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CHAPTER I

INTRODUCTION

The conductivity parameter with regard to electrical phenomena 

and with respect to ionized gases has for many years been a topic of 

more than casual interest by some of the foremost researchers and 

theorists in the fields of ionized-gas dynamics and plasma physics. 

The Bibliography reflects the names of many of those who have pre­

sented outstanding contributions.

Much of thé ground work for the investigation of the phenomena 

of ionization was laid down in the early work of Maxwell (13) and 

Boltzmann (2), although the formulations of these two investigators 

were for the most part introduced in different contexts. Shortly 

following the turn of this century Lorentz (1 2 ) published a book 

dealing principally with the Theory of Electrons in metals,but which 

was to shed light on electron mobility in gases. Lorentz described 

a Boltzmann’s distribution function to determine the conductivities 

of a "Lorentz gas". The "Lorentz gas" theory has remained ever since 

as a major jumping-off point in the discussion of the properties of 

ionized gases. The "Lorentz gas" was supposed to be a cloud of 

electrons whose mass was negligible compared to that of the atoms 

against which they collide.

Townsend's (19) book, Motion of Electrons in Gases was one of
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the earlier (1920's) publications dealing explicitly with particle gas 

dynamics. Townsend elaborated on the "mean free path" between 

electron-ion collisions and then deduced macroscopic properties for 

the gas. During this same period, Langmuir (10) was studying low 

pressure plasmas and generating his "space charge" theory of electron 

containment.

In the early and raid-1930's the now-famous and classical works 

of von Engle (21) were being published in the original German. The 

two-volume Elektrische Gasentladungen reviews the works of most major 

investigators up to that time and represents the most extensive work 

in the field during the 1930-1950 period.

Since 1950 a large number of significant publications has been 

forthcoming. Of special interest are the investigations by Alfven (1), 

Linhart (11), Vlasov (20), Spitzer (16), Delcroix (6 ), Montgomery (14), 

Chapman and Cowling (4), Green (5), Drummond (7), Druyvesteyn and 

Penning (8 ), Chandrasekhar (3), Rosenbluth (15), Jeans (9), and Taylor 

(18), The period since 1960 has been one of even greater effort with 

contributions principally covering the areas involving fully ionized 

gases, such as MUD generation and plasma propulsion.

The greatest problem unsolved in producing an exact theory of 

gas ionization is the most fundamental problem in any theory: where 

does one begin, or with what does one begin? As with any theory 

concerning the derivation of a quantity one expects to first agree upon 

a definition of that quantity. For the quantity of interest in this 

specific case,electrical conductivity of the ionized gas, a simple 

stated definition has seldom been agreed upon by Investigators. Many
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authors do not specify in any sense what they intend the researcher to 

believe to be a common definitive agreement. Electrical conductivity 

in the case of classical conductors has been somewhat unanimously 

agreed to be an inherent property of the material, inherent, for 

example, as mass density is considered an inherent property. For some 

cases this is not a bad assumption; a functional relationship approxi­

mately correct for specific material, can be written which holds for 

that material over broad ranges of time, temperature, and any other 

parameter of interest, external or internal. The surprising thing is 

that electrical conductivity is seldom defined properly as a function­

al property, not of the material, but of the response of that material 

to an electrical field whether externally applied or internally 

generated or both. Any expression, therefore, for electrical conductivity 

must reflect the presence of an electric field either directly or 

indirectly. Electrical conductivity is explicitly defined in Chapter

II.

The process of ionization is represented by the separation of 

electrical charges; it is the stripping of electrons from neutral gas 

atoms to produce positive ions or the impregnation of neutral gas atoms 

with electrons to produce negative ions. By either mechanism, if the 

gas were initially neutral, a separation of charge takes place. One 

cannot separate charges without developing an electric field, and the 

act of separation demands movement of charged particles. The movement 

establishes two other properties of the ionization process which must 

be considered; current density and magnetic flux density. Any theory 

proposing to derive an expression for electrical conductivity must
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have accounted for all three of the aforementioned properties of charge 

separation (ionization). The influence of ionization and ionization 

processes on the conductivity is treated in Chapter IV,

With the very beginning of the process of ionization and the 

separation of electrons from atoms, forces new to the classical kinetic 

theory of gases develop. In addition to the thermal-pressure forces, 

dispersion forces, and molecular momentum forces, the coulomb forces 

between unalike to alike charged particles become apparent, in fact 

become dominant. While the increase in the thermal pressure forces 

in classical kinetic theory accounts for the most significant part of 

the increase in molecular energy (or atomic energy) and is assumed to 

accompany a uniform temperature rise of the whole molecule (or atom), 

the thermal-pressure energy in an ionized gas is significantly found 

in the "free” electrons, (This is not precisely true; but so long as 

atoms remain intact, the assumption does not materially effect the 

results). For this reason and because the realm of influence of free 

electrons is wide in that interaction occurs at "coulomb distances" 

with many other particles or many different ions, classical gas-kinetic 

theory cannot be applied without modification. The thermal-pressure 

energy associated with a free electron is entirely contained in its 

momentum and, thence, is a function of its position, velocity 

magnitude, and velocity direction. The interchange of energy or the 

transfer of momentum during an interaction between particles depends 

in addition to particle momentum and position on interaction probability 

time. The classical gas-kinetic theory does not account in any proper 

way for this dependency. For this reason a new theory is justified
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and in fact has been developed in part, and for specialized models, for 

sometime. It is the development of the statistical-probability theory 

pioneered by such profound searchers as Maxwell and Lorentz that 

occupies the energy of modern investigators. Papers published since 

1960, and indeed since 1950, have almost unanimously attempted to 

elaborate upon this theory. Chapter III discusses the significance of 

classical gas-dynamic theory to plasma theory, and the influence of 

the statistical model is treated in Chapter V.

Numerous theories have been suggested to define and explain 

conductivity. Theories take on a wide variety —  from extremely 

specific to very general, from apparently original to obviously exten- 

sional, and from complicated to over simplified. However, the major 

portion of these works can be broken into two groups which rely on 

greatly differing frames of approach. In the macroscopic approach 

the ionized gas is tested in the classical hydrodynamic manner, 

although the approach is more complicated than for ordinary fluids 

since the ionized gas is a mixture of several interacting constituents.

In the microscopic approach the ionized gas is treated as a statistical 

interation of the atomic particles composing the gas. The two \ 

methods are generally complimentary, but the former has given away to 

the latter in recent years, as the more popular concept. In the end 

the usefulness of a theory can best be evaluated in light of observa­

tional proof from controlled experimentation. Unfortunately, experimenta­

tion under the most ideal of conceivable laboratory conditions does not 

completely bear out the validity of any one theory as yet proposed.

This seems to be due to two very significant realities: first, the
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laboratory modela (including all conditions of generation, measurement, 

and confinement) influence the net forces acting on the gas whether 

considered^; as macroscopic fluid or microscopic particles; second, no
f

theory as/yet proposed has been carried out without the involvement 

of a large number of simplifying assumptions, both mathematical and 

physical. In this regard a description of a laboratory model to be 

introduced into the theoretical derivation of the properties of the 

plasma presents a significant constraint upon the generality of the 

theory and has not induced the theorist to devote a great deal of time 

to considering specific model constraints. This has seemed reasonable 

in light of the fact that plasma theory is in its most energetic 

period of evolution. The years since 1960 have experienced a 

tremendous growth in both experimental and theoritical research into 

the understanding of ionized gases.

Beginning with the Maxwell's probability distribution (Appendix 

A) as the statistical frame of references, the Boltzmann's transport 

equation (Appendix B) is expanded in Chapter VI to generate three 

coupled equations relating the distribution function and its 

perturbations in velocity space. The solution of these ordinary 

differential equations allows the current density to be calculated 

and the conductivity to be determined in complex form. The theory 

discussed in Chapter VI deviates substantially from that pursued in 

the literature, and the assumptions necessary to produce a 

mathematical solution represents a significant extension to the 

techniques currently employed. It is possible, as shown in Chapter 

VI, to solve the Boltzmann's equation without neglecting cross-product 

terms or higher order terms.



CtlAPTER II

TtiE DEFINITION OF ELECTRICAL g)NDUCTIVITY 

WITH RESPECT TO A CONDUCTING GAS

Many definitions can and have been imposed on the general and

rather broad term "conductivity", depending upon the context and the 

mutual agreement between investigators. The conductivity in any case 

will be an approximation, depending upon a variety of simplifying 

assumptions and upon the proposed theory. It is unfortunate that 

there is no universally agreed upon general definition for electrical 

conductivity; it is significant to note that even for specific cases 

a considerable variation in the definition exists.

Conductivity is often spoken of as though it were one of the 

simple properties of the material, much as mass and charge may be

properties. Tliis is obviously not true even as a functional relationship

evolving time and temperature variables. Conductivity is a measure 

of the responsiveness of a material to external excitation. This 

responsiveness is normally a functional relationship incorporating many 

variables. The external excitation is always an applied electric field 

gradient. The response is always a net transfer of electric charge 

with respect to the gradient. Within a material, electric field
I

intensities, electric current densities, and magnetic field intensities 

may be generated internally by whatever means. The relationships

7
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between an internally generated excitation and its response can often 

appear similar in every respect to conductivity; many authors refer 

to conductivity in tliis regard. It is not inconceivable that one 

would wish to study such an internal relationship, and it would not be 

deemed incorrect to speak of such a relationship as electrical 

conductivity. However, the term should carry an adjective which would 

identify the considerations involved. Such internal reactions 

as dispersion or diffusion, polarization, and ionization will soundly 

affect conductivity.

Although the necessary external excitation to tlie definition 

of conductivity is the presence of an electric field, this is not 

necessarily sufficient in a more general sense. Other external 

excitations cause major influences on the conductivity; therefore, 

the conductivity functional relationship should express these as 

independent variables. The influence of gas composition, time, 

temperature, density, gravitation, and magnetic intensity must be 

considered.

This paper presents a derivation of an expression which relates 

the current density, J, to the electric field intensity, E, in the 

following manner;

7  “ 0 -Ê. (1 )

O'is defined as the conductivity. E is a vector whose direction is 

specified; the current density, J, is expected to be a vector quantity 

with quadrature components; 0 "is, therefore, a compound function involv­

ing at least three terms which allow O’ E to have quadrature components.
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Under tliese conditions equation (1) can be rewritten:

(J,), + + ( 3̂ ) 3 “ (CT, E), + (or̂ E)ĝ  + (o^E)g (2)

From whicli the conductivity components with respect to E can be written:

cr, - J, / E, cr̂  “ Jj, / E, cTj = Jg / E (3)
Î'

where direction 1, 2, and 3 are understood to be in quadrature. For the 

purpose of this paper conductivity is defined in its general sense to 

be the functional relationship, or (E,J), expressed by equation (1). In 

particular it is a conplex quantity which relates the quadrature current 

density responsiveness of an ionized gas to an applied electric field.

Ç9



CHAPTER III

CLASSICAL GAS KINETIC THEORY AND ITS SIGNIFICANCE 

TO THE STUDY OF IONIZED GASES

In this chapter it is proper to preview the task which the 

paper strives to accomplish and to review the contributions upon 

which it is set.

Two classical achievements are of particular significance. The 

first is due primarily to the early works of Boltzmann and Maxwell 

and later extended by Chapman, Cowling, Spitzer, et.al. The works 

of these men and others who followed their theory began with a phase- 

space distribution function called the Maxwell-Boltzmann equation or 

some small modification thereto and developed expressions for the 

electrical conductivity. The second achievement is primarily due 

to the work of Lorentz in studying optical dispersion. This theory 

begins with the premise that the system can be defined in terms of 

a classical oscillator. Extensions and modifications to this theory 

have likewise followed. In both cases mentioned, the results are 

much the same. This has not been because sufficient simplifying 

assumptions were necessary to relieve the mathematical burden that 

the results bespeak loudly of the influence of these assumptions.

The assumptions were essentially the same; thus it is not startling 

to have observed similar results.

