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CHAPTER I 

INTRODUCTION 

Background 

The process of determining the water depths, velocities, and 

discharges in the channels, rivers, or reservoirs under unsteady con­

ditions arising from flood motions is corrmonly referred to as flood rou­

ting. Interest in flood routing and in part in unsteady flows in water 

resources stems from the need to plan, design, regulate, and manage our 

flood prone areas and many other water resource systems. 

In a surface water system, runoff, floods, droughts, and stream water 

quality interact very closely. When excess rainfall occurs over an area, 

runoff contributes to flooding along rivers whereas drought occurrence 

due to lack of rainfall results in minimal streamflow, reduced water sup­

ply, and less naviagation. In addition, the water quality of the stream 

becomes poor because of the low flows of the streams. Thus, the occur­

rence of 1 ack of streamfl ow or drought affects the management of surface 

waters in the stream. 

The State of Oklahoma experiences runoff ranging from 0.2 inches in 

the Panhandle to 20 inches in the southeast corner, which reflects the 

dramatic contrast in precipitation. In the northwestern region an aver­

age runoff amounts to about 820,000 acre-feet per year compared to 

6,000,000 acre-feet per year in the southeastern region. Annual average 
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runoff for the entire state is approximately 22,000,000 acre-feet (Okla­

homa Water Resources Board, 1980}. 

2 

Flooding has been experienced over the years in Oklahoma. The Water 

Resources Council estimates that without increased flood management pro­

grams average annual flood damages will increase from $2.3 billion in 

1975 to $3.6 billion in the year 2000. These damages occur over a flood 

plain of some 140 to 180 million acres. The Arkansas River Basin and the 

Red River Basin experiencedan·estimated $167,000,000 in flood damages in 

the state between 1955 and· 1975, with· the majority of that attributed to 

the Arkansas River (Oklahoma Water Resources Board, 1980). 

Some floods occur gradually, as when prolonged steady rainfall satu­

rates a river basin unti 1 most of it runs off, creating a greater volume 

of water than the natural channels and drainage structures can carry. 

Others are the result of sudden heavy rains occurring in a short time 

from thunderstonns. The latter is usually experienced in Oklahoma. In 

either case, floods are considered a problem only when the result is wid­

ely spread damage to agriculture and structures or when the nonnal activ­

ities of man are seriously interrupted. 

Like other Great Plains States, Oklahoma has scores of extended 

droughts on an approximately 20-year cycle (Oklahoma Water Resources 

Board, 1980). An analysis of drought condi"tions from 1931 to 1971 indi­

cates that drought occurred somewhere in the state about 51% of the time, 

more frequently in the panhandle and 1ess frequently in northeastern and 

southcentral areas. 

Water quality of Oklahoma's streams is adversely affected by natural 

and man-made po 11 ution. In the west, natural salt springs and salt fl a ts 

emit into local streams large quantities of chlorides that are subse-



quently carried downstream, polluting other major streams as they pass. 

In central and eastern Oklahoma, municipal and industrial effluents 

degrade many streams, restricting their beneficial use. 

Thus, the interrelationships among runoff from rainfall, floods, 

droughts, and stream quality are predicted only when mathematical models 

to simulate the depth of flow and discharge in a stream resulting from 

rainfall are available. 

Study Objectives 

The purpose of this study is to evaluate the discharge in the 
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streams under the varying conditions of rainfall. The results of the 

mathematical models developed using the finite element methods will pre­

dict the depth of flow, velocity of flow, and the discharge in the stream~ 

Three mathematical flow models have been developed in this study. 

The first two are approximate models while the third is a complete model. 

They are presented below in the order of increasing complexity: 

1. The kinematic flow model, KFM, solved explicitly and 

implicitly by Galerkin's weighted residual finite 

element method. The implicit version is implemented 

using a time weighting factor, and the resulting non­

linear system of a tridiagonal matrix equation is 

solved iteratively by the generalized Newton-Raphson 

method. 

2. The diffusion flow model, DFM, implemented similarly 

to the implicit kinematic flow model, except that the 

resulting non-linear system is a bi-tridiagonal matrix 

equation. Solution is obtained by the Newton-Raphson 



technique. 

3. The complete flow model, CFM, produces a matrix equation 

similar to the implicit diffusion flow model and is sol­

ved using the same technique. 

4 

Model performance is evaluated using two forms of channel geometries. 

The first is comprised of an artificial stream channe·l of constant geome­

try with a hypothetical flood hydrograph imposed at the upstream end of 

the reach. Simulated flow is compared with the Viessman 1 s solution using 

the explicit finite difference scheme. The second model test involves 

flow in the Illinois River, a natural river in Oklahoma. The Illinois 

River, a tributary of the Arkansas River, originates in northwestern 

Arkansas as Osage Creek and flows westward into Oklahoma. The flood 

recorded on April 10, 1979, for Watts and Tahlequah guaging stations, 

50.4 miles apart, and that for Flint Creek, a tributary approximately 

13.2 miles downstream of the Watts Station are utilized. 

The choice of the natural channel is limited due to lack of ade­

quate hydraulic data. Thought the Illinois River seems to exemplify 

varying channel geometric and hydraulic properties inherent in many other 

natural rivers in Oklahoma, the availability of data and the excellent 

flood hydrographs of 1979 record make it the best choice. 

The objective of the first test with an idealized river channel is 

to explore the basic principles and to make some appraisal of the sensi­

tivity of the controlling flow parameters in the mathematical models. 

The model application to a natural channel checks on the capability of 

simulating natural floods of long durations for use in the design of 

hydraulic structures as well as for the flood plain zoning. 



CHAPTER I I 

LITERATURE REVIEW 

Hydraulic And Hydrologic Routing Methods 

Significant studies of unsteady flow in an open channel date back 

to the early works of the French mathematicians, Laplace (1775-76) and 

Lagrange (1783). The Lagrange celerity fonnula for small waves in 

shallow water provided the first impetus for subsequent studies. Later 

the British School of Mathematical Physicists gave some attention to 

fluid flow problems with contributions being made by Stokes, Kelvin, 

Rayleigh and Lamb (Water Waves., 1965). 

The more advanced mathematical treatment of unsteady flow in an 

open channel is credited to Barre de Saint Venant (1871), a French 

mathematician who developed the complete one-dimensional equations of 

unsteady flow. These are two nonlinear hyperbolic partial differential 

equations of motion (conservation of mass and conservation of momentum) 

that very accuately describe the gradually varied flows in open channels. 

The original form of these equations is: 

Where: 

B £l. + A h + v 'dA = 0 
at ax ax 

av av 
()t + V dX + g( ~ + s - s ) = 0 ax f o 

A = channel cross-sectional area, ft2; 
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( 2. l ) 

(2.2) 



B = width of channel water surface, ft; 

y = depth of flow, ft; 

x = distance along the channel, ft; 

t = time, sec; 

sf = friction· s 1 ope, ft/ft; 

v = mean velocity across the section, ft/sec; 

S0 = longitudinal bottom channel slope, ft/ft 

Two basic techniques for unsteady flow simulation are (1) methods 

which approximate a solution to the basic equations of unsteady flow 

(Eq. 2.1 and 2.2), and (2) methods which solve the basic equations. 

The first methods are sometimes referred to as "hydrologic 11 routing 

methods and the second kind, "hydraulic" routing methods (Thomas, 1975). 

The importance of the hydraulic routing method has become increa­

sing evident in the light of the modern high-speed digital computer for 

solutions of unsteady partial differential equations that have no 

closed form or analytical solution. Numerous unsteady flow phenomena 

such as surges, effects of tidal fluctuations, backwater resulting from 

channel junctions or reservoirs, and normal flood waves from excessive 

rainfall can be analyzed using the hydraulic routing and numerical 

methods such as fini teelement or finite difference methods. 

On the other hand, the early development of the hydrologic routing 

6 

in the form of a continuity equation is credited to Rippl (1883). In 

working on reservoir capacity problems, he utilized the concept of suc­

cessive approximations to routing streams where the data are average 

daily flows, rather than slope, stage, and velocity measurements. Hydro­

logic routing is handy when data for hydraulic routing are not available. 



The associated continuity equation is: 

I 

or 

- 0 = dS 
dt 

(2.3a) 

(2.3b) 

where, I, 0, t, (s2 - s1) are the inflow into a given reach, outflow 

from that reach, time period for the flow to travel through that reach, 

and the change in storage during that time period in the reach, respec-

tively. The subscripts 1 and 2 represent conditions at the beginning 

and end of the routing periods. 

The hydrologic routing is sometimes referred to as hydrograph rou-

ting because of the graphical relationship e-stablished between storage 

and outflow yields a feasible solution to Equation (2.3b) having two 

unknowns, O and s2. Puls (1928) established a curve of relation be-. 2 
tween inflow and outflow versus storage for a variety of flood on the 

Tennessee River. 

With some modifications of the continuity Equation (2.3b) to in­

clude the local inflows along the channel, Wisler and Brater (1931) pre­

sented a revised graphical scheme of Puls. This method was the first to 

use computed inflow hydrographs from tributaries and unmeasured areas 

for which no flow records are available. A number of hydrologic rou-

ting methods have emerged over the years including various coefficient 

routing procedures such as the Muskingum technique (McCarthy, 1938). 

Interested readers are referred to basic texts on hydrology (Chow, 1964; 

Viessman, 1972). 
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Numerical Methods in Hydraulic Routing 

Finite Difference Methods 

A large number of schemes have evolved from the finite difference 

methods over the years and have been applied with success to equations 

of unsteady flows and other engineering problems. For instance, the 

explicit, characteristic, and implicit schemes are the major categories. 

However, varieties of each group exist, for example the· leap frog, dif­

fusion and staggered explicit schemes, method of characteristics with 

fixed or. characteristic grids, and the implicit scheme with weighted 

four-point or six point ( Gunaratnan, 1970; Thomas, 1975; Fread, 1976). 

A survey of previous literature indicates that many investigators 
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to date have employed the finite difference schemes in flood routing 

problems. Isaacson et al. (1954·, 1956) investigated flood routing in 

their peoneering work in the Ohio River. Amein (1966) used the method of 

characteristics to solve the streamflow problem in an attempt to study 

the effects of friction on- peak flows. Amein and Fang (1969) also used 

an implicit scheme in solving the streamflow routing problem in natural 

channels in North Carolina. Pinder and Sauer (1971) employed the ex­

plicit method in simulating the flood wave modification due to bank 

storage effects. Fread (1971, 1973, 1974, 1976, 1978) investigated the 

routing problems using the implicit four-point and wieghted four-point 

finite difference schemes. Chaudhry and Contractor (1973), Liggett and 

Wollhiser (1967), Viessman et al. (1972), and many others have in turn 

used finite difference methods to solve approximate and complete rourjng 

equations. 



It is interesting to remark that some of the finite difference 

schemes have some limitations often associated with convergence and 

stability problems. The explicit method is subject to a stringent 

stability condition imposing a limiting value for the time step in 

relation to distance step (Amein and Fang, 1969). The maximum time 

step that can be used in the explicit scheme to insure numerical sta-

bility when frictional effects are relatively small is computed using 

the Courant condition (Fread, 1973) as: 

where: 

t.t < c 
( I v . I + ( gA i I B . ) ~ 

i i 

Ai and Bi = area of flow and width of the water surface 

. th . th t. . 1 in e i cross-sec ion, respective y; 

~Xi = the ;th distance step; 

Mc = the computational time step; 

(A/B) . = the hydraulic depth; i 
velocity of flow in the . th . v. = i cross-section. i 

(2.4) 

Although the explicit scheme would not pose much difficulty for in­

vestigation of short time flows, it becomes cumbersome and inefficient 

for large flood flows in large rivers. 

The method of characteristics is highly suitable for rapidly varied 

flows (Amein, 1966). It can be used for flood studies. However, the 

scheme is inconvenient in that the results are not obtained at fixed 

times and locations. A modification of the scheme employing a fixed 

mesh has been applied by Baltzer and Lai (1968) to tidal flows, but it 

9 



has no significant advantage over the explicit method for large river 

flows. 
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One requirement for the explicit scheme and method of characteristics 

is the use of equal distance intervals. This appears disadvantageous for 

rivers with irregular geometry (Fread, 1974). Thus, the development of 

the implicit schemes arise not only toovercome the equal distance require­

ment but also as a means of negating the restriction of small time steps 

imposed on the explicit and characteristic methods for reasons of sta­

vility. The four-point implicit finite difference method appears most 

advantageous since it can readily be used with unequal distance intervals 

(Fread, 1973, 1974, 1976). 

In the 1 ight of the inherent advantages of the implicit four-point 

scheme, Fread (1973) investigated the influence of the time weighting 

factor, e, for spatial variables along with those of the channel para­

meters, such as the length of the reach, bed slope, roughness coeffic­

ient, and surface width, on the numerical distortion (dispersion and 

attenuation of computed stage hydrographs). The definition of e is 

presented in Figure 1. Among other things, the following observations 

were made. The lower range of allowable e values minimizes the distor­

tion which results from the use of large time steps in the integration 

of the implicit difference equation. A value of e = 0.55 was chosen to 

minimize distortion while conservatively insuring theoretical stability 

criteria. The tendency for the stability of the numerical computations 

to decrease with increasing value of e exists. 

On the other hand, numerical distortion increases when the channel 

length, L, or the Manning roughness factor, n, increases; and it de­

creases when the magnitude of the initial depth of flow, y0 , or the 
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channel bottom slope, 50 , increases. The channel width, B, was observed 

to have little or no effect on the magnitude of the numerical distortion. 

In general, it is expected that the results obtained by the implicit 

method would be no different than those obtained by other numerical meth­

ods for the solution of the complete equation of unsteady flow in open 

channels. The main difference is that the implicit method provides the 

result faster (Amein and Fang, 1969). 

Finite Element Methods 

Evolution and Extension to Fluid Dynamics 

The evolution of the present-day finite element methods has followed 

a long but imprecise history (Zienkiewicz, 1977). To date, the unified 

efforts of the early mathematicians and those of engineers mostly in the 

structural discipline have given rise to a complete picture of finite 

element methods. The contributions of the mathematicians are seen in 

the area of fonnula development (the governing differential equations) 

for the physical problems and solution techniques such as the variational 

principle, Gurtin principle, and the weighted residual principles. 

On the other hand, the engineers tend to approach the problem by 

establishing a direct analogy between the real discrete element and 

finite portions of a continuum domain. As Zienkiewicz (1977) puts it, 

it is from this "direct analogy" view that the term finite element was 

born. The existence of a unified treatment of the "standard discrete 

problems" leads to the first definition of the finite element process 

as the method of approximation to continuum problems such as: 

1. The continuun is divided into a finite nuabcr of e1c~ents 
whose behavior is specified by a finite number of parame­
ters, and 



2. The solution of the complete system as an assembly of its 
elements follows precisely the same rules as those appli­
cable to standard discrete problems (p. 3). 

13 

For the simple reason that a number of classical mathematical pro­

cedures of approximation fall into this category as well as the various 

direct approximations in engineering, Zienkiewicz (1977) states that 

the origin of the finite element procedures and the precise moment of 

its invention are difficult to determine. A supporting point of view 

is held by Oden (1972) who comments on the piecewise approximations 

and rudiments of the idea of interpolation supposedly used in ancient 

Babylonia and Egypt that preceded the ca 1cu1 us over 2000 yea rs ago. 

More recently, the practice of representing a structural system by 

a collection of discrete elements was utilized in the early works of the 

aircraft structural engineers (Courant, 1943). The formal presentation 

of the finite element methods together with the direct stiffness method 

for assembling elements is attributed to Turner, Clough, Martin, and 

Topp (1956). It was Clough (1960) who first used the tenn 11 finite 

elements 11 in a later paper devoted to plane elasticity problems. 

The application of the finite element method to fluid flows began 

to assume a degree of importance in the mid-sixties fol lowing the early 

works of Zienkiewicz et al. (1965, 1966), Javandel and Witherspoon (1968), 

and Tyagi ( 1971) in porous media fl ow. For the 1 as t decade scores of 

papers have emerged applying the finite element methods to surface water 

sys terns for es tua rtes, reservoirs and streams, and groundwater· systems 

for flow in saturated and unsaturated zones and groundwater quality 

(Gal1agher, et al., 1974, 1976; Gray, Pinder, and Brebbia, 1976; Ciriani, 

Maione and Wallis, 1974; Tyagi, 1975a, l975b, 1975c). 



Weighted Residuals Methods, WRM 

Elaborate discussion on the basic finite element schemes is found 

in literature (Zienkiewicz, 1977; Oden, 1972; Finlayson, 1972; Segerlind, 

1976; Ames, 1977; Chung, 1978). Norrie and DeVries (1975) presented a 

bibliography covering over 3800 citations during 1956-1974. 

As an approximate method of solving differential equations of ini­

tial and/or boundary value problems in engineering and mathematical 

physics, the finite element can be implemented via variational principle 

or weighted residual principles. The variational principle is based on 

the works of Rayliegh (1877) and Ritz (1909). Some classes of problems 

can not easily be put into variational fonn, particularly when the gov­

erning differential equations are not self-adjoint. Thus, this method 

has limited application. 
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The weighted residual methods {WRM), \'Jhich include the orthogonal 

collocation, Bubnov-Galerkin, Subdomain, and least-squares, are employed 

to deal directly with the governing equations of the physical problems 

(Finlayson, 1972; Ames, 1977). The weighted residuals in general utilize 

the concept of orthogonal projections of a residual of a differential 

equation onto a subspace spanned by certain weighti.ng function. Stated 

differently, the unknown solution in all the WRM is approximated by a set 

of local basis functions containing adjustable constants or functions 

(Ames, 1977). These constants or functions are chosen by various criteria 

to give the "best" approximation for the selected family. For instance, 

the least-squares method requires higher order interpolation functions in 

general, even if the physical behavior may be adequately described by low­

er order (linear) functions (Chung, 1978). This restriction limits its 



use. The collocation is the simplest (WRM) to apply, but it has a draw­

back in terms of the number of nodes needed to achieve the same results 

as with the Galerkin method. 

Of special interest in all the WRM is the Bubnov-Galerkin method 

(1913 and 1915, respectively). The method (often referred to as Galerkin 

without Bubnov) is the most popular and widely used. Large numbers of 

non-linear fluid flow systems are easily transfonned into "finite ele-

ment equations" directly. The classical procedures of the Galerkin as-

sume the weighting function and the trial function to be identical 

(Zienkiewicz, 1977). Like the variational principle, the Galerkin 

always yi:elds a.symmetric matrix equation for linear differential aper-

a tors. 

Approximation of Time Derivatives. 

The concept of extending the finite element to include the time do­

main is discussed by Oden (1969, 1972) and Chung (1978). The approach 

is to regard the basis function as being dependent on time as well as the 

spatial domain such that! 

where: 

av(x,t) 
at = 

aN.(x,t) 
l 
at v; 

v(x,t) = dependent variable, v, expressed as a 

function of space, x, and time, t; 

Ni(x,t) = basis function at node, i, as a function 

of space and time. 

(2.5) 

Other investigators have extended this idea in many studies in 
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* water resources . Zienkiewicz and Lewis (1973) investigated two linear 

finite element formulations in the time domain. Grotkop (1973) applied 

the Galerkin method in the time domain to estuary modeling; Gray and 

Pinder (1974) conducted a numerical experiment on the use of the Galer­

kin finite element method to approximate both the time and space deriv­

atives and thereby study the suitability of using higher order basis 

functions in the time domain for solving the transient groundwater flow 

equation. Van Genuchten (1977) employed higher basis function (inclu­

ding Hermitean) to a one-dimensional solute transport equation and 

studied the accuracy of the resulting schemes. 

One major disadvantage of finite element approximations in time 

derivatives is the enonnous increase in the computational time and 

effort. Gray and Pinder (1974) noted the inherent tradeoff between 

increased accuracy and decreased computational efficiency associated 

with the finite element time derivatives. The optimum scheme for ap­

proximating the time derivative in a groundwater flow problem is de-

pendent on both the behavior of the solution and the method of time 

step se 1 ection. 

The second approach to the time derivative approximation is the 

so called "semidiscrete method 11 in which the time derivative of a var-

iable at nodes is replaced by a temporal operator (finite difference 

operator) from the relation, (Chung, 1978): 

(2.6) 

where: 
v;(t) = time derivative of v prescribed at node i 

* ~hP. author was not able to discover any documentation of FEM in 
time derivati~s applied to unsteady flows in open channelmodeli:ng. 
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Many of the finite element models of transient problems adopt the pre­

viously described semidiscrete method. When the time derivatives are 

approximated with finite differences, either a central in time (Crank­

Nicolson) or a backward/forward in time (implicit) scheme can be used 

(Van Genuchten, 1977). The fonner results in a second•order accuracy 

while the latter yields only a first-order accuracy. If higher order 

basis functions are used, it may be important to obtain a higher order 

approximation of the time derivatives. This might not be necessary if 

lower basis functions such as the linear types are employed. 

Numerical Properties of FEM for Non-Linear Systems 

17 

Numerical properties of the finite element method, such as the sta­

bility, convergence, and accuracy~ unlike those of the finite difference 

methods have not been established adequately although many intuitive 

proofs and conclusions have been stated (Desai and Christian, 1977). The 

study of the numerical procedures has often been made in a pragmatic man­

ner. When a given scheme is used for a number of problems and it is 

found satisfactory, it is considered acceptable. The major criticism of 

this approach is that it may not yield a general scheme (Desai and 

Christian, 1977). 

Error analysis associated with the solution of the non-linear hyper­

bolic open channel flow equations may be grouped as: finite element ap­

proximation errors; temporal approximation errors; and errors due to any 

iterative non-linear equation solver, such as the Newton-Raphson, pre­

dictor-Corrector, and others. At present, no theoretical finite element 

error estimates are available for the unsteady nonlinear two-variable 

equations. However, it is possible to perfonn error analysis due to 



temporal operators, together with the iterative equation solver in a 

restricted sense. Adopting a procedure described by Chung (1978, pp. 

227), by holding the non-linear terms constant during the iteration 

cycle, it is then possible to generate an approximate amplification 

property matrix, a technique reported by Lax-Richtmyer (1956) and 

Richtmyer-Morton (1967). Every eigenvalue A.. of the amplification 
1 

matrix, if made smaller than unity, automatically insures stability. 

The largest eigenvalue, called the spectral radius of the amplification 

matrix which governs the stability, and the limiting value of the time 

step, 6t, can be determined. As the non-linear terms are updated, the 

amplification changes,. thus altering the stability criteria as calcula~ 

tions progress. This increases the difficulty in the stability analysis 

of an unsteady non-linear system. 

A slightly different approach to the error analysis for non-linear 

hyperbolic equations (Oden and Fast, 1973) requires the finite element 

basis functions to satisfy the convergence and completeness criteria as 

for linear elliptic problems. The study yields a stability estimate that 

is considered to be consistent with the well-known Von Neumann 1 inear 

stability criterion which requires the discrete system to propagate 

information at a rate greater than or equal to the speed of propagation 

of the actual system. The above approach is too narrow in concept, a 

linearization technique drawn from elliptic type of problems, and limits 

the use to the special class of hyperbolic equation studied, the one­

dimensional homogeneous hyperelastic bodies. 

With regard to the finite difference method, Fread (1974) studied 

the numerical properties of the St. Venant equations for a four-point 

implicit scheme using the Von-Neumann technique. Since this technique 
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is only applicable to linear differential equations, linearization of 

the governing equations is adopted with certain terms omitted on the 

basis of their relatively small magnitude in order to facilitate the 

stability analysis. On the other hand, the convergence criterion was 

analyzed by expanding each term in the Taylor series expansion about the 

point at which the differential equation is computed. The study con­

cludes that the implicit four-point method is unconditionally stable 

provided the time weighting factor, e ~ 0.5, and has a second order 

accuracy since time step, 6t, and distance step, 6x, are quadratic. 

Cooley and Moin (1976) studied the numerical properties of the St. 

Venant equations using the finite element method* and the predictor­

corrector iterative solving scheme. They adopted the linearization 

technique similar to those used by Strelkoff (1970) for stability anal­

ysis. Their concluding remarks are identical to those of Fread (1974). 

Error analyses for other classes of differential equations are reported 

in literature (Kreig and Key, 1971; Fujii, 1972; Desai, Oden and Johnson, 

1975; Desai and Lytton, 1975; and Chung, 1978). 

Finite Element Versus Finite Difference 

The purpose of resorting to the Numerical Methods is to be able to 

solve problems either for which there is no analytical solution or for 

which the analytical solution is too hard to obtain. For the last two 

decades, attention has been drifting from the finite difference method 
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* The author observed very astonishingly, the constant use of finite 
differencing for time derivatives and finite element for space derivatives 
(mostly linear basis functions). This seems to explain the formidable 
difficulties associated with a complete finite element error analysis of 
unsteady non-linear hyperbolic equations. 
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to finite element method in hydrology and water resources. The search 

for the most, efficient and accurate simulation model has continued to be 

the center of inspiration for this change of attention. The question of­

ten raised is "Is there any real reason for this change of attention?" 

Review of major studies in fluid dynamics involving the FDM and FEM sheds 

some light on answering the question. 

In a very vigorous classification of trial functions, Zienkiewics 

(1974) states that within a broad definition, the finite difference tech­

nique falls into a 11 subclass 11 of the general finite element methodology, 

which indeed embraces many other classical approximation procedures. Nev­

ertheless, both techniques can be considered as distinct in a much nar­

rower perspective. For instance, the two methods differ in a manner in 

which the element equations are generated from the governing equation. 

While the two adopt the principle of discretization as the initial step 

in the numerical procedure, the way the concept of discretization is im­

plemented varies. In the FDM, the governing equation is discretized 

whereas in the FEM~ the region or continuum of the system is discretized. 

In other words, in the FEM the problem is formulated as an integral to be 

minimized, and we use a numerical approximation of the integral to obtain 

a solution. This step is necessary regardless of the kind of FEM adopted 

--variational principle or method of weighted residuals (Myers, 1971). 

Another distinguishing feature of the FEM is the difference in the 

grid and element numbering system. For instance, a typical element, e, 

is the interval between nodal points, i and j. This numbering scheme is 

slightly different from the FDM where nodal-point number is also used to 



designate the region surrounding the· nodal points. In the FEM, the 

numbering of the nodal points is entirely separate from the numbering 

of the elements. 

Though it has not been proved technically that any one method is 

superior to the other, what seems obvious is that the finite element 

method may prove more advantageous for some cl asses of .Problems--those 

with extremely complex geometry--than FDM. A supporting viewpoint can 

be drawn from Myers (1971). In a one-dimensional steady state heat 

transfer problem for a thin rod, solution is sought by the variational 

principle (FEM) and FDM using the same number of nodal points. It was 

observed that the FEM solution falls below the exact nodal values by 

about the same amount that the FEM are above the exact values. This was 

explained by the fact that FEM was generated by minimizing the integral 

(Myers, 1971). 
Some numerical studies performed by Pinder and Gray (1976) using 

the equation governing the convective -diffusion transport of a censer-

vative contaminant help to illustrate the relationship between FEM and 

FDM. By using the Galerkin approximation of the space derivatives and 

the finite difference approximation of the time derivatives, they ob­

served that the FEM can be expressE:d in terms of weighted average fin-

ite difference approximations. However, this observation had been re-

prated by others earlier (Myers, 1971; Finlayson, 1972). 

Advantages of one method over the other in terms of the numerical 

properties such as convergence and stability may depend on the nature 

of the problem as well as the solution technique adopted, Newton-Raphson 

or Predictor-Corrector method for non-linear problems. For simulation 

of floods of long duration, a stable algorithm with large distance and 
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time steps is needed. As Cooley and Main (1976) and Manan et al. (1977) 

indicated, the FEM has some answer. 
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CHAPTER III 

MATHEMATICAL STATEMENT 

Introduction 

The mathematical expressions of the unsteady gradually varied stream­

flow hydraulics are afforded by the we11-known "Saint Venant Equations," 
,. 

named after Barre de Saint Venant (1871) who first derived them. The 

original forms of these equations as presented in Chapter II have been 

modified to include the lateral flow term. These equations are one­

dimensional non-linear hyperbolic, initial as well as boundary value par­

tial differential equations, which may be derived from the laws of con­

servation of mass and momentum. 

No attempt is made to re-derive these equations herein, rather inter­

ested readers are referred to any basic text on open channel hydraulics, 

such as Chow (1959), Henderson (1966), Viessman et al. (1972), Wylie and 

Streeter (1978) and many others. 

