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CHAPTER I 

INTRODUCTION 

Overview 

In general, it is argued that community services quality and 

availability in rural areas of the United States remain low relative 

to urban areas. Over the past 20 years considerable effort has been 

devoted by the Federal government as well as rural people to improve 

community services. 

Jones and Gessaman (1974) identified characteristics of community 

services in most rural areas as follows: (1) the services are thought 

necessary for the public good, (2) they are available and utilized by 

the general public, (3) they are generally provided through relatively 

rigid institutional arrangements by the public sector or regulated 

private monopolies with high fixed investment, (4) prices of services 

(fees) are not set in the market and some services are provided at zero 

marginal cost to the consumer, (5) prices (fees) often do not allow 

recovery of fixed costs and may not cover variable costs, and (6) total 

cost to the consumer may be constant per unit of time and independent 

of the quantity consumed. 

Rural community services have a mixture of the attributes associated 

with pure public and pure private goods. The market is not necessarily 

an effective mechanism for indicating demand or allocating resources for 

1 



services possessing this mixture of attributes. In the absence of 

effective market mechanisms, various levels of government have carried 

out supply and market intervention activities designed to insure the 

availability of community services when and where a need has been 

2 

expressed. Units of local government have been the principal providers, 

but are hampered by limited ability to bear the associated costs-

especially where the present population density is low and delivery of 

services is costly or difficult. 

In planning community services decision makers in local government 

are generally faced with the task of planning for growth. This includes 

estimating future growth and associated demand for community services so 

that optimum capacity can be built into the system. In determining the 

most economically efficient supply of community services, there is no 

simple method which can be applied in analysis of all different community 

services areas. In practice, limitations on available data for deter

mining consumer market behavior and facility costs make it difficult to 

forecast community service demand and plan facility investment based on 

traditional concepts and methods used for analysis of private goods and 

services. Consequently, community services management requires a variety 

of analytical approaches depending upon the type of community service. 

For example, community services with relatively strong price signals such 

as water, electricity, and refuse collection, the individual preference 

and market behavior approach may be applicable while for other community 

services with weak price signals, such as fire protection and police 

protection, a political approach such as consumer voting behavior may be 

more expedient. 
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Problem Statement 

Water supplies are becoming increasingly scarce relative to rural 

demands. Increasing rural populations with rising expectations as to 

adequate service, create a need for achieving increased efficiency in 

rural water services investment. Many rural communities are confronted 

with the problem of inadequate funds to cover both the initial invest

ment costs and the sustaining costs of a water system. Continued growth 

of rural populations further constrain the capacity of many rural water 

systems to provide adequate services over a reasonable planning period. 

This, coupled with the continued economic development of rural arP.as, 

in part dependent upon adequate supplies of water, makes critical an 

examination and reappraisal of current methods of rural water services 

planning. 

Present methods applied to community water systems planning too 

frequently rely on simple rules of thumb. Average service supply cost 

is frequently used as a basis to set rates (prices). Future demand 

increases are considered, if at all, on the basis of multiplying per 

capita rates of consumption by projected population although economic 

theory and empirical results support close interrelationships among 

price level, consumption behavior and supply costs. 

Rural community water systems financed by Federal loan programs 

through the Farmers Home Administration have been unable to plan for 

sufficient capacity to meet increases in water demand due to population 

growth since the loan programs can consider only a fixed multiple of 

the existing population at the time of loan initiation. As a result 

many rural water systems financed by the loan programs must increase 
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capacity after relatively short periods of operation, especially in 

fast growting areas. 

Purpose and Objectives 

The purpose of this research is to provide information for the 

planning and management of rural water systems in Oklahoma. The pri-

mary objective is to demonstrate an improved community services planning 

model by incorporating intertemporal and attitudinal correlates with 

decisions on rural water consumption in Oklahoma. The focus of this 

effort is to examine growth factors that influence rural water demand 

and supply. Data derived from sample information on rural systems in 

Oklahoma are used as inputs in the planning model to determine optimum 

levels in system capacity, level of operation and consumer satisfaction. 

Specific objectives are: 

1. To review theory on public goods and relate to conditions 
of demand and supply for community services in rural areas. 

2. To develop deterministic community services demand and 
supply models for rural water services and empirically 
estimate those models for Oklahoma. 

3. To develop programming models which address questions 
related to optimum timing and size of rural water system 
investments and optimum pricing of water resources. 

4. To evaluate past public investments in rural water ser
vices using the programming models. 

Plan of Presentation 

The remaining text includes five chapters. Chapter II presents 

theoretical considerations and background material for pricing water 

and planning capacity of rural community water systems. Factors deter-

mining the optimum size of capacity are discussed. A selective review 



of previous works on consumer behavior and capacity decision making 

models is also included. 

Chapter III contains the empirical analysis of rural water demand, 

cost of water supply and growth of water systems in rural Oklahoma. 
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Chapter IV specifies the mathematical investment programming model 

used in this study and the corresponding assumptions. Detailed descrip

tions of the analytical model - the objective function and constraints -

are presented. Solution approaches and computational considerations for 

the dynamic mixed-integer model are also provided in this chapter. 

In Chapter V, application of the model is made to typical conditions 

of rural water districts in Oklahoma (base results) and to three differ

ent community size water systems (small, average and large). Specifi

cally, the optimal investment schedule, operation level and the associ

ated water rate to maximize net social welfare for different growth 

situations and different discount rates are analyzed. Comparison of net 

social benefits from investment and pricing decisions of an actual water 

district and the programming optimum is made and discussed. 

The major conclusions drawn from the results of the specific model 

application are summarized in Chapter VI. The policy implications of the 

findings in rural community water system management are discussed. 

Finally, suggestions for further work beyond the scope of this study are 

given. 



CHAPTER II 

OPTIMAL WATER RESOURCE ALLOCATION AND 

INVESTMENT - PRICING DECISIONS 

Introduction 

The economic foundation for the analytical models presented in

this study are discussed in this chapter. Attention is given to the 

theoretical background of optimal resource allocation; pricing princi

ples pertinent to achieving economic efficiency; and characteristics of 

community water price, demand and planning of community water supply. 

Selective reviews of previous studies in decision making for water 

system capacity and pricing, and the analysis of consumer behavior are 

presented. 

Conditions for Optimal Resource Allocation 

In the field of public natural resource development in general and 

community water resource management specifically, the objectives are 

not necessarily expressed in a manner as straight forward as profit 

maximization in the private sector of the economy. If a single social 

objective such as economic efficiency is postulated, the risk of ignor

ing other important criteria such as income distribution or regional 

development may occur. Nonetheless, the scope of this study is limited 

to the economic efficiency objective. 

6 



Principle of Equimarginal Value in Use and 

Marginal Cost Pricing 

Allocative economic efficiency is traditionally defined as the 

allocation of resources in such a way that no reallocation exists which 

would allow gains to some without accompanying losses to others. 

Let us suppose for simplicity a limited annual flow of a resource 

like water becomes available without cost. The problem is to allocate 

the supply among competitive users. Economic theory which satisfies 

the efficient allocation of the resource is the princple of "equimar

ginal value in use". The value in use of any unit of water, whether 

purchased by an ultimate or an intermediate consumer, is essentially 

measured by the maximum.amount of resources (dollars) which the con

sumer would be willing to pay for that unit. Marginal value in use is 

the value of the last unit of water consumed. For any consumer, 

marginal value in use will ordinarily decline as the quantity of water 

consumed in any period increases. The principle states that resources 

should be so allocated that all consumers or users derive equal value 

in use from the marginal unit consumed or used. 

From the argument developed so far it is inferred that the price 

should be equal to all users since otherwise a user will continue to 

7 

buy additional units so long as the marginal value in use to him exceeds 

the price he must pay. Suppose that at a certain moment of time water 

price is $30 per unit. Then, if the community water system as a whole 

can acquire and transport another unit for, say $20, any of the indivi

dual customers to whome the unit of water is worth $30 would be happy to 

pay the $20 and none of the other members of the community is worse off. 



8 

On efficiency grounds, therefore, additional units should be made 

available so long as any member of the conununity is willing to pay the 

additional or marginal cost incurred. To meet the criterion of equi-

marginal value in use, the price should be made equal for all customers. 

The combined rule is to make the price equal to the marginal cost and 

equal for all customers. 

One important practical consideration is that, because of differing 

locations, use patterns, types of service, etc., the marginal costs of 

serving different customers will vary. The correct solution is to 

arrange customers so that for each class of customers (where the classes 

are grouped so that all customers within any single class can be served 

under identical cost) the price is the same and equal to marginal cost. 

Between classes, however, prices should differ and equal the marginal 

costs involved in serving the different classes. In this study, since 

the majority of the rural connnunity water system customers are residen-

tial, one class of customer is assumed for simplicity. 

The Relationships Among Price, Demand 

and Capacity 

The Role of Water Price 

Howe (1971) proposed the major purposes to be accomplished through 

pricing include: 

1. To make sure available water services are allocated to 
the highest value uses. 

2. To adjust the quantity demanded by customers to the 
economically efficient quantity, i.e., the quantity 
for which incremental cost just equals the consumer's 
valuation of the last unit used. 



3. To provide the proper inducement to system customers to 
seek the socially least cost solution for their parti
cular circumstance. 

4. To recover some portion of the costs of providing the 
water-related services. (p. 215) 
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Placing a price on water, as well as any other commodity, guarantees 

that only those who value additional water in excess of the price will 

use it, whereas those to whom it is of lower value will conserve its 

use. The appropriate price must be related to the appropriate measures 

of cost. Even though cost concepts used in economic theory are suffi-

ciently simple, fitting the many relevant categories of water-related 

costs into the usual cost and pricing analysis becomes difficult. Small 

rural community water systems usually have three different major sources 

of cost: transmission, distribution and storage. (The sample of systems 

used in this study excludes treatment costs since most small community 

systems purchase treated water from nearby cities or neighboring water 

systems and involve only distribution and storage of water.) Further, 

there are some costs related just to the heavy peak demands placed on 

water supply systems. Some components of the system may have excess 

capacity at one time whereas other components may have excess capacity 

at another period of time. There are also economies of scale in most 

components of water supply systems that cause costs to depend upon the 

size of system capacity and the intensity of use. These are all reasons 

why it is difficult to be precise in specifying howwatersupply services 

should be priced. 

Optimum Capacity of Water Systems 

The general concern is to build water systems that will meet a 

demand growing over time especially due to growth of population. 
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Frequently, each system is one of a sequence of sub-systems that will be 

built over time with options concerning when (in terms of, say, the 

annual output capacity of the facility) the sub-systems in the sequence 

are to be built. The larger each system, the longer it will be until 

another segment to the system is needed under a constant growth rate. 

An example would be building additions to the initial water supply facil-

ities for a growing rural community. 

In determining how large to build the initial capacity or the 

increment (and the timing of that increment), studies have emphasized 

two basic factors which are nearly always in conflict: 

1. It pays to build large initial capacity or increments to 
capacity because there are usually cost savings (economies 
of scale) involved in capacity size. 

2. The connnitment of resources to a capacity that will not 
be used for a long period of time is costly. It pays 
to defer investment as long as possible since future 
costs are more heavily discounted than present costs. 

The effects of economies of scale and the discount rate on the size of 

capacity are portrayed in Figure 1. Under a given economies of scale 

factor, a, the optimal capacity decreases as the discount rate becomes 

higher. Similarly, for a given discount rate, r, the optimal capacity 

increases as the economies of scale becomes larger (toward the origin). 

However, these two factors are sufficient only if the capacity 

decision is considered from a static viewpoint. In reality, growth of 

water demand makes the situation dynamic and the interrelationships of 

economies of scale, discount rate and growth must be considered in making 

capacity decisions more aqplicable. Growth in water demand is a direct 

reason why a system ends up with a lack of capacity even though it 

started with an excess of capacity. Therefore, since the discount rate 
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and economies of scale are taken into consideration in making capacity 

decisions based upon an expectation of growth, explicit inclusion of 

growth in the decision process is very important. 

The Demand for Residential Water and 

Water Pricing 

12 

The value of residential water is defined by consumers' demand for 

the commodity. Consumption of residential water is influenced by price, 

consumer income, population, configuration of commercial and civic uses 

and climatic conditions, particularly rainfall during seasons when 

moisture is required. The water services industry, however, frequently 

views water consumption as independent of price and assumes the demand 

per capita is fixed and that water must be found to meet "requirements". 

As a result water systems tend to be designed to meet such "requirements". 

Water consumption studies have shown that users are responsive to 

changes in price, more so than is often supposed. Where water is metered, 

consumers have been found to use significantly less water than those who 

are on a flat rate. (Metering implies a conversion from a zero marginal 

price to a positive marginal price.) The greater part of the difference 

is accounted for in the amounts used for water lawns. The most striking 

example was the change to meters from unmetered use in Elizabeth City, 

North Carolina in 1931 which reduced water consumption by 83 percent 

(Resources 1971). Hanke (1970) also studied the impact of metering 

water supplies in Boulder, Colorado. In his study, lawn watering use 

dropped by nearly 50 percent and domestic uses declined by over 35 

percent after meters were installed. 



Linaweaver, Geyer, and Wolff (1976) analyzed factors influencing 

residential water use in a number of areas around the country. They 

found water sprinkling uses to be reduced 33 percent under metered 

conditions as compared with flat-rate pricing, although, in contrast 

with Hanke's results, domestic uses showed little difference. 
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Water pricing policies in many cities are such that it is difficult 

to derive inferences about consumers' willingness-to-pay. Where water 

is sold on a flat rate basis, the marginal price to the consumer is in 

effect zero. However, enough water systems, especially newly constructed 

systems, do charge for the marginal increment that cross section time 

series studies of water demand can be accomplished. 

A number of published studies of the price elasticity of demand for 

residential water are available. Price elasticities tend to be relatively 

low, and differ between the two major components of use, domestic use and 

lawn sprinkling. The elasticities also vary among the different regions 

of the country. 

One of the first analyses was by Louis Fort (1958) based on data from 

from a survey of water utilities conducted by the American Water Works 

Association in 1955. A price elasticity of demand of -0.39 was reported. 

Seidel and Baumann (1957) analyzed the same data and reported the elasti

city as -1.0 in the range of 15 cents per thousand gallons to -0.12 at a 

price of 45 cents. Conley (1968) studied water consumption in a sample 

of southern California communities and reported the most likely price 

el as tici ty to be about -0. 35. Howe and Linaweaver ( 19 6 7) have made the 

most extensive study. Data were very carefully collected from a sample 

of water systems ranging from 34 to 2,373 dwelling units each. The 

overall estimated price elasticity (all uses, all regions) was found to 
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be about -0.4. Domestic uses were found to exhibit an elasticity of 

-0.21, while water used for lawn sprinkling was characterized by elasti

cities of -0.7 in the arid west and -1.57 in the humid eastern region. 

Young (1971) utilized time series data to determine the price elasticity 

for the city of Tucson of -0.33. 

These and other studies have demonstrated that consumers in fact 

are somewhat responsive to price changes and adjust their consumption of 

water accordingly. As useful as these studies are, most of them are 

not detailed enough and, as Howe and Linaweaver (1967) indicate, are 

based on such narrow samples that little use has been made of them. 

Having demonstrated that demand functions can be derived for the 

domestic use of water and that the price elasticities of demand for 

household and lawn watering are significantly different and should be 

considered as two separate functions, it is possible to apply the 

willingness-to-pay concept to domestic water and to use the demand curve 

as representing the value of water to consumers in these uses. 

Community Water Pricing 

From the discussion in the previous sections, it is clear that water 

consumers respond to price and that economic efficiency can be achieved 

by setting price equal to marginal cost for all residential customers. 

In this section a review of different cost and pricing mechanisms 

related to community water services is given. 

Average Cost Versus Marginal Cost Pricing 

One class of customer is assumed in the rural community water ser

vice. In Figure 2, DD is the demand curve for water. Since only one 
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class of customer exists, average cost is defined as a unique function 

of the quantity supplied and is represented by the curve AC. The curve 

showing marginal cost as a function of output is labeled MC. If a single 

price is charged so as to cover cost while clearing the market, that 

price can only be equal to OT. At a price of OT the quantity OA would 

be demanded, the production of which involves an average cost of AR=OT. 

At this solution, zero profits are earned in the economic sense; 

price equals unit costs including a normal interest return on capital 

invested. However, this is not the solution corresponding to best use 

of society's resources. Consider the units of output between OB and OA. 

For each of these units the marginal cost is greater than the amount 

anyone is willing to pay for the extra unit supplied, the consumer's 

marginal value in use. The quantity OB is demanded at the price OU=BS 

and, if any larger quantity is to be taken by consumers, the price will 

have to be reduced below BS. But the marginal cost is higher than BS 

throughout the range considered, hence that there are alternative uses 

of the resources entering into this marginal cost which consumers value 

more highly than they value what those resources can produce in the use 

considered here. The solution for the best use of resources is to pro

duce just up to the point where the marginal cost begins to exceed the 

price consumers are willing to pay for the additional unit produced; 

that is to say, the correct output is OB at the marginal cost price BS 

with a profit to the community water system. 

However, in small rural community water systems, a difficult man

agement problem arises with marginal cost pricing since the demand curve 

frequently intersects the average cost curve in the range where the 

latter is still declining as in Figure 3. In this case, the average cost 
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output and price are OA and AR, respectively, and the marginal cost 

output and price are OB and BS, respectively. Under these conditions, 

the marginal cost output is greater than the average cost output and 

the marginal cost price is less than the average cost price. In conse

quence, whereas in the previous case the community water system earned 

a profit at the marginal cost output and price, here it will incur a 

loss. The loss will be equal to the difference between average cost 

and price, SV, multiplied by the number of units produced (OB). 

This loss from marginal cost pricing to achieve economic efficiency 

cannot be supported over a long period of time in the small rural commu

nity water systems. Such small water systems need a different solution 

to avoid losses. Hirschleifer (1969) suggests five alternative solutions. 

First is by means of a government contribution. Second is a voluntary 

contribution from members of the rural community water system. Third is 

setting up a descending scale of price as a function of quantity taken, 

but subject to the guiding rule that each customer must end up paying 

the same marginal price (i.e., price for the last unit consumed) and 

that this marginal price equal marginal cost. Fourth is price discrimin

ation in such a way as to separate the market into two or more submarkets 

with prices varying from submarket to submarket. However, this is neither 

marginal cost nor average cost pricing, but it is a way of coping with 

the problem of deficits at a single price. Finally, he suggests the 

solution most similar to practices and procedures actually in effect in 

many community water systems and that is a two part tariff. Each cus

tomer is charged a single price per unit of output purchased, but in addi

tion the customer is required to pay a lump-sum or minimum amount for the 
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privilege of being permitted to buy at all. However, this method is 

different from a membership fee or benefit unit paid for capacity reser-

vation. 

Costs as a Function of Scale of Output 

Small community water systems generally supply water under condi

tions of diminishing average cost. As discussed above, the marginal 

cost price will fail to generate enough revenue to cover total cost. 

Once major fixed facilities are in existence, there may be little 

extra expense required to increase output from zero up to the designed 

capacity. In this case, average cost will clearly be declining until 

capacity is reached. 

The optimal solution to the investment pricing problem in these 

situations is shown graphically by Hirschleifer (1969). In Figure 4, 

the jagged average cost curve labeled AC shows a general upward trend 

through a series of discrete jumps, separated by regions of declining 

average cost. Suppose fixed capacity is such that we are operating on 

the notch labeled IV. The average cost curve reaches its lowest point 

at "designed capacity" (A4), where a jump to notch V takes place. 

Corresponding to the declining average cost in this range is the short

run (i.e., relevant for this notch of fixed investment only) marginal 

cost curve SRMC4 (dashed lines). This curve may be rising or falling, 

but it must be below AC throughout notch IV because AC is falling and 

it must equal AC where the latter reaches its local minimum at A4 • We 

assume it is first horizontal, then vertical which means that addi

tional output cannot be obtained because of technical capacity limita

tions. 
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Turning to Figure 5, if the demand curve is D(t1) at time t 1 , 

pricing at the intersection with SRMC will produce a loss. If the 

demand curve is D(t2) it will intersect the SRMC4 curve in its verti

cal branch at A4 , so revenues will equal costs. For D(t 3), marginal 

cost pricing will yield a profit. In this graph, the discontinuities 

are probably much sharper than in the real world. 
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The ordinary analysis of this situation in economic theory, illus

trated in Figure 6, assumes complete continuity. There are assumed to 

be an indefinite number of short run average cost curves like those 

numbered in the diagram. The LRAC, or long run average cost curve, is 

the "envelope" of the short run average cost curves; it connects those 

points on the short run curves that represent the lower cost of produc

ing any given output. There will also be long run and short run marginal 

cost curves. Given a demand curve like D, the intersection of LPJ1C and 

D at the point M determines the best output to produce in the long run. 

At optimal scale of system, the short run marginal cost SRHC4 will also 

intersect D at the point M. 

Classification of Costs: Capacity, Customer 

and Commodity 

It is common to classify the costs of utilities into capacity (or 

demand), customer and commodity costs. These are usually defined as 

the costs that are proportional to the size of system, the number of 

separate services and the volume of the commodity delivered (Howe, 1979). 

However, even though we can theoretically classify the costs of water 

service in a like manner, there is no correct way to segregate total 
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costs into one component due to customers, another due to capacity of 

water system and another due to actual deliveries of water. Rather, 

water costs may be regarded as varying in three dimensions: the number 

of customers, the total ability to serve or deliver capacity and the 

actual deliveries (Hirschleifer 1969). However, while total cost cannot 

be divided among the dimensions, the marginal cost for each is determin

able: the cost of adding another customer, with capacity and deliveries 

constant; the cost of adding a unit of capacity, with customers and 

deliveries constant; and the cost of increasing delivery by a unit, with 

customers and capacity constant. These costs are measurable and relevant 

for pricing if data are available. 

With regard to the capacity component of water costs, suppose a 

community water system accepts a new customer as a member. One of the 

conditions of the community water system is that the system stands ready 

to deliver water at any time; that is to say, it stands ready to enter 

instantly into a contract for delivering water at the option of the buyer. 

In order to meet this requirement the water system must provide some 

excess capacity over the actual average demand it can anticipate. From 

the water system's point of view this cost is the reserve capacity it 

holds in readiness to serve. The appropriate charge for the reservation 

of this capacity is the cost of providing a fractional marginal unit of 

capacity, the fraction being based on the system's reserve factor. In 

practice, all rural community water systems charge a membership fee 

which has the exact meaning of capacity costs. 



Review of Pertinent Models of Water Resource 

Pricing and Investment Planning 
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An extensive literature on water resource investment planning and 

water allocation has developed over the past two decades. Most of these 

studies apply mathematical programming techniques to solve the regional 

water resource planning problems. The major approaches pertinent to 

this study may be divided into two groups. The first group is the 

dynamic, multi-period capacity models. These models generally consider 

a given set of possible investment projects (e.g. reservoirs, water 

treatment plants) and compute the minimum cost of sizing and sequencing 

(timing) of these investment decisions to meet a particular set of 

demands that vary over time. However, these studies usually attempt to 

meet demands that are not price-sensitive. In this sense, demands are 

perceived as requirements in the model. 

The second group is the models that simultaneously consider the 

allocation and capacity expansion decisions in planning water resource 

systems. These studies are based on the critical assumption that water 

demand is sensitive to changes in price. In addition to reviewing these 

two major groups of studies, pertinent work that takes excess capacity 

(caused by economies of scale and social discount rates) into consider

ation while planning water system development is also discussed. 

Capacity Expansion Models 

Some of the early models of investment timing and sequencing were 

presented by Marglin (1963). The sequencing of simple independent pro

jects with fixed scale to meet demand projections at minimum cost were 
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first addressed by Butcher, Haimes, and Hall (1969). Erlenkotter (1973a) 

proposed a direct ranking approach for appropriate sequencing decisions. 

Extension of the simple dynamic programming sequencing framework 

to incorporate capacity independence among (hydroelectric) projects was 

first proposed and demonstrated by Erlenkotter (1973b). Becker and Yeh 

(1974a, 1974b) considered the problem of project independence in develop

ing firm water supply for a river basin. Their approach associates a 

"firm" yield with each reservoir configuration considered in their dyna

mic programming sequencing, timing and sizing model. This "firm" yield 

is determined by routing the most critical period flows through each 

candidate configuration. The complication of independent project scale 

decisions was addressed further by a sequence determination framework. 