10
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Having briefly summarized these achievements, this paper presents 

a derivation of an expression for the electrical conductivity which is 

founded in the well-established kinetic theory of gases based on a 

statistical model and extended by the application of the classical 

electrmagnetic theory proposed by Maxwell. In classical kinetic 

theories of gases the gas is generally visualized in one o.r the other 

of two different ways, raacroscopically or microscopically. In the 

former the gas is considered as a uniform fluid, and the properties of 

the gas are considered as many individual but uniform particles. One 

is interested, for example, in particle velocity, particle forces, 

particle temperatures, etc. So far as a gas remains completely uniform, 

or on the average uniform, with respect to the particles that make up 

the gas, the macroscopic and the microscopic models produce much the 

same results. This is because the fluid acts precisely like the 

algebraic summation of its uniform constituents. It is not necessary 

to examine the gas in a model more microscopic than that of its particles 

at the point where uniformity of substance exists. In microscopic 

classical gas-kinetic theory the point of particle uniformity is the 

gas molecule; or if the gas is monatomic, the point of particle uniformity 

is the gas atom. The microscopic study of a gas involves the 

interaction of particles. Particles are known to "interact" in a 

variety of ways, and the manner of "interaction" depends upon the type 

of particle to a considerable extent. Thus the validity of an interac­

tion theory for gas particles depends largely upon the number, type, and 

energy of the particles involved. Classical gas-kinetic theories, 

especially those of Boltzmann, et.al., appreciate the variation of
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energies of individual particles even under steady-state conditions; 

it appreciates the possible variation in type of particle to the extent 

that gas mixtures can be considered. Because particle type and energy 

are allowed to be variables, the theory becomes necessarily intangled 

with statistical mathematics, and a probability relationship is re­

quired to define the model. The theory, however, does not generally 

appreciate the type-variation of interaction. As long as a "classical" 

gas is the subject of interest, interaction is, for the substantial 

part, of a single kind, called collision. Particles are seen to "bump" 

into one another with insuing transfers of momentum and energy. Only 

when the subject particles are considered to take on properties which 

produce fields is there necessity to re-evaluate and redefine the 

interaction phenomena between particles. Gravitational and electro­

magnetic fields must be considered. The gravitational field effects 

do not drastically differ between particles and essentially are functions 

of the mass property of the particle. Gravitational field forces are 

generally neglected in kinetic theories as being small in comparison 

to other particle forces or as on-the-average tending to cancel out.

This policy of neglecting inter-particle gravitational field forces is 

not altogether valid, but it seems justified in that its effect does 

not seriously disrupt the "collision" theory of interaction between 

particles with energies insufficient to influence nuclear reactions.

In other words, at atomic distances and beyond inter-particle 

gravitational field effects are generally small. When particles take 

on net charge, electric and magnetic fields can result. The effects 

of these fields are appreciable; their interaction distances are 

atomically long, and their result is to require complete revision of
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the collision theory of interaction. This, more than any other, is 

the reason the classical kinetic theory of gases breaks down when 

the gas particles approach energies which produce ionization.

Ionization is here defined as the process of stripping neutral 

atoms or molecules of one or more electrons or as the process by 

which neutral atoms or molecules accept one or more electrons. Simply, 

ionization is the process by which atoms or molecules, originally 

neutral, take on charge. Therefore, the instant at which gas energies 

become sufficient to produce ionization is that time when particle inter­

action must deviate from that proposed in classical gas-kinetic theory.

An additional aspect of classical theory which must be changed as 

"forces at a distance", or field forces, become appreciable is the 

proposition.that interactions can be considered "binary" for anything 

but a first approximation. Binary, as the word implies, means two at 

a time, and a binary interaction means an interaction by only two 

particles at one time. As interaction distances become long, the 

collision theory becomes invalid; and with it the assumption that 

interactions are binary must be abandoned. Multiple simultaneous 

interactions between each and every particle must, then, be considered.

Because classical kinetic theories have been verified experimentally 

for the derivation of transport phenomena in gases with energies below 

ionization levels, and because the process of ionization has been 

observed to progress smoothly as a gas begins to be ionized, any theory 

which correctly produces an expression for conductivity of a slightly 

ionized gas must be soundly based on kinetic theories proven for gases 

up to ionization levels. The generation of a theory which properly
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produces an expression for electrical conductivity in ionized gases 

is expected, or so it would seem, to logically begin with the case 

of a simple gas under conditions of slight ionization. The theory 

could be extended to include states of partial and complete ioniza­

tion as a natural evolution.



CHAPTER IV

IONIZATION PROCESSES AND THEIR INFLUENCE 

ON THE ELECTRICAL CONDUCTIVITY

Ionization, defined previously as the absorption or depletion of 

one or more electrons by an otherwise neutral gas atom or molecule, 

can be achieved in a variety of ways. In each case, however, the 

energy state of the electrons in the shell must be changed. Of inter­

est here is the process of ionization by which a neutral atom loses 

an electron to produce a positive ion-electron pair. Macroscopically 

the gas is always neutral, there being exactly the same number of 

positive ions as electrons present at any time. Ionized gases of this 

type automatically exclude such gaseous states of ionization as 

electron clouds and gases of a single particle type. A gas which is 

initially neutral and ideally confined will remain electrically neu­

tral, though ionized, outside a spherical cross section of radius d 

surrounding each particle of interest. This distance depends on 

several properties of the gas particle. However, for each particle 

type within the gas there is a distance, d , beyond which its cou- 

lombic field cannot be detected; all particles beyond this distance 

become shielded from the electrical presence of the subject particle. 

The distance is called the Debye length, the Debye radius, or the Debye 

shielding distance. Because of this coulombic shielding an external

15
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electric field applied to the gas causes no significant separation of 

charged particles within tiie gas, so long as the Debye radius is small 

with respect to the dimensions of tlie confinement. A gas of this type 

becomes very similar to a metallic conductor, in that no polarization 

or displacement currents are allowed, when the gas is in ionization 

equalibrium.

In order to produce a positive ion-electron pair a bound electron 

must be freed. Electrons bound to a nucleus may normally exist in a 

number of states, each particular to some minimum energy level. In 

order to reach a secondary state the electron must receive and hold 

a higher minimum level. These minimum energy-level bands are discrete, 

and an electron cannot exist in states between these discrete bands.

The energy of an electron can be referred to as thermal energy for 

which a temperature can be designated, but the energy may equally well 

be described in terras of kinetic energy for which a velocity can be 

assigned. An electron in some discrete energy level may receive 

additional energy sufficient to raise its state to the next higher 

level. From this higher level two changes may occur; the energy of 

t’ae electron may decay radiatively, allowing the energy state of the 

electron to reduce to the next stable and lower level, or, additional 

energy may be added in which case the electron may achieve a yet 

higher band and remain bound or be freed. If the energy is sufficient 

to allow the electron to escape the highest energy band, ionization 

is said to have occurred.

The simplest atom has a single electron bound to a nucleus composed 

of a single proton. When this electron is freed, the proton represents
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a coir.pletely ionized atom. A more complex atom may contain many proton- 

electron pairs. If energy is added in sufficient quantity to free the 

highest energy electron, the atom is said to be "singly ionized," and 

the amount of energy required is referred to as the "first ionization 

potential." Similarly, when energy equivalent to tlie "second ioniza­

tion potential" is supplied and another electron is freed, the atom 

is "doubly ionized" and so forth. The energy necessary to produce 

ionization need not be added in lump form but may result due to many 

succeeding additions of lesser amounts; however, when the critical 

maximum energy for existence in any one band is reached, transition 

to the next allowable energy band or to freedom occurs immediately.

One of the simplest means of adding energy to a gas, and hence 

producing ionization, is to raise the gas temperature. Adding heat 

to a gas slowly, raises the temperature of the particles somewhat uni­

formly; thus, the kinetic temperature of both nucleus and electron 

remains approximately equal. Raising the temperature of the nucleus 

does not directly, in itself, produce ionization; the necessary ingre­

dient is that electron temperature or energy becomes sufficiently large, 

because the mass ratio of nucleus to electron is large, the majority 

of heat added is soaked up by the nucleus rather than the electron 

and does not appreciably assist ionization directly. Therefore, ioni­

zation generated by slow thermal heating, while simple, is an extremely 

inefficient process unless a thermally hot gas is desired. There are 

other ways to produce ionization through a rise in temperature; one 

of the most common methods utilizes the shock technique, by producing 

a pressure shock wave through the gas, pressure energy in the wave is
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applied to tlie gas particles as the wave passes. This energy is 

delivered very quickly and, therefore, is almost entirely absorbed 

by the electrons along the wave front. Shortly after the front has 

passed, the energy in the electrons dissipates to become absorbed by 

t'ne nucleus mass, thus raising the mean gas temperature slightly. 

Ionization can readily occur along the shock wave, while the total 

energy delivered to the gas remains quite small. Ionization is 

transient; thermal efficiency is high; and the gas remains ther­

mally cool.

Ionization can be induced in a gas by the external application of 

a strong electric field. The field accelerates a few random free 

electrons, raising their kinetic energies. These accelerated 

particles strike neutral atoms, deliver momentum to the atoms, and 

knock out some bound electrons. These are in turn accelerated 

to multiply the action. Hence, energy in tlie electric field is 

converted to produce ionization, but the process requires the initial 

presence of a few free electrons.

The derivations described in this paper are produced by consider­

ing the ionization process to be dynamically stable and the gas to 

maintain the property of electrical neutrality. The process of 

ionization is dynamic in that ionization and deionization are occur- 

ing simultaneously and continuously. It is considered stable if the 

rate of ionization equals the rate of deionization. Electrical 

neutrality requires that external electric force fields produce no 

significant charge separation across the gas and no net force on the 

gas; in other words the ionized gas acts like a normal conductor.



CHAPTER V 

THE STATISTICAL MODEL

In classical gas-dynamic theory it is not necessary to consider 

the gas in terms of individual particles, but it is sufficient to 

investigate the gas in terms of the external forces acting on the 

gas. Properties of the gas can be determined in an average way 

which does not require a microscopic treatment. However, these 

same gas properties can be determined by an altogether different 

approach which observes the gas as individual atoms or molecules 

under thermal agitation and in collisions with one another.

Theories of ionized gases have been proposed utilizing both macro­

scopic and microscopic approaches; it appears, however, that especially 

where ionization must be contended with, the microscopic approach 

holds the most promise.

Where no ionization takes place and at normal pressure and tempera­

ture collisions between gas molecules occur at a rate of approximately 

one thousand per micro-second. Because of the large number of colli­

sions, particles have a distribution of velocity with individual changes 

in velocity magnitude and direction occurring with each collision. 

Theoretically, the velocity distribution contains particles that at 

any one time have velocities varying from zero to very large in magni­

tude, and with no externally applied force the distribution in velocity

19
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direction contains particles with all directions represented, 
r
[^Assumption —  For a gas with no external forces applied and in 

thermal equilibrium the particle velocity directions for any volume 

element will be entirely random. Under these conditions the gas is 

assured isotropic.j Because for any volume element of the gas 

there is no net observable velocity direction, only particle velocity 

magnitudes will be of significance in the distribution function.

Let dn be the number of particles which occupy a given volume 

element of the isotropic gas that have random thermal velocities 

c, + dc, , + dCĝ  , and c, + dc^ in the quadrature velocity-

space coordinate system. The volume element has position-space 

coordinates of s, , s , and s^ . The particle number, dn ,

is proportional to both the velocity-space element, dc , and the 

position space element, ds ; the proportionality term must be a

function of not only position and velocity but also of time.

dn = f(s,c,t)dsdc (4 )

Since ds = ds, dsĵ dŝ  and dc = dc,dc^dcg ,

dn = f(s,c,t)ds,ds%d^dc^dc^dcg . (5)

The volume element consists of both position-space elements and velo- 

city-space elements and is defined in the literature as a phase-space 

element. The function f(s,c,t) is referred to in the literature as
r

a distribution function. [Assumption —  Because of thermal equilibrium 

and no time-varying forces the function f(s,c,t) is constant with 

time and can be written f(s,c)j . If properties of the gas are at 

equilibrium with respect to time, the particle number becomes;
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dn = f(s.c)dsdc (6 )

The function f(s,c) is referred to as a phase-space distribution 

function. Each species of the gas will have its own distribution func­

tion; hence, for the r species

dn^ = f^(s,c)dSj.dc^ . (7)

The number density of a given species r which has velocities 

between c and c + dc is

d N r  =  =" f f d c  . ( 8 )

Thus,
CO CXJ

Ny = /dNj. =■ JJJf^dc^dc^dc^ =• Jf^dc (9)
- a o  - <50

where f^ approaches zero when c approaches ± infinity. The mass 

density for species r with particle mass m^ is

/Py, = . (1 0 )

The total mass density for all species present in the gas is

= Z A  = . (1 1 )
T T '■

The random kinetic energy associated with a particular particle of the 

r species is given by

• (1 2 )

The average random kinetic energy for all particles of the r species

is
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OO

3)

where is the number of particles of r species having velo­

cities between c^ and c^ + dc^ , and where integration over the 

distribution function determines the process of averaging.