Governing Differential Equations 

The distribution of depth of flow and velocity of flow and discharge 

in a stream are represented in Figure 2, following. The mathematical mod­

el that predicts the flow on a space and time basis can be represented by 

the following equations, Viessman et al. (1972): 

Equation for conservation of mass 

'3Y... + y 'CV +-v '3Y... - q(x,t) = 0 
at ax ax ( 3. 1 ) 
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Equation for conservation of momentum 

'}.;!_ + v '}.;!_ + --¥r--Gi (7<, t) + g ( ~x + sf - s0 ) = o at - ax .J o 
(3.2) 

where: 

q = lateral inflow in the channel reach, 6x, ft per sec; 

(friction slope, derived from Manning's EQ.}, 
ft/ft; 

nl =Manning's roughness factor, sec per ft -l/3; 

R = hydraulic radius, ft; 

Other terms are as defined fer EQ. (2.1) and (2.2). 
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The two dependent variables in Equations (3.1) and (3.2) are the 

depth of flow, y(x,t), and the velocity of flow, v(x,t). The channel geo­

metry is specified by the area of flow, A(x), the hydraulic width, B(x), 

(where A(x) = B(x) · ay/ax) wnd the slope,S~ = S0 (x). The lateral inflow 

q(x,t) has about three possible sources of contribution, namely, the rain­

fall on the stream, overland flow, and the subsurface inflow. 

The conservation of mass and momentum equations presented above are 

classified as one-dimensional in the sense that flow characteristics such 

as depth and velocity are considered to vary only in the longitudinal X-

direction of the channel. Other simplifying assumptions inherent in their 

derivation are as follows: (1) the velocity is constant and the water 

surface is horizontal across any section perpendicular to the longitudin­

al axis; (2) the flow is gradually varied with hydrostatic pressure pre­

vailing at all points in the flow such that the vertical acceleration of 

water particles may be neglected; (3) the longitudinal axis of the chan­

nel can be approximated by a straight line; (4) the bottom slope of the 

channel is small; (5) the bed of the channel is fixed, i.e. no scouring 
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or deposition is assumed to occur; (6) the resistance coefficient for 

steady uniform turbulent flow is considered applicable, and an empirical 

resistance equation such as the Manning equation describes the resistance 

effects; and (7) the flow is incompressible and homogeneous in density 

( Fread, 1976; Freeze, 1972) . 

Once the velocity of flow and depth of flow are computed from Equa­

tions (3.1) and (3.2), the discharge can be computed from the following 

equation: 

Q = vy (3.3) 

where Q =the streamflow volumetric flow rate; cubic feet per sec per 
channel width of flow. 

Initial and Boundary Conditions 

The essential requirements to initiate any hydraulic routing, be it 

open channel or overland flows, ·are the initial and boundary conditions. 

The distinction between initial and boundary conditions is merely one of 

position on the x plane at the commencement of the solution procedure, 

(Viessman et al., 1972). The initial condition on one hand describes the 

flow depth, velocity, ordischarge at all points in space at time, t = 0. 

If flow is assumed uniform and steady before any flood wave reaches the 

point of interest upstream of the entire channel, then either the Manning 
,. 

or Chezy 1 s equation is employed to calculate the initial flow parameters. 

On the other hand, the boundary condition refers to the depth, velo­

city, ~r discharge at the up- and down-stream points or other point(s) of 

interest on the river reach at all times, t > 0. Examples of boundary 

conditions are discussed elegantly by Fread (1976) and summarized in the 

following equation: 

My + Ni/ = P (3.4) 



where 

M, N and P = known functions of either y or v or both. 
Either Mor N is zero at the upstream boundary, and M, 
N, and P are segments of a rating curve for the down­
stream boundary. 

·27 

Important points to keep in mind in boundary condition specification 

are as follows: (1) if discharge hydrographs are used for both the up-

stream and downstream boundary conditions, any error in the initial con­

ditions (the initial depth of flow and velocities at all computational 

nodes along the stream between the up- and down-stream boundaries when the 

simulation is started) will be perpetuated in the computations (Fread, 

1976). This is not the case when other possible combinations of the boun­

dary conditions (specified depths or discharges upstream and rating curve 

downstream) are used. (2) Associated with the channel hydraulics are two 

interacting phenomena, namely, the state of flow (subcritical, critical, 

and supercritical) and the boundary conditions (Viessman et al., 1972). 

For subcritical flow, boundary conditions are required at both up- and 

down-stream of the river reach whereas only two upstream boundary condi­

tions are necessary in supercritical flow. This is because downstream ef-

fects can not be propagated backward. 

Simplified Models 

The solution of the complete one-dimensional unsteady flow Equations 

(3.1) and (3.2) oftentimes results in enormous computer time and storage, 

particularly for floods of long durations. In essence, this has attracted 

significant interest in the use of simplified models, such as the kinemat­

ic and diffusion flow models. The mathematical justification in the use 

of these simplified models is provided by the slope approximation 



analysis and Froude number order of magnitude analysis (Henderson, 1966). 

While the continuity equation is completely retained, the simplify­

ing assumptions are made in the momentum equation. If Equation (3.2) is 

re-arranged with the friction slope, 5f,being the subject of the formula 

and letting q(x,t) equal zero, the resulting equation is: 

= s - !l - '!...'2::!. -
/ o Jax g ax 

steady uniform flow J 
(kinematic flow model) 

steady non-uniform flow, I 
(di ffu si on· fl ow mode 1 ) 

steady non-unifon:i flow, II 

unsteady non-uniform flow 
(complete flow model) 

1 av 
gat 

(3.5) 

The volumetric flow rate,Q,is obtained by combining Equation (3.5) and 

Manning 1 s formula as: 

Q = 1.486 AR2/3 
nl s - ~ - '!... '2::!. - l '2::!. o ax g ax g at (3.6) 
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From Equation (3.6), if the last three slope terms are small compared with 

s0 , the discharge, Q .. can be computed as in uni form fl ow, and it is depend­

ent on depth only. The resulting relationship is known as the kinematic 

model, and 

or 

its momentum equation 

nl.2/ s ---......,,.. 
o - 2.22R4/3 

Q = l.486 6 R2/3 S ~ 
n 1 " o 

is expressed as: 

(3.7) 

The kinematic model has been successfully applied in simulating flows in 



natural floods in steep river slopes of the order of 10 feet per mile or 

more, overland flows, and slow-rising hydrographs (Henderson, 1966). 

If the longitudinal streambed slope, S0 , is very flat, the ay/ax 

term in Equation (3.6) may well be of the same order as S0 . In this case 
+ the Froude number-, F, will be very low, so that the third term in Equa-

tion (3.6) will be negligible. In fact the third and fourth terms can be 

shown to be of the same order of magnitude. Details of the mathematical 

proof are discussed by Henderson (1966). 
? 

However, for F- << 1, the terms 

v/g av/ax and l/g av/at are of the same order of magnitude. This flow 

condition yields the diffusion flow model. The momentum equation yields: 

sf = s - E.1_ (3.8) o ax 
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Indeed, the kinematic and diffusion flow models are two extreme cases 

of slopes--steep and flat--which are frequently encountered in overland 

flow on watersheds and natural routing of a flood wave in streams. Con­

ceivably, there are possible intermediate values of slope for which all 

the four slope terms in Equation (3.6) would be appreciable. This is a 

case where the complete flow model is employed. 

± Froude number is a dimensionless flow parameter utilized to char­
acterize the state of flow. If the Froude number is less, equal, or 
greater than unity, the flow is subcritical, critical, and supercritical 
respectively. ' 



CHAPTER IV 

FINITE ELEMENT FORMULATION 

Introduction 

The finite element method selected here is the Galerkin 1 s weighted 

residual principle. This is an excellent choice for the solutions of the 

unsteady open channel flow equations that are characterized by the non-

1 inear hyperbolic behavior. This class of equations cannot easily be ex­

pressed in the variational form because the governing differential equa­

tions are not self-adjoint. Thus, the weighted residual principle, such 

as the Galerkin 1 s principle, is employed to solve the governing equations 

of unsteady flow. In its final form, the method generates a system of or­

dinary differential equations in time for transient problems. 

The weighted residuals utilize the concept of orthogonal projections 

of a residual of a differential equation onto a subspace spanned by certain 

weighting function. A discussion as it applies to some finite element 

problems is given by Chung (1978), Norrie and De Vries (1973), Martin and 

Carey (1975), and Zienkiewicz (1977). The implementation of the finite 

element formulation of the flow equations is carried out in four basic 

steps--(1) channel discretization and selection of approximation functions, 

(2) derivation of element equations, (3) assembly of element equations, 

(4) transient solution of the system of equations. For sake of clarity, 

the continuity Equation (3.1) is chosen to illustrate these steps. 
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Channel Discretization and Selection 

Of Approximation Function 

The natural channel shown in Figures 3a and 3b is idealized as a 

straight line as presented in Figure 3c because the flow equations are 

one-dimensional. The channel is divided into (N-1) small segments called 

elements or reaches where N is the total number of nodes for which the 

solution of the dependent variables is sought. Each element wi11 be 

modeled with the same flow equation but with different channel geometry 

and hydraulic properties. The element equations are later assembled into 

global matrix equations for solution. 
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To initiate the element equations, the approximation of the dependent 

variables, such as the velocity of flow,v(x,t), and the depth of flow, 

y(x,t), that form continuous functions over the infinite distance into 

discrete variables for a finite distance is necessary in the finite ele­

ment method. Approximation functions, also known as shape or basis func­

tions, include linear, quadratic, higher order polynomials or spline func­

tions. The linear shape function is utilized to keep calculations simple. 

It is important to note that a single function approximating the en­

tire flow domain is difficult to find. The finite element method simpli­

fies the procedure by breaking down or discretizing the function and do­

main into the eler.ients shown in Figure 4. The characteristics of a shape 

function are su11111arized as follows: 

1. Each function denoted as N~ is zero, except within the element 

e, and k must be a node of e. 

2. The function N~ is defined as a continuous function of the inde­

pendent variable xk over the element e in such a manner that the value 
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at the nodal point k is unity,and the values at the other nodal points of 

the element are zero. 

3. The function y(x,t), or y for simplicity {depth of flow), is 

allowed to vary linearly in each element: 

y = A + Bx 

where 

A and B = constants 

( 4. 1 ) 

For determining the values of A and B, consider Figure 5 and Equation 

(4.1). Two simultaneous equations are generated by substituting into 

Equation (4.1) the corresponding values at points xk and xk+l respective­

ly. These equations are: 

yk = A + Bxk 

Yk+l = A + Bxk+l 

Solve for A and B: 

Thus, the linear shape function becomes: 

( 4. 2) 

(4.3) 

(4.4a) 
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xk+ 1:'\ - x x - xk 
= yk + Yk+l (4.4b) 

xk+1 - xk Xk+l ~ xk 

= rl k yk 
e 

+ Nk+l Yk+l (4.4c) 

By adjusting the coordinate system in Figure 5 such that the origin is 

at xk and the distance from the new origin to xk+l is L, Equation t+.4b) 

reduces to 

Y = (1 - s)yk + syk+l 

where 

N~ = (1 - s), N~+l =sands= x/L 

when x = xk' N~ = 

e 
x = xk+l' Nk 

e and Nk+l = 0 

e = 0 and Nk+l = 

as required part of the characterisitics of the shape function. 

Derivation of Element Equations 

(4.5) 

The Galerkin's weighted residual method is the basis of the element 
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derivation equations. The method requires that errors or residual between 

the approximate solution and the true solution be orthogonal to the func-

tions used in the approximation. The principle is expressed mathematical-

ly by Segerlind (1976): 

JR N6 L(¢)dR = 0 S = i, j, k, ... (4.6) 

where 

N s = shape function; 

~ = unknown parameter and is approximated by 

( 4. 7) 



37 

L(¢) =differential equation governing ¢; and 

R = region of interest. 

Equation (4.6) implies that the shape function N6 must be orthogonal to 

the residual between the approximate solution and the true solution over 

the region R. Inserting the continuity Equation (3.1) into Equation (4.6) 

yields: 

where 

k-1 x 
z r k+l N T(!l'._ + y2.:!.. + v~ - q(x t)'1"'x = 0 'x at ax ax ' 'f\J 1 k 

(4.8) 

k-1 
z = expression for summing individual element equations from 1 to 
1 (k-1) elements; 

NT = transpose to the shape function, and other terms are as defined 
previously. 

Using the shape function, Equation (4.5) into Equation (4.8) gives 

Term (1) (2) (3) (4) 

k~l 1 T 3 a 3 
z ! N ( ¥t + y;f: + v-?- - q ( x, t) ) Ld s = 0 
1 0 x x 

(4.9) 

Contribution of terms from left to right in Equation (4.9) is given be­

low: 

where 

Term ( 1 ) : 

L [2 1] = b 1 2 

Y, =..Ji. time derivative of y. 
1t' 
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Term ( 2) : 

For the second term, first consider the following analysis: 

then~~= :x ( (NJ{V}) 

= [aaN; aN~;ij itl 

(4.9b) 

Terrn(3): 

The third term. is 

(4.9c) 

Term ( 4): 

The last term is 

11NT(q(x,t))Lds = q(x,t)J1 [(l~s~ Lds 
0 0 

= f )1 l q(x,t) ( 4. 9d) 

Combining each of the evaluated terms yields the following element equa-

ti on: 



-Jf )l} = 0 (4.10) 

Multiplying the Equation (4.10) by a factor of 6 and adding up the two 

middle tems,. we obtain: 

(4.11) 

In a manner analogous to the above procedure, the momentum Equation (3.2) 

for an element can be derived as: 

[
-2v1 -v2 

1/12 
2v1 +v2_ 

+ 19- [2, l]}(v/y),1 + _91_[2, 1]1sf,1 gSOL 111 = 
2 2 L ( v I y) 2 i b 2 L s f2 ~ - -r 11 l 0 

(4.12) 

Assembly of Element Equations 
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The element properties originally expressed in local coordinates need 

to be transformed into global coordinates before solution algorithm is 

initiated. Based on the node-to-node relationship (Figure 3c), it is pas-

sible to generate an overall element property matrix for the entire domain .• 

~ process called assembling of element equations. 

The concept of discretization employed earlier is based on the fact 

that a domain with varying geometric and hydraulic properties can be treat­

ed independently as subdomains but systematically from one subdomain to 

another. Assuming that the elements are of variable lengths and that 
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there are N nodes.the assembled global matrix equation for the continuity 

Equation (4.11) becomes: 

2L1 Ll 0 0 0 0 0 • 
Y1 

Ll 2(L1+L2) L2 0 0 0 0 • Yz 
0 L2 2( L2+L3) L3 0 0 0 ~ 

"3 

+ 

0 0 0 L. 
1 2(L;+Li+l) Li+l 0 • Y; 

0 0 0 0 0 LN-1 LN-
• 

YN 

v2-4v1 2v2+v1 0 0 0 0 l Y1 . 

-v2-2v1 vrv1 2vrv2 0 0 0 Yz 
0 -V.3-2V2 V4-V2 2v4-v3 0 0 Y3 

0 0, -Vi+l-2Vi Vi+Z-Vi 2v;+z+vi+l 0 y. 
1 

I 

I 0 0 0 0 -vN-2vN-l 4vN-vN-l lyN , 

ql Ll 

qlll+q2L2 

q2L2+q3L3 
3/ ------- = 0 (4.13) 

qili+qi+lli+l 

-------
l qN-lLN-1 
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The general form of the above assembled global continuity equation can be 

expressed as: 

[AJ{y} + [BJ{y} - {C} = 0 

where 

A, B are matrices and C is a column vector; 

y is the time derivative; 

y and v are dependent variables. 

The momentum equation follows the same pattern of assembly. 

Transient Solution Approach 

(4.14) 

The solution to the time-dependent global matrix Equation (4.13) is 

sought through a 11 semi-discrete 11 approach. This approach requires the 

time derivative of the dependent variable at each node to be replaced by 

a finite difference scheme in time domain. A simple illustration of the 

semi-discrete approach can be demonstrated by considering Equation (4.14). 

The time derivative,y, will be replaced by a finite difference scheme, 

such as the forward, backward., and central difference. These are res-

pectively given below: 

Forward Difference 

Backward Difference 

Central Difference 

where: 

K =time level. 

K+l K • - y -y 
y - tit 

K K-1 • = y -y 
y bot 

K+ 1 K-1 y = y -y 
2.6.t 

Substitution of Equation (4.15a) into Equation (4.14) yields 

YK+l ""YK 
[AJ { b. t } + - { C} = 0 

( 4. l Sa) 

(4.15b) 

(4.15c) 

(4.16) 



An implicit equation can be generated from Equation (4.16) with the aid 

of the time weighting factor. This subject is discussed elegantly in 

Chapter V. 
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CHAPTER V 

NUMERICAL FLOW MODELS 

Introduction 

Three distinct deterministic streamflow routing models are investi­

gated and are discussed in this chapter in their order of increasing com­

plexity: (1) The kinematic flow model comprises (a) the simplified ver­

sion of the momentum Equation (3.2) that neglects pressure and inertia 

tenns as compared to friction and gravity terms (see Equation 3.7) and 

(b) the complete form of continuity Equation (3.1); (2) the diffusion 

flow model combines (c) the simplified momentum equation that accounts 

only for pressure, friction,and gravity terms, Equation (3.8),and (d) the 

complete form of continuity Equation (3.1); and (3) the complete flow 

model comprises the complete forms of both continuity Equation (3.1) and 

momentum Equation (3.2). 

The kinematic flow model is investigated in botn an explici~ and im­

p 1 i cit sense. The exp 1 i cit kinematic fl ovi mode 1 1 eads to Unea.ri'eqaa:tions. 

They are solved using a direct method similar to the tridiagonal matrix 

algorithm set-up by Varga (1962). Solution proceeds by matrix reduction 

similar to Gaussian elimination. In contrast to the explicit model, the 

weighted implicit kinematic model yields a set of non-linear tridiagonal 

matrix equations which are solved by the functional Newton-Raphson itera­

tive method. This method is known as implicit because the set of equa­

tions are solved by an indirect method. 

43 



44 

The diffusion flow model, as well as the complete flow model each re­

sults in a non-linear bi-tridiagonal matrix equation: The functional 

Newton-Raphson 1 s method, along with the direct solution algorithm~ tri­

angular decomposition technique that yields a recursion algorithm (Doug­

las et al., 1959; Von Resenberg, 1975), is utilized to predict depth and 

velocity of flow for each model. 

Explicit Kinematic Finite Element Model, EKFEM 

The non-linear continuity Equation (3.1) is easily converted to 

linear form by use of geometric and flow relations: 

~ + ~ - q(x t) = 0 at ax ' (5.la) 

where 

A= area of flow, ft2; 

Q =volumetric flow rate, ft3/sec. 

The appropriate simplified momentum equation for coupling with the conti­

nuity Equation (5.la) has been obtained and is presented below: 

or 

Q = 1.486 AR2/3s0 1/3 
nl 

(5.lb) 

Applying the Galerkin 1 s weighted residual method to Equation (5.la) re­

sults in the following linear first order ordinary differential equation 

(see Equation 4.11): 

*Direct solution algorithm for a linearized bi-tridiagonal matrix 
equation stored in compact (2Nx6) matrix, where N is total number of 
nodes, was originally developed by Douglas et al. (1959) and is present­
ed in Appendix B. 



For the entire channel reach the assembled matrix equation becomes: 

2L1 Ll 

t2 2(L1+Lz) Lz 

Lz 2( L2+L3) 

1/6 -- --
L; 

0 -- --

- 1 /2 

0 

L3 

-- --
2(Li+Li+l) L; +l 

-- -- -- --
LN-1 2LN-l 

Llql 

Llql + Lzqz 

L2q2 + L3q3 

• 
Al 

• 
A2 
• 
A3 

• 
A; 

I 

AN 

= 0 

Equation (5.3) is equivalently expressed in a matrix form: 
. 

[K]{A} + {0} - {F} = 0 

+ 

(5.3) 

(5.4) 

The time solution of Equation (5.4) is possible upon implementation of 

the forward differencing in time domain. 

[KJ{A}n+l = [K]{A}n + .6.t{F}n - .6.t{D}n (5.5) 
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The solution of the area of flow at various nodes proceeds forward in time 

with the right hand side evaluated at a previous time level, n. Thus, the 

Equation (5.5) can be expressed in a more compact form: 

(5.6) 

where 

X =known column vector at previous time level. 

The matrix, K, is a linear and tridiagonal type that easily leads to a di­

rect solution algorithm. The computer program solving Equation (5.6) is 

facilitated by the use of the compact tridiagonal algorithm proposed by 

Varga (1962). The computed area of flow at current time level, n+l, is 

used to update the volumetric flow rate, Q, Equation (5.lb). The solution 

cycle is repeated as new time level is reached. The coded explicit finite 

element scheme exhibits dynamic stability due to restrictions on tine step. 

This drawback inherent in explicit numerical schemes is expected regard­

less of the finite element approach. Howeve-r·,.. the stability problem is 

corrected in the weighted imp 1 i cit fl ow mode 1 . 

Weighted Implicit Kinematic Finite 

Element Mode 1, WIKFEM 

The implicit kinematic flow model begins by combining the non-linear 

continuity matrix Equation (4.14) with the modified momentum Equation (5.8) 

(with velocity the subject of the formulation rather than the volumetric 

flow rate). The introduction of the dimensionless time weighting factor, 

e, Figure l, and the forward differencing to Equation (4.14) yeilds the 

following: 

[A+iltSBJ{y}n+l - e~t{C}n+l = EA+ilt(l-e)BJ{y}n+~t(l-e){C}n (5.7) 

And the modified momentum equation is repeated here for convenience as: 



= 1.486 R2/3S 1/2 
v nl o (5.8) 

where all tenns are as previously defined for Equations (3.1), (3.2), and 

(4.14). 

The expanded fonn of Equation (5.7) for the upstream, interior,_aod 

downstream nodes,respectively,are given below: 

+ c(-2L1+At(l-e)(v2-4v1))y1 + (-L1+At(l-e)(2v2+v1))y2Jn 

- (3At(l-e)llql]n = 0 

F; - [(li-l+Ate(-vi-2vi-l))yi-1 + (2(Li-l+L;)+Ate(vi+l-vi-l))y; 

( ) n+ 1 n+ 1 
+ (Li+Ate 2vi+l+v; )Y;+1l - 3At6(q; .. -1.L;_,+q;L;J 

(5.9a) 
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+ [ ( -L. 1 +tit ( 1-e) ( -v. -2v. 1)) y. 1 + ( -2 { L. 1 +L.) +At( 1-e Xv. +l~. 1)) y1· 1- 1 1- 1- 1- 1 1 1-

n+l 
FN: C(LN_1-t.te(vN+2vN-l))yN-l + (2LN_1+t.te{4vN-vN-l))yNJ 

n+l 
- [3AteLN-lqN-l] + [(-LN_,+At(l-e)(-vN-2vN-l))yN-l 

(5.9b) 

The solution of Equation (5.9) is obtained through the generalized 

functional iterative method known as the Newton-Raphson method, first 

used by Arnein and Fang (1969) and later by Fread (1971, 1976). Equation 

(5.9) expressed in functional form is as follows: 



F1 (y1' Yz) = 0 

F; (yi-1' Yi' Y;+1) = 0 

FN (yN-1' yN) = O 
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( 5. 1 Oa) 

( 5. 1 Ob) 

( 5. 1 Oc) 

The y terms in the parentheses are the depth of fl ow, the dependent variable 

to be salved. The subscript associated with each y denotes the nodal lo­

cation. The computed values of y are utilized in Equation (5.8) to gener­

ate the corresponding values of velocity of flow, v. Far the system of N 

non-linear equations with N unknowns, computation is initiated by assign­

ing trial values to the N unknowns. The substitution of the trial values 

into the system of non-linear equations yields a set of N residuals. In 

fact, the residual is theva1ue6f'.the right-hand side of the equation after 

the trial values are substituted in Equation (5.10). The final solution 

is obtained when the residuals are reduced to a suitable tolerance level. 

If it is assumed that the computations have been carried through the 

jth iteration, in other words the values of. the unknowns have been approx­

imated through the jth iteration, then is possible to estimate the value 

of the residual as follows: 

Fl(ylj' Yzj) = Rlj 

F.(y.jl' y.j, Y·J+.l) = R.j 
1 1- 1 1 1 

(5.11a) 

(5.1lb) 

(5.1lc) 

where R;j is the residual at the }h iteration cycle for the ;th node. 

The Newton-Raphson algorithm ties up the residual and partial derivatives 

of the system of Equations (5.11) in the following manner: 



a F1 aF1 
ay1 ay2 

aF2 aF2 
ay1 ay2 

a F3 

ay2 

0 

aF2 0 
ay3 

a F 3 aF 2 

ay3 ay 4 

aF; aF; aF; 

ayi-1 ayi 3Yi+l 

a FN a FN 
- -
ayN-1 ayN 

6.y. 1 
6.y ~ -

1 
6.y; + 1 

t:i.yN-1 

t:i.yN 

j j 

= 
(5.12) 

·+1 . 
where 6.Y =yJ - yJ (the difference between current and previous iterates 

of y). 
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The matrix to the left-hand side of Equation (5.12) is the tridiagon­

al Jacobian matrix of size (NxN). It is possible to store the matrix in 

a compact (Nx3) form as shown in Equation (S.13) following: 

0 

aF; aFi 

ayi-1 °Y; 

aFN aFN 

ayN-1 ayN 

aF1 

ay2 

aF2 
ay3 

aF3 

aylJ 

aF. 
1 

ayi + 1 

0 

(5.13) 



The right-hand side of Equation (5.13) comprises the column vector gener-

ated upon substitution of the trial values of the unknowns into Equation 

{5.9). ·The individual terms of the Jacobian are generated from Equation 

(5.9) and written below as: 

3F1 
= 2L1 + FAC(v2 - 4v1) 

3yl 

aF1 
= Ll + FAC(2vz + v,) ay2 

aF. l = L. l + FAC(-v. - 2v. 1) ay. 1 l - l l -
1-

aF. l 2(L. l + L.) + FAC(v.+l - v.) (5.14) = 
ayi l - l l 1 

a Fi 
= L. + FAC{2v. l + v.) 

ayi+l l l+ l 

aFN 
= LN-l + FAC(-vN - 2vN-l) ayN-1 

aFN 
= 2LN-l + FAC(4vN - vN-l) ayN 

where FAC = etit. 
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Equation (5.13) is a linearized form of the non-linear weighted 

implicit kinematic model similar to Equation (5.6) and is solved in the 

same manner. The computer program for Equation (5.13) does not require 

the Jacobian matrix to be up-dated for every iteration, rather after every 

three iterations. The approach seems reasonable in terms of minimizing 

the computer time because convergence is achieved with relatively few 



iterations for most time steps employed. For the guess values of the de­

pendent variable, y, required to initiate the iterative Newton-Raphson 

equation solver, the initial uniform flow depths are utilized. The ini­

tial depths of flow prior to the flood into the channel are the best 

guess to use. Proper upstream and downstream boundary conditions, such 

as discharge hydrograph and loop-rating curve, are incorporated in the 

model. The solution is then sought for a prescribed convergence error 

criterion. 

The effectiveness of the weighted implicit model as compared to the 

explicit version, along with the other two flow models, is discussed in 

Chapter VI. 

Weighted Implicit Diffusion Finite 

Element Model, WIDFEM 

Another simplified model is the diffusion flow model. The model is 

developed by coupling the continuity Equation (3.1) and the simplified 

momentum Equation (3.8). The finite element transformation procedure 
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for Equation:(3.l)is given in Equations:(4.8) through (4.14). The same prin­

ciples are applied to Equation (3.8}, resulting in the following element 

equation: 

112 [~: :] l ~:1 + i l~ ~1 l ::: l - ~ 50 l ~ 1 = 0 

where 

S = FR v2;R4/ 3 and 
f 

FR= nl 2/2.2082. 

(5.15) 
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The assembled matrix equation of Equation (5.15), along with the dimension­

less time weighting factor. and the forward time differencing, becomes: 

6t6[FJ{yn+l} + 6t6 FR [0J{vn+l} 2 - 6te{Mn+l} 
( Rn+1) 4/ 3 

= -6t(l-e)[FJ{yn} - 6t(l-e) FR [0]{v"} 2 + t(l- ){Mn} 
(Rn) 4/3 

(5.16) 

where the superscripts (n+l) and (n) for the variables y, v,and Rare the 

current and previous iterations, respectively. The expanded forms of 

Equation (5.16) similar to Equation (5.9) for the upstream, interior, and 

downstream nodes are respectively given as: 

Gl = L1(FR)At6[2v, 2;R, 4/ 3 + v221R24131n+l + 3At6[Y2-Y1ln+l 

- 3At6[S L ]n+l + L (FR)At(l-e) [2v 2;R 413 + v 2;R4/ 31" al 1 1 1 2 2 

(5. l?a) 

_ 2 4/3 2 4/3 2 4/3 n+l G1. = Ate( FR) [l. 1v. 1;R. l + 2(L. 1+L.)v. /R. + L.v.+1/R.+ll ,_ ,_ ,_ 1- 1 1 1 1 1 1 

· n+ 1 n+ 1 
+ 36t6[Y;+l-yi-ll - 3At6[(Li-l+Li)S0 J 

( 2 4/3 2 4/3 2 4/3 n + t:.t 1-e)(FR) [l. 1v. 1;R. l + 2(L. 1+L.)v. /R. +L.v.+1/R.+ll 1- 1- ,_ ,_ 1 1 1 , 1 1 

+ 3A t ( 1 -e ) ry1. +l -y. 11 n - 3t:. t ( 1 -e ) [ ( L. 1 +L. ) s Jn ,_ ,_ 1 0 (5. l?b) 

t5.17c) 



The simultaneous solution of Equations (5.9) and (15.17) is possible 

using the generalized functional iterative method, known as the Newton­

Raphson method discussed earlier in the implicit kinematic flow model. 

