QFL(JGP)
QLAT(Z ) = QFM/{XLLT IsPN(T))

~=e UPDATE UPSTREAM BOUNOARY CONDITION.

TO = TIME = TSRINTP)

IF(TD) 35023502380

D0 360 LC 3 24NTP

IF(TIME - TSR(LC))370+370»360

CONTINUE

AR = QSTRC(LC=1) + (QSTRILC) « QASTR(LC-1))/
(TSREALC) = TSR(LC=1))s(TIME = TSR(LC=1))
GO T0 520

IF(TD = TSR(NT))1400:400,500

DO 420 JC = MCsNT

IF{TIME = TSRUJC))IAS50,4505420

CONTINUE

QR = QSTR(JC=1) = (GSTR(JC=1) = GSTRLJICIV/
(TSREJC) = TSREJC=1)IS(TIME = TSR{JC=1))
GO 10 520

GR = QSTRI(NT)

CONT INUE

==<«CALL SUBROUTINE TO GENERATE COLUMN VECTOR (2N X 11

JSATCH = 1
CALL VECTRUCSV1,FAC25QLATsYOsV¥QsSOsACCaXLIQRIRNIND,
ANsPNs GRESLONSLOINSLOIMpJSHTCH)

««=GENERATE JACOCBIAN MATRIX,

LUP = 0

CALL JACCEI(BSRIFACL1sYNsYNsXLIQLATSQRIRNS
ANsPNs» QREsHYD 9SO ACCILDIMLONSLOININLILK)

==« ITERATE TO CONVERGENCE FOR EACH TIME STEP,
00 590 LL =19 IMAX

LAST = 2&N1

JSHTCH = 2

LuP = LUP + 1

CALL VECTRUCSV23sFAC1sQLATsYNsVNsSOsACCs XL2QRsRNsN1s
ANSPNs QRESLONsLDINs LOINs JSWTCH)

DO 530 K = L1sLAST

CSV2(K ) = CSV2(K) = CSV1i(K)

CONTINUE

~«=QBl AIN SOLUTION VIA TRI=-DIAGONAL SUBPROGRAM.
CALL 3TRIDGICSV2s8SRsDTPHIVELY sLDIMSsLDINSN1,LK)
~eaUP)ATE THE NODAL GEOMETRIC PARAMETERS.

CALL GEOMTR{ACF sANSHYDSQRE»PCFsPNsYNsRNsN1sLDIN)
DO 55 L = 1sNl

RNC(L) = ACC+RN{L)*42/2,2082

JS = N1 - 1

VEC = QRZAN(1)

YELY(1) = VYN(1) = VYEC

=== CHECK FOR RELATIVE CONVERGENCE FOR ALL VARIABLES.

JERR = 0
DO 56) J =1sN1
Y81 = ABS(DOTPHL YY)

v8l = ABS(VELY(J))
Y82 = YN(J) = DTPHIJ)
VB2 = YN(J) = VELYLJ)
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88
89
90

92
93
94

95
96
97
938
99

100

101
102

103
104

105
106
107
108

109
110
111
112
113
114
115

116
117

118
119
120

121
122

123

124

125

[a N 2]

0o

onoon

Oon

560

570

580

585

590

600

680

700

710

720
750

900
920
$30
950
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YB3 = MAX1{ABS(YB2),ABS{YNIIID)

VB3 = MAXL1(ABS(VB2),A8SIVN(JID)

IFLYB3 LLEe 040 +O0Re VYB3 JLEe 0,0)GO TO 570

YERROR = YB1/Y83

VERROR = VBLl/VB3

IFLYERRGR oLEe¢ DETA AND, VERROR oLEe DETVIJERRaJERR+L
CONTINUE

=== SEITCH CURRENT VALUES OF DEPTH OF FLON TO OLD ONESe
D0 58) L=1sAN1

YNEL) = YN(L) =~ DTPH{L)

VNAL) = VYNC(L) = YELY(L)

CONTINVE

IF(JERR .EQe N1) GO YO 600

=== CHECK IFf SPECIFIED ITERATION LIMIT IS EXCEEDED.

IFLJERR +LTe N1 <ANDe LL +GE. IMAX) GO TO 920

===UPDATE THE JACOBIAN MATRIX AT EVERY 3 ITERATIOS.
IF(LUP = 3159035855585

CALL JACOBI(BSRsFACLsYNsVNsXLsQLATSQRIRNS

ANsPNs QRE>HYD9S09 ACCsLDIMILDNILDINSINL LK)

LuP = 0

CONTINUE

== UPDATE OEPTHS € VELOCITIES OF PREVIOUS TIME STEP,

DO 683 J=1sN1

VadJy) = YN(J)

YOtJ) = YNLJ)

CONT INVE

wee PR INT QUT RESULTS.

IF{TIME = TPRINT + ,003)75057005700

TPRINIT = TPRINY + TTA

TM = TIME/TARIT

DO 71) 4 = 1sNt

QRE(J) = ANLJISYNL(J)

CONTINVE

WMRITE(LPs720)TMIQRE(1)IsYNC(I Do VN(1)sQREC13Ds YN(13)VNILI)
QRE(N1 )os YNCNL1)sVNENL)

FORMAT ( 2X9F104235X9 3F10,395Xs3F1043s5X93F10.,3)
IF{TIME « TSUM)S90099505950

eme ADVANCE THE TIME STEP.

CONTINUE

WRITE(LPL 2930}

FORMAT ( //7/710X3°MAXe ITERATION LIMIT EXCEEDEDe?®)

sST0P

END

-

SEXEEREEE R SEBESREE LR RS EREERNSEESEE LRSS SR SEEXEC RSB IEEERR N SE SE IR KL S

=
-
L 3

1
.

SUBPRIGRAM TO READ AND ECHOE INPUT DATA

SUBROUTINE READW( ASFIOETASDETVIQLATSQRE sPSFsQSTRs TSR
NT s TPRINTsTTAs TSUMe TS TETHAS SO IMAX XL YOsNLIsNRILPsLDNSLDIN)

SEEEENEEEE CE XX E X XL EE EEFE RS SR U EERVEE B EE X RS X R AL EEECE KA EE LI EQ ER AL R

1

DIMENS ION ASF{(5)sPSF(S1QLAT(LON)SQRE(LDIN) s XLILON) s YOLLDINY)
QASTR(NT )s TSRINT)

~==READ TIME PARAMETERS.
READ(NR SO ITPRINT s TTAs TSUMs .

-
]
]

L 3



126
127
128

129
130

131
132
133
134
135
136

137
138
139

140
141
142

143
144
145
146

147
148

149
150

151
152

153
154

155
156

157
158
159

169
161
162
163

50

890

90

110

1490

150

160

179

180

190

200

220

2490

300

GUN

1
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FORMAT ( 4F10.2)

READ(NR 98QITETHASDETASDETVs SOs IMAXaNL

FORMAT{ 4F10,4,2110)

===READ UPSTREAM BOUNDARY DISCHARGE HYDROGRAPH.
READI(NR 390 1C(QSTRIL)ISL = 1,NT)

READ(NR 390)(TSR(L)sL = LaNT)

===READ INITIAL DEPTHS OF FLOWSDISCHARGESLATERAL FLOWE SPACINGe

LON = N1 - 1

READ(NR3011C(YO( J4)sd = 1,N1)

READI(NR9Q MM QARE(JIIsJS = 13N1)

READU(NR 90 )I{QALAT(JIsJ = 1:LON)
READINR 290 IC(XL(JIsd = 1,L0N)

FORMAT ( 6F12.5)

~==READ ORDOER OF POLYNOMIAL EQ.

READ(NRs110J0RD

FORMAT ( IS5

LR = JORD + 1

~«=READ AREA & WETTED PERIMETER POLYNQe COEFF, MATRICE
ONE 04w AT A TIME.

READI(NR140)CASF(J)sd = 14LR)

READINR 3140 MM PSFlJIIsd = 1,LR)

FORMAT{ 5F1045)

«==PRINT QUT INPUT DATA,

WRITE( LPs150)

FORMAT { 1H1)

WRITELLPs160IN1,»TsS0O

FORMAT ( //7720X3*TOTAL NQOe OF NODES =°31I5//720Xs
STIME STEP =%,F10,331X9°SECe*//20Xs*CHANNEL BOTTOM SLOPE =9,
F10.4) "

WRITEL LP21TOITETHAY IMAXSDETASDETY
FORMAT ( /720X *TIME WEIGHTING FACTOR =%9F1044//720X s
MAXe ITERATION LIMIT =*515//20Xs

*CONVERGENCE CRITERIA FOR DEPTH =®3F10.47720Xs
*CONVERGENCE CRITERIA FOR VELQCITY =2°3F10.4)

WRITEILP 180 IsTSRCJIISQASTRIJUDIsY = 1sNT)

FORMAY ( ///7/723Xs *UPSTREAM DISCHARGE HYDROGRAPH®/ /20 Xs
2J%s5K s *TIME PERIQD®s5SXs *MEASURED FLOW®/7/70(20Xs1294Xs
F1l0e1s 3X9F10e1))

WRITEILPS190)(KsYOCKIsQRE(K)IsXK=L1sN1)

FORMAT( //7/7/7/720X3s* NODE®* 95Xs? INITIAL DEPTH®*sSXs*INITIAL DISCHARGE®
//7018K 91338X9F10e3012X9F1063))

NRITE( LPs2000¢JsXLEJIsQLAT(JDsJ =1sLON)

FORMAT { ////7/720X s *REACH® s 9Xs *LENGTH? 39X *LATERAL FLOW®//( 20Xs
I398Xs F10,255X9F10646))

WRITE( LPe220)

FORMAT (//7/7/720X s FOURTH=-QORDER REGRESSION COEFFe FOR AREA®*//23X»
P0=-TH* 9 TXs®1ST*s7Xs *2ND?s7X3s?3RD*s7Xs°4TH?)
WRITELLPI00ILASF(J)sd = 1sLR)

WRITELLP2240)

FORMAT ( //777/720X s FOURTH=0RDER REGRESSION COEFFe. FOR RETTED
PERIMETER® /7/23X 0% 0=TH? s 7X»*1ST® s 7Xs*2ND* 97X *3RD* 57 X3%4TH?)
NRITELLP 30Q03(PSF(JIsd = 1sLR)

FORMAT{ /720X ,5F10.5)

RETURY

END

SEBECEREE SRR EEESE S EES SR ES L ECEBE S ES B EFE LIS SR EBEE ST R SS SR SG ER S
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164

165

166
167

168

169
170

171
172

173

174
17s
176
177
178

179

180
181
182
183
18»
185
186
187

188
189

o060 OO OO0

OO0

(s s XaN 2}

[a X2 N2

L2 3R B BN 2N

-
®
-

200

300
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SUBPROGRAM TO UPDATE THE NODAL FLOW AREASWETTED PERIMETER »
MANNING*S ROUGHNESS COEFF, € THE CHANGE IN HYDRAULIC

RADIUS wITH RESPECT TO DEPTH

LK 2R 2K 2R N

SUBROUTINE GEOMTRLASFsAXsHYODsQXsPSFsPXs YXsRCaNLSLOIN)
.
.
SHSASEEE K E RS E R R XSS CE AR ESEAEE X B AR RS SE R SEESE RS ST RSN S EE SR XS §
DIMENS ION AXCLDIN)I»HYO(LDIN}sPX{LDINIsVXCLDINI»ASF{5)s PSF(S)s
1 QX(LDIN)}»RCL(LDIN)

~weCOMPUTE THE NODAL FLONW AREASNETTED PERIMETER AND
MANNING®S ROUGHNESS COEFF,
00 20) J = 1sN2
AX{J) = ASF(1) ¢ ASF(2)8YX{J) + ASFI3I)eYX(J)*s2 +
1 ASF(4) sYX{J)1*%3 + ASF(5)eYX{J)s=4
PX4Ju) = PSF(1) + PSF(21sYX{J) + PSF{3)sYXLJ)es2 +
1 PSF (A 2YX{J)ws3 + PSF(S)sYX(JIexA

RClU) = 0,03713 + 0.14097E=-05%QX{J) + 0,41739€E=10+»
1 GX(JIe %2 = 0,230004E-144QXL J)*23

CONTINUE

ce=COMPUTE THE NODAL RATE OF CHANGE OF HYDR. RADIUS

DO 300 XK = 1sN2

STOR1 = ASF(2) + 26 #ASF(3)uYX(K) + 3esASFlA)eYX{K)E22 ¢
1 AL#ASF{S5IsYX(K)ne3

STOR2 = PSF(2) + 2*PSF(3)sYX(K) + 34#PSFLA)eYX(K)xn2 ¢
1 4,2PSFL5)aYX{K)*e]

HYD(K) = (STORL#PX{K) = STOR2%AX(K)I/PXLK)s=2
HYD(K) = AB8SIHYDIK))

CONTINUE

RETURN

ENO
EEREEREE EXAI SRR AL R EE XX SE SRS A EX AR EERERSSEASASERREXESE RR SRR
. ]
- SUBPROGRAM TO GENERATE COLUNMN VECTOR (2NX1) s
L] I

SUBROUTINE VECTROCXVsFACSQLAT s YXsVX3S0sGsXL3QTs
1 RXsN1s AXePXsQRESLDNSLOINSLDIMs JSNTCH)
. .
SEEEIRIE KSR EREEEE SR B ERE VA SRS ISR ER AR SAEC A FEEEESEEESE S FR B KNS

DIMENS ION CXVILDIM) QLAT(LDN)sYX{LOIN)s VX(ALOIN)sXL(LDN)
DIMENS ION AXCLDIN)s QRE(LDIN)IsPX(LOINISRX(LDIN)
K =1

PS = 8,/3

LSTP =2 N1 = 2

SPK = QT/7AX(1)

RY1 = (AXC1)/PX(1))ssPS

RY2 = (AX(22)/PX{2))s=pPS

~aelyUPSTREAM NODAL COLUMN VECTOR.