The average random kinetic energy of an r particle can be 

expressed as a function of the average thermal kinetic energy (assu­

ming a Maxwellian energy distribution).

KE, = (14)

where k is the Boltzmann's constant and is the absolute teir.pera-

ture of the r particle, Assumption —  The number of particles of 

any species having energy in a given incremental range obeys the Max­

well's energy distribution function, namely:

The average random thermal energy per unit volume is

KEr = (15)

From equations (13) and (15) the average kinetic energy is equivalent 

to the average thermal energy.

=  J Cp fy. olĉ
—oo

(16)
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Let Wj. be the average velocity of the r species and w be the 

mass-average velocity for all species (to differentiate from the ran­

dom thermal velocity c^) . If is the particle velocity, then

. (17)

and

w (18)

Now the random thermal velocity can be expressed with respect to the 

mass-average velocity as

Cy = w' - w (19)r

or with respect to the average velocity as

Cj. = w^ - Wp . (2 0 )

Since w_ was defined as the average value of w^ , the average value 

of c„ is zero.

From equations (19) and (20) the average value of c^ is v^

OO

Vj, = w^ - w = , (2 1 )
-OO

where v^ is referred to as the diffusion velocity of the r species 

and is equal to the difference between the average particle velocity 

and the mass-average particle velocity.
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The electrical current density is defined by the relationship

Jr (22)

where e is the unit electrical charge on the particle (equal to the 

magnitude of the charge on one electron), and is the number of

net unit charges (negative or positive) on the r particle.

dr N^eZ^(v^ + w) (23)

For all species

J = eX^^r^r^r ^^i^^r^r » (Z4)

where the conduction current j is given by the first term on the 

right side of equation (24) and the convection current j' is given 

by the second term on the right.

- &r'=^r''r

' - (26)

r[Assumption —  The gas under consideration will be electrically neutral

in every volume element.]

If the gas is electrically neutral, the exactly zero;
r f

hence,

dr * jr = NreZrVr , (27)

and

d “ j “ Z^reZrVr . (28)
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The conduction current density is, in the absence of external forces, 

equal to the diffusion (or dispersion) current density. In terras of 

the randora thermal velocity equation (28) becomes:
CO OO

J - ÇN^eZ^^^jC^fj-dc^ = ÇeZj.Jc^fj.dCr (29)
- OO -oo

With the derivation of equation (29) the calculation of the current 

density is simple only when f = f(s,c) is simple. This is never the 

case. In the succeeding chapter considerable effort is exhausted in 

the deduction of an approximate formulation for the velocity distrib­

ution function.



CHAPTER VI 

SOLUTION OF THE BOLTZMANN’S EQUATION 

AND CALCULATION OF ELECTRICAL CONDUCTIVITY

The electrical current density in the units of charge per unit 

geometrical area can be defined for one species of charged particle as

j ■ neZv (30)

where n is the number density of particles in the units of per geo­

metrical volumef e is the basic charge unit equivalent to the electron 

charge. Z is the number of unit electron charges on the particle, and 

V is the diffusion or mean drift velocity of the particles in the units 

of geometrical length per unit time.

(31)

is the total current density due to the contribution of r species of 

particles composing the gas. From this definition of current it is obvi­

ous that the contribution directly to ^  will be composed only of

those species of the total gas species, r , which carry units of electri­
cal charge Z^ ^ 0 . Furthermore, the summation implies that the net

contribution to J will depend not only upon the magnitude and sign of 

.but also upon the magnitude and direction of the velocity drift .

26
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Hence, for a common direction of particle drift the positive-ion contri­

bution will reduce the electron and any negative-ion contribution.

In order that the equation (31) be solvable, it is necessary that 

the gas composition at all times be calculable; and the number density 

of all species must be known. ^Assumption —  The gas composition and 

number density of all particles are determinable at every point of the 

time-phase-space.j The diffusion velocity can be related to the random 

thermal kinetic velocity by the relationship.

CO

Vr - Jcfj.dc , (32)

according to the definition for formulating the average. [^Assumption —

The kinetic velocity c contains only translational components. In

other words, vibrational and rotational velocity components are entirely

negligible for the particles under consideration. This assumption is
generally invalid for heavy molecules. Assumption —  The gas is composed

of only constituents having simple atomic or molecular structures.] If

v^ is to be calculable, the distribution function f̂  must be known;

it is necessary that an expression for f_(s,v,t) be available. The

distribution function f can be determined by a solution of the Boltz-r
mann's equation. A Boltzmann's equation for each species of the gas is 

necessary. The collision term.

o) f J,



28

must be expressed in terms of the distribution functions, and r equa­

tions must be solved simultaneously. Because this is usually impossible, 

various simplifying assumptions are normally employed. For this reason 

an exact theory for conduction in ionized gases has never been deter­
mined.

Two theories are presently receiving major consideration. Both 

theories have received attention by many investigators; they are identi­

fied as the Lorentz method, or method of binary interaction, and the 

Fokker-Planck method, or the method of simultaneous-multiple interaction. 
The difference between the two theories arises from the manner in which 

the collision or interaction term is evaluated. Considering binary 

interaction, the interaction term is defined to be the time-rate-of- 
change of the distribution function. When multiple interactions are 

considered, the interaction term is proportional to the first and higher 

time-derivatives of the distribution function. Sutton and Sherman (17) 

havie shown that under the approximations normally employed, the two 

theories produce identical results.

In the case of binary interactions the collision term in integral 

form is derived in the Appendix B and repeated here for convenience in 

the following form.

af
at =  J^[(f'fj - f f,)|v - v^lJJ’rdrd^ dv (33)

The complete Boltzmann's equation, repeated from the Appendix B, is
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F (Df
^  + V . ^  + m . j W n \ J[(^'fj - ff^)v - vjJJrdrd<l]dv

o o
(34)

f(s,v,t) is the distribution function of the incident particle before 

interaction; it represents the number of particles in the phase-space 
VOlume-element per second in the units of per length-cubed velocity- 

cubed time. f'(s',v’,t) is the distribution of the incident parti­

cle after interaction, fj (s,V|*,t) is the distribution of the scat­

tering particle before interaction. f'j(s',v'j ,t) is the distribution 

of the scattering particle after interaction, m is the incident par­
ticle mass, r is the scattering impact parameter in units of length. 

i|) is the angle between the normal to the scattering plane and an 

arbitrary reference direction in the plane normal to both the incident 

path and the plane of scattering. F is the superposition of all exter­

nal forces in units of mass-length per time-squared, v is the inci­

dent particle average velocity in the laboratory frame of reference in 

the units of length per time.

External forces might include many different types, but for the 

purpose of this paper, the forces of interest are identified as follows:

(a) For charged particles

F = (eZ/m) (Ê + v X B) . (35a)
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(b) For neutral particles

F - 0 . (35b)

Assumption —  For particles carrying electric charge the external force 

is given by equation (35a); for neutral particles this force is negligi­

ble,J Replacing the laboratory velocity v by the random velocity c 

and noting the assumption that c . is translational, does not change the 

form of the equation (34); with this shift in coordinates the Boltzmann's 

equation becomes :

- - f f,) |c - c,| J Trdrdllljdc (36)

If the gas is only slightly ionized, there will be few electrons or 
ions in a volume element; on the other hand, the number of neutrals will 

be correspondingly high. The thermal motion of the heavy particles may 

be neglected in comparison to the motion of electrons because of the large 

mass ratio; this is Lorentz's approximation. In the case of a slightly 

ionized gas the approximation is a valid one. Because the number of elec­

trons and ions in a volume element is low, interactions between electron- 

electron and electron-ion will be few; and because the thermal motion 

of both ions and neutrals is relatively low, the interactions between 

ion-ion, neutral-ion, and neutral-neutral are neglected, ^Assumptions —



31
Interactions of interest are those between electron and neutral. Electri­

cal current is a function only of electron mobility. Neutrals are con­

sidered to be unaffected by electron impact. The gas is uniform in geo­

metry space. Particle interactions are elastic. Ionization equhlibrium 
has been achieved.j For these assumptions there is only one Boltzmann's 

equation to be solved. In equation (36)

= 0 .o)t

This term relates the change in the electron distribution function with 

respect to time while geometry and velocity components remain constant.

For âf/ât to be non-zero, electrons would have to be added to, or remov­

ed from, an element of phase-space. The only way this is possible for a 

contained gas is through an increase or decrease in the degree of ioniza­

tion with time ; this would invalidate the assumption that ionization 

equalibrium has been achieved. The second term on the left of equation 

(36) relates the change in the number of electrons in the distribution as 

a function of geometrical space while time and velocity components are 

held constant; for there to be such a change, the assumption that the 

gas is uniform would be invalidated. Hence,

The inclusion of equation (35) it> equation (36) and writing e and n 

subscripts for electron and neutral terms respectively gives the Boltzmann's 

equation for this case.
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- ‘e O  - Znl //rdrdt] dĉ . (37)

where

(E' + Cg X B) * (E + V X B) ,

The»neutral particle distribution function, , is taken as

Maxwellian in form prior to an interaction with an electron; and 

because of the large mass ratio %/mg the distribution does not 

appreciably change after an interaction. Thus,

fjj ■ - a exp(-ACn ) • (38)

Because interactions and external forces exert significant influence 

on the electron distribution- f^ cannot be Maxwellian. In the ab­

sence of an electric field (E' ■ 0) there can be no drift velocity

of electrons in the uniform gas. Under this condition the collision 

term is zero and the electron distribution is exactly Maxwellian. For 

a slightly ionized gas E ’ can be relatively small in magnitude. This 

allows the electron distribution to be perturbed from a Maxwellian func­

tion by an amount which is proportional to E* . The electron distrib­

ution is approximated by adding to a Maxwellian term, f^(c), a term 

F^E'fg(c/| which is proportional to the perturbing force 1 ’ , Thus, 

replacing Cg by c , the existing distribution function for electrons
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can be written

fg(c) - ff(c) + f [e '£ (c)] . (39)

^Assumption —  The electron distribution function in a slightly ionized 

gas under the influence of an external force field can be approximated 

by a relationship of the form of equation (39)j . This approximation is 

in line with Coulomb's Law which states that the time-rate-of-change of 

velocity of a charged particle in an electric field is directly propor­

tional to the field intensity, E ; in other words.

F ■ ma ■ m dv ■ • qg 
dt

and,

4 2 .  q_ Ë .dt m

An alternate approximation to that proposed in equation (39) could be 
attained by the addition of succeeding terms of higher order in E ’ .

Because of gas uniformity and ionization equalibrium the electron 

distribution function, like the distribution function for neutrals, is a 
function only of the particle velocity; and if electric currents are to 

result, then they must arise from the perturbation. Currents will not re­

sult unless the electron drift velocity, v , is non-zero in equation (30); 
V will be non-zero only if the integral in equation (32) is taken for an
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even function. The Maxwellian function of the form of equation (38) Is 

an even function of c ; however, the product cfg(c) of equation (32)

Is an odd function of c « This requires that the perturbation term 

F^E'fg(cÿ| In equation (39) be defined such that the contribution of 

this term In equation (30) does not disappear. No restriction is re­

quired at this time beyond that Implied by designating F a function 

of the product Ê* and fg(c) . The necessary restriction on 

F^E*fg(c)j will become clear later.