Another approach developed by Martin (1975) utilized a dynamic program~ 

ming screening technique coupled with a network-with-gains algorithm to 

determine the optimal capacity expansion policy for a surface water 

supply system. All of these dynamic programming models minimize cost 

of meeting a prespecified, price-insensitive, dynamic (changing over 

time) demand. 

Another attempt at the joint treatment of scale and sequencing was 

made by Jakoby and Loucks (1972) in a three stage procedure. They used 

a static linear programming model to obtain the initial project scale 

decisions. These projects, with scale now fixed, are sequenced with 

dynamic programming. The final solution is then evaluated in a simul

taneous model. Although this conjunctive use of planning models and 

simulation models is a useful approach, it still does not guarantee a 

global solution. 



More recently, Steiner (1977) has formulated a mixed integer pro

gramming model to determine the capacity expansion of a regional water 

resources system. Although marginal water costs have been explicitly 

computed and used as basis for pricing water in this framework, it 

still treated the water demand as price-insenstive. 

Water Pricing and Capacity Expansion Models 
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Riordan (197la) was first to use a more general economic efficiency 

criterion to obtain a solution to the pricing-investment problem. In 

this work a price-senstitive demand for the output of the projects 

under consideration is introduced and a marginal cost pricing criterion 

is defined as required for economic efficiency. Riordan (197lb) later 

applied this model to an investment-pricing problem in an urban water 

supply facilities system using hypothetical cost and demand curves. 

Cysi and Loucke (1971) also used dynamic programming and price

sensiti ve demand to argue that increasing block rates were welfdre 

maximizing in the long run for water treatment facility planning. Regev 

and Schwartz (1973) have used discrete time control theory to formulate 

an interregional water investment and allocation model. Seasonal pr:Lces 

were explicitly considered. The results are general, but not opera

tionally computable. Rogev and Lee (1975) also developed a planning 

model for a river basin development using dynamic programming methods. 

Their model was used to find the optimal timing and scheduling of reser

voir projects in a river basin when the demand is price-sensitive. 

Haimes and Hainis (1974) proposed an operational framework by incorpor

ating an input-output demand model with a dynamic programming scheduling 

algorithm for a regional water supply system. 



More recently a price-sensitive investment model was developed by 

Moore (1977) as an extension of the work by Becker and Yeh (1974b) on 
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the sequencing, timing and sizing of project investment work. Armstrong 

and Willis (1977) also formulated and demonstrated an investment and 

allocation model for water resources planning. They used the generalized 

Bender's decomposition approach to solve the resulting nonlinear mixed 

integer progranuning problem. Adapting the sequencing algorithm of 

Erlenkotter and Rogers (1977b), two general frameworks for investment 

planning with price,..,sensitive dynamic demand have been proposed and 

illustrated by Erlenkotter and Trippi (1976) and Erlenkotter (1977a). 

Optimum Excess Capacity Model 

All of the above models were demonstrated to achieve appropriate 

planning schedules of overall water resources allocation with relatively 

little attention to deriying optimum excess capacity of water supply 

facilities such as the size of water mains or capacity of storage tanks 

to meet price-sensitive, growing intertemporal water demand. 

Lynn (1973) was one of the first to address the problem of optimal 

facility scale. His work was preceded, however, by Chenery (1952) who 

developed a simple model for determining the optimal excess facility 

expansion. Chenery's model was redefined and extended by Manne (1961) 

whose work has received much attention from civil engineers. However, 

a basic problem with Hann's model is that the mathematical expression 

for the optimal design period is an implicit function and in order to 

calculate optimal excess capacities, trial and error or numerical tech

niques are necessary. To overcome this limitation, Lauria, Donald and 

Schlenger (1977) presented an approximating equation by which optimal 
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excess capacity design periods can be calculated directly. Whereas 

Manne's work is limited to capacity expansions, Thomas (1970) extended 

Manne's model by including the optimal scale of a system for which the 

level of demand exceeds the capacity of supply facilities at the begin

ning of the planning horizon. Thomas' model also was approximated by 

Lauria, Donald and Schlenger (1977). Although optimal excess capacity 

design periods have been explicitly computed, again in the weakness of 

these models is that they do not have a global solution due to assuming 

water demand implicitly as price-insensitive. 

Distinctive Aspects of This Study 

In comparison with earlier studies, the approach developed here 

for planning a rural water supply system differs in several aspects. 

First, the optimum excess capacity for initial and expansion systems 

are computed as an upper.limit of the system. Economies of scale of 

water supply facilities are incorporated at a given discount rate to 

obtain the optimal excess capacity design. Second, price-sensitive 

demands are considered in the model. They are used not only to indicate 

the social benefits of water supply but also to yield the socially opti

mal prices, reflecting the cost of investments and operation and 

maintenance. Third, public investment in existing rural community water 

services in Oklahoma under various uncertain growth patterns are evaluated 

by comparing those systems against the optimal prices and excess capacity 

designs resulting from the model. 



CHAPTER III 

ECONOMICS OF RURAL COMMUNITY WATER DEMAND 

AND SUPPLY IN OKLAHOMA 

Introduction 

In this chapter the empirical analysis of water demand, costs of 

water supply and growth of water systems in rural Oklahoma are speci

fied. Demand theory is reviewed, procedures of the demand analyses 

are presented and empirical results of demand estimation from cross

section data on rural water systems in Oklahoma are given. Cross

section data as well as historical data are analyzed for system cost 

and growth. Specifically, samples, procedure of data collection, 

procedure of analyses, empirical results and policy implications are 

discussed. 

Analysis of Water Demand 

Consumer and Market Demand for Water 

Consumer demand is defined as the various quantities of water 

which a consumer is willing and able to buy as water rate (price) varies 

with all other factors affecting demand held constant. In community 

water systems, since the consuming unit is generally a household, the 

dwelling unit or water tap can be treated as the consumer. Consumer 

demand simply defines the relationship between price and the quantity 
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purchased per unit of time while holding other factors constant. Since 

water is generally not considered to be an inferior good, price and 

quantity are expected to vary inversely and can be explained in terms of 

the substitution and income effects of a price change. 

Market demand is a generalization of the consumer demand concept. 

It is defined as the quantity of a commodity which all consumers in a 

system are willing and able to buy as price varies while all other f ac

tors are held constant. A market demand relation can be thought of as 

a summation of individual demand relations. A change in price may 

result in changes in demand through changes in the number of consumers 

participating in the community water system as well as changes in the 

quantity purchased per customer. 

Changes in Demand 

It is important to distinguish between a change in quantity pur

chased and a change in demand. The former is a movement along the demand 

curve and the latter is a shift in the level of the curve. There are 

many factors influencing the level of demand: (1) population size and 

age distribution, (2) consumer income and its distribution, (3) prices 

and availability of other cmmnodities, and (4) consumer tastes and pre

ferences. These factors are called "determinantes of demand". 

Since there are few replacable goods for water, it is a fair 

assumption that consumer's tastes and preferences for water are relatively 

constant or change slowly through time. Also, since the income effect 

on water consumption for relatively homogeneous households in rural 

Oklahoma is assumed trivial, we can conclude that the size of population 

is the most important factor explaining changes in demand for water. 



32 

A distinction between "parallel" shifts in demand and "structural 

changes" in demand for water can be made. We assume a simple water 

demand equation in which water quantity (Q) is a linear function of its 

price (P) and of population (N), i.e., Q = a - i3P + yN where a, i3 and y 

are parameters which indicate how the variables are related. A demand 

curve of Q and P can be plotted for a fixed level of population. If 

the level of population changes, then the P-Q function shifts to a new 

level. This illustrates a parallel shift in demand. However, it is 

also possible that the parameters a, i3 and y may change; that is, the 

coefficients relating the structure of the variables may change. In 

this study, no structural change in water demand is assumed but only 

shifts of demand due to growth of population. 

The Theoretical Model of Water Demand 

The market demand of rural water systems is used as the unit of 

analysis for this study since data are not available for individual 

household consuming units. Focus of the present study is the examina

tion of factors explaining water demand behavior among rural systems in 

order to assist planners in the design of such systems. The market 

demand for water directly relates to capacity of the system. Therefore, 

market demand is considered for purposes of planning system capacity and 

not for determining simple price-quantity relationships. 

As reviewed in Chapter II, previous research indicates that con

sumers do respond when water rates are increased. To predict water 

demand for rural areas in Oklahoma, the important variables are hypo

thesized to be price, number of residential taps and number of nonresi

dential taps. The aggregate water demand function can be expressed as 



the following: 

where 

Qad = f (P, N , N ) r nr 

Qad 

p 

N 
r 

N nr 

= average annual water quantity in millions of gallons 
per year (mgy) 

average water charge per 1,000 gallons 

total number of residential taps (as a surrogate for 
population) 

total number of nonresidential taps 

3.1 

Theoretically the marginal price of water should be used as the 

price variable. But practically it is difficult to find a representa-

tive marginal cost in the aggregate for a water system. However, 

since most water systems issue water bills by month, it is assumed for 

this study that consumers respond to water consumption based upon the 

total monthly water bill. Average cost per thousand gallons computed 

for the system is assumed to be the marginal price of water for that 

system. 

Most domestic water demand studies divide users into four or 
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more groups such as: residential, commercial, industrial and other. In 

rural water systems, unlike urban water systems, there are few comrner-

cial or industrial water users. Thus, for simplifying purposes, only 

two groups of water users will be considered in this study: residential 

and nonresidential. In rural areas, the majority of nonresidential 

users are small businesses or pasture taps for gardens and livestock. 

The nonresidential users, on the average, consume more water per tap 

than residential users. Theoretically, nonresidential users may be 

assumed to be more price-sensitive because their choices of whether to 



34 

consume water or not is more flexible. They can also consider alterna

tive sources of water such as ponds or wells if the costs of these alter

natives are cheaper than consuming community water. 

The total number of residential users in a system increases not 

only from an increase in the density of homes within a water district 

boundary but also from expansion of the water district boundary itself. 

However, since the objective is to plan water systems based upon a 

price-sensitive demand as opposed to requirement approach, it is assumed 

that population increases do not shift demand curves until consumers are 

willing and able to pay for community water. Aggregate demand and the 

number of total residential and nonresidential taps is expected to move 

in the same direction. 

The Study Area and Data 

Even though there is increasing rainfall moving from western to 

eastern Oklahoma, climatically the whole area of Oklahoma can be con

sidered a semi-arid region. Since the Dust Bowl period, considerable 

legislation and assistance programs have been initiated by Federal and 

state governments to cope with community water problems of such regions. 

In 1961, the Federal government initiated the National Rural Water 

Program and Congress granted authority to the Secretary of Agriculture 

to make loans and grants through the Farmer's Home Administration (FmHA) 

for allowing organization, formation and operation of public nonprofit 

rural water systems. 

In 1963, Nowata County Rural Water District No. 2 was organized 

as the first nonprofit rural water system in Oklahoma. Through mid-1979, 

a total of 398 water systems funded under this program were serving 
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slightly over one-half million people in Oklahoma. Each water system 

utilizes its own pricing structure, generally decreasing block rate, 

while all incorporate a flat rate for the first few thousand gallons of 

water consumed. This information provides an excellent opportunity to 

illustrate water demand relationships since each system provides water 

at a different price (rate). In this manner a cross-section of users, 

stratified by water system if needed, can be used to form the empirical 

counterpart of a residential water demand study without the need of 

resorting to time series data. 

In this study data from 203 water systems are used which have the 

complete information needed (Rural Water Systems in Oklahoma 1980). From 

these systems, the following specific data (see Appendix A) are derived: 

1. AGWAD - The aggregate water demand (AGWAD) per year 
expressed as millions of gallons per year (rngy) is com
puted by multiplying the average water consumption per 
day by 365 for each water system. The AGWAD represents 
the aggregated consumer's water consumption behavior and 
also implicity reflects the operating levels of a system 
at a particular time. 

2. WAPR - The water price (WAPR) variable represents the 
dollar value per thousand gallons of water. This variable 
is derived by dividing the monthly average water bill for 
a system by the monthly average water consumption per tap 

- and multiplying by 1,000. For example, if the monthly 
average water bill per tap is $15 for a system and the 
monthly average water consumption per tap is 8,000 gallons, 
the WAPR is $1.875/1,000 gallons. 

3. RESID - The RESID represents the total number of residential 
taps in a system at a given time. 

4. NONR - The NONR is the total number of nonresidential taps 
in a system at a given time. 

5. TNTAP - The TNTAP is the total number of taps (RESID plus 
NONR) in a system at a given time. 
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Empirical Estimates of Water Demand 

The following water demand equations were empirically estimated: 

AGWAD = f(WAPR, RESID, NONR) 3.2 

AGWAD f(WAPR, TNTAP) 3.3 

Regression coefficients were estimated in linear and log-linear form by 

conventional single equation least squares methods. The estimated 

regression equations with standard errors of the estimates (S.E.), R2 

and sample size (n) are given below: 

AGWAD = 25.07 - 16.04 (WAPR) + 0.12 (RESID) + 0.31 (NONR) 
S.E. (6.41) (2.75) (0.005) (0.05) 3.4 

R2 = .78 n = 204 

£nAGWAD = -1.97 - 0.59£n (WAPR) + 0.95 n (RESID) + 0.11£n (NONR) 
S.E. (0.23) (0.59) (0.03) (0.04) 3.5 

n = 204 

AGWAD 26.80 - 16. 91 (WAPR) + 0.13 (TNTAP) 
S.E. (6.61) (2.83) (0.005) 3.6 

R2 = .77 n = 204 

£nAGWAD -2.38 0. 5 7.IZ,n (WAPR) + 1. 03fo (TNTAP) 
S.E. (0.19) (0.07) (0.03) 3. 7 

R2 = .87 n = 204 

Results show that all of the regression coefficients are statistically 

significant at the one percent probability level. In equation (3.4) 

the coefficient of WAPR shows that if the price of water increases one 

dollar per thousand gallons, holding other variables constant, it will 

reduce aggregate annual water consumption for the system about 16 

million gallons. In equations (3.5) and (3.7) the coefficients of £n 

WAPR, -0.59 and -0.57, can be interpreted directly as the price elasti-

city of aggregate water demand in rural Oklahoma. This range of price 
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elasticity for rural Oklahoma is higher than the estimated price elasti

city for urban areas of about -0.4 (Riodan 197lb). This higher price 

sensitivity could be explained in that rural areas generally have alter

native sources of water such as wells, streams or small ponds for 

domestic and nondomestic purposes whereas urban areas rely totally on 

public water supplies. 

In Oklahoma nonresidential taps are mainly pasture taps and water 

consumption per tap of nonresidential users is higher than that of 

residential users. The coefficient of NONR in equation (3.4) means 

that if we increase the number of nonresidential taps by one holding 

other variables constant it will increase aggregate water consumption by 

0.31 million gallons per year. The comparable amount of RESID is 0.12 

million gallons. 

In equation (3.7) the coefficient of total taps (TNTAP), 1.03, is 

essentially the demand elasticity of population. Statistically we can 

test whether this elasticity is significantly different from one. 

Ho: the coefficient of 9-n(TNTAP) is equal to one 

Ha: Not the null 

Since the calculated t value, 0.96, is so small we fail to reject Ho. 

Statistically, 1.03 is not sigrtificantly different from one which means 

that if we increase total number of taps by one percent it will increase 

aggregate water demand by approximately one percent. Thus, we can con

clude that there is a proportional one-to-one relationship between water 

demand and number of taps. 

Policy Implications of Demand Analysis 

In the foregoing discussion it was found that community water demand 
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is explained by water rates and number of residential and nonresidential 

users. In the short run, the number of users can be assumed to be con

stant, thus, the above models provide demand functions permitting fore

casts of price impacts on water use. The results also show an inelastic 

demand for water but not infinitely inelastic demand. Thus the price 

of water will affect the demand for water. 

It was proposed in Chapter II that water rates be set equal to the 

marginal cost of providing additional water. There is little doubt that 

these marginal costs will be different for different classes of 

customers, for increments of water to existing customers, for extension 

of the service area and for peak and off-peak periods. Furthermore, 

the ways in which a system is designed will clearly affect the costs of 

supplying water to different classes of users and for different periods 

of time. Thus, the objective of determining the price of water which 

maximizes social benefits must take into consideration the demand for 

water and the cost of supplying water. The empirical finding on the 

demand for water combined with additional information on the cost of 

water systems will be used in the following chapter to find a practical 

approximation of optimum water system capacity. 

Analysis of Water System Supply Cost and Growth 

Background Information 

Host rural water supply systems, in contrast to large urban water 

systems, are characterized by low population densities, high initial 

investment costs per consumer and low household per capita incomes. 

The basic economic problems for many rural communities are the lack of 
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funds to finance the initial capital costs of water systems and the 

difficulty in covering costs of operation and maintenance (0 and M). 

The Farmers Home Administration (FmHA) in the past has provided financ-

ing, and in some cases grant funds, to publicly-owned rural w&ter sys-

terns for unincorporated communities, small towns and dispersed farm 

populations not exceeding 10,000. 

In general, the source of water supply has a significant influence 

on the total water system investment cost (Sloggett 1974). The invest-

ment in treatment plants and wells represents a significant share of 

total water system investment cost. This cost study is limited to only 

those water systems purchasing treated water from neighboring systems 

but could be extended to systems requiring water treatment and water 

sources. For this study, the capital cost of water distribution is the 

main investment cost. The 0 and M cost is hypothesized to be a direct 

relationship to output or amount of water delivered per unit of time. 

Statistically Ideal Data for Estimating 

Cost Functions 

To understand the data deficiencies in the present study, statisti-

cally ideal data for estimating 0 and M and investment costs are 

reviewed. Theoretically, analysis of 0 and M costs involves the assump-

tion that the water system's delivery is constrained by some fixed capa-

city limit. The ideal data for 0 and M costs are a series of observa-

tions on costs and output which satisfy the following conditiorrs 

(Johnston 1960): 

1. The basic time period for each observation should be one 
in which the observed output was achieved by a uniform 
rate of production within the period. It would not be 



desirable, for example, to have one year as the basic 
time period if there were substantial seasonal varia
tions in the rate of production, for the one year 
figures would then be averages which might obscure 
th.e true underlying cost curve. 

2. The observations on cost and output should be properly 
paired in the sense that the cost figure is directly 
associated with the output figure. 

3. Output observations should be widely spread so that 
cost could be observed at differing rates of output. 

4. The observed data should be adjusted for the influence 
of factors extraneous to the cost-output relationship 
itself. (p. 26) 
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To examine investment costs, or the long run relationships, essen-

tially similar requirements apply. The basic unit of time to which 

individual observations relate should be short enough to avoid possible 

average effects and the.cost-capacity observations should again be pro-

perly paired. The requirement of a wide range of output observations 

is more stringent than with 0 and M costs for now there must be observa-

tions on systems with widely different capacity limits, ideally ranging 

from very small to very large systems. Also, ideally, each system, of 

whatever scale, should be producing within that scale in the most 

economically efficient manner given the current state of technology and 

the current range of factor prices. 

With data satisfying the above requirements, it would be a relatively 

simple matter to examine the validity and practical relevance of various 

hypotheses about 0 and Mand investment costs. However, in the rural 

world, there are few firms whose data satisfy these requirements because 

few are setting their output or capacity levels to achieve a statistically 

desirable spread of observations. Thus, if a large cross section of 

firms in a given industry were examined very few would be found with any 

given capacity limit. 
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Sample of Oklahoma Rural Water System 

Sloggett (1974) surveyed 57 rural water systems in 1972 to study 

the economics and growth of rural water systems in Oklahoma. Major 

criteria for selection of the sample were as follows: systems selected 

must have been in operation for at least two years to assure adequate 

operating records; different size systems measured in terms of numbers 

of customers were included (the range was from 16 to 1400 customers); 

systems included different sources of water supply - wells, lakes and 

streams, and purchase of treated water; and systems included different 

densities of customers per mile of line and represented rural only, 

town only and a combination of town and rural. The systems were also 

selected to represent geographical distribution of all rural water sys

tems located in the state. This study, however, was limited to the 30 

systems purchasing treated water. 

The sample was resurveyed in 1981 to extend the data series and 

include information on changes in capacities and growth of water systems 

measured by the annual amount· of water delivered or the number of users. 

One of the 30 water systems of Sloggett's sample added its own treatment 

facility after the original study and hence was dropped from the sample. 

For each system in the sample information was obtained for each year 

back to its beginning year, or to the original survey. An example of 

the survey data collected by rural water district is presented in Table I. 

Method of Analysis and Data 

There are three main problems involved in the derivation of cost 

functions for rural water systems. First is the determination of capacity 



Initial 
Construe-
ti on 

Year Cost 
($) 

1968 232,189 

1969 

1980 

Capital 

TABLE I 

EXAMPLE OF SURVEY DATA FOR RURAL WATER DISTRICT 
CREEK #4, OKLAHOMA 

Amount Number Water 
of Water of Pur- Sala- Utili- Office 

Additions Sold Users chases ries ties Expense 
($) (mgy) ($) ($) ($) ($) 

13,814 203 3729 2051 263 179 

970 16, 714 260 7012 2078 1916 214 

Insur-
ance 
and 
Bonds 
($) 

212 

212 

Legal 
and 
Audit 
($) 

672 

655 

Other 
($) 

2331 

2072 

.r;-. 
N 
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of existing systems. Since capacity of water distribution systems is a 

flow concept instead of a stock, there is no clear determination of 

capacity especially when the time unit of measurement is long such as 

a year. For this study, capacity was determined as the annual output 

of water the year prior to a major addition such as water storage, 

booster pumps to increase water pressure or parallel distribution lines. 

Second is adjustment of the investment and 0 and M cost data to remove 

the influence of factors other than output. The third problem is to 

determine statistically the best estimated fit of the data to the rela

tionship between cost and capacity or output. 

Investment Cost Data. For the systems purchasing treated water, 

the main facilities are water lines, storage tanks, meters, booster 

pumps, office and equipment. Capacity is the outcome of certain 

combinations of the individual components in the distribution system. 

Specifically, water lines, storage tanks and booster pumps are the main 

facilities to determine overall capacity while office and equipment are 

supporting components to maintain a given capacity. 

As discussed previously, it is not easy to determine the installed 

capacity empirically even though information is available on each and 

every component of the system. Only with detailed engineering studies 

is it possible to determine the exact capacity of a system. Because of 

cost and time constraints, an alternative method was considered in 

determining the approximate capacity of the sample of systems. The 

alternative method assumes that when a system adds facilities such as 

parallel lines, storage tanks or booster pumps, it has reached its 

capacity. The volume of water flowing through the system before the 
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addition(s) is assumed to be the capacity of the system. The added 

facility has now increased system capacity which is measured again at 

the time of a further addition. 

From the capital improvement records, the year just before addi-

tion to facilities described above is interpreted as the year when the 

water system reached its maximum capacity. The amount of water delivered 

in that year is assumed to be the system's maximum capacity. The initial 

construction costs including various minor capital improvements from 

year two to the year the system reached its maximum capacity are deflated 

with an appropriate price index to year one. The construction cost 

index employed is presented in Table II. The deflated costs are inter-

preted as the investment costs equivalent to capacities measured for 

each water system. However, since the sample includes water systems 

starting operation in different years, all investment costs are deflated 

again to year 1965 when the year of the oldest system in the sample 

started operation. Because of lack of records, only 22 systems are 

qualified to be used for the investment cost analysis. Data for the 22 

systems are presented in Table III. 

Operation and Maintenance Cost Data. The 0 and M costs were divided 

into seven categories and obtained from annual audit reports to FmHA. 

The information was provided by bookkeepers or managers from the indi-

vidual water systems. Categories of 0 and M cost are as follows: 

W2ter purchases - cost of treated water purchased for consump
tion within the water system. 

Salaries - payments on a regularly scheduled basis to 
employees and managers, including employee taxes. 

Utilities - cost of electricity and other utilities to 
operate the system. 