A = (2e%XLl1) ¢ FACH(VX(2) = 4¢55PK)IeVX(1)

B = (XLU1) + FAC®(2,5VX(2) + SPK)IsYX(2)



190
191
192
193

194

198
196
197
198
199
200
201
202
203
204
205
206

207
208
209
210
211
212
213
21s
215
216
217
218
219
220

221

222
223
224
225
226
227
228
229
230
231
232
233
23s
235
236

237
238
239
240
241

50

80

90

100

150

200

C = 3, #FAC*QLAT(1)=XL(1)

€ = (4eoXLULI=FACS(2.3VXIL)+VX(2)DIeVX(L)

F = (2¢3XLe1)= FACS(VX(1)+2,4VXL12)))sVX(2)
GP = 2, #FACSRX(1)eXL{1)#(2.eVX(1)ss2/RY1 +
VX{2)e=2/RY2)

H 3 2, sFAC®(2,4XL (1 )5QLAT(L)*VX(1)/YX(1) +
XLC1)sQLATI1daVX(20/7YX(2))

P = 6, sGEFAC®(YX(2) = YX{1))

S = 6o #GeSOsFACEXLL1)

IF(JSERTCH = 1) 50550980

A = (Qe#XL{1) = FACH(VXI2) = 4.825PKIIeYX(1)
B = (XL(1) = FAC®(2,8VX(2) + SPK)IsYX(2)

E = (Aoe®XLE1) + FACS{2.2VYX{1I+VXL2)))aVXLL)
F = (2e¢XLU1) + FACSIVX(1)42.8VX€2)))eVX{2)
CXv(1l) = A + B*» C

CXV{2) = €E + F « GP = H =P + S

GO 10 90

CXVil) = A +8 = C

CXV(2) = E +F + GP + H + P = §
«==INfERIOR NODAL COLUMN VECTORSe.

D0 200 J = 1sLSTP

K =
M=
RD1
RD2
RD3
Al
B8I
cI
01
El
FI
GI1
HI

PI 3 2, #FACS(QLAT(II®SXLOUI®VX(JII/YXEJS) + 2ex{ XLLJI*QLATLU )+
XLEJ+1 ) =QLATE J+ 10 )2 VXEJ+1/7YXLJ+1 D) +QLATULU+1)eXL{J*1 )=

K ¢+ 2

+ 1

(AXCJI+1)/PX(J+1) ) *3PS
CAXCJI+2)/PX(J+2) ) %x»PS
(XLEJ) = FACS(VX(J+1) + 2.2VYX(JI DI 2YXLY)

K
= (AX{JI/PXLJ))sxPS
=
=

(2200 (XLAJI+XLIIPL)) + FACECVYX(I+2I=VX(JI ) ISTX(J+1 )

I XLEJ*1) ¢ FACK(2.%VXIJ+2)+VX(J+1) ) deYX(J$+2)
3¢#FACS(QLAT(JUISXL(J) + QLAT(J+L)sXL(J+1))
(2e%XL{J) + FACER(2.3YX(JI+VXIJI+1)D))a¥XLJ)

(A eslXLLIJI+XLEIY+L)) + FACSLVXCII=VXLJI+2) ) DeVXLJ+Ll)
(2e4XLLJPL1) = FACE(VXCU+1)+2,2VXLJ+2) ) )0VX(JI+2)

120

20 *FACERX( J+ 1) XL{JIsVX(J)*22/R01 + 2.3(XLIJI+XL(J+1))s
VX(J+l ) $32/RD2 + XL{J+1)s¥X(J+2)*x2/R03)

VXCJ$2 D/YXEI+2) )

QI = 50 *GaFAC{ YX(J42) = YXLJ))

SI = 5¢#GaSO*FACH(XLIY) + XL(J#1))
IF{JSHTCH - 1)100,100,150

Al
81
CI
EIX
FI
GI

=
=
=
=
=

(XLUGJ) + FACSIVX(J+L) +2.2YX(J ) IsYXLJD

(2e{XLEII+XLEI*1)) = FACSL{ VX(J+2)=VX{J)))eYXLU+1l)

CXLEJ+L) = FACH(2,5VX(JU+2)+VX(J+1) ) )sVXLiye2)
(2:%XL{J) = FAC®(2,3VX(J) + VX(J+1))Is¥X(J)

(e x(XLEJII+XLUI+1)) = FACHIVXLJII=VXCJI+2) ) IaVX(J+L1)
12e2XLAU*L1) + FACH(VX(J+1)+2, eV XLJI+2) ) Ie¥X(J+2)

CXV(K) = AI « 8I + CI + OI

CXV(M) = EI ¢« FI + GI = HI - PI « QI + SI
GO TO 200

CXV(X) = AI + BI + CI - DI

CXV(M) = EI + FI + GI + HI + PI + QI = SI
CONT INVUE

~e=DO0WNSTREAM NODAL CALCULATION.
HT1 = AX(N1=1)/PX{(N1=1)

HT2 = AX(N1)/PX(N1)

RY3 = HT1ssPS

RY4 = HT2sePS

AN = ( XL(NL=1) = FACS(VXI(NL)+ 2, 2VX(N1-1)))2VYX(N1=1)



242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

237

258
259
260
261
262
263
264
265
266

267
268
269
270
271
272
273
274
275
276
277

278

279

280
281
282
283
284
285
286

HOOOO

[3 X2 X3l

300
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BN = { 2,5XLIN1=1) + FAC*(A,«VXI{N1) =VXI{N1=1)))sYX(N1)
CN = 3 4 *FACSQLAT(NL1=1)%XL(N1=-1)

GN = FACSRX{NL)ISXLINLI=1)a(VXINLI=1)*22/RYI + 2,8YX{N1)«s2/RYSH)
PN = 3, #GsFAC*( YX(NL1) = YX{Nl=1)}

SN = 3,5GeSO*FAC*XL{N1=~1)

IF(JSHTCH = 1130053005400

AN = ( XL(N1=1) + FACH®(VXINL) + 2.=¥X{N1=1)))eYX{N1=1)
BN = (2e%XLi{NLl=1l) = FACS{4,.3VX(N1) = VYX{N1=1)))sYX(N1)
CXVELDIM=1) = AN + BN + CN

CXV(LDIM) = SN « GN = PN

G0 T0 SQ00

400 CXV(LDIM=1) = AN + BN - CN

500

CXV(LDIM) = GN + PN - SN

RETURN
END
ABESEEAE EEXFEEE SR SR A SRR SR SEEEB LR ISR LSS S S X XS SRR EXE X SR SR BR K
=
SUBPROGRAM TO GENERATE THE JACOBIAN MATRIX. .

*®

SUBROUTINE JACOBI(BTRIFACSYXsVXsXLsQLATsQATsRXS

1 AXsPXs QRESHYD9SOsGsLOIMsLDNSLDINSNLISLK)

*

FEEEXREE ESESEEEEE L REFSEE L EXESEEEEEE B EE SR L AE LS EES AL S L SE KB SE

DIMENS TON BTR(LOIMsLKISQLAT(LON) s VX(LDINIsYXCLDIN )s XLELON)
DIMENSION AX(LDIN)SQRE(LDIN)I+sPX(LDINIsHYD(LDIN) sRX(LOIN)
K =1

PH = To/3.

PS = 84/30

SPK = QT/AX(1)

SSK = SPX/YX(1)

RD1 = AX(1)/PX¢1)

RD2 = AX(2)3)/7PX(2)

wo=EVYALUATE THE JACOBIAN TERMS FOR UPSTREAM NODE.
BTR(1s1) = 0e0

BTR(1s2) = 0.0

BTR(21) = Q.0

BTR(2:2) = 0.0

BTR(1s3) = 2,8XLU1) + FACS(VX(2) = SS5KsYX(2))
BTR(1s4) = 0.0 .

BTR(1s5) = XL(1) + FAC®({2,2V¥X(2) ¢+ SPK)

BTRI196) = FACS(YX(1) + 2,%YX(2))

STORY = A,.#PS+RX(1)eXL(1)aVX(1)es2«HYD(1)/RDOLs¢PH

BTR(293) = «FACSUSTORL + 4¢*XL{1)*QLAT{1)sVX(1)/YX(1)e22460%G)
BTR(254) 3 4e*XLL1) = 2,«FAC®{2,8VX(1) + VX(2) =

4o5XLI L)SYXUL1IeRXL1)I/RDL1#2PS = 2,xxL(1)sQLAT(L)/YX(1))
BTR(295) = =2,5FACS(PSERX(1)sXL(L1)IsHYOD(2)aVX(2)ss2/RD2sePy +
XLE1)s QLAT(1)aVX(2)/YX(2)%%2 = 3.%G)

BTR(256) 3 2e8XL{1) = 2,8FACSIVX(1) + 2,8VX(2) = 2, %#RX(1)s
XL€1)e VXE2D/RD2+sPS = XL(L1)=QLAT(1)/YX(2))

~==EVALUATE JACOSIAN TERMS FOR INTERIOR NOOES.
LSTP = N1 - 2

00 300 J =1,LSTP

K = + 2

L + 1

RO1 AXCJI/PXCID

RO2 AXCY+1)/PXEJ+1)

RO3 AXCY+2)/7PXC 4+2)

XX



287
288
289
290
291
292
293

294

295

296

297
298

299

300
301
302
303
304
305
306
307

308

309
310
311
312
313
314

315
316

317

318

319

(a2 N2 Ns]

OO0
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BTR(Ks 1) = XL(J) = FACS(VXIJ+1) + 2,3VX(J))

BTR{K»2) = =FACS(2.2YX{J) + YX{y+1))

BTR(KS 3) = 2e0( XLLJI*XL(J+L)) + FACR(VX(J+2) =VX(J))
BTRUKe 4 ) = FACR(YX(J#+2) = VYXIJ))

BTRIKs S) = XL(J+1) + FAC#H(2.5VX(J+2) + VX(J+1))
BTR(KI 6) = FACS{YX(J+Ll) + 2,2YX(J+2))

BTRIMs 1) = =2, 4FACH(PSERX(J+1)sXL(JI*VYX(JIes2sHYD(J)/RDL*ssPN +
1 XLU{JI®QLATLUISVX( JDI/YX{J)®2 + 3,¢G)
BTR(MI 2) = 2, 8XLLIJ) + 2.%FACS(2,8a¥YX(J) + VX(Jy+1l) +
1 2.*RX{ J+1L)2XLAJ)SVX(JI/ROL*ePS + XLCJI®QLATLIIZYX(J))
BTRIM 3 ) = =4, sFACS(PSERX(J+1)Is( XLEYI+XLIJ+1) IsHYD{ U+1 )e
1 VXCJU+L ) 332/RD2%sPH + (XL(JDI®QLATC(YI+XLEJ+1 1#QLAT(J+1))sVX( J+L )/
2 YX{J+l )s=s2) .
BTR(My 4 ) = 4,8 XL{J) + XLIJ*L)) + 2, 25FACHVX(J) = VXIJ+2) +
1 A, RXCJ+1IFIXLEID) + XLCU+LD) IsVXLJ+1 )/RD2%2PS + 24 s{ XLEJISALAT(J )+
2 XLEJ+L ) sQLAT(U+1) )7 YX(J+1))
BTR(M 5 ) 2=, sFACH(PSERX(JI+1IaXLI{J+1)sHYD(I+2)eYX{J+2) sx2/
1 RD3#sP N + XLIJ+1)sQLAT(J+1)=VXYL DI/YX( Y421 %22 = 34 %G)
BTRIM 6) 3 24 «XLiJtL) = 2,%FACEIVIIU+L) + 2,8VX(J+2) =28
1 RXUEJ+L D XLCJ+ 1) eVXCU+2)/RD328PS = XL(J+1DI2QLATEJ+1)/7YX(J+2))
CONTINUE i
ea=EVALUATE JACOBIAN TERMS FOR DOWNSTREAM NODES.

L8 = LDIM - 1

RDN1 = AX(N1=1)/PX{N1=1)

RDN2 = AX{N1Y/PX(N1)

BTR(LB91) = XLIN1=1) = FACS(VXINL1)+2.2VXI{N1=1))

BTR(LB 92) = =FACS(2,8YX{N1l=1) + YXI{N1)) -

BTR(LE93) = 242XL(N1=1) + FACxs(AsVX{NL)=VX(N1~1))

BTR(LBs4) = FAC*(4,5YXI(NL1) = YX(N1=1))

BTR(LI IMel) = «2,3FACH(PSsRXI(NL)IsXL{Nl=1 )eVXI{NLl=1)s2aHYD(N1=1)/
1 RONL*ePH + XLIN1=1)«QLAT(NLI=1)sVX(N1=1)/YX{(N1=1)%x22 + 3,¢G)
" BTR(LDIMe2) = 2,8XLIN1=1) + 2, #FAC*(2,¢VX{NI=1) + VX(N1) +
1 2,*RXIN1)=XLINL1=1)sVX(N1~1)/RONL*=PS + XL{N1=1)2QLAT(N1=1)/
2 YX{N1=:1))

BTRILOIM93) = =2, 2FACH{ 2. *PSERX(NL1)IsXLINL1=1)aVX{N1)s+2sHYD(NL1)/
1 RON2*xPU + 22¢XLINL=1)sQLAT(N1=1)sVX{NL1)I/YX(NL1)8%2 = 34%G)

BTRILDIM9A) = Ao8XLINLI=1) + 2, 5FAC*(VX(NL1=1) + 2,sVX(N1) +
1 A4,3RX{N1)sXLINL1=1 )2 VX{NL1)/RDN2%sPS + 24 %ALINLI=1)sQLAT(N1=1 )/
2 YX{(N1))

BTR(LB»5) = 0,0

BTR(L3Is6) = 0,0

BTR(LDIMsS) = 040

BTR(LIIMs6) = 04,0

RETURN

END
SEREXLEE S SIS SR ES SR SEL A ERE XX EEES S ARSI ELEASE ST SR IS S S48
] .
€ SUBP ROGRAM FOR SOLUTION OF A BI-TRIDIAGONAL MATRIX. -
] L

SUBROUTINE BTRIDG(COLIVELsYXsVXsLDIMsLDINsNLIsLK)
] -
L ] ) .
SEETCAEE ESESLECE A SLEES XL EREFEE IR SESSE LS XSS SESESE SRS SR ES $5 S
OIMENS ION YEL(LOIMsLK)Io YX(LDIN) s VXCLDIN)sCOL{LDIM)»
4 BETA(N ) sDETA(2)9S5SAC(2694)5GAMA(2612)