The drift of electrons In the presence of electric and magnetic 

fields Is known to have multi-component directions. In the presence of 

only an electric field the drift Is In the direction E . If only a 

magnetic field Is present there Is no resultant drift. When a mag­
netic field Is added to an electric field already present, electrons 

feel accelerations toward E and transverse to E and B * To account 

for electron velocity distribution perturbations In the directions 1 ,

2 , and 3 (where 1 Is In the direction of E ; where 1 , 2 , and 3

slgnlfly directions mutually perpendicular, but with the additional 

requirement that 2 is also perpendicular to B) the second term on the 

right of equation (39) becomes :

'[Ë'fgO] - E,[c,fg,(c) + + c,(g,(c)]

" c « E'fg (c) + c • Ë X B C-̂ )fgĵ (c)
+ c ' (Ë' X B) X E'(l_]f (c)L '• BE-' 83 (40)
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Equation (40) defines the perturbation function which,when coupled to 

the non-perturbed Maxwellian distribution, generates the distribution of 

electrons in velocity-space. The subscripts on c in the equation 

identify the geometry-space coordinates. The subscript on E* indi­
cates the component of E* in the direction 1 { the fact that E* 

appears with no other subscript verifies that the direction 1 has 

been chosen for convenience to coincide with that of E* . Further, the 

direction 2 is obviously that of E* x B , and the direction 3 is 

that of (E’ X B) X E' . Since fg(c) is a scalar function, each term 
on the right of equation (40) is a scalar. E* is a vector; therefore, 

the dot product is necessary, c * E* can be written cE'Cos^O, , 

where (fOj is the angle between c and E' . The restriction mentioned 

earlier on F^E'fg(c/| is in reality a restriction on , and it can 

now be stated. If c is random and E* is not, then would ap­

pear to be random. Now, if fg,(c) is a scalar function, the second 

term on the right of equation (40) will have no meaning. Therefore, some 

restriction on F|^E*fg(c)j is necessary. The required restriction is 

simple and intuitively obvious. Since the existence of any perturbation 

is due to the external forces, E and B , and since it was previously 

supposed that the perturbation is proportional to the force, it is also 

reasonable to assume that the perturbation would not be negatively pro­

portional to the force. In other words the angle is restricted to

produce only positive cosines. A similar restriction is applied with re­

spect to the other coordinates.

With the substitution of equation (40) equation (39) becomest
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fg(c) - ff(c) + (c • E')fg^(c) + (c • E' X B)gfgi(c)

+ c ' (E' X B) X Ë ' .1- f„,(c) (41)BE 83

c Is the random electron velocity, is the Maxwell's distribution

function (equation A-20, Appendix A); E* is the electric field intensity, 

and B is the magnetic flux density, fg is the perturbed electron 

distribution; fĝ  , fg^ , and fg^ are unknown perturbing functions.

The existence of the f^ terms verifies the existence of quadrature 

current densities.

It has been observed previously, but the absence of an electric 

field (E* " 0) allows the electron distribution to be Maxwellian. If 

B ■ 0 the third and fourth terms of equation (41) are zero; the current 

density is coincident with the electric intensity. If the applied B 

field is parallel to the £' field, the third and fourth terms disap­

pear, and the situation duplicates the case where B = 0 . Should B and 

£' be normal, the third and fourth terms are maximum. The final case 

allows both E' x B ̂  0 and (E* x B) x £' 0 to be non-maximal. Only
when the electric field is absent will equation (32) be expected to fail

to yield a net electron drift velocity and, therefore, no electrid current.
.This justifies the statement made earlier that electrical conductivity 

can only be discussed in terms of the existence both of average migration 

of charged particles and the presence of an electric force field. Migra­

tion of charged particles without the electric field gradient cannot lead 

to evaluation of finite electrical conductivity in the engineering sense.
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Substitution of equation (41) into the Boltzmann's equation (37) 

yields a term on the left side involving the partial derivative of

fg with respect to c .

^  fe (c) = ^  jl: [ï ' Ê' fa, (=)]

+  J ^ [ c  • r  * B ik- fat (t)]

+  8 ) E ' ^ ' f s s W ] (42)

where

= [ A f f W ]  A  c 

= [j; ‘
= [â fe). ̂  (4 ). *(â.l]

=  (43a)

b) ^  C . g ' f „ ( 0  =  ^ ( £ .  Ê') f,, (c)

+  (c • fa, (*=•) (43b)

From the results of the preceding work
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and

■(' - ,®') fa .  ■> =  fs .  A  [ '  • ^ ' ]

=  f a . W  -  ( 4 1  + *  E i c  +  E 'c ,]

=  fa, [ (e '.)i +  (Ei.)j +  (Eji ]

=  f j . W [ Ë ' ]

Therefore,

/ J c  . r  f „  (C)] =  E ' f „ ( c )  . +  - C > 1 ' I  i  W  . (44)

c) From the results just obtained

^ [ ( c  . Ê'X B ) ^  f3 ,(c)]

[\E % B/gj A, âz.

=  (Ê'x B)f tjtCO 4. (Z ' . (45)
// ■
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d) And,

j..[l ■ (Ê' x 8) X l ' ± .  (.)]

= [(Ê' « 3; X Ë'gL,] + [c . (Ê'x B) X Ê'i,]^f33

=  (E-'x B ) x Ê ' ^ , . f „ ( c )  ^ - ( ê ' x g ) x Ê ' ^ , ^ f , 3 (c)
(46)

Substituting equations (43a), (44) (45), and (46) into equation (42) 

yields the value,

fa(:) =  ff(c) +  Ë' f„(c) +  f), (c)

+  i d ' »  ^  (c . Ê' X s y j L j ^ ^ c c j

+  « 8 ) « + 3 Ï J '  • (E" X S) xi']^f, 3 « )

(47)

The substitution of equation (47) into equation (37) yields the left 

side of the Boltzmann's equation. The left side of equation (37) now 

becomes :

^  (e' 4. c X 8 ) • ^  teCc)TV1 V  '/
/
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3.Tn f  (c-E') 4. i ( c  . c » 5;

ê'- r  -► r  . 2  » 5 fgi C O

t ( £  • Ë'; . S'

+  f  (c • Ê  ) • (i » b;

( i '  > B .  S')B

+  ^ ( i T  X g) . (c , B) fsaCc)

(c . r  X B )  . Ë'.iL/= -
Be

+ ^  (c • Ë X By . (c X By

BE.’

* Bj X Ê' . (c

> (48)

f a a W

^  c * (E X 8 ) % r  . £'

+ C • (I' X b} y Ê' . X b) a
jc f„ ( 0
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The second, sixth, seventh, tenth, eleventh, and fourteenth terms in 
equation (48) ace precisely zero, since a triple scalar product is zero 

if any two constituents are the same.

With respect to the third term

(Ë» • Ë») f (c) - E*f (c) . (49)

The fifth terra becomess

% (c • Ë*) • Ë ’ " 1. (c • E) (c • Ê) ̂ f  (50)_ /

rc <Jc gl

The fourth term may be written:

(Ê' « e x  B)fg| (c) = -(c * E' X B) fg^c) (51)

The eighth term can be rearranged to give

J^(E* X B) • (E X B)fg (c) - J^(E' X B) • c x B f_ (c)
T  T

J. C • [_-(B • E)B + (B ' 1)E’] fg^(c)

i.(c • B)(B«E) + Be • E'
B

fg^(c) . (52)

The twelfth term can be rearranged as follows:
/
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fgj(c)^.[(E* X B) X E'j • (c X B)

- ^.[(Ê' • Ë')B - (B • Ë ’)E'] • (c X B)fg;(c)

- [^E'*(B ' c X B) - ^,(B ' Ë')Ë' « e x  â] fg g  (c)

= ^-(c X B • Ê*)(B » Ë')^,jfgg(c)

(c • Ê' X B)(B • Ê')^,fgg(c) (53)

The thirteenth term becomes:

ĵc • (Ë' X B) X Ë ’j • Ë'

[ é ^ ( c  • Ë')C . (Ê- X î) X Î']^£g3(c)

■ [ste*® • B')z] • - (® • G')G']gLfg^(c)

- g^(c • Ë’)|̂ (c • B)Ê'* - (c . l ’)(B . Ê')j^€g^<c)

■ [1^(5 • Ë')(cd C B) • Ê*)(c de g3'
(54)
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The ninth and first term can remain unchanged. With the substitution 

of equations (49) through (54) into equation (48) the left side of the 

Boltzmann's equation (37) can be written as follows:

a c '  + e % B) . ^fe(c)

- ' E')& £f (c)

+ 4E'* - c . Ê' X B)fgj(c)

+ i(c • E')(c ' Ë')jif ,(c)

+ [b (c ' Ë') - i(c . B)(B • l ’)]fg^(c)

+ . ^ ( c . :')(c. X B)|-^fg^(c)

+ ^.(B = E')(c » 1' xB)f (c)

^ ( c  . E')(c • B)

- ^ ( c  • E*)(c . E')(B . Ë ’)

> (55)

f̂g3(c)

The right hand side of the Boltzmann's equation (37) is now expanded by 

the substitution of equation (41). The right hand side of (37) becomes:

/
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^n> 1 ̂  - <4x1̂  dr d* dc*

M[ B 82

+  (C* • B)(g • Ë * ) ^ f ^ 3j f ;j c* - C n j r  dr d ^ dc^j

+ (C » E')fg, + (c . B X
(56)

- (c ' B)(B • E')gifg,jfn|c - Cjj|r dr d^ dcn]

Equating equation (55) to (56) yields the complete Boltzmann's equation. 

Many techniques have been proposed to formulate an approximate solution 

for this equation, but a complete solution has not yet been achieved.

A number of AinylificAdions, however, can be suggested. The ratio of 

the electron mass to the neutral mass is very large. Electron-neutral 

interactions cause very small changes in the neutral particle velocity; 
for this reason

Ô*n

Because

“e <*<■ “n ,

the random velocity of the neutral particle is much smaller than that 

for the electron; in other words.

/ |c - Cn| c (57)
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c - cJ  »  c (57)

Since momentum is conserved under the presumption that the binary 

interaction is elastic.

me “ me' ;

and the electron velocity magnitudes before and after interaction 

are equivalent

c ss c' . (58)

The term c' can be written with respect to "c and the angle of 

scattering -0- ,

c’ - c (Cos @ - 1) ,

And

(c' - c) " c(Cos - 1) , (59)

An interaction between lan electron and a neutral is of the type 

often referred to as "hard-sphere collision", where the interaction

force is not a field function. The two partiâles collide when the

impact parameter, r , is equal to the sum of the radii of the two

particles, R, Note Figure No. 1.

/



Figure No, 1 
Scattering Angle for Hard-sphere Interaction

From Figure No. 1

at the point of inyact, and

dr - R Cos Ay diy

Note that

•0* « IT - 2 oc
J

Cos -6- ■ Cos (IT - 2oc)

" -Cos(-2oc) ■ -Cos 2oc

i - Cos '©■ =* 1 + Cos 2 me = 2 Cos *04

OC. = Ny \

In the integrals of equation (56) r and é are not functions of parti­

cle distribution or velocity.
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.-R
Cos -6-) r d$ dr

CT Ô
I  Ja -

J J l  Cos*-\|f(R Sin lÿdY )
zrr -iT/t

« o
2TT T»/a

- 2 R^J Jco8^ Y  (Sii»Y dy ) d$
O
/ JLTT W i  TT/t

-Cos*T|l|dÿ " -^R*(-l) I  
O O o

- -TIR*̂  (60)

The third integration in equation (56) can be written quite simply upon 

noting that

«  d5n *

since

^n «  S  •

and that

C  (cA) »  fn ( V

The integral becomes:
/
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/■ de* = (61)

Under the conditions proposed and with the substitution of equa­

tions (38) through (61) into equation (36) equated to equation (33), 

the complete Boltzmann's equation becomes :

• ë ' ) ^ £ £ ( c)

+ (E'% - c ' Ë' X B)fgj(c)

+ -g(c . E')(c • Ê')^Fg,(c)

+ ^B(c ' E') - ^ c  • B)(B • E')jfg^(c)

+ B^(c ' Ê')(c . Ë' * B)^fgj,(c)

+ ^,(B • S')(c . E' xB)fg^(c)

^ ( c  • E')(c • B)

- g ^ ( c  • I')(c . i ’)(B • E')

/
nRS„c \ (c . E’)fg,(c) + l(c • Ê' xB)fg^(c)

+ [|’(c • B) - ^ c  • Ê')(B • l')jfg^(c) . y  (62)
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In the absence of external forces the velocity distribution of electrons 

is ff(c), a Maxwellian function. Appendix A develops this function. 

From Appendix A

ff(c) - n exp [-mcV2kTj . (63)

Equation (62) is a differo-integral relationship involving the four 

functions ff, ^g, » . The function, ff , is known; this
is the Maxwellian function given by equation (63). Equation (62) and 

the identity (63) can be combined such that a single equation in three 

unknowns results. A direct solution to equation (62) has not been formu­

lated. One technique which has been used to find a solution to equations 

of the same type as (62) suggests that terms Involving alike coefficients 

be equated. Hopefully, there are precisely the correct number of alike 

terms to allow a unique solution; otherwise, the technique fails or be­

comes much less precise. This technique is a valuable tool, even when 

approximations are required to adjust the coefficients, so long as any 

adjustment of the coefficients necessary to produce a solution can be 

justified as a reasonable approximation. An often used method to solve 

the Boltzmann's equation requires that the equation be separated into at 
least as many parts as there are unknowes. Each part is made to include 

an equality. The equations thus formed are then solved for the desired 

unknowns. With respect to equation (62), including identity (63) at least 

three equations would be required. The alike coefficients would hopefully

/
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be, for the first equation, simple multipliers; for the second equation, 

the scalar product, "c » E' ; for the third equation, the triple scalar 

product, c ' E* X B ; and for a fourth equation, the scalar triple­

vector product, "c • (E' X B) X E* . From equating (62) and (63) no 

such set of coupled equations can be formulated without drastic approxi­

mations. The literature contains ample cases where approximations have 

been made and where useful results have followed, as proof of the util­

ity of this technique as a tool. Because of the many varied approxima­
tions that would be required to solve equation (62) by this method, 

another technique is proposed.