Year 

1965 

1966 

1967 

1968 

1969 

1970 

1971 

1972 

TABLE II 

CONSTRUCTION COST INDEX FOR DEFLATING RURAL WATER 
SYSTEM INVESTMENT COSTS 

Index Year Index 

100 1973 182 

104 1974 192 

107 1975 208 

115 1976 227 

126 1977 246 

133 1978 270 

151 1979 290 

167 1980 311 

Source: Based on general construction cost index compiled 
by Engineering News Record, HcGraw Hill Publish
ing Co., Highstown, NJ, March 20, 1980. 
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TABLE III 

INVESTMENT COSTS AND CAPACITIES OF SAMPLE 
WATER SYSTEMS, OKLAHOMA 

Investment 
Name Costsa 

($) 

Kay 112 11,907 

Creek Its 248,S83 

Nowata 115 24,984 

Rogers 116 121,821 

Rogers 117 176,820 

Rogers 118 22S,693 

Washington Ill 17S,26S 

Washington 112 394,649 

Mayes tl2 336,370 

Mayes 114 363,007 

Mcintosh 11 S 16S,222 

Muskogee Ill 240,689 

Muskogee 112 350,796 

Okmulgee Ill 2SS,052 

Okmulgee If 4 186,948 

Murray #1 338,19S 

Latimer lfl S86,118 

Leflore lf2 2S2,306 

Leflore 113 313 ,627 

Leflore It S 206,1S6 

Pittsburg ff 7 363' 363 

Pittsburg 119 128,97S 

al96S dollar value. 
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Capacity 
(1,000 gal) 

6,000 

33,046 

22,000 

26,400 

11,316 

14,68S 

22,386 

23,7S2 

24,813 

19,863 

8,732 

19,987 

45,643 

12' 134 

10,200 

17,394 

30,000 

11,273 

14,067 

13, 427 

29,823 

8,7SO 



Office expense - cost of items such as telephone, 
stationary and postage. 

Insurance and bonds - all insurance premiums and payment 
of bonds for employees. 

Legal and audit - all legal and auditing fees. 

Other - maintenance was included in this category. This 
was necessary because it was difficult to identify mainte
nance expenditures from available records. For example, 
costs of new meters and water line extensions were often 
included in maintenance account. These items were removed 
and specified in capital improvements if the records were 
sufficiently detailed to enable this adjustment. Miscellan
eous items included in "other" were checmicals, billing and 
collection fees, travel expenses, rent and equipment repair. 
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The seven 0 and M cost categories were added together to derive annual 

0 and M cost which was paired with annual output in millions of gallons 

of water per year. Deflated time series on 0 and M cost from individual 

systems were combined with cross section data from the entire sample of 

systems to estimate an overall 0 and M cost function. This procedure 

involves two assumptions: first, that changes in relative factor prices 

have not resulted in any substitution between factors in the production 

process and, second, that changes in the system's output (amount of 

water supplied) have not had any influence upon factor prices. The 

first assumption is justified since labor has limited substitution for 

utilities in the pumping of water. The second assumption seems equally 

reasonable in open regional economies, even in the case of the very 

largest water system. Data for the 0 and H cost analysis are presented 

in Appendix B. 

Empirical Estimates of Water Supply Cost 

Single-equation least-squares methods were used to estimate the 

parameters of 0 and N and investment cost functions, treating cost as 
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the dependent variable and output, capacity and density as the independ-

ent variables. Average cost equations of 0 and M and investment cost 

are also estimated to see the existence of economies of scale for the 

sample of rural water districts. 

Operation and Maintenance Cost. The regression coefficients, 

standard error of the estimate (S.E.) and the correlation coefficients 

for the different 0 and M cost models are the following: 

OMCOST 24278.7 + 353.7Q R2=.45 3.8 
S.E. (2266) (33.6) 

OMCOST = 15118. 7 + 345.2Q 1130. SD R2=.47 3.9 
S.E. (4601) (33. 3) (496. 7) 

OMCOST 7290. 9 + 1086. SQ 271Q2 R2=.64 3.10 
S.E. (2698) ( 89. 7) ( 0. 32) 

OHCOST 8630.1 + 1105.0Q 2. 77Q2 - 213. 7D R2=.65 3.11 
S.E. ( 3868) (97. 7) (0.34) (-40.9) 

AOMCOST 
S.E. 

= 1611.5 - 6.3Q + 0.025Q2 
(126.3) (3.2) (0.020) 

2 
O.OllQCAP - 28.3D R =.30 3.12 

where 

OMCOST 

(0.018) (12.4) 

total operation and maintenance cost in 1965 
dollars 

AOMCOST average 0 and M cost in 1965 dollars 

Q amount of water delivered in million gallons 
per year 

D density in terms of number of users per mile 
of water line 

QCAP = Q times capacity of water system. 

Equation (3.8) contains only a linear term in output Q. This 

equation yields constant marginal and average 0 and M costs. Equation 

(3.9) contains a term in D, density, expressed by the number of users 

per mile of water line. The economic interpretation of a negative 



49 

coefficient on D is that the cost function is shifting downwards as 

density of users increases. Coefficients are all statistically signifi-

cant at the two percent probability level in equations (3.8) and (3.9). 

2 
However, the R is only 0.45 and 0.47, respectively. Equations (3.10) 

and (3.11) include a quadratic term in output, Q2 , and equation (3.11) 

has a term for D. The coefficients of Q and D remain statistically 

significant at the three percent probability level. In both equations, 

the coefficients of Q2 are statistically significant at the one percent 

probability level with the sign negative. This result gives continu-

ously decreasing average variable cost and marginal cost, contrary to 

theoretical expectations. The R2 increased to 0.64 and 0.65, 

respectively. 

The quadratic function with a negative term in Q2 may be just the 

first section of a third degree polynomial, the second section not being 

observable in practice. The reasonableness of this hypothesis can only 

be tested by examining the size of the larger outputs of each system 

relative to capacity. For this reason, average 0 and M cost was 

regressed against quantity, density and a variable measuring system 

capacity. These results are given in equation (3.12). Capacity is 

entered as an interaction variable with quantity since the capacity 

variable itself is highly correlated with quantity. The average 0 and .M 

cost equation has low R2 but the signs of the parameters are consistent 

with U-shaped short run 0 and M costs and slightly decreasing long run 

0 and M costs. For purposes of the programming model described later, 

0 and M costs are considered linear and proportional to quantity of 

water delivered. 



Investment Cost. Estimated regression coefficients, standard 

errors of the estimate and correlation coefficients for the different 

capital cost models are the following: 

where 

CAPC08T 103456.4 + 7973.88 R2=.59 
8.E. (46710) (2220.8) 

CAPC08T 189128.6 + 12231. 68 17912.lD 
2 

R =.66 
8.E. (60490) (2329.8) (6862.3) 

CAPC08T 24888.6 + 23009.58 336.982 R2=.51 
8.E. (7246) ( 7145. 6) (153.5) 

CAPC08T = 78707.0 + 25379.58 - 356.782 - 16214D R2=.71 
8.E. (96256) (9382.9) ( 24 7. 1) (6730.8) 

ACAPC08T = 35.63 - 0.00128 + 0.00000028 2 - 0.757D R2=.46 
8.E. (10. 35) (0.0010) (0.00000003) (0.472) 

CAPCOST capital investment cost in 1965 dollars 

ACAPC08T average capital investment cost in 1965 dollars 

S capacity measured as millions of gallons per year 

D density in terms of number of users per mile of 
water line at time of capacity 

3.13 

3.14 

3.15 

3.16 

3.17 

The density variable D in equations (3.14) and (3.16) again indicates 
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that capital investment costs are influenced by the dispersion of users. 

As in the case of 0 and M cost, the sign of the quadratic capacity vari

able, s2 , in equations (3.15) and (3.16) is negative. The average capital 

cost equation (3.17) shows the existence of economies of scale up to 

the capacity of 30,000 mgy. Byond this capacity average capital costs 

tend to increase marginally. 

Growth of Water Systems 

Growth in water demand is the direct reason why excess capacity 

should be considered in planning of a water system. In this sample, 
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all rural water systems have grown in number of customers to some degree. 

Sloggett (1974) discussed various factors contributing to growth includ-

ing age of the system, per capita income in the county where the system 

is located, and distance of the system to the nearest growth center. In 

this study, only age of the system is considered paramount in describing 

water system growth. 

Growth of the individual water systems is computed in an index 

form with the initial year of the system equaling 100 (Table IV). An 

overall index of growth for the sample of rural water districts was 

computed and is presented in the last column of Table IV. 

Using the overall index as a dependent variable and year (age) as 

an independent variable, two different models were fitted: (1) a linear 

model and (2) an exponential model. The results are presented in 

equations (3.18) and (3.19) respectively. Both equations have high R2 

and statistically signif~cant coefficients (significant at one percent 

probability level): 

where 

gt 75.6 + 14.7t 

S.E. (4.4) (. 51) 

n = 4.6 + 0.0819t 
t 

S.E.(0.02)(0.002) 

t year (age) 

.99 

.98 

gt index of number of users in year (age) t 

3.18 

3.19 

In equation (3.19) the coefficient of t, 0.0819, can be read directly 

as an annual growth rate and is equal to about eight percent. 



Woods Kay 
Year Ill il2 

1 100 100 

2 106 108 

3 108 

4 118 100 

5 126 108 

6 123 

7 123 

8 132 131 

9 200 

10 200 

11 162 138 

12 13.8 

13 138 

14 

15 

16 

TABLE IV 

INDEX OF GROWTH IN NUMBER OF CUSTOMERS FOR A SAMPLE OF RURAL 
WATER DISTRICTS IN OKLAHOMA 

Kay Creek Creek Nowata Roger Roger Roger Wash Wash Mayes Mayes 
il3 il2 i/5 115 i/6 117 i/8 ill il2 il2 i/4 

100 100 100 100 100 100 100 100 100 100 100 

102 119 108 100 105 107 102 129 

128 115 100 110 119 105 

127 139 122 100 139- 143 107 

157 127 100 178 167 112 134 

177 163 100 185 140 131 115 134 250 139 

195 167 100 190 235 188 116 143 263 156 

215 179 100 215 257 206 138 151 333 165 

230 207 97 237 275 225 149 162 336 169 

246 219 97 265 295 239 160 175 353 184 

272 235 97 294 386 252 166 195 369 206 

289 244 97 332 417 260 184 230 400 223 

306 264 100 498 198 238 426 244 

323 100 504 205 248 426 275 

323 100 213 445 

100 

Mc Into 
i/5 

100 

159 

163 

179 

200 

210· 

231 

Muskogee 
ill 

100 

175 

182 

180 

201 

201 

232 

276 

279 

Vl 
Ni 



TABLE JV (Continued) 

Okmulgee Grade Murray Latimer Leflore Leflore 
Year #4 Norge #1 Ill 112 113 

1 100 100 100 100 100 100 

.2 100 113 

3 193 106 

4 110 

5 117 125 

6 136 170 135 123 

7 146 207 138 123 

8 187 229 147 213 144 

9 215 247 161 239 148 

1Q. 230 262 174 265 158 

11 234 286 177 304 158 

12 257 333 192 342 167 

13 271 375 201 393 205 

14 283 408 219 421 211 

15 448 

16 500 

Leflore Pitt Pitt 
115 06 #7 

100 100 100 

116 

111 

109 119 

165 116 136 

117 143 

148 

207 134 

212 125 204 

225 126 242 

237 128 258 

257 136 268 

270 161 272 

Pitt Push 
119 113 

100 100 

100 

276 118 

280 122 

284 137 

294 

322 156 

342 

352 

362 

428 446 

452 

462 

Ave. 

100.0 

107.8 

132.4 

130.1 

143./ 

153.6 

171.4 

188.1 

203.5 

217 .2 

240.l 

253.6 

270.9 

293.7 

289.7 

300.0 

\Jl 
w 



Policy Implications From Analysis of Supply, 

Cost and Growth 
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Results of the analysis of water supply costs show that there are 

significant economies of scale in rural water system investment and 

operation and maintenance. The growth analysis, which showed an overall 

eight percent annual growth rate measured in terms of number of customers, 

strongly supports the excess capacity model as a framework for planning 

optimum water system capacity. Failure to optimize on excess capacity 

may lead to under investment or over investment in community water 

systems and thus reduce social benefits due to inefficient allocation of 

resources. Under investment for any particular community may force 

duplication of facilities (parallel lines) which could have been avoided 

if optimal capacity were planned from the beginning. Therefore, the 

objective of determining the optimum capacity of rural water systems 

which maximize social benefits must incorporate expected growth in 

water demand as well as the economics of water supply. 



CHAPTER IV 

AN INVESTMENT PROGRAMMING MODEL FOR RURAL 

COMMUNITY WATER SYSTEM CAPACITIES 

WITH PRICE-SENSITIVE DEMAND 

A mathematical programming model is developed in this chapter for 

planning community water system capacity when consumers' water demand 

is price dependent. The proposed procedure consists of selecting the 

optimum capacity, sequencing and timing of water system investments. 

The water rate decision is determined endogenously such that discounted 

net social benefits are maximized. 

First the assumptions of the model are presented. The specific 

configuration of the model is then described. Computational considera

tions and solution strategies are discussed. The properties of mixed 

integer algorithms with branch and bound methods are reviewed. Finally, 

the basic LP model and the economic interpretation of the optimum solu

tion with the Kuhn-Tucker conditions are presented and discussed. 

Assumptions of the Hodel 

The model presented here is based upon a fundamental assumption not 

ordinarily considered in most water resources capacity decision models. 

The assumption is that the community water demand is sensitive to changes 

in price. Furthermore, it is assumed that aggregate demand for water 

varies over time and can be described by a continuous growth rate. 

55 
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Based on the empirical results of the last chapter, it is assumed that 

the price elasticity of demand is constant throughout the planning per-

iod. The price-sensitive demand is then used in determining the con-

sumers' willingness-to-pay and the total benefits of a rural water 

system. 

In addition to the above major assumptions in the model, the follow-

ing assumptions are adopted to reduce needless complications in applica-

tion to planning optimum water system investment: 

1. Water demand in year y is a function of price in that 
year and no other period. 

2. Capital investment costs occur as lump sums at the 
time of initial construction and for any additions 
to capacity. 

3. The 0 and M costs occur as lump sums in each year of 
operations. 

4. The capital investment costs for initial construction 
and any additions are a linear function of capacity 
and assumed to reflect economies of scale, i.e., the 
cost per unit of capacity is either constant or 
decreases with increasing capacity. 

5. The 0 and M costs are a linear function of output. 

6. The annual social discount rate, r, is assumed to be 
constant over time. 

7. Inflation effects on benefits and costs are not 
considered. 

8. The planning horizon is chosen as 40 years which is 
the FmHA's loan repayment period for community water 
systems and is assumed equal to the anticipated life
time of the initial water system investment. 

Formulation of the Model 

The objective of the programming model is to maximize the total 

discounted net benefits from investments in rural community water 
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systems. The approach is to maximize the difference between the dis-

counted sum of the benefits from water consumption and the sum of the 

discounted costs of the water system made up of investment and operation 

and maintenance. This approach is described here in words, graphs and 

mathematical terms. In addition, a set of constraints necessary for 

obtaining a mathematical solution to the programming model is formulated. 

Benefit Function 

The benefits associated with a given consumption of water in this 

analysis are measured by the consumers' willingness-to-pay which is 

denoted as the area under the demand curve up to a specific quantity 

demand level, say Q , in Figure 7. It is assumed that there is a 
y 

one-to-one mapping of Qy on P (Q ), the demand curve, and that when a 
y y 

value of Qy is computed, the market-clearing price is also specified. 

For purposes of illustrating the approach, a linear demand is assumed 

in deriving the area under the curve although in the actual model a 

nonlinear demand curve is used. 

Given the demand function for rural community water in year y the 

"willingness-to-pay" is denoted as: 

4.1 

where Q is the community water demand in year y and P (Q ) is the 
y y y 

inverse demand function. For a given community the "willingness-to-pay" 

is discounted to the present and sununed over the entire planning period: 

1 
a 

y (l+r)y 



Price 
of 

Water 
(P) 

Figure 7. 

Demand for 
Water 

Quantity of 
Water (Q) 

Willingness-to-Pay for Q (shaded area) 
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where r is the social discount rate. This yields the following benefit 

function which appears in the objective function of the programming 

model: 

y 

TB z: (J. f (Q ) 
y==l y y y 

4.2 

where Y is the length of the planning period in years. 

Cost Function 

Water system costs in the objective function consist of two major 

components. The first is the capital cost of the proposed water system. 

Since it is assumed that capacity reflects economies of scale, the 

capital cost function is concave. The capital cost function for the 

water system is denoted as S(S ), where S 
T T 

th 
is the capacity added in T 

time unit (initial capacity is the addition from year zero). 

Additions to water systems (excluding the initial capacity) have 

expected lifetimes that are assumed to be longer than the planning period. 

Capital costs are thus annualized over the expected lifetime of the addi-

tion and then discounted to the present for the period from the time of 

construction to the end of the planning period. The total present worth 

of these annualized capital costs are the costs that appear in the 

objective function. For the discount rate r, capital costs are converted 

to annual equivalent costs by applying the capital recovery factor S: 

. )m 
,':/ = r(l+r 
,v 

(l+c) m_l 
4.3 

where r is the social discount rate and m is the expected lifetime of the 

capital investment. 
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For a given or proposed water system, the total discounted capital 

costs are: 

y 

TC L ay B S(ST) 
y=(T-l)y+l 

where: 

T number of building time units _!.n the planning period 
(if planning period is 40 and y is five years then 
T is 8) 

y number of years in a building tiE!e unit (additions to 
capacity are allowed once every y years, if necessary, 
in order to limit the number of decision variables 
and constraints in the model) 

T index of building time unit, T=l,2, •.. ,T (begin in 
year y=l, y+l, 2)7+1, .•• , (T-1) y+l). 

4.4 

The second cost component is for the expected system operation and 

maintenance (0 and M). The 0 and M costs are defined as the annual 

costs for operation and maintenance of the system and are assumed to be 

a linear function of quantity of water delivered, ( Q ) • 
y 

It can be 

stated as cQY where c is the unit 0 and M costs and ~ is the quantity 

of water delivered in year y. 

The above 0 and M costs are discounted to the present and summed 

over the planning period. The final form of total discounted annual 

0 and M costs is: 

TO 
y 

L 
y=l 

a cQ 
y y 

Total Net Benefit 

With equations (4.2), (4.4) and (4.5), the complete objective 

function for the programming model is expressed as follows: 

Max. (TB - TC - TO) 

4.5 

4.6 
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which is to maximize equation (4.2) less equations (4.4) and (4.5). 

Hodel Constraints 

Having described the benefits and costs in the objective function, 

the necessary constraints required for a solution to the model are now 

expressed. The first set of constraints states that the quantity of 

water delivered in a specific time period cannot exceed total capacity 

built up to that period. This capacity constraint is stated as follows: 

G 
L: 

T-1 
s 

T 
< 0 

where G = ry/yl , the ceiling of y /y which indicates the number of 

building time units up to year y. 

4.7 

The second set of constraints is the allocation constraint which 

requires that the actual water allocated in year y equals the water 

supplied in year y. This can be expressed as: 

x - Q = 0 4.8 
y y 

where X is the quantity of water demanded in year y. 
y 

To assure that the capacity decision variable, S, can be established 

at most once during any building time unit, the following constraints 

are needed: 

and 

s - s 3 < 0 
T T 

3 < 1 
T 

4.9 

4.10 

where s, a given value, is the maximum possible capacity (physical upper 

bound) of the water system and 3 is a zero-one decision variable repre
T 

senting the decision to add capacity in period T(3 =l) or not to add 
T 

capacity in T(3 =O). 
T 
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Finally, in order for solutions of this model to be meaningful, all 

above decisions are required to be non-negative. 

Computational Considerations 

The optimization model formulated above has a nonlinear objective 

function with several linear constraints. Since the main focus of this 

chapter is to develop a solvable mathematical model, approximations are 

made to render the optimization model compatible with currently avail-

able computer techniques. Piecewise or grid linearization and fixed-

charge approximation techniques are used to approximate the nonlinear 

objective function. The concave benefit function is linearized in the 

following manner. Suppose a linear demand curve is written as follows: 

P(Q) = a + bQ 4.11 

where price, P, is a function of quantity, Q. Then the area under the 

demand curve, B, can be expressed as follows: 

B 
rQ 
) P(Q)dQ Q (a + l/2Q) 4.12 

Now the objective function equation (4.6) can be rewritten as 

follows using equation (4.12): 

Max (Q(a + l/2Q) - S(ST) - cQ) = NB 4.13 

where NB is net social benefit. However, notice that ~quation (4.13) 

still contains a nonlinearity. Following Dulay and Norton (1975), 

this nonlinearity is removed through the use of the grid linearization 

technique. Grid linearization requires prior specification of a rele-

vant range of values of the demand curve and the use of varible inter-

polation weights on the grid point. The interpolation weights become 
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variables in the model and their values are jointly constrained by a set 

of convex combination constraints. 

Implementation of the grid linearization technique is illustrated 

in Figure 8. Suppose that initially the demand curve defined in the 

price-quantity space passes through the point (P 2 ,Q2) as illustrated in 

Figure 8. The relevant range of the demand curve is defined and 

truncated at points a and b. Then the relevant range of the demand 

curve is partitioned into segments s = l, ••. ,v. For each segment end 

point the parameters Qs and Bs are defined to represent the cumulative 

known quantity of water sold and the cumulative known area under the 

aggregate demand curve for water. 

The quantity of water used and the total area under the demand 

curve can be expressed as a weighted combination of Q and B respectively. 
s s 

Q 

B 

v 
I Q W 

s=l s s 

v 
I 

s=l 
B W 

s s 

where W is a weight variable. 
s 

4.14 

4.15 

The non-negative interpolation weight variables are defined such 
v 

that I w 
s 

< 1. Notice here that no more than two consecutive points on 
s=l 

the quantity axis will enter the optimal basis. 

For the capital investment cost function, a fixed charge (set-up 

cost) approximation approach is used. For example, the capital invest-

ment cost S(S ) becomes (see Figure 9): 
T 

+KS 
T 

4.16 
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where 

f fixed charge of the capital cost function, scs,) 

K slope of the capital cost function 

Z binary decision variable 
T 

Solution Strategy 

Substituting the linear function approximation and the fixed charge 

approximation into the original model reduces the model to a large-

scale mixed integer linear progrannning problem. While a few methods 

exist to solve such problems, perhaps the most promising and widely 

used method is the branch and bound technique. 

The algorithm, which is described by McMillan (1970), begins by 

relaxing all integer constraints thereby making the problem suitable for 

solution by linear programming (LP). This solution is called the optimal 

continuous solution. Except for trivial problems, many of the binary 

variables will have fractional values making the solution infeasible; 

i.e., non-integer values between zero and one. 

Next step is to set the binary variables to either zero or one, 

one variable at a time in such a way that the objective function is maxi-

mized. This is accomplished by adding a constraint to the original LP 

problem. Now the new LP problem restricts one of the non-integer binary 

variables to zero. A second new LP problem is similarly formed by 

restricting the same variable to one. Thus a branch is made from one 

binary variable and two new LP problems are created. 

In the solutions of the two LP problems (called terminal nodes), 

the chosen binary variable will be integer (zero in one case and one in 

the other). However, some, but probably not all, of the remaining binary 
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variables will be non-integer; another must be selected for branching. 

The usual procedure is to go to the terminal node with the best objective 

function value and select a second variable on which to branch. The 

constraint restricting the first variable is retained and two new LP 

problems are created, one by setting the new variable to zero and the 

other by setting it to one. Solution of these new problems results in 

three terminal nodes as shown in Figure 10, one from branching on the 

first variable plus two from branching on the second. A search is 

made to find the terminal node with best functional value (in our case, 

the maximum). If all binary variables in th±s solution are integer, 

zero or one, then the problem is solved. 

The branch and bound methodology just described can be summarized 

as follows: 

1. Treating the binary variables as continuous solves the 
problem by LP. 

2. If all binary variables are not integral, select one 
to which to branch and form two new LP problems retain
ing all other constraints, one with the binary variable 
set equal to zero and the other with it equal to one. 