~«=PEIFORM MATRIX REDUCTION OPERATION
K = 1



320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

341
342

343
344
345
346
347
348

349
3590
is1

352
353
354
355
356
357
3s8
359
360
361
362

100

159

180

200

300

SENTRY

D0 20) J = 1sN1
IFtJ = 1010021005150

BETA(L)
BETA(2)
BETA(3)
BETAW)
DETALL)
DETA(2)

=
=
=
=
=

VEL(1,+3)
YEL(1s4)
VEL12s3)
VEL{2+4)
coLel)
CcoL(2)

ZU = BETAC1)sBETA(A) -~ BETA(2)+BETA(3)
IF{2U .EQ,
SAC(1s1) =
SACL1,2) =
SAC{1s3) =
SAC(1s4) =

GO TG 1
K = K +
" =K+
BETALL )
BETA(2)
BETAL3)
BETA{(Y )

DETA(1)
DETA12)

80

2
1
=
=
=
=

De0)2U = 0,001

(BETALA)SVEL(195) = BETA(2)«VELL2:50)/7 2V
(BETA(AISVEL(156) = BETAL2)sVEL{2s6))/72V
(BETA(1)sVELL2s5) = BETAL3)I=VELI13S5) )72
(BETACL)sVEL{2:6) - BETACI)*YEL(196))/72V

VEL(K33) = VELIK31)%SACIJI=191)=VEL{KS2)sSAC(JU=1s3)
VEL(K 34 )= VELIK31)&SACIJ=152)=VEL(KI2)5SAC(J=194)
VELIM 3 )= VELI{Ms1)sSACLJ=151)=VELIMe2)sSAC(J=1s3)
VELIMsA )= VELA( M LI %SAC(JU=192)=VEL{Ms2)%SAC (J=1s3)

COLIKI=VEL(Ks1)*GAMA( U=131)=VEL(K 2 )2GAMA(J=152)
COLUMI=VELIM L )*GAMAL U=191)=VELIM2)GAMALJ=152)

ZU = BETA(1)=BETA(A) = BETA(2)+BETA(3)
IF(2ZU «EQ.

SAC(Js 1
SAC(Js 2
SAC{Jus 3
SACLJs 4

)
)
)
H

=
=
=

002U = 0,001

(BETALAI=VEL(KsS )=8ETA(2)8VELIMSS) )/ 2ZU
(BETACA)AVEL(K6)=BETAC22)4VELIM6)I/2V
(BETAC1)=VELIMs5) =BETA(3II*VEL{Ks5))/72U
(BETACL1)SVEL{M161) ~BETA(3II*VELIKI6))I/ZV

GAMA(J s 1) = (BETA(AISDETALLI-BETA(2)=DETA(2))/2U
GAMA{JY 3 2) = (BETA(L)*DETA(2)=-BETA(3I*DETA(L1))I/ZVY

CONTINU

€

~==COMPUTE SOLUTION VIA RECURSIVE EQe
LIMIT = N1 - }

JK = L INIT
32 GAMA(LDINs 1)

= GAMA(LDIN»2)

L = 1sLIMIT

2 GAMA(JK31)=SAC{JIKs 1)aYXEJUK+L)I=SACLUKs220VX(JK+1)
2 GAMA(JKS 2)=SAC(JK» 3 ) eYXIJUK+1)=SACLIKs4)RYX(JK+L1)
JK = yK = 1

CONTINVE

YX{N1)
VXE{NL)
DO 30
Y XCJK)
VXLJK)

RETURMN
END

123



APPENDIX F

SAMPLE OUTPUT FOR WICFEM

124



125

The sample output listed in the pages following is the format
with which the input parameters are reprinted for correction and refer-
ral. A clear illustration is drawn from a natural channel simulation
of I11inois River, using flood of April 10, 1979, and the complete flow

model.



TOT AL NO, OF NQODES = 26
(o
TIME STEP = 18000000 SEC.

CHANNEL BOTTOM SLOPE = 0.0009

TIME WEIGHTING FACTOR = 005500
MAX o ITERATION LIMIT = 690

CONVERGENCE CRITERIA FOR DEPTH =

0.0100
CONVERGENCE CRITERIA FOR VELOCITY = 01000
UPSTREAM DISCHARGE HYDROGRAPH

J TIME PERIQOD MEASURED FLOMW

1 0.0 48240

2 50400.0 - 7570

3 64800,0 559040

4 79200,0 771040

S 86400,0 11000.0

6 100800,0 229890.0

7 12960040 1132060

8 158400,0 510040

9 172300,90 411060

10 208800.0 310440

11 345600.0 172240

NO E INITIAL DEPTH INITIAL DISCHARGE
1 3¢ 340 482,000
2 36340 482,000
3 3¢ 340 482.000
4 30340 482.000
- 3e 340 482,000
6 34340 482,000
7 36340 482,000
8 3¢ 340 482.000
9 3340 482,000
10 3e 340 482.000
11 3.340 482,000
12 3e 340 432.000
13 30340 482000
14 36 340 482.000

126



15
16
17
18
19
20

22
23
24
25
26

REACH

H

K)WL‘W NN
}
;

10
i1
12

14
15
15
17
18
19
2)
21
2

2

30340
3¢ 340
3« 340
30340
3e340
3e 340
30340
36340
3¢ 340
3340
30340
3¢ 340

LENGTH

10560.00™
10560.00.
10%560.00/
105604007

10560.00
10560.00
10560.00
10560.00
10560.,00
10560,00
10560.00
10560.00
10560.00
10560,90
10560.,00
10560,00
10560.00
10560,00
10560.00
10560.00
10560.00
10560,00
10560.,00
12672.00

482.000
482.000
482.000
482.009
482,000
482.000
482,000
482.000
482,000
482,000
482,000
482,000

LATERAL FLOM

0.000000
0.000000
0.000000
0.000000

10560.00 ' 04000000

0.000000
0.0000590
0000000
0000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0000000
0.000000
04000000
0.000000
0000000
0.000000
0.000000
0.000000
0.000000

FOURTH=-ORDER REGRESSION COEFFe FOR AREA

0~TH

-32,01320

1s7T

84,60530

2ND 3RD

5447340 0.91215%

FOURTH=~ORDER REGRESSION COEFF. FOR WETTED

0=TH

10,08235

187

57.67010

2ND 3RD

-4,90130 0034127

ATH

«0,00452

PERIMETER

ATH

«0.00601

127



TINE(HR. )
1. 00
2. 00
3.00
4,00
5.00
6.00
7. 00
8. 00
9. 00

10. 00
11.00
12,00
13.00
14.00
15.00
16. 00
17,00
18. 00
19. 00
20,00
21.00
22.00
23.00
24,00
25.00
26. 00
27.00
28.00
29.00
30.00
31.00
32,00
33.00
34.00
35.00
36. 00
37.00
38.00
39.00
40.00.
41.00
42.00
43,00
44,00
A5.00
46.00
47.00
48,00
49.00
50.00

UPSTREAM

DIS CHARGE
501.643
521 . 285
540.928
56).571
58) + 214
599.857
619. 500
639. 142
653,785
675,428
693,072
T17.714
737.357
757000
1965+ 249
3173, 499
43614742
5583 0992
611).992
6649 .992
T7179.992
7703 .992
935V, 992
10993, 990
13994 .990
16983 + 990
19984 .990
22979 .990
21322.490
20064 . 990
18607 . 490
1715 .000
15692. 500
14235.000
12777 .500
1132).000
10542.490
97644996
8987 . 496
8203 .996
74324496
6655« 000
5877 4500
$10).000
4852496
4604 .996
4357 .496
4109.996
4009.399
3908.799

OEPTH

2. 854
24895
3.060
3a148
30132
3. 199
3.292
3331
3.3717
3.449
3.501
3.539
3.589
3.65%52
5.978
7.102
84519
9.264
9.512
9.790
10.503
10.741
11.758
12.304
13.543
14,924
16389
17.102
16.609
16.373
16.201
153.598
14,766
14.530
13.486
12.740
12.447
124134
11.436
11,010
10.601
9.830
Qe 427
84925
8.695
8.461
80045
8.015
7.827
7.836

VELQCITY

1.807
1. 845
1767
Le 774
1.845
1.859
1« 841
1.863
1.883
1.882
1.892
1914
1.927
16928
2306
24760
2691
24907
3.037
3167
24913
3.008
2. 948
3+ 264
3. 307
Je 267
3.006
30235
3.165
3041
2917
2.981
34063
2.861
2998
3. 059
3.033
2.887
3.032
3.070
2.935
3.080
3.017
2,848
2,840
2 829
2,935
2. 830
2.881
2805

MIDSTREAM
DISCHARGE DEPTH
5654813 3.340
606,491 . 3.340
628,423 3.340
644,660 3,349
665.587 3,384
699.077 3.460
740.850 3.560
778,815 3,652
806,762 3. 119
8264363 3.765
837.804 3.793
840,218 3,799
838,264 3,794
842,533 3,801
864,539 3,847
908,835 3.939
983,721 4,092

1095.981 4,311
1235.558 4,570
1365.832 4. 807
1466,053 4.983
1591.610 54199
2041,995 5.766
2905.542 64715
3825.629 T.613
4662.191 80349
5413.211 8.958
6137,531 9,494
6763.383 10.0600
7510.277 10,508
8483.727 11.031
9466,043 11,5682
10539, 300 12.153
116564490 12.732
12632.130 13.303
13835,280 13.835
14774,170 14,301
15524.680 14,671
15938.890 314.932
16219.390 15,060
16113.430 15.077
15850.500 15.002
15419,760 14,850
14851.550 14,635
141686,860 14,360
13430.570 14.035
12682.,270 13.658
11765.590 13,226
10807.480 12,737
9824.559 12194

VELOCITY

1.640
1.758
1.821
1.860
1.891
1.923
1935
1.980
1.996
2,007
2.013
2.013

2,012

2,015
2,032
2,061
2.106
2,166
2.230
2.277
2,307
2.329
2529
2.766
2.906
2.980
3.019
3.056
3.035
3.048
3.113
3.137
3.152
3.154
3.107
3.119
3.091
3.069
3,032
3.019
2,995
2979
2.963
2.952
2.939
2,933
2,944
2.932
2.923
2,919

DOKNSTREAM
DISCHARGE DEPTH
3460570 3e3127
618. 323 3¢296
656.780 3.327
669,159 3343
6640 443 3e346
6616311 3344
6591336 34343
657959 Je3A2
657,274 3341
656,856 3.341
6560619 3340
6564492 3e340
656+ 4186 34340
655+ 431 34340
6560830 30341
6584747 3e3456
6644 227 34359
6764106 3.387
695. 399 3.438
722.138 30502
7524192 3.575
779.893 3.644
802,375 3.703
821.331 3e748
834.800 3.781
850. 8060 3.818
873.799 3.876
925,853 3974

1002.750 40117
1125,035 44336
1323.278 44697
1660.693 54246
2272.846 5.982
2980.063 6.748
3649.134 Te374
4363.063 8.068
4932, 383 8.595
5637.734 9.049
62214613 9452
6763.055 9.960
TAT1e414 10340
8095, 895 10.741
8579.770 11.098
9299, 203 11.428
9919.613 11.798
10523.770 12.111
11093.8%90 12,383
11604,490 12.668
12074.970 12.882
124644820 13,103

VELOC XTY

1.68
1.850
1.91
14937
1.920
14913
1908
1.906
1.9 4
193
14903
1902
1902
1.802
1903
1504
1.99%
1920
1.934
1.952
l1.972
1.906
1998
2.008
2.0t 8
2.023
2.037
24072
2.11 6
24189
2.288
24430
2642
2.809
2.9 2
2.973
3.023
3.0804
3.104
3.106
3.138
3139
3.103
3.171
3.162
3172
3.180
3169
3.179
3.163

8el



51,00
52.00
53.00
54.00
55.00
56,00
57.00
58.00
59.00
60.00
61,00
62.00
63.00
64,00
65. 00
66,00
67.00
68.00
69,00
70.00
71.00
72,00
73.00
74.00
75.00
76.00
77.00
78.00
7 00
80.00
81.00
82.00
83.00
84.00
85,00
86.00
87.00
88.00
89,00
90. 00
91.00
92.00
93.00
94.00
95.00
96. 00

3803 ., 199
3707.600
3607 .000
3506400
3405.800
3305.200
3204 .599
3104,000
3067.631
3031 .262
2994 . 894
2958 ¢ 526
2922.157
28854788
2849 . 420
2813.052
2776683
27420315
2703 . 947
2667 « 579
26314210
2594 . 841
2558+ 473
2522.105
2485.737
2449, 368
2413 .000
2376.631
2343 .262
2303.894
22674526
2231157
21% .789
2158 4420
2122,052
20654634
2049.315
2012.947
1976+ 578
1940, 210
1903 .842
1867 <473
1831 .105
179 . 736
1753 .368
1722000

7.673
Te 614
74509
7399
Te 324
7195
7123
64995
7.019
6940
6933
64897
6.872
6835
64802
6.764
6.726
6.686
6. 617
6581
6537
60490
64451
60402
64368
60286
60251
60264
6.131
64186
6.063
6,037
64013
5924
5.940
$.826
5. 837
5.742
S.732
3.640
$5.653
5560
S.488
5.456
5.418
5324

24858
2,601
24807
2793
2.772
2772
24740
2. 740
24698
2720
24693
24680
24664
265¢
2,643
24635
2626
2619
24644
24626
2. 626
2619
2,612
2607
2.587
24535
2602
26554
2607
24549
2.565
2547
2520
26552
2+ 498
20534
20484
2507
24460
26495
24431
2. %40
20435
2,428
20395
2438

8829.344
7682.184
7011,.211
6257.238
5638.133
$154,316
4790,55%
4520.584
4317.703
4158,090
4036.201
3919.003
3306.999
3699.744
3599.,432
3509.756
3431.770
3363.245
3302.410
3251.927
3207.462
3166.590
3127.312
3088.362
3058.,964
3023.510
2985.725
29460345
2883,579
2876.619
2810.322
2797.600
2746.666
2688.710
2674,288
2611.124
25994255
2539.855
2526.038
2463,27%
2448.794
2389.665
2357.700
2320,382
2283.573
22331.257