Equation (62) was derived in a formal way, accounting for the fact 

that the result might produce vector components in the mutually perpen­

dicular geometrical directions, 1 , 2 , and 3 , as defined previously.

At the same time the functions, f„ , f„ , and f , , are unknowng* g% g3
functions of the random velocity magnitude.

Equation (62) can be separated into three mutually coupled equa­

tions corresponding to three choices for the evaluation of E* x B •
The three cases of interest are:

(1) Ë ’ X B = 0 .

This is the case for B parallel to Ê' . (It is also equivalent to
B " 0 .)

(2) Ë' • B » 0 .

//
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This is the case for B perpendicular to 1* «

(3) The general case where both

Ê' X B ^ 0 ,

and

Ë* • B ^ 0 .

In equation (62) the cross and dot product terms are expanded to 

eliminate the vector notation and to generate only scalar coefficients, 

Equation (62) becomes :

+ i c « E ' » C 0 3 > , ^ £ g ,

+ (cE'ECoSq^, - cE'BCoSg^gCos^g)fg,

+ cE'z Cosce, Cos ce, Sin^E ^  ̂ ga

+ (cE’® Cosc^(Cosc6b - cE’® Cos®c6-, Cos ̂ ^) ̂ f g ^

+ cE'BCoa gOg Cos t^^Sin f g^
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R»- On [(c‘E'CoSê ,)fg, -H (c'E'Cos^^Sln fg, 4 (ĉ E'Coŝ ^̂

-  c‘ E*CoSc ,̂ Co3^g)fg^ j (64)

The three coupled equations can now be written.

I . For 3 x 1 * " 0 , and B * Ë' " BE , I . e . , 5 || S'

- s  [e 'Cos »̂, i f f  + E-“£g, + CE"C.S ^fg, ]

-  TTR̂ n̂   ̂ c*E'Cosc^, fg , j (65)

Rearranging

cE'^Cos^ce.^fg, + (E' 2 + -̂nR̂ iijj c*E'CoSg-e-,)fg,

=E«Cosc^,^ff

And. .

+  ( i  +  k , C o 8 c « - ,  C ) f g ,

- -îîCoSc^, , (6 6 )

/

//
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where,

s  -

and is the angle between c and E* . Because of the coefficients,
Coŝ £0-, and Cos , the function fĝ  would involve , should

an attempt be made to solve equation (66) directly. In fact, equation 

(66) can only be solved by a numerical process whereby values for Cos 

are specified and then only with the assistance of tabulated functions. 

This process does not yield the solution in general terms.

It is recalled that the solution for the fg functions will yield 

the drift velocity through integration of cf^dc over the conq>lete 

range of c . It was shown in the evaluation leading to equation (43) 

that

Therefore,

A  ^dc c dc

and the integral

(over all c ) (68)
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becomes

/cf gdC'C . (69)

This is true so long as remains only a function of c , With the

Cos ̂  coefficients of equation (66), Integrals (68) and (69) would not 

be equivalent. For equivalence Integral (69) must In some way Include a 

sumnatlon over the range In , In order that all c be Included.

To overcome the predicament confronting a direct solution to equa­

tion (66), the Cos ^  , terms are treated as sources of weighting func­

tions that can be evaluated and applied to equation (66) In terms of 

constant coefficients. If this process can be performed, fg^ will 

then truly be a function only of c , and the partial derivative opera­

ting on fg| becomes an ordinary derivative. Since f^ Is the Maxwell's 

distribution previewed earlier as a known function only of c , the 

partial operating on -ff can be replaced by the ordinary derivative and 

derivative taken forthwith. Thus, a first order, first degree, linear, 

ordinary differential equation replaces equation (66) If the weighting 

coefficients can be determined. Integral ,(68) demands that the complete 

range of c be Included. Integral (69) allows for the complete range 

of c to be considered. The weighting coefficients must account for 

the complete range of the argument of c , since equation (69) takes care 

of only the magnitude of c . The complete range of ^ , can be stated:

0 ^  : 0: ^  nTT/t
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Observing Chat

f d c : A  (70)

precisely and Chat the Cos^‘̂-0 term would appear preceding both 

particles on the right of equation (70), the weighting coefficient 

multiplying the term should be Rouble the value obtained

by the integration process that follows.

To determine the weighting coefficients the modified equation 

(66) is multiplied term-wiâe by d(^, and integrated over 

from 0 to tt/2 , Assumption —  The O- coefficients can be eval­
uated prior to determining the general relationship for the , fg func­

tion by a process of integration which ignores the contribution toithe

fg's of -fr .j

n/a -n/2
2 j  Cos‘c«idc^. [ ^ f g j  + j  dee, [-gfg,] 
o ®

-n/a
4- /cosc-S-, dc«-, |^k.cfg,j 

0 “̂

/
7T/a -

CoSq ,̂ dc^i ^  A(1 - occ*')c e** j (71)

where:

onIT Ip-rik'T/ 

m/2kT

/
Equation (71) bécomes with integration:
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T ^ f g ,  + ( i c  + k,c)fg - -^(1 - otc*)e-«S.C* (72)

Multiplying through by ,

a4 ^gi + ( G + M ) f g ,  “ k j d  - «c 2 )e
otC" (73)

where ; - 2k|/tt and where kj ■ -2A/nE' L

II. For B • Ë* - 0 , B X Ê' f 0 , I.e. BJ.Ë'

+ (E’̂  - cEhCos^)fg,

+ cE’*Cos c^i^fgi + cEliCoSĉ ', fgj

+ cE'^Cos^e, Co8 c«i,^fgj,

eE'2 Cos^^,Co8 c^g^fg^

TTR^ngi^ c*E'G08j.̂, fg, \

+ c=E'Cos^e,fg^ \

+  c ^ E ' C o S g f ^ f g ^  J

(74)

III. For B x E ’ f 0 , B = E* 4 0 , i.e. the third equation
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making up the three coupled sets is equation (64).

Since equations (65) and (74) represent two of the necessary equations 

coupling the fg functions, the difference, equation (74) minue (65), 

must be an equality. This relationship becomes:

-cE'BCos^^fg, + cE'BCoSc«i fgz

+ cE'^CoS(.e Coscft^^fgj,

( + cE'^Coqc^,CoS(^^fgj

trR^n^ /  c*E’CoSj.-̂ fgj,

+ c%E'Cos^fga

(75)

where: Cos^Og - Cos^^^ ; ^  is the angle between c and the third

axis is along 3 in equation (74)J ; is the angle between c

and 2 [2 is the E* x B axisj .

Equation (75) can be simplified and rearranged as follows :

< + ^ W n g  cfga Cos(^2

,+ B'^fggCosce, Cosc^ + cfg^Cosc% ^
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Bfg, C o 3 ^ % (76)

Since equations (62) and (74) represent two of the necessary equations 

coupling the fg functions, the difference, equation (62) minue (74),

must be an equality* This relationship becosæss

^cE'B Cos^e^d - Sin^e)fg,

- cE'B Cos^CoS(^fgg

+ cE'^ Cos^a, C o s ( S i n  ̂  - D ^ f g z

+ cE'B Cos^gCoSg^^Sin^gfgj

- cE"Cos\e, Cosg»g^fg^

- ■nR*n^ ^c*E'CoSgeg(Sin^g - l)fg%

- c^E'CoSg^ Cos gG^fgg (77)

Equation (77) can be simplified and rearranged as follows ;

/ . \ 
E'^fg^Cos^. Cos_e^(Sin^_ - 1 )

^tjR n^ cfg2  Co8 g0 |̂ (Sin g8 g “ 1 )
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- Bfg^ Cosc^bCoS e^b + Cos\^,Co8 g^B

- cfgj Cos (a, Cos ̂

 ̂+ Bfg, Cosq0^Cos ̂ S i n ^ g

Bfg,[coSg%(Sin^g - 1 )] (78)

Coefficients of equations (76) and (78)« containing trigonometric 

functions of ĉ i > » c %  » and c&^ , can be evaluated
by the process used in equation (71). Application of this process 

to equation (74) follows.

E '^ fgj.2 I Cosc^, d(^, J Cosc0^d(^  I d ,^
o o o
jn/z ^-n/z .TT/ 2

” Bfg^ J  CoSqO*! d(^ J dffOz J
o o

^•n/z ^ti/2. tt/2
T T R ’n ^  cfgj, J  d<je, J C o s ^ d ^ g  J  d c %

O O
_TT/2_ m/z  y. tt/z

E'j^fg^ 2 J^Co8f^ydc&-, J ~ dg&ĵ  CoSg^ *̂ c®a
O o I

mTT/z . T T / Z  > T T / z

^■nB^nn f  f  J Cosd^ dc%
o o o

t t / 2  t t / 2  T T / 2

Bfg,' J d(^ J Coscô^dcôj, J  d(^
o o

///

(79)
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Evaluation of the Integrals of equation (78) produces the following 

results.

[ ( » ? ( # ) ]

+ ^TiR’n„ cfgj [(l)-rCf)]

+ ?  <d ]

Bfgi [ (d K ï ) ] (80)

Continuing the evaluation of the weighting coefficients.

""E^fgg - ÿ-(B - ■^TTR*nn c)fg%

(81)

Equation (81) is multiplied termwise by

_^f.do *8 z - “n ‘0 ^82.

/
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d̂ c ̂ 83 “n ^ fg3

(82)

Application of the preceding process to equation (78) follows.

tt/z. _TT/a

E'(Sin^ - l)j%fg^ 2  rCoS(.e, d^e, /  Cosg^dc^
o  o

-rr/a Tt/z.

+ ^TiR*n„(Sin^e„ - Dcfg^ J  J  CoScO^dc^a
o o

-■ B f g ^ y  Cosc-ê , J  dc«i
o  o

t t / z  t t / z

+ E'CoS g-e-ĝ fgj 2 J Coŝ t'̂ i dc9-| J dc»-,
o o

■nr/z ^ tt/z

- %^-nR^n^Cos g3 f  Cob ,̂̂, dĉ ,. f dc»a
O O

-■n/z _ ttVz
+  ^ S i n 2 g ^ 0 g  f g j  J  df^, J  C o s c » a d c » z

o  o
tt/z -n/z 

B(Singeg - Dfgjdc», J CoSc%dqe^
o o

(83)

Where: Cosj,-0-g ■ CoSgû^ /Cosg0g , and Sin •6- Cos •&■ - -^Sin 20.

Evaluation of the integrals of equation (83) produces the following 

results.

E'(Sing0 g - l)i^Efgi[2 (l)(l)]
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+ - l)c£gj [(l)t ]

- + 2'C03£9-.^£g3[2(f)?^]

- ^  T^R^n^Cos ̂ gCf g3 1̂ (1 ) g

+ BSln2 g«i,£g3

- BCSinA - U  fg, [ i(U ] (84)

Continuing the evaluation of the weighting coefficients and dividing 

through by the coefficient of the first term, equation (84) becomes

Â h z  + c - ^ 8 2

Cos \ 
â ■ V S in — I / d c 83

■ [ff'fg] (85)

Equations (83) and (85) are two coupled equations relating the three 

fg functionss The difference of equations (85) minus (83) is another 

coupled equation independent of either (83) or (85) but not both. 

Equation (85) minus equation (83) becomes %
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S in -iJ ga L s U < " E « e ‘ î/ Jdc^

Equation (86) Is simplified as follows:

(86)

^ g , ( 2  - Sinj0 -g)fg^

=  f  (ÏCose^e - Sin^^ + l)^^fg3

+ - ̂ T 1R % ( C 0S ^  + Sin^^g - D c

+ ^-§>Sin2 > (87)

Equation (87) can be readily solved for fĝ  ̂ in terms of f^^

+ ^S?Sin Zê .fc,
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fcos eô'a + 
\ S —

Sin e&a - A
E% /

+ <
. Æ  f Sin Z. ê a )

^̂ 83
JL_

[ + a (2 - Sim g^g (88)

Equations (73) » (83) , and (88) are three independent equations 

in the functions fg, , fĝ  ̂, and fg^ . The equations are repeated

below.