3. Examine the solutions (terminal nodes) and find the one 
with best objective function value. 

4. If all binary variables for this node are integers, 
the problem is solved, otherwise return to step two. 

At each stage of the branching process, the total number of con-

straints in the LP problem increases by one. It is well known that the 

addition of a new constraint to a LP problem will either (a) cause the 

objective function value to remain unchanged, or (b) cause it to deter-

iorate (i.e., increase for minimization problems and decrease for maxi-

mization). Thus the functional value of the optimal continuous solution 

is a higher bound on the feasible solution of the water system planning 



Original problem 
with ~l .. 0 

Original problem 
with 6i = 0 and ~l = 0 

Figure 10. 

Original problem 
ignoring integer restrictions 

Original problem 
with <11 = 0 and ~2 

Original problem 
with'\ = 1 

1 

<IT :rth binary variable 
Terminal modes include 3,4, and 5 

Mixed Programming Solution Tree 

68 



69 

model. Additionally, the functional value of a terminal node is a 

higher bound on all other solutions that might spring from it. 

An.other important feature of branching and bounding has to do 

with infeasible solutions. As new LP problems are formulated by restrict-

ing additional binary variables, some will be infeasible and thus have no 

solution. For any terminal node with an infeasible solution, all prob-

lems springing from it (due to the restriction of new binary variables) 

will likewise be infeasible and thus can be ignored. A numerical example 

involving the use of this technique is included in Appendix C. 

The MIP/370 computer program which is available at Oklahoma State 

University uses the branch-and-bound algorithm to find the optimal 

solution of the mixed integer prograrrnning problem. However, even though 

the well known mathematical programming software packages (i.e., IBM's 

MIP/370) can efficiently handle most mixed integer progratrnning problems, 

solution abilities still limit the size of the problem. Hence, if the 

accuracy of approximation is increased (number of segments of the demand 

curve), the planning horizon (Y) is extended, or the time unit of the 

model is shortened, the mixed integer programming problem will probably 

exceed the size constraints of these existing computer codes. 

The Basic LP Model with Economic Interpretation 

of the Optimal Solution 

The Basic LP Model 

To reduce the dimensions of the LP model, a five year decision 

time unit, T, is used instead of an annual time unit, y. Thus, new 

discount rates, d , and growth rates, h , are computed which cover five 
T T 
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year periods. Also, utilizing the grid linearization described, the 

basic linear programming model can be stated as follows: 

MAX NB = I d (B W - cQ ) 
T TS TS T T,S 

y 
S I I a (KS + fZ ) 

T y=(T-l)Ytl y T T 
4.17 

subject to: 

water balance equation (WBAL) 

-Q + I Q w < 0 [ 1T J 4.18 
T TS TS -

s 

system capacity constraint (CAP) 

G 
Q - L: s < 0 [>c] 4.19 

T T=l T 

convex combination constraint (CONV) 

I W < h [er ] 4.20 
TS T 

s 

integer constraint (INTEGER) 

s - sg 
T T 

< 0 [ ]l J 4.21 

The Lagrangian multipliers are shown in brackets in the right-hand 

margin for each constraint. The variables and parameters are defined 

as follows: 

Definition of Variables 

w 
TS 

s 
T 

g 
T 

segment weight variable on demand and benefit function 
in period T 

quantity of water supplied in period T 

capacity of water system built in period T 

zero-one binary variable in period T 



Definition of Parameters 

B 
TS 

c 

K 

Q 
TS 

h 
T 

capital recovery factor 

area under the demand cur.re for segments of the 
initial demand function; al9ng this segment, the 
willingness-to-pay is invariant under a population:
induced shift in the demand curve 

discount factor in period T which is defined as 

(l+a ) 
y 

unit operation and maintenance costs, 

slope of the capital cost function, 

-1 ] 
amount of water consumed at segment s of the 
initial demand function, 

population growth index in period T which can be 
defined as (l+h)T.Y where h is the annual growth 
rate, 

S maximum possible water system capacity in an area. 

A portion of the initial. LP tableau (covering three periods) is pre-

sented in Table V. 

The Kuhn-Tucker Condition 

The Kuhn-Tucker (1950) conditions provide us with the necessary 

and sufficient conditions for determining an optimal solution1 • From 

the basic LP model the Lagrangian equation is written as follows: 

1see Appendix E for an example of the general model. 
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Max E•Q e -d1C 

WBAL L.E. 0 -1 

CAP L.E, 0 1 

CONV L,E. hl 

INTEGER L.E. 0 

WBAL L.E, 0 

CAP L.E. 0 

co~v. L,E. h2 

INTEGER L.E. 0 

TABLE V 

INITIAL LP TABLEAU (2 PERIODS ONLY) 
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4.22 

The Kuhn-Tucker conditions are met with the following results and 

provide an economic interpretation of each variable at the optimum. 

31 d c 0 
31 

0 -= + TI ;\ < and aQ Q, ClQ T T T 
t 

4.23 

31 
y 

-SK I Cl. + ;\ - ]lt < 0 
ClS y= (t-l)y+l y t 

()1 
0 and F s, = 4.24 

T 

31 d B TI TQT S 0 
Cl1 

0 (J < and aw- w, ClW t ts T 
TS ts 

4.25 

Cl1 
y 

ag -Sf I a + Sµ < 0 
y= ( T-l)y+l y T 

31 
and az;- gt 0 4.26 

T 

31 
- (Q + IQ w ) 0, if >, 0 --= > TI 

()TI T TS ts T 
4.27 

T s 

B:_ = 
T 

- (Q - I s ) > o, if >, ;\ _O 
();\ t y=l u T 

T 

4.28 

31 
(I w - h ) 0, if >, 0 --= > CT 

3cr tS t - T 
4.29 

T s 

31 
(S - gg ) 0, if >, 0 -- = - > ]J 

d ]J T T T 
T 

4.30 
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The saddle point property of the function is: 

[ dT 

y 
E c"B w - cQ ) - s E a (KS +g )] = L:h (J 

TS TS T 
y=(T-l)y+l y - T T T T 

T,S T 

4.31 

Rewriting equation (4,23) gives the following, 

where 

'IT 
T 

/.. 
T 

/.. 
T 

d c 
T 

shadow price of incremental capacity (i.e., 
marginal cost of incremental capacity) 

d c = discounted 0 and M unit cost 
T 

Therefore, the shadow price of water, TI , can be interpreted as the 
T 

marginal cost of supplying water which is the summation of marginal 

capital cost and marginal 0 and M cost. 

Without loss of generality, assume that, of v variables B only TS' 

one variable is non-zero at value h , and others are zero. Also, at 
T 

most two segment end points, BTs~ and BTs~~, are equal to hT. Therfore, 

the equation (4.25)becomes 

d B h 
T TS T 

h 
T 

(J h 
T T 

0 

Aggregating over the planning period, equation (4.33) becomes 

T 
E h o 

T T 

Therefore 

T 
E rd B ~h - Tr Q ~h l LT TS T T TS ~ 

4.33 

4.34 

where d B ~ is the discounted area under a specific segment s~ of the T TS 

demand curve, and TI Q ~ is the total revenue from water sale. Therefore 
T TS 

o and be interpreted as total consumer surplus in time T which is the 
T 
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difference between the discounted area under a specific segment s~ of 

demand curve and the total revenue from water sale. 

The relationship between two shadow prices µ and A can be derived 
T T 

by equations (4.24) and (4.26). Equation (4.26) can be rewritten as 

y 

Bf E 
y=(T-l)y+l 

s 

a 
y 

4.35 

where the right hand side term is the fixed charge of investment cost 

embedded in the planning period per unit of maximum scale capacity. 

Also frome equation (4.24), 

,\ 
T 

(SK) 

y 
L: 

y=(T-l)y+l 
a + µ 

y T 

Substituting \.l of equation (4.35) into equation (4.36) 

,\ 
T 

returns from 
capacity 
built in T 

= (SK) 

y 

L: 
y=(T-l)y+l 

a 
y 

discounted embedded 
variable cost of 
constructing the 
capacity in T 

+ (~f) 
s 

y 

L: 
y=(T-l)y+l 

a 
y 

discounted embedded 
fixed charge per 
unit of maximum 
scale of capacity 

4.36 

4.37 

In equation (4.37) ,\ can be interpreted as returns from the capa
T 

city built in period T. The two terms on the right hand side are the 

discounted variable cost of constructing capacity in T and discounted 

fixed charge per unit of maximum scale capacity. The two sides should 

be equal at the optimal which will result in efficient allocation of 

resources. If we allow infinite scale of maximum capacity, i.e., S = 00 , 

the returns will be the same as the discounted variable cost of building 

that capacity at optimum. 



CHAPTER V 

ANALYSIS OF THE MODEL RESULTS 

Introduction 

This chapter presents the results of the application of the 

community water pricing and investment planning model. Solutions of 

the mixed integer programming problem with coefficients derived from 

the specific data in Chapter III are presented and discussed. The 

effects on three different community size water systems (small, average, 

and large) from varying parameters such as the growth rate and discount 

rate are investigated. The results, of course, are only as meaningful 

as the input data used in deriving them. 

Since some of the coefficients (for example, price elasticity of 

demand, discount rate and growth rate) used in the planning model are 

subject to variability, a comprehensive sensitivity analysis of the most 

likely combinations of input parameters is desirable for decision making. 

Furthermore, such analyses will provide more insights into the useful

ness of the proposed model. Therefore, a number of computer runs were 

made to explore the impact on benefit-maximizing investment plans and 

the resulting water rates from varying certain parameters in the model. 

The purpose is to show how sensitive water rates and investment decisions 

are to the discount rate and growth rate for different size community 

initial water systems. 
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Base Results 

The results presented in this section are the mathematical pro-

grannning solutions obtained by using as a base the survey data given 

in Chapter III. For the convenience of providing comparisons and 

sensitivity studies, these solutions will be referred hereafter as 

the "Base Result". 

The base results consist of an optimal capacity expansion schedule 

of a water system, the operating level of a water system over time in 

association with the optimal investment schedule and the water rates 

at which the consumers' demands are satisfied for varying discount 

rates and system growth rates. The operating levels imply a set of 

facility policies. The optimal solutions of the base results are for 

the average size commtmity of the sample survey. 

Optimal Capacity Investment Schedule 

In Chapter III, the average annual growth rate of the study sample 

showed eight percent per year. The optimal investment decisions for 

the average size connnunity at the initiation of water system services 

with eight percent per year growth are shown in Table VI. The solutions 

indicate that the size of the initial system should be built at capacities 

1 
of 136.9 mgy, 108. 7 mgy, and 93.8 rngy if one percent, three percent, 

and five percent discount rates are applied, respectively. According to 

the schedule of solutions these initial capacities are maintained through 

time unit three (15 actual years in the model) and then new facilities 

are added at the beginning of time unit four. The size of added capacities 

1 
mgy is million gallons per year. 
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beginning with time unit four are 179.5 mgy, 187.2 mgy, and 162.5 mgy, 

respectively, for the associated discount rates. The solutions also 

indicate that, beginning with time unit six and until the end of the 

planning period, new additions are made for every time unit. This is 

because the eight percent growth in the later time units bring more 

capacity requirements than the early time units. In other words, capa

city should be added every five years to meet eight percent annual growth 

for the given discount rates. Total capacities built during the entire 

planning period are 1320.5 mgy, 1194.7 mgy and 1003.5 mgy, respectively. 

Optimal solutions associated with the higher discount rates show 

that water systems are not built in time unit one even though there is 

a demand for water. In other words, the construction of water systems 

should be delayed until time unit two if the discount rate is seven 

percent and time unit four if the discount rate is nine percent. If the 

discount rate goes up to 15 percent, no water system is optimum under 

the model conditions. That is, the expected present worth of the cost 

(building and operation) of the system is greater than the expected pre

sent worth of the benefit it will provide regardless of when it is 

built (given discount rate of 15 percent). 

The programming results correspond with the theory discussed in 

Chapter II that one of the factors determining the size of the optimal 

capacity is the social discount rate. Suppose there is no discount 

rate. Then, it would be perfectly sensible to spend a dollar now in 

order to save a dollar's worth of costs either in the next time period 

or ten years from now; or 100 years, thus, there is no limit to the 

size of capacity which it pays to build. With a positive discount rate, 

however, to save a dollar's worth of costs in a future time period we 



only need to spend less than a dollar now. Therefore, under a given 

economies of scale situation if the discount rate is low the size of 

optimal capacity is relatively large whereas if the discount rate is 

high the size of optimal capacity is relatively small. 

79 

In the base results the optimal size of capacities for the differ

ent discount rates shows the same trend as the proposed theory. If 

the discount rates are low the size of optimal capacities are relatively 

large and vice versa. In Table VI the optimal initial size of water 

system at one percent discount rate is larger than at the three percent 

discount rate, which is again larger than the optimal size at five per

cent discount rate. The objective function, which is the net social 

benefit expressed as the expected present worth of total benefits less 

the expected present worth of total costs during planning period, values 

are also given in Table VI. Like the trend of optimal size of capacities 

for the different discom~t rates, lower discount rates give relatively 

higher objective function values from larger size of capacity, lower 

water price and higher water demand. If the discount rates goes up to 

15 percent, there is no investment during the planning period and hence 

no net social benefits are realized. 

Optimal Water Supply Schedule 

There are two major factors which directly influence the short run 

level of water supply: size of capacity and growth in water demand. It 

is reasonable to say that an increase in number of customers will result 

in an increase in water supplied as long as excess capacity exists. How

ever, how fast water supply should be increased depends mainly on the 

system's growth rate. Once water supply reaches the maximum capacity, 



Discount Objective 
Rate Value 

(percent) ($) 

1 5,534,429 

3 2,519,708 

5 1,062,444 

7 372,982 

9 85,317 

15 

TABLE VI 

OPTIMAL CAPACITYa INVESTMENT SCHEDULE FROM THE 
BASIC RESULTS AT EIGHT PERCENT GROWTH 

Building Time Unit 

1 2 3 4 5 

136.9 - - 179.5 -

108.7 - - 187.2 -
93.8 - - 162.5 -

- 118.2 - - 226.8 

- - - 215.3 -

aAmount of system capacities in mgy. 

6 7 

295.2 287.6 

257.4 260.2 

208.5 218.5 

- 249.5 

- 292.0 

8 

421.3 

381.2 

320. 2 

278.9 

237.7 

Total 

1320.5 

1194. 7 

1003.5 

873.4 

745.0 

00 
0 



to increase supply requires the next addition as reviewed in the pre

vious section. 
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The optimal water supply schedule £or the average sample community 

size with an eight percent growth rate during the planning period is 

presented in Table VII. As in the case of optimal investment, the var

ious discount rates show the sensitivity on optimal water supply. For 

the case of a one percent discount rate the optimal water supply 

increases significantly from time unit one to time unit eight. Optimal 

water supply increases from one time unit to the next time unit except 

for time unit three which is the same as that of time unit two. This is 

because the system reaches its maximum capacity in time unit two and 

additional capacity is not optimum until time unit four. It is noted 

that the increase of water supply in the later time units are relatively 

greater than those of the earlier time units. This is explained by the 

compounding effect of an.eight percent growth rate during the whole 

planning period. That is, eight percent growth in earlier time units 

results in relatively smaller net increases in number of customers than 

is the case for later time units. In fact, it is probably not realistic 

to assume that the water system grows at a constant rate during the 

whole planning period, i.e. eight percent. A more realistic assumption 

would be for water systems with fast growth at the beginning and then 

slower growth during the remaining part of the planning period. Of 

course the specific rate of growth depends upon the environment of 

individual systems. 

The water supply schedule also includes solutions for various dis

count rates. As observed in the optimal capacity schedule, a system's 

water supply declines as the discount rate increases. Again there is 



Discount 
Rate 

(percent) 1 

1 93.8 

3 93.8 

5 93.8 

7 --

9 --

15 

-

TABLE VII 

OPTIMAL WATER SUPPLYa SCHEDULE FROM THE BASIC RESULTS 
AT EIGHT PERCENT GROWTH 

Water Supply Level for Each Time Unit 

2 3 4 5 6 

136.9 136.9 297.3 316.5 611. 6 

108. 7 108.7 295.9 295.9 553.3 

93.8 93.8 256.3 256.3 464.8 

118.2 118.2 118.2 345.1 345.1 

-- -- 215.3 215.3 215.3 

aAmount of water supplied in mgy. 

7 

899.2 

813.5 

683.3 

594.6 

507.3 

8 

1320. 6 

1194. 6 

1003.5 

873.1 

754.0 

00 
N 
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no water supply in time unit one for the seven percent discount rate, 

time unit one, two and three for the nine percent discount rate, and 

the whole planning period for the 15 percent discount rate because no 

water capacity was built for these tine units. 

Optimal Water Rate Schedule 

Optimal solutions for capacity and water supply representing 

different growth and social discount rates are read directly from the 

output of the programming model. However, the model does not provide 

the optimal water rate schedule directly. The optimal water rate is 

computed indirectly by substituting water supply for each time unit 

into that unit's demand equation representing a particular growth 

situation. To do this, it is necessary to derive the demand equation 

for each time unit. 

In Chapter III the ~eneral water demand function in rural Oklahoma 

whi~h describes consumers' response to changes in price was derived. 

The demand equation is shown at zero time unit in Table VIII and shows 

that if the water rate increases one dollar the quantity of water 

demanded will decrease about 150,000 gallons per year. The assumption 

is made that consumer response to price change is relatively constant 

during the planning period even though the water system measured in terms 

of number of users grows in future time units. 

Growth of the water system on the price-quantity plane can be 

exyressed by rotation of the initial demand curve as shown in Figure 11. 

Let D represent the demand curve before growth (i.e. at time unit zero), 
0 

whereas D1 represents demand after growth at time unit one. The price

quantity relationship shows that if the price level is P1 , Q0 amount of 



TABLE VIII 

ROTATED DEMAND EQUATIONS FOR EACH TIME UNIT AT 
EIGHT PERCENT ANNUAL GROWTH RATE 

Time Growth Demand Equations 
Unit Index (h ) (Inversed) 

0 1.00 p 5300 - 68.6Q 

1 1.47 p 5300 46.8Q 

2 2.16 p 5300 31. 9Q 

3 3.17 p 5300 21. 7Q 

4 4.66 p 5300 14. 8Q 

5 6.85 p 5300 10.0Q 

6 10.06 p 5300 - 6 .8Q 

7 14.79 p 5300 4. 7 Q 

8 21. 72 p 5300 3. 2Q 

P price per mgy dollars. 
Q quantity of water demanded in mgy. 

84 
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p 

p 

'. j 

0 Q 

Figure 11. Rotation of Demand Curve by Growth 
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water is purchased by the given number of customers in a community (say 

100 customers) at time unit zero. Assume that the number of customers 

increases to 200 at the end of time unit one--a 100 percent growth 

compared to the original number of customers. The amount of water pur-

chased by 200 customers at time unit one would be q1 if the price level 

stays at P1 . Thus, by the assumption of constant consumer response, 

Q1 should be exactly twice that of Q0 • Since this price-quantity rela-

tionship is true for each and every level of p:::.-ices, the demand function 

for time unit one can be derived by using the information from the 

initial price-quantity relationship and growth in number of customers. 

Practically, this is derived for time unit one by dividing the slope of 

D by its growth index. 
0 

The demand equations for the different time units in Table VIII are 

derived in this manner--dividing the slope of the initial demand curve, 

68.6, by the growth index in column two. For the Base Results, since a 

constant growth rate of eight percent per year is applied throughout the 

planning period, the demand curves become flatter and flatter as the 

system grows. 

The optimal water rate schedule is computed by substituting the 

water supply into each time unit's demand equation. To analyze the 

optimal rate schedule, not only the re].ationship between optimal water 

supply and growth rate should be considered but also the optimal capa-

city schedule. This is because the water supply schedule is influenced 

by the optimal investment schedule. For example, in Table IX the rate 

schedule for a one percent discount rate fluctuates from one time unit 

to another time unit depending upon timing of additional capacity. If 

there is pressure on capacity due to system growth it will result in 



Discount 
Rate 

(percent) 1 

1 910.2 

3 910.2 

5 910.2 

7 --

9 --

15 

-

TABLE IX 

OPTIMAL WATER RATEa SCHEDULE FROM BASE RESULTS 
AT EIGHT PERCENT GROWTH 

Optimal Water Rate for Each Time Unit 

2 3 4 5 6 

932.9 2329.3 900.0 2135.0 1141. J_ 

1832.5 2941. 2 920. 7 2341.0 1537.fi 

2307.8 3264.5 1506.8 2737.0 2139. 4 

1529.4 2735.1 3550.6 1489.0 2953.3 

-- -- 2113. 6 3147.0 3836.0 

aDollar per million gallons. 

7 

1073.8 

1476.fi 

2088.5 

2505.4 

2915.7 

8 

1074.1 

14 77. 3 

2088 .8 

2506.1 

2916.0 

00 
-....) 
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addition of new capacity which allows an increase in water supply. The 

increased water supply brings the water rate down but not as low as if 

the system stayed on the same demand curve. The reason is that the 

slope of the new demand curve from which the optimal water rate is com

puted is now flatter than the previous demand curve. 

In Table VI for a one percent discount rate the initial capacity 

is 136.9 mgy but the actual water supply is 93.8 mgy at time unit one 

in Table VII. That is, 43.1 mgy excess capacity is reserved for future 

growth. Substituting 93.8 mgy amount of water supplied in the first 

time unit demand curve results in a water price of $910.20 per million 

gallons. In the second time unit, all of the existing capacity is 

utilized due to the system's growth. Therefore again substituting the 

optimal water supply, 136.9 mgy into the second time unit's demand equa

tion results in $932.90 per million gallons as the water rate which is 

higher than that of the first time unit. In the third time unit, there 

is another eight percent growth in the system but additional capacity 

has not come into the solution yet. Therefore, the amount of water 

supplied is restricted to the maximum capacity by raising the water 

rate. That is why the water supplied during the third time unit is the 

same as that of the second time unit but the water rate is significantly 

higher than that of the second time unit. Water rate is used as a means 

to allocate a given amount of water to more customers. In the fourth 

time unit there is another eight percent growth per year. Now the 

water system no longer relies on the role of price to maintain existing 

capacity. Therefore a new capacity addition comes into the solution 

(see Table VI). With new additional capacity water supply increases and 

consequently the optimal water rate decreases. These interrelationships 
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among growth rate, optimal capacity schedule, optimal water supply 

schedule, and optimal water rate continue until the end of the planning 

period for each discount rate. Of course the above solutions are based 

upon eight percent growth per year. Solutions for different growth 

patterns are analyzed in succeeding sections. 

Results and Analysis for Alternative 

Growth Rates 

Rural community water systems have shown substantial variability 

in growth (see Table IV). In this section different environments 

(i.e. growth rates) are assumed to analyze the effect of growth in 

determining optimal solutions in terms of capacity, water supply and 

water rates. An important focus of this study is to determine net 

social benefits if decision ~akers would have known the system's growth 

at the time of initial pl.anning. 

Zero Growth Situation 

Optimal Solutions. As reviewed before, economies of scale, dis

count rate and system growth are the main factors that dtermine optimum 

excess capacity. However, if the number of customers remains constant 

throughout the time period, decision makers do not need to worry about 

building any excess capacity or additions to capacity as long as consumer 

consumption behavior is stable. Therefore the optimal capacity would be 

the same as the level of optimal water supply. 

The solution of the model when the growth rate is zero shows this 

situation. The optimal capacity and the optimal water supplies are the 

same throughout the entire planning period as seen in Tables X and XI. 



Discount Objective 
Rate Value 

(percent) ($) 

1 666 '082 

3 326,105 

5 1.23,671 

7 741 

9 

15 

-

TABLE X 

OPTIMAL CAPACITY INVESTMENT SCHEDULE FROM THE 
BASE RESULTS AT ZERO PERCENT GROWTHa 

Building Time Unit 

1 2 3 4 5 6 

60.8 

55.0 

46.2 

40.2 

aAmount of system capacities in mgy. 