11.611
11.006
10,412
9.857
9373
8.976
8,666
8.431
80253
8,112
T.9995
7.887
Te784
T.683
T.588
Te3501
Ted25
T«359
Te301
7252
T«207
Te166
Te126
T.086
T.044
7T.002
6.958
6.914
6.870
6.826
6.781%
6.736
6,691
6.644
6,399
6556
6519
6,473
64430
64383
60336
60289
60243
64197
6.151
6.103

2.910
2.906
2.6896
2,887
2.875
2,862
2.848
2.833
2,819
2,805
2,799
2.787
2,773
2.762
2.750
2.739
2.729
2,720
2.707
24699
2.692
2,686
2.680
24673
2,661
2.659
2,655
20649
2.643
2.646
2,631
2.634
2.617
2,609
2.611
2,594
2396
2.580
2,561
2.564
2.565
2.536
2,534
2526
2.518
2509

12821.030
13075.450
13275.6830
133560730
133654330
132464800
13044.680
12714.070
122944370
11748,540
110764966
102164430
9293.941
83464797
T437.984
66114473
5900.816
53194344
48654309
4543.902
4233.523
4083.307
3915.717
3778.913
=373, 560

361642918

3517.497
3434.561
3343.439
3284.313
3233.578
3176.162
3157.211
3092,535
3060. 258
3020.498
2971.886
2939.010
2889.070
28564548
2808.084
2787, 404
2744,664
2711.566
26740237
2622.735

130280
13444
13.567
13.681
13,710
13.722
13.684
13.604
13.472
13.293
13.000
12.585
12,085
11.521
10,922
10.326
9.765
9.271
8.883
8.578
84329
8.130
T.963
T.823
Te697
T+608
T«519
Te437
T7.358
T304
Te237
Te191
TelAA
7.097
7066
7.014
6.97S
6.926
64885
6.838
6.796
6745
64709
6.673
6.629
6583

34163
3.14 4
3.130
3.104
J.083
3.0%3
3.026
291
2.97
291 4
2.875
2.801
2,818
2.7%9
2787
2.778
2774
2.772
2.764
2764
2.736
2750
2781
2.3 4
2721
2720
2.708
2.70
2.699
2.683
2.691
2673
2.675
2,658
2.657
2,660
2643
2,647
2.629
2.632
261 ¢
2.612
2.607
2599
2592
2.586

6¢l
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s TIME=S
SIXEREBIE S S SRS EF S SESESELECE SRR S SEESEFE S SRS CLIE S S S SIS LS $E S
L J
] 1 = DIMENSIONAL STREAMFLOM ROUTING MODEL ]
] : ]
L ] .

SESR SRS EE EES S ECE S LTSS S S EEE BB ESSESCE LRSS ESESSEEC S L ST SE SR S
L ]
IMPLICIT OIFFUSION FINITE ELEMENT METHOD SOLVED
E
. BY ITERATIVE NEWTON=-RAPHSON TECHNIQUE
.
XSRS SL G S ENBESEEEBEEE SV S SR EEC SRS S B EESCEERNSSEEEC EESE LS XS SE B S
-
- eee DEFINITION OF TERMS cee
*
$VARIABLES UNITS ARE AS FOLLOWSS TIME(SEC)ISLENGTHIFT)
*ODETPH(F T )s VELOCITY(FTe PER SEC)sDISCHARGE(CFS)
#ACC 1S THE ACCELERATION OF GRAVITY»32.,2FTe PER SEC PER SEC
#ACF»PCF ARE POLYNO. COEFF., FOR AREA € WETTED PERIMETER
eANsPN ARE THE AREA & wETTED PERIMETER OF FLOW RESPECTIVELY
*HYD IS THE RATE OF CHANGE OF HYDR,RAODIUS WITH DEPTH
«QSTR IS THE UPSTREAM INFLOW DISCHARGE HYDROGRAPH
#QLAT IS THE LATERAL FLON TERMsFT. PER SEC
#QFL IS THE LATERAL INFLOW HYDROGRAPH AT FLINT CREEK
35S0 IS THE CONSTANT CHANNEL. SLOPE
#RN IS THE MANNING ROUGHNESS COEFF,
sXL IS THE NODAL SPACINGe
*Y0 IS THE INITIAL UNIFORM NORMAL DEPTHe
s¥0 IS THE INITIAL UNIFORM NQORMAL VELOCITY
aN1 IS THE TOTAL NUMBER OF NODES
«T IS THE TIME STEP (SECONDS)
*«+TSUM IS THE ENTIRE FLOOD DURATION IN SECONDS.
TSR IS THE TIME FOR UPSTREAM INFLOW HYDROGRAPH
*TFL IS THE TIME FOR LATERAL INFLOW HYDROGRAPH AT FLINT
#*TPRINT LS THE TIME FOR INITIAL PRINTING (SECONDS)
sTTA 1S THE INCREMENTAL PRINTING TIME (SECONDS)?
s=ewIF TIME STEP IS GREATER THAN TTA PRINTING WILL BE =e=
. PERFORMED AT THE INCREMENT OF .THE TIME STEPsTwee
«IMAX IS THE MAX, ITERATION LIMIT .
#NT IS THE NUMBER OF POINTS FOR UPSTREAM INFLOW HYDROGRAPH
#NTP IS THE UPSTREAM INFLOW HYDROG POINT FOR THE PEAK FLOW
2JGsJGP ARE SAME AS NTSNTP FOR LATERA INFLOW HYORDG FOR FLINT=s
®*JORD IS THE ORDER OF POLYNOMIAL EQe FOR AREA & We PERIMETER =
#DETA IS THR CONVERGENCE CRITERIA FOR DEPTH .
sTETHA IS THE TIME WEIGHTIMG FACTORe
*YN IS THE CALCULATED DETH OF FLOM
YN IS THE CORRESPONDING VELOCITY OF FLOW .
*«8SR 15 THE JACOBIAN MATRIX OF DIMENSION ( 2N1 X 6 )
#CXV¥1 & CXV2 ARE THE (N1X1) COLUMN VECTORS EVALUATED AT
#(1=-TETHA) & TETHA RESPECTIVELY.
sLDIMsLDIN ARE THE VARIABLE DIMENSIONING PARAMETERS
«READN IS THE SUBPROGRAM TO READ & ECHOE CHECK INPUT DATA
#GEOMTR [S THE SUBPROGRAM TO UPDATE FLOW AREASNETTEDS
s MANNING®S ROUGHNESS COEFF, £ RATE OF CHANGE HYDRe RADIUS
*
CEEEESTEE S S PEEE SR SESE LS PELASEEECE S L EESCEEESLEECEE S EE SR XN ER L S

'EEEREEERE KX N I X I N 2 2 B N B B B B B S B B B B 3 B 3 3 2R ]

L2 2R

LK K 2 BN 3N BX J

DIMENSION ACF(5)sAN(26)+8BSR152560sCSVI(52)sCSV2(52)2PCF(S)s
1 DTPH(26 )sHYD(26)+sQLAT(25)5QRE(26)1sPN(26)sVELY(26) s
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PP UN

®~

10
11

12
13

33
3s
35
36
37
38

39
40
A1
42
43
44

ONno

100

140

145

150

155

160

180

190

200

220

230
240

132

2 V01260 9 VNC26) s XLI25)5Y0(26)sYN(26)

OIMENSION QFL{(7)9sQSTRE11)sTFLET)sTSRI1L)sRNC26)

DATA QFL3JGIJGP /8100040802629 9931¢5566¢9318603164,0427/
DATA TFL/0e0943200¢5504000957600¢38640046913680049345600./
DATA ACCsLDIMsLOININRILPILKS/3262352926959286/

OATA NTsNTP/1196/

ee=READ &€ ECHOE-CHECK INPUT DATA FROM SUBPROGRAM,

LON = LDIN =

CALL READWC(ACFSDETASDETYsQLATIQRESPCF3QSTRITSRaNT s
TPRINT s TTAsTSUMs TS TETHA» SOs IMAX s XL s YOSN1sNRsLPsLDNsLDIN)

JSIZE = TSUW/T
ns = 46 + 1
MC = NTP + 1

THRIT = TPRINT
JSTP = N1 = 2

«==CALCULATE INITIAL GEOMETRIC PARAMETERS FROM SUBPROGRAM,

CALL GEQOMTRIACF sANsHYD9QRESs PCFsPNsYOsRNsNLsLDIN)

PR = 2,/3¢

DO 100 J = 1sN1

VO(J) = QRE(JIIZANCGI)

Q0 = QRE(1)

WRITE( LPe 140)

FORMAT ( //7/728X9 "UPSTREAM®524Xs *MIDSTREAM®524Xs*DONNSTREAN® )
NRITE(LLPs145)

FORMAT( AXs *TIME(HRG )* s TXs*DISCHARGE®*s4X s *DEPTH® 33 Xs *VELOCITY*56Xs
*DISCHARGE® 94 X9 *OEPTH? 9 3Xs* VELOCITY 96X *DISCHARGE® 94X s*DEPTH®s
3Xs*YELQCITY®)

e==ySZ. INITIAL VELOCITY & DEPTH OF FLOW AS GUESS VALUES
TO INITIATE SIMULATION.

D0 150 K = 1sN1

YN(K) = YOUIK)

VN(K) = VO(K)

FACL = TETHA=T

FAC2 = (1. = TETHA)»T

00 155 L = 1sN1

RN{L) = RN{L)®%2/2,2082

~e= SET LOOP FOR TIME SIMULATION.
QR = Q0

DO 900 JL =1sJSIZE

TINE = FLOAT(JLI=T

~==UPDATE THE LATERAL INFLOW HYOROGRAPH FOR REACH.7
TCK = TIME = TFLLJG)

IF(TCX 11609160200

00 18 KC = 2,JG

IF(TIME - TFL(KC))19051905180

CONTINUE '

QFw = QFL{KC=1) + (QFLI{KC) = QFL(KC=1})/
(TFLIKC) = TFLIKC=1))s(TIME - TFL(KC=1))
Ga T0 320

IF(TCX = TFLUJGP) 222052209590

DQ 233 KS = MSsJGP

IF(TIME = TFL(KS) 124052405230

CONTINVE .

QF% = QFL(KS=1) = (QFLI(KS=1) = QFLIKS))/



a5

a6

47

(aX2X 3]

300
3290

350

360
370

380
400
4290
450

500
520

530

$50

133

1 CTFLIKS) = TFLIKS=1))8(TIME = TFLIKS~1))

GO TO 320
aQFN = QFL(JGP)
QLATLT ) = QFW/7CXLATISPNLT))

ewe UPDATE UPSTREAM BOUNDARY CONDITIONe

TO = TIME = TSRI(NTP)

IF(TD) 3509350+380

00 360 LC = 2:NTP

IF(TINE = TSRILC) 137093705360

CONTINUE

QR =3 QSTR(LC=1) ¢ (QSTR(LC) = QSTRILC~1)V/
(TSRELC) = TSRILC=1)I$(TIME = TSR(LC~=1))
GO T0 520

IFCTD = TSR(NT))400:,400,5500

DO 42) J4C = MCsHNT

IF(TINE =~ TSR(JCHIIN50,450,420

CONTINUE .

QR = QSTRCJC=1) = (QSTR(JC=1) = QSTRCJC) IV
(TSRUEJC) = TSRUJIC=1))Is(TIME =~ TSRE{JC=1))
GO TO 520

QR = QSTRINT)

CONTINUE

~e=CALL SUBROUTINE TO GENERATE COLUMN VECTOR (2N X 1)
JSRTCH = 3

CALL VECTR(CSV1sFAC25QLATY0sVO3S0OsACCo XLsQRsRNsN1s
ANsPNe QRESLONSLDINSLDIMsJSHTCH)

===GENERATE JACOBIAN MATRIX.

Luyp = 0

CALL JACDBI(BSRIFACIsYNsVNs XLsQLATSQRIRNS
ANSPNs QREsHYD 9S09» ACCoLDIMSLDNsLDINsNLsLK)

~ee ITERATE TO CONVERGENCE FOR EACH TIME STEP,
D0 590 LL =1sIMAX

LAST = 2aN1

JSHTCH = 2 .

LUP = LUP + 1

CALL YECTRICSV2sFAC1sQLATIYNs YNy SOsACCs XLsQRIRNsN1s
ANsPN) QRESLONSLDINsLDIM»JSNTCH)

DO 530 K = 1sLAST

CSV2(K ) = CSVYV2t{K) = CSVi(K)

CONTINUVE

=e«(BT AIN SOLUTION VIA TRI=-DIAGONAL SUBPROGRAM,
CALL BTRIDG(CSV29BSReDTPHIVELYSLDIMSLDININLISLK)
w==UP) ATE THE NODAL GEOMETRIC PARAMETERS.

CALL GEOMTR(ACF sANsHYD9QRESPCFoPNsYNsRNoN1osLDIN)
D0 55) L = 1sN1

RN(L) = RN(L)*$2/2,2082

JS = 41 - 1 :

VEC = QR/AN(1)

VELY(L) = VYN(1) - VEC

=== CHAECK FOR RELATIVE CONVERGENCE FOR ALL VARIABLESe.
JERR = 0 .