The functional representations of Equations (5.9) and (15.17) are as fol-

lows: 

upstream 
nodes 

interior 
nodes 

downstream 
nodes 

Fl (yl' v 1 ' Yz' v2) = 0 

Gl (yl ' v 1 ' Yz' v2) = 0 

F. 
l (yi-1' v. l' y., , - 1 v.' 1 Y; + 1, 

G. 
1 (y i-1 , v. l' y., 

1 - 1 vi ' Yi+l' 

FN (yN-1' vN-1' YN' vN) = O 

GN (yN-1' vN-1' YN' vN) = O 

( 5. 1. Sa) 

vi+l) = 0 

Vi+l) = 0 
( 5. l 8b) 

( 5. l 8c) 

Similar to the implicit kinematic model, the substitution of the trial 

values for v and y into the system of non-linear Equations (5.18) yields 
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a set of 2N residuals. Furthermore, the computations are carried through 

the jth iteration cycle; then the estimates of the residuals areas follows:. 

j j j j j j =Rj 
F; (yi-1' vi-1' Yi' vi' Yi+l' vi+l) F. 

l 

(5.19) 
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Where Ri. and R~. are the residua1s at the jth interation cyc1e for the , , 
continuity and momentum equations, respectively, at ;th node. 

The Newton-Raphson a1gorithm couples the residuals and the partial 

derivatives of the systems of Equation (15.19) in the foll owing form: 
l 

r fly, 
j -a F1 aF1 a F1 a F1 

ay, av1 ay2 av2 
0 

fl v, RF 
fly2 1 

aG1 aG aG1 aG1 RG 1 
ay, av1 ay2 av2 

6v2 l 

-----------------------------------------a Fl aF .. aF .. 1 aF. a F • a F, fly i _ ,i -1 ......1. ll· ~-- Ll--
RF. ay. l av. 1 ay. av. ayi+l. avi+l L\Vi-1} 

1- ,_ 
1..,__ ll. fly. 1 

\ ) ~ , ., 

RG. a-Gi ;: aG. aG; ~ aG. -, a G; 1 aG. AV .. = ~ 1 , ' , ' , . ., 
Liy i + l i 

, 
ay. l av. 1 ay. av i ayi+l av i +1 LiVi+l 1-

,_ 
1 

-------------------------------------
aFN aFN a FN a FN AYN-1 

RF ayN-1 avN-1 ayN avN 6VN-l 
0 N 

aGN aGN aGN aGN AYN R 
6VN GN 

ayN-1 avN-1 ayN avN ) I 

' (5.20) 
·/ 

where AY = yj+ 1 - yj '+l and AV = VJ - vj. 
,. 

The matrix to the left-hand side of Equation (5.20) containing the 

partial derivatives of the functions F and G is the bi-tridiagonal Jaco­

bian matrix of size (2N x.2N). The maximum non-zero elements in any single 

row is six. Thu~the Jacobian matrix is stored in a compact (2N x 6) ma­

trix. The individual terms of the Jacobian matrix for the function G 

are given below whereas those of Fare noted in Equation (5.14). 
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(5.2la) 

- 3.o] 

aG 
- 1 = 2L (FR}( FAC)v /R 4/ 3 
av2 1 2 2 

2 
aG. (-4L. l(FR)v. 1 aR. 1 ] 

1 = -F AC 1 - 1 - - 1 - + 3 • 0 ay1._1 7/3 
3R. l ay. l 1- 1 -

aG. (8(L. 1+L.)(FR)v. 2 3R.] , - FAC 1- 1 , , 
8Y; - - 3R.773 ay. 

1 1 

(5.2lb) 

aG; 4/3 
av. = 4(L;_1+L;)(FR)(FAC)v;IR; , 
aG; = _ [4L;(FR)v~+l aRi+l ] 
ay FAC 713 - 3.0 

i+l 3Ri+l ayi+l 

aG; - 4/3 - 2L1.(FR)(FAC)v1.+1/R1.+l 
av i + l 
-------------------------------------
aGN [4LN_,(FR)v~-l 
ayN-1 = -FAC 3R7/3 

N-1 

aR ] N-1 + 3.0 
ayN-1 

(5.2lc) 
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(5.2lc) 

where 

FAC =96.t; 

~R = rate of change of hydraulic radius with depth. oY . 

For a natural channel, R = A/P (area, A, divided by the wetted perimeter, 

P), then 
( aA aP) 

a R/a y = P a'1'1-f Aa"A.: 
2 ~ 

p 

For a rectangular channel, R = By/B+2y, and 

~R _ B2 

ay - (B+2y)2 

The solution afEquation (5.20) is initiated iteratively by evaluat­

ing the right hand column vector and the Jacobian matrix using the pre­

vous nodal values of depth, y, and velocity, v. Good starting values for 

nodal depths and velocities are those of the uniform flow before the flood 

wave arrives at the upstream sec ti on of the channe 1 . 

At the upstream boundary node, if the flood discharge hydrograph is 

imposed as a known condition, then the corresponding upstream velocity, 

v1 , at any time 1 evel is eva 1 uated as: 

v1 = o1;sy1 (5. 22) 
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On the other hand, the simplified momentum equation adopted for the 

diffusion model adequately describes the downstream boundary condition 

as a loop rating curve. Thus, no further modification is necessary. 

Weighted Implicit Complete Finite 

Element Model, WICFEM 

Solution of the complete flow model follows the same basic steps 

as the implicit diffusion flow model. The significant difference between 

the two models resides in the total.number of terms in the momentum 

Equation (3.2). For this reason, only the manipulation of the complete 

momentum equation deserves further discussion. The finite element trans­

formed version of the complete momentum Equation (3.2) is presented in 

Chapter IV as Equation (4.12). 

The assembled matrix equation (Equation 4.12), together with the di-

mensionless time weighting factor, e, and forward time differencing 

yields~ 

where 

n+l 
[0 + (eti.t)E]{vn+l} + eti.t[FJ{yn+l} + eti.t[G]{vn+l } + eti.t[O]{S/+l} 

y 

- et.t{Mn+l} = [0-c.t(l-e)EJ{vn}- t.t(l-e) [FJ{yn} - t.t(l-e) [GJ{~} 
l 

(5.23) 

D, E, F and D =assembled matrices of Eq. 4.12 from left to right, 
respective 1 y; 

M = assembled vector of Eq. 4.12. 

Letting Sf= FR v2;R413, where FR= g n1 2;2·.2'082, 

then Equation (5.23) becomes: 
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(0 + (ellt)EJ{Vn+1} + Sllt[FJ{yn+l} + Sllt[G]{~n+1 } +Silt (Rn~f)4/3 [0] n+1 ( l 
{vn+1} 2 - Sllt{Mn+l}= [0-llt(l-e)E]{vn} - ll.t(l-e)TF]{l} - llt(l-e)[GJ 

n 
{ L } - ll t ( 1 -e ) 
l 

(5.24) 

The expanded forms of Equation (5.24) for the upstream, interior and 

downstream nodes are given as: 

FR 2 FR 2Jn+l 
4/3 vl + Ll R 4/3 v2 

Rl 2 

(5.25a) 

G1. = [(2L. 1+ellt(2v. 1+v.))v. 1 + (4(L. 1+L.)+ellt(v. 1-v.+1))v. 
1- 1- 1 1- 1- 1 1- 1 1 

Jn+ 1 [ vi -1 + (2L.+ellt(-v.-2v.+1))v.+l + 2ellt q. 1L. 1 -- + 2(L. 1q. 1+L.q.) 
1 1 1 1 1- 1- y. l 1- 1- 1 1 

1-

vi vi+l]n+l [ FR 2 FR 2 - + q.L. -- + 2ellt L. l 413 v. l + 2(L. 1+L.) 11"'7"'>/3 v. 
Y; 1 1 Y;+l 1- R. 1- 1- 1 R':':i i 

1 -1 1 

+ l(-2L. 1+1lt(l-e)(2v. 1+v.))v. 1 + (-4(L. 1+L.)+llt(1-e)(v. 1-v. 1))v. L 1- 1- 1 1- 1- , ,_ 1+ 1 



+ (-2L.+tit(l-e)(-v.-2v.+1))v. 1~n + 26t(l-e)~q. 1L. 1 vi-1 l l l 1+ 1- , _ --
yi-1 

+ 2(L. 1q. 1+L.q.) - + q.L. -- + 2t1t(l-e) L._1 413 vi-l vi v i + l ] n ~ FR 2 
l - 1 - 1 l y i 1 ,_ y i + l l R; - l 

+ 2(Li_1+Li) ~~3 v/ +Li [~3 v~+l]n + i:.t(l-e) ~g(Y;+i-Y;_ 1 )Jn+l 
Ri R; + l 

- Lit(l-e) f6gs (L. 1+L.)ln = o L: o , - , 'J (5.2Sb) 

By replacing all the Jacobian terms associated with the momentum 

equation for the diffusicrn flow model in Equation (S.20) with those of the 

complete flow model, the solution thereafter follows the same routine. 

However, it is possible to modify the downstream boundary condition for 

the momentum equation similar to the diffusion flow model as an adequate 

loop rating curve, (Equation 15.17c). The upstream momentum Equation 

(5.25a) needs no modification if Equation (5.22) is employed to update 

the upstream velocity, v1. 
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The required Jacobian-momentum tenns to replace those in Equation 

(5.20) are as follows: 

aG1 = -FAC[l6(FR)L1v/ aR1 + 4L1qr + Gg] 
ay, 3R1 7 /3 ay, Y1 

aG, ~· sL,(FR)vl 4Llql] av= 4L1 + FAC. (-4v1-2v2) + 4/3 . + -. -
1 R1 Y1 

aG, - 18(FR)L1v/ aR2 2Llqlv2 ] 
ay - -FAC . 7/3 ..,,_ + 2 + 6g 

2 3R2 ay2 Y2 

(5.26a) 

-------------·-------------2---·---------------------------------------
aGl. [8(FR)Ll. lvl. l aR. 1 2L. ,q. lv. 1 ] - FAC - - l- l- l- l- ·5 - - - + + g 
ay. 1 3R7/3 . 

1- 1 ayi-1 Y;-1 

aG. [ 4L. l(FR)v. 1 2L. ,q. l] ___]_ = 2L. + FAC ( 4v. +2v.) + 1 - 1 - . + l - · 1 -
a vi - l 1-l 1-l 1 R4/3 

i-1 Y;-1 

aG. ll6(FR)(L. 1+L.)v. 2 aR. 4(L. 1q. 1+L.q.)v.] _, = -FAC 1 - l 1 _, + 1- 1- l 1 1 

ay. 3R 7/3 a 
1 i Y; Y; (5.26b) 

aG. [ 8{L. ,+L.)(FR)v. + 4(L;_1q;_,+L;q;) 
- 1 = 4(L. 1+L.) + FAC 2(v. 1-v. 1) + l- 4/ 3 1 
av. 1- 1 ,_ 1- y. 

1 R; 1 

aG; .. ··r8(FR)L;V;+l 2. aR.+l 2L;q;v·+l ·J 
- = -FAC - 1 - + 1 - 6g ay. l 3R7 /3 2 

1+ i+l ayi+l Yi+l 

aG. [ 4L.(FR)v.+l 2L.q. J 1 . 1 1 1 1 -.- = 2L.+FAC (-2v.-4v.+1)+ 4/3 . + 
av i + 1 1 1 l R. Y. 

. i+l 1+1 

------------------------2------------------------------------------
aGN [8(FR)LN-1VN-l. aRN-1 2LN-l.qN-lvN-1 ] - = -FAC + · + 6g 
aYN-1 3R7/3 ay y . (S.26c) 

N-1 N-1 N-1 
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(5.26c) 

Similar to the weighted tmplicit kinematic and diffusion flow models, 

the Jacobian terms of Equation (5.26) are up-dated after every three iter­

ations. The numerical performance of the complete flow model and simpli­

fied models in predicting the depth of flow. and velocity of flow is the 

subject of Chapters VI and VII. 



CHAPTER VI 

VERIFICATION OF MODELS 

Introduction 

Although the use of numerical methods for unsteady flow investiga­

tions has increased tremendously in recent years, most of the investi­

gations are still exploratory,. and serious attempts at making them 

accessible to the users in the field have not yet been made. The re­

sponsibility for developing an efficient numerical model that needs 

minimal or no modification, except the insertion of input data, is 

partly the objective of this study. However, further testing of the 

models with different problems and with a variety of boundary conditions 

is necessary for general use. 

The performance of each model, particularly the weighted implicit 

diffusion and complete flow models in predicting flows in a natural 

channel, was assessed by comparing simulated and observed hydrographs. 

Possible discrepancies between simulated and observed flows are attrib­

utable to the following sources: errors in field measurements of the 

flows, survey errors in the measurement of channel sections, errors in 

estimating resistance coefficients, and, most importantly, changes in 

the channel properties before and during the unsteady flow event (Amein 

and Fang, 1969). Other sources of errors are associated with the numer­

ical method itself, namely: finite element approximation errors, tempo­

ral approximation errors, and errors due to any iterative non-linear 
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equation solver (Chung, 1978). To eliminate the contribution of the 

first kind of sources of errors, it was necessary to verify the models 

in two parts. 

The first part involves simulation of flow in an idealized chan­

nel of rectangular geometry. Simulated hydrographs were compared witl1 

similar results from those predicted using an explicit finite differ­

ence scheme (Viessman et al., 1972). This approach helps to explore 

the basic principles in the numerical development of the individual 

models. As a result, any discrepancies observable on application to 

natural channels should not be all blamed on the mathematical model 

development. The second part involves simulation of a f1oo.d in a natu­

ral channel, the Illinois River located in Oklahoma. Limited data in 

other major streams in Oklahoma, mostly cross sections, roughness co­

efficients and recorded floods made the Illinois River the best choice. 

Application to Idealized Channel 

The computer programs· of the explicit, weighted implicit kinematic, 

diffusion, and complete flow models have been written in FORTRAN IV for 

an IBM 360 model 75. The models were applied separately to simulate the 

hypothetical flood in a rectangular channel presented by Viessman et al. 

(1972) using the explicit finite difference scheme. The example problem 

considers a 2-rnile long and 2-ft wide rectangular channel having a depth 

of flow of 6 ft. It is subjected to an upstream increase in flow to 

2000 cfs in a period of 20 minutes, and then it decreases uniformly to 

the initial depth of flow in an additional period of 40 minutes. The 

channel has a bottom slope of 0.0015 ft/ft and an estimated Manning co-
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efficient, n, of 0.02. 

Similar to the example of Viessman et al. (1972), a distance step 

of 528 ft was used in the simulation, although the four models can 

accept variable distance steps ... Also, the weighted implicit kinematic 

model has a built-in option to route the flood in a trapezoidal, tri­

angular, or rectangular channel. For the first two geometries, the 

right- and left-side slopes captioned as ZRS and ZLS should have as­

signed values other than zeros, except for a rectangular channel. The 

triangular geometry will have zero width for input value. 

Hydrographs from EKFEM and WIKFEM 

The fl ow hydrographs for upstream, mi dreach, and downstream sec­

tions are predicted by the explict and weighted implict kinematic mod­

els. These hydrographs are plotted along with those predicted by 

Viessman et al. (1972), shown in Figure 6. It should be noted that the 

explicit difference scheme of Viessman et al. (1972) solves the contin­

uity and momentum equations completely. The kinematic flow models de­

pict attenuations in the peak flows at midreach as well as the down­

stream section. This perfonnance is acceptable since the longitudinal 

channel slope utilized for the simulation falls within 10 feet per mile 

(10.3%) for which the use of kinematic approximation is justified. De­

tails of the slope approximation for use of simplified models are dis­

cussed by Henderson (1966). 

While the explicit kinematic finite element model is limited to a 

time step of 2 seconds because of stability considerations, the weighted 

implicit scheme appears to be unconditionally stable. The influence of 

the time weighting factor, e, on the numerical distortion (dispersion and 
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attenuation of computed stage or discharge hydrographs) is shown in 

Figure 7. The plotted discharge hydrograph indicates that the lower 

range of the allowable e values, such as 0.75, as compared to the upper 

limiting value of 1.00 minimized the attenuation of the peak flowwhich 

results from the use of a large time step, D.t of 300 seconds. This 

observation is not unique but confirms that of Fread (1973). The 

weighted implicit kinematic flow model was run for D.t = 180, 300, and 

600 seconds with various va 1 ues of the weighting factor e, such as 

0.55, 0.75, and 1.0, respectively. In all time steps, fastest conver­

gence was obtained with e = 1 .O, and it is recommended for use with 

this routine. It is not surprise that e = l .0 affords rapid convergence 

because the scheme becomes fully implicit. However, instability results 

in WIKFEM withe< 0.55. Thus. the allowable range of the time weigh­

ting factor, e, is 0.55 ~ e ~ 1.0. 

Hydrographs from WIDFEM 

Simulated discharge hydrographs for a time step of 60 seconds and 

time weighting factors of 0.55 and l.O, respecti.vely, along with those 

66 

of Viessman et al. (1972) are compared in Figure 8. The predicted hydro­

graphs denoted as plots B and C in the figure are in close agreement 

with those of Viessman et al. (1972). However, the slight influence of 

the time weighting factor in the predicted peak flows at mid-reach and 

down-stream locations can be observed. 

Though the difference in peak flows with e values of 0.55 and 1 .0 

is minimal for a time step of 60 seconds, significant differences for 

larger· time steps such as 300 secondsor more are apparent. Figure 9 

illustrates very clearly the iteractive effect of the time weighting 
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factor, e, and the. numerical dispersion resulting from use of large 

time steps. Values of e greater than 0.55 tend to attenuate the peak 

discharge. This observation equally validates that of the weighted 

implicit kinematic finite element model discussed earlier. 

Like the WIKFEM, the weighted implicit diffusion is uncondition­

ally stable for the time weighting factor in the range of 0.55 < e < 

1 .0. In spite of the numerical distortion associated with the use of 

large time steps, only a e value of 0.55 predicted hydrographs identical 

to Viessman et al. (1972). As a result, subsequent simulations of the 

WIDFEM for time steps large than 60 seconds were executed with a e value 

of 0.55. 

Hydrographs from WICFEM 

Applications of the weighted implicit complete finite element model 

to the idealized channel using a time step of 60 seconds and a e value 

of 0.55 predicted the discharge hydrographs shown in Figure 10. Hydro­

graph results are identical to those of Viessman et al. (1972) on the 

rising limbs but differ slightly on the receding limbs. On the aver­

age this difference is insignificant. The WICFEM affords an uncondi­

tionally stable solution for the time weighting factor in the range of 

0.55 .::_ e .::_ 1.0. Also the model shares the same basic characteristic 

as the WIDFEM discussed earlier. 

Flow Simulation in a Natural Channel 

The second test analyzed flow through a natural river channel. The 

Illinois River between Watts and Tahlequah gaging stations (Sta. 1955 

and 1965, respectively) in Oklahoma, shown in Figure 11, was chosen. 
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Figure 11. Map of Illinois River Basin. 



Geometric cross-sectional data (developed from topographic maps) were 

collected from Weigant (1982) along with the flood data of April 10, 

1979, and were used in predicting the flow hy·drograph at the Tahlequah 

station. Figure 11 shows the Illinois River and locations of the 

stations. 

Owing to the nature of the available topographic data, simulation 

was executed using a composite channel section. The changes from sec­

tion to section in some locations are significant enough that smaller 

distance steps are necessary to adequately represent them in the model. 

Thus, the channel sections were averaged with a single longitudinal bot­

tom slope of 4.5 feet per mile (Weigant, 1982). 
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Initial and Boundary Conditions 

Initial depths of flow were generated by backwater calculation 

starting from a downstream depth. Discharge values at intennediate nodes 

were estimated by linear interpolation applied to. the two initial dis­

charges at up-and down-stream locations. Nodal velocities corresponding 

to initial depths are calculated by dividing the nodal discharge by cor­

responding cross section. At the upstream point, the discharge was pre­

scribed as a function of time. At the downstream boundary, a loop rat~ 

ing curve was imposed. 

For the 1979 flood, the initial discharge values are given by the 

unsteady nonuniform fl ow of 482 cfs at the Watts station and 596 cfs at 

the Tahlequah station at time t = o. The· discharge hydrograph at the 

Watts Station increased from 482 to 22980 cfs in 28 hr and then decrea­

sed to 1722 cfs in additional 68 hr. Figures 12 and 13 show the observed 

discharge hydrographs at Watts and Tahlequah and the rating curves at the 
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stations, respectively. Computed flow at Tahlequah, 50.4 miles from 

Watts, was compared to the observed flow at the same station. 

Determination of Flow Parameters 

The flow parameters necessary for simulation in natural channels 

are the channel cross sections, A; top widths, B; Manning's roughness 

coefficient, n; and lateral inflow, q. 

Average cross-sectional. and top width data were utilized to gener­

ate a fourth-order polynomial equation, using a least square fitting 

program {Davis, 1973). A fourth-order polynomial yielded the best fit 

from the analysis of variance. By increasing the order of the poly-

nomial beyond fourth, it was necessary to see if the increase in the 

degree of the polynomial significantly improved the fit of the regres-

sion. Such statistics as the sum of square due to deviation defined 

as the difference between total sum of square (SST) and sum of square 

due to regression (SSR) and the goodness-of-fit defined as SSR/SST 

were used for assessment. The general form of the equation adopted to 

model the averaged cross section areas and top width0 is represented as: 

A(Y) = bo + blY + b y2 + b y3 + b y4 
2 3 4 (6.la) 

B(Y) = co + c,v + c y2 + c y3 + c y4 
2 3 4 (6.lb) 

where A(Y) and B(Y) implies that the area and top width are functions 

of depth of flow only. Figure 14 illustrates a typical cross section 

geometry of the Illinois River as given in Equation (6.1). Results are 

included in the computer sample output. 

The initial estimated Manning's roughness coefficient variation 
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against discharge for the Illinois River as provided is plotted in 

Figure 15. Also shown are the fitted third-order polynomial regres­

sion equations of the initial estimated roughness coefficient and of 

the modified coefficient values. The fitted regression curves are 

necessary because the plot of the initial estimates of roughness co­

efficient versus discharge depicts shape variations in some adjoining 

corners. Thus, a smooth curve was deemed necessary. to better repre­

sent actual roughness coefficient variations Equation (6.2). 

n = 0.03713 + 0.14097E-OSQ + 0.41739E-lOQ2 - 0.23004E-14Q3 (6.2) 

The modified initial estimates of the roughness coefficient varia­

tion are represented as: 

n = 0.02615 + 0.42801E-OSQ -0.21618E-09Q2 + O.J9355E-14Q3 (6.3) 

The lateral inflow hydrograph at Flint Creek, a tributary of the 

Illinois River 13.2 miles downstream of the Watts Station, recorded 

during the same date, was imposedas a function of time, Figure 12. 

The main channel reach corresponding to 13.2 miles from Wc•.tts was al­

lowed to receive the lateral inflow from Flint Creek. The inflow is 

represented in cubic feet per second per area of reach. 

Hydrographs from WIDFEM and WICFEM 

Application of the flow models to the Illinois River was limited 

to WIDFEM and WICFEM because of the inherent flat slope of the channel. 

Use of the kinematic flow models would not be adequately justified in 

this particular example based on the slope approximation analysis (Hen­

derson, 1966) . 
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The depth of flow at the Tahlequah Station for the WICFEM using a 

time step of 30 minutes and a time weighting factor of 0.55 is predicted 

and compared with that measured in Figure 16. Simulated results are in 

excellent agreement with observed flow. The marginal difference between 

computed and actual depths at the early portion of the rising limb and 

at the tailing edge of the hydrograph reflects the uncertainity of the 

input data. Among other things, the models are sensitive to variations 

of the Manning's roughness coefficients in predicting flows. Higer_ rough­

ness coefficients imply reduced flows and vice versa. Thus, close pre­

dictions are possible as long as the roughness coefficient and other in­

put data are accurate. 

Figure 16 a 1 so i 11 ustrates the response of the WICFEM to a modified 

Manning's roughness coefficient regression Equation (6.3) in predicting 

depths of flow. The predicted stage hydrograph indicates a slightly 

high peak, at six hours earlierthan the previous prediction using eq­

uation (6.2). Indeed, the simulated depths of flow using Equation (6.2) 

yielded the time of the peak that are more similar to those observed 

than to those from Equation (6.3). Thus, Equation (6.2) is more repre­

sentative of the actual roughness variation in the Illinois River. Fig­

ure 17 shows the depth of flow predicted using the weighted implicit dif­

fusion finite element model, WIDFEM. The same observations are val id as 

discussed above using WICFEM. Comparison of the computed flows from 

WIDFEM and WICFEM using Manning• s regression Equation ( 6 .2) against the 

observed records at the Tahlequah Station is provided in Figures 18 and 

19. Discharge hydrographs depict a compounded error of the computed 

depth of flow and velocity of flow for a given location in the stream. 

For instance, the difference in peak flows as indicated in Figure 16 is 



I-
u.. . :: 
0 
..J 
u.. 
u.. 
0 
J: 
I-
a. 
w 
Q 

24--------,--------,---------------------------------Ai: OBSERVED DEPTH OF FLOW AT TAHLEQUAH 
STATION 

-~- 81: PREDICTED DEPTH OF FLOW AT TAHLEQUAH 
USING WlCFEM, 9 :sQ,55 AND ea. 6.2 

20 --6-- C1: SAME AS 81 EXCEPT FOR MANNING'S REGRESSION 
ea. 6.3 

16 

12 

8 

81 

20 40 60 80 100 120 

TlME, HOURS 

Figure 16. Observed and Predicted Stage Hydrographs at Tahle­
quah Station from Weighted Implicit Complete Fi­
nite Element Model for ~t of 1800 Seconds. 



I-
u.. . 
~ 
0 
..J 
u.. 
u.. 
0 
:c 
I-
a. 
w 
c 

82 

24,__ ________________________________________ __ 

--A1: OBSERVED DEPTH OF FLOW AT TAHLEQUAH 
STATION 

-~- 81: PREDICTED DEPTH OF FLOW AT TAHLEQUAH 
USING WlDFEM, 9 :aQ.55 AND EO. 6.2. 

20 --6-- C1: SAME AS 81 EXCEPT FOR MANNING'S 
REGRESSION ea. 6.3. 

16 

12 

8 

A1 ~ 

4~2 
20 40 60 80 100 

TlME, HOURS 

;20 

Figure 17. Observed and Predicted Stage Hydrographs at Tahle­
quah Station from Weighted Implicit Diffusion 
Finite Element Model for ~t of 1800 Seconds. 



(j') 
u. 
(,,) 

w 
(!:J 
cc 
c( 
::z: 
Q 
(j') -c 

28,000-----------------------~, ----------------------t 
--A1 & A2: OBSERVED HYDROGRAPHS AT WATTS AND 

TAHLEQUAH STATIONS 
--B: LATERAL FLOW AT FLINT CREEK 
--6--c1 & C2: PREDICTED HYDROGRAPHS AT TAHLEQUAH 

24,000 FROM WIDl-='EM AND WICFEM AND 8 2 0.55 
RESPECTIVELY 

WATTS 
STATION 

20,000 

A1 

A2 
16,000 

C2 

12,000 

8,000 

4,000 

40 60 80 100 120 
TTME, HOURS 

Figure 18. Observed and Simulated Discharge Hydrographs at Tah­
lequah Station for ~t of 1800 Seconds. 

83 



84 

28,000-------------------------------------------

24,000 

20,000 

r.n u. , 
(.) 16,000 . 
w 
<.!:! 
a: 
< :I: , 
(.) 12.000 
~ 
Q 

8,000 

- A1 & Az: OBSERVED HYDRO GRAPHS AT WATTS AND 
T AHLEOUAH ST A TIONS 

- B: LATERAL FLOW AT FLINT CREEK --t::.-- C1 & C2: PREDICTED HYDROGRAPHS AT T AHLEOUAH 
FROM WIDFEM & WlCFEM ANO 9= 0.55 
RESPECTIVELY 

WATTS 
STATION 

TAHLEQUAH 
STATION 

40 60 80 

TlME, HOURS 

120 

Figure 19. Observed and Simulated Discharge Hydrographs at Tah­
lequah Station for ~t of 900 Seconds. 



about 7% considering prediction with Equation (6.2), while Figure 18 

shows an error of 15% for WICFEM. Apparently, the error distribution 

amongst the predicted depth and velocity as illustrated in the dis­

charge hydrograph are bound to be uneven. 