7 8 Total 

60.8 

55.0 

46.2 

40.2 

\0 
0 



Discount 
Rate 

(percent) 1 

1 60.8 

3 55.0 

5 46.2 

7 40.2 

9 

15 

TABLE XI 

OPTIMAL WATER SUPPLY SCHEDULEa FROM BASE 
RESULT AT ZERO GROWTH 

Operation Level for Each Time Unit 

2 3 4 5 6 

60.8 60.8 60.8 60.8 60.8 

55.0 55.0 55.0 55.0 55.0 

46.2 46.2 46.2 46.2 46.2 

40.2 40.2 40.2 40.2 40.2 

aAmount of water supplied in mgy. 

7 

60.8 

55.0 

46.2 

40.2 

8 

60.8 

55.0 

46.2 

40.2 

:• 

l.O 
I-' 



Discount 
Rate 

(percent) 1 

1 1117 .o 

3 1516.0 

5 2121.0 

7 2534.0 

9 

15 

TABLE XII 

OPTIMAL WATER RATEa SCHEDULE FROM BASE RESULT 
AT ZERO PERCENT GROWTH 

Optimal Water Rate for Each Time Unit 

2 3 4 5 6 

1117.0 1117.0 1117.0 1117 .o 1117 .o 

1516.0 1516.0 1516.0 1516.0 1516.0 

2121.0 2121.0 2121.0 2121.0 2121.0 

2534.0 2534.0 2534.0 2534.0 2534.0 

aDollars per million gallons. 

7 

1117.0 

1516.0 

2121.0 

2534.0 

8 

1117.0 

1516.0 

2121.0 

2534.0 

'° N 
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When the discount rate is one percent the optimal capacity is 60.8 mgy 

which remains constant as long as there is no growth. Like the case with 

growth, the optimal capacity investment decreases as the discount rate 

increases and there is no optimal investment if the discount rate goes 

beyond seven percent. Because of no excess capacity the optimal water 

supply is the same as the optimal capacity level (Table XI). Also, 

the optimal water rates for a given discount rate are the same through

out the whole planning period as shown in Table XII. 

Equity Considerations With and Without Growth. Although the scope 

of this study is limited to economic efficiency it is still worthwhile 

to review equity aspects in terms of individual customer payments for 

water with and without growth. 

As reviewed before, the optimal solutions of capacity, operation 

level, and water rate depend on system growth under given economies of 

scale and discount rate. Under conditions of no growth there is no 

excess capacity in the optimal solution and water rate is the same 

throughout the planning period. This means that the initial members of 

the system who are the only members of the system throughout the planning 

period pay a constant water rate during the whole planning period. For 

example, water rate is fixed to $2121 per million gallons during all 

time units when the discount rate is five percent. To review the 

situation of the initial members of a water system this rate can be 

compared to other optimal rates under conditions of growth. 

As an example of comparing equity positions of initial members of 

water systems, Tables XIII and XIV are compared. In Table XIII, with 

eight percent system growth, payments per user for each time unit at 



Time Unit 

d c 

Water Supply (mg) 

Water Rate ($/mg) 

No. of Users 

Payment Per User 
(dollars dis-
counted to 
present) 

TABLE XIII 

WATER CONSUMPTION PAYMENTS PER USER FOR EACH TIME UNIT AT 
EIGHT PERCENT GROWTH AND FIVE PERCENT DISCOUNT RATE 

1 2 3 4 5 6 7 

.86494 .67780 .53115 .41622 .32616 .25558 ·.20021 

93.8 93.8 93.8 256.3 256.3 464.8 603.3 

910.2 2307.8 3264.5 1506.8 2737.0 2139.4 2088.5 

291.0 428.0 628.0 923.0 1356.0 1992.0 2928.0 

254.0 343.0 259.0 174.0 169.0 128.0 98.0 

8 

.15693 

1003.5 

2088.5 

4301.0 

76.0 

Total 

1501.0 

\0 
~ 



Time Unit (T) 

d 
c 

Water Supply (mg) 

W~ter Rate ($/mg) 

No. of Users 

Payment Per User 
(dollars dis-
counted to 
present) 

TABLE XIV 

WATER CONSUMPTION PAYMENTS PER USER FOR EACH TIME UNIT AT 
ZERO PERCENT GROWTH AND FIVE PERCENT DISCOUNT RATE 

1 2 3 4 5 6 7 

:86494 .67780 .53115 .41623 .32613 .25558 . 20027 

46.2 46.2 46.2 46.2 46.2 46.2 46.2 

2121.0 2121.0 2121.0 2121.0 2121.0 2121.0 2121.0 

198.0 198.0 198.0 198.0 198.0 198.0 198.0 

428.0 335.0 263.0 206.0 161.0 126.0 99.0 

8 

.15693 

46.3 

2121.0 

198.0 

78.0 

Total 

1696.0 

\D 
\JI 



five percent discount rate are computed. To project the growth of 

users, a base of 198, which is the average initial number of users of 

the sample system is applied. Using optimal solutions of water supply 

and rate schedules, the discounted payments per user are computed and 

added. The total value of $1501 in Table XIII is the total amount 
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paid by a user during the whole planning period. In Table XIV a simi

lar procedure was applied but under conditions of constant water supply 

and rate schedule. The total amount paid by a user during the whole 

planning period and discounted to the present is compared under condi

tions of with and without growth. Based upon this comparison, an 

individual user under the growth situation is better off than under 

the without growth situation. 

Two, Four, Six and Ten Percent Growth Rate 

So far optimal solutions of the base result and zero growth 

situation have been reviewed. In this section optimal solutions under 

different rates of growth are analyzed. If decision makers correctly 

predicted growth and planned system capacity and management accordingly, 

the optimal solutions would give maximum social benefits. 

Optimal Capacity Investment Schedule. Tables XV, XVI, XVII and 

XVIII show optimal capacity investment schedules under growth conditions 

of two percent, four percent, six percent and ten percent respectively. 

To compare the effect of different growth rates on the optimal initial 

investment, the discount rate of five percent is chosen. The optimal 

size of the initial investment increases gradually as the growth rate 

increases. For example, the optimal size investment with two percent 



Discount 
Rate 

(percent) 

1 

3 

5 

7 

9 

15 

Objective 
Value 

($) 

1, 058 '396 

517,647 

216 '211 

41, 130 

230 

TABLE XV 

OPTIMAL CAPACITY INVESTMENT SCHEDULE FROM THE 
BASIC RESULTS AT TWO PERCENT GROWTHa 

Building Time Unit 

1 2 3 4 5 6 

86.1 

73 .2 

66.9 

-- 59.9 

aAmount of system capacities in mgy. 

7 8 Total 

48.2 134.3 

48.4 121.6 

66.9 

59.9 

75.8 75.8 

\0 
-...J 



Discount Objective 
Rate Value 

(percent) ($) 

1 1,765,112 

3 83 7, 421 

5 353,209 

7 94,607 

9 9,304 

15 

TABLE XVI 

OPTIMAL CAPACITY INVESTMENT SCHEDULE FROM THE 
BASIC RESULTS AT FOUR PERCENT GROWTHa 

Building Time Unit 

1 2 3 4 5 6 

107.5 -- -- -- -- 99.2 

91.6 -- -- -- -- 115.1 

77 .8 -- -- -- -- 101.3 

-- n .s --· -- -- --

-- -·- -- -- 111.l --

aAmount of system capacities in mgy. 

7 8 

-- 85.1 

-- --

-- --

92.9 --

-- --

Total 

291.8 

206.7 

179.1 

170.l 

111.l 

'° 00 



Discount Objective 
Rate Value 

(percent) ($) 

1 3,081,815 

3 1,427,597 

5 601,127 

7 192,558 

9 33,506 

15 

-

TABLE XVII 

OPTIMAL CAPACITY INVESTMENT SCHEDULE FROM THE 
BASIC RESULTS AT SIX PERCENT GROWTHa 

Building Time Unit 

1 2 3 4 5 6 

124.8 -- -- -- 148.9 --

110.1 -- -- -- 150.7 --
82.3 -- -- 114.6 -- --

-- 103.6 -- -- -- 160.2 

-- -- -- 147.1 -- --

aAmount of system capacities in mgy. 

7 8 

193.9 158.1 

162.1 143.0 

216.8 --

-- 149.9 

116.6 89.2 

Total 

625.7 

565.9 

4U.7 

413.7 

352.9 

'° '° 



Discount Objective 
Rrite Value 

(percent) ($) 

1 10,076,487 

3 4,508,708 

5 1,896,754 

7 698,512 

9 190 '928 

15 

-

TABLE XVIII 

OPTIMAL CAPACITY INVESTMENT SCHEDULE FROM THE 
BASIC RESULTS AT TEN PERCENT GROWTHa 

Building Time Unit 

1 2 3 4 5 6 

165.2 -- -- 243.9 249.3 402.5 

102.7 -- 164. 0 -- 329.0 364 .1 

93.2 -- 148.8 -- 258.3 305.8 

-- 142.5 -- 227.7 -- 331.3 

-- -- 168.0 -- 203.4 227.1 

aAmount of system capacities in mgy. 

7 8 

647.5 1000.0 

585.8 943.8 

492.0 792.8 

428.1 689.8 

365.3 588.6 

Total 

2708.4 

2489.4 

2090.9 

1819.4 

1552.4 

f-' 
0 
0 
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growth is 66.9 mgy while it is 77.8 mgy with four percent growth rate. 

When the growth rate is ten percent, which is the largest growth rate 

studied, not only the initial investment of 93.2 mgy is larger than 

that of smaller growth rates, but, also, capacity additions are more 

frequent after time unit four. From this finding it is concluded that 

growth of a water system is one of the critical factors which should 

be considered in determining optimal investment size even though this 

factor is ignored in much of the existing literature. 

Optimal Water Supply Schedule. Solutions from the programming 

model for optimal water supply under alternative growth rates are pre

sented in Tables XIX, XX, XXI, and XXII. Again five percent discount 

rate is used to make comparisons of solutions. As seen in Table XIX -

under conditions of two percent growth, the optimal water supply remains 

the same over the entire planning period. The initial capacity, 66.9 

mgy, is fully utilized at the beginning time period and remains fully 

utilized with no additional capacities. Under four percent growth, 

capacity is increased in the sixth time unit and again is fully utilized. 

For the assumptions of six and ten percent growth, the model results 

show no period with excess capacity for the five percent discount rate. 

It must be assumed that price is being used to allocate water under the 

limited capacities or until additional capacity is created. 

Comparing the results for the five percent discount rate with the 

one percent discount rate it is noted that under the latter condition 

water systems do have excess capacities for some time units. That is, 

the water supplied is less than the capacity for that time unit. 



Discount 
Rate 

(percent) 1 

1 70.2 

3 70.2 

5 66.9 

7 --

9 --

15 

TABLE XIX 

OPTIMAL WATER SUPPLYa SCHEDULE FROM BASE RESULTS 
AT TWO PERCENT GROWTH 

Operation Level for Each Time Unit 

2 3 4 5 6 

77 .8 86.1 86.1 86.l 86.1 

73.2 73.2 73.2 73.2 73.2 

66.9 66.9 66.9 66.9 66.9 

59.9 59.9 59.9 59.9 59.9 

-- -- -- -- --

aAmount of water supplied in mgy. 

7 

86.1 

73.2 

66.9 

59.9 

--

8 

134 .4 

121. 6 

66.9 

59.9 

75.8 

I-' 
0 
N 



Discount 
Rate 

(percent) 1 

1 77 .8 

3 77 .8 

5 77. 8 

7 --

9 --

15 

TABLE XX 

OPTIMAL WATER SUPPLYa SCHEDULE FROM BASE RESULTS 
AT FOUR PERCENT GROWTH 

Operation Level for Each Time Unit 

2 3 4 5 6 

94.4 107.5 107.5 107.5 206.7 

91.6 91.6 91.6 91.6 206.7 

77 .8 77 .8 77 .8 77 .8 179.0 

77 ,8 77 .8 77 .8 77 .8 77 .8 

-- -- -- 111.1 111.l 

aAmount of water supplied in mgy. 

7 

206.7 

206.7 

179.0 

170.6 

111.1 

8 

291.8 

206. 7 

179.0 

170.6 

111.1 

I-' 
0 
w 



Discount 
Rate 

(percent) 1 

1 85.5 

3 85.5 

5 82.3 

7 --

9 --

15 

TABLE XXI 

OPTIMAL WATER SUPPLYa SCHEDULE FROM BASE RESULTS 
AT SIX PERCENT GROWTH 

Operation Level for Each Time Unit 

2 3 4 5 6 

114.2 124.8 124.8 273. 7 273.7 

110.1 110.1 110.1 260.8 260.8 

82.3 82.3 196.9 196.9 196.9 

103.6 103 .6 103.6 103.6 263.8 

-- -- 147.1 147.1 147.1 

7 

467.6 

423.0 

413. 7 

263.8 

263.8 

8 

625.6 

566.0 

413. 7 

413. 7 

352.9 

I-' 
0 
-!:'-



Objective 
Rate 

(percent) 1 

1 102.7 

3 102.7 

5 93. 2 

7 --

9 --

15 

-
a 

TABLE XXII 

OPTIMAL WATER SUPPLYa SCHEDULE FROM BASE RESULTS 
AT TEN PERCENT GROWTH 

Operation Level for Each Time Unit 

2 3 4 5 6 

165.2 165.2 409.2 658.5 1061.0 

102.7 266.7 266.7 595.7 959.8 

93.2 242.0 242. 0 500.3 806.2 

142.5 142.5 370.2 370.2 701.5 

-- 168.0 160.0 371.5 598.5 

Amount of water supplied in mgy. 

7 

1708.5 

1545.5 

1298.2 

1129.6 

963.8 

8 

2708.5 

2489.3 

2091. 0 

1819.5 

1552.4 

f-' 
0 
\JI 
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Optimal Water Rate Schedule. The optimal water rates for the differ

ent growth rate assumptions are computed using the demand curves of each 

time unit and the associated optimal water supplies. Tables XXIII, 

XXIV, XXV, and XXVI present these water rates. 

The overwhelming result shown in Tables XXIII through XXVI is the 

fact that price is heavily used as the allocator of water. As an example, 

for the two percent growth rate (Table XXIII) and the five percent dis

count rate, price of water must continuously increase from time unit one 

to time unit eight since capacity was established in time unit one and 

there are no additions to capacity for the remainder of the planning 

period (see Table XV). Furthermore, water supply was at the maximum 

capacity for each time unit (see Table XIX). Therefore to limit consump

tion of water equal to capacity requires that price of water must 

increase. Further evidence of price being used as the allocator of 

water is seen in Table XXIV for the four percent growth assumption. 

Again viewing the five percent discount results, the price of water 

increases from $912 per million gallons in time unit one to $3,293 per 

million gallons in time unit five. Since capacity is added in time 

unit six (see Table XVI) water price is reduced to $1,505 per million 

gallons. Price increases gain in time units seven and eight since 

water supplied is equal to capacity in each of these time units but 

growth in number of cusomters has occurred at the four percent rate. 

Another result apparent from these tables is the effect of econ

omies of scale on price. Again viewing the five percent discount rate 

results of Table XX.III with Table XXIV, price of water in time unit 

one reduces from $1,119 per million gallons for two percent growth to 

$912 per million gallons for four percent growth. The reason for 



Discount 
Rate 

(percent) 1 

1 913 .o 

3 913 .o 

5 1119.0 

7 --

9 --

15 

TABLE XXIII 

OPTIMAL WATER RATE 3 SCHEDULE FROM BASE RESULTS 
AT TWO PERCENT GROWTH 

OEtimal Water Rate for Each Time Unit 

2 3 4 5 6 

912.0 909.0 1322.0 1684.0 2028.0 

1172.0 1567.0 1918.0 2226.0 2518.0 

1527.0 1888.0 2209.0 2490.0 2758.0 

1922.0 2245.0 2533.0 2784.0 3024.0 

-- -- -- -- --

aDollars per million gallons. 

7 

2338.0 

2782.0 

2999.0 

3239.0 

--

8 

1120. 0 

1518.0 

3219.0 

3417 .o 

2943.0 

I-' 
0 
'-J 



Discount 
Rate 

(percent) 1 

1 912.0 

3 912.0 

5 912.0 

7 --

9 --

15 

-

TABLE XXIV 

OPTIMAL WATER RATEa SCHEDULE FROM BASE RESULTS 
AT FOUR PERCENT GROWTH 

0Etimal Water Rate for Each Time Unit 

2 3 4 5 6 

910.0 1194.0 1925.0 2527.0 918.0 

1040.0 1801.0 2424.0 2937.0 918.0 

1682.0 2328.0 2857.0 3293.0 1505.0 

1682. 0 2328.0 2857.0 3293.0 3651.0 

-- -- -- 2434.0 2945.0 

aDollars per million gallons. 

7 

1716.0 

1716.0 

2185.0 

2332.0 

3367.0 

8 

1127.0 

2344.0 

2740.0 

2860.0 

3711.0 

,_. 
0 
co 



Discount 
Rate 

(percent) 1 

1 914.0 

3 91!1.0 

5 1078.0 

7 --
9 --

15 

TABLE XV 

OPTIMAL WATER RATEa SCHEDULE FROM BASE RESULTS 
AT SIX PERCENT GROWTH 

Optimal Water Rate for Each Time Unit 

2 3 4 5 6 

915.0 1718.0 2629.0 921.0 2016.0 

1072.0 2140.0 2944.0 1127 .o 2170.0 

2140.0 2938.0 1086.0 2150.0 2937.0 

1322.0 2327.0 3083.0 3642.0 2134.0 

-- -- 2152.0 2946.0 3535.0 

aDollars per million gallons. 

7 

1138 .o 

1535.0 

1618.0 

2952.0 

2952.0 

8 

1109.0 

1508.0 

2528 .o 

2528.0 

2936.0 

I-' 
0 

"° 



TABLE XXVI 

a 
OPTIMAL WATER RATE SCHEDULE FROM BASE RESULTS 

AT TEN PER CENT GROWTH 

Discount 
OEtimal Water Rate for Each Time Unit Rate 

(percent) 1 2 3 4 5 6 

1 915.0 906.0 2574.0 1126. 0 1086.0 1162.0 

3 915.0 2568.0 900.0 2580.0 1488.0 1557.0 

5 1320.0 2821.0 1307.0 2832.0 2098.0 2155.0 

7 -- 1510.0 2949.0 1524.0 2931.0 2564.0 

9 -- -- 2528.0 3668.0 2922.0 2966.0 

15 

aDollars per million gallons. 

7 

1200.0 

1591.0 

2184.0 

2589.0 

2987.0 

8 

1237.0 

1566.0 

2164 .o 

2571.0 

2971.0 

I-' 
I-' 
0 
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this in part is due to the larger capacity installed under the four 

percent growth (Table XVI) relative to the capacity installed under the 

two percent growth (Table XV). Similarly, water price can be compared 

across growth rates for time unit two and at the seven percent discount 

rate. At two percent growth, the price is $1,922 per million gallons 

(Table XXIII), at four percent growth the price is $1,682 per million 

gallons (Table XXIV), and at six percent growth the price is $1,322 per 

million gallons (Table XXV). The decrease in price is due in part to 

economies of scale since larger capacities were installed at each higher 

growth rate. Price increases again at the ten percent growth to $1,510 

per million dollars (Table XXVI) but this is due in part to using price 

to restrict consumption at limited capacity. 

Declining Growth Situation 

So far the analysis _has been restricted to constant growth rate dur

ing the whole planning period. However, it is unrealistic to expect a 

water system to grow at a constant rate for the whole planning period. 

Rather, it is more realistic to assume that water systems grow faster 

during earlier time units of the planning period and then the rate of 

growth becomes moderated or stabilized. To review optimal solutions 

under these assumptions of growth, three different growth patterns are 

studied. The first pattern is an eight percent growth rate during the 

first half of the planning period and then growth stops for the 

remainder of the planning period. The second pattern is an eight per

cent growth rate during the first half and then growth continues at two 

percent per year during the second half of the planning period. The 

last pattern consists of an eight percent growth rate during the first 



half of the planning period and continues to grow at four percent per 

year during the second half of the planning period. 
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Eight and Zero Percent Growth. Tables XXVII, XXVIII and XXIX show 

the optimal solutions of investment capacity, water supply and water 

rate schedules, respectively. The optimal capacity investment schedule, 

Table XXVII, shows that there is no additional facility coming into the 

solution after the end of the fourth time unit for all discount rates. 

This is explained by the assumption of zero growth for the last half 

of the planning period. However, the solutions of initial investment 

for the different discount rates are the same as the solutions from 

the base result with eight percent growth (see Table VI). The optimal 

water supply schedule in Table XXVIII shows no change of supply level 

after the fourth time unit due to zero growth. Like the water supply 

schedule from the base result with eight percent growth, no water supply 

is made in the early time units if the discount rate is seven or nine 

percent. No water supply is realized at all if the discount rate 

becomes 15 percent. In Table XXIX, the optimal water rates are constant 

after the fourth time unit due to zero growth. The effect of price again 

can be seen as an allocator of water under limited capacities. Price 

increases significantly in time unit three for discount rates one, three 

and five percent and then decreases with additions to capacity in time 

unit four. 

Eight and Two Percent Growth. This pattern considers eight percent 

growth per year until the fourth time unit and then growth drops to 

two percent. Table XXX which is the optimal investment schedule, shows 

initial capacity the same as the previous case but with larger additions 



Discount 
Rate 

(percent) 

1 

3 

5 

7 

9 

15 

--

TABLE XXVII 

OPTIMAL CAPACITY INVESTMENT SCHEDULE FROM THE BASIC RESULTS AT 
EIGHT AND ZERO PERCENT GROWTHa 

Objective 
Value Building Time Unit 

($) 1 2 3 4 5 6 7 

2,540,409 136.9 146.4 -- -- --

1,314,981 108.7 147.6 -- -- --

593.953 93.8 121.5 -- -- --

208,680 159.8 -- -- -- --

47,504 158.9 -- -- --

8 Total 

-- 283.3 

-- 256.3 

-- 215.3 

-- 159.8 

-- 159.8 

aThe first four periods (20 years) have eight percent growth and the rest of the periods 
have zero growth per period. 

I-' 
I-' 
w 



Discount 
Rate 

(percent) 1 

1 93.8 

3 93.8 

5 93.8 

7 --

9 --

15 

TABLE XXVIII 

OPTIMAL WATER SUPPLY SCHEDULEa FROM BASE RESULT 
AT EIGHT AND ZERO PERCENT GROWTH 

Operation Level for Each Time Unit 

2 3 4 5 6 

136.9 136.9 283.3 283.3 283.3 

108. 7 108.7 256.3 256.3 256.3 

93.8 93.8 215.3 215.3 215.3 

-- 159.8 159.8 159.8 159.8 

-- -- 159,8 159.8 159,8 

aArnount of water supplied in mgy. 

7 

283.3 

256.3 

215.3 

159.8 

159.8 

8 

283.3 

256.3 

215.3 

159.8 

159.8 

..... 

..... 

.,::... 



Discount 
Rate 

(percent) 1 

1 910.2 

3 910.2 

5 910.2 

7 --
9 --

15 

-

TABLE XXIX 

OPTIMAL WATER RATEa SCHEDULE FROM BASE RESULTS 
AT EIGHT AND ZERO PERCENT GROWTH 

0Etimal Water Rate for Each Time Unit 

2 3 4 5 6 

932.9 2329.3 1107.2 1107. 3 1107.3 

1832.5 2941.2 1506.8 1506.8 1506.8 

2307.8 3264.5 2113.6 2113. 6 2113. 6 

-- 1832.3 2935.0 2935.0 2935.0 

-- -- 2935.0 2935.0 2935.0 

aDollar per million gallons. 

7 

1107. 3 

1506.8 

2113. 6 

2935.0 

2935.0 

8 

1107. 3 

1506.8 

2113. 6 

2935.0 

2935.0 

I-' 
I-' 
Ln 



Discount Objective 
Rate Value 

(percent) ($) 

1 3,531,336 

3 1,692,178 

5 743,814 

7 255, 710 

9 57,239 

15 

TABLE XXX 

OPTIMAL CAPACITY INVESTMENT SCHEDULE FROM THE BASIC RESULTS 
AT EIGHT AND TWO PERCENT GROWTHa 

Building Time Unit 

1 2 3 4 5 6 7 

136.9 - - 160.4 - 140.4 -
108.7 - - 188.6 - - 163.6 

93.8 - - 162.5 - - 135.1 

- 118.2 - - 154.8 - -
- - - 197.6 - - -

8 Total 

113.2 550.9 

- 460.9 

- 391.4 

91.2 364.2 

113. 2 310.8 

aThe first four periods (20 years) have eight percent growth and the rest of the periods have two 
percent growth per period. 