DO 560 J =1,.N1

YB1 = ABS(OTPH(J))

V81 = ABSC(VELY(J))
Y82 = YN(J) = DTPHLIY)
¥82 = ¥YNIJ) = VELY(J)



100

101
102

103
104

105
106
107
108

109
110
111
112
113
114
115

116
117

118
119
120

121
122

123

124

125

an o0

OOHo0n

on

560

570

580

585

590

600

680

700

710

720
750

900
920
$30
950

Y83 = MAX1(ABS{YB2) sABS(YN(U)))

VB3 = MAX1{ABS(VB2)sABS(YNLII})

IF4YB3 oLEe 040 «0Re VB3 oJLEe 0.023G0 TO 570

YERROR = YB1/Y83

VERROR = yp1/VvB3

IF(YERRQOR oLEs OETA <ANDe VERROR .LEe DETVIJERR=JERR+L
CONTINVE o

==« SHITCH CURRENT VALUES OF DEPTH OF FLOW TO OLD ONES.
00 58) L=1.Nt

YNCL) = YN(L) = DTPH(L)

YNCL) = VNEL) = VELY(L)

CONTINUE

IF{JERR +EQs N1) GO TO 600

=== CHECK IF SPECIFIED ITERATION LIMIT IS EXCEEOEDe

IF(JERR oLTe N1 .ANDe LL +GEes IMAX) GO TO 920

ee=UPD ATE THE JACOBIAN MATRIX AT EVERY 3 ITERATIOS.

IFLLWP « 3159055859585

CALL JACOBI(BSRsIFAC1sYNsVNes XLsQLAT+QRoRNS

ANePNs QRESHYD 3SOs ACCsLOIMLDONSLDINs N1sLK)

Lup = 0

CONTINUE

==w (PDATE DEPTHS € VELOCITIES OF PREVIOUS TIME STEP.

DO 680 J=1sN1

VO(J) = VN(JI)

YOtJ) = YNCJ)

CONTINUE

wwe PRINT OUT RESULTS.

IF(TIME = TPRINT + .0031750,700,700

TPRINT = TPRINT + TTA

TM = T IME/TWRIT

00 710 J = 1sN2

ARE(J) = ANCJII®YNL(J)

CONTINVE

WRITE(LPs720)TMI»QRE(L)sYN(LIsYNCL1)sQREC 1309 YNIL13)2VYNIL3Ds
QRE(NL )9 YN(N1)sVNIN1)

FORMAT ( 2X3F104235Xs 3F10.3s5X93F10.3s5X93F10.3)
IF(TINE « TSUM19009950,950

=== A)VANCE THE TIME STEP.

CONTINVE

WRITEILLP2930)

FORMAYT (///710Xs*MAXe ITERATION LIMIT EXCEEDEDe*)

stToP

END

134
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1

SUBPRIGRAM TU READ AND ECHOE INPUT DATA

SUBROUTINE READMWI ASFsDETASDETV»QLATSsQRESPSF3QSTRe TSRS

NTsTPRINT»TTAs TSUMSTs TETHASSOs IMAXs XL YOsN1sNRLPsLDONSLODIN)

L
-
L J

BESESSSEE S S X EREEE EE LS SEE RS SER RS L ER VSR BE SRR EEEPEEE ST X SR ER EEES S S

1

DIMENS ION ASF(5)sPSFIS)sQULATILON)IS>QRE(LDIN)+XLELDN)sYO(LODIN)S

QASTRINT )s TSRINT )

=~=READ TIME PARAMETERS.
READ(NR S50 )ITPRINT s TTAs TSUMS T



126
127
128

129
130

131
132
133
134
135
136

137
138
139

140
141
142

143
144
145
146

147
1A8

149
150

151
152

153
154

155
156

157
158
159

160
161
162
163

50
80

90

110

140

150

160

1790

180

190

200

220

240

2v0

LN

1

FORMAT ( 4F10.2)

READ(NR 80 )TETHAs DETASDETVsSOs IMAXsNL

FORMAT ( AF10.452110)

~«=READ UPSTREAM BOUNDARY DISCHARGE HYDROGGRAPHe

READ(NR»90(QSTR{L)sL = 1,NT)
READ(NR,90M(TSR(LIsL = 13NT)

~==READ INITIAL DEPTHS OF FLOWSDISCHARGESLATERAL FLORE SPACINGe

LON = N1 - 1

READC(NR 90 1(Y0(J)sJ = 1,N1)

READI{NRs9QI(QARE(JI I J = 1sN1)

READ(NR 590 )1(QALATIV)sJ = 1,LDN)

READ(NR 90 M(XLUJDIsd = 15LDON)

FORMAT ( 6F12.5)

~«=READ ORDER OF POLYNOMIAL EQe

READ(NR 3110 )JORO

FORMAT ( I5)

LR = yORD + 1

~==READ AREA & WETTED PERIMETER POLYNOe. COEFF. MATRICE
ONE R0m AT A TIME.

READ(NRs140)CASFtUdsJ * 1sLR)

READ(NR s 140 ){PSF(JIsJd = 15LR)

FORMAT ( 5F10.5)

=«=PRINT QUT INPUT DATA.

WRITE(LPs 1500

FORMAT € 1HY)

WRITEL LPs160IN1sT S0

FORMAT L 7/7/720Xs* TOTAL NOs OF NODES =°51I5//20Xs
®TIME STEP =°3F10,351X9°SEC.*//720Xs°CHANNEL BOTTOM SLOPE =9,
F10e4) )

WRITELLPs170)TETHAS IMAXSDETASDETY

FORMAT (7/720X» *TIME NEIGHTING FACTOR =°3F10447/720X,
"MAXe ITERATION LIMIT =¢,515//720X»

*CONVERGENCE CRITERIA FOR DEPTH =°3F10e47720Xs
*CONVERGENCE CRITERIA FOR VELOCITY =%3F10,4)

WRITE(LP180)CIsTSRLJISQASTR(JIsJ = L1,9NT)

FORMAT { / /777723 X9 *UPSTREAM DISCHARGE HYDROGRAPH®//20 Xy
PJ® 95K 3 *TIME PERIOD®s5X 9 *MEASURED FLOW®//(20XsX254Xs
F1041s 3X9F10e1))

WRITE(LP9190)(KsYOUK)I»QRE(K JaK=1sN1)

FORMAT( ///7/7720Xs *NODE®s5Xs*INITIAL OEPTH?sS5Xs *INITIAL DISCHARGE®
/7/7€18X 3 1338XsF1063512X3F10e3))

WRITEILP»200)(JsXLLJ)sQLAT(JI Y =1,LDN)

FORMAT ( ///7720X s*REACH® 99X *LENGTH® s9Xs *LATERAL FLOW®//(20Xs
I398X F10e255XsF1046))

NRITELLP»220) )

FORMAT( //7/77720X3*FOURTH=-0RDER REGRESSION COEFF. FOR AREA®//23Xs
SO=TH® » 7TX3*1ST* 37 X9*2ND* 97X *3RD*s7Xs*ATH®)

MRITE( LP»300)C(ASFLJ)sd = 1sLR)

WRITEL LP» 2400

FORMAT ( //7/7/20Xs* FOURTH=-0RDER REGRESSION COEFF. FOR wETTED
PERIMITER®//23X 9% 0=TH® s 7X3%1ST s 7X9*2ND?37Xs*3RD* o7 Xs*4TH*)
WRITELLP300)(PSFLJIsd = 1sLR)

FORMAT ( 720X5s5F10e5)

RETURN

END

EERES SRS S S LS SEAE S SESXR K S SSE SR EEE LSS EEVE RS EEESE SR SR E IR EH ER SR EE S
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164

165

166
167

168

169
170

171
172

173

174
175
176
177
178

179

180
181

182
183
184
185
186
187

(3 X2 N aN W X3l

O oo

ono

OO0

o0

% & % % &8

SUBPROGRAM TO UPDATE THE NODAL FLOW AREASNETTED PERIMETER o

MANNING®S ROUGHNESS COEFFes & THE CHANGE 1IN HYDRAULIC

RADIUS wITH RESPECT TO DEPTH

SUBROUTINE GEOMTR(ASFIAXsHYDsQXsPSFsPXs YXsRCsNLsLDIN)

L3R 2R BE B N J

E

FEXEEEBAE EEFSABUEE CE ET EPS X R ESEECR AL NS LRI RS S SRS EFE R E S L XS SE VL BE XSS

1

200

300

DIMENS ION AX(LOIN)sHYDC(LOINIsPX{LOINIsYX(LODINISASF{5)sPSF(5)s

QX¢LDIN)sRCI(LDIN)

~eaCOMPUTE THE NODAL FLONW AREASWNETTED PERIMETER AND
MANNING*S ROUGHNESS COEFF,

DO 203 J = 1sN1

AXCJ) = ASF(1) + ASFU2)sYX(J) ¢ ASF(3)eYX(J)*e2 +
ASF A) aYX(JI®ex3 + ASF(S)IsYX(J)Is24d

PX€J) = PSF(1) + PSF{2Q)eYX{J) + PSFI3)aYX(J)Iex2 +
PSFLA) =Y¥X(J)se3 + PSF{S5)aYX{J)exa

RCEJ) = 0403713 + 0,14097E=05#AX{J) + 0,41739E=10»
QXCJYIe 2 = 0,230004E-142QX{J)xe3

CONTINUE

~«=COMPUTE THE NODAL RATE OF CHANGE OF HYDR. RADIUS
DO 300 K = 1sN1

STORL = ASF(2) + 2+ %ASF(3)8YX(K) + 3esASF{A)sYX(K)*52 +

B.%ASF(5)sYXI{K) ¢83

STOR2 = PSF(2) + 2+ *PSFU3)SYXIK) + I *PSF{AIsYX(K)sn2 »
Ao ¥PSFUS5)eYX(K)Se]

HYDUK) = (STOR1*PX(K) = STOR«AX{(K)I)I/PX(K)es2
HYD(K) = ABS(HYD{(K))

CONTINUVE

RETURN

END

ZEEEEERSE SRSV XERERSX RS RS R VBB EEER R EEL XXX BIEC S LR AR SRS IR AL KRS

]

«
t
 J

1
.

SUBP ROGRAM TO GENERATE COLUNMN VECTOR (2NX1)

SUBROUT INE VECTRUCXVIFACIQLATSYX3VX3SOsGeXL3QT»
RXsN1sAXsPXsQRE sLONSLDINSLDIMs JSHTCH)

L ]

L
t
L

®

EEERNELEE S ES SR EEEE XX S A SRR ESSE LS ECEES XL ET I ERERENESE S S S8 S S

DIMENS ION CXV(LDIM) ;QUATCLONI s YX(LDINIsVX(LDIN} s XLILDN)

OIMENS ION AX(LOIN)»QRE(LDIN)+PX(LOIN)SRXI(LODINI

soe UPSTREAM NODAL CALCULATION
K = 3

PS = de/30

LSTP = N1 = 2

SPKX = QT/AX¢1)

RYL = (AX(1)/PX{1))»ePS

RY2 = (AX(2)/PX(2))sepS
eceayUPSTREAR BOUNDARY EQSe.
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188
189
190
191
192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208

209

210
211
212

213
214
215
216
217
218
219
220

222
223
22»

2253
22¢
227
228
229
230
231
232
233
234
238
236
237
238
239
220
241
242
243

FYY

50

80

90

100

150

200

137

A 3(2e2XLU1) + FACS(VYX(2) = 4,25PK))erXLl)
B = (XL(1) + FAC®(2,5¥X(2) + SPK)I=YX(2)

C = 3, sFACSQLAT(1)=XL(1)

Gl = XL{1)eRX(1)ISFACS(2,3VYX{1)s82/RY1 ¢ ¥YX(2)382/RY2)
Pl 3 3,3FACS(YX(2) = YX(12)

S1 = 3,*FACeXL(1)sS0

IF(JSAaTCH = 1) 50250280

A = (2¢XL{1)=FACS(VX{2)=4,% SPK))eYX(1)

B 3 (XLC1) = FACE(2.,3VX(2)+ SPK))IaYX(2)
CXV&l) = A + B+ C

CXV(2) = S1 = G1 - P}

GO0 10 90

CXvil) = A + 8 - C

CXV(2) =Gl + P1 - S1

ee=INTERIOR NCOAL CALCULATION,

00 200 J = 1sLSTP

K =K ¢ 2

M=K ¢+ 1 )

RO1 = (AX(J)I/PX(J))esPS

RDO2 = (AX{(J+1)/PX(J+1))s2PS

RO3 = (AXC(J€2)/PX(J42) )»sPS

Al = (XLEJ) = FACSINXEJU+L1) + 2o8¥XCIDIIYXCYD

Bl =2 (26¢(XLCJIIXLEIIL1)D) ¢ FACH(WX(J+2)o8XCJ)IIsYX(J4L)
Cl = (XLUJ41) ¢ FACH(2,8VXEJ+2)4uX(J2412]00YX(J¢2)

DI 3 3o8FCIQLAT(JMaXLCJ) + QLATC(Y+120XLLJ*1))

HI 2 RXCJI41ISFACO(XLUJIBVX(JI®92/RCL ¢ 2.8t XLLJ) +
XLAJPL ) IoVX(J+1 0832 /R02 ¢ XLIJ4113yX(J+2)%92/RD3)

Pl = 3e3FACe{YX(J42) = YX(J4))

S1 =3 J#FACs(XLEJ) + XLLJ+1))=SO

IF(JSHTCH = 1)1005100,150

AT = (XLUJ) ¢ FACSIYXIJ41) +2.3VX(J))IeYICJ)

BI 2 (2.3(3LLJI4XLEJ21)) = FACS{VYX{J22)=9XCJIIIaYX(J2L)
CI = (XLEJ41) = FACS(2,8YX(J+2)+VX{J+13))8YX(J+2)
CXV(K) = A1 « 81 + C1 + 01

CXv(M) 3= S1 = H1 - P1

G0 10 200

CXVE(K) = A1 + Bl + €1 - OI

Cx¥(M) 3 HI + P1 - S1

COATINUE

ce=00WNSTREAM NCDAL CALCULATIOAN.