Simulated results of the WIDFEM and WICFEM as shown in Figure 19 

for a time step of 15 minutes and weighting factor 0.55 are exactly the 

same. However, a comparison of the two models for ~t of 30 minutes and 

e of 0.55 indicates a slight difference only at the peaks, Figure 18. 

Invariably, the WICFEM seems to sustain lesser numerical distortion for 

larger time steps than the WIDFEM. Still, there is much to be gained 

in the use of WIDFEM. Hydrograph results from WIDFEM are more compar­

able to those from WICFEM. In addition, the computer time and cost are 

slightly less for WIDFEM. Appendix K compares computer CPU time and 

cost of models. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

N umeri ca 1 Performance of Mode 1 s 

The numerical properties of the flow models--EKFEM, WIKFEM, WIDFEM, 

and WICFEM--such as rate of convergence, accuracy, and stabi 1 i ty, 

need to be assessed through well established mathematical relations. For 

instance, the Courant condition is employed in the explicit finite dif­

ference technique to evaluate the dynamic stability condition arising 

from the size of the time steps. Since similar conditions in the finite 

element techniques are not versatile and few in use are formulated under 

1 imi ted assumptions, we are therefore encouraged to draw comparisons from 

documentations established for the finite difference schemes at least for 

the time being. 

The convergence criterion is a condition in which the solution of 

the finite element equation for a finite grid size approaches the true 

solution of the original partial differential equation. For the weigh­

ted implicit finite difference scheme proposed by Fread (1974), the con­

vergence criterion was developed by determining the functional form of 

the truncation error through the Taylor series expansion about the point 

at which the difference equation is computed. The truncations error, 

TR, can be expressed as: 

TR = (28 - 1 )O(t.t) + O(t.t2) + O(t.x2) ( 7. 1 ) 
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where 0 indicates "order of 11 , and when e = 1, the truncation error is: 

(7.2) 

Equation (7.2) shows that the fully implicit difference scheme is only 

first order accurate due to .'.lt tenn. However, when e = 0.5, the error 

shows a second order accuracy for ~t and 6.x. 
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The WIKFEM, WIDFEM, and WICFEM converge to the true solution for 

various values of the weighting factor ranging from 0.55 to 1.00. For 

e less than 0.55, the models are completely unstable and invariably do 

not converge. This leads to the concept of numerical stability, de­

fined as a condition whereby the numerical round-off errors introduced 

in a computational procedure fail to be amplified into an unlimited er­

ror. If errors generated at time level (t + .'.lt) are smaller than the 

errors at time t and not vice versa, the solution is said to be stable. 

Stability of the non-linear difference equations of Saint Venant 

has been investigated by fourier analysis (Fread, 1973, 1974). This 

analysis is known as the Von Neumann method. In general, results in­

dicate that an implicit difference formulation of the unsteady flow 

equation is unconditionally stable for any ratio of 6.x/.'.lt, when the 

weighting factor, e, is restricted to the range 0.5 <9< 1.0. The anal­

ysis proves also that stability of the implicit difference equation 

does not depend on the ratio .'.lx/ 6.t 1 i ke the explicit method and meth­

od of characteristics. The weighted implicit finite element flowmod­

els--WIKFEM, WTDFEM, and WICFEM--are found to be unconditionally sta.;.. 

ble for the weighting factor in the range of 0.55 :e:s. l .0. However, 

rapid convergence for weighting factor of unity i sobs"Erved only for \.fJJ<F-:E\VI. 



The EKFEM bears similar restrictions as the explicit finite dif­

ference scheme. Numerical stability is conditional as defined by the 

Courant condition. Also, the WIKFEM, WIDFEM, and WICFEM reflect simi­

lar numerical properties as the implicit finite difference routine. The 

concept of explicit and implicit schemes applied to the finite element, 

FE, and finite difference, FD, fonnulations tends to tie the FE and FD 

in the same numerical subset. 

Conclusions 

Based on the results of the finite element modeling of the stream­

flow routing for idealized and natural channels, the following conclu­

sions can be drawn: 

1. Explicit and weighted implicit kinematic, weighted implicit 

diffusion, and COl'!lplete flow models have been developed to 

predict the velocity of flow, depth of flow, and discharge 

in a stream. 

2. The explicit kinematic finite element model, EKFEM, solves 

the flow routing problems, having a maximum time step of 

two seconds. 

3. The weighted implicit kinematic finite element model, WIKFEM 

yields accurate results, with a maximum time interval of ten 

minutes and weighting factor in a range of 0.55 to 1.00 for 

a rectangular channel. 

4. Both the weighted implicit diffusion and complete finite 

element models yield accurate and unconditionally stable 

solutions. 
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5. All the models--EKFEM,WIKFEM, WIDFEM, and WICFEM--have been 

tested against a problem presented by Viessman et al. (1972). 

The comparisons of the flood hydrographs are in close agree­

ment, and the observed difference resides on the speed and 

stability. In this regard, the weighted implicit models excel. 

6. Use of a simplified model such as WIKFEM and WIDFEM in terms 

of computer storage and cost will be preferred provided good 

engineering judgement is exercised in their application. For 

this reason, these models will be favored over the complete 

solution of the unsteady flow equations. 

7. Only the weighted implicit diffusion and complete finite 

element models were applied to a natural channel, the Illinois 

River in Oklahoma, for a flood observed on April 10, 1979. 

Simulated discharge hydrographs at the Tahlequah station, 

S0.4 miles downstream from the Watts Station, with time steps 

of lS and 30 minutes and a weighting factor of a.SS are in 

close agreement with the observed flows. A discrepancy of 

8 percent in the maximum stage and 15 percent in the maxi­

mum discharge is attributed to the degree of accuracy of the 

input data, especially the roughness coefficient. 

8. Not much observable difference exists between the simulated 

results of the WIDFEM and WICFEM for the natural channel 

flood routing test. For these particular test results, there 

is more to be gained in using the simplified diffusion model 

as discussed earlier in (6) above. 



. CHAPTER VIII 

SUGGESTIONS FOR FUTURE STUDY 

The following suggestions for future study wou.ld be helpful in 

using the flow models for predicting the depth, veloc.ity, and volum­

etric flow rate in a natural channel. 

1.. Modify the present fl ow models to incorporate boundary 

geometry at bridges showing contracting and expanding 

flow. In addition, field surveys of the hydraulic rough­

ness values for various channel reaches are vital. Vari­

ation should be indicated in terms of longitudinal chan­

nel distance as well as the depth of flow or volumetric 

flow rate. Roughness coefficient values imposed on each 

cross section are usually helpful in locating where a 

cross section should be subdivided to determine dis­

tributed properties. For instance, values of 0.3 and 

0.1 are assumed for the expansion and contraction co­

efficients, respectively. 

2. Determine what portion of the cross section conveys flow 

and what portion stores water, particularly for smaller 

flood events. This might not be necessary for a very 

large flood wave. For instance, in the present study, 

it was assumed that the entire cross section conveyed 

flow for the flood of April 10, 1979, in the Illinois 
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River. For smaller events, it is assumed that all con­

veyance occurs in or near the main channel (Thomas, 1975). 

3. Study other possible fonns of modeling the flow cross sec­

tions and the corresponding top width besides using high­

er order polynomial curve fitting methods. Clearly, there 

are many possible approaches such as: (a) higher order 

spline function (cubic spline), (b) logarithmic or expon­

ential regression equations, and (c) simple averaging and 

interpolation of the input data for intennediate values. 
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A. Single Variable Equation 

Consider a single non-linear variable equation expressed in function­

al form as follows: 

f (x) = o (A. 1 ) 

where 

x = a real variable; 

f(x) = any reasonably well-behaved function. 

The solution of the variable x of Equation (A.l) is obtained in an 

iterative manner, proceeding from the first solution estimate, xn, towards 

the succeeding improved estimate, xn+l, which tends to converge toward the 

solution variable x. The orderly procedure by which the improved solution 

estimate xn+l is sought, such that it converges to the true solution x, is 

known as Newton-Raphson Iteration and is described as follows. 

Let the non-linear equation f(x) be expanded using its Taylor series 

for an initial iterate x0 . 

i.e. 
o o)2 ( o)3 

f(x) = f(x0 ) + (fix ) f'.(x0 ) + (x-x f"(x0 ) + x-x f 111 (x0 )(A.2) 
2 ! 3 ! 

The linear function of x0 that best approximates the non-linear func­

tion f(x), evaluated at x0 , is obtained by retaining only the first order 

terms of Equation (A.2) such as: 

f(x) = f(x0 ) + 6xf 1 (x0 ) (A. 3) 

where: 

6X = x-x0 (correction value); 

f'(x 0 ) = af~~~) (Jacobian term evaluated at x0). 

An iteration procedure is desired which will cause the function f(x0 ) 

to approach zero as 6x approaches zero. Thus, theleft-hand side of Equa­

tion (A.3) is made equal to zero with the following resulting generalized 



iteration algorithm: 

f'(xn)(xn+l_xn) = -f(xn) 

where: 

n and n+l are previous and current iterates respectively. 
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(A.4) 

The Jacobian f'(xn) needs to be updated at every iteration cycle. 

However, the initial Jacobian can be kept and used for all cycles or up­

dated at selected iteration cycles at the expense of slow convergence. 

The iteration process is stopped when convergence is achieved. This can 

be checked in two ways--the absolute and relative tests. The former re­

quires the absolute difference between the current and previous iterates 

to be less or equal to a specified value called error criterion. 
n+l n Ix - x I _::. s 1 (A.5) 

where: 

t:: 1 = error criterion 

The relative test is expressed as: 

(A. 6) 

The relative error test is usually preferred to the absolute test because 

while the latter requires the knowledge of the size of xn, the former 

takes that already into account. 

B. Multi-Variable Equation 

For a system of non-linear multi-variable equations, the r:~11ton-

~aphson :iethod is equally eff~cient in providing the toots or solut~or. o~ 

such a system (Amein and Fang, 1969; Fread, 1976). Consider the following 

N-dimensional system of non-linear algebrai.t equations: 



or in a vector notation: 

fi(X) = 0 

where: 

subscript i denotes a particular equation. 

l 02 

(A. 7) 

(A.8) 

In a manner analogous to the steps discussed for a single variable 

equation (EQ. A.1 through A.6), the linearized form of equation A.8 is 

as follows (see EQ. A.4): 

Express EQ. \A:.9) in a more concise form as: 

f; 1 (xn)lix = -fi(xn) 

where: 
n+l n 

x, - xl 

n+l n 
X2 - Xz 

liX = 

(A. 9) 

(A. 10) 
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af 1 af 1 af 1 
ax1 ax2 ax3 

af 2 af 2 af 2 
ax1 ax2 ax3 

f; 1 (xn) = 

af N af N afN 
ax1 3Xz 3X3 

The solution of the linear system of equation represented in vector 

form by Equation ~.10) is sought for the unknown linear correction vector 

ti.x by a suitable matrix solution technique. For a system of (N x N) mat­

rix equation, Gaussian elimination may be employed. However, the most 

efficient triangular decomposition solution technique for a compact bi­

tridiagonal matrix (Douglas et al., 1959) is presented in Appendix B. 

The convergence of the iteration process, Equation (A.61 depends on 

a good initial solution vector estimate x0 • If the initial iterates are 

sufficiently close to x, convergence is attained at a quadratic rate since 

the iterative procedure is second order, that is, involves the first de-

rivative. 
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Consider the following system of linear algebraic equations generat­

ed by weighted implicit diffusion- or complete-flow models of the finite 

element approximations of Saint-Venant equations and the Newton-Raphson 

iterative method as a bi-tridiagonal system: 

( 1 ) ( 2) ( 1) (2) ( 1 ) (2) ( 1 ) 
a; Y; -1 +a. v. l + b. y. + b. v. + C; Y;+l + Ci Vi+l = d. 

1 1- 1 1 1 1 1 
{B. 1 ) 

(3) (4) (3) (4) (3) ( 4) ( 2) 
a. y. 1 + a. v. 1 + b. y. + b. v. + c. Y; +l + C; Vi+l - d 

1 1- 1 1- 1 1 1 1 1 - i 

for 1 < i < N 

with a~m) = c~m) = 0 for l ~ m ~ 4 

Equation (B.l) is an equivalent form of Equation (A.10), Appendix A, 

and can be conveniently expressed in a compact (2Nx6) matrix form as fol-

lO\'IS: . 

'\.? 
') 

.. ,,. 

0 0 b ( 1 ) b(2) c(l) c(2) IJ.yl d ( l ) 
1 1 1 l IJ.vl l 

0 0 b(3) b(4) c(3) c(4) /J.y2 d(2) 
1 1 1 1 IJ.v2 1 

aP) a~2) bp) b~2) t~ l) c~2) t:.y. 1 
d~ 1) 1- (B. 2) /J.V. l = 1 1 1 1 1 1 1- 1 /J.y. 

aP) a~4) bp) b~4) cP) c~4) /J.V: d(2) 1 1 1 1 l 1 1 /J.y i +l 1 
/J.v i + 1 

..;.\,--

a ( 1) a(2) b ( l ) b(2) 0 0 /J.yN-1 
d ( 1 ) 

N N N N /J.VN-1 d~2} 
a(3) a(4) ~-3) ·• b(4) 0 0 . IJ.yN N-1 
N N N N ~vN 
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The compact solution algorithm developed by Douglas et al (1959) 

and later used by Von Rosenberg (1969) is a direct solution technique 

for a system of linear equations. The algorithm is an efficient triangu­

lar decomposition method that yields a recursion equation, thus substan­

tially reducing computations and computer core storage. 

The algorithm is as follows: 

First Computer 

e~l) = b~l) - a{l) A~l) - a~2) A~3) 
1 1 1 1-1 1 ,_, 

e~2) = b~2) - aP) A~21) - a~2) A~41) 
1 1 1 1- 1 ,_ (B.3) 

e~3) = b~3) - a~3) A~ll) - a~4) A~3) 
l l l 1- l 1-l 

e~ 4 ) = b~ 4 ) - aP) A~ 2 ) - a~ 4 ) A~ 4 ) 
l l 1 ,_, l 1-1 

with s(m) = b~m) for 1 < m < 4 
1 l - -

and 

0 ~2) = d~2) _ a~3) Y~l 1) _ a~4) Y~2 1) 1 l 1 1- 1 ,_ 

with a~ 1 )= dil) and ai 2) = di 2) 

and µ. = e~l) e~ 4 ) - s~ 2 ) s~ 3 ) 
1 1 1 l 1 

The s~m), o~m), and µi are computed to aid in the computation of the 

following functions and need not be stored after the computation of 

\(2) = (s(4)c~2) - s~2)c~4))/µ. 
1 l 1 l 

( B. 4) 

A(3) = (s~l)c~3) - s~3)c~l))/u. 
i 1 l l 1 1 (B.4) 
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and 

The values of A.~m) andy~m) must be stored as they are used in the 

back solution. This is 

and 

YN = y~l) 

v - y(2) 
N - N 

Y; = Yp) - 1..p)Y;+l 

V; = y~2) - A.~3)Yi+l 

for (N-1) ~ i ~ 1 

( B. 5) 
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The list of subroutines and their corresponding functions is 

given below. The list of major variables and symbols used in the com­

puter program is provided in the comment page of computer program 

listing, Appendix E. Any temporary storage variables are not included 

because their definitions are obvious. 

MAIN 

READW 

JACOBI 

VE CTR 

GEOMTR 

BTRIDG 

Subroutines 

Coordinates the functions of the other subprograms, and 

prints converged solutions for prescribed time increments. 

Reads and· echo-checks a 11 the input data. 

Evaluates and updates the Jacobian matrix of (2Nx6) tenns. 

Evaluates and updates the column vector of size (2Nxl}. 

Evaluates and updates the nodal flow area, wetted peri­

meter, variation of Manning's roughness coefficient with 

discharge, and the change of hydraulic radius with respect 

to depth of flow. 

Solves the compact (2Nx6) bi-tridiagonal matrix equations. 
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The formats for entering the data are given below. The same. for-

mat statements for READ and '.·lRITEare applicable to both diffusion and 

complete flow models as provided in the subprogram READW. The data deck 

for the particular example of the Illinois River flood of April 10, 1979, 

is presented. However, data for the Flint Creek as lateral inflow for a 

single reach is entered via the MAIN program as a DATA STATEMENT. The 

reader should refer to Appendix E for the definition of the variables. 

CARD 

2 

3 

4 

5 

6 

7 

8 

COLUMNS 

1 - 10 

11 - 20 

21 - 30 

31 - 40 

1 - 10 

11 - 20 

21 - 30 

31 - 40 

41 - 50 

51 - 60 

1 - 72 

1 - 72 

1 - 72 

1 - 72 

- 5 

- 50 

FORMAT 

F 10·4 

F 10·4 

F 10·4 

F 10·4 

F 10°4 

F 10·4 

F 10·4 

F 10·4 

IlO 

IlO 

6Fl 2 · 5 

6Fl 2 · 5 

6Fl 2 • 5 

6Fl 2 · 5 

IS 

5Fl 0 ·5 

VARIABLE 

TPRINT 

TIA 

TSUM 

T 

TE TH A 

DETA 

DETV 

so 
IMAX 

Nl 

YO( J) 

QRE(J) 

QLAT (J) 

XL (J) 

JORD 

ASF(J) 



CARD 

9 

COLUMN 

1 - 50 

FORMAT 

SFlO·S 

VARIABLE 

PSF(J) 

Note: QSTR(J) and TRS(J) are included in the main 

program in DATA STATEMENTS. 
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$.108 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

•llME•5 .............................................................. 
• • 
• 
• 
• 

1 - OIMENSIONAL STAEAHFLO• ROUTING MODEL • • 
• ·······-····················································· • • 

• 
• • 
• 

COMPLETE FLO• FINITE ELEMENT STREAMFLO• ROUTING 

SOLVED IMPLICITl.Y BY ITERATI\IE HEMTO~-AAPHSON 1no. 
• • • • 

·······-····················································· • • 
• ••• DEFINITION OF TERMS ••• • 
• • 
•VARU8&.ES UfUTS ARE AS FOLLOWSI TIMEtSECt,LENGTHCFTJ • 

•OETP11lFT )1VELOClTYlFT. PER SEChDISCHARGElCFS) o 
•ACC IS THE ACCELERATION OF GAAVITYt32.2FT. PEA sec PER SEC • 
•ACFtPCF ARE POLYNOe CCEFF. FOR AREA £ WETTED PERIMETER • 
dN•Pfl ARE THE AREA & llETTEO fii:RIHETER OF FLOll RESPECTI\IEA.Y o 
•HYO JS THE RATE OF CHANGE OF HYDReRAOIUS lllTH DEPTH • 
•QSTR IS THE UPSTREAM INFLOW DISCHARGE HYORCGRAPH • 
•QLAT IS THE LATERAi. Fl.Oii TERM1FT. PER SEC o 
•QFL IS THE LATERAL INFLOW HYDROGRAPH AT FLINT CREEK • 
•SO IS THE CCllSTANT CHANNEL SLOPE • 
•RN IS THE HANNING ROUGHNESS COEFF. • 
.XL IS THE NODAL. SPACING. • 
•YO IS THE INITIAL UNIFORM NORMAL. DEPTH. • 
•VO IS THE INITIAL UNIFORM NORMAL VELOCITY • 
•N1 IS THE TOTAL NU"BER OF NODES • 
•T IS HE Tlf'E STEP tSECONOSt • 
•lSU~ IS THE ENTIRE FLOOD DURATION IN SECONCSe • 
•TSR JS THE TI"E FOR UPSTREAM INFLOll HYOROG~APH • 
oTFL IS THE TIME FCR LATERAL lNF\.011 HVOROGRAPH AT FLIN1 • 
•TPRihT IS TliE TIME FOR INITIAi. PRil\THIG lSECONOS' • 
•TTA IS THE INCREMENTAL. PRINTING TIME lSECO~DS) • 
•---IF TI~E STEP IS GREATER THAN TTA PRINTl~G WILL BE -·- • 
• PERFORflED AT THE INCREMENT OF THE TJllE STEP•T--• • 
•IMAX IS lHE l',U. JTEIUTION LIMIT • 
•NT IS THE Ntl .. 8ER OF POINTS FOR UPSTREAM INFLOM HYOROGR•PH • 
•NTP IS THE UPSTREAM I~Fl.OM HYOROG POINT FOR THE PEAK FLOW • 
•~GtJGP ARE SAME AS NTtNTP FOR LATERA INFLO• HYOROG FOR FLINT• 
•JORC IS THE CADER OF POLYNOMIAL ea. FOR AREA & •• PERiflETER • 
•DETA IS THR CONVERGENCE CRITERIA FOR DEPTH • 
•TETH• IS lHE TIME llEIGHTING FACTOR. • 
•YN IS THE CALCULATED DETH OF FLOW • 
•VN IS THE CCRRESPONOI Mi VELOCITY OF FLO• • 
•BSA IS THE .HcOBUN llATRIX OF DIMENSION l 4N1 X 6 I 
•CXVl & CXV2 ARE THE l~lX1> COLUMN VECTORS EVALUATED AT • 
•( 1-TETHA > & TETHA RESPECTIVELY. • 
•LDil"tLOIN ARE THE VAAl•BLE DIMENSIONING PARA"ETERS • 
•AEAO• IS THE SUBPROGRAM TO REAO S ECHOE CHECK INPUT OAlA • 
•GEOfl!TR IS lHE SUBPROGRAM TO UPDATE FLOW AREAollETTEOo • 
• MA~NIHG•S ROUGHNESS COEFF. & RATE OF CHA~GE HYOR. AAtIUS • 
• • .............................................................. 

Oifl!ENSIOh ACFCShANC261tBSRCS2•61,CSVU52>1CSY2C52ttFCFt5J1 
1 OTPhC261.HYOC26toQLATC25t1QREC261tPNC2611VELYC26)1 
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2 
3 

• 
5 
6 

c 
c 

7 
8 

c 
9 

10 
11 

c 
12 
13 

c 
c 

2 

1 

V0(261,VNC261tXlt25J,y0(26!•YNC26t 
DIMENSION Qfl(7)•QSTR(ll~•Tfl(71oTSAt1l!tRHC261 
0 AT A QF Lt JG• JGP 18'1• 0ii408 .• 16·-29 •. , 9 31. • 56P.•· 131-8-e·ol-64•1417 I 
DATA TFL/Oe0•43200 •• so•oo •• 57600.186400 •• 136800 •• 345600.I 
OATA ACC1lDIMoLDIN1NA1LPtL~/32•2•52•26t5•2•6/ 
DATA NT1NTP/ll16/ 

---READ £ ECHOE•CHECK INPUT DATA FROM suePROGRAM. 
I.ON .a I.DIN - 1 
CALL REAOltACF•DETA10ETV1QlAT1QRE1PCfaQSTR1TSRtHTt 
TPR INT 1TTA1TSUM•T1 T ETHA1 S01 HIAX •.XL 11'01H l 1NR 1lPt LOlh lllllO 

JSJZE ,. TSUIVT 
MS a JG + 1 
MC a NTP + 1 

TllRlT a TPAIHT 
JSTP"' IU • 2 

-·-CAl.CULATE INITIAL GEOMETRIC PARAMETERS FROM SUBPRCGAAMe 
14 CAI.I. GEOMTRCACF1ANoHYD1QRE1PCF1PN1YOtRN1~ltLOIHt 
15 PR a 2.131 
16 00 100 J • 1.tNl 
17 100 VOCJJ a QRECJ)/AHCJJ 
18 QO • QREC 11 
19 MIR IT El LP• 14 0} 

140 20 FDRMATCl///28X1 1 UPSTREAM•t24Xt 1 MIDSTREAP 1124X1 1 DOWN51REAM'J 
21 It R IT EC L P t 14 5 ) 
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145 22 FOR~ATC•x1•TIMECHR.1•.1x.•01scHAAGE··•X••OEPTH'aJXo'VELOCITY•.Ex. 

23 
2" 
25 
26 
27 
28 
29 

30 
31 
32 

33 
34 
35 
36 
37 
38 

39 
40 
41 
42 
43 
44 

c 
c 
c 

150 

15S 
c 

c 
c 

160 

180 
190 

.200 
220 

2~0 

2 .. 0 

1 
2 

1 

•01s0tARGE 1 a4Xt 1 0EPTH•.Jx.•vELOCITY••6X.t'DISCHARGE'•4Xt'DEPTH•• 
3Xe•VEl.OCITY• I 

•••USE INlTIAL VELOCITY t DEPTH CF FLOlll IS GUESS VALt.£5 
TO INITIATE SIMULATION. 
DO 150 K • hN1 
YH(K) • YOCK) 
ltH(I< J "' VOCIO 
F ACl = TETH .. T 
FA C 2 :: C 1 • - TE TH A HT 
00 155 L :a hHl 
AHtLl "" ACC•RNCl.J••212o2082 
-·· SET I.COP FOR Tl'E SIMULATION. 
QR :a QO 
00 900 JL •hJSIZE 
Til'E"" Fl.OATC.JL)o11T 

·--uPOATE THE LATERAL IHFLOlll HYOAOGAAPH FOR AEACH17 
TCK :a TIME - TFltJGJ 
I FUCK J 160• 1601200 
00 180 KC s 21JG 
IftlD!E • TFl.tKCJJ19011901180 
COr.TINUE 
OF• a QFLCKC-lJ + CQFLCKCI • QfL(KC-ltJ/ 
tTFLlKCI • TFLCKC•1J)•CTIME • TFLCKC•lll 
GO TO 320 
IFCTOC - TFLCJGPll2201220•300 
00 230 KS "' MS1JGP 
IFCTIME • TFLCKSIJ24012401230 
corn INUE 
OF•• QfL(l<S•ll - tQFLCKS•ll • QFLCKSll/ 



45 
1 CTFLCICS J • TF&.US•l Jl•CTitE • TFLUS•U I 

GO 10 320 
46 300 Qf- • QfL(JGPJ 
41 320 OLATC7) • QFN/CXLf1J•PNf711 

48 
49 
50 
51 
52 
53 

54 
55 
56 
57 
58 
59 

60 
61 
62 

c 
c 

350 

360 
.370 

1 

380 
400 

420 
450 

l 

500 
520 

••• UPDATE .UPSTREAM BOUNDARY COHOITIONe 
10 a TIME - TSRCNTPI 
IFfTOJ350t350~l80 

00 360 LC s 2•HTP 
IFUVIE • TSA(LCJ J370t370t360 
CQfllINUE 
QR 2 QSTRCLC•1) + COSTRCLCJ • OSTACLC•lll' 
CTSACLCJ • TSRCLC•lJJ•CTIME • TSRCLC•ltl 
GO .TO 520 
IFCTD - TSRCHTJJ400t400.soo 
00 420 JC .s MC• l'tT 
IFCTIME - TSACJCJ H5014501420 
COlllT IN UE 
QA .s QSTRCJC•lJ • COSTACJC•l> - QSJRlJCIU 
ITSACJCJ • TSACJC•lJhCTIME - TSRCJC•UJ 
GO TO 520 
QR 2 QSTRU•Tt 
COflTINUE 

,I 

63 
64 

c •••C.ALL SIJ8ROUTINE TO GEflERATE COLUMN VECTOR C2N JI 11 
JSUOi a 1 

65 
66 

67 
68 
69 
70 

c 
c 

c 

CALL VECTRCcsv1.FAC2.oLAT1YOtV01S01ACC1llLtOA1RNtN1• 
l AN1PN. QRE•lDl'hLOINt LOil'hJSWTCH I 

•••Ge.ERATE JACOBIAN MATRIX. 
LIJP .., 0 
CALL JACCetc8SA.FAC1.YN1VN1XL10LAT1~A1Afl1 

l AN1PN. QRE.ttY01S01 ACC1lDIM1LON1LOIN1N11LIC I 
••• ITERATE TO CONV~RGENCE FOR EACH TIME STEP. 
00 59) I.I. ;s19 IMAX 
LAST : 2•N1 
JSWTOt • 2 
LUP "" LUP + 1 

71 CAt.L 't E:CTRC CSV2 1F ACltOLAT t Y Nt V N• SO• ACC• JCl.1 QRd~N1Nl1 
l AN•PN1QRE1LON1LOIN1LOlM•JSWTCHI 

72 00 53~ K • lt I.AST 
73 CSV2U:) ""' CSV2C IC. J • CSVUKJ 
74 530 CONTINUE 

c ---oerAIN SOLUTION VIA TRl-OIAGONAL SUBPROGRAM. 
75 CALL ~TRIOG•CSV218SR.0TPH.vELY1LDIM•l.OIN1N1•LKJ 

C ·-·UP>ATE THE NODAL GEOMETRIC PARAMETERS. 
76 CALA. G EOMTRC ACF tA Nt HYO• QREt PCF tP Nt YNt RN•Nl tLOIN I 
77 00 55) L .a l•Nl 
78 550 RNCLt s ACC•RNCl.)••2/2.2082 
79 .JS "" M 1 • 1 
80 VEC • QR/ANCl) 
81 VELYU > '" VNC U • VEC 

82 
83 
84 
85 
86 
87 

c 
c 
c ••• CltECIC FOR RELATIVE CONVERGENCE FOR ALL VARIABLES. 