,....., 
,....., 
0\ 
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at time unit four due to the higher growth rate (from zero to two per

cent per year). An interesting difference in the solution for optimal 

capacity between this pattern and the previous case is the timing of 

initial investment when the discount rate is seven percent. When the 

growth pattern was eight and zero percent, the initial investment comes 

into the solution at the third time unit and no additional investments 

until the end of the planning period. When the pattern is eight and 

two percent a smaller investment comes into the solution in the second 

time unit and then two additional investments come into the solution 

at time units five and eight. The optimal solutions of the water 

supply (Table XXXI) show the same levels for the first three time units 

for discount rates of one, three and five percent. However, water supply 

increases for the fourth time unit under the conditions of a slight 

continued growth for the latter half of the period. The effect of a 

continued growth is to increase the optimum capacity and hence water 

supply for this fourth period. This also has the effect of decreasing 

water price for the fourth period under conditions of two percent growth 

in the latter half (Table XXXII) versus no growth in the latter half 

of the period (Table XXIX). Water price fluctuates during the latter 

half of the period under conditions of two percent growth depending on 

when optimal capacities are added. 

Eight and Four Percent Growth. The last growth pattern is the 

system that grows at eight percent per year during the first half of 

the planning period and then drops to four percent per year. Tables 

XXXIII, Y~'a:IV and XXXV are the optimal solutions of investment capacity, 

water supply and water rate, respectively. In general, the solutions 



Discount 
Rate 

(percent) 1 

1 93.8 

3 93.8 

5 93.8 

7 --
9 --

15 

TABLE XXXI 

OPTIMAL WATER SUPPLY SCHEDULEa FROM BASE RESULT 
AT EIGHT AND TWO PERCENT GROWTH 

Operation Level for Each Time Unit 

2 3 4 5 6 

136.9 136.9 297.3 297.3 437.7 

108.7 108.7 297.3 297. 3 297.3 

93.8 93.8 256.3 256.J 256.3 

118.2 118.2 118.2 273.0 273.0 

-- -- 197.6 197.6 197.6 

aAmount of water supplied in mgy. 

7 

437.7 

460.9 

391.4 

273.0 

197.6 

8 

550.8 

460.9 

391.4 

364.0 

310.8 

I-' 
I-' 
00 



Discount 
Rate 

(percent) 1 

1 910.2 

3 910.2 

5 910.2 

7 --

9 --

15 

TABLE XXXII 

OPTIMAL WATER RATEa SCHEDULE FROM BASE RESULTS 
AT EIGHT AND TWO PERCENT GROWTH 

Optimal Water Rate for Each Time Unit 

2 3 4 5 6 
-

932.9 2329.3 900.0 1762.1 923.9 

1832.5 2941. 2 900.0 1762.1 2327.0 

2307.8 3264.5 1506.8 2250.0 2737.8 

152 9. 4 2735.1 3550.6 2051. 3 2570.0 

-- -- 2375.5 2948.6 3324.1 

8 Dollarsper million gallons. 

7 

1535.8 

1336 .3 

1934. 0 

2952.2 

3600.6 

8 

1113.9 

1797.2 

2325.4 

2532.1 

2937.9 

I-' 
I-' 
'!:> 



Discount 
Rate 

(percent) 

1 

3 

5 

7 

9 

15 

-

TABLE XXXIII 

OPTIMAL CAPACITY INVESTMENT SCHEDULE FROM THE BASIC RESULTS 
AT EIGHT AND FOUR PERCENT GROWTHa 

Objective Building Time Unit 
Value 

($) 1 2 3 4 5 6 7 

3,632,126 136.9 -- -- 160.4 -- 155.7 --

1,732,848 108.7 -- -- 188.6 -- -- 184.4 

760,524 93.8 -- -- 171.0 -- -- 147.3 

262 ,371 -- 118.2 -- -- 167.1 -- --
58 '373 -- -- -- 201.7 -- -- --

8 Total 

127.1 580.1 

-- 481.7 

-- 412.1 

98.1 383.4 

125.5 327.2 

aThe first four periods (20 years) have eight percent growth and the rest of the periods 
have four percent growth per period, 

I-' 
N 
0 



Discount 
Rate 

(percent) 1 

1 93.8 

3 93.8 

5 93.8 

7 --

9 --

15 

-

TABLE XXXIV 

OPTIMAL WATER SUPPLY SCHEDULEa FROM BASE RESULT 
AT EIGHT AND FOUR PERCENT GROWTH 

Operation Level for Each Time Unit 

2 3 4 5 6 

136. 9 136.9 297.3 297.3 453.0 

108.7 108,7 297.3 297.3 297.3 

93.8 93.8 264.8 264.8 264.8 

118.2 118.2 118.2 285.4 285.4 

-- -- 201. 7 201. 7 201. 7 

a Amount of water supplied in mgy. 

7 

453.0 

481. 7 

412.1 

285.4 

201. 7 

8 

580.0 

48 J_. 7 

412.1 

383.5 

327.2 

I-' 
N 
I-' 



Discount 
Rate 

(percent) 1 

l 910. 2 

3 910. 2 

5 910.2 

7 --

9 --

15 

-

TABLE XXXV 

OPTIMAL WATER l{ATEa SCHEDULE FROM BASE RESULTS 
AT EIGHT AND FOUR PERCENT GROW11I 

Optimal Water Rate for Each Time Used 

2 3 4 5 6 

932.9 2329.3 900.0 1821.6 905.9 

1832.5 2941. 2 900.0 1821. 6 2416.2 

2307.8 3264.5 1381.0 2201. 8 2731.4 

152 9. 4 2735 .1 3550.6 1960. 8 2531. 6 

-- -- 2314.8 2940.1 3343.5 

aDollars per million gallons. 

7 

15!10 .1 

1301. 9 

1879.6 

2931. 2 

3625.9 

8 

1124 .o 

1831.8 

2332.9 

2538.8 

2944.2 

f-' 
N 
N 
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show the same trends as those of previous patterns except now optimal 

capacity investments come into the solution more often due to the higher 

grow th rate. 

Results and Analyses for Alternative 

Size Water System 

So far the analyses have been based upon the average initial size 

of rural water districts in Oklahoma. However, the results obtained 

from the analyses cannot be applied directly to systems whose size 

deviates far from this average. To test for effects of size of rural 

water systems, the optimum capacity investment, operation level and 

water rate schedules are analyzed for large and small water systems and 

for the different growth environments. 

Small Size Water System 

The small size water system is defined as half the number of initial 

customers of the average size water system. Since the average initial 

community water system was at 49.1 mgy, the small size water system is 

assumed at 24.6 mgy. As with the base results, the model solutions of 

different discount rates and growth situations are investigated. The 

tabular results are presented i.n Appendix D. 

Since the initial water system size is assumed small, investment 

decisions come into the solution only when the discount rate is one per

cent and three percent. Other than for these two low discount rate 

situations, construction of any size capacity is not economically 

feasible because the present worth of the costs of the system is greater 

than the present worth of the benefits even though positive water demand 
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exists for each of the time units. For example, with a two percent growth 

situation, when the discount rate is three percent construction of a water 

system is delayed until the seventh time unit even though demand for 

water exists in every earlier time unit. In other words, the backlog of 

demand must reach a level where the present worth of the costs of the 

system is less than or equal to the present worth of the benefits the 

system provides. These results re-emphasize the effects of economies of 

scale on investment decisions. 

The optimal water supply level and water rate schedule of the small 

initial water system are substantially different than for the average 

size system. The small water system supplies less water and the price 

of the water supplied is significantly higher. 

Large Size Water System 

The large size water system is defined as a system whose size at 

the beginning of the planning period is double that of the average 

size system. The large size initial water system is 98.2 mgy. Unlike 

capacity investment solutions for the small and average size water 

system, all discount rates except the 15 percent rate show investment 

in time unit one for the two percent growth situation. Even then the 

15 percent discount rate shows an investment in the second time unit 

for the two percent growth situation. At the four percent growth 

situation, investment occurs from the beginning time unit at the 15 

percent discount rate. For the average water system, investment did 

not occur for any growth rate at the 15 percent discount rate. This 

shows that the effect of economies of scale from the larger water system 

outweighs the cost of the higher discount rate. 
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Optimum water supply schedule of the large water system in general 

shows the same trends as with the average size system. Water supply is 

generally at the capacity level with only a few time units showing 

excess capacity. Water rate is hence an important allocator of water 

when growth in demand hits the capacity restraints. In general, water 

rates are lower for the large size system compared to the average size 

system. This again is a reflection of the economies of scale both in 

terms of investment cost and operation and maintenance. 

Comparison of Net Social Benefits Between Actual 

and Optimum - The Case of Murray #1 

To demonstrate the advantages of the optimal investment programming 

model for planning rural water systems, comparison of results with an 

actual system, Murray #1, is made. Using the general demand equation 

for water and the actual water investment and supply records of 

Murray #1, net social benefits are computed. Then using the optimal 

investment programming model and the actual rate of growth of Murray 1fl, 

the net social benefits from the optimum decisions are computed. Finally, 

the two net social benefits are compared. 

Murray #1 water system started supplying water in 1967. The annual 

water demand, number of customers and investment record of Murray ifl are 

presented in Table XXXVI. The amount of water demanded and the number 

of customers show dramatic increase since the system started operation. 

The initial number of users, 229 in 1967, increased to 934 in 1980 and 

results in a 12 percent annual growth rate. In addition to the initial 

investment, there were two expansions of capacities to meet growth of 

the system, 1973 and 1978. 



Year 

1967 

1968 

1969 

1970 

1971 

1972 

1973 

1974 

1975 

1976 

1977 

1978 

1979 

1980 

TABLE XXXVI 

ANNUAL WATER DEMAND, NUMBER OF CUSTOMERS AND INVESTMENT 
RECORD IN MURRAY Ill WATER SYSTEM 

126 

Water No. of Iridex of Investment 
Demand Customers Growth Record 

(mg) ($) 

18.2 229 100 314,745 

16.8 230 100 

17.8 243 106 

17.4 252 110 

17.3 268 117 

17.4 389 170 

24.0 475 207 66,000 

36.0 525 229 

40.7 566 247 

39.2 599 262 

38.8 654 286 

57.1 762 333 225,000 

63.4 859 375 

86.9 934 408 
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It is assumed that the customers in Murray #1 have the same consump-
·~ 

tion behavior as explained by the general water demand equation. To 

reflect system growth, the general demand equation is rotated as explained 

previously. Specifically, the slope of the original demand equation is 

divided by the index of growth. 

Using the rotated demand curves and the actual water demand, con-

sumer benefits are computed. Table XXXVII shows the revised demand 

1 equation and the gross benefits for each year. The gross benefits are 

discolill.ted at five percent to compute the present worth of water con-

sumption benefits. Also, Table XXXVII includes the present worth of 

actual 0 and M costs to run the water system each year and the present 

worth of the capital investment costs. From the information in Table 

XXXVII the net social benefits realized by the water system are computed 

as the total present worth of gross benefits less the total present 

worth of 0 and M and capi_tal costs. The net social benefits equal 

$204,428 as computed for the actual Murray #1. 

The optimum solution derived by the investment planning model is 

presented in Table XXXVIII. For the model soluations, the actual 12 

percent growth rate is combined with the general demand equation and 

general 0 and M and capital cost functions. The optimum solution in 

Table XXXVIII shows that 72.8 mgy capacity should have been built in 

the initial time unit and 55.2 mgy should have been added in the third 

time unit. The optimal supply schedule shows a significantly larger 

volume of water being supplied than for the actual system. The 

objective value generated by the optimal solution is $310,176 which is 

about 52 percent higher than that for the actual water system. 

1Gross benefits are defined as total area under the demand curve 
before costs have been subtracted. 



Year 

1967 

1968 

1969 

1970 

1971 

1972 

1973 

1974 

1975 

1976 

1977 

1978 

1979 

1980 

TOTAL 

TABLE XXVII 

ACTUAL BENEFITS AND COSTS IN SUPPLYING WATER IN 
HURRAY Ill WATER SYSTEM 

Discounted 
Gross 

Revised Water Gross Benefits 
Demand Equations Supply Benefits at 5% 

(mg) ($) ($) 

P=4840.2-189.4X 18.2 25,355 24,148 

P=4840. 2-189.4X 16.8 27,859 25,269 

P=4840.2-178.7X 17,8 29,536 25,514 

P=4840.2-172.2X 17.4 32,084 26,396 

P=4840. 2-161. 9X 17.3 35,280 27, 7 04 

P=4840,2-111.4X 17.4 50,492 37,678 

P=4840.2-91.5X 24.0 63,461 45,101 

P=4840.?.-82,7X 36.0 67,068 45,394 

P=4840.2-76.7X 40. 7 69,943 45,086 

P=4840.2-72.3X 39.2 78,637 48,276 

P=4840,2-66,2X 38.8 88,140 51,534 

P=4840.2-56.9X 57.1 90,858 0,593 

P=4840,2-50,5X 63.4 103,881 55,090 

P=4840.2-46.4X 86.9 70,219 35,465 

543,248 

Discounted 
Discounted Capital 

O&M Costs Investment 
at 5% at 5% 

($) ($) 

6,311 198,799 

5,390 

5,439 

5,063 

4,794 

4,592 

6,033 15,741 

8,618 

9, 280 

8,512 

8,024 

11, 246 13,512 

11,892 

_E,524 

110, 718 228' 052 
f-' 
N 
OJ 



Building 

TABLE XXXVIII 

OPTIMAL INVESTMENT, OPERATION LEVEL AND NET 
SOCIAL BENEFIT FROM THE PROGRAMMING MODEL 

Operation 
Time Unit Capacity Level 

(mgy) (mgy) 

1 72,8 41.2 

2 72.8 

3a 55.2 128 .o 
Total 128 .o 

aAdjusted to reflect four year time unit. 

Net Social 
Benefit 

($) 

310, 176b 

b Program does not permit allocation of net social benefits 
by time unit. 

129 
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Several general conclusions can be drawn from the results of these 

comparisons: 

1. Decision makers underestimated growth of the water 
system and built too small an initial facility. 

2. Because of an incorrect investment decision, the 
Murray #1 community lost considerable benefits 
which could have been avoided or reduced if opti
mal decisions had been made. 

3. Uncertainty relative to system growth may have been 
a major factor contributing to under investments by 
the Murray #1 decision makers. The optimal pro
gramming model is a way to improve economic effi
ciency in decision making of water system investment 
but does not reduce the problem of uncertainty 
relative to system growth. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

S unnna ry 

The primary objective of this study was to demonstrate an improved 

connnunity services planning model by incorporating intertemporal and 

attitudinal correlates with decisions on rural water supply investments 

in Oklahoma. This was accomplished using a mathematical programming 

model and data collected from Oklahoma rural water systems. Specific 

objectives of the study included: (1) review of theory on public goods 

as related to rural water services, (2) estimation of aggreagate rural 

water demand functions and rural water supply cost functions, (3) devel

opment and application of a mathematical programming model for deter

mining optimum timing and size of rural water system investments and 

optimum pricing of water, and (4) evaluation of past public investments 

in rural water services. 

Economic Theory of Rural Water Services 

In the field of public natural resource development in general 

and community water resource management specifically, the objective is 

not necessarily expressed in a manner as straight forward as prof it 

maximization in the private sector. The scope of this study, however, 

is limited to the objective of economic efficiency. An important 

131 
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criterion of economic efficiency in allocation of goods and services is 

that of marginal cost pricing. By marginal cost pricing of rural water 

services, two general results are achieved: (1) water services are 

allocated to the highest value use and (2) quantity of water services 

demanded is adjusted so that incremental cost just equals customer 

valuation of the last unit used. 

In small rural water systems, a difficult management problem arises 

with marginal cost pricing since the demand curve usually intersects 

the average cost curve in the range where the latter is still declining. 

Consequently, a small water system under the above situation will incur 

a loss. This study does not consider alternative pricing schemes under 

such situations. 

Aggregate Water Demand 

Aggregate water demand was found to be explained by water rates 

and number of users. The estimated price elasticity of aggregate water 

demand in rural Oklahoma is about -0.58 which supports the proposition 

that the price-demand relationship should be considered in planning 

rural water supply systems. The estimated price elasticity of -0.58 

is higher than the estimated elasticity for urban areas of about -0.4 

and can be explained in that rural areas generally have alternative 

sources of water such as wells, streams or small ponds for domestic and 

nondomestic purposes whereas urban areas rely almost totally on public 

water supplies. The demand analysis also found a proportional one-to

one relationship between water demand and number of users. That is, 

if the number of users doubles, water demand will also double, ceteris 

paribus. 
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Water Supply Costs 

Two different sources of water supply cost - 0 and M and investment -

are empirically analyzed. In the equation describing the relationship 

between total 0 and M cost and output the parameter for the quadratic 

term was estimated to be negative. It was hypothesized that the negative 

term in Q2 may be just the first section of a third degree polynomial, 

the second section not observable from the sample data. The average 

0 and M and investment cost curves further support the existence of 

economies of scale in water supply. This finding of economies of scale 

in water supply supports the theory for determining optimum excess 

capacity in water system investment. 

Growth of Rural Water Systems 

Average annual growth for the sample of rural water systems was 

computed using a growth index as the dependent variable and age of 

system as an independent variable. The average annual growth rate for 

the sample was estimated at about eight percent. 

Results of the Investment Programming Model 

The mathematical investment programming model developed in this 

study for planning rural water systems has the following distinctive 

aspects: first, optimal excess capacity for initial and expansions to 

the system are computed as an upper limit of the system. Economies of 

scale found empirically in water supply facilities are incorporated 

at given discount rates to obtain the optimal excess capacity design. 

Second, price-sensitive demands are considered in the model. They are 
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used not only to indicate the social benefits of water demand but also 

to yield the socially optimal prices, reflecting costs of investment 

and operation and maintenance. Third, public investment in existing 

rural community water services in Oklahoma under a specific growth 

pattern is evaluated by comparing against the optimum system resulting 

from the model. 

Under various input conditions, a wide range of sensitivity analyses 

of optimal solutions were studied. A 'base model' is defined for the 

average size system in Oklahoma of 49.1 million gallons of water demand 

in the initial year of operation and with eight percent annual growth in 

number of customers. The programming model is run for a planning period 

of 40 years with five-year increments. 

The optimal capacity solutions show 136.9 mgy, 108.7 mgy and 93.8 

mgy for the initial systems under conditions of one percent, three per

cent and five percent discount rates, respectively. According to the 

schedule of solutions, these initial capacities are maintained through 

time unit three (15 actual years in the model) and then new facilities 

are added at the beginning of time unit four. 

The programming results correspond with the theory that one of the 

factors determining size of the optimal capacity is the social discount 

rate. In other words, under given economies of scale if the discount 

rate is low the size of optimal capacity is relatively large whereas if 

the discount rate is high the size of optimal capacity is relatively 

small. 

Optimal water supply increases as the water system grows as long 

as there is excess capacity. However, once a water system reaches its 

capacity it cannot increase supply of water even if demand continues to 
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grow. An increase in supply can be realized only after an addition to 

capacity occurs. However, the additional capacity comes into the solution 

only after the backlog of demand reaches a certain level. When a water 

system operates at capacity, water price allocates the limited amount 

of water. In other words, as the backlog becomes larger and larger the 

water rate becomes higher and higher until new additions come into the 

solution. In this manner, the limited supply of water is allocated to 

consumers on a willingness-to-pay basis. 

A comparison of equity for the set of initial customers under 

conditions of growth and no growth of the water system is made by comput

ing a payment per user. According to the comparison, the discounted 

amount of payment per user without growth is higher than the amount of 

payment with growth. This can be explained in that a water system with 

growth can take advantage of the additional economies of scale whereas a 

system without growth cannot. 

Past Public Investments in Rural Water Services 

To demonstrate the usefulness of the optimal decision model for 

planning rural water systems, a comparison of results with an actual 

system, Murray #1, is made. Using the actual growth rate of Murray #1, 

the optimal investment and operation schedule as well as the net social 

benefits are computed. The net social benefits obtained from the optimal 

solution are $310,176. This value is compared with the net social bene

fits, $204,428,which are computed using Murray #l's water supply and 

investment records. The social benefits generated from the optimal 

solution is about 52 percent higher than the benefits from the actual 

water supply decisions. 
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Conclusions 

Policy Implications 

In the water demand and supply cost analyses, it was found that 

there is price-sensitive water consumption behavior and economies of 

scale in water supply. These findings show close interrelationships 

among water price, consumption of water and water supply cost. The 

finding of economies of scale in water supply supports the proposition 

that excess capacity should be considered in water system capacity 

design. 

From the comparison of net social benefits between actual and 

optimal results of water system planning for Murray #1, it is proposed 

that better decisions could be made in maximizing social benefits. 

The loss of net social benefits for Murray #1 could have been reduced 

if perfect information on system growth had been available and if better 

decisions had been made on optimal system capacity. 

Based upon the results of this study, the following decision criteria 

for planning rural water systems are proposed: 

1. Price-sensitive consumer water consumption behavior 
should be considered in decisions of rural water 
capacity design and pricing policy. 

2. The existence of economies of scale in water supply 
costs are important in considering the above 
decisions. 

3. Predictions of growth are highly important in 
planning water system capacity. 

4. All of the above criteria should be considered 
simultaneously in making global optimal water 
supply decisions. 
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Limitations and Need for Further Research 

Like most, this study suffers from a number of limitations, some 

of which could not be avoided. Primary among these was the simplifica

tion in estimating aggregate water demand. The estimated aggregate 

demand functions did not consider an income effect even though income 

may be ·an important factor in explaining water consumption behavior, 

particularly for nonhousehold use during the summer season. An adequate 

measure of income for the aggregate analysis was not available. 

A second shortcoming is loss of a major part of the marginal cost 

pricing goal in estimation of the aggregate demand function. Demand was 

estimated as a function of average billing price and aggregate consump

tion of water for the district. The general rate structure is one of 

declining block rates. Therefore individual consumers would theorteti

cally equate marginal block rate price with quantity consumed. The 

typical block rate price for each water district was used as a surrogate 

of marginal price in estimation of aggregate water demand. Little 

difference was noted in estimated parameters when compared to the average 

billing price results. Evidence is scarce whether consumers adjust 

quantity to average billing cost or marginal cost. In any event, bias 

could enter in the results presented here on marginal cost pricing. 

A third limitation is that the optimal decision model, discussed in 

Chapter IV, adopted a linear 0 and M and investment cost function for 

water supply cost during the planning period. These linear cost func

tions may overestimate costs for small systems and underestimate costs 

for large systems which generally appear during the latter part of the 

planning period. 
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A fourth limitation is that the optimal decision model cannot be 

considered in its present form for other water system management issues 

such as peak load capacity and price decisions. 

Finally, the purpose of this study was to provide information for 

the planning and management of rural water systems to achieve economic 

efficiency. The criteria used for this objective was marginal cost 

pricing. However, because of economies of scale some small water systems 

may operate at the level where long run marginal cost is lower than 

long run average cost. Under this circumstance, marginal cost pricing 

will not cover total water supply cost. As discussed in Chapter II, 

several alternatives are available which allow marginal cost pricing but 

at the same time avoid loses due to differences between total water 

supply cost and total revenue collected from the marginal cost price. 

These kinds of pricing policies were not covered in this study and 

remain as further research. 

In this study water supply costs cover only distribution for those 

systems purchasing treated water. Further, cost analysis was limited 

to those systems in existence. More detailed and current costs are 

necessary for application of the model to actual planning conditions. 