HT1 = AX(N1=1)/FX(N1=1)

HT2 = AX(NLI)/PXE(N1)

RYI = HT14ePS

RY4 = HT208PS

AN CXLANLI=1) o FACSC(VUXINLD)® 2,3VX(NL1=1)))sYX{NL1=1)
aN (2e3XLENL=1) ¢ FACS(4o3VX(N1) =¥YX(N1=1)))aYX(NL)
(o ] 3e¢FACSQLATINI=1)*XL(N1=1)

GN XLANLI=1)sRXU(NL J3FACOC(YXINLI=1)282/RY] ¢ 2,8VYX(N1)s32/RY4A)
PN 3e0FACOS(YX(NL) = YX(NLl=1))

SN = 3,%FACesXL(Al1=1)sS0

IFLJSHTCH = 1)30033(C0,400

300 AN = (XL(N1=1) + FACO(VX(NL)42.oVX(NL1=1)3)sYX(NLI=1)

400

500

BN = (249XLUIN1=1) = FACS(A,sVX(N1)=VYXIN1=2)))oYX(AL)
CXV¢LDIr=3] = AR + EN + CN

CXv(LO'I®) = SN = GN = PN

GO0 Y0 5¢0

CXv(LDIF~-1) = AN ¢+ EN - CN

CIVILDIN) = GN ¢+ PN = SN

RETURN

END



245

246

247
2438
249
250
251
252
253

254
258
256
257
258
258
260
261
262
263
264
265

266
267
268
269
270
271
272
273
274
275
27¢
277
278
279
280
281

282
283

284
28¢

236
287

e NaXa¥aKal

OO

[ AAL R YY" RERERISI R RSN ERRS RN 2R 2R 2R R0 R0 RR2 R 22 X/

] [ ]
L ] | J
] SUBPRCGRAM TO GENERATE THE JACCBIAN MATRIX. *
] L]
SUEROUTINE JACORI(B8TRSIFACSYXaVXaXLsQLAT s(TsRX»
1 AXsPXoQFREsHYDsSOeGsLOIMaLONILDININLSLK)
E »

I ARE R R E - ERREER RIS R ERERAR RIS S R RSN RRRS RS S AR RTED XS

DIPENSION ETR(LOIMSLKISQLATILON)I sVX(LOIA)sYXCLOINDIs XLL{LON)
1 AX{LDIN)ISGRE(LOIND«PXCLOIN)sHYDCLDIN)SRX(LOIN)

K a1
Ph = Te/]
PS = 4,/13

SPK = QT7ax41)

SPF = QT2 X(2)/7CAXCL)eYX(1))

RC1 = AX(11/PXx(1)

RD2Z = AX(21/PX82)

~eeEVALUATE JACCSIAN TERMS FOR UPSTREAM AGDES,

BIR{1ls1)
BTR(1s2)
BTRE2: 1)
BTR(2s2)
BYRC1e3)
BYR(1s8)
BYR(1s 5
BTR(1s6)
BYR(2s 3)
BTR(2:4)
8T6(255)
BTR{2:56)

L I I R BRI R B I B )

0.0

0.0

0.0

0.0 ]

2%XLL1) + FACSIYX(2) = SPP)

0e0

A1) ¢ FAC*(2.2VXL2) + SPK)

FACB{YXL1) + 2,3YX42))

«FACH( 2.3 XL{L)I2RX{L1)2PSIVXLL)0e2sHYD(1)/RCL8sPN43,)
Ao XLELIRXUL)ISFACHVX(LDI/IROL99PS
“FACHE{XLC1ISRX(L1)I%PSaVX(2)882eHYD(2)/RT2 3P N=3,)
208 XLELIRXC1ISFACSYX(2)1/RD229PS

e==EVALUATE JACCBIAN TERMS FOR INTERIGR AQGDES.
LSTP = N1 = 2
DO 300 J =21sLSTP

K =
| 2 ]
RO1
RO2

+ 2
+ 1

HWRX

AX¢SIIPRCJ)
Ax(J*LI/FXC421)

RD2 = AX(J42)/PX(J4+2)

8TR(XKs 1}
BTIR(Ks 2)
BTIF(Ke 3)
BTR(Ks &)
BTRIKs 5
BTRI(Ks 6)
BYR(Ms 1)
BTIR(Ne 2)
BTR(M 3}

RLEJ) = FACS(WX(J+1) ¢ 2env¥VXiQ))

“FACS(2:2YX(J) + YX(J+1))

e ALCJIeXLIU#2)) ¢ FACH(VX(,$2) ~¥YX(J))
FAC*{YX(422) ~ ¥YX(J))

XLEJ4L) ¢ FACH(2.3VX(y+2) + VIC(J21))

FACSs(YXCJ+1) ¢+ 2.8¥X(u+2))
CFACH(PSIRXC(J+LIAXL(JIOYREJ)S020HYO(JI/RDIowPY + 3,)
26 RXEJIPLISFACHXLLIISVX(JI/RCI88PS
“2,*FACOIPSIRX(JI+L IOt XLLJD) + XLEJSLDISYR(J41 )2320

1 HYC(J+1)1/KC2sePn
BYRC(Me &) 2 A4.3FACORRC(IFTIINIXLEIY ¢ XLEJ41DDeYXCU+1)/FD208PS
AIRINS 5] = FACS(PSIRXEJ4LIOXL I+ IoVXC 4208028HYCIJ42 YV

1 RO3ssPN = 3.)
BTIR(Me 6) = 2.FACSRILI+1)0XLI 121 )8YXC(J*2)/RDI*&PS

300 CCOMTINUE

we=EVALUATE JACCBIAM TERSS FAUR OGCuASTREAP? NODES.

LB = LDIN =

1

RONL = AXIAL=2)/PXC¢N1~1)
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288
289
290
291
292
233

294
29%

29¢€
297
298
299
300

302

303

304

30s
306
307
308
309
310
1t
312
13
31
ns
316
17
318
319
320
Ja21
322
323
32
3as
32¢

327
32s

329
330
n

OO N

(2 W2

ROA2 = 2X(N1)/PR(NL)

BYR(LBs1) 3 XL(NL=1) = FACS(VXI(N1)+2,3VXINLI=1))

BYR(LDB32) 3 «FACS{2.0YXINLI=1) 4+ YXIN1))

BYRELB93) = 2.9XLUIN1=1) ¢ FACS{Ao2VX(NL)}=VX(NLI=1))

BYRELBsA) 3 FACHS( A3V XN(NL) = YX(ALl=1))

BYR{LDI®,;1) = “FACH{(PS*RAR(NLISXL(INLI=1 )0V X(N1=1)3820HYD(NL=1)}/
1 RCA1#=Pu ¢ 3,)

BIRCLDIPOZ) 3 248FACORX(NLIISALINI=1}2VX(AL=1)/RONL*FS

BTIR(LDIP23) = «FACO(23XLINL=1)*PSSRX(NT)sYX(NLIS*Z2RYD(NL)/
1 ROA2s52Pn « 3,4)

BIRALDINM I4) 2 4,#FACSRXLNLISXL(NLI=1)sVYXEAL1)/RON2e PSS

BIRILB %) s 0,0

BTR(LB926) 3 Q40

BTFC(LDIN5) = 00

BIR(LOIPSE) = Q040

RETURN

ENC
SERBIRCKEISACHTIV ARSI ISR SESISIIVSINECIENTEERRE L SN0 IS SRS
. .

SUEPROGRA® TQ SCLVE THE BI-TAIDIAGONAL PFATRIX

L R W 3
o H &

SUBROUT INE BTRICGC(COLIVELsVXsVXsLOIMsLDIASNLISLK)
. »
FRIFESSRE LI9SR DINRN I ANRSRIAERBAIFAIINERSNSSACIRNTEIS240 88288
DIPENSICN VELLLCINSLK)I 9 YX(LOINDSsYXCLDIN)COLILDIN])S
1 BETA(N }sCETAC2)95AC(2624)9GAMA(26152)

e««PERFCRP RATRIX REDUCTION OPERATION. .
K = 1
DC 200 J = 1sN}
IF(J - 111005,1005150
100 BEYA(L) = YEL{1s3)

BETAL2) 3 VEL(144)
BETA(3I) = ¥YEL(2:3)
BETA(A) = YEL(2,54)
DETACL) = COL(1)

DETA(2) = COLL2)
2U = BETA(1)1%8ETA(4) - BETA(2)+8ETA(I)
IF(2IU «EGe 0.0)2U = 0,001

SAC{1s1) 3 (BETALA)ONVEL(1s5)
SAC(1+2) = (BETACAISYEL(1s6)
SAC(1s3) = (BETALLIOVEL(2s5)
SAC(1s4) = (BETALL)IVELL2:6)

BETAL2)ISVEL(2:5D))724
BETAC21eVEL(256))372V
BETAL(3IeVEL (1500720
BETA(3)IsvEL(1,6))72V

GO 10 140
15¢ K = K + 2
=z X+ 1
BETA(L Y = VELUK93) = VEL(K»1)®SAC(U=191)aVELI(K32)95AC(J=193)
BETAL2) = VELU(K S I=VEL(K1)¢SAC U192 )mVEL(KS2)8SAC(4=194)
BETAL3) 3 YELIM o3 )=VYELIM91)eSAC(J=11)=VEL(M32)eSAC(u=103)
E

BETA(s ) VEL (M4 )= VEL (M1 0SAC(U=102)=VELI{®32)854CLu=1s4)
DETA(L) 3 COLUK)I=VEL(Ks1)9GAMALJ=131)=VEL(Ks2)sGAPA(Y=152)
DETAC2) = COL(MI=VELIM 1 )sGAMA(J~121)=VEL(Ms2)8GAPAL=122)

2U = BETACI)IBETAC(A) -~ BETA(2)sBETA(I)
IFL2U <EQa 00002y = 0,001
SAC(JrL) = (BETACA)JSVEL(KsSI=BETA(ZISVELINL5)I/2V
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332
333
334

335
33¢
337

338
339
Jag
a1
342
343
3424
345
346
347
348

300

SENTRY

140

SACLJs 2) = (BETA(AN)ISVEL(K26)=-BETA(2)eVELI(NL6))/2U
SAC(Js3) = (BETACLIIOVEL(NMsS5) -RETACI)SVELIKIS)IVZV
SAC(JUsa) = (BETACL)SVELI(MI6) ~EETA(IIeVELIKSI6)I/2U

GAPACJI21) = (BETA(A )*DETA(L1)=BETA(2I0ETAC2)3/2V
GANA(J321 = (BETACLISDETA(2)=BETACI)*DETLC13)/2Y

CONTINUE

e«wsCOMPUTE SOLUTION VIA RECURSIVE EQ.

LINIT = N1 = 1

JK 3 LIPIT

YNEAL) = GAMA(LOEINs1)

YX(NL1) = GAMA(LCINSZ)

00 200 L = 1sL1IMIT :

YXEJK) = GAMAUUKS 1)=SACIJKs 1D YXCJKEL)=SACIIKS2)0VX(K*1)
YXCJIK) = CAMALJK921-SACTIJKs3I I X{JK#1 I=SACIIKIADIOYX(uK+L)
JK 3 JK = ]

COATINUE

RETURN

END



APPENDIX H

SAMPLE OUTPUT FOR WIDFEM
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TOTAL NQe. OF NODES = 26
TIME STEP = 1800.000 SEC.

CHANMNEL BOTTCM SLOPE = 0.0009

TIME BEIGHTING FACTOR = 0.5500

PAXe JTERATION LIPIT = 60

CONVERGENCE CRITERIA FOR DEPTH = 0.0100
CONVERCGENCE CRITERIA FOR VELOCITY = 0.1000
UPSTREAN CISCHARGE HYDROGRAPH

4 TIRE PERIGC MEASURED FLON

1 0.0 482,90

2 50400.0 757.0

3 64800,0 5590.9

[ 79200.0 7710.0

-] 86400.0 11000.0

§ 100800.0 22980.0
.7 12960040 1132040

8 15840040 5100.0

9 172800,.0 4110.0

10 2088Q0.0 3104.0

11 34560044 1722.0

NOD E INITIAL ODEPTH INITIAL OISCHARGE
1 3o 240 482,000
F 3¢ 340 482.000
3 30340 482.000
4 30340 482,000
H 34340 482,000
] 34340 482,000
7 3¢ 340 482.000
8 30340 482,000
S 3,340 482,900
14 3e 340 482,000
11 3,340 482.000
12 3o 2490 482.000
13 3o 340 482.0040
14 30340 482,000
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ERESvoevacnsunm

34340
3340
3s 340
3o 240
3,340
30 340
36240
30340
30340
3340
3o 340
3o 340

LENGTH

10560.00
105¢€0.00
105€0,00
1035€6,00
105€0.,00
10560,00
105€0.,00
105¢60.,00
105€0,00
105€60.00
10560.,00
105€0.,00
105€0,00
105€0.00
105€0.00
10%5€0.00
105€0.00
10560,00
105€60.00
105€0.00
105€0,00
10560,00
10560400
105¢€0.00
12672.00

482.000
482,000
482,000
432,000
482,000
482,000
482,000
482,000
482,009
482.000
482,000
482,000

LATERAL FLOW

0.000000
0.000000
0.0048000
0.,000000
0.,000000
0.000000
0.000050
0.060000
0.000000
0.000000
0000000
0.,0000400
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.,000000
0,000000
0.000000
0.000000

FOURTH-OROER REGRESSION COEFF. FOR AREA

Q-TH

-32.01220

157

84 .,60530

2ND IR0

Se47340 091215

FOURTH=-CARDER REGRESSICN COEFF, FOR NETTED

C-TH

10.08235

187

S7.62010

280 3RO

-4.90130 0.34127
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ATH

«0.,0%0482

FERINMETER
ATH

=0.006012
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COMPUTER PROGRAM LISTING FOR WIKFEM
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The computer program for the weighted implicit kinematic model
is for an idealized channel . It has a built-in option to route flood
in a trapezoidal, triangular, or rectangular channel. For the first
two geometries, the right- and left-side slopes, captioned as ZRS and
ZLS should have assigned values other than zeros, except for rectan-
gular channel. The triangular geometry will have zero width for input
value.

The definition of the variables and symbols used in the computer
program is provided in the comment page of the program listing. Any
temporary storage variables are not included because their definitions
are obvious. Instruction for the input data is provided in the MAIN

program for each READ STATEMENT and is self-explanatory.