JERR " 0 
DO 56) J •l1Nl 
Y81 a A6Sl0TPHCJll 
VB1 • A6SlVELYCJJI 
Y82 ""' YNlJJ - OTPHCJ) 
V82 • VNCJI • VELYCJI 
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88 
89 
90 
91 
92 
93 
94 

95 
96 
97 
98 
99 

100 

101 
102 

103 
104 

105 
106 
107 
108 

109 
110 
111 
112 
113 
114 
115 

11& 
117 

118 
119 
120 
121 
122 

123 

124 

125 

c 
c 

c 
c 

c 
c 

c 

c 

c 

c 
c 
c 
c 

c 
c 

c 
c 

560 

570 

580 

585 
1 

590 

bOO 

680 

700 

710 

1 
720 
750 

900 
920 
930 
950 

YBJ a MAX1lABSCY82t1ABSCYNfJtll 
VBJ a MAX1CABSCV821•ABSlVNCJllt 
IFCY83 .LE. O.O .oR. VBJ eLEe O.OIGO TO 570 
YERROil a Y81.IY8J 
VEAR();( a VBl./VBJ 
IFCYERROR eLEe OETA eANO. YERROR eLE• DETVtJERR~JERR•1 
COHTI~UE 

--- S•ITCH CURRENT VALUES OF DEPTH OF FLO• TO OLD ONES• 
00 58:> L•ltfU 
YN(L) a YNCL) - DTPH(LI 
VNCL I a VNCL) • YELYCLI 
CONTINUE 
IFCJE~R .EQ. Nll GO TO 600 
••• ClfECK IF SPECIFIED ITERATION LIMIT IS EXC£EDEOe 

IFCJERR •LT• Nl aAND. LL eGEe IMAXI GO TO 920 

·-·UPl>ATE THE JACOBIAN MATRIX AT EVERY J ITERATIOS. 
IFCLUf> • 31590s585•585 
CALL JACOBICBSRsFACl•YN1YN1XL•QLAT1QR1RN1 
ANsPN1QRE1HYD1SOtACC~LDIM1LDN1LDlN1Nl1LKI 

LUP a 0 
CONTIHUE 
--- Uf>DATE DEPTHS & VELOCITIES QF PREVIOUS TIME STEPa 
DO 68:1 Ja11N1 
V 0 CJ > a V NC J J 
YOCJJ a YNCJI 
CONT I.'W UE 
••- PtINT OUT RESULTS. 
IFCTI~E • TPRINT + .003)75017001700 
TPRlNf • TPRINT + TTA 
TM "' r I1'E.ITMIUT 
00 71~ J .. 11Nl 
QRE&Jl • AN(Jl•VN&JJ 
CONTIMUE 
•RITECLP1720tTM1QREClt1YN&lJ1VN&ll1QRE(lJt•YNClJJ1VNClltt 

QREClfl hYNCNlt.VNCN1J 
FORMAft2X1Fl0.21SX13F10el•5X1JFlO.J15X13F10e3> 
IFCTI~E • TSUM)900•9501950 
••- AaVANCE THE TIME STEPe 
CONT:V.UE 
MRITEt LPo9301 
FORMATC./.l.110X1 1 MAXe ITERATION LIMIT EXCEEDEOa•I 
STOP 
END 
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••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• • 
• SU8PR.:IGRAM TO READ ANO ECHOE INPUT DATA • 

• • 
SUBROJTINE READ•CASftOETA1DfTV1QLAT1QRE1PSF1QSTR1TSR1 

1 NTtT?RINTtTTA1TSUMeT•TETHA1S01lMAX1XLeYOeNl1NR1LP•LON1LDINJ 

• • 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

DIMENSION ASFCSl•PSfCSt,QLATlLDNJ1QRECLOINl1XLCLDNl1YOCLOINl1 
1 QSTRCMTl1TSRCNTl 

---Rao TIME PARAMETf:RS. 
REAOCNR150JTPRINTtTTAeTSUM•1 



126 
127 
128 

129 
130 

c 

50 

80 

FORMAf C 4Fl0e2) 
REAOCNR•80tTETHA.OETA•OETV1SO•IMAX•Nl 
FORMAT C 4F 10e4•2110 I 
---READ UPSTREAM BOUNDARY DISCHARGE HYDROGRAPH• 
READCHR•90tCQSTR(L)•L a l•NT, 
READCMR.90JCTSRCLJ1L • l•NTI 
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131 
132 
133 
l.34 
135 
136 

c ---READ INITIAL DEPTHS OF fLO••DISCHARGE•LATERAL FLO•& SPACINGe 
LON a Nl • 1 

137 
138 
139 

HO 
141 
H2 

147 
1"8 

149 
150 

c 

c 
c 

c 
c 

c 

c 

90 

110 

1"0 

150 

160 
1 
2 

170 
1 
2 
3 

180 
1 
2 

READCNR•901CYOCJ)1J • l•NlJ 
REAOCMR•901CQRECJJ•J • 11N1J 
REAOCNR•90J(QLATCJl•J a loLDNJ 
REAOCNR•90tCXLCJJ•J • l•LDNI 
FORMAT ( 6Fl2e5J 
---READ ORDER OF POLYNOMIAL Ea. 
READCMR•ll.OIJORO 
FORMAT C 15 J 
LR .s JORO -+ 1 
--·READ AREA • •ETTED PERIMETER POLYNOe COEFF. MATRICE 

ONE tO• AT A TIME• 
REAOCNR•140JCASFC~l•J a ltLRJ 
REAOCMR•l401CPSFCJl•J • l•LRI 
FORMAT( 5F10.5t 

---PRINT OUT INPUT OATAe 
NRITEC LP• 150 I 
FORMAT C lHJ. t 
WRITElLP.160JNltTtSO 
FORMAf(///20X••TOTAL NOe OF NODES s•115//20X• 
'TIME STEP a•.F10.ltlX•'SEC. 1//20X••CHANhEL BOTTOM SLOPE ••1 
F10.4J ,I 

WRITEC LP1170JTETHA•IMAX10ETA•OETV 
FORMATC//20Xt'TIME •EIGHTING FACTOR s••f10•4//20X• 
•MAX. ITERATION LIMIT ••tI5//20Xt 
•CONVERGENCE CRITERIA FOR DEPTH •••f10.4//20X• 
'CONVERGENCE CRITERIA FOR VELOCITY • 1 tFl0e4J 

NRITEILP•l8014J1TSRCJJ1QSTRCJ)tJ a loHTI 
FORMAfl//////23Xt 1 UPSTREAM DISCHARGE HYDROGRAPH 1 //20X• 
·~··5X• 1 TlME PERIQ0•.5x. 1 MEASURED FL0• 0 1/l20Xtl2t4X• 
FlO.lt lX•Fl0.1> I 

151 WRITElLP1190JCK1YOlKloQRECK)oK•l•Nlt 
152 190 FORMAf(/////20X1 1 NOOE•.sx. 1 INITIAL DEPTH•.sx.•INITIAL DISCHARGE• 

1 /IC 18X 1lJt8X1FlOo Jtl2X•Fl0e31 t 
153 llRITElLP1200UJoXL(JJ•OLATCJhJ •1•&..DNt 
154 20 0 FORMAf CI/ I// 20X • 1 REACH• 1 9Xt •LENG TH 119X• 1 LATERAL F &..O 11 '.I IC 20 Xt 

1 IJ18X1F10.2.sx.F10.6tt 
155 lliRITEl LP.2201 
156 220 FORMATC/////20Xt 1 FOURTH•ORDER REGRESSION COEFF. FOR AR£A•//23Xe 

1 •o-TH"·t7X1•1sr•.7Xt 12ND•t7X1 1 JR0•.1x.••TH•t 
157 WRITE,LPoJOOtCASFlJJ•J a l•LRJ 
158 llRITEl LPt240t 
159 240 FORMAfC/////20X1°FOuRTH-ORDER REGRESSION COEFF. FOR •ETTED 

1 PERIM::TER•//23Xt'O-TH 1 t7X1•1sr•.1x. 1 2Ho•.1x. 1 JR0 1 17Xt 1 4TH•t 
160 -iRITEILPtJOOHPSFCJhJ • toLRt 
161 JOO FORMAfC/20X15F10.5t 
162 RETUR't 
163 EHD 

c ......... •••••••••••••••••••••••••••••••••·•••••••••••••••••••••••• ( . . 



164 

c 
c 
c 
c 
c 
c 

c 
c 

• SUBPR!JGRAM TO UPDATE THE NODAL FLOll AREA••ETTED PERIMETER • 
• 
• MANNIMG•S ROUGHNESS COEFFe & THE CHANGE IN HYDRAULIC 
• 
• RADIUS llilH RESPECT TO OEPTH 
• 

-· • 

119 

• • 
• • • • 

• • c 
165 ·······-···············*········································· DIMENilON AXCLDINJ•HYOCLOINJoPXtLOINt•YXCLOINJoASFC5J•PSFC5J• 

c 
c 
c 

166 
167 

c 
168 

c 

1 QXCLOlN)~RC(LDIH> 

-••CO"IPUTE THE NODAL FLOM AREA••ETTED PERIMETER ANO 
MANNVIG"S ROUGHNESS COEFF. 
DO 20J J a ltNl 
AX(JJ • ASFtlJ + ASFC2l•YX(Jt + ASFC3J•YX(J)••2 + 

1 ASFC4J•YX(Jl••3 + ASFC5J•YXCJJ••4 

PXtJJ a PSFC1J + PSFC21•YXCJI + PSFC3J•YXlJJ••2 + 
1 PSFC4J•YX(Jl••3 + PSFC5J•YXCJl••4 

169 RCC.Jl "" O,.OJ713 + 0.14097E-05•QXCJJ + Oe41739E-10• 
1 QXCJt••2 • 0.2J0004E-14•QXCJt••3 

170 200 CONTINUE 

171 
172 

173 

c 

c 

c 

-••CO)llPUTE THE NODAL RATE OF CHANGE OF HYORe RADIUS 
DO JO:> I( a l•Nl 
STORl • ASFC2J + 2e•ASFCll•YXCKI + 3e•ASFC4J•YXCKJ••2 + 

1 4e •ASF C 5hYJ((10 ••3 

STOR2 • PSFC21 + 2e•PSFC3t•YXCKJ + le•PSFC4J•YXCKJ••2 + 
1 4e•PSFl5)•YXIKt••J 

174 HYOCK) s CSTORl•PXCKJ - STOR2•AXCKJJ~PXCK)••2 
175 HYOCJC.J "' A8SCHYOCKH 
176 300 CONTl~UE 
177 RE TORM 
17 8 ENO 

c ............................................................. 
c 
c 
c 

179 

c 
c 
c 

180 
181 
182 
183 
184 
.185 
186 
187 

c 
188 
189 

• • • 
• 

SU8PROGRA" TO GENERATE COLUNMN VECTOR C2NX1• 

SUBROUTINE VECTRCCXV1FAC1QLAT1YX1VX1S01G•XLaQf1 
1 RX•Nl1AX•PX1QRE1LON1LOIN1LOIM•JS•ICHJ 

• 

•I 

• 
• 

• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
OlMENSION CXVCLOIM,,QLAT(LONJ1YXCLOIN•1VXCLOINt1XLCLDNt 
DIMENSION AXCLDINJ9QRE<LOINJ1PXCLOINt1RXCLDINt 
K "' 1 
PS "' t e.IJe 
t.STP • Nl • 2 
SPK = QT.IAX(l) 
RYl a IAXt1J/PXC11J••PS 
RY2 • (AXC2J.IPX&2Jt••PS 
-·-UPSTREAM NODAL COLUMN VECTOR. 
A• (2e•XLt1J + FAC•CVXC2J - 4e•SPKJl•YXC1J 
8 • (XLClJ + FAC•<2e•VXC2J + SPKJJ•YXC2J 



190 
191 
192 
l.93 

C • 3.•FAC•QLATC1l•XLC1J 
E,. Oe•XLC1J-FAC•C2e•VXCU+VXC2Ut•VX(l) 
F,. C2e•XLC1>- FAC•CVXClJ+2.•YXl2j)J•YXC2t 
GP• 2e•FAC•RXCl)•XLClJ•C2e•VXCl)••2.IRYl + 

l VU2)11412/.RY2) 
H • 2.~FAC•C2e•XLC1t•QLATC11•VXC1t/YXC1! + 

1 XLClJ•QLATl11•VXC2J/YXl211 
195 P"' 6.•G•FAC•CYXC2t - YX(1U 
196 S • 6e•G•SO•FAC•XLC11 
197 IFCJS•TCH - lJ 50150•80 
198 50 A a C2e•XLCU - FAC•CVXl2J - 4e•SPIOhYXClt 
199 8 a C~LCll - FAC•C2.•VXC2) + SPKJ1•YXC2J 
200 E • O.•XLCU + FAC•C2e•YXC.J;.)+VXC2HhVXC11 
201 F .. cz. •XL(l) • FAC•CVXC11+2o•VX(2JH•V.XC;u 
202 CXVC U a A + 8+ C 
203 CXVC2J a E + F - GP - H - P + S 
204 GO TO 90 
205 80 C.XVC1l a A+ 8 C 
206 CXVC 21 a E + F + GP + H + P - S 

C ---1NrERIOR NODAL COLUMN VECTORS. 
207 90 00 200 J a hLSTP 
208 K • K + 2 
209 M a K + 1 
210 ROl • CAXC.JUPXC.JJh•PS 
211 R02 • CAXC.J~1J/PXC.J+llt••PS 
212 R03 ,. C AXCJ+2J/PXC.J+2) H•PS 
213 AI,. lXLCJ) • FAC•C.VXCJ-folJ + 2••VXCJIU•YXC.JJ 
214 B.l,. C2e•CXL(J)+XLCJ+ltt + FAC•CVXCJ+2J-VXCJHJ•YXC.J+1) 
215 Cl• C X&.CJ+lJ + FAC•C2.41VXCJ+21+VXCJ+U U•YXC.J+2t 
216 01 a 3.•FAC•CQLATCJJ•XLl.J) + QLA1'J+1J•XLCJ+1U 
217 El= l2o•XLl.JJ + FAC•C2e•VXCJ)-foVXCJ-fol)IJ•VX(J) 
218 FI'" t4o•CX&.CJJ+XLl.J+l)) + FAC•CVXCJJ-VXC.J+21Jt•YXC.J+1) 
219 GI a t2.•XL(.J+1J • FAC•CVXtJ+1J+2.•VXtJ+2JtJ•VXt.J+2J 
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220 HI• 2.•FAC•RXCJ+lJ•(XLl.JJ•VX(.J)••21'R01 + 2o•CXLl.Jl-foX1..tJ+1U• 
1 VXCJ+lt••21'R02 + XLCJ+ll•VXlJ+21••2/ROJ) 

221 Pl :s 2o•FAC•(QL.AT(.JJ•XL<JhVXC.JJ/YXC.JJ + 2••CXLCJJ•QLAH.Jt-fo 
1 XLC.J+l J•QLAH.J+ltJ•VXCJ+l/Yxt.J+lH +QLAHJ+lhXLC.J+ll* 
2 VXCJ+2Jl'YX(.J+2)J 

222 01 • 6e•G•FAC•tYXCJ+21 - YXC.JJJ 
223 SI"' 6e•G•SO•FAC•CXL(JJ + XLCJ+lU 
224 IFCJS•TCH - 111001100.150 
225 100 Al a lXLC.JJ + FAC•CVXCJ+lJ +2.•YXCJllJ•YX&JI 
226 8I "'l2e•(XLtJt+XLCJ+1tJ - FAC•CVXC.J+2J-VX(.J)H•YXC.J+1J 
227 Cl,. tXLCJ+lJ - FAC•C2.•VXC.J+2J+VX(J+lJJhYXCJ+2J 
228 El• C2o•XLCJt - FAC•C2e•VX(JJ.., VX(.J+ltlt•VXC.J) 
229 FI'" C4e•tXU.Jt+XLt.J+1tt • FACUVXCJJ-VXC.J-fo2JU•VXC.J+11 
230 Gl "'12e•XL(J+1J + FAC•CVXCJ+1J+2.•VX(J+2JtJ•VXC.J+2J 
231 CXVCKt a Al + 81 + CI + 01 
232 CXV(~J • EI + Fl + GI - HI - PI • Ql + SI 
233 GO TO 200 
23• 150 CXVtKJ a AI + BI + CI - OI 
235 CXVCMt 2 EI + FI + GI + HI + PI + QI - SI 
236 200 CONTINUE 

c 
c --·OO•NSTREAM NODAL CALCULATION. 

HTl • AXCN1-1J/PXCN1-1t 
HT2 '" AX(N1J/PXCN11 
RY3 :11 HTl••PS 
RY4 s HT2••PS 
AN• lXLCNl•lJ - FAC•CYXCNl)+ 2.•VXCN1-1Jll•YXCH1-1t 



2•2 
2•3 
2•4 
2•5 
2•6 
2•7 
248 
2•9 
250 
251 
252 
253 
254 
2!55 
256 

c 
c 
c 
c 

257 

c 
c 
c 

258 
259 
260 
261 
262 
263 
26• 
265 
266 

c 
267 
268 
269 
270 
271 
272 
273 
27• 
275 
276 
277 

278 

279 

c 
c 

280 
281 
282 
283 
284 
285 
286 

BN a l2o•XLlNl-1J + FAC•(•o•VXCNlt •VXCNl-lJ)J•YX(Nll 
CN '"3o•FAC•QLATCN1-1l•XLCN1-1J 
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GN :a F AC•IUUUJ•XLl N1•1 >•C VXC Nl-U••2JAY3 + 2.•VXCNlJ••2JRY• I 
PN • 3.•G•FAC•C 'tX(Nll • YXCN1•1fl 
SN• 3.•G•SO•FAC•XLlNl•ll 
IFCJS•TCH .. 1J300t300s•OO 

300 AN a lXLCNl•l) + fAC•CVXCN1J + 2o•VXlN1-l)Jl•YXCNl•ll 
8N a 12o•XLOU-11 • FAC•C4o•VXCNU • VXtNl•lJ)J•YXCNU 
CXVCLDIM•l> • AN + SN + CN 
CXVCLD I Ht a SN • GN .. PN 
GO TO 500 

400 CXVCLOlM•lJ • AN + SN• CN 
CXV( l.D IM J • GN + PN .. SN 

500 RETURN 
END 

······~····················································· • * 
• su~ROGRAM TO GENERATE THE JACOBIAN MATRIX. * 
• • 

SUBROUTINE JACO&ICBTRoFACtYXtVXtXLtQLATtGTtRX• 
1 Ax.PX. QREtHYD•SOtGtLOllhl.DNtLOIN•NltLIO 

• * ............................................................. 
OI~ENSION BTRtl.OIMtLKJ•QLATCLONJtVXCl.OINJ•YXCLDINl•XLCU>NI 
DI MENS ION Axe LOIN .. QREC LOIN h PJU LOltU .HYO< LOIN>.R x• LOI NJ 
K :a 1 
PW"" 7eJ3e 
PS a • • .13 • 
SPK • QTJAXU I 
SSK =i SPKJYXC 11 
ROI• AXlll.IPX(lt 
R02 s AXC2l.IPX(2t 
---EVlLUATE THE JACOBIAN TERMS FOR UPSTREAM NODE. 
B TR( l• 1 .I a Oe 0 
BTRC 1t 2 t "" 0.0 
BTRC2tll•O•O 
8TRC2t2J a OeO 
BTRC1t3) • 2e•XLllt + FAC•tVXt2) - SSK•Y.lC2U 
8TRClo4J • OoO 
BTRC1t5) a XLClt + flC•C2o•VXl2J + SPKJ 
BTRlb6t a FAC•CYX<l> + 2e•YXl21t 
STORl a •••PS•RXC1t•XLllt•VXC11••2•HYOCll.IROlaaPW 
8TRC2.31 a -FACaCSTORl • •••XL(l)•QlATClt•VXC1J.IYXC1t••2+6e•GJ 
8TRC214t a •••XL.Cl) - 2o•FAC•C2e•VXllJ + VXC2J • 

1 •••XLl ll•YXClJ•RXllJ/ROl••PS • 2e•XLlU•QLATClt.IYXC1U 
BTRC2t5f • •2o•FlC•CPS•RX<lf•XLtll•HYOC2ta'IXC2J•a2JRD2••PW + 

l XLC1t•QLATC1J•VXC2J/VXC2J••2 • Jo•G) 
BTRl2•6J a 2e•XLlll • 2.•FAC•CVX(lJ + 2e•VXC21 • 2.•RXClta 

1 Xl(l)•VXC2J.IR02••PS • XlC1t•QlATClt.IYXC21l 

---EVALUATE JACOBIAN TER"S FOR INTERIOR NOOESe 
LSTP " Nl • 2 
00 JO::> .J •11LSTP 
K a K + 2 
M • K + 1 
R01 a AX(Jt.IPXCJI 
R02 • AX(.J+ll.IPXC.J+lt 
R03 a AXC.J+21JPXCJ+2t 



287 
288 
289 
290 
291 
292 
29J 

294 

295 

296 

297 

298 

299 

300 
301 
302 
J03 
JO+ 
305 
J06 
307 

308 

309 

310 

311 
312 
313 
314 
315 
316 

317 

318 

319 

300 
c 
c 

c 
c 
c 
c 

c 
c 
c 

c 
c 

1 

1 

BTR&Kall a XL(J' - FAC•CVX(J+ll + 2.•VX(JJJ 
BTRCte.2J • -FACU2e•YXC .. H + YXCJ+lU 
8TRUC.•31 a 2••CXL(Jf+XL(J+1JI + FAC•CVXCJ+2J -VXCJJI 
8TRCK.4> • FAC•CYXCJ+2> - VXCJ)) 
8TR&Kt5f • XJ..(J+1J + FAC•C2.•VXCJ+2J + VXCJ+lJJ 
BTRCte.6) • FAC•lV.XCJ+lt + 2e•VXCJ+2H 
BTRCM. 1) • -2 .•FAC•CPS•RXC.J+l J •XLCJ J•VXCJ.t••2•tfYOCJ)IR01••P• + 
XL(J t•QLATCJt•VXC J )/YX( J >••2. + l••G> 
BTRCM12) .a 2e•XLtJ) + 2.•FAC•C2a•VXCJ) + VXCJ+l) + 
2••R~J+lt•XLCJJ•VXCJ)/R01••PS + XLC.Jt•QLATCJl/YXCJJt 
BTRC Ill. 3) • -4.•FAC•CPS•RXt.J+l Ul .XLC.J>+XLCJ+l) )•HYO( J+l t• 
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1 
2 

V.XCJ+l t••2.IR02••Pllll + CXL(J)•QLATCJ t+XLCJ+l t•QLATC J+l H•VXC J+l JI 
YXCJ+l 1••2) 

1 
2 

1 

1 

BTRtM.4) • 4e•CXL(.JJ + XLCJ+lJt + 2.•FACUVXCJI - VXCJ+2J + 
4e•RXl.J+ll*&XL(J) + XL(J+lll•VXCJ+l)/R02••PS + 2••CXLCJJ•QLATCJJ+ 
XLC'J+l I •QLATC J+lJ )I YX& J+U I 
BTROlt 5 I .--2. •F AC•C PS•RXC J+l l•JU .. (J+U•HVOC .J+2 t•VX CJ+2J .. 21 
R0.3•..,.M + XLCJ+U•QLATCJ+1J•VX~t/YXCJ•21••2 - J••GJ 
8TR(Mt6J .a 2e•XLC.J+lt • 2e•FAC•CV.X(J+l) + 2.•VXC..J•21 •2•• 
RXCJ+l J•XLCJ+11•VXCJ+2URD3••PS - XL(J.+1J•QLATCJ+U.IYXCJ+2U 
CONTllfUE 
---EVALUATE JACOBIAN TERMS FOR OO•NSTREAM NOOESe 

LB • LDlM - 1 
AONl • AX(Nl•l)J'PXCNl-1) 
AON2 • AX( NU.IPX( Nl J 
BTR(l..8•1) • XL(Nl-11 • FAC•CVX(Nll+2e•VX(Nl-1JJ 
BTACLEt.21 '"'•FAC•(2eU'XCN1-U + YXCN1H 
8TRCLS•3 I a 2.•XLC Nl•l l + FAC•C 4a•VX(N1 l•VXCN1•1 I J 
STRCl.8•+> z FAC•C+e•YXCNll • YXCN1•1,J 
STR( U IM• 1) = -2. •FAC•t PS•R.U Nl I •XL( Nl• 1 l•VXC N1•11••2•HYOC lfl-1 ti 

1 RON1••Pll + XLCN1•1hOLATCNl•l)•VXtN1-1tJ'YXCN1•1t••2 + J••GJ 
BTRCU>Ilh2) : 2.•Xl.CNl•lt + 2e•FACU2.•VXCN1•1) + V.XCNU + 

1 2.•RxtNlhXLCN1-lhVXCN1-1J.IRON1••PS + XUNl-lhQLATCN1-1J/ 
2 YXUl1•'1 J) 

BTRCLOIM•Jt • -2.•FAC•C2e•PS•RXCN1t•XL(N1-1l•VXCN1>••2•HYOCN1JJ' 
1 ADN2"*Pll + 2e•XLCN1-1t•QLAT(Nl-11•VX(N1)/YXCN1)••2 • 3e•G) 

BTACU> Ilh4) a 4e•XLCN1•1 t + 2.•FAC•CVXC Nl-1) + 2e•VX(N1J + 
1 4e•RXtN11•XLCN1•1J•VX&NltJ'RON2••PS + 2••XLCN1•1J•Q&..ATCN1•11.I 
2YXCNUJ 

8TRCLS•5J a O.O 
BTRCLI•6J • 0.0 
8TRCLDil'h5t "' O.O 
8TRCUIM•61 • O.O 
RETURN 
ENO ............................................................. 

• • 
f: 

• 

• • 

SUBl'ROGAAM FOR SOLUTION OF A BI-TRIDIAGONAL MATAIXe 

SUBROIJ T lNE BTAIDGCCOL• VEL•Y X• V X• LO IM•LO lfbNls Lit J 

• • 

• 
• .............................................................. 

OIMENS lON V£LU.DI M•UO. y X( LD u~ •• vxc LOIN •• co LC LDlM .. 
~ BETAt•l•OETAC2J•SACC26•4l•GAMAC26•2J 

·-·PE~FORM MATRIX REDUCTION OPERATION 
K • l 



320 00 20) J • l•Nl 
J21 IFtJ •• lUOOalOOtl.50 
322 100 6£TAU t a VEL« 1 tl J 
323 6ETAC2J • VELC1•4J 
324 6ETAC3t • VELl2•3J 
32 5 6ET AO > .a VEL'2 •4 J 
326 0£TAC1 I • COLtll 
327 DETAC2> • COLt2l 
328 ZU • 8ETAC11•6ETAt4J • 6ETAC2l•BETAC3J 
329 IFczu .Ea. o.otzu • 0.001 
JJO SACCltlJ .a CBETAC4,.VElC1•5> • 8ETA«2J•YELC2s5tli'ZU 
3Jl SACtl.21 .a t8ETA44 .. VEL(la6J • BETA(2UVELC2a6)J/LU 
332 SAC{bJI • C8ETAC1,.VElt2.15.I • aETAC3J•VELC1.t5U/ZU 
333 SACCl•.\J .a CBETAtlhVELC2.6J • BETA&31•YELt1.t6tl/ZU 
.334 GO TO 180 
335 150 K a K + 2 
336 " • IC + 1 
3.37 BET AU l • VELCK•3 J • VELCKel hSACC J•lel l•VELC 1Ct2 J •SACC J-1• 31 
338 8ETAC2 I a VELCKa4>•VELCK.t.i.hSACCJ•lt2l•VELCKa2t•SACtJ-t.O 
339 BET.AU J a VELOl•J l•VELCMtlhSACCJ•l•l>•VELUh21•S.ACCJ-la31 
3.\0 BET AO' • VEL&Me.\ l•VELC l•hll •SACC J•lt2J•VELC "•2hSACC J-lt 0 

.3.\1 
J42 

343 
344 
345 
346 
3•U 
348 

c 

c 

c 

DETACl' • COLCKt•VELCICell•GAMACJ•l.1lJ•VELCK.12t•GAMACJ-1a21 
0£TAC2J • COLCMJ•VELCM.ll•GAMACJ•lt1J•VELCMt21•GAMAIJ-1t2J 

ZU • BETAC11•8ETAC4J • 8ETAt2.1•8ETAC3J 
IFczu .ea. o.01zu • 0.001 
SACCJ.11 .a CBETAC 4 hVELC Kt5 l•BETAC 2 J•VEL.Cfh5Jl/ZU 
SACC.J.2) • C8ETAC4UVELCKt6.1•8ETAC2J•VELOh6tl/ZU 
SACCJe3t .a tBETACll•VELCM.15J •6ETAC31•VELCKt5lt/ZU 
SACIJe4J .a (8ETAClJ•VELCMt61 •8ETAC31•VELCICa6J)/ZU 

J.\9 160 GAMACJ111"' (8ETAl4J•DETAClJ•8ETAC2l•OETA(2Jl/ZU 
350 GAMA<J 1 2 t "' C 8ETAC1 J•OETAt2 J•BET A& 3J•OETAC1 l UZU 
351 20 0 CONTIH U E 

C •••CO!tPUTE SOLUTION VIA RECURSIVE EQe 
352 1..lf'UT "" Nl • 1 
353 JK "' I. lMIT 
J54 YXOiU :a GAMACLOIN1 ll 
355 VXCN1J a GAMA(LOIN12J 
356 00 JO) L "' ltLIMIT 
J57 YXC JICJ a GAMACJKa 1J-SACCJKe1 l•YUJIC+U•SACCJK12 hVxtJK+1 l 
358 VXCJKJ ~ GAMACJKa2••SACCJKt31•YXCJK+ll•SACCJK14)•VXCJK+ll 
359 JI( a JI( • 1 
360 300 CONTIJltUE 
361 RETURH 
362 EHO 

$ENTRY 
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APPENDIX F 

SAMPLE OUTPUT FOR WICFEM 
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The sample output listed in the pages following is the format 

with which the input parameters are reprinted for correction and refer­

ral. A clear illustration is drawn from a natural channel simulation 

of Illinois River, using flood of April 10, 1979, and the complete flow 

model. 