Therefore, further study remains to improve the model by using engineer

ing cost data and including other costs involved in a general water 

supply situation. 
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APPENDIX A 

SAMPLE DATA BY OBSERVATION ON WATER 

CONSUMPTION, PRICE AND 

NUMBER OF TAPS 
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OBS 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

TABLE XXXIX 

SAMPLE DATA BY OBSERVATION ON WATER CONSUMPTION, PRICE 
AND NUMBER OF TAPS 

AGWAD WAPR RE SID NONR 

16.760 2.16 285 7 

1.460 2.25 35 0 

29.200 3.53 571 4 

45.630 1.35 300 0 

9.125 1.13 87 0 

6. 720 2.23 94 16 

4.250 1.80 30 5 

ll4. 420 1.68 341 88 

8.090 1.10 94 1 

30.300 1.25 448 27 

ll.680 1.63 172 2 

36.500 3.85 665 15 

73.000 0.94 745 5 

10.950 3.13 193 5 

68.510 1.12 386 24 

14.600 1.17 215 9 

5.840 1.39 85 3 

79.270 1. 78 814 10 

65.000 0.87 391 5 

30.300 2.28 273 2 

74.000 1. 63 530 1 

54.510 1.56 413 131 

55.800 2.17 788 29 

365.000 1.36 2200 0 

52.830 1. 71 655 20 

47.360 1. 92 307 0 

36.500 2 .13 365 15 

26. 650 2. 72 275 4 

10.950 3.33 162 2 

109.500 1.15 550 1 
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TOTAL 

292 

35 

575 

300 

87 

llO 

35 

429 

95 

475 

174 

680 

750 

198 

410 

224 

88 

825 

396 

275 

531 

544 

817 

2200 

675 

307 

380 

279 

164 

441 
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TABLE XX.XIX (Continued) 

OBS AGWAD WAPR RES ID NONR TOTAL 

31 3 .650 2.20 60 0 60 

32 2.920 1.25 67 4 71 

33 78.480 2.00 380 68 448 

34 13 .510 2.73 78 78 156 

35 121. 650 1.17 460 100 560 

36 73.000 1.21 634 56 690 

37 161.870 0.64 1100 0 1100 

38 30. 420 3.53 242 14 256 

39 36.500 2.00 330 31 361 

40 4.140 2.10 74 1 75 

41 21.290 2.14 209 2 211 

42 11.130 1.29 115 1 116 

43 94.900 2.17 609 2 611 

44 17.520 2.36 107 58 165 

45 12.050 1.63 65 35 100 

46 5.340 3.15 68 34 102 

47 54. 750 0.86 515 50 565 

48 2.920 2.92 43 7 so 
49 9.230 3.75 150 54 204 

50 6.210 2.75 60 31 91 

51 7.300 2.10 102 18 120 

52 28.470 2.15 158 60 218 

53 52.300 1. 78 850 100 950 

54 7.300 1.40 55 1 56 

55 9.125 2.90 149 12 161 

56 27.680 1.38 234 9 243 

57 36.500 1.99 430 20 450 

58 164.250 992 101 1093 

59 61.310 1. 82 379 10 389 

60 39.060 1.18 425 2 427 

61 2.190 1. 72 16 2 18 
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TABLE XXXIX (Continued) 

OBS AGWAD WAPR RES ID NONR TOTAL 

62 29.200 0.68 189 6 19S 

63 10.260 3.80 77 2S 102 

64 13. 060 1.97 60 21 81 

6S 60.S90 l.3S 884 0 884 

66 6.390 1. 66 114 1 llS 

67 182.SOO 0.81 97S 12S 1100 

68 3 .6SO 2.2S 94 0 94 

69 S6.900 1. 7S 903 0 903 

70 40.510 1. 90 60S 0 60S 

71 1S8.170 0.89 47S 100 S7S 

72 19.830 1.19 216 L~ 220 

73 22. 960 2.S4 37S 10 38S 

74 37.SOO 0.89 209 0 209 

7S 24.460 1.81 L~99 6 sos 
76 2S.SSO 1.10 24S 4 249 

77 23.730 1.40 32S 20 34S 

78 12.780 2.73 3S4 36 390 

79 36S.OOO 1.40 950 2SO 1200 

80 s .4S7 2.42 87 0 87 

81 2 9. 2 00 2.S7 383 1 384 

82 96.730 l.SO S2S 2 S27 

83 1.460 1.90 so 0 so 
84 25.SSO 1. 7S 22S s 230 

8S 42.S60 2.7S 443 8 4Sl 

86 164.2SO 1.33 910 18 928 

87 116.440 0.79 361 39 400 

88 136. 880 o. 72 32S 10 33S 

89 127. 7SO 1.12 849 11 860 

90 36.500 1.58 525 2S sso 
91 9.130 2.00 184 3 187 

92 10.980 2.2S 288 1 289 

93 8.SOO 3.15 18S 4 189 
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TABLE XXXIX (Continued) 

OBS AGWAD WAPR RES ID NONR TOTAL 

94 36.500 1.02 490 10 500 

95 182.500 1.61 1299 101 1400 

96 73.000 3.75 1474 12 1486 

97 13.380 1.58 214 0 214 

98 9.790 2.40 108 4 112 

99 9.420 1.08 105 5 110 

100 53.940 2.25 791 18 809 

101 16.610 1. 79 225 1 226 

102 58.400 0.84 432 60 492 

103 13.140 3.67 435 0 435 

104 18.150 1.47 200 0 200 

105 60.809 2.75 649 0 649 

106 18.250 2.86 492 0 492 

107 12.170 1. 98 220 2 222 

108 5.475 2.01 48 5 53 

109 6.060 1. 71 68 1 69 

110 48.650 1.95 258 12 270 

111 10.220 4.00 128 20 148 

112 205 .400 1.03 1387 132 1419 

113 27.460 1. 71 338 0 338 

114 23.100 1.92 373 4 377 

115 73.000 1.40 370 80 450 

116 24.460 3.20 490 0 490 

117 12.480 2.67 112 2 114 

118 26.900 2.60 517 5 522 

119 27.380 3.00 418 2 420 

120 18.250 2.25 408 2 410 

121 97.670 2.29 1310 11 1321 

122 37.560 3.21 475 0 475 

123 12 .150 2 .12 200 1 201 

124 73.000 2.25 1342 100 1442 

125 7.300 1. 98 114 3 117 
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TABLE XXXIX (Continued) 

OBS AGWAD WAPR RE SID NONR TOTAL 

126 24.330 2.83 240 0 240 

127 16.430 1. 72 165 0 165 

128 148.190 1.07 1250 150 1400 

129 12. 980 1.02 203 12 215 

130 5.840 1.02 38 0 38 

131 34.070 2.67 520 10 530 

132 9.130 2.89 104 0 104 

133 28.830 2.60 390 50 440 

134 42.600 1.30 667 33 700 

135 10.950 1.83 162 8 170 

136 10.210 3.30 160 0 160 

137 21. 730 1.86 204 3 207 

138 109.500 1.14 982 80 1062 

139 57.490 1.34 490 6 496 

140 91.250 1.22 310 0 310 

141 146.000 1.25 600 100 700 

142 36.500 1.47 248 5 253 

143 12 .150 2.09 166 11 177 

144 12.150 2.08 211 0 211 

145 6.100 1.47 119 1 120 

146 47. 450 1.48 457 25 482 

147 27.380 0. 77 152 0 152 

148 74.460 0.76 474 0 474 

149 70.300 0.79 437 0 437 

150 14.970 1. 96 187 10 197 

151 23.730 2.90 400 0 400 

152 23.730 3.20 425 1 426 

153 21.290 0.80 179 6 185 

154 54. 750 3.38 710 30 740 

155 45.630 1.36 416 30 446 

156 152.060 1.12 1570 130 1700 

157 182.500 2.20 1350 300 1650 
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TABLE XXXIX (Continued) 

OBS AG WAD WAPR RES ID NONR TOTAL 

158 54. 750 1.29 340 25 365 

159 18.250 2.87 296 4 300 

160 11.320 1.66 68 8 76 

161 25.550 2.50 185 0 185 

162 24.090 2.67 349 5 354 

163 352.590 1.52 2300 5 2305 

164 132 .500 1. 70 1172 0 1172 

165 182.500 1. 74 1477 50 1527 

166 21.900 1. 76 250 0 250 

167 38.690 1.03 600 0 600 

168 73 .000 2.14 497 1 498 

169 10.590 1. 79 140 0 140 

170 51.100 1.59 405 20 425 

171 10.340 1.92 141 4 145 

172 10.340 1.09 140 0 140 

173 18.750 2.54 263 5 268 

174 84.740 1.36 690 0 690 

175 127. 750 1.12 675 25 700 

176 7.300 1.17 101 1 102 

177 48.65 1.35 187 0 187 

178 365. 000 1.14 2050 150 2100 

179 36.500 1.50 495 12 507 

180 3.830 2.22 73 2 75 

181 32.850 1.25 370 0 370 

182 21. 900 1.10 135 0 135 

183 54.750 1.28 625 125 750 

184 110.800 1.08 360 40 400 

185 30.400 1. 71 366 4 370 

186 18.250 3.29 408 22 430 

187 14.600 2.94 344 6 350 

188 150.940 1.89 1651 9 1660 
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TABLE XXXIX (Continued) 

OBS AG WAD WAPR RES ID NONR TOTAL 

189 310.980 1.61 975 5 980 

190 25.950 1.89 337 0 337 

191 5.550 3.53 87 0 87 

192 2.920 3.00 50 0 50 

193 44.170 3.70 721 0 721 

194 18.250 2.44 337 0 337 

195 36.500 1.98 569 0 569 

196 2.190 1. 97 31 0 31 

197 18.250 2.25 225 0 225 

198 32 .850 1. 00 198 20 218 

199 29.200 2.54 196 106 302 

200 2.190 2.22 115 69 184 

201 1.530 2.57 15 5 20 

202 14.600 0.59 ·90 7 97 

203 11.680 2.00 58 33 91 

214 19.310 1. 94 198 21 219 
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OBS WASD 
mgy 

1 3.000 
2 3.520 
3 3.700 
4 4.200 
5 13. 814 
6 16.714 
7 22.467 
8 21. 620 
9 25.608 

10 23.987 
11 33. 046 
12 2.570 
13 2.380 
14 10.200 
15 10.800 
16 12.000 
17 14 .400 
18 18.000 
19 19.200 
20 24.000 
21 11.316 
22 19.864 
23 26.190 
24 26.418 
25 33.347 
26 39.907 
27 43.646 
28 44.376 
29 50.854 
30 8,211 
31 8.537 
32 10.674 
33 14.685 
34 17,897 
35 23. 723 
36 30.076 
37 33.698 
38 23.361 
39 19.098 
40 22,386 
41 42,565 
42 17.247 

TABLE XL 

SAMPLE DATA BY OBSERVATION ON OPERATION 
AND MAINTENANCE COST 

DENSITY 
COST PER COST PER MILE USERS 

mgy fl It 

281. 7 845 7.47 13 
233.0 820 8.05 14 
295. 9 1095 9.20 16 
558.6 2346 9. 77 17 

1,279.6 17677 7.59 203 
1, 351.1 22582 9. 72 260 
1,003.8 23901 9.98 267 
1,831.9 39606 10.32 287 
1,265.1 32397 11.91 331 
1,172.5 28125 12.59 350 

919.9 30399 13.53 376 
1,268.5 3260 5.28 29 
1,158.8 2758 5.28 29 

918.0 9364 7.48 168 
925.1 9991 7.75 174 
880.1 10561 7.97 179 
823.9 11864 8.99 202 
945.9 17027 7.57 223 
816.1 15670 8.45 249 
969.5 23267 9.37 276 

1, 420.3 16072 4.29 183 
819.8 16284 5. 96 305 

1,144.3 29968 6.52 334 
1,095.3 28935 6.97 357 
1,351. 7 45074 6,58 384 
2,265,5 90409 8,61 502 
1,876.9 81920 4.31 542 
1,801.2 79932 5.16 648 
1,834,4 93287 5.21 655 
1,082.9 8892 6.00 230 
1,411.6 12051 6.65 255 
2,880.3 30744 7.52 307 
2,467.7 36238 9.33 381 
2,327.4 41653 9.91 405 
2,011.2 47712 10.82 442 
1,924.6 57884 11.82 483 
1,734.2 58440 12.56 513 

200.5 4683 8,74 253 
248.9 4754 9.39 272 
214.4 4800 9. 77 283 
120.1 5112 10,81 313 
315.8 5446 11.64 337 

153 

WASDl 

9.0 
12.4 
13. 7 
17.6 

190.8 
279.4 
504.8 
467.4 
605. 6 
575.4 

1092.0 
6.6 
5.7 

104.0 
116. 6 
144.0 
207.4 
324.0 
368.6 
576.0 
128.1 
394,6 
685.9 
697.9 

1112. 0 
1592. 6 
1905.0 
1969. 2 
2586.1 

67.4 
71.2 

113. 9 
215.6 
320.3 
562.8 
904.6 

1135.6 
545.7 
364.7 
501.1 

1811.8 
297,5 
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TABLE XL (Continued) 

DENSITY 
OBS WASD COST PER COST 'PER MILE USERS WASDl 

mgy mgy II II 

43 29.076 195.1 5674 10.90 349 845.4 
44 31.582 193.0 6095 11.31 362 997.4 
45 16.947 1,780.0 30165 6.68 389 287.2 
46 18.924 1,619.5 30648 7.19 419 358.1 
47 23.752 1,526.9 36267 8.03 468 564.2 
48 28 .571 1,594.9 48568 9.07 551 816.3 
49 51.393 1,510.9 77651 9.11 572 2641.2 
50 74.699 1,343.3 100341 9.48 595 5579.9 
51 219.694 322.5 70857 6.24 866 48265.5 
52 232.199 375.0 87077 6.53 905 63916.4 
53 247.160 313.5 77475 7.06 979 61088.1 
54 305 .396 307.6 93938 7.54 1043 93266.7 
55 279.398 393.1 109830 7.52 1043 78063.2 
56 321.538 379.1 121888 7.70 1091 1033811.6 
57 12.430 5,519.0 68601 5.12 507 154.5 
58 13.020 2,908.6· 37870 5.74 568 169.5 
59 13.682 3,625.6 49606 6.22 615 187 .2 
60 140.677 466.4 65605 6.81 674 1979.0 
61 144.812 493.7 71497 7.44 760 20967.0 
62 19.401 1,738.8 33734 5.25 268 376.4 
63 22.907 1,616.5 37029 5.52 282 57.4.7 
64 26.282 1,276.0 33552 6.07 310 690.7 
65 14. 708 805.1 11841 9.57 302 216.3 
66 19.987 753.4 15058 9.95 314 399.5 
67 12.815 1,022.9 13108 9.85 311 164.2 
68 19.779 844.4 16701 8.30 34 7 391.2 
69 18.267 1,504.6 27485 8.30 347 333.7 
70 13.753 1,458.5 20430 6.53 402 189.1 
71 15. 944 1,568.7 25012 7.75 477 254.2 
72 15.630 1,593.0 24899 7.83 482 244.3 
73 23.713 1,308.7 31034 5.58 312 562.3 
74 22.816 1,273.0 29044 6.17 345 520.6 
75 34.727 1,795.3 62345 7.82 437 1206.0 
76 45.643 1,851. 9 84527 9.01 504 2083.3 
77 60.394 1,286.2 77681 10.17 569 3647.4 
78 54.059 1,429.4 77273 11.61 649 2922.4 
79 12.134 786.2 9540 12.43 400 147.2 
80 14.228 1,771.8 25209 9.76 400 202.4 
81 19.108 1,523.8 29117 9.76 400 365.1 
82 20.348 1,522.2 30974 9.74 399 414.0 
83 26.978 1,331.5 35922 9.74 399 727 .s 
84 35.841 1,280.6 45898 10.35 424 1284.5 
85 46.245 1,289.0 59612 11.93 448 2138.6 
86 47.990 1,330.0 63829 11.81 484 2303.0 
87 49.590 1,535.4 76141 12.47 511 2459.2 
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TABLE XL (Continued) 

DENSITY 
OBS WASD COST PER COST PER MILE USERS WASDl 

mgy mgy II ff 

88 10.200 1,089.0 11108 6.37 217 104.0 
89 11.000 1,659.1 18250 4.93 232 121.0 
90 14.200 1,406.1 19967 6.34 298 201.6 
91 14.700 1,576.1 23168 7.27 342 216.9 
92 15.000 1,263.1 18947 7.78 366 225.0 
93 16.300 1,603.1 27108 7.91 372 265.7 
94 17.358 1,020.5 17713 3.15 252 301.3 
95 17.266 1,217.0 21012 3.35 268 298.1 
96 24. 040 1,488.5 35784 5.19 475 577. 9 
97 36.010 968. 7 34883 5.73 525 1296. 7 
98 40.699 936.1 38100 6.18 566 1656.4 
99 39.198 1,127.1 44179 6.54 599 1536.5 

100 38.853 1,354.2 52617 7.14 654 1509.6 
101 57.139 980.5 56026 7.48 762 3264.9 
102 63.372 1,215.3 77017 8.43 859 4016.0 
103 86.858 1,134.5 . 9854J. 9.17 934 7544.3 
104 30.000 1,239.4 37183 5.26 647 900.0 
105 32.000 2,734.9 87518 5.71 708 1024.0 
106 33.000 1,782.8 58834 6.18 767 1089. 0 
107 36.000 1,870.0 67320 6.81 845 1296.0 
108 38.065 1,525.9 58083 5.73 883 1448.9 
109 55.000 972.1 53463 16.95 607 3025.0 
110 65.000 757,5 49240 19.10 684 4225.0 
111 71. 056 922.2 65530 21.92 785 5049.0 
112 76.778 920.9 70706 23.51 842 5894.9 
113 76.145 1,230.4 93687 18.93 895 5798.1 
114 108.068 1,004.7 108571 27.90 999 11678.7 
115 28.876 617.6 17835 6.01 335 833.8 
116 26.725 747.4 19975 6.42 358 714.2 
117 26.010 803.6 20901 6.44 359 676.5 
118 23.826 1,073.4 25575 4.70 380 567.7 
119 33.729 973.6 32838 5.75 465 1137.6 
120 35.481 795.2 28216 9.68 449 1258.9 
121 46.245 736.9 34080 10.20 473 2138.6 
122 47.990 746.5 35826 11.06 513 2303.0 
123 49. 5 90 864.8 42887 11.65 540 2459.2 
124 2.117 2,517. 7 5330 7,78 131 4.5 
125 3.954 707.1 2796 8.82 140 15.6 
126 2. 951 740.8 2186 8.38 141 8.7 
127 3.036 1,023.1 3106 6.80 143 9.2 
128 4.583 1,838.1 8424 7.23 152 21.0 
129 7.376 597.2 4405 8.56 180 54.4 
130 5.154 1,594.5 8218 3.82 262 26.6 
131 7 .380 1,436.0 10598 4.08 280 54.5 
132 11,105 1,578.7 17532 4.66 320 123.3 
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TABLE XL (Continued) 

DENSITY 
OBS WASD COST PER COST PER MILE USERS 

mgy mgy It If WASDl 

133 30.980 1,135.3 35173 3.54 348 959.8 
134 29.414 1,327.l 39035 3.19 314 865.2 
135 36.078 1,273.1 45931 4.88 380 1301.6 
136 49.694 1,285.5 63880 n.17 607 2469.5 
137 56.255 1,275.7 71764 6.39 629 3164.6 
138 58.499 1,567.3 91688 6.51 640 3422.1 



APPENDIX C 

ZERO-ONE MIXED INTEGER PROGRAMMING USING 

BRANCH AND BOUND TECHNIQUES 
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Consider the following 0-1 MIP problem 

Minimize 200X1 + 100X2 + 75X3 + 5ox4 + 7x1 + 2x2 + Sx3 + 9x4 

Subject to x1 + 0.2x2 + x3 + 2x4 > 43 

3x1 + 2x3 > 46 

xl + 4x2 > 42 

0.7x1 + X4 > 

xl -0.02x1 > 

X2 -0.02x2 > 

x3 -0.02x3 > 

X4 -0.02x4 > 

0 < X. < 1, x. > O, X. = integer, all i 
- 1- 1- 1 

Note that the X. are integer (binary) decision variables restricted to 
1 

40 

0 

0 

0 

0 

zero or one, whereas the x. are continuous (nonnegative) variables. Also 
1 

note that the last four constraints require X. = 1 if x. > O; hence the 
1 1. -

model is is analagous to the type of fixed-charge problem reported in 

this research. The last four constraints also impose an upper limit of 50 

on the continuous variables since the binaries cannot exceed one. 

Node 1 

The first step in the solution methodology is to ignore integer 

restrictions on the X's. Using linear programming (LP), the following 

optimal continuous solution is obtained: 

z1 488.oo 

Variable No. 1 2 3 4 

Integer 0.31 0.13 0 0.59 

Continuous 15.33 6.67 0 29.27 
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In this table, the optimal objective function value (z1 is 488.00; inte

ger variable 1 (X1) is 0.31; continuous variable 1 (x1) is 15.33; and so 

forth. 

Nodes 2 and 3 

Clearly, some of the integer variables above have nonintegral value. 

One must be selected on which to branch (i.e., set equal to 0 or 1). 

Arbitrarily, x2 is chosen. A new problem (called Node 2) is formed 

which is identical to the LP problem of Node 1 with addition of the new 

constraint x2 = 0. Similarly, Node 3 is formed by adding x2 = 1 to the 

problem of Node 1. Solution of these new problems by LP results in the 

following: 

Variable No. 

Integer 

Continuous 

1 

0.84 

42. 00 

2 

0 

0 

568.000 

3 4 

0 0.21 

0 10.60 

1 

0.31 

15.33 

z3 574.667 

2 3 4 

1 0 0. 59 

6.67 0 29.27 

As expected, objective function values (Z2 and z3) increased for both 

problems due to the additional constraint. In Node 2 (which has best 

functional value), all binary variables are not integral; hence, another 

branch must be made. 

Nodes 4 and 5 

Both x1 and x4 in Node 2 are nonintegral; x1 is arbitrarily chosen 

as the next binary variable on which to branch. Node 4 is created by 

adding the constraint x1 = 1 to the problem of Node 2. That is, problem 

No. 4 is the original LP problem with two additional constraints: 
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x2 = 0 and x1 = 1. Similarly, Node 5 is formed by adding the constraint 

x1 0 to the problem of Node 2. Solution of problems 4 and 5 by LP 

results in the following for No. 4; No. 5 however is infeasible. 

Because no LP solution exists, its objective function value is set 

equal to infinity (Z5 = 00 ). 

Variable No. 

Integer 

Continuous 

1 

1 

50.00 

2 

0 

0 

600.00 

3 

0 

0 

4 

0.1 

5.00 

The terminal nodes of the solution tree now include 3, 4, and S; 

branches have already been made from 1 and 2. Node 3 has best function

al value; hence, its solution must be examined to determine whether the 

binary variables have integral value. Both x1 and x4 do not; one must 

be selected, x1 is chosen. Nodes 6 and 7 are created by adding the 

constraints x1 = 0 and Xi = 1 to the problem of Ncde 3. 

Additional Nodes 

The process of branching on nonintegral binary variables followed 

by LP solution is continued until all binary varibles in the terminal 

nodes with best functional value are integral. At this point, the 

optimal solution has been found. The solution tree for this problem is 

shown in Figure Al. Nine interations were made (of the possible 15) 

to obtain optimality. Although only the final solution is 11binary 

feasible" (i.e., with all binary variables having integral value) it is 

common to obtain additional feasible solutions during the branching pro

cess. Instead of continuing branching until optimality is proven, the 
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Optimal 
Objective Function 

Node 

1 488.00 

2 568.00 

3 574.67 

4 600.00 

5 

6 670.50 

7 700.00 

8 

9 639.40 



process can be stopped if desired when an intermediate feasible solu

tion with acceptable functional value is encountered. 