-

S unN

NOWw

OO0 ANO NN ADDONNADNDNONOOHOOHONNNON

408

50

sTIME=( 0240

EICTSFRESL TR EEET XL SA S RSB EESEF S EX S L LSS U S EE LK ESECEAE S R E SR SE EE &

- .
- 1 = DIMENSIONAL STREAMFLOW ROUTING MODEL L]
- =
L -
LI e T T L P Y e T P T L 2R R PR L
b =

IMPLICIT KINEMATIC FINITE ELEMENT METHOD SOLVED
: 8Y ITERATIVE NEwTON-RAPHSON TECHNIQUE
:‘-#“tlt“-'ltttl-tt.c‘-‘l.‘ll-‘.t““'.l‘.."!t‘t“tl.“"‘
: eee DEFINITION OF TERMS eae

™ .
*VARTABLES UNITS ARE AS FOLLOWSZ TIME(SEC)ISLENGTHIFT)
#DEPTHI{FT) s VELCCITY(FTL PER SECI»DISCHARGE(CFS)
®ACC IS THE ACCELERATION OF GRAVITY32.2FTe PER SEC PER SEC
*ULAY IS THE LATERAL FLOw TERMsFT. PER SEC
«TLL IS THE TOTAL LENGTH OF CHANNEL REACH BEING INVESTIGATED
*50 IS THE CONSTANT CHANNEL SLOPE
*RN IS THE MANNING ROUGHNESS COEFFe
«XL IS THE NODAL SPACING.
=YQ IS THE INITIAL UNIFORM NORMAL DEPTH.
*V0 IS THE INITIAL UNIFORM NORMAL VELOCITY
#N1 IS THE TOTAL NUMBER OF NODES
*QMAX IS THE PEAK FLOOD ODISCHARGE OF INFLOW HYDROGRAPH
«T IS THE TIME STEP (SECONDS)
«TMX IS THE TIME PERJICGD BETWEEN @0 € QMAX
«TAP IS THE TIME PERIOD AFTER GMAX UNTIL QO
«TPRINT IS THE TIME FOR INITIAL PRINTING (SECONDS)
«TTA IS THE INCREMENTAL PRINTING TIME {SECCNDS)
s=ew1f TIME STEP 1S GREATER THAN TTA PRINTING WILL BE =o=
- PERFORMED AT THE INCREMENT OF THE TIME STEPsTeww=
»TETHA 1S THE TIME WELGHTING FACTOR.
«YMN IS THE CALCULATED DETH OF FiLOw
«VN IS THE CORRESPONDING VELOCITY OF FLOW
®2ZSR 1S THE TRAPEZOLIDAL CHANNEL RIGHT SIDE SLOPE
*ZSL IS THE TRAPEZOIDAL CHANNEL LEFT SIDE SLOPE
#«IMAX IS THE MAX., ITERATION LIMIT
«DETA IS THR CONVERGENCE CRITERIA FOR DEPTH
*8SR IS THE JACOBIAN MATRIX OF DIMENSION (N1X3)
®CXV1 & CXV2 ARE THE (NiXx1l) COLUMN VECTORS EVALUATED AT
#{1-TETHA) & TETHA RESPECTIVELY.
#LOIM)LDIN ARE THE VARIABLE OIMENSIONING PARAMETERS
L] ]
ERSE AL L SRS UE AT FA DA KA AR SSE AR C SRR NEUS AR S ET S RN EE S SE SE BN
DIMENSION BSR(21332sCS5V1(2115CSV2(21)s0TPHI(21 12 QLAT(20ds
1 VELYL21)sY0421)3sVOL2123YNC22)sVNC21)sXLC20)5QREC(21)
OATA XL sAQLATIACC/ 2045284 220%040932.2/
DATA LDINILK/21,3/
ODATA NR#LP/Ss6/

LB K BE BN BE BE K B B BE BE K BN SR BE BE BK K R BE X EE BEEE BE BN BE BE AR L BE BE BE B BN BE BE BE BE |

-==READ DATA AND ECHGOE CHECK
READINR»SOITPRINT »TTAs TSUMe TaV¥Bs ZSRZSL
FORMATL 7F10.2)
READC(NR»601QMAX s TMX sTAPs TLL» B1
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10
11
12

13
1s

135
16

17
18

19
20

21
22

23
24

26
27
28
29
30
31
32
33
34
3s
36

38
39
40
41

42

44
L2
46
A7

48
49

aon

60

80

90

100

-

120

N

125

280

FORMAT( 5F10.2)

READ(MNR s 80 JTETHAS DETA» IMAXs SOsRNsN1sNN
FORMATC(2F10.40110,2F104492110)

JSIZE = TSUM/T

LON = LDIN - 1

WRITE(LP»90)
FORMAT{ tH1)

WRITE(LPs100INLsTsSORN

FORMATL //7720Ks*TOTAL NO.- OF NODES =*515//720X»
CTIME STEP =*3F104331Xs°SEC+*7/720Xs*CHANAKEL BOTTOM SLOPE =9,
F1l0e45//20X3*MANNING ROUGHNESS COEFF, =93F1004)
WRITE(LP120ITETHAI IMAXIDETAIZSRSZSL .
FORMATL //720X5°VTIME WEIGHTING FACTOR =®5F10e4//720Xs
OMAXe ITERATION LIMIT =%,15//720xs

*CONVERGENCE CRITERIA FOR DEPTH =23F10.5/7/720Xs
*-YRAPEZOIDAL CHANNEL SIDE SLOPES: RIGHT =*,F10.2s
SXs'LEFT 2°,F10.21

WRITE(LP,125IXL (2 ) QLATI1)

FORMAT( /720Xs *NODAL SPACING =°3F10e301X9°FT,%05Xs
*LATERAL FLON 3°3F10e3s1Xs°FT.PER SEC.*)

TWRIT = TPRINT

JSTP = N1 = 2

=== CALCULATE THE INITIAL NORMAL DISCHARGE & VELDCITY.
PR = 2./3.

CM = 1,486/RN=*SQRT( SO

ZPP = SARTLle + 2LSR=x2) ¢+ SQRT(1. + ZSLss2)

AE 2 Bl*Y8 + «5*YB*s2«(2SR ¢+ ZISL)

PE = BL + YBsZPP

VB = CM={AE/PE)»=PR

QB8 = AE=V8

DO 230 J =1Nt

YOty = v8

votJ) = v8

QRE(JY = Q8

CONTINUE

Q0 = QREC(L)

WRITE(LP250)Y0(1)sVOC1)sQRE(L)
FORMAT( /720X *INITLIAL DEPTH =°,F1063s3Xs

TINITIAL VELe =°9F10e393Xs° INITIAL DISCHe =°9sF10.3)

NRITE(LP»140)

FORMAT( ///7728Xs *UPSTREAMT524Xs *MIDSTREAM® 924X 9s* DOWNSTREAM® )
ARITE(LP145)

FORMATC(AXs *TIME(MINI®s 7XsDISCHARGE®s4Xs *DEPTH® 93 Xs*VELOCITY*96X>s
*DISCHARGE®s4 X2 *DEPTH® s 3Xs* VELOCITY® 36X 0 *DISCHARGE® s 4X2°DEPTH® »
3Xs*VELDCITY*)

~==USE INITIAL VELOCITY € DEPTH OF FLOW AS GUESS VALUES
TO INITIATE SIMULATION.

00 280 X = 1sN1

YNC(K) = YO(K)

VNEK) = VO(K)

CONTINUVE

FACL = TETHAsT

FAC2 = (1e = TETHAST

== SET LOOP FOR TIME SIMULATION.
QR = Q0

00 900 JL =1,JSIZE



50

51
52
53
54
SSs
56
57
S8
59

60

62
63

64
6s
66
67

68

69
70

71.

T2
73
7s
73
76
77
78

79
80
81
82
a3
84
8s
86
a7

a8
89
90
91

92

93

on 60

450

480
490

500
520

533

560

$70

380

150

TIME = FLOATI(JLIeT

== UPOATE UPSTREAM SOUNDARY CONOITIONe

TO = TIME « TMX

IF(TD1450545004380

QR = Q0 + (QMAX = QO)/TMXsTINME

GO0 TO 520

IF(TD = TAP)490+490.,500

QR = QMAX = (QMAX = QQ)/TAP=TD

GO TO 520

dR = WO

CONTINUVE

=w=CALL SUBROUTINE TQO GENERATE COLUMN VECTOR (N1 X 1)
JSKTCH = |

CALL VECTR(BLsCSV1sFAC25QLATsY0sVOsXLsURIRNINLIZSRsZSL s
LONsLOINILKeJSNTCH)

===GENERATE JACOSIAN MATRIX.

Lue = 0

CALL JACOBI(8SRB81sFACLs NI VNeXLsQLATsQReRNIZISRIZSLs
LONSLDINSNLSLK)

ee= ITERATE TO CONVERGENCE FOR EACH TIME STEP.
00 S90 LL =31, IMAX

JSWTCH = 2

LUP = LUP + 1

CALL VECTR(B1sCSV2sFACL3QLATsYNs VNsXLSQRIRN9IN1»ZSRe ZS5L >
LONsLDINILK)JSHTCH)

00 S30 K =1,N1

CSV2(K) = CSV2({K) = CSV1(K)

CONTINUE

«==(0BTAIN SOLUTION VIA TRI=-DIAGONAL SUBPROGRAN,
CALL TRIMTOU(BSRICSV2s0TPHsNLILOINILK)

JS = N1 - 1

00 535 L = 1,N1

DPL = YN(L) = OTPHC(L)

AN 3 B14DPl + +S«OP1s828(2ZSR ¢ ZISL)

Pw = BL + OPleZPP

VN(L) = CMeCAN/Pu)ssPR

CONTINUE

ee= CHECK FOR RELATIVE CONVERGENCE FOR ALL VARIABLES.
JERR = 0

00 560 J =1,N1

YB1 = ABS(OTPHC(J)}

YB2 = YNLJ) = DTPHLJ)

YB3 = MAX1(ABS(YB2)sABSLYNCIIND

IF(YB3 «LE. 0.0)G0 TO 570

YERROR = Y81/Y83

IF(YERROR L LE, DETAIJERR = JERR ¢ 1

CONTINUE

~ee SHITCH CURRENT VALUES OF DEPTH OF FLOW TO OLD ONES.
00 580 L=1sN1

YNCL) = YNCL) = OTPHIL)

CONTINUE

IFCJERR «EQe N1) GO TO 600

eee CHECK IF SPECIFIED ITERATION tLIMIT IS EXCEEDED.

IFCJERR o+LTe N1 <ANDe LL «GE. IMAX) GO TO 920

~w=UPDATE THE JACOBIAN MATRIX AT EVERY 3 ITERATIOS.
IF(LUP = 3)590+585»585



94

9s
96

97
98
99

100

101
102
103
104
105
106
107
108

109
110

111
112
113
11s
15

116

117

118
119
120
121
122
123
126
125
126
127
128
129

130
131
132
133
134
135
136

X2 Na Nz X2l

[ X B s X2

c

585 CALL JACOBI(BSR813FACIsYNsVNsXL9QLATSQRIRNSZSRZSL s
1 LONsLDINSN1ISLK)
LuP = 0
$90 CONTINUE
~== UPDATE DEPTHS & VELOCITIES OF PREVIOUS TIME STEP.
600 00 680 J=1snN1L
vOLJ) = VNCO)
YO(J) = YNCJS)
680 CONTINUE
ee= PRINT OUT RESULTS.
IF(TIME = TPRINT ¢ +0033750¢7005700
700 TPRINT = TPRINT ¢ TTA
TM = TIME/TwRIT
00 710 U = 1ML
AREA = BlsVN(J) + SsYN(J)ee2e(ZSR + ZISL)
QRE{J) = AREA®VN(J)
710 CONTINVE
WRITE(LPeT20)TMIQRE( 1) s YNCLIoVNCL1)sQRECL12IoYNCLIL)o¥NELLDY
1 GRE(NL Do YNINL) o VNEN1)
720 FORMAT(2XeF106205X0 3F10,305X53F10e305Xs3F10.3)
750 IF(TIME -« TSUMJ)I900+950,950
eee ADVANCE THE TIME STEP.
900 CONTINUE
920 WRITE(LP»930)
930 FORMAT(//7/710X9*MAXS IfERAflﬂN LIMIT EXCEEDEDe*?
950 SsrtTOP
€ND
SIS IS U IS S SIS ST SEU LSS ENCE ST UESEIEESEEETI ST S IR SE ST S
- .
= SUBPROGRAM TO GENERATE COLUNMN VYECTOR ¢ NX1) ]
L 3 -
.. L
SUBROUT INE VECTRIBLsCXVeFACIQLATSYXsVXs XLsQATs
1 RNoN1sZSReZSLILONILDINILKeJSUTCH)
- . .
U NS C T IS S S S A ST E NS CES S ERSIN IS S SREEE UL SR IV R SES
DIMENSION CXV(LOIN) oQLAT(LON)o YXCLOINDIs VXCALDINIsXLELONI

ea= UPSTREAM NOOAL CALCULATION
LSTP = N1 - 2
AREA = BleYX(1) + Ss¥X{1)ws28(2ZSR + 2ZSL}
SPK = QT/AREA
A 3(2.48XLIL) ¢ FACS(VX(2) = 4,sSPK)IsYX(1)
B 3 (XL(1) + FACS(2.,8VX(2) + SPK)IsYX(2)
‘C = 3.eFACBQLAT(L1)®XL{1)
IF(JSWTCH = 1) 50:50,80
50 A = (20XLU1)=FACH(VX(2)=aees SPKIJsYX(1)
8 = (XL(1) = FAC®(2.,5vX(2)¢ SPK)IsYX(2)
CXVvil) = A ¢+ B¢ C
GO TOo 90
80 CXV(1) = A + 8 - C
ee=INTERIOR NODAL CALCULATION.
90 00 200 J = 1sLSTP
K = g+
AL 3 (XL(J) = FACS(VX(Jel) + 2.5VX(J))InYX(U)
BI & (2.0( XL JIPXLEJ*L1)) ¢ FACS(VX(Je2)=¥X(JINIYXL Yol
CI = (XLIJ+1) ¢ FACS(2,8VA(JP2)eVX(J®1l))InvXiJe2)
O = 3,FAC(QLAT(JIsXLIY) ¢ QLATLJ+L)oXL(J*L1))
IF(JSHTCH = 1)100+100,150

151



94

9s
96

97
98
99

100

101
102
103
104
105
106
107
108

109
110

111
112
113
114
118

116

117

118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133

134

133
136

O0OONn

o0 00

585

590

600

680

700

710

720
750

900
920
930
950

CALL JACOBI(BSR
LONSLDINSNLSLKY
LUP = 0
CONTINUE
== UPDATE OEPT
DG 580 JsisNl
VOlJ) = VNLD)
YO(J) = YINLJ)
CONTINVE
e PRINT OQUT R
IF(TIME - TPRIN
TPRINT = TPRINT
TM 3 TIME/TWRIT
00 710 J = 1sN2
AREA = B1lsYN(J)
GREL(J) = AREAsvV
CONTINUVE
WRITE(LP+720)TM
ARE(N1 F53 YNINT)
FORMAT(2XaF10e2
IF(TIME = TSUM)'
e== ADVANCE THE
CONT INVE
WRITE(LP»930)
FORMATL //7/710R9*:
stae
ENO

SVCECECEEE TS EEER BN

SUBPROGRAM TO

SUBROUTINE VECTF

1 RNINLIsZSRe2ZSLLL

YRS NI EEE RN RN B S

50

80

90

DIMENSION CXVILC

eea UPSTREAM NOC
LSTP = N1 - 2
AREA = Bl=YX(1l)
SPX = QT/AREA

A =(2e%XLEL) + F
8 = (Xt.l1) = FAC
C = 3,8FACSQLAT(
IF{JSHTCH = 1) &
A = (2.%XLI1)=F2
8 = (xL(1) = FAC
CXvil1) = A + B+
GO TG 90

CXV(1l) = A + 8 =
=== INTERIOR NOQDA
DO 200 J = 1,LST
K= g+

Al = (XL(J) = FA
BI = (2s8(XLlJ)*
CI = (xLi{Jel) +
0f = J,sFACw(QLA
IF(JSHTCH = 1)10

152

19FACLsYNs VN XL sQLATsQRIRNIZSRIZSL s

€ VELOCITIES OF PREVIOQUS TIME STEP.