(1) -OtC'
(89)

(2) h z  - K j ^ f g ,  + (K^ + K,c)fg, (90)

(3) (K& + K,c)fg, + j±fg, + K,c fg,

I (91)

Where: oc ■ m/2kT

Ki -

K, -

16 f - “ pT" vz-n k r)
3 A

3 "  Sl-n ( z - S i n ,% +  8 - 8  Sin^g
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K « —  { ---f -)2  V Z  -  5irk

K.

K.

- -EQ-R̂ n -n - > )
® *̂ \ Z - «Sin J

H -

K, ■ +îsi'-"K’“n

K. 1T B 
4- E' / (92)

Equation (89) can be solved directly for fg^ . Equations (90) and (91)

can be combined to give f in terms of f„ by substitution for
“ g3 g i

fg^ in equation (91). Equation (90) specifies fg^ in terms of fg^ ;

from equation (91) the derivative of f_ in terms of f becomes:o 6  S3

d T ^ z -  % d T ‘*83 + '

(93)

Equations (90) and (93) are substituted into equation (91) to generate 

equation (94); (94) is then simplified.

+ K,K/-rr f_. + K.K,.f„, + KjK^c f3 > d c  g3 ‘'̂ ‘'4*83 g3
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+ K3K,c^4*g3 + (g, +

+ dZ^gs + K7C fS3

(94)

d C ^ ^g3 ^ [ ( K ^  + KgKt + 1 ) + (Ks + KjK7 ) c ] ^ f g , /

j~ (Ks + K^K*) + (K,Kt + K^Ky + K^) c

(95)

d ë ^ g s  +

+ (K„ + K,iC + K.jC^) fg3 - K,+ fg' (96)

where s

K, - (K. + +  D / K 3

K.O - (Kg + KjK,)/K3

K „  - (Kg + K,Kt)/K3

K,a - (KgK^'. f K4 K 7 + Ky)/K3
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K ,3 = (K;K,)/K,

K ,4 = Kg/Kg
J

(97)

The solution for equation (89) follows.

dt^gl + Kj(l - OtC )ex\ (89)

An Integrating factor is

j”  ̂ + •<ic)6c j ce

j^ce^’^ j -  J k j  ( 1  - ot,ĉ )c +

J c  dc - / c 3  e(^' " + K
(98)

Let c®" « 

Then: c ■

2 cdc « 

dc ■

y ; a change of variable,

-rr .

dy

dy/2 Vjr

With the change in variable the right side of equation (98) becomes

ff'JS.' — <»c'̂ v i< f —o^y
•^^e'*- "  dy - " ^ “t/ye'®- dy + K

z ( Ï - ) y + K'
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K =

With the substitution back to and multiplying both sides of equa­
tion (98) by

K.C»ce
-I

yield the following solution for f.

■gi
r K, , 1

K.-£«y.[K.-2oc C - « - C j e

I — At . I< C(K.si + K,^c)e + § e (99)

where:

“ tS K,Kz/(K, - 2»0

K,«. = -^Ki/(K, - 2 «<)

K./2

K* is a constant of integration. (100)

The complete solution for f^^(c) as displayed by equation (99) consists 

of a complimentary solution fg,(c)g^^p. plus a particular solution 

-gi (c)p^rt.
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ĝ,
_kC'

^gl (K„ + K,j,c)e

The arbitrary constant K' can be evaluated by the requirement that 

£q  be zero for c equal to zero; I.e.,

fe(0 ) » ff(0 ) + c • E'fg^(0 ) - 0

ff(0 )

«g, c)

A(0)e‘

« c ECos

ECos

Kl(i) - j-K.s + K

K ’e“**̂ * + (K,5 + K,^c*-)e

(0) ] (1)

— c

16

K' -K.«

c -  o

- 0  

c ~ o

Equation (99) can now be written

«g, K K.^c e ~ c (101)

With the solution for fĝ  accomplished In equation (101),attention 

can be turned to finding a solution for the linear, second order, non- 

homogeneous, ordinary differential equation with polynomial coefficients 

given by equation (96). No general method of solution for equations of 

this type Is known. For certain special equations within this type.
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group methods have been worked out, usually involving an expedient 

change of variable, transformation, or operational factoring which al­

lows the equation to reduce to a first order equation* For equation (96) 

no such technique has been discovered by the author. Differential equa­

tions of the form of equation (96) often yield to a series solution.

This technique is attempted; the equation is repeated.

+ (K, + K,. fga + CK„ + K,jC + K„c)£gj

■ K„£g, - K,^K,s ] + K „ K , . c e ' “'' (96)

The homogeneous case will be treated first; the homogeneous equation 

becomes :

+ (K„ + K.^c + K,3c)fg3 - 0 (102)

A series solution is assumed of the type
OO

fg, - I  V ” • (103)■n = o

Where the a^'s are coefficients to be determined. From equation (102) 

the derivatives can be written
OO ,

dC S3

and

y ajj(n)c , - (104)
•n ■= o

OO

da* g3
/

Equation (74) now becomes : _

- y  a„(n)(n - l)c""^
"h » O
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^  a^(n)(n - + K, ^  a^(n)c"‘

^oo ^oo

+ K E  E  VT» = O  Y»= O

+  E  v " * ‘ +  E  v " * *Ti = o “ rt =. o “

To solve équation (102) requires that the a^ coefficients of equation 

(105) be determined. This may be done by setting the coefficients of 

like powers of c equal to zero. Since equation (102) is of second 

order one expects two arbitrary constants. To begin, the indices on 

c in each of the summations of equations (105) are adjusted to be 

equivalent in the following way.

E \ (n)(n - 1)6"-» + K. r
+ K »  E “  V .TV = e

(n - 2 )d
OO

Ti=. a

+ K,; r - . s - . - . 0  (106)

For n " 0 only the first summation in equation (106) exists,

3^(0)(- 1 ) " 0 a is arbitrary.

a,(l)(0 ) + K,a^(0 ) - 0

a, is arbitrary.



72

n = 2

a%(2)(l) + K,a,(l) + K,„a^(0) + K,, a^ = 0

2at " K,a, + K ,, a - 0, a% - - %(K^a, + K„ a )

a^(3)(2) + Kqa%(2) + K,. a,(D + _K,,a, + K.^a^ = 0

6ag + 2K,a% + (K„ + K„ )a, + K,^a^ - 0 

&3 - - %; [2K,aj^ + (K,o + K„)a, + K,%a^]

a+(4)(3) + K^a^D) + K„a^(2) + K,,a% + K,^a, + K.g,

a^ " “ 7 5  ̂ 3K%ag + 2 K,ea% + K„ a^ + a, + K,^a^ ̂

The recurrence relationship of a^ coefficients for n > l  becomes :

“n ■ ■ -n [ (" - + <n-2)K„a,

+ KuSn-i + K + K„<4..,] (107)
'

where:

k < 0  ,
■S?. 0

The conq)limentaxy solution to equation (96) is, therefore, equation (103).
/'
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This solution will be truncated at n = 4 , and the abbreviated form

of the solution is taken to be an acceptable approximation to the com­

plete solution. ^Assumption —  The complimentary solution to equation

(96) can be approximated by a series of the form of equation (103) trun­

cated at n ■ 4 ,j. For this approximation (fg^]^ becomes:

a + a,c + a%c^ + a^c^ t (108)

+ K„a^)c«-

+ i  [(K,^ -K.o - K . ,  )a, + (K,K„ -K,^)a^]c^

- ^  [ (K,3 - 3K<,K,„ -2K,K„ t 2K,&)

+ (K<fK„ - K,K,^ - 2 K,.K„ -

+ 2K

(fg,)c ” + KrrC* + + K ^ ^ )

+ a,(l + K;,c + K:,c^ + Kaic’)c] (109)

where:

K IT

K,a = z(K,K„ - K,i)

K

K.o - -é-K,
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K,,)

K^x = -^(K# - 3K,K,o - 2 K,K„ + %{,%)

and a, are arbitrary

(110)

As a check on the validity of the foregoing assumption and approximation, 

equation (96) can be expanded through terms up to and including c^ «

A check was made for all terms through ; the only terms not cancelling

involved the a These were

(0

or

K,k - ^ 0  .

Each of the additional thirty-two terms cancelled.

A particular solution to equation (96) must be found. In

the
c*-

order to generate terms on the left of (96) of the form -^e"^ ,

particular solution will require a term of the form c(Ln c)e In
-corder to generate terms on the left of equation (96) of the form ce 

the particular solution must include a term on the form e ̂  . Other

than the information just given the form of the particular solution is 

vague. If a recurrence relationship for the a's involving only n and 

the constants , K,.,, , K,,. , K,% , and K,, can be specified, it 

appears that the best procedure for determining the particular solution 

is the method of "variation of parameters". The solution to the homo­

geneous equation (1 0 2 ) is an infinite aeries which was truncated at the
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term as an approximation» It seems justified to seek a recurrence 

relation involving only n and the constant K*s which holds through 

the ag as a reasonable approximation, from which an acceptable partic­

ular solution can be formulated. As a first step in this procedure, the 

values for the a's through a.f are found in terms of the K's by 

referring to the recurrence relationship of equation (107).

a^ = arbitrary.

arbitrary.

+ i[(Kj - K , o - K „ ) A ,  + (K,K„ - K,^)Aoj

'(Kq - 3K,K„ - 2K,K„ + 2K,^)A,t
24

+ (Kq K„ - - 2 K,oK„ - k;. + 2 K,,)AQ

1 2 0

720

(k J - 6 k 5k ,o - 3K;k „ + 5K^K,^ + 3K,\ + 4K,.K„

+ K,V - 6 K.J )A.

+ (K=K„ - - 5K^K„ K„ - 2K,K,̂  + 2K,K„

+ 3K„K,^ + 4K„ K.jAo

(K^ - IOkJk .o - 4K^K„ + 9K|K,a

+ 15K^K,% + 15K^K,,K„ + 3K^Kf,

- 18K^K„ - 12K„ K,, - 6 K„K,s)A,
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+ (k Jk „ - - 9K^ K,oK„ - 3K^ K =

+ 2K^ K,3 + 7K,K,„K,^ + 9K,K„ K,̂

+  as* K„ + - SK,^S,3

-14K„K,3 + Kf, - 4K*)Ag

5 0 4 0 (K^ - 15K%K,o-5K%K„ + UK^K,;, + 45K^Kj^

+ 36K*K;^K„ + 6 KÏK% - 38K%K*

- 52K,K,, K,̂  - 21K,K,, K,2 -15K

- 23K%K„ - 9K„K* + 50K,.K,,

-Kf, + 26K„ K,3 + 10K%)A,

+ (K|K„ - K^K,, -14K^K„K„' - 4K%K%

+ 2k Jk ,3 + 12K%K,.K,t + 15K®K„K,j

+ 33KqK,; K„ + 21K,K.„K,t - 18K,K,. K,̂

- 36K,K„ K„ + 3K,K,-̂  - 9K,K,j

15K,Vk ,̂  - 33K,.K„K,t

- 9K% K,i + 30K„K„) A,

With through specified in terms of the arbitrary a^ and a,
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a recurrence relationship that holds through a, can be written. This 

relationship is given in equation (1 1 1 )

v( " - 0(-1)̂

z K;- K,,K„ +2.

- k ,3 - 2(n-5)(7n-36)K("'^^ K,.K,

- K„ K.a. - (n-2)(n-4)(n-6)K%^^) K,^ >a,

- Kit K„ - 3 Cn-9 )(n-<o) K<*^^ K^K^

+  K,^K,3 - (n-6 )K̂ ''*‘''' K,f

K „ K „

- (n-3)Ki''"^‘̂K.‘t

+ 2K K „  + K _ Klo II

+  ̂4-; rr jj
lO ^9  ^10*^11

+ k '""-’ k „ k ^

(r>-9)<vt-&)(y> + %) „ f»>*0  „ „a 6 ,,K, 3
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_ (t \ - s )  (.-n ■* z )  r, C-n-u) z% K- IZ

- K=K,%

-(n-6 )(n»-2 n-2 )K/^'‘̂ K,,K,.K,^

-(n-6 )(n + 2)K̂ ’̂̂''''̂ Kf, K<2.