A tabulation of all solutions obtained during branching for the 

sample problem is as follows: 

Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

0.31 

0.84 

0.31 

1 

0 

1 

1 

1 

15.33 

42.00 

15 .33 

50.00 

0 

50.00 

42. 00 

Binary Variables 

2 

0.13 

0 

1 

0 

1 

1 

0 

3 

0 

0 

0 

0 

0.46 

0 

0 

Continuous Variables 

2 3 

6.67 0 

0 

6.67 

0 

10.50 

0 

0 

0 

0 

0 

23.00 

0 

0 

4 

0.59 

0.21 

0.59 

0.10 

0.80 

0.10 

1 

4 

29.27 

10.60 

29.27 

5.00 

40.00 

5.00 

10.60 
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z4 "' 600.00 
x .. 1 
x1 - o 
x2 = o 
x~ • 0.1 

z9 = 639.40 
x1 = 1, x2 = o 
x3 • O, x4 • 1 

z1 .. 488.oo 
x1 = o.31, x2 = 0.13 
X3 = 0, x4 = 0.59 

z3 = 574.67 
x1 = 0.31, ~ = 1 
x3 = 0, x4 = 0.59 

00 
z6 = 670.so 
x .. 0 

~ = 1 
x3 ., 0.46 
x4 "' 0.80 

z7 = 700.00 
x1 = 1 
x = 1 
x2 = o 

3 x4 = 0.1 

Figure 12. MIP Solution Tree for the Problem 
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APPENDIX D 

TABLEAU RESULTS OF THE SMALL AND 

LARGE SIZE WATER SYSTEMS 
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Discount Objective 
Rate Value 

(percent) ($) 

1 158,822 

3 2, 966 

5 

7 

9 

15 

TABLE XLI 

OPTIMAL CAPACITY INVESTMENT SCHEDULE OF SMALL WATER SYSTEM 
AT TWO PERCENT GROWTHa 

Building Time Unit 

1 2 3 4 5 6 7 

67.1 

75.8 

aAmount of system capacities in mgy. 

8 Total 

67.1 

75.8 

I-' 

°' 1..11 



Discount Objective 
Rate Value 

(percent) ($) 

1 301,002 

3 33,116 

5 

7 

9 

15 

TABLE XLII 

OPTIMAL CAPACITY INVESTMENT SCHEDULE OF SMALL WATER SYSTEM 
AT FOUR PERCENT GROWTHa 

Building Time Unit 

1 2 3 4 5 6 7 

91.6 90.9 

135.5 

aAmount of system capacities in rngy. 

8 Total 

182.5 

135. 5 

I-' 

°' °' 



Discount 
Rate 
(R) 

1 

3 

5 

7 

9 

15 

Objective 
Value 

($) 

600,466 

102.933 

TABLE XLIII 

OPTIMAL CAPACITY INVESTMENT SCHEDULE OF SMALL WATER SYSTEM 
AT SIX PERCENT GROWTHa 

Building Time Unit 

1 2 3 4 5 6 7 

114.2 167.6 

196. 9 

aAmount of system capacities in mgy. 

8 

152.7 

156,l 

Total 

434.5 

353.0 

...... 

°' " 



Discount 
Rate 

(percent) 

1 

3 

5 

7 

9 

15 

Objective 
Value 

($) 

1,814,717 

249,230 

TABLE XLIV 

OPTIMAL CAPACITY INVESTMENT SCHEDULE OF SMALL WATER SYSTEM 
AT EIGHT PERCENT GROWTHa 

Building Time Unit 

1 2 3 4 5 6 7 

136.9 208 .1 293.9 

235.0 272.3 

aAmount of system capacities in mgy. 

8 

299.4 

237.7 

Total 

938.3 

745.0 

I-' 

°' CXl 



TABLE XLV 

OPTIMAL CAPACITY INVESTMENT SCHEDULE OF SMALL WATER SYSTEM 
AT TEN PERCENT GROWTHa 

~--~~~~--~--~~~~-~~~~~~~~~~~~~~~~~~·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Discount 
Rate 

(percent) 

1 

3 

5 

7 

9 

15 

Objective 
Value 

($) 

2,291,539 

545,131 

1 2 

143.4 

a f . . Amount o system capacity in mgy. 

3 

Building Time Unit 

4 5 6 7 8 Total 

228.1 382.4 460.1 741.3 1955.3 

290.7 307.8 365.3 588.6 1552.4 

I-' 
0\ 
\0 



Discount 
Rate 

(percent) 

1 

3 

5 

7 

9 

15 

TABLE XLVI 

OPTIMAL WATER SUPPLYa AND WATER-RATEb SCHEDULE OF SMALL WATER SYSTEM 
AT TWO PERCENT GROWTH 

Water Supply and Rate for Each Time Unit 

1 2 3 4 5 6 7 

67.1 67.1 67.1 67.1 67.1 67.1 67.1 
(1106. 3) (1515.6) (1877. 9) (2200.0) (2481.8) (2750.2) (2991.8) 

75.8 
(2692.5) 

aAmount of water supplied in mgy. 

bDollarsper million gallons in parentheses. 

8 

67.1 
(3213.2) 

75.8 
(2942.6) 

I-' 
-..J 
0 



Discount 
R::i.te 

(percent) 
-· 

1 

3 

5 

7 

9 

15 

TABLE XLVII 

OPTIMAL WATER SUPPLYa AND WATER RATEb SCHEDULE OF SMALL WATER SYSTEM 
AT FOUR PERCENT GROWTH 

Water Supply and Rate for Each Time Unit 

1 2 3 4 5 6 7 

91.6 91.6 91.6 91.6 91.6 182.5 
(1040.6) (1800,9) (2423.8) (2936. 7) (3358 .1) (2124 .5) 

135 .5 135 .5 
(2942 .3) 

aAmount of water supplied in mgy. 

bDollarsper million gallons in parentheses. 

8 

182. 5 
(2690.3) 

135. 5 
(3362.4) 

,...... 
........ ,...... 



Discount 
Rate 

(percent) l 
-

l 

3 

5 

7 

9 

15 

TABLE XLVIII 

OPTIMAL WATER SUPPLYa AND WATER RATEb SCHEDULE OF SMALL WATER SYSTEM 
AT SIX PERCENT GROWTH 

Water Supply and Rate for Each Time Unit 

2 3 4 5 6 7 

114.2 114.2 114.2 114.2 281.8 281.8 
(914. 7) (2022. 5) (2856.1) (3472.8) (1918.4) (2792.0) 

196.9 196. 9 196.9 
(2149. 6) (2937.2) (3547.6) 

aAmount of water supplied in mgy. 

bDollarsper million gallons in parentheses. 

8 

444.5 
(2321. 9) 

352.9 
(2935.6) 

I-' ...... 
N 



Discount 
Rate 

(percent) 

1 -

3 -

5 

7 

9 

15 

TABLE XLIX 

OPTIMAL WATER SUPPLYa AND WATER RATEb SCHEDULE OF SMALL WATER SYSTEM 
AT EIGHT PERCENT GROWTH 

Water Supply and Rate for Each Time Unit 

1 2 3 4 5 6 7 

136. 9 136.9 136.9 345.1 345 .1 638. 9 
(932.9) (2329.3) (3273. 9) (1849.0) (2953.3) (2297 .2) 

- - 235.0 235.0 235.0 507.3 
(182/.. O) (2950.0) (3702.0) (2915. 7) 

aAmount of water supplied in mgy. 

bDollarsper million gallons in parentheses. 

8 

938.3 
(2297.4) 

745.0 
(2916. O) 

t--' 
-...J 
w 



Discount 
Rate 

(percent) 
--

1 

3 

5 

7 

9 

15 

TABLE L 

OPTIMAL WATER SUPPLYa AND WATER RATEb SCHEDULE OF SMALL WATER SYSTEM 
AT TEN PERCENT GROWTH 

Water Supply and Rate for Each Time Unit 

1 2 3 4 5 6 7 

143.4 143.4 371.5 371.5 371.5 1213. 9 
(1485.6) (2933. 9) (1~10. 7) (2922.4) (2360.2) (2386.6) 

290. 7 290.7 598.5 963.8 
(2334. 9) (3439.5) (2965.9) (2986.9) 

aAmount of water supplied in mgy. 

bDollarsper million gallons in parentheses. 

8 

1955.2 
(2367. 2) 

1552.4 
(2971.4) 

I-' ..._, 
.p. 



Discount Objective 
Rate Value 

(percent) ($) 

1 3,037,008 

3 1,809,193 

5 1,102,024 

7 675,585 

9 405,608 

15 17 ,028 

TABLE LI 

OPTIMAL CAPACITY INVESTMENT SCHEDULE OF LARGE WATER SYSTEM 
AT TWO PERCENT GROWTHa 

Building Time Unit 

1 2 3 4 5 6 7 

95.1 - - - - - 39.3 

87.1 - - - - - 41.5 

77 .8 - - - - - 49.8 

70.2 - - - - - 51.4 

68.6 - - - - - 53.0 

- 54.3 - - - - -

aAmount of system capacities in mgy. 

8 

-

-

-

-

-

-

Total 

134.4 

128.6 

127.6 

121.6 

121.6 

54.3 

..... 
'-I 
\J1 



Discount Objective 
Rate Value 

(percent) ($) 

1 4,922,375 

3 2,832,615 

5 1,651,769 

7 974,256 

9 575,056 

15 44,528 

TABLE LII 

OPTIMAL CAPACITY INVESTMENT SCHEDULE OF LARGE WATER SYSTEM 
AT FOUR PERCENT GROWTHa 

Building Time Unit 

1 2 3 4 5 6 7 

114.8 - - - 82.2 - 55.l 

107.5 - - - 70.7 - 73.8 

94.4 - - - 75.9 - 81. 7 

81. 7 - - - 88.7 - -
77.8 - - - 84.5 - -

59.9 - - - - 89.8 -

aAmount of system capacities in mgy. 

8 

54.2 

54.2 

-

107.6 

101. 7 

-

Total 

306.3 

306.3 

252.0 

278.0 

264.0 

149.7 

I-' 
....... 

°' 



Discount Objective 
Rate Value 

(percent) ($) 

1 8,558,640 

3 4,675,122 

5 2,609,095 

7 1,483,030 

9 848,527 

15 84,992 

TABLE LIII 

OPTIMAL CAPACITY INVESTMENT SCHEDULE OF LARGE WATER SYSTEM 
AT SIX PERCENT GROWTHa 

Building Time Unit 

1 2 3 4 5 6 7 

132.0 - - 128.8 - 105.4 124.4 

114.2 - - 121. 7 - 130.3 124.4 

108.8 - - 96.0 - 144.2 118.6 

93.1 - - 111. 7 - 161.4 -

85.5 - - 109.7 - 153.8 -

65.8 - - - 131.l - 156.1 

aAmount of system capacities in mgy. 

8 

165.9 

165.9 

158.1 

229.6 

217.0 

-

Total 

656.5 

656.5 

467.6 

595.8 

566.0 

353.0 

...... 

....... 

....... 



Discount Objective 
Rate Value 

(percent) ($) 

1 15,087,504 

3 7,973,369 

5 4,288,098 

7 2,356,339 

9 1,298,954 

15 152,004 

TABLE LIV 

OPTIMAL CAPACITY INVESTMENT SCHEDULE OF LARGE WATER SYSTEM 
AT EIGHT PERCENT GROWTHa 

Building Time Unit 

1 2 3 4 5 6 7 

131.3 - 152.0 - 153.7 204.8 301.8 

137 .8 - - 159.5 139. 7 204.8 301.8 

99.8 - 115.5 - 201.2 195.2 287.6 

93.8 - 108.5 - 194.4 185.9 273.9 

89.4 - 103.4 - 184.0 176.6 260.2 

74.1 - - 160.9 - 169.5 190.1 

aAmount of system capacities in mgy. 

8 

442.1 

442.1 

421.3 

401.2 

381.2 

278.6 

Total 

1385.8 

1385.8 

1320.6 

1257.7 

1194. 8 

873.2 

I-' 

" 00 



Discount Objective 
Rate Value 

(percent) ($) 

1 27,045,256 

3 13,936,689 

5 7,285,573 

7 3,868,880 

9 2,079,792 

15 250,092 

TABLE LV 

OPTIMAL CAPACITY INVESTMENT SCHEDULE OF LARGE WATER SYSTEM 
AT TEN PERCENT GROWTHa 

Building Time Unit 

1 2 3 4 5 6 7 

157.5 - 109.2 162.7 261.6 422.4 679.5 

142.5 - 124.2 162.7 261.6 422.4 679.5 

119. 7 - 134.5 155.0 249.3 402.5 690.8 

102.7 - 139.3 147.6 237.6 383.3 616.6 

102.7 - 164.0 - 329.0 364.1 585.8 

88.8 - - 181.7 164.8 266.1 428.1 

aAmount of system capacities in mgy. 

8 

1000.0 

1000.0 

1000.0 

993.6 

943.8 

689.8 

Total 

279/..9 

2792.9 

2751.8 

2620.7 

2489.4 

1819.3 

I-' 
-...J 
l..O 



-

TABLE LVI 

OPTIMAL WATER SUPPLYa AND WATER RATEb SCHEDULE OF LARGE WATER SYSTEM 
AT TWO PERCENT GROWTH 

Discount Water Supply and Rate for Each Time Unit 
Rate 

(percent) 1 2 3 L1 5 6 7 

1 70.2 77 .8 86.1 95.1 95.1 95.1 127.6 
(912.5) (912.1) (908.9) (906. 4) (1305.8) (1686.2) (910.6) 

3 70.2 77 .8 86.1 86.1 86.1 86.1 127.6 
(912.5) (912.1) (908. 9) (1322.2) (1683.8) (2028.2) (910.6) 

5 70.2 77 .8 77 .8 77 .8 77 .8 77 .8 127.6 
(912.5) (912.1) (1337.. 2) (1705. 6) (2032.4) (2343.6) (910.6) 

7 70.2 70.2 70.2 70.2 70. 2 70.2 121.6 
(912.5) (1340. 7) (1719.8) (2056. 8) (2351. 6) (2632.4) (1117.0) 

9 68 .6 68.6 68.6 68. 6 68.6 68.6 68. 6 
(1012.5) (1431.0) (1801.4) (2130. 7) (2418.8) (2693.2) 2940. 2) 

15 - 54.3 54.3 54.3 54.3 54.3 54.3 
(2237 .5) (2530. 7) (2791. 3) (3019.t~) (3236,6) (3432.1) 

aAmount of water supplied in mgy. 

bDollarsper million gallons in parentheses. 

8 

134. 6 
(1113. 9) 

127.6 
(1331. 6) 

127.6 
(1331. 6) 

121.6 
1518.2) 

121. 6 
(1518. 2) 

54.3 
(3611. 3) 

I-' 
CX> 
0 



TABLE LVII 

OPTIMA.L WATER SUPPLYa AND WATER RATEb SCHEDULE OF LARGE WATER SYSTEM 
AT FOUR PERCENT GROWTH 

Discount Water Supply and Rate for Each Time Unit 
Rate 

(pncent) 1 2 3 4 5 6 7 

1 77 .8 94.4 114 .8 114.8 170.3 197.0 252.0 
(912.1) (910.4) (914.6) (1695.3) (906.3) (1123.6) (915.2) 

3 77 .8 94.4 107.5 107.5 170.3 178.2 252.0 
(912 .1) (910.4) (1193.5) (1924.5) (906.3) (1522.2) (915.2) 

5 77 .8 94.4 9lf. 4 94.4 170.3 170.3 252.0 
(912.l) (910.4) (169:~.9) (2335.8) (906.3) (1689. 6) (915.2) 

7 77 .8 81. 7 81. 7 81. 7 170.3 170.3 170.3 
(912.1) (1501.0) (2179.l) (2734.6) (906.3) (1689.6) (2336.8) 

9 77 .8 77 .8 77 .8 77 .8 162.3 162.3 162.3 
(912.1) (1682.3) (2328. O) (2857.l) (1112.7) (1859.2) (24 75. 9) 

15 59.9 59.9 59.9 59.9 59.9 149.7 149.7 
(1921. 6) (2514. 7) (3011.8) (3419.1) (3754.6) (2126.4) (2695. 2) 

aAmount of water supplied in mgy. 

bDollar per million gallons in parentheses. 

8 

306.2 
(921. 3) 

306.2 
(921.3) 

252.0 
(1696. 4) 

277. 9 
(1326.0) 

264.0 
(1524.8) 

149.7 
(3159.3) 

f-1 
CX> 
f-1 



TABLE LVIII 

OPTIMAL WATER SUPPLYa AND WATER RATEb SCHEDULE OF LARGE WATER SYSTEM 
AT SIX PERCENT GROWTH 

Discount Water Supply and Rate for Each Time Unit 
Rate 

(percent) 1 2 3 4 

l 85.5 114.2 132. 0 204 .8 
(913.9) (914. 7) (1511. 6) (917.3) 

3 85.5 114. 2 114.2 204 .8 
(913.9) (914. 7) (2027.5) (917.3) 

5 85.5 108.3 108 .3 204.8 
(913. 9) (1141. 3) (2191.8) (917.3) 

7 85.5 93.1 93.1 204.8 
(913.9) (1725.0) (2628.0) (917.3) 

9 85.5 85.5 85.5 195.2 
(913.9) (2016.8) (2846.2) (1122. 7) 

15 65.8 65.8 65.8 65.8 
(1924.5) (2773.3) (3411.5) (3891. 9) 

8 Amount of water supplied in mgy. 

bDollarsper million gallons in parentheses. 

5 6 

260.8 366.2 
(1127.2) (905.6) 

236.0 366.2 
(1524.0) (905. 6) 

204 .8 349.0 
(2023.2) (1112.0) 

204.8 366.2 
(2024.2) (905.6) 

195.2 349.0 
(2176. 8) (1112.0) 

196. 9 196.9 
(2149. 6) (2937.2) 

7 

490.6 
(933.7) 

490. 6 
(933. 7) 

467.6 
(1138.4) 

366.2 
(2040.8) 

34 9. 0 
(2193.9) 

352.9 
(2159.2) 

8 

656.5 
(901.5) 

656.5 
(901.5) 

625.6 
(1108. 5) 

595.8 
(1308 .1) 

566.0 
(1507.8) 

352.9 
(2935.6) 

I-' 
00 
N 



Discount 
Rate 

(percent) 

1 

3 

5 

7 

9 

15 

TABLE LIX 

OPTIMAL WATER SUPPLYa AND WATER RATEb SCHEDULE OF LARGE WATER SYSTEM 
AT EIGHT PERCENT GROWTH 

Water Supply and Rate for Each Time Unit 

1 2 3 4 5 6 7 

93.8 131.3 202.2 283.3 437.0 641.8 943. 6 
(910.2) (llH. 5) (912.3) (1107.2) (930. 0) (935.8) (865.1) 

93.8 137 .8 137 .8 297.3 437.0 641.8 943.6 
(910.2) (904. 2) (2309.7) (900.0) (930.0) (935.8) (865.1) 

93.8 99.8 202.2 215.3 416.5 611. 6 899.2 
(910.2) (2116.4) (912.3) (2113.6) (1135.0) (1141.1) (1073.8) 

93.8 93.8 202.2 202. 2 396. 6 582.5 856.3 
(910. 2) (2307 .8) (912.3) (2307.4) (1334.0) (1339.0) (1275.4) 

89.4 89.4 192. 7 192. 7 376.8 553.3 813 ,5 
(1116.1) (2448.1) (118.4) (2448. O) (1532.0) (1537.6) (1476.6) 

74.1 7 4. J. 74.1 235.0 235.0 404 .4 594. 6 
(1832.1) (2936.2) (3692. 0) (1822.0) (2950.0) (2550.1) (2505.4) 

aAmount of water supplied in mgy. 

bDollarsper million gallons in parentheses. 

8 

1385.7 
(865.8) 

1385. 7 
(865. 8) 

1320.6 
(1074.1) 

1257.6 
(1275.7) 

1194.6 
(1477 .3) 

873.1 
(2506 .1) 

I-' 
00 
w 



TABLE LX 

OPTIMAL WATER SUPPLYa AND WATER RATEb SCHEDULE OF LARGE WATER SYSTEM 
AT TEN PERCENT GROWTH 
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EXA.J.'1PLE OF THE REQUIREMENTS FOR 

OPTIMAL SOLUTION 
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h . f · 1 l " 1 T e Requirements o Optima So ution 

General Mathematical Programming Model 

Let's consider the problem of finding the maximum of an objective 

' function f(x) of n non-negative variables x = (x1 , x2 , ••• xn) subject 

to n constraints such that 

g(x) = (g1 (x), g2 (x), ••• ,gm(s))' ~ O, 

where g.(x) is a function of x for all i=l,2, ••• ,m, and f(x) and g(x) 
i 

satisfy the following: 

Assumption 1: f(x) is differentiable and concave 

Assumption 2: g(x) is differentiable and concave 

More formally we have the following optimization problem. Find a 

vector x > 0 that maximizes 

f(x) 

subject to the restrictions 

g (x) > 0 

and x > 0 

(1) 

(2) 

(3) 

In order to find a way to solve this problem, we transform it into the 

following: 

Lagrangean form 0 (x, e) 

where 

e = 

e 
m 

and solve the following: 

f(x) + e 1 g(x) (4) 

1T. Takayama and G.G. Judge, Spatial and Temporal Price and 
Allocation Models, North-Holland Publishing Company, Amsterdam, 1971. 
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Saddle Value Problem. 

Find (x, e) that forms a saddle point of (4). The saddle point for 

this problem may be defined as: 

Definition 1: saddle point 

A pair of vectors (x, e) is called a saddle point of 0 (x, e) in x > O, 

e > 0, if the following conditions are satisfied: 

x ..::_ O, e > O, (5) 

(x, e) < 0 (x, -;) < 0 (x, e) (6) 

for all x > 0 and e > O. 

An important relationship between an optimization problem and a 

saddle value problem is that if there is a saddle point, then the x part 

of the saddle point is an optimum solution vector of the optimization 

problem without any qualification on f(x) and g(x). 

The Kuhn-Tucker Conditions. The Kuhn-Tucker (1950) conditions pro-

vides us with the necessary and sufficient conditions for (x, e) to be a 

saddle point of 0 (x,e) and these conditions are stated in the following 

theorems: 

Theorem (Kuhn-Tucker): 

For (x, ~) to be a solution for the saddle value problem, the 

necessary conditions are 

0 < 0 and 0 'x = 0 
x - x 

(7) 

0 > 0 and 0 'e e - e 0 (8) 

for x ~ 0, e > 0, 

and the sufficient conditions are: 



0(x, e) < 0 (x, e) + °0' (x-x) 
x 

0(x, e) :... 0 (x, e) + i (e-e) 
e 

for all x ::_ 0, e> O, 

where 

0 =«30(x,e» 
x ax - -

(x,e) 

and 

0 =(3 0(x,e» 
0 - -

e e (x,e) 

=(a 0(x,e) 
ax1 

188 

(9) 

(10) 

... qx(x,e)) 
ax - -

n (x,e) 

(11) 

B0(x,e»'--
a e (x,e) 

m 

(12) 

The algebracial interpretation of (7) and (8), assuming that (9) and (10) 

hold is as follows: 

for some components of ix' 

for 

For 

a 0 (x, e) 
if .ax. 

l 

if 
,a 0<x2 e) 

rax. 
l 

all i and j . 

some components 

if ,ci 0<x, e) 
,_@ \: 

if a 0<x, e) 
a e Q. 

for all k and !l. 

= O, then x > 0 
i-

< 0, then x. 0 
l 

of 0e' 

0, then ek :__ 0 

> O, then e - 0 

(13) 

(14) 

(15) 



v 
VITA 

Kwang-Sik Myoung 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: APPLICATION OF MATHEMATICAL PROGRAMMING FOR OPTIMAL INVESTMENT, 
WATER SUPPLY AND PRICING DECISIONS FOR RURAL WATER SYSTEMS IN 
OKLAHOMA 

Major Field: Agricultural Economics 

Biographical: 

Personal Data: Born in Chung-yang Korea, January 20, 1945, the son 
of Moochang and Jaesuk Myoung. 

Education: Graduated from Konju Teacher's College Attached High 
School, February 1963, received a Bachelor of Science degree 
in Agricultural.Economics from Seoul National University in 
February, 1972; received a Master of Science degree in 
Agricultural Economics from Oklahoma State University in 
July, 1979; completed requirements for the Doctor of Philo
sophy degree at Oklahoma State University in December, 1982. 

Professional Experience: Economist, Research Department, National 
Agricultural Cooperative Federation, Seoul, Korea, 1972-1976; 
graduate Research Assistant, Department of Agricultural 
Economics, Oklahoma State University, 1976-1982. 