JLTSe
¢ «003375007005700
TTA

«SaYNLJ)®®28( ZSR + ISL)
N :

RECL) s YNCLIsVNCIDIQREI 11D, YNCIL)sVNLILL),
NEN1)

X2 IF104305X03F10e3s5%03FL1063)

)2950,950

IME STEP.

(e ITERATION LIMIT EXCEEDEDe*)

IS ASSEN SIS SN EESESSEANSEUESE SR SN SEEE W

-
INERATE COLUNMN VECTOR (¢ NX1) .
-
=

109CXVIFAC,QLAT YXgVXs XL QTS
LOINSsLKeuSHTICH)

-
NS AN SSEEUECYSHNC USSR EENCEE I TS SN S SN KE S8 S
TIsQLATLLONI s YX{LOINDIo VXCLOINIS>XLILON)

. CALCULATION
+SeYX{1)ww2s(ZSR + ISL)

24VX(2) = 4,8SPK)InvVX(1)
2e®VXL2) + SPKIISYX(2)
«XL{1)

50:80

(VX{2)=4es SPKIIsYX(L)
28VXC2)¢ SPK)ImVYX(2)

CALCULATION.

(VXEJ+1) + 2.8VXCIIIInYX(J)

(Jrl)) + FACS(VX(Je2)=¥K(JI NIV X(Je1)
Co(QeaVX(J#2I+VXIJ®1) DInYX(Je2)
JIaXLLJ) ¢ QLAT(JrLIOXL(JOL))

100,150 .



137
138
139
140
141
142
183

144
145
146
187
148
149
150
151
152
153
154

155

156
157
158
159

160
161
162

163
164
165
166
167
168
169

170
172
172
173
17a
17s

153

100 AX = (XL(J) ¢ FACS(VX(J*l) +2.eVX(JIIIe¥X(J)
BI = (2e2(XLlJI*ALLIPL)) = FACSIVXLJ+2)=VX(JD dIoYXC(I*L)
CI = (XL{Jel) @ FACS(2.8VRIJ*2)eVX{J+L) VIVl Jo2)
CXVI(K} = AL + B3I + CI + DI
GO TO 200

150 CXV(K) = AI ¢+ 8I + CI - 01

200 CONTINUE

[
[ «==Q0WNSTREAM NOD AL CALCULATION.
AN = (XL(N1el) = FACH(VXINL)I® 2.8VXINL1=1)DinVX(N1l=l)}
BN = (2,%8XL{(N1=1) ¢ FACE(A4,sVX(NL1) =VX(N1=1)))eYX(N1)
CN = 3,eFACSULAT(NL=L)eXL(NL=L)
- IF(JSHTCH = 1130053005400
300 AN = (XLUNL=1) ¢ FACH(VYX(NLI®2,8VX{NL=1)))sVYX(NL1=1)
BN. 3 (2,8XLINLI=1) = FACS(4esVX{NLI=VXI{NLI=L)}))aYX(NL)
CXV(LDIN) = AN + BN + CN
GO T0 so00
400 CXVI(LDIN) = AN + BN - CN
500 RETURN
END :
[ SESSEYISNE NUSS S US S EECEE AN EES NS S SRS CI LA CEASEAANESSE IS S AN SE SN &
c = -
[+ - SUBPRUGRAM TO GENERATE THE JACOUBIAN MATRIX. ]
c - -
SUBROUT INE JACOBI(BTReBLIFACIYXs VXX sQLAT QT sRNeZSRIZSL
1 LONSLDINsNLILK )
14 = -
c (LT TR T PP YL PR R P PR P PRSI PP IR PP P Pyt vy Py

- C

OIMENSION BTR(LOINSLK)s QLAT(LON) sVXC(LODINDIoYX{LOIN do XLEADNY
AREA = Bl=YX{1) ¢ S5s¥YX{l)ea2s(ZSR + 25L)
SPP = QTsYX{2)/{Ble¥X(1l)su2)
SPX = QT/AREA
c e=«EVALUATE JACUBIAN TERMS FOR UPSTREAM NGDES.
BTR(1s1) = 0.0
BYRU1e2) = 248XLl1) » FACS(YXI2) = 5PP)
BYR(1s3) =3 XL(1) + FAC®(2,8VX{2) « SPK)

[+4
[ ===EVALUATE JACOBIAN TERMS FOR INTERIOR NODES.
[+
LSTP = N1 = 2
DO 300 J =1.,LSTP
K =Jd el
BTRE(Ks1) = XL(JD) = FACR(VXCJPLl) + 2.5V¥X(J))
BTR(KS2) = 202 XLUJ)eXL(J*L)) + FACSIVX(J+2) =VXtJD)
BTIRIKe3) = XL(J4L) + FACS(2.8VYX(J+2) + VYX(Jel )
300 CONTINUE
[ ~==EVALUATE JACOBIAN TERMS FOR DOWNSTREAM NGOOES

L8 = LWIN :
BTIR(LBe 1) = XLINL=1) « FAC®(VX(NL)®2,4VX(NLl=1))
BTR(LB92) = 208XLIN1=1) ¢ FACH(A,sVXINLI=V¥X(N1=1))
BTR(LB»3) = 0,0
RETURN
END
(o LTI LT A e Py R R P P Ty P PP PP PP PP e PP Y P ]
[ . .
[~ . TRI-ODIAGONAL SOLUTION ALGORITHM L]
[+ .
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177
178

179
180
181
182
183
184
185
186

187
188
189
190
191
192
193
194
1938

c
[+ SESEISERAE XSS EEEA EE R SR SRS ENUBSEU GRS ER S NS LU S VESSUEESE S IS U TE ST SEE

100

200

SENTRY

SUBROUTINE TRIMTD (STIFFsRHIYRINLSLOINsSLK)D
.

OIMENSION STIFFILDINILK)IsRH(LDIND»YR(LDINY
DIMENSION G(SO)sn(5Q)

*=eBEGIN TRIANGULAR REDUCTION OPERATION
wil) = STIFF(1s3)/STIFF(1s2)

G{l) = RH{LI/STIFF(1s2)

00 100 J = 2sN1

SAVL = STIFF(Js2) = STIFF(Jsl)sndd=1)
SAV2 = RH(U) = STIFF(Jsl)eGlu=1)

nlJ) = STIFFlJUs3)/SAVL

GlJ) = SAV2/5Avt

CONTINUE

e== OBTAIN SOLUTION VIA RECURSIVE EQ.
LIMIT = N1 -3 -

K = LIMIT

YRIN1) = GI(NL)

00 200 Ls=isLIMIT

YREK) = GEK) = w(KIsYR{K*1)

K =K =1

CONTINUE

RETURN

END
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APPENDIX J

SAMPLE OQUTPUT FOR WIKFEM

155
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Two sample outputs for a rectangular channel flood routing using
time steps of 300 and 600 seconds respectively are included. Input
data are drawn from the example problem given by Viessman et al. (1972).
The computer print-out includes the input data and the simulated flow
parameters--depth of flow, velocity of flow, and the volumetric flow

rate.



TOTAL NO. OF NOOES = 21

TIME STEP = 300.000 SEC.

CHANNEL BOTTOM SLOPE = 0.0015
MANNING ROUGHNESS COEFF, = 0.0200
VINE WEIGHTING FACVTOR = 1.0000

MAXe ITERATION LIMIV = 50

' CONVEHGENCE CRITERLA FOR DEPTH = 0.01000

TRAPEZOIDAL CHANNEL SIDE SLOPESS RIGHT = 0.00 LEFT = 0.00
NODAL SPACING = 5208.000 FT. LATERAL FLON = 0.000 FT.PER SEC.
INIVIAL DEPTH = 6.000 INIVIAL VEL. = 60946 INITIAL OISCHe = 833.493-.
* .
UPSTRE AM MIDSYREAM DOWNSTREAM
TIMECMIND DISCHARGE DEPTH VELOCILTY DISCHARGE DEPTH VELOCITY DISCHARGE DEPTH VELOCITY
5.00 1122.043 T+ 420 T.561 c 80834244 6.251 7.065 8414941 6.043 6.966
10.00 1419,.993 6.813 8.056 1027.937 6,966 T7.378 881.761 6244 7.061
15.00 1710.687 10,124 8.449 1258.421 8.06% 7.802 981.430 6.739 7.282
20.00 1996. 093 11.378 8.772 1538.243 9.351 8.225 1154.723 7.576 7.621
25.00 1853.34) 10.754 -84617 1741.772 10.262 8.407 1373.234 8.598 7.986
30.00 1704.763 10.098 B8.441 1802.278 10.529 8.558 1570.497 9.497 8.269
35.00 1558, 4066 Ge442 8. 253 1747.810 10.289 8.49% 1689.050 10,028 80422
40.00 1417,.889 8.803 8.053 1634.075 9.782 8.352 1712.527 10.132 8.458
45.00 1272.331 8.130 7.825 1499.338 9.175 8.172 1659.270 9.895 8.385
50.00 1126.723 Te442 7.570 1359.225 8.533 T.964 1559.368 9.446 8.254
55.00 9614137 64737 7T.2062 1218.384 T.877 T.73¢ 1436,530 8.889 6.081
60.00 835,561 6.011 60951 1078.077 7209 Ta4AT78 1304.530 8.280 7.0878

L5l



TIME(MIN)
10.00
20.00
30.00
40400
50400
60.00

TOTAL NO. OF NODES = 21
TIME STEP = 600.000 SEC.

CHANNEL 80TTOM SLOPE = 0.0015

MANN ING ROUGHNESS COEFF, = 0.0200
TIME WEIGHTING FACTOR = 1.0000

MAXe ITERATION LIMIT = 50

CONVERGENCE CRITERIA FOR DEPTH =  0.01000 -

TRAPEZOKDAL CHANNEL SIOE SLOPESS RIGHT = 0.00
NODAL SPACING =  528.000 FT. LATERAL FLOW =

INITIAL DEPTH = 6.000  INITIAL VEL. = 6.946

.
UPSTREAM MIDSTREAM

DISCHARGE OEPTH  VELOCITY D ISCHARGE DEPTH
1417.652 8.802 8.053 1080.712 7T.221
2004.586 11.415 8.781 15554996 9. 445
1710.933 10.125 8. 449 1727.718 10.200
1418.977 8,808 8405% 1596.775 9.615
1127.654 7.446 7.572 1349.300 8.487
636.238 64014 6.953 1073.936 7.189

LEFT =

INITIAL DISCHe =

*

VELOCITY
Te483
8.253
8.470
84304
T«949
Te470

0.00

0,000 FT.PER SEC.

833.495
DONNSTREANM
DISCHARGE DEPTH
936.491 6.517
1237.687 7.968
1529.685 9312
1611.924 9.683
1497.784 9.168
12804156 8.166

VELOC ITY
T.185
T767
Ba213
84324
8.169
7.838

85l
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APPENDIX K

COMPUTER CPU TIME AND COST
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The numerical computation associated with each of the flow models;
EKFEM, WIKFEM, WIDFEM, and WICFEM respectively is a direct function of
computer CPU time and cost. Iterative solution algorithm with a pro-
longed convergence will translate into enormous computer CPU time and
cost.

Comparisons of models and their corresponding CPU time and cost
are presented below for a given time weighting factor, time step,
channel geometric, and hydraulic data. Simplified models are expected

to have less CPU time and cost as compared to the complete flow model.

Models Versus CPU Time and Cost

a) Idealized Channel

Time Weighting Factor, © = 0.55

Time step, At

MODELS
60 seconds 300 seconds
+
CPU = 3.59 CPU = 1.44
WIKFEM COSTF = 0.91  COST = 0.40
WIDFEM CPU = 9.15 CPU = 2.67
COST = 2.23 COST = 0.69
WICFEM CPU =10.68 CPU = 4.54
COST = 2.60 CoST = 1.14
AT = 2 seconds
EKFEM CPU = 20.87
COST = 5.01

+ Unit of CPU time is seconds
T Unit of cost is dollars



b) Natural Channel

161

Time Weighting Factor, 8 =
Time step, At
900 seconds 1800 seconds

MODELS
WIDFEM CPU = 72.90 CPU 52.58

COST = 17.35 CoST 12.53
WICFEM CPU = 86.50 CPU 66.94

COST = 20.57 CoST 15.94
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