+ (n-1 ) (n-2 ) (n-6 ) K,^K,; _ / ^° (HI)
r

Equation (111) holds for all a^ through n ■ 7 ; however, the last 

seven terms preceding a, and the last four terms preceding a^ are 

not expected to be precisely correct. Generation of an a^ and a 9  

would be necessary to compute these terms with acceptable accuracy. The 

first eight terms preceding a, and the first seven terms preceding 

Sq in equation (111) are precisely correct through n “ 7; the fifteen 

terms are non-zero for n = 5 . All other terms are zero for n — 5 .

Under the approximation that tezms for n > 5  can be neglected, the recur­

rence relationship can be approximated by equation (il2 ).

n- ^(n - l)(n - 2 )Kq" K,^ - (n-2 )K^^'^^K„

+ ^(n - 3)n K,  ̂ + '‘-i(n-l) (n-2) (n-3) (n-A)Kfj'^Vo

+ ^(n-1) (n-3) (n-4)K/""-^ K,„ K„

+ ^(n-3) (n-4)K;—  K"

- 4(n-4) (n’’-2n+3)Ki’̂*®'̂ K ,3 J
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K T,
1

- K,i- #(n-3)n K „ K „

CY1-4J- (n-3)K, ' K,, + 2K,

+ ^(n-4) (n + K,„K,.

+ ^(n-4) (n+3)K^""'^ K„ K,%

K 13

y  <ii2 )

Equation (109) gives the complimentary solution to equation (96), 

The method of "variation of parameters" uses the conq)limentary solution 

to generate the particular solution by finding a function X,(c) and a 

function X 2 (c) such that

■g3 p “ fg3c, ^z^g3ca

where X, and X , are chosen to satisfy the equations

(113)

^•[aod + K.^c^ + K,ac3 + K„c-^)] +J^[a.(c + K*,c*

- 0 , (114)+ K,.c^ + Kẑ c*-)]

and

-o,C*
+ ce ^

|^'[ao(2 K,^c + 3K,^c^ + 4X..c' ''

dX%?[a,(l + 2 K 2 0 C + 3K^,c'" + 4K%ac3)]
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K.,^K,5 f  [ ]  + K,^ K,̂  ce-*c
(115)

From equation CL14)

dx, _  
de

dx,/a
de ^ae )

e .+ K,o e^ + Kg., e~̂ + Kzzc''
1 + + K,t e% + K i<\

Cut)

Substituting equation (116) into equation (115) yields the following:

a, dx, 
6 c

CI SK-a.o C -*• 3 K.X1 -+ 4" K̂ Z. Ĉ 'SC I •*• l̂ n c + I a ̂ cf')
(_ I + -+ vS

__ C c - v K a o C ' ^ - v  -v K ? * c 4 ) r z k , i C  +  4- K.I1

r _OicC^ — Ic C T
K̂i-v «15 [e -  e J c • (ll7)

dx _  
dc a»

_______ 1  + K.-,e^ + K.rc^ + K,.>e^
1  + ZKaeC + (3Ki,-K^)e* + (AK^^-2K

+ (K,tK»j- K.gKz., - 3K,^)e4 + (zK.̂  2 Kr\K%.)ea

+ (K.eK^a ) ê" K,̂  K |5
» - <x.C‘K,̂  ce I
(118)

The function can be determined by integration of equation (118) with

respect to c . Formulation of this integration is extremely difficult 

if the equation is to remain general. From equations (116) and (118)

—  ' can be written.

uc
c(l + K,.c + K=, c% + KiicS)

(same denominatory '
(same exponientials)j 

(119)
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Equations (118) and (119) do not offer readily accessable general 

solutions. To procédé any further requires numerous approximations 

because of the mathematical complexity required to maintain the solution 

general. Several approximations could be made and applied; however, 

those simplifications that allow a general integration of (118) and

(119) seem to destroy the validity of the equations. For this reason 

an attempt to determine fg^ and fg^ explicitly is not advisable. It 

is likewise not necessary or desirable.

From the outset the purpose of this research has been to discover 

techniques which might permit the determination of electrical conduc­

tivity in an analytical manner more accurate than possible with methods 

presently employed. The term "accurate" is employed here in its engi­

neering connotation. The accuracy of a theory and the usefulness of 

developed techniques are judged in an engineering sense, on the basis 

of the validity with which they may be used to verify and predict the 

natural behavior observed in scientific experimentation.

Determination of the perturbing functions, f„ and f„ , cangz 83
readily be accomplished by numerical means from the equations derived in 

this chapter, when the experimental model is known and specified. The 

derivations through equation (119) involve few simplifying approxima­

tions comparatively. It will be noted that the cross product terms 

from equation (48) have not been neglected in the succeeding derivations; 

this marks a considerable deviation from the techniques employed in the 

literature. Coupled equations (89), (90), and (91) represent the exten- 

tional contribution of this paper. These ordinary linear differential 

equations are extremely difficult to solve except by numerical means.
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Equation (101) specifies the solution for fgj (c); it is repeated 

below for convenience.

fg|(c) = K,s -* [ e -e J  + K.^c e (1 0 1 )

For the case, B ]|Ë' or B = 0 , the perturbing function is fg^(c) , 

and the complete distribution function is given by equation (1 2 0 ),

fg(c) - ff(c) + c . Ë'fg|(c) (1 2 0 )

For this case a general solution for the conductivity can be calculated.

The first step in this procedure requires that the average or drift

velocity of electrons be calculated from equation (32).
.o?

/cfedc (32)

where v is the electron drift velocity. The limits of integration 

are explicit for the function f^; for the function f̂  ̂ the limits 

are implicit. In both cases the integration is to be taken over all 

c . Since the function fg is the unperturbed Maxwell's distribution, 

the limits -oo to oo on c hold. The perturbing function f„̂  was 

defined previously in such a way that the perturbation would be in the 

direction of the perturbing force. In the case of f^^ the direction 

includes all possibilities in the half-space enclosing positive £ ;

i.e., all directions are possible in the positive half-space 1 . In 

the integrations of equations (79) Cos was integrated over limits on 

from 0 to Tr/2 . The integration on f in equation (32) mustgi
be for c between 0  and oo in order to avoid the negative half-space.
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OO oo o o

V - Jcfgdc = J  cf^dc + (1) J" cfggdc (121)

where (1 ) defines the direction of the drift for the f̂  ̂ term. 

With

fg » Kc*e

the integration over c from -oo to oo will be zero for the first terra 

in equation (121) because the unperturbed Maxwell's function is even while 

cf£ is odd. The contribution of the first integration on the right is

zero. The second terra gives v ; it becomes:

r -1
V = Jcfgjdc - J c dc + c^cKn^e”'̂'̂ dcj

= ^isj" e^^dc - K , s dc + K,b J c ^ e  '’dc

- K,s[̂ V -̂ \̂/W+

- ^  (122)

where:

K,g “ K,K%/(K, -

K - 2mrnjj/eE'

^  - m/2 k'T
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k = mR^n^/eE'

The current density J was given in equation (31), and for 

one species of particle (namely, electrons) it becomes:

J “ nev “ Kj3 ne(l) (123)

o', “ J/E' = Kasne/E'

where:

“ IC1 6 Vk + KIk 
VIT

n " Number density of electrons.



- CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS

A proven theory for the electrical conduction in ionized gases has 

never been developed. This is true for two significant reasons. First, 

the problem arises from a necessarily statistical probability phenomena, 

and the process is not entirely understood. Second, the mathematical 

burden in carrying out a solution in general terms requires simplifying 

approximations. These approximations cause major effective deviations 

from the theory as originally proposed. Thus, it is difficult to exam­

ine a theory without deviating from it. Indeed, a valid theory may 

already exist, but any proof of the theory has not been shown or even 

indicated.

All current treatment of the subject in the literature seems to 

begin with the Maxwell's probability statistics and to develop through 

application of the Boltzmann's transport equation. No theory greatly 

deviating from this general approach has received any substantial 

consideration. The hunt for an altogether new theory may be progress­

ing among some theorists, principally theoretical physicists, but one 

would gather from the literature that the greatest majority of both 

physicists and engineers are concerned with the problems of applying 

the Maxwell-Boltzmann theory.

Two major conclusions can be drawn from the work in Çhapèçr Six.
85
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First, it is entirely possible to solve the Boltzmann's equation (62) 

without neglecting cross-product terms and higher order terms. Second, 

a complete solution of the Boltzmann equation can best be accomplished 

by numerical means after a laboratory model has been specified. Equa­

tions (89), (90), and (91) are three coupled equations, the solution to 

which produces the key to the calculation of electrical conductivity 

for a slightly ionized gas of simple atomic structure. The solution 

to these equations requires evaluation of integrals of the form of 

equation (118). Integrals of this type are normally solved by numeri­

cal techniques which are not applicable to equations involving unspeci­

fied constants.

An experimental program is recommended to verify the results 

obtained in this paper. The characteristics of the gas and conditions 

of containment should be made to duplicate the assumptions stated.

With a laboratory model specified, the constants K, through could 

be determined. Knowing these coefficients, a numerical calculation of 

drift velocities and conductivities could be made. The only proof of 

the value of the techniques used and the results obtained must come 

through experimental validation if practical engineering significance 

is of major concern.
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APPENDIX A

•This Appendix discusses the derivation of the Maxwell's distrib­

ution function from the Maxwell's probability statistics.
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KA»JELL'S DISTRIBUTION FUNCTION

The physical problem to be considered is that of the distribution 

of velocities within a gas. The gas is composed of a large number of 

particles in thermal agitation. The problem is to determine the proba­

bility that a particular particle has a specified velocity. At a ran­

dom time a particle of the gas is observed, and its velocity is noted.

It is necessary to determine the probability that the observed vel­

ocity components lie between c, and c, + dc, , c^ and ĉ  ̂+ dc^ , 

and Cj and Cj + dc^ , respectively.

p(c,) is the probability that the component of the gas velocity 

in that directon lies within the interval c, and c, + dc, ; pCcj,) 

and pCcg) are similarly defined. Now if the probability of component 

c, is completely independent of the probabilities of the other two 

components,

p(c,, c^, C3 ) = p(c,)p(c%)p(Cj) . (A-1)

Assumption --- The velocity probabilities in the velocity quadrature

coordinate directions are mutually independent. (This assumption seems 

reasonable on the surface, but investigators from Maxwell’s time hence 

have questioned, then accepted, it.) Other assumptions concerning the 

state of the gas are implied; namely, the gas is in thermal equalibrium, 

contained, and under the influence of no external forces.]

From equation (A-1)
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log p ( C |  , C ^ ,  C 3 ) = log p(Cj) + log p ( c % )  + log P (Cj)
(A-2)

For a gas in thermal agitation with no external forces applied and in 

an equilibrium state, all directions of motion are equally likely, 

[^Assumption —  For any randomly selected time of observation all 

velocity directions of observed particle motion are equally likely,J 

In this case

p ( C j , C g ,  C 3 ) “ p(c) ,

where

l/cT +  Cg +  C^^l), +  (1); +  (1)3

and where [(1 ), + (1 )% + (l^J represents the direction coordi­

nates only. Since the directional information is unnecessary p(c) 

is a function of (c^ + Cg + c|) only; therefore,

p(C|, C g ,  Cj) = f(cf + c| + C 3 ) , (A-3)

and one may write equation (A-2)

log p(c, , Cg, C3 ) = (c^ + c| + cp . (A-4)

Suppose that the function f(c^ + Cg + c p  can be expanded in an 

infinite power series; then,^
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f(cf + Cj + c|) = 4- a, (cf + c% + c^)

+ agCc^ + c| + Cj)"

. . . .  + a^(cf + c% +

= log p(c,) + log p(c%) + log p(Cg) . (A-5)

But the third term of the equality contains no cross product terms 

involving c,, Cg, and c ̂ . Since cross products of this type appear 

for each terra in the expansion except the first two, all coefficients 

beyond a,, must be zero. ^Assumption —  The function f (cj" + cj + c )̂ 

is of such a nature that it can be expanded in a power series. With 

equation (A-5) truncated at n = 1 and substituted into equation (A-5),

log p(c -, Cj, , c_g) = a^ + a, (c.f + c^ + c^) , (A-6 )

and ’\

P(a, , Cg, cj ) exp a^ + a, (cf + c l +  ĉ )J

- Ae a, (ĉ  + c| + c|) (A-7)

The probability of the particle having some velocity between the limits 

of positive and negative infinity is obviously one. This may bé expressed 

functionally as
03

m p(c, , c^, C3)dc, dCgdCj 1 , (A-8 )

or
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CO

^ ^3)dc,dCadC3 “ Aliaj* - 1 • (A-8 )
-oo

Hence,

. (A-9)-

By letting -a, - a , equation (A-7) becomes;

p(c,.c„c,) - F(cî + c | + c J >  . |#.)'e-a(cr + 0 % + c|) (a-10)

Noting that

(cT + c| + c^) . cl ,

F(cf + c% + Cj) - F(c*) or f(c)

Equation (A-10) now becomes:

f(c) 1^)^® = (A-11)

This is the Maxwell velocity distribution function; it can be trans­

formed into an energy distribution function, readily, by noting that 

the kinetic energy is a function of the square of velocity. The func­

tion often appears in the literature in terms of the kinetic tempera­

ture, and the arbitrary constant has been shown to be a function only 

of the temperature.