TOT AL NOe OF HODES • 26 
(;;: 

TI"E STEP • 1800.000 SECe 

c.- HNEL BOTTOM SLOPE • 

TlltE llf£IGHTING FACTOR .a 

0.0009 

0.5500 

MAil. ITERATION LIMIT .a 60 

CONVERGENC£ CRITERIA FOR DEPTH .a Oe0100 

CO~V£RGENCE CRITERIA FOR VELOCITY• OelOOO 

UPSTREAM DISCHARGE HYOROGRAPH 

.J TifllE PERIOD MEASURED FLOlll 

1 o.o 482e0 
2 50400.0 757.0 
3 64800.0 5590.0 
4 79200.0 771000 
5 86400 .o 11000.0 
6 100800 .o 22980.0 
7 129600.0 11320.0 
8 158400 .o 5100.0 
9 172800.0 4110.0 

10 208800.0 3104.0 
11 345600.0 1122.0 

NO>E INITIAL DEPTH INITIAL DISCHARGE 

1 l •. no 482.000 
2 lo 3•0 482.000 
3 3o 340 .-s20000 

" 3oJ•O 4820000 
5 3. l•O •82.000 
6 leJ40 .-a20000 
7 J. 340 4820000 
8 lo l•O 4820000 
9 3·3•0 •82.000 

10 3el•O 4820000 
11 l. J•O •82.000 
12 Jo 340 48.2.000 
1J Jo 340 4820000 
14 Jo l•O 482e000 

126 
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15 3e340 482.000 
16 3eJ40 482.000 
17 3eJ40 482.000 
18 J.340 482.000 
19 3e340 482.000 
20 .3. 340 •&2.000 
21 3el40 •a2.ooo 
22 le.340 482.000 
23 3•l•O •&2.000 
24 Je.340 •&2.000 
25 JeJ40 482.000 
26 3. 340 482.000 

REACH LENGTH LATERAL FLO• 
" 

1 10560.00' 0.000000 
~ 10560.001- 0.000000 
3 10560.oo! 0.000000 

• 10560.00l 0.000000 
s 10560.00 •.) - 0.000000 
6 10560.00: i 0.000000 
1 10560.00 0.000050 --9·---- 10560.00 0.000000 
g 10560.00 0.000000 

1l 10560.00 0.000000 
11 10560.00 0.000000 
12 10560.00 0.000000 
1J 10560.00 0.000000 
u 10560.00 0.000000 
15 10560.:>0 0.000000 
16 _10560.00 0.000000 
17 10560.00 0.000000 
lS 10560.00 0.000000 
n 105.60.00 0.000000 
2) 10560.00 0.000000 
21 10560.00 0.000000 
22 10560. 00 0.000000 
23 10560.00 0.000000 
2• 10560.00 0.000000 
2$ 12672.00 0.000000 

FOJ RTH-ORDER REGRESSION COEFFe FOR AREA 

O-TH lST 2ND 3RO 4TH 

_, 2. 0.lJ.20 84.60530 5e47340 Oe9J.2J.'5 -0.00452 

f()J RTH-ORDER REGRESSION COEFF. FOR liETTED PEIUMETER 

0-TH lST 2NO 3RD 4TH 

10.082.35 57.67010 -•.90130 Oe.34127 -0.00601 



UPSTREAM MtOSJREAM OOiliNSTREAM 
TI"ECHR. I DISCHARGE DEPTH VELOCITY DISCHARGE DEPTH VELOCITY DISCHARGE DEPJH VELIX nr 

1. 00 50l. 643 2. 854 1. ao1 565. 813 3.340 1.640 546. 570 3.317 1.61 8 
2.00 521.285 2.895 1. 845 606.491. 3.340 1.758 618. 323 .J.2 96 l· 85 0 
3. 00 540. 928 ].060 1.767 628.423 1.no 1.821 656.780 3.327 lo92 l 
4. 00 5~. 57.l 3.148 l•774 644.660 3. 349 l.860 669.159 3. 343 1.93 7 
5.00 58J. 214 3.132 lo845 665.567 3.384 1.891 664. 443 3.346 1.920 
6.oo 5951.1157 3.199 1.859 699.071 3.460 1.923 661.311 3.344 1.913 
1. 00 619. 500 3.292· 1. 841 740.850 3.560 1.955 659.136 .30343 1.908 
a. oo 639.&42 3o lll lo 86.3 778.815 3.652 lo980 657.959 .3.342 1.~6 

9o 00 65,.785 3. 37 7 10883 806.762 J. 719 1.996 657.274 3.J41 1.9()4 
10. 00 673.428 lo 449 lo882 826.363 3. 765 2.001 656.856 30341 1.90 3 
11. 00 693.071 3. so 1 1.892 837.1104 3. 795 2.013 656. 619 5. 340 1. 90 3 
12. 00 111. 714 3.539 lo914 840.211 3. 799 2.013 656. 492 3.340 1.90 2 
13. 00 737.357 3.589 1. 927 3·3a. 264 3. 794 2.012 656. 4111 30340 l· 90 2 
14. 00 151. 000 3.652 1.9211 11•2.535 l. 801 2.015 656. 4.H 3.340 l.SO 2 
15.00 196~.249 5.978 2.306 864. 539 '· 147 2.032 656.830 3o34'1 1.90 3 
16. 00 317l.499 1. 102 2. 760 908.835 3.939 2.061 658. H7 30346 1.so 4 
170 00 4381. 742 a.519 2. 691 983.721 4o 092 2.106 664. 227 3.3511 lo90 9 
ta. oo 558}.992 9.26• 2.901 1095.981 4.Jl 1 2.166 6760106 3.387 i.920 
190 00 61D. 992 9.512 30037 1235. 558 4,570 2o2JO 6950 399 3.436 1.93. 
20.00 6t.H • 992 9. 790 3·167 1365.832 4.901 2.211 722.138 3.502 1.95 2 
21. 00 11n. 992 10.503 2. 913 1•660053 4.983 2.307 752. 192 3.575 1.91 ~ 
22. 00 770~.992 10. 741 3.0011 1591.610 5.199 20329 779.893 3.644 1.9116 
23. 00 935,. 992 11. 755 2. 948 2041.995 5.166 2.529 802.175 30703 1.w11 
24000 109'». 990 12• JO 4 Jo264 2905.5•2 6. 715 2.766 821o33l 3. 748 2.00 8 
25. 00 1399•·990 13.5•3 3. 307 3825.629 1. 613 2.906 834.800 3.781 2.014 
260 00 1698l. 990 l4o 924 J.267 4662.191 8.349 20980 850. aoo 3·818 2.02 3 
21. 00 1996•. 990 160389 30006 5413. 211 8.958 3.019 87 3. 799 3.876 2.03 7 
2a.oo 229Ho990 170102 J.235 61310531 90494 3.056 925. 853 3.914' 2.012 
290 00 2152l. 490 16.609 3.165 6763. 38] 10. 000 3.035 1002.750 4ol l 7 2.116 
30. 00 20064 .1190 16. 37 3 3. 041 7510.277 10. 50 5 3.048 1125. 035 40336 2.19 9 
31. 00 181>01 o 490 16.201 2.917 8483.727 u. 031 3.113 132.30 278 4.697 2.21 8 
32. 00 17l5). ooo 15.598 .20981 9466.043 11. 582 3.137 16110. 693 5.246 2.43 0 
330 00 15692. 500 1•.766 3·063 10539. JOO 12 .153 1.152 2272.846 5.912 2.64 2 
34. 00 1423~. 000 14. 530 2·861 11656.490 12.132 3ol54 2980.063 6.748 2.eo 9 
J5. 00 12717 0 500 130 486 2. 998 12632.130 u. 30 .J 3.107 3649.134 7.374 2. 90 2 
36. 00 11J2). 000 12. 740 lo 059 13835.260 ll .835 3o 119 • 3630063 8.068 2o97 3 
37. 00 105•l. 490 12. 441 30033 14774.170 14. 301 3.091 4 932. 38.J 8.595 3.02 3 
311. 00 976•.996 120134 2.887 15524.660 14. 67 t 3.069 5637.134 9.049 3.0S 4 
39000 119810496 11.436 30032 15938.890 H.932 3.032 6221.613 9.452 3.10 4 
40.00' 820}. 996 11.010 3.070 16219. 390 15.060 3.019 676Jo055 9.960 3.1~ 6 
41. 00 hll • 496 10. 601 2.935 lbll3o430 15. 077 2.995 7471"414 to. 3 40 3.155 
42. 00 665~. 000 9.830 1. 080 15850.500 15.002 2.979 8095. 895 10. 7 4 l .5. 13 9 
4 l. 00 5877. 500 11. 427 3.017 15419.7&0 H.1150 2.963 8579.170 11.098 3.1' 3 
4'4. 00 510).000 a. 925 2. 848 14851.550 14. 635 2.952 9299.203 11.428 .s.11' 
45. 00 4652. 496 8.695 2.a40 14168.860 14.360 2.939 9919. 813 11.198 3.16 2 
46. 00 460,. 996 8. •61 2.1129 134J0.570 14.035 2.933 10 523.170 12.111 3o 17 2 
47. 00 4357. 496 8.045 2.935 12682.270 13. 658 2.944 1&093. 890 12.383 .s.ia 0 
•a.-oo 410~. 996 9.015 20830 11765.590 13.226 2.932 11604. 490 12.668 J.169 
49. 00 4009. 399 1.a21 2.881 10807.480 12.137 2.923 12074.910 12.882 3.11 g 
50. 00 3'908o 799 7.836 2. 805 9824.559 120194 2.919 12464.820 u.101 3.165 ___, 

N 
(X) 

_.,-



51. 00 380~. 199 10613 2o 8'>8 88290344 11. 611 
520 00 3101o600 10614 2o 801 71.1820184 11. 00 6 
5Jo 00 3607 0 000 1o50 g 2o 801 1011. 211 1oou2 
54. 00 3:>0~ o 400 1.399 2.193 02$7. 238 90851 
55. 00 3405 0 800 1o J24 2.111 56380133 9.n 3 
56.00 3305 0 200 lo 195 2.112 51540 316 8.976 
57. 00 320' .599 1.12.J 2o 7•0 4190.555 8.666 
58. oo 3104 0 000 60 995 2.740 45200484 8. 431 
59. 00 3067.631 1. 019 2. 698 4317.703 8.253 
600 00 3031. 262 60940 2.120 41580090 a.112 
61. 00 2994 0 894 6e9ll 20693 41>360201 1.995 
62. 00 2953. 526 60891 2. 680 .>9190003 1o 881 
630 00 2922.151 60812 20664 3806.999 lo 784 
640 00 2885 0 788 60 835 20654 36990744 70683 
65000 2849. 420 60 802 20643 35990432 1 o588 
6tio 00 28u.052 6o 764 20635 35090756 lo 501 
67. 00 2771>0 683 6. 726 2.626 343 lo 170 '· 425 
68. 00 214lo315 60686 20619 3365o24S 7.359 
69. 00 270Jo947 60 617 2. 644 3302.410 1. 301 
10000 2661 • S19 60581 20626 32510927 70252 
11. 00 26)1.210 60537 20626 3201e462 lo 20' 
72. 00 2594 0 841 60 490 2o 619 3166.5!il0 70166 
'3o 00 25580•73 60 451 20612 3127.312 7.126 
74. 00 2522. 105 60 •02 2.601 3088.362 70086 
75. 00 2485.737 60368 20587 3058.964 7.04• 
76. 00 2449. 368 60286 2o5d5 3023.510 1.002 
11. 00 241J. 000 6. 251 2. 602 2985. 725 6.958 
78. 00 2311> 0 631 6. 2ti4 2.554 2946.345 6091• 
1~ 00 234~. 262 60131 20607 2a9·~.579 601170 
8 Oo 00 23030 89• 60186 2o 549 2876.619 6.826 
Blo 00 2267. 526 60063 2o5ti5 2tUOo522 6. 781 
92.00 2231o157 6.037 2.547 27970600 6.736 
83. 00 219'o189 60013 20520 2746.666 6.691 
84. 00 2159. 420 50924 20552 :?6880 710 6. 644 
as. oo 2122.052 5.940 2o 498 26740288 6.599 
86. 00 2065.684 50826 2e534 26110124 6.556 
87. 00 2049 .315 5o 831 2. 484 25990255 60 515 
88. oo 20Ue947 5o 742 2o 507 2539.855 60"13 
89. 00 197t>o578 50732 2o 460 2526.036 60 430 
90. 00 190. 210 So640 20495 24630 275 6o 383 
91.00 19030842 50653 2. 431 24480794 60336 
92000 18670473 5o 560 2. •40 2389.665 6.289 
93. 00 1831o105 5.488 2o 435 23570700 6.243 
94000 1794 0 736 50456 2o 428 2320.382 60191 
95000 175!1. 368 50418 20395 2283.573 6.151 
96. 00 1122. 000 5.324 20438 2231.2n 60103 

20910 128210030 
20906 130750450 
20896 13 2150 830 
2011&1 133560730 
2o 815 U.J65o330 
20862 13246. 800 
2. 848 UOH.680 
2.1133 121140010 
20819 122il4o 370 
20805 1174905~0 

2.199 11076.960 
2.1~1 10216.430 
2.175 929lo941 
2o 762 8 346.197 
2.150 1437.9114 
2.139 6611. 473 
20729 5900.1116 
2.120 53190344 
20701 4 865.309 
20699 • 5"3. 902 
2.692 •283. 523 
2.686 •083.381 
20680 39150717 
20673 3 7780 913 
2.661 i.-s-f-1 .. h 560 
2.659 3616~291-
20655 3 5110497 
2.649 3434.561 
20643 3 3430 439 
2.646 32840313 
2.631 3233.575 
20634 31160162 
20617 31570211 
2.609 30920 535 
2.611 3060. 251 
2.594 30200 •9• 
20596 2 9710 886 
2.sao 29390 010 
20581 28890070 
20564 28560548 
2.565 28080084 
2.536 2181.404 
2e5l4 21440 664 
20526 27110566 
20511 26140237 
20509 2622. 735 

uo280 
1J.t44 
13eS61 
13.661 
130110 
uo122 
1lo684 
13.604 
130412 
130293 
u. 0 00 
120585 
12.0 85 
110521 
100922 
10.326 
90165 
90271 
80883 
80578 
8.329 
80130 
7.963 
70823 
70697 
-7.-6-08-
70519 
1o4 31 
7.358 
10304 
7o2l7 
70191 
7o 144 
10091 
70066 
7o014 
6.915 
60926 
60885 
60838 
6.196 
6e145 
60709 
60673 
6.629 
60513 

3.16 l 
3o 1~ 4 
3ol30 
3o1D 4 
l.08 3 
3.os 3 
lo02 6 
2. 9') 1 
2o9$ 7 
2.914 
2o 87 5 
2·84 1 
2.818 
2o7'9 
2o 78 7 
2o 77 8 
2o 77 4 
2o 77 2 
2o 764 
2o 76. 
2. 75 6 
2o 15 0 
20n1 
2o 134 
2on1 
20720 
20100 
2o 700 
2e699 
2.t.a 3 
2. 6' 1 
2o 67 3 
2. 67 5 
2.u8 
2o 651 
20660 
2. 6' 3 
2. 64 7 
2062 9 
2.632 
20614 
2o 612 
2o li0 1 
2.,.9 
2.5112 
2osa6 

_. 
N 
lD 



APPENDIX G 

COMPUTER PROGRAM LISTING FOR WIDFEM 
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$JOB 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

1 

•TUE:115 .............................................................. 
• • • 
• 
• 

1 • DIMENSIONAL STREAMFLOW ROUTING MODEL • • • .............................................................. 
• • 
• • 
• 

IMPLICIT DIFFUSION FINITE ELEMENT METHOD SOLVED • 

BY ITERATIVE NEWTON-RAPHSON TECHNIQUE • • 
• .............................................................. 

• • 
• ••• DEF IN IT ION OF TERMS ••• • 
• • 
•=~=~:~~~ J~~;~~,:~;,;~. F~~;o:~~J !~~~~~!;~~~~=~~HltT) : 
•ACC IS fHE ACCELERATION OF GRAVITY•J2e2FTe PER SEC PER SEC • 
•ACF•PCF ARE POLYNO. COEFF. FOR AREA t •ETTED PERIMETER • 
•AN•PN ARE THE AREA & 111ETTED PERIMETER OF FLOW RESPECTIVELY • 
•HYO IS fHE RATE OF CHANGE OF HYDReRAOIUS WITH DEPTH • 
•OSTR IS THE UPSTREAM INFLOW DISCHARGE HYOROGRAPH • 
•QLAT IS THE LATERAL FLOlll TERMtFTe PER SEC • 
•QFL IS JHE LATERAL INFLOM HYOROGRAPH AT FLINT CR!EK • 
•SO IS THE CONSTANT CHANNEL. SLOPE • 
•RN IS TliE fllANNING ROUGHNESS COEFFe • 
•XL IS THE NODAL SPACihGe • 
•YO IS THE INITIAL UNIFORM NORMAL DEPTHe • 
•VO IS T11E INITIAL UNIFORM NORMAL VELOCITY • 
;11N1 IS -0. E TOTAL NUMBER OF NODES • 
•T IS JHE TIME STEP tSECONDSJ • 
•TSUM IS THE ENTIRE FLOOO DURATION lN SECONOSe • 
•TSR IS THE Til'E FOR UPSTREAM INFLO• HYOROGRAPH • 
•TFL IS THE TIME FOR LATERAL INFLO• HYDROGRAPH AT FLINT • 
•TPRINT lS THE TIME FOR INITIAL PRINTING CSECONDSJ • 
•TTA IS THE INCREMENTAL PRINTING TIME CSECONDSI • 
••••IF TIME STEP IS GREATER THAN TTA PRINTING MILL BE •-- • 
• PERFORMED AT THE INCREMENT OF .THE TIME STEP•T-• • 
•IMAX IS THE MAX. ITERATION LIMIT • 
•NT IS THE NUMBER OF POINTS FOR UPSTREAM INFLO• HYOROGRAPH • 
•NTP IS THE UPSTREAM INFLO• HYDROG POINT FOR THE PEAK FLOM • 
•JGtJGP lRE SAME AS NT.NTP FOR LATERA INFLOM HYOROG FOR FLINT• 
•JORD IS THE ORDER OF POLYNOMIAL EQ. FOR AREA S •• PERIMETER • 
•DETA IS THR CONVERGENCE CRITERIA FOR DEPTH • 
•TETHA IS THE TIME lfEIGHTIHG FACTORe • 
•YN IS rriE CALCULATED DETH OF FLO• • 
•VN IS TiE CORRESPONDING VELOCITY OF FLO• • 
•SSR lS THE JACOBIAN MATRIX OF DIMENSION t 2N1 X 6 I 
•CXV1 4 CXV2 ARE THE CN1X1) COLUMN VECTORS EVALUATED AT • 
•C 1-TET~ I ~ TETHA RESPECTIVELY. • 
•LOIM1LOlN ARE THE VARIABLE DIMENSIONING PARAMETERS • 
•READ• IS THE SUBPROGRAM TO READ & ECHOE CHECK INPUT DATA • 
•GEOMTR lS THE SUBPROGRAM TO UPDATE FLO• AREAt•ETTEO• • 
• IUNNL-.G 1 S ROUGHNESS COEFF. 4 RATE OF CHANGE HYDR. IUDlUS • 
• • .............................................................. 

Dl~ENSlON ACFt5l•AN(26t•8SRC52•61tCSV1C521•CSW2C52)•PCFC~I• 
1 DTPHCl6J•HYOC26)eQLATC25t.QREf26tePNC26l•VELYC26J• 
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2 
3 
4 
5 
6 

c 
c 

7 
8 

c 
9 

10 
1l 

c 
12 
13 

c 
c 

1• 
15 
16 
17 
18 
19 
20 
21 
22 

c 
c 
c 

23 
24 
25 
26 
27 
28 
29 

c 
30 
31 
32 

c 
c 

33 
34 
35 
36 
37 
38 

39 
40 
41 
•2 
•3 
44 

2 

1 

100 

140 

145 
1 
2 

150 

155 

160 

180 
190 

1 

200 
220 

230 
240 

VOC261•VNC26t1XLl25)•YOC2611YNC261 
DIMENSION QFLl711QSTRCll)1TFLC7J•TSR(llt•ANC26t 
DATA QFL1JG1JGP/8le01408.1629e1931.1566e•318e1164.1417' 
OATA fFLJ0.0143200•150400.157600.186400.e136800.1345600e, 
DATA ACC1LDlM•LDIN1NR1LP1LK/32.21521261512•61 
DATA ~T1NTP/ll16/ 

--•RE•D ' ECHOE-CHECK INPUT DATA FROM SUBPROGRAM• 
LON a LOIN • 1 
CALL REAOwCACF1DETA10ETY1QLAT10RE1PCF1QSTR1TSR1NT1 
TPRIHI' o TT A• TSUM1T1 TETHA1 SO• IMAX•XL 1'tO1Nl •NR1LP1 LO lC. LDINJ 

JSIZE • TSUMIT 
MS "' JG + 1 
MC • NTP + 1 

TlllRIT • TPRlNT 
JSTP • Nl • 2 

•••CALCULATE INITIAL GEOMETRIC PARAMETERS FROM SUBPROGRAM. 
CALL GEOMTRlACF1AN1HYD1QRE1PCF1PN1Y01RH9Nl1LDlNJ 
PR • 2 e/3e 
DO 100 J • l1Nl 
YOCJJ a ORECJUAN(J) 
00 a QREC U 
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wRITEt LPe 140t 
FORMATl////28X1 1 UPSTREAM 1 124X1 1 MIDSTREAM 1 124X1 1 D0111NSTREAM1 ) 

WRITEt LP1145 t 
FORMATl4X1 1 TIMECHR.1117X1 1 DISCHARGE 1 14X1'0EPTH113X1 1YELOCITY 1 16X1 
'OISOtARGE'o4Xe 1DEPTH 1 1JX1 1 VELOCITY 1 16X1 1 DISCHARGE'14X1 1DEPTH'1 
3Xi'VELOCITY1 J 

--•US:!:. INITIAL VELOCITY ' DEPTH OF FLOW AS GUESS VALUES 
TO INlTlATE SIMULATION. 
DO 150 K • leNl 
YNCIO a YOCK) 
VNCKJ a VOCK) 
FACl = TETHA•T 
FAC2 • Cl. - TETHAl•T 
00 155 L • l1Nl 
RNCLJ "' RNCLJ••212.2082 
--- Si:T LOOP FOR TUE SIMULATION. 
OR a QO 
oo 900 JL .a1 • ..1size 
TIME s FLOATCJLl•T 

---UPOATE THE LATERAL lNFLO• HYDROGRAPH FOR REACH•7 
TCK • TlME - TFL,JGI 
IFCTCX. l 16011601200 
00 1~ KC • 2.,JG 
IFCTIHE - TFLCKCJl190.,190•180 
CONTINUE 
QFw • QFLCKC-lJ + CQFLlKCJ - QFLCKC-1)), 
CTFLC~Cl - TFLCKC-lll•CTIME - TFLCKC-111 
GO TO 320 
lFCTa - TFLlJGPJl22012201~1)0 

00 2~ KS • MS1 JGP 
IFCTIHE - TFLtKSJl24012401230 
CONTIHUE 
OF•• QFLCKS-ll - CQFLCKS-11 - QFLtKSIJ' 



1 CTFUKS) • TFLCKS•UhCTIME • TFUKS•lJI 
45 GO TO 320 
4~ 300 QF~ • QFLCJGP) 
47 320 QLATt7) a QfW,CXLC71•PNl7)) 

c 
C ••• IPDATE uPSTREAM BOUNDARY CONDlTIONe 

48 TO a TIME• TSRCNTP) 
49 IFCTOJ350e350•380 
50 350 00 .3~ LC • 2•NTP 
51 IFt T.IJllE • TSRCLC) 1370e370•360 
52 360 CONTINUE 
53 370 OR a QSTRU.C•U + CQSTRCLCJ • QSTRCLC-UU 

1 CTSRC~C) - TSRCLC•l))•CTIME • TSRCLC•11J 
54 GO TO 520 
55 380 IFCTO • TSRCNTJJ40014001500 
56 400 00 42l JC a fl!C,NT 
57 IFC TI"'E • TSRCJC) 14501450••20 
58 420 COMTIMU£ 
59 450 QR • QSTRCJC•lJ • CQSTRCJC•ll • QSTRC.JCUI' 

1 t TSRCJ CI • TSRC.JC•l J hCT IME • TSRC JC•1 U 
60 GO TO '520 
61 500 QR • QSTRCNTJ 
62 520 CONTINUE 

C •••C.ll.L SUBROUTINE TO GENERATE COLUMN VECTOR C2N X 11 
63 JSlllTOf • 1 
64 CALL \I ECTIU csv1.F AC2.QLAT.1 YO. vo. so. ACC. XLeQR1RN1N1 .. 

1 ANePNe QRE .. LON.LOINeLDIMeJSMTCHJ 
c 
C •••GEMERATE JACOBIAN MATRIX• 

65 LUP • 0 
66 CALL JACD8ICBSR.1FACl.1YNeVN•XL1QLAT.1QR.1RN• 

1 ANtPN; QRE.9 HYO .so. ACC1LDIM1LON1LO IN•NleLK I 
C ••• ITERATE TO CONVERGENCE FOR EACH TIME STEPe 

67 00 591> LL :at• IMA.JC 
68 LAST • 2•Nl 
69 ..ISWTOt • 2. 
70 LUP • LUP + 1 
71 CALL WECTRICSV21FACleQLAT.1l'NevN.so .. ACC.1XL.QR•RN.1Nl• 

1 AN.1PN1 QRE.LON1LOIN.1LOlM•JSIHCHt 
7 2 DO 530 J( :a 1• LAST 
73 CSV2CJ< J :a CSV2C U • CSVlO::J 
7• 530 CONTINUE 

c ---oBr A IN SOLUTION VIA TRI.-OIAGONAL SUBPROGRAM. 
75 CALL 8TRIDGCCSV208SR.10TPHeVELY•LOIM.1LDINeNl•LKJ 

C -·•UPlATE THE NODAL GEOMETRIC PARAMETERS. 
76 CALL GEOMTRCACFtANeHYOtQRE.PCFePNtYNeRNsN1,LOIN) 
77 DO 55l L :a hN1 
78 550 RNCLJ • RHCLl••2,2e2062 
79 JS :a Wl - 1 
80 VEC • QR/ANC1J 
81 VELYU) • VNI U • VEC 

62 
83 
84 
85 
86 
87 

c 
c 
c --- CitECK FOR RELATIVE CONVERGENCE FOR ALL VARIABLES• 

..IERR a 0 
DO 560 J •l•Nl 
YBl :a ASSCOTPHCJJ) 
V81 :a ABS(VELYCJtl 
\'82 • YN(Jt • OTPH(JJ 
ve2 • VNCJ) - VELY(JJ 
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aa Y83. MAX1CABSCYB21.A8SCYNCJIJJ 
89 V83 • MAX1CA8SCV82J•A8SCVNCJlll 
90 IF4YB3 .LE. O.O .oR. VB.3 eLEe O.OHiO TO 570 
91 YERROR • YBlJ'YBJ 
92 VERRCR • VBlJ'VBJ 
93 IFCYERROR .LE. OETA eANOe VERROR .LEa OETVJJERR•JERR+l 
94 560 CONTINUE 

c 
C ••• S•lTCH CURRENT VALUES OF DEPTH OF FLO• TO OLD ONESe 

95 570 DO 583 L•l tN1 
96 YNCLI a YNCLI • OTPHCL) 
97 VNCL t • VNU.I • VELYCLI 
98 580 CONTINUE 
99 IFCJEllR .EQ. Nl I GO TO 600 

100 

101 
102 

103 
10.\ 

105 
106 
107 
108 

109 
110 
111 
112 
113 
114 
115 

116 
117 

118 
119 
120 
121 
122 

C ••• CKECK IF SPECIFIED ITERATION LIMIT IS EXCEEOEDe 
c 

c: 
c 

c: 

c: 

c 

585 
1 

590 

600 

680 

700 

710 

1 
720 
750 

900 
920 
930 
950 

IFCJERR eLTe Hl eANOe LL .GEe IMAXJ GO TO 920 

•••UPDATE THE JACOBIAN MATRIX AT EVERY J ITERATIOSa 
IFCLtP • 31590•585•585 
CALL JAC08I(8SR•FAC1.vN.VN.xL.QLATeQReRN• 
AN tPNe Q RE• HYO tSOt ACCtLDIMtLONt LOlNt Nltl.lt) 
LUP • 0 
CONTINUE 
••• tJPOATE DEPTHS ' VELOCITIES OF PREVIOUS TIME STEP. 
DO 680 J•ltN1 
VOCJJ a VNCJI 
YOCJ> • YN(JI 
CONTINUE 
••• P~INT OUT RESULTS. 
IFCTI~E • TPRINT + .0031750•7001700 
TPRlNf ~ TPRINT + TTA 
TM a r IMEJ'T •RIT 
00 711) J .a ltHl 
QRE<Jt .a ANCJl•VN(Jj 
CONTINUE 
lfRITElLP•7201TM,QRE<1JtYNC1JtVNCll•QREC13jtYNC13l•VNC131• 

QRECHlltYNCNlltVNCNlJ 
FORMAT&2x.F10.2.5x.3F10.3t5Xt3Fl0.3•5Xt3Fl0.3J 
IFCTlNE • TSUMl900t9501950 
·-• Al VANCE THE T lME STEP. 
CONTIHUE 
lfRlTEI LP19301 
FORMlTCJ'J'J'10Xt•MAX. ITERATION LIMIT EXCEEDEDe•t 
STOP 
ENO .................................................................. c: 

c 
c 
c 

• • 

123 

125 

• SU8PRJGRAM TO READ AND ECHOE INPUT DATA 

• 
SUBROUTINE READ•CASF•OETA.DETVtQLAT.oRE.PSFoQSTReTSR. 

1 NT• TP R INT• TT At TSUl'ltT • TETHA1 SO t IMAXaXLt YOtff 11 NRe LPtLDN•LOIN I 

• 
• 

c • • 
c .................................................................. . 

c 
c 

DIMENSION ASF(5)1PSFl51tQLlTCLON)1QRECLOINloXL(LDNl•YO(LOINI• 
1 QSTRCNTJtfSRCNTl 

•••READ TIME PARAMETERS. 
REAOCNR150JTPRINToTTAtTSUM1T 



126 50 FOAMAfC4F10.2J 
127 REAO(NR180JTETHA1DETA1DETV1SO•IMAX1Nl 
128 ao FORMAf(4Fl0.•12I10t 

C -·-READ UPSTREAM 80UNOARY DISCHARGE HYOROGRAPH• 
129 R£AOCNR190UQSTRU.hL ,. 11NTJ 
130 REAOCMR.901CTSRtLJ1L a l•NTJ 

C ---REA 0 IN I TI AL .DEPTHS OF F t.OthD .ISCHARG£1LATERAL FLO•& SPACING. 
l.31 LON 2 Nl - 1 
132 REAOCNR1901CYOCJJ1J a 11NlJ 
133 REAOfMR190JCQRECJJ1J • 11Nll 
134 REAOCMR190t(QLAT«Jl1J a 1.LONJ 
l.35 READCNR190tCXLCJl1J • l1LONJ 
136 90 FORMAT( 6F12e5J 

C ---READ ORDER OF POLYNOMIAL EQe 
137 REAOCMR1llOJJORD 
l.38 110 FORMAf ( 151 
139 LR :11 .10RO + 1 

C ••-READ AREA f. •ETTEO PERIMETER POL YNOe COEFF • MA TRICE 
C ONE 'lOil AT A TIME. 

140 REAOCNR1140JCASFtJl•J • l•LRl 
141 AEAOCNR•140UPSFCJt•.J a l•LRI 
142 140 FORMATt 5F10e5J 

HJ 
144 
145 
146 

149 
150 

c 
c 

c 

c 

150 

160 
1 
2 

-·-PRINT OUT INPUT OATAe 
WRITEt LP1150l 
FORMAT C ltt.1 t 
i1RITEILP1160JN11TaSO 
FOAMAff//120X1•TOTAL NOo OF NODES s•ol5//20Xt 
•TIME STEP s•,F10el•1Xa 1 SECe•//20X••CHANhEL BOTTOM 
Fl0e4i 
ilRITElLP1170JT£THA1IMAX10ETA•OETV 

SLOPE :11• • 

170 FORMAft/120X1•TIME ilEIGHTING FACTOR s•af'10e4//20X• 
1 "MAX. ITERATION LIMIT =•et5//20Xt 
2 •CONVERGENCE CRITERIA FOR DEPTH ••1F10e4//20Xt 
3 "CONVERGENCE CRITERlA FOR VELOCITY s•1Fl0e4l 

180 
1 
2 

lfRITEt LP1180HJ•TSIHJ hQSTRCJ hJ • l1NT t 
FOAMAT(//////23Xe•UPSTREAM OISCHARGE HYDROGRAPH•//20Xt 
"J"t5l••TIME PERioo•.sx.•MEASURED FLOw•11c2ox.I2t4X1 
FlOel•lX•FlOelJJ 

ilRITEl LPo 190HKtYOC Kl 1GRECK hlC•l tlH t 151 
152 190 FORMAfC/////20Xt'NDOE•.5x,•1NITlAL OEPTH 8 a5Xt 8 INITIAL DISCHARGE" 

1 //C18l•l3t8XtF10e3112X1F10e3tJ 
153 
154 

155 
156 

157 
158 
159 

160 
161 
162 
163 

c 
c 

•RITEI LPt200HJ•XL(JftGLATCJtoJ 21.LONt 
200 FORMAT ( 111112ox.•REACH'19X.•LENGTH"•9X1•LATERAL FL0••/.1t2ox. 

1 I3o8X.F 10.2,sx.f10.6U 

220 
1 

240 
1 

•RITEI LPt220t 
FORMAfC/////20Xt•FOURTH-OROER REGRESSION COEFFo FOR AREA•//23Xt 
•o-T~ ,7x,•1sT•.1x.•2No•,1x.•3Ao•.1x.•4TH•1 
ilAITElLP1JOOtCASFCJl•J • l1LRJ 
WRITEl LP1240) 
FORMAT ( 111112ox.•FOURTH-ORDER REGRESSION COEFF. FOR •ETTED 
PERlME TER' //23X1. o-TH". 1x.• 1sT•. 111.. '2NO' .1x.•3Ro• 17Xt 1 4TH• t 
WRITEtLP•3001CPSFCJl1J • 111.Rl 
FORMAJC/20Xt5FI0.5J 
RETURM 
ENO .................................................................. 

• • 
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164 

c 
c 
c 
c 
c 
c 

c 
c 

• SU8PROGRA~ TO UPDATE THE NOOAL FLO• AREA••ETTEO PERIMETER • 
• 
• MANNDIG•S ROUGHNESS COEFFe ' THE CHANGE IN HYDRAULIC 

• 
• RADIUS •ITH RESPECT TO DEPTH 

• 

• 
• 

• • 
• • 
• • 

• 
• c .................................................................. 

165 

c 
c 
c 

166 
167 

c 
168 

c 
169 

170 .200 
c 

171 
172 

c 
173 

c 

OU~ENS I ON AXC LOIN t. HYDC LOIN hPXC LOINI •YXCLOIN hASFC 5 J. PSFC 5 h 
1 QXCLDINhRCCLOltO 

1 

1 

1 

1 

---CO'! PUTE THE NODAL FLOW AREA• lllETTEO PERIMETER ANO 
MANNING•S ROUGHNESS COEFFe 
DO 20) J .a l•Nl 
AXCJl .a ASFClJ + ASFC2J•YXCJt + ASFC3J•YX(Jt••2 + 
ASFC41•YXCJl••3 + ASFC51•YXCJl••4 

PXCJJ • PSFC1J + PSFC2J•YX(JI + PSFC31•YXCJl••2 + 
PSFC41•YXCJJ••3 + PSF(5t•YXCJl••4 

RCCJJ • 0.03713 + Oe14097E-05•QXCJl + Oe417J9E•10• 
QXCJl••2 - 0.230004E-14•QX(Jt••3 
CONTINUE 
---COMPUTE THE NODAL RATE OF CHANGE OF HYDR. RADIUS 
DO 300 K • hN1 
STOR1 .a ASFC21 + 2.•ASFC3J•YXCK) + J.•ASFC41•YXCKJ••2 + 
4e•ASF C 51•YXC t<l ••3 

STOR2 .a PSFC2J + 2.•PSFC3J•YXCKJ + 3e•PSFt4J•YXCKJ••2 + 
1 4.•PSFC5hYXCKl••l 

174 HYDCKI • CSTOR1•PXCK) • STOR2•AXCKlJ/PXCKJ••2 
175 HYDCKJ • ASSCHYOCKtl 
176 JOO CONTl,.UE 
177 RETURN 
178 ENO 

c .............................................................. 
c 
c 
c 
c 

179 

c 
c 

180 
181 

c 
c 

182 
183 
184 
185 
186 
187 

c 

• • 
• • 
• 

• 

SUBi"ROGRAM TO GENERATE COLUNMN VECTOR C2NX11 

SUBROUTINE VECTRCCXV•FACaOLATaYX1VX1SO•G•XL•QTa 
1 RX.NlaAX1PX1QRE1LON•LDlN•LOIM•JSMTCHI 

• 
• 
* 

• .............................................................. 
DIMENSION C.XVC LOI Mt •QLATC LON t • YXC LOIN h VXC LOI NJ 1XLC LON t 
OUIENS I ON AXC LO IN h QREC LOIN te PXC LOIN J aRXC LOIN t 

--- UPSTREAM NODAL CALCULATION 
K a 1 
PS • './3• 
LSTP • N1 - 2 
SPK • QT/ 1UC 11 
RYl ~ CAXC11/PXC11t••PS 
RY2 • CAXC2J/PXt211••PS 
-~UPSTREAM BOUNDARY EQSe 
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188 A •C2.•XL(U + F.AC•CVXC2) - •••SPKU•YXC11 
189 B • CXL(l) + FAC•t2.•VXC2) + SPK)l•YXC21 
190 C • 3. •FAC•f.11..ATU UXLC U 
191 Gl • XLC1J•RXC11•FAC•C2.•VXC11••2/RY1 + VXl2)••2/RY21 
192 Pl • 3 • •FAC•C YXt2 J - YXC 1U 
193 Sl • 3e•FAC•XLC1t•SO 
19• IFCJS•TCH - 11 50•50•80 
195 50 A .a C2e•Xl.Cll-FAC•tVXC2t-4.• SPKtJ•YXUI 
196 8 • CXLC1J - FAC•t2.•VXC2J+ SPKJl•YXC2) 
197 CXVClJ • A + 8+ C 
198 CXVC2J • S1 • Gl - Pl 
199 GO TO 90 
200 80 CXVClJ • A + 8 - C 
201 CXVC21 •'Gl +Pl - Sl 

C ---lNl'ERIOR NOOAL CALCULATION. 
202 90 DO 200 J a l•LSTP 
203 K s K + 2 
20• M • K + 1 
205 AOl • CA.XCJU'PXCJU .. PS 
206 A02 a (AXCJ+lJ/PXCJ+lJl••PS 
207 ADJ• CAX(J+2J/PX(J+211••PS 
20 8 A I • C X Ll J ) - F .C • C II .XC J + 1 I + 2 • *II xt J) U 0 X C J) 
209 81 • C2et(,LCJl+XLCJ+1JI + FACtC\IXCJ+21•,XCJJJl•YXCJ+1) 
210 CI z tXLtJ+lJ + FACtC2.•llX(J+2J+~X(J+11Jl•YXCJ+2) 
211 DI• 3e*fj(t(QL,ITC.llOLC.JI + QLAHJ+ll•XLCJ+llt 
212 HI• AXCJ+ll•FAC•ClLtJJtllXCJJ•t2/AC1 + 2e•IXLCJI + 

1 XLCJ+1JJtVXCJ+1J•t2JR02 + XL(J+1Jt11XCJ+21••2/AD3) 
213 PI• 3e•fAC•CYXCJ+21 - YXCJIJ 
214 SI" J.•F•C•CXL(J) + XLCJ+lU•SO 
215 IfC.JSnTCH - 11100.100,150 
216 100 Al a tXLCJI + FaC•CVX(J+ll +2.•VXCJlll•Y>CJI 
217 et a C2.t0LCJl+XLCJ+l)J • fAC.CllXCJ+21-llUJlthYJICJ+lJ 
218 Cl• CXLCJ•U • FAC•C2e•VX&J+21+11XCJ+11JhYXCJ+2) 
21' CXllCKt a U + SJ + Cl + DI 
220 CXllC~t • SJ • HI - Pl 
221 GO 10 200 
222 150 CXV(K) 2 Al + Si + (1 • 01 
223 CXllCMJ " HJ + PJ • SJ 
224 200 COUl'.NUE 

C ·-·OOMNSTAEAM NCDAL CALCULATIO•• 
225 Hll • AXC~1-1J/PXCll1•1) 
226 H12 • AXtll11/PXCN11 
227 AYJ a Hlt••PS 
228 AT4 = Hl2••PS 
229 All• CXLC .. 1•1) • FACtCllUNll+ 2etV.llctU-1J)IUXCNl•ll 
230 811 a C2e•XLCN1-1J • FAC•C4.tVXCN1J •VXCNl•llll•YXCNll 
231 CN • 3etFAC•QLAlCN1•11•XLCN1•11 
232 Gii s XLClll•lJtRXCll11•F•C•CVXCN1•1)t•21A13 • 2a•VXCN11••21RY41 
233 Pll "3.tFH-CYXCNlJ - YXCNl•ltl 
234 SN a 3e•F•C•XLC11l-11•SO 
235 lFCJS•TCH • 1)300•3001400 
236 300 All• CXL(lll•ll • FACtCVXCll11+2e•VXClll•lJll•YXCNl•ll 
237 8fl "C2e•llLCNl•IJ • FACtt•.•VXCNlJ•llXCIU•llll•YJCClllJ 
238 CXllCLOl"•JI a Afl +ell+ CN 
239 CXllC&.0·1111 a SN - Gii • PN 
2• 0 G 0 1 0 5e 0 
241 •OO CXlitCLOIJl•l I • AN + !N - CN 
242 CXHU>U•J • GN • PN • Sii 
2•3 500 AEH.IAN 
244 ENO 



24 6 

2H 
248 
249 
250 
251 
252 
253 

254 
255 
256 
257 
258 
259 
260 
26 l 
262 
263 
264 
265 

266 
267 
268 
269 
270 
27l 
272 
273 
274 
275 
276 
277 
278 
27' 
280 

c 
c 
c 
c 
c 

c 
c 
c 

c 

c 
c 

.............................................................. 
• • 
• • 
• • 

• 

5~BPROGJAM TO GEPIERATE THE JACC8IAN MA1RlXe 

SUE ROUT UE JACOE IC 8 TR •f AC• 'tX • V Xe lll 1 GLAT •'l• AlCe 
1 All•Pll•Qi;e.~Yo.SO•G•LOIM1LDN1LOIN•NleLKj 

• • 

• ••••••• .. ••••••••••••••••••••••••••••••••••••o•••••••••••••••• 
DUtENS IOfl e TRCLOilhlk hQUTCLOfl I •VXCLOIA hYllC LOIN J1 XL( LONJ • 

1 All(lDINJ•4AECLOINl•PllCLOlNJ1HYOCLDJNl1RllCLOINI 
I( 2 1 
P• • 1.13. 
PS • 4eJ3e 
SPIC "' QUlllU I 
SPF • Ql•YllC2t/CAXClJ•YllC1JI 
RCl • AXClllPXCll 
RD2 a AXC2JIPXC21 
---EVALUA1E JACCSIAfl TERMS FOR UPS1REAM aooes. 
8Hlt.1J • O.O 
BT l' I 11 2 I a 0 • 0 
B1Al21 l I a OeO 
llTAC2•21 a OeO 
SlA(l13J a 2e•Xll11 + FAC•CVXl21 • SPPI 
llTl<Cb4J * OeO 
BTUt.51 * XLC11 + F•C•C2e•VXC2J + SPIO 
811'Cle6J a FAC•CYXCH + 2.•YXC21J 
8Jj;(2•31 * •FAC•C2e•lllC11•RXC1J•PS•VXCllet2•HYOC111ACl••PMf3eJ 
STflC2141 a 4e•JCLC1hl'U1HFAC•llJCUtlA01••PS 

8 l liC 2.. 5 I -* • F a C U XL C 1 I * A .ll ( 1 h PS• ~ ll( 2 U • 2 • H Y 0 C 2 JI RC 2 *' P •• 3 • I 
8Tli4216J * 2eUU114RXl1HFAC•VXl2URD2••PS 

•••EVAL\iHE JACCBIO TERMS FOR lflTERIOR ~ooes. 
LSTP = "1 • 2 
00 JOO J a 1•LSTP 
k•K•2 
l'•IC•l 
ADl • AllCJJIPXCJI 
RD2 a •lltJ•ll/PllCJ+ll. 
RDJ a A.llCJ+21/PXIJ+21 
BTACK• l I • llLCJJ • FAC•CllXCJ+lJ + .2.•Vll(,.JI 
STACK•21 s •FAC•<2.•lXCJJ + YXCJflJI 
ST~CK.JI • 2e•CllL<.JlfXLC.J+lJJ + FAC•CVXC,.+21 •VXCJI) 
STliCK.41 a FAC•CYX(Jf21 - YXC.HI 
STACK.51 a llLCJ+ll + FAC•C2e•VXC.J•21 + 'OCJ+lll 
8lli(Ke6J a FAC•CYXCJ+ll + 2e•Vll(J+21J 
Sll'CM•lJ • •FAC•CPS•RllCJ+ll•llLCJl•ll.ll(JJ••2•HYOCJll~Dl••PM + 3.J 
811iCl'!•21 a 2e•AJ1J+lltFAC•JCLCJJ•V.llCJllADl••PS 

281 81ACM•31 s •2e•FAC•PS•AX(J+1 .. <XLCJI + llLCJ+1U•VlltJHJ••2• 
1 HlCCJ+111~C2••P• 

282 8lliCM•°'I • 4.•FAC•AllCJ+lhCXLCJt + llLCJ+lll•VUJ+tJ/IOD2••PS 
283 STIOC"•51 s •FACHPStAllCJ+ltULCJ+llalillCJt2,.•2•HYCCJUU 

1 A0:3•4P• • Jel 
284 BlROl•61 • 2e•F.IC•RllCJ+lhXLf.1+1JOUJ+2J/ROl••PS 
28~ 300 CC,TI~UE 

C •••EVAL~AlE JACC8IA• TER~S FOR OD•~SlREA• NODES. 
286 L8 • LD UI • 1 
287 ROH• Alll•1•111PXCU•ll 
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288 
289 
290 
291 
292 
29J 

294 
29$ 

29E 
297 
298 
299 
300 
301 
302 

c 
c 
( 

c 
c 
c 

30 3 
c 
c 

304 

c 
c 

30$ 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
32E 

c 
327 
328 

c 
329 
330 
331 

ADl2 • J.XCflU/PUfUJ 
81ACLBt1J ~ XLCfl1•1J • f'C•CVXCN11+2e•VJCN1•11J 
81ACLB•21 a •FAC•l2.•YXCfl1•1t + YXCfllll 
BTACL8•31 a 2e•IL(fll•ll + FlC•C4e•Vll&Nll•VXCN1-1JI 
BTACLB•41 a FACtC4eilX(Nll • YXCfl1•11J 
BlliC LO 11' • 1 J • •FAC•CPS•AllC Nl hllLt fH•l l•llH N1•U••2•Hl0CN 1•11~ 

1 ACfll••P• + 3e J 
BlACLOl,•21 a 2e•FAC•AX(flll•XLCN1•1JtVX(fl1-ll/RDN1••FS 
81A(L01'•31 a •FlCtC2.tXL(Nl•lJ•PS•RX(NlJ•VXCN11••2•~YDCN1J/ 

1 AOll2 .. Pll • 3e I 
BTACL0l1'•4J • 4e•FlCtAXtfl11•XLCN1•11•VXCflll/ROH2•tPS 
81ACLB•~J a O.O 
811HL6o61 .a OeO 
81ULD11'15J s O.O 
STULOll'•EJ • OeO 
AElt:RH 
ENC .............................................................. 

• • • 
• suePROGAl' TO SOLVE THE &I-TRIDIAGONAL ,.TRIX 
• 
• 

sue ROUT UE BTAICGCC OL. VEL. y x. vx. LO 1111. LO U•Nh·LI(, 
• 

• • 
• • 

• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Oll'ENSICfl ,,ELCLCilhlKJwYll(t.DINl•~llCLOIHl1COULOIMJ1 

l BE1AC411CETAC2J1SACC26•4l•GAM•&2E•21 

•••f'ERFCO l'!ATAIX REOUCTIOH OPE!UllOffe 
I( a 1 
DC 200 .J s ltlU 
JFC.J • 1J1001100• 150 

l 0 Q e e u '1 J ... ll EL' 1. 3 I 
8ETAC21 • llELC1e4J 
BEllC3J ~ 'IELC2•31 
BEH'4 I • 'IELC2•4 I 
D E 11 U J '" C Ol. C 1 J 
DE1AC21 a COLC21 
ZU a BETAC11•8ETIC41 • BETA(21•BETICJI 
1FC2U eEG. O.OIZU a 0.001 
SAC(ltll • CBETHHOELCl151 • BEUC21•11El..C2e5JJ/2U 
s.1cc1.21. (9ETU4JHEL(le6) - BETAC21•11EL&2.15111'2U 
S.ICC11ll • CSETACll•lfELC215J • BETAC31•1fELCl•S)J/2U 
S.ICC1t41 • CBETU11•VELC.2t6J - SETAC3hULC1t611/2U 
GO TO leO 

150 K a K + 2 
ll•IC+l 
BETltll "',,ELfK131 • VELCICe11•SAC(..t•1•1J•VELCK•2>•SIClJ-t.31 
ee1••2 J '" ~EL(K141•\fEl(K,11•S•cc.i-1.21-11u .. cK.21•SlCC•-h41 
BEl•CJJ s 'IELCMe3J•'IELCM,lJ•SICC.J•lo1J•\fELCl'lo2JaS•CC.i•l•31 
8Ell(4j. llEL(M14J•llELCM.11•SACl.i•lo21•VEL'"'•21•S•cc.-1.•1 

OE1AC1J ""COLCkl•VELCIC1ll•GIMACJ•l•lJ•VElCIC121•GA,AC•-1•21 
DETIC21 • COLCl'!l•VELCl'!oll•GAMACJ•le1J•VELCl'!•21•GAP,(.i-le21 

ZU • BE1AC1Ja8ETAC41 • 8ETAC21•8E1AC31 
IFCZU .eg. o.OJZU .. 0.001 
SICCJ•l I• (8ETlC41tVELCKe51•8ETAC21•VELCM.51UZU 
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332 
333 
334 

335 
3JE 
337 

338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 

c 
180 

200 
c 

.30 0 

tENTAY 

SACCJ.2J • CBETU410ELCICe61•8ETAC2t•VEUN16lllZU 
S•C(Je31 a CBET•Cll•VELCMe51 •eET•C3J•VELCICe511/ZU 
SACCJ•41 a (8ETA(ll•-ELCM16I •EETAC3J•VElCKe6111ZU 

GAllACJ•lJ • CBE1.tC4l•OETJCtl•8ETAC2J•OE1jC2Jl/ZU 
GOACJe21 a CBETACl .. OETU21•8ETAC3hOE1HlJJIZU 
CC"1IHUE 
•••Cll'4PUTE SOLUllQ .. VIA RECURSIVE EGe 
LlflJT .a .. l • 1 
.llC • Llllll 
YXC~l} • GAMA(LDIN11J 
VllCNU a GOACLClth2J 
OQ 300 L • 1.tLllllT 
Yj(~KI • GAMACJksll•SACCJK•ll•YXCJIC+ll•SACCJK121•-xc.K+11 
Vll(JKt • EAMACJk•21•SACCJK•3J•lXCJIC+lJ•S•CtJKe41•VllC•K+11 
Jk • JK • 1 
COUINUE 
AEltlAN 
EllO 
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APPENDIX H 

SAMPLE OUTPUT FOR WIDFEM 
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142 

TOT AL fiOe OF NODES a 26 

TIME STEP • 1800.000 sec. 

CHANfiEL BOTTCM SLOPE • o.ooog 

TIME •EIGHTING FACTOR • Oe5500 

'AX• JTERATJON Ll,lT.s 60 

CCWVERGENCE CRITERIA FOA DEPTH • Oe0100 

CONVERGENCE CRITERIA FOA VELOCITY • 0.1000 

UPSTREAM CISCHAAGE HYDROGAAPH 

J TIME PEAl'C "EASUAED FLO .. 

1 o.o 482.0 
2 50400 .o 757.0 
J 6·'800 .o 5590.0 
4 7'200 .o 7710.0 
5 86400.0 11000.0 
6 100800.0 22980.0 
7 129600.0 11320.0 
8 1584COeO Hoo.o 
9 172800.0 4110.0 

10 208800.0 3104.0 
11 l456COeO 1722.0 

Ila> E INITIAL DEPTH INITIAL DISCHARGE 

1 3. !40 482.000 
2 3. 340 482.000 
3 le.HO 482.000 
4 l.340 482.000 
5 Je340 482.000 
6 3. 340 482.000 
7 J.,140 482.000 

• le !40 482.000 
g J. 340 02.000 

10 3. !40 482.000 
11 le.HO 482.000 
12 3. 340 482.000 
13 3.340 482. 000 
14 3. !40 482.000 
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" 3.340 482.000 
u 3.Ho 02.000 
11 3. 340 482.000 
UI 3.Ho 482.000 
19 3.340 442.000 
20 3. 340 482.000 
21 3.!40 u2.ooo 
22 3.340 482.000 
c3 3. 340 482.000 
24 le HO 482.000 
25 3.340 482.000 
26 3e l40 482.000 

IEACH UfiGTH t.ATERAL Fl.Oii 

1 10560.00 0.000000 
2 lOHO.oo 0.000000 
3 105EO.oo 0.000000 
• 105E0e00 0.000000 
5 105EO.OO 0.000000 
6 10~60.00 0.000000 
7 lO!!E0.00 o.ooooso 
8 10560.00 0.000000 
9 105EO.OO 0.000000 

10 lOHO.OO 0.000000 
11 10560.00 0.000000 
12 l05EO.OO o.occooo 
13 105EO.OO 0.000000 
14 lO!!EOeOO 0.000000 
15 105EO.OO 0.000000 
16 10SEo.oo 0.000000 
17 lG!SEO. 00 0.000000 
18 10560.00 0.000000 
19 105E0e00 0 .. 000000 
20 105EO.OO 0.000000 
21 1osEo.oo 0.000000 
22 10560.00 0.000000 
23 10560.00 0.000000 
2" 105EO.OO 0.000000 
25 12672.00 0.000000 

FOOR lH•CRDER AEGRESSIOh COEFF. FOR AAU 

O•TH 151 2ND 3AD 4TK 

•32.01320 H.60530 5.47340 Oe91c15 -0.0045• 

FOUR Ht•CADER AEUESSIClll COEFFe FOR llllTEO FERUtEJER 
O•TH 151 2NO 3RO "'" 

1 a .oe235 57.61010 -4.90130 0.34127 -o.ooeoa 
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The computer program for the weighted implicit kinematic model 

is for an idealized channel . It has a built-in option to route flood 

in a trapezoidal, triangular, or rectangular channel. For the first 

two geometries, the right- and left-side slopes, captioned as ZRS and 

ZLS should have assigned values other than zeros, except for rectan­

gular channe 1. The triangular geometry wi 11 have zero width for input 

va 1 ue. 