In the Maxwell velocity distribution function of equation (A-11), 

the arbitrary constant, a , can be determined in an intuitive way
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by observing that the exponential ter:n has no meaning unless it is non- 

demensional. This argues that the constant must have the dimensions 

of time-squared per length. The energy of a particle can be expressed 

directly in terras of its kinetic temperature by noting that the energy 

is directly proportional to the absolute kinetic temperature.

KE = K'kT (A-12)

K' is a diraensionless constant of proportionality, and k is the 

familiar Boltzmann's constant,

k - = 1.380 (10)”'* erg/“K (A-13)

in the cgs system of units.

From equation (A-12) and the kinetic energy relationship,

KE = -̂ rac® , (A-14)

KE = K'kT “ ■graic®’ . (A-15)

where ra is the particle mass.

Solving for the square of velocity,

C k ' 2kT/m . (A-16)

Since -ac^ must be diraensionless,

-a(2kT/m) = K

where K is a diraensionless constant of proportionality,

a = -Km/2kT . (A-17)
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Since only T is allowed to be a variable, it is obvious that a can 

be written as a function of T

The Maxwell velocity distribution function can now be written in 

the following way;

where n is the particle number-density per unit volume. Multiplying 

equation (A-18) by the volume element in velocity-space,

4-TTc^dc ,

produces the functional relationship for the number density of parti­

cles having speeds between c and c + do ; thus

f(c)dc = dc . (A-19)

From which

£(=) » /2kT (A-20)

is the distribution function for speeds between c and ,c + dc. 

Equation (A-20) is one of the most common forms of the Maxwell's vel­

ocity distribution function. Equation (A-20) expresses the number of 

particles in velocity space having velocities between c and c + dc 

The most probable speed for particles in f(c) occurs when f(c) 

is a maximum. Allowing a change of variable.
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X = (m/2kT)^c

to be substituted into equation (A-20) makes the equation easier to 

differentiate. This substitution gives

,i _v=-
f(x) = 4n(Ti)*x^e . (A-21)

Further, letting

x^ = u

equation (A-21) becomes;

f(u) = 4n(rT)‘*ue ,
I -u

and

“ 4n(Tr)^e^(l - u) = 0du

Then, u = 1 ,

X* = 1 ,
and • X = 1

for X > 0

Hence, the most probable value of the particle speed is

c = V^kT/ra - Co . (A-22)

Other speeds for the function are of interest.

The speed equivalent to the root-mean-square value of £(c) is

l/3kT/m = Cty«s » (A-23)
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The speed equivalent to the average value of the function is

■ySkT/mn = . (A-24)

Some resultant speeds and velocities for the Maxwellian function can 

be summarized and discussed.

(a) The average value of the speed, , is larger than the most

probable value, c^ . ,

(b) The rms value is somewhat larger than both c^ and c^y- - 

Use of the rms value in expressing the particle effective kinetic 

energy gives the well-known result,

~ (^)m(3kT/m) = 3kT/2 . (A-25)

Equation (A-25) is valid for translational particle speed, but does 

not account for particle vibration or rotation. ^Assumption —  For 

particles of interest rotation and vibration are negligible. (This 

assumption appears valid for single particles and simple atoms; it is 

much less valid for heavy molecules.)

(c) The particle velocity direction is entirely random; hence, the 

average value of the velocity vector is zero.

Cav = 0 '

.:G



APPENDIX B

This Appendix discusses the formulation of the Boltzmann's trans­

port equation. It interprets the physical meaning of the terms making 

up this equation, and adapts it to the particular case of interest in 

this paper.

4
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THE BOLTZMANN'S EQUATION

The one-particle Maxwellian-velocity distribution function was 

studied in Appendix A. A distribution function of this form, denoted 

by f(s,v,t) , is of interest where

S “ (S,)i +  (Sg)^ +  (s^)^

and

V = (V,), +  (Vg); +  (Vg)^

in the laboratory coordinate system, t is the scalar time variable.

The distribution function f(s,v,t) is not necessarily known to be 

isotropic at this point, but it is assumed to hold for a gas in thermal 

equalibrium, electrically neutral, homogeneous in the particle species, 

and under the influence of external forces.

The function f(s,v,t) is defined such that f(s,v,t)dsdv is the 

probable number of particles per second in the phase-space volume element 

dsdc at time t . In other words .f(s,v,t)dsdv is the number of parti­

cles in the geometrical volume between s and s + ds having veloci­

ties between v and v + dv at the time t . The probable number 

density of particles at a point in space determined by s’ at time t 

is
OO

f
n(s,t) - j  f(s,v,t)dv . (B-1 )

mmOO
1 0 1



102

Now,' 9

du » i(s ,v,z)d3dv , (2 - 2 )

is the number of particles in the differential phase-space volume dsdv 

at time t , as previously stated. In a differential time At the 

particle geometric coordinates change to

"s' = s + V  At , (B-3)

and the velocity coordinates change to

v' ■ V  + â At , (B-4)

where

a = F/m (B-5)

from Newton's force law. F is all external forces acting on the parti­

cle. Particle interactions are ignored for the present. Under these 

conditions the number density of particles does not change over At ; 

and

dn = dn' * f(s',v',t +At)ds'dv' . (B-6 )

If F is constant or slowly time varying, if

s' = s’ + ds ,

and if

v' ■ V + dv ,
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then

ds' ds

and

dv' dv

Equation (B-6 ) can be written as follows;

dn' = f(s + vAt, V +  ^ A t ,  t + At)dsdv (B-7)

A difference between equations (3-6) and (B-1) will occur only if inter­

particle interaction takes place. Since the same phase-space volume is 

involved and since the external forces F are presumed to remain constant 

over the time At , any difference in the number density of particles is a 

representation of the change in the distribution function during the time 

At .

dn' — dn “ f a> f ^ o) f . ds +Ç)f . à v
tD sdvdt q) t o) 8 dt av dt_ at

(B-8 )

where

ind

at
ds
dt

c iV
at

QV
dt m
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ê L
Q>t q)S

2

m q)V
è L
< ù t

(a-9)
le

where the subscript c identifies the collision terra. Equation (B-9) 

is the well-known Boltzmann’s equation; it represents little raore than 

an informed guess as to the form of the collision term.

Two particles having initial velocities v and v ̂ and of raasses 

m and m, are raoving along paths whose proximity causes an interaction 

between the particles. After the interaction, due to whatever means, 

the particle velocities are v ’ and v'j respectively. The interaction 

is a two-body encounter having functional relationships determined by the 

force governing the interaction. In the technique known as the "center- 

of-raass method," the encounter is equivalent to the-interaction of a 

particle having reduced mass with a fixed center of scattering. The 

reduced mass of the auxiliary particle becomes mm,/(ra + m^) , and the 

velocities before and after the interaction are v - v^ and v’ - v ’̂ 

respectively. Figure No, 1 displays the mechanics of the encounter 

graphically.

-e-

Figure No. B-1 

Mechanics of Fixed Center Scattering

With no interaction the auxiliary particle would have equal initial and 

terminal velocities and would pass the center of scattering within some



105

distance r . called the impact parameter. The path taken by the parti­

cle after the interaction lies in the plane determined by the path of 

incidence and the center of scattering. The scattering is planar with 

the scattering angle -9- . The plane of scattering makes an angle 0 with

the normal to that plane. The number of particles passing through an

element of geometric area rd^dr and velocity area |v - v^|dv is

dn, = f (s,v,t)rd(j)dr|V - v,l dv, . (B-IO)

The incident auxiliary particles are scattered through angles -6 - . The 

number, of particles between v and v + dv with which the incident 

particles react is

dn^ =• f(s,v,t)dv . (B-1 1 )

The number of encounters per unit time, geometrically between r and r + 

dr and (J) and (j) + d(j) is

dn,dng = f(s,v,,t)f(s,v,t)rdÇdrjv - v,jdv,dv . (B-12)

Integrating equation (B-12) over all v, , integrating r from 0 to

(where r^^^ is the maximum impact parameter for which there is

an interaction), integrating -Q- from 0  to 2 tt , and dividing out dv 

gives the time-rate-of-change of particles due to collisions which scat­

ter particles out of the velocity range v to v + dv ; i.e..

at

/“ * rr̂ZiU.
af

out
-j I V  -  V, I f ( s , v ,  , t ) f ( s , v , t ) d v ,  J J r d ( | ) d r  . (B-13)

O o

By a  s i m i l a r  a r g u m e n t  t h e  r a t e - o f - c h a n g e  o f  p a r t i c l e s  i n t o  t h e  r a n g e  i s
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at In

Combining equations (B-13) and (B-14) for the collision term with equa­

tion (B-9), the complete Boltzmann's equation becomes;

at

where

as
F . ^  
m av I at

V - V, (f f; - ff,)dvj IrdOdr

f(s',v',t)

(B-15)

f. f(s',V/,t) ,

f = f(s,v,t) ,

and f(s,v,t) .

Assumptions —

(a) Ls assumed not to modify the process of interaction,

(b) Many-particle interactions are assumed negligible.

(c) The probability of one particle having velocity v and

another having velocity v̂  is f(s,v,t)f (s,v̂ ,t)

(d) The range of interaction is much less than the mean intra­

particle separation.]

A brief discussion of the terms that make up the Boltzmann's 

equation and their physical significance with respect to the collision 

term follows. From Appendix A the Maxwellian distribution function, 

f(s,v,t) p is observed to involve the independent time-phase-space volume
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elements, s^, v^, and t . The Boltzmann's equation is repeated.

dt at
• ds 

(i)s dt
+ È.É • JË£ " collision term - F. 

ac dt ^

dt at as ac

TERM PHYSICAL EXPLANATION

è l
d t

If there is a time-rate-of change 

of the distribution function, , 

this equation states that it must 

be due to collisions.

af
at df

dt s Const, 
c Const.

#
This term asks the question, "Are 

there any new particles created at 

position s with velocity C ?"

If no particles are added or sub­

tracted externally, there is either 

no change or the change must be 

internally brought about. The only 

mechanism for the demise or creation 

of particles internally is certainly 

through collisions. Example: In

the case of electrons the process 

of ionization or deionization could 

be the mechanism.
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à l
8  s

df
ds t Const, 

c Const.

This term asks the question, "Is 

the geometrical density of the parti­

cles- constant; in other words, is the 

gas geometrically uniform?" The gas 

would not be geometrically uniform 

for single-type particles if the 

particles possess charge. It would 

be non-uniform if gravitational or 

other external force gradients were 

present and unbalanced.

Ol
o»C t Const, 

s Const.

   J This term asks if thermal equalibrium

of the particles has been achieved.

In other words, "Is the particle 

number with velocity c increasing 

or decreasing?" In the absence of 

changing external influences, if 

internal changes are observed, they 

must be due to energy transmitted 

through collisions.

Assuming no net loss or gain of particles with time (ionization equal-- 

ibrium and a contained gas),

^  » 0
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If the gas is uniform throughout geometry-space

as 0 .

If thermal equalibrium is achieved

This leaves

&f
at

and the function, f , is a constant with time. Only in the presence 

of collisions is a distribution not constant with time.

Presume the following;

(a) A contained gas.

(b) Ionization equalibrium

(c) Uniform geometric density.

(d) Electrical neutrality.

(e) Thermal equalibrium.

Under these assumptions,

àl
â t 0

and

af
as
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Hence, f(s,v,t) becomes f(v) , a velocity distribution function. 

f(v) answers the question, "What is the number density of particles 

in velocity-space having velocity v ?" df(v) answers the question, 

"What is the number density having velocity between v and v + dv ?" 

The number density having velocity between v and v + dv is just 

the uniform average number density times the probability that a 

particle lies in this velocity range. The question becomes one of 

determining the probability function, p , but this is just the 

Maxwellian probability statistics.