The definition of the variables and symbols used in the computer 

program is provided in the comment page of the program 1 is ting. Any 

temporary storage variables are not include·d because their definitions 

are obvious. Instruction for the input data is provided in the MAIN 

program for each READ STATEMENT and is self-explanatory. 



1 

2 
3 

• 
5 
6 
1 

$.JOB 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

oTIKE=(Oo"OJ 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• • 
• 
• 
• 

1 - Dt"ENSIDNAI.. STREAKFLOlll ROUTING MODEL • 
• 
• ···························'.··································· .. 

• 
• .. 

IKPLICIT K INEKATIC FINITE ELEMENT KETHOD SOLVED 

av ITERATIVE NEwfON-R4PHSDN TECHNIQUE 

.. 
• 
• 
• 
• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

• 
• 
• 

OEFINITION Of TERMS ••• 
• 
• .. 

•VARIABLES UNITS ARE AS FOLLOwSI TIKEtSECJ•LENGTHtFTJ • 
•DEPTHlFTJoVELCC!TYIFT. PER SECloDISCHARGECCFSJ • 
•ACC IS THE ACCELERATION riF GRAVITYo3l.2FT. PER SEC PER sec .. 
"ULAT IS THE LATERAL FLOW TERMoFT. PER SEC . • 
•TLL IS THE TOTAL LENGTH OF CHANNEL REACH BEING INVESTIGATED • 
•SO IS THE CONSTANT CHANNEL SLOPE • 
•RN IS THE KANNING ROUGriNESS COEFFo • 
•XL IS THE NOOAL SPACING. • 
•YO IS me lNlTJAi. UNIFORM NORKAL DEPTH. • 
•VO IS THE INITIAL UP>lIFORK NORMAL VELOCITY • 
•Nl IS THE TOTAL NUKllER OF NODES • 
•QMAX IS THE PEAK FLOOD DISCHARGE OF INFLOW HYDROGRAPH • 
•T IS THE TINE STEP CSECONOSI • 
•TKX IS THE Tll'E PERIOD BET¥rEEll QO & QMAX • 
•TAP IS T11E TlKE PEl!IOD AFTER QKAX UNTIL QO • 
•TPR HIT IS THE TIME FOR INITIAL PRINTING (SECONDS I • 
•TTA IS THE INCREMENTAL PRINTING TIME fSECONDSJ • 
·---IF THIE STEP IS GREATER THAN fTA PRINTING WILL ee -- • 
• PERFORMED Ar THE INCREMENT Of THE TIME STEP•T-• • 
•TETHA lS THE TlME wElGHr ING FACTOR. .. 

C •YN IS THE CALCULATED DETH OF FLO• • .. C •VN IS THE COHRESPONOING VELOCITY OF FLOlll 
C •ZSR 15 THE TRAPEZOIDAL CHANNEL RIGHT SIDE SLOPE 
C •ZSL IS THE TRAPEZOIDAL CHANNEL LEFT SIDE SLOPE 
C •IMAX IS THE KAXo ITERATION LIKIT 

• .. .. 
c 
c 
c 
c 
c 
c 
c 

c 
c 

50 

•DETA IS THR CONVERGENCE CRITERIA FOR DEPTH • 
•BSR IS THE JAC081AN MATRIX OF DIMENSION CN1X31 • 
•CXVl t CXV2 ARE THE (NlXll COLUMN VECTORS EVALUATED AT • 
•tl•TETHAI t TETHA RESPECTIVELY. • 
•LDIMoLDIN ARE THE VARIABLE DlMENSIONlNG PARAMETERS • 

• • • .............................................................. 
DI MENS ION 8SIH2 lt 3 ltCSVU21J•CSV21 21 hDTPHC 21 h QLATC 20 I• 

1 VELYl2l loYOC21.-.voc211.TNC21l•VN(2111Xi.C201oQREC2U 
DATA XL1QLAT1ACC/20•528 •• 20.o.o.32.21 
DATA LOINoi.K/2lo3/ 
DATA NRoLP/516/ 

•••READ DATA AND ECHOE CHECK 
READCNR•5DITPRINf•TTA•TSUMoT•V8oZSRoZSL 
FORKATC 7F10o2 J 
READtNR•6~IQMAX1TMx.TAP1TLLodl 
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B 
9 

10 
11 
12 

13 
14 

15 
16 

17 
18 

19 
20 

21 
22 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
.36 
37 

c 

c 

c 

60 

80 

90 

100 
1 
2 

120 
1 
2 

. . .:.-3. 

4 

125 
1 

FORMAH 5F10o21 
REAOINR080ITETHA1D£TA•IMAX•S01RN,Nl•NN 
FORMATl2F10o41Il012Fl0.•121101 
JSIZE • TSUM/T 
LON • LOIN - 1 

111RlT£( LP t 90 I 
FORMAT< 1HU 

•RlTEILP.100IN1.r.sO.RN 
FOR~AT(///20X•'TOTAL NO.· OF NODES .. •.1s112ox. 
•TIME STEP a•1FlO.J1lX•'SEC.•112ox,•CHAN~EL BOTTOM SLOP£ ••• 
F10.41//20x,•MANNING ROUGHNESS COEFFo ••1Fl0.41 
WHITEILP1120tTETHA1IMAX•DETA1ZSR1ZSL 
FORMATC//20X1•TIME WEIGHTING FACTOR •••Fl0•4//20X1 
•MAXo ITERATION LIMIT a•1I5//20X1 
•CONVERGENCE CRITERIA FOR DEPTH ••0F10.s112ox • 
•-TRAPEZOIDAL CHANNEi. SIDE SLOPES& RIGHT •'•Fl0e2• 
5X•'LEFT "''•F10o21 
WRITECLP•1251XLl11•QLATl11 
FORMAT! //20x.•NOOAL SPACING a•1FlOe.3tlX1•FT.•05X. 
"LATERAL FLOW •'1Fl0 • .31lX1•FT.PER sec.•1 
TWRlT a TPRINT 
JS TP a Nl • 2 
--- CALCULATE THE INITIAL NORMAL DISCHARGE ~ VELDCITW. 
PR a 2.13. 
CM• lo4B6/RNaSQRTCSOt 
ZPP a SQRTll• + ZSR••21 + SQRTCle + ZSL••2J 
AE • 81•Y8 + •5•YB••2•CZSR + ZSLI 
PE • 81 • YB•ZPP 
VB • CM•lAE/PEta•PR 
QB • AE•VB 

• 00 230 J al1Nl 
'l'OlJI a YB 
VOlJI "' VB 
QREIJI • QB 

2.30 CONTINUE 
QO "' QREC 11 
WRITE I LP ·250IYDI1 •• voe 11•QREl11 

250 FDRMATl//20Xt'INITIAL DEPTH •••F10e3o3Xt 
1 'INITIAL VEL• •'1F10•3o3x,•tNITIAL DISCH. ••1F10.31 

c 
38 lllRITElLP•1401 
39 140 FORMAT(//l/28X1"UPSTREAM•124Xt"MIDSTREAM"124Xt 0 00111NSTREAM0 1 
40 111RlTECLP•1•51 

149 

41 145 · FOR°'ATC •X• 'TIME·(M1Nl't7X•'DISCHARGE 0 14X1•DEPTH•13X1•VE4.0CITt.•16Xo 

42 
43 
44 
45 
46 
•1 

48 
49 

1 •DISCHARGE•• 4 X• 'DEPTH•• 3Xo •VE LDC ITJ• o 6X t 'DISCHARGE•• 4X• • O£PTt1• o 
2 3Xt 0 VELOCITY 0 I 

c 
C ··-USE INITIAL VELOCITY & DEPTH OF FLOlll AS GUESS VALUES 
C TO INITIATE SIMULAlION. 

280 

c. 

DO 260 K a l•Nl 
YNlKj a YOtXI 
VNlKI a VOIKI 
CONTINUE 
FAC1 ,. TETliA•T 
FAC2 = tl. • TETHAlaT 
--- SET LOOP FOR TIME SIMULATION. 
QR ., QO 
DO 900 JL •loJSIZE 



50 TIME • FLOATCJLl•T 
c --- UPOATE UPSTREAM SOUNOARY CONOITIONe 

51 TO • TIME • TMX 
52 lFCTOl450•450o480 
53 450 QR • QO + CQMAX • UOl/TMX•TIME 
54 GO TO 520 
55 480 IFCTD • T&Pl490o490o500 
56 490 QR• QMAX • CQMAX - UOllTAP•TD 
57 GO TO 520 
58 500 UR • UO 
59 520 CONTINUE 

C -·-CALL SUBROUTINE TO GENERATE COLUMN VECTOR CN1 l 11 
60 JS•TCH • l 
61 CALL VECTRcs1.csv1.FAC2.QLAToYOoVO•XL.URoRN•N1oZSR•ZS&.• 

LON•LDINoLKoJS•TCHI 

62 
63 

64 
65 
66 
67 

68 
69 
70 

• 71 
72 
7J 
74 
75 
76 
77 
78 

79 
BO 
Bl 
82 
83 
84 
B5 
86 
87 

c 
C ••-GENERATE JACOBIAN MATRIX. 

c: 

I.UP • 0 
CALL JACOB II 8SR •Bl o FAC1o 'tfh VNoXI. oQLAT oQRoRNoZ SR• Z SL• 

1 LDN•LUlN•Nl•LKI 
--- ITERATE TO CONVERGENCE FOR EACH TINE srep. 
DO 590 LL •l•IMAX 
JS•TCH • 2 
I.UP • LUP + 1 
CALL VECTRCB1•CSV2•FACloQLAt.YN.vN.Xl.oQRoRN•N1•ZSR.ZSL• 
LON•LDIN•LK•JS•TCH I 
DO 530 K •1,IU 
CSV2CKI • CSV2CKJ - CSV1fKI 

530 CONTINUE 
C ••-OBTAIN SOLUTION VIA TRI•DIAGONAL SUSPROGRAMo 

CALL TRIMTDC8SRoCSV2•DTPHoN1•1.0INeLKI 
JS • N1 • 1 
DO 535 L • 1• Nl 
DP1 • YNCLI - OTPHCl.I 
A• • Bl•DPl + •5•0Plaa2•CZSR + ZSl.I 
PW • Bl + OPl•ZPP 
VNU.I • Cl'l•CA•IPWl••PR 

535 CONTINUE 
C ••• CHECK F.OR RELATIVE CONVERGENCE FOR ALL VARIABL£So 

JERR • 0 

c 

00 560 J •l•Nl 
YSl a ABSCDTPHIJll 
Y82 • YNIJI • DTPHCJI 
Y83 • MU1C.t.8SCY82hABSCYNCJIU 
IFCV83 .1.E. OoOIGO TO 570 
YERROR • Y8l/Y83 
IFCVERROR oLEo DETAIJERR • JERR + 1 

560 CONTINUE 

C ••• S•ITCH CURRENT VALUES OF DEPTH OF FLOW T.O OLO ONESo 
88 570 00 580 L•l•Nl 
89 YNCLI • YNILI • DTPHCLI 
90 580 CONTINUE 
91 IFCJERR .EQ• Nll GO TO 600 

92 

93 

c --- CHECK IF SPECIFIED ITERATION LIMIT IS exceeoeo. 
c 

c 
c 

IFCJERR .LT. Nl .ANO. ~~ .Ge. IMAXI GO TO 920 

---UPDATE THE JACOBIAN MATRIX AT EVERY l ITERATtos. 
IF4LUP • 315900585•585 
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c 
c 
c 
c 
c 

116 

c 
c 

117 
c 
c 

ua 
119 
120 
121 
122 
123 
12• 
125 
126 
127 
125 
129 

c 
130 
lll 
132 
133 
13• 
135 
136 

• 
• 
• 

•• 

• 

SUBPROGRAM TO GENERATE COLUN"N VECTOR ( NXll 

SUBROUTINE VECTRC81.cxv.FaC.QLAToYX.VXoXLaaT. 
1 RNaNl•ZSRaZSLaLDNoLDINaL&•JS•TCHI 

• 
• • • 

• ............................................................... 

50 

80 

90 

DI~ENSION CXYCLOINltQLATCLDNloYXCLDINloVXCLDINJ•XLCLONI 

••• UPSTREAM NODAL CALCULATION 
LSTP • Nl • 2 
AREA • Bl•TXCll + o5•YXC11••2•CZSR + ZSLI 
SPlt • Qf.IAREA 
A •C2o•XLC11 + FACaCVXC21 • •••SPKll•YXCll 
8 • CXL(11 + FAC•C2o•VXC21 + SPKll•YXC21 
·c • 3o•FAC•QLATCll•XLlll 
IFCJS•TCH • 11 S0o50o80 
A• C2o•XL11l•FAC•CYXC21•4o• SPKJl•YXCll 
8 a CXLl11 • FAC•C2o•VXC21+ SPKll•YXC21 
CXYCll • A + 8+ C 
GO TO 90 
CXVCll • A + 8 • C 
••-INTERIOR NODAL CALCULATION. 
00 200 J • laLSTP 
It • J + 1 
AI a CXLCJI - FAC•CVXCJ+ll + 2o•V·XCJlll•'fXCJI 
BI• C2o•CXLCJl+XLIJ+lll + FAC•CVXIJ+21•~XCJlll•TXCJ•ll 
Cl • IXLIJ+ll + FAC•C2o•VX(J+21+VXCJ+llll•YXCJ+21 
01 • Jo•FAC•CQ&.ATCJl•XLIJI + QLATCJ+ll•XLCJ+lll 
IFCJSKTCH • 11100o100o150 

151 



94 5a5 CALL JACDBIIBSR loFACl.YN•VN•JLoQLAT•QR•RN•ZSR•ZSLo 
1 LUN.1.0IN•Nl1LKI 

95 LUP • 0 
96 590 CDNf INUE 

97 
98 
99 

100 

101 
102 
103 
104 
105 
106 
107 
108 

109 
110 

111 
112 
113 
1:1,4 

115 

116 

117 

118 
U9 
120 
121 
122 
123 
12• 
125 
126 
127 
128 
129 

c 

c 

c 

c 
c 
c 
c 

• c 

c 
c 

c 
c 

600 

680 

700 

110 

1 
720 
750 

900 
920 
930 
950 

••• UPDATE OEPT 
DO 6a0 J•l oNl 
YO(JI a VNIJI 
YOIJI a YNIJI 
CONTINUE 
--- PiUNT our R 
IF c TIME • TPR IN 
TPRINT a TPRINT 
Tl1 a TIME.ITMRIT 
00 710 J "' l•Nl 
AREA s Bl•YNIJI 
llRECJ > a AREA•V 
CONTll'fUE 
11RlTEI LP o 720JT" 

0RECN1 ltYNIN11 
FORMATI 2JoF10o2 
IFUI"E • TSUMI' 
--- ADV 4'1CE THE 
CONTINUE 
lliRITEILP•9301 
FOR~ATll.1/lOxo•r 

STOP 
EN;) 

················••i 

50 

80 

• 
• SUBPROGRAM TO 
• 
• 

SUBROUTINE YECTF 
1 RN1Nl•ZSR1ZSl.1l.l 

• 
••••••••••••••••••• 

DIMENSION CXVCl.C 

-•• UPSTREAM NOC 
LSTP • Nl • 2 
AREA a Bl•YX( 11 
$Pl( "' QT/AREA 
A a C 2 • •XL C 11 + F 
8 •(XI.Ill + FAC 
C a Jo•FAC•QLATI 
IFfJSwTCH • 11 5 
& a 120 •XLI ll•FA 
8 • CXLllJ • FAC 
CXVCll • A + 8+ 
GO TO 90 
CXVClla&+S• 

& VELOCITIES OF PREVIOUS TIME STEPo 

;.11;. rs. 
r .OOJl7501700o700 

TTA 

o5•YNIJl••2•CZSR + ZSLI 
JI 

~El1JoYNC11oVHClloQREl111oYNC111•VNtlllo 

H Nl I 
t1JF10o3o5Xo3F10e3•5Xo3FlOeJI 
h950t950 
tME STEP. 

<• ITERATION LIMIT EXCEEOEo.•1 

···································--··· • 
;NERATE CDLUNMH VECTOR I NXll 

ll1CXVtF&CoOLAT•YX1VXtXL•OT. 
l.DINtl.KoJS•TCHI 

• 
• • 

• 
c•••••••••••••••••••••••••••••••••• .. .,..••• 
lloQLATtLDH1.rxc1.DIHloVXCLOIN••XLlLONJ 

CALCULAUOH 

•CVXl2J • •••SPKll•YXCll 
2 •• vxc21 + SPKll•YXC21 
•ILi 11 
50180 
CVXC21•4•• SPKll•YXtll 
2 •• vxc21+ SPKll•YXt21 

c •••INTERIOR NODA CALCULATIONo 
130 
131 
132 
133 
13• 
135 
136 

90 00 200 J • l•L.ST 
K • J + 1 
AI • IXl.(JI • FA CVXCJ+ll + 2o•VXtJlll•YXl.JI 
BI a I 2 ••<Xi.I JI+ 
Cl • I Xl.CJ+ll + 
OI "' lo•FA(;•CQLA 
IFCJSIHCH • 1110 

(J•l 11 + FAC•C VX(..1+21-vxc.;1 ll•YXC J+l' 
C•C2o•V~(J+21+VXl.J+llll•YXCJ+21 

Jl•XLCJI + QL.ATCJ+ll•XLC.J+llJ 
100,150 
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-----, 

137 
1J8 
1J9 
140 
141 
142 
14 3 

144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
15• 

155 

156 
157 
158 
159 

160 
161 
162 

163 
164 
165 
166 
167 
168 
169 

170 
171 
172 
173 
174 
175 

c 
c 

c 
c 
c 
c 

c 
c 

·C .. 

c 

c 
c 
c 

c 

c 
c 
c 
c 

100 

150 
200 

300 

400 
500 

AI'• IXLCJI + FAC•CVXCJ+ll +2.•VlllJl>l•'l'XCJI 
BI • 12o•CXLIJl+XL(J+lll • FAC•CVXCJ+21•VXiJlll•'l'X(J+11 
CI" (XLCJ+ll • FAC•C2o•VX(J+21+VXCJ+1Jll•YX(J+21 
CXVCXI • AI + 8I + CI + OI 
GO TO 200 
CXVCXI • AI + BI + Cl • DI 
CONTINUE 

---oowNSTREAM 1100 AL CALCULATION. 
AN• IXLINl•ll • FACMVXIN11+ 2o•VXCN1•1111•YXCN1•11 
llN • I 2oeU.INl•11 + F&C•C4o •llXC Nl I •VU N1•1 II l•'l'X(N1 I 
CN • 3o•FAC•QLATCNl•ll•XLiN1•11 
IFCJ$WfCH • a13001J000400 

AN• IXL(Nl•ll + FAC•CVXCNll+2o•VXCN1•1111•fXCN1•1J 
SN_• 12.•XLCNl•ll • FAC•C4o•VXtN11•VXCN1•1111•'1'XCN11 
CXVCl.DINI • AN + BN + CN 
GO TO 500 
CXVCLOINI • AN + BN • CN 
RE TUAN 
ENO .............................................................. 

• 
• 
• 

• 

SUSPAOGAAM TO GENERATE THE JACOBIAN MATRIX• 

SUBROUTINE JACO!ICBTA0BloFAC1fXoVXtXLoOLAToQT,RHoZSR1Z:M.1 
1 1.DN•LDINtNltLXI 

• 
• 

• .............................................................. 

JOO 

0 IMENSI ON 8TRC LOIN1 LKI t QI.ATC LON I • VlU.LOlN lo 'l'XC Ll>J:lt h XLU.DH I 
AREA• 81•YX(~I + o5aYXCl1••2•CZSA + ZSLI 
SPP • QT•YXC21/l8l•YXl11••21 
SPK • QT/AREA 
•••EVALUATE JACOBIAN TEAMS FOR UPSTREAM NOOESo 
BTACl11 I • o.o 
BTRC1o21 • 2e•XLC 11 + FAC•&VX121 • SPPI 
8TRC11JI • XI.Cl I + F&C•C2o•VXC21 + SPKJ 

•••EVALUATE JACOBIAN TERMS FOR INTERIOR NOOESo 

LSTP .,, Nl • 2 
00 300 J •ltLSTP 
" • ,j • 1 
8TRC~1l I • XLCJI • FAC•C VllC J+U + 2o•YXCJU 
STRCK121 • 2o•CXLlJl+XLCJ+111 + FAC•CVXC.J+21 •VllCJJI 
STRIK•31 • XLCJ+l I + FAC•C2o•YXCJ+21 + VXCJ+lll 
CONTINUE 
•••EVALUATE JACOBIAN TERMS FOR OOMNSTREAM NODES. 
LS • I.DIN 
8TR&L81ll • XL&N1•11 • FAC•CVX&Nll+2o•YXCN1•111 
aTRci.s.21 .. 2·•.lL&Nl•ll + FAC•C4e.•VXCN11•VXCN1•11 I 
&TRCLS•JI • OoO 
RETURN 
EMO 

·········~··············································· .. ··· • • 
• 
• 

TRI•DIAGONAL SOLUTION ALGORITHM • 
• 
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176 SUBROUTINE TRlMTD ISTIFFtRHtYRtN1tLDIN1LK> 
• • c 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
177 OIHENSION STIFFILOlNtLKl•RHCLOlNJtYRCLDINt 
178 DIMENSION Gl501owC501 

C •••BEGIN TMIANGULAR REDUCTION OPERATION. 
179 wCll a STIFFCltJl/STIFFC1•21 
180 Gill• RH(ll1STIFFC1o21 
181 00 100 J • 2oN1 
182 SAV1 • $TlfFCJo21 • STIFfCJoll••CJ•11 
183 SAV2 a RHlJI • STIFFCJtll•~CJ•11 
164 •CJI a STIFFIJtJl/SAVl 
185 GCJI a SAV2/SAV1 
186 100 CONTINUE 

C ••• ObTAIN S~LUTION VIA RECURSIVE EQe 
187 LIHIT a Nl • 1 
168 K • L1M1T 
189 YRIN11 • GCNll 
190 DO 200 L•loLlMIT 
191 YRCKJ a GCKI • •CK1•YRCK+1) 
192 K a K • 1 
193 200 CONTINUE 
194 RETURN 
HS E~ 

SENTRY 



APPENDIX J 

SAMPLE OUTPUT FOR WIKFEM 
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Two sample outputs for a rectangular channel flood routing using 

time steps of 300 and 600 seconds respectively are included. Input 

data are drawn from the example problem given by Viessman et al. (1972). 

The computer print-out includes the input data and the simulated flow 

parameters--depth of flow, velocity of flow, and the volumetric flow 

rate. 



TOTAL ND. Of NDOES • 21 

T 1'1E STEP • JOO.GOO SECo 

CHANNEL BOJJON SLOPE • 0.0015 

MANNING ROUGHNESS COEffo • 0.0200 

TJ11E 11ElGtlJING FACTOR • &.0000 

MAXo lTERAllON LlMll • 50 

CONVERGENCE CRIYERlA FOR OEPJH 0 .01000 

TRAPEZOIDAL CHANNEL SIDE SLDPESI RIGHT • o.oo 

NODAL SPACING • 52.oOOO Flo LA lERAL FLOlll • 

INITIAL DEPTH• 6.000 lNlflAL VfLo • 6ofl46 

UPSTRE AJ1 MIDSTREAM 
llf!EIHllO DISCHARGE DEPTH VfLDCll'I DISCHARGE OEPIH 

5.00 1122.0•l 1. 420 1. 561 · 88lo244 6 .2s1 
lo. 00 l41•J.995 8.Bll 80056 1027.917 6. ll66 
15. 00 1110. 687 10.124 •·••9 1258.421 11.065 
20. 00 199f;. 09 l 11.378 8.112 l5J8.24l 9 o l51 
25. 00 l85J. JU 1 o. 754 -11.617 l7H.172 10 0262 
J0.00 110 •• 76l 10. 0118 •• ••1 1802. 278 10. 52!1 
J5. 00 l558o4b6 9 ••• 2 6o25l 17 •'7 .1110 10 • 21 II 
40. 00 Hl7.86~ 8. 803 8.05J l6l4.015 9. 782 
4 s. 00 1272.lJl 8. llO 1. 825 1499.lll !Io 175 
so.oo 1126. 7 2:S 7.4•2 1.510 U59o225 a.5J.s 
55. 00 96lo l!H 6o 7l7 1. 282 12111.384 10611 
60.00 835. 581 60011 601151 1011.011 1. 2011 

LEFJ • o.oo 

o.ooo Fl.PER sec. 

INITIAL DISCHo • lllo 495 ·, 

ODllNSJREAM 
VELDCU'I 0 l SCHARGE DEPTH 
7.065 841.941 6.04l 
7ol78 881.761 6.244 
1.102 98lo4l0 6o 7 l9 
a.22s 1154.723 70576 
80411 ll73.2l4 80598 
8.5s8 1570.497 9.4117 
a.•9• 1669.050 10.021 
80352 1712.527 10.112 
a.111 1659. 270 9.895 
701164 15:111.368 !lo4•6 
J.7J4 l4J6.5JO a.sag 
1 •• ua 1304. 531 1.280 

VE LDC If 'I 
6.966 
7.061 
1. 28 2 
7.Q21 
70986 
lo269 
1.422 
a. 45 l 
a.1as 
a.2s4 
1.0111 
7.87 8 

_, 
<n 
........ 



TOTAL NO. OF NODES a 21 

T lME STEP a 600. 000 SE Co 

CHANNEL BOTTOM SLOPE • 000015 

HANNING ROUGHNESS COEFFo • 000200 

TIHE NElGHTING FACTOR a 100000 

~AKo ITERATION LIMIT • 50 

CONVERGENCE CRITERIA FOR DEPTH • 0. 01000 .. ' 

TRAPEZOIDAL CHANNEL SIDE SLOPESI RIGHT • o.oo 

t.OOAL SPACING " 5280000 Flo LATERAL FLOIC • 

INITIAL DEPTH " 6.000 INITIAL VELo • 60 !l•6 

UPSTREAM MIDSTREAM 
TillEIHINt DISCHARGE DEPTH llELDCITY DISCHARGE DEPTH 

1o.00 lil17.652 8. 802 8. 053 1080.712 7. 22 l 
20. 00 2004.586 11.05 8.781 1559.()96 9o•H5 
JO. 00 1710.933 10.12s a. ••9 1727.718 10. <100 
40. 00 1416.977 e.808 a.oss 1596.775 g. 615 
50.00 1127.6~ .. 1. ••6 r. s12 ll•!lo 300 6. 487 
60.00 636. 2J8 60 01• 60953 10 7J. 9J6 7o 16!l 

LEFT • o.oo 

OoOOO FT.PER SEC. 

INITIAL DISCHo • 8JJ •• !l5 

~ 

OONNSTREAM 
llELOCITlf 01 SCHARGE DEPTH 
7·•63 9J6o 491 6.517 
8.253 12J7.687 7. 9C.8 
8.470 1529.665 !l.312 
a.JO• 1611. 92• 90683 
7.9•9 1•97o 78" 9.168 
1. "70 12110. 156 80166 

l/ELOC lTY 
7.16 5 
1.1i>7 
1.1.213 
8032• 
80169 
7.838 

<.Tl 
co 



APPENDIX K 

COMPUTER CPU TIME AND COST 
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The numerical computation associated with each of the flow models; 

EKFEM, WIKFEM, WIDFEM, and WICFEM respectively is a direct function of 

computer CPU time and cost. Iterative solution algorithm with a pro­

longed convergence will translate into enormous computer CPU time and 

cost. 

Comparisons of models and their corresponding CPU time and cost 

are presented below for a given time weighting factor, time step, 

channel geometric,and hydraulic data. Simplified models are expected 

to have less CPU time and cost as compared to the complete flow model. 

Models Versus CPU Time and Cost 

a) Idealized Channel 

Time Weighting Factor, e = 0.55 

Time step, 6t 
MODELS 

60 seconds 300 seconds 

CPU+ = 3.59 CPU = 1.44 
WIKFEM COST+: = 0.91 COST = 0.40 

HIDFEM CPU = 9 .15 CPU = 2.67 

COST = 2.23 COST = 0.69 

WICFEM CPU = 10.68 CPU = 4 .54 
COST = 2.60 COST = 1.14 

~T = 2 seconds 
EKFEM CPU = 20.87 

COST = 5.01 

+ Unit of CPU time is seconds 
t Unit of cost is dollars 
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b) Natural Channel 

Time Weighting Factor, e = 0.55 

Time step, L'lt 

900 seconds 1800 seconds 

MODELS 

WIDFEM CPU = 72.90 CPU = 52.58 
COST = 17 .35 COST = 12 .53 

CPU = 86.50 CPU = 66.94 WICFEM 
COST = 20.57 COST = 15 .94 
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