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CHAPTER 1
. INTRODUCTION

The conductivity parameter with regard to electrical phenomena
and with respect to ionized gases has for many years been a topic of
more than casual interest by some of the foremost researchers and
theorists in the fiélds of ionized-gas dynamics and plasma physics.
The Bibliography reflects the names of many of those who have pre-
sented outstanding contributions.

Much of the ground work for the investigation of the phenomena
of ionization was laid down in the early work of Maxwell (13) and
Boltzmann (2), although the formulations of these two investigators
were for the most part introduced in different contexts. Shortly
following the turn of this century Lorentz (12) published a book

dealing principally with the Theory of Electrons in metals,but which

was to shed light on electron mobility in gases., Lorentz described

a Boltzmann's distribution function to determine the conductivities
of a "Lorentz gas". The "Lorentz gas" theory has remained ever since
as a major jumping-off point in the diseussion of the properties of
ionized gases. The "Lorentz gas' was supposed to be a cloud of
electroﬁs whose mass was negligible compared to that of the atoms
against which they collide.

Townsend's (19) book, 'Motion of Electrons in GCases was one of
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the earlier (1920's) publications dealing explicitly with particle gas

"mean free path" between

dynamics. Townsend elaborated on thé
electron-ion collisions and then deduced macroscopic‘properties for
the gas. During this same period, Langmuir (10) was studying low
pressure plasmas and generating his "space charge'" theory of electron
containment,

In tﬁe early and mid-1930's the now—fémous and classical works

of von Engle (21) were being published in the original German. The

two-volume Elektrische Gasentladungen reviews the works of most major

investigators up to that time and represents the most extensive work
in the field during the 1930-1950 period. '

Since 1950 a large number of significant publications has been
forthcoming. Of special interest are>the investigations by Alfven (1),
Linhart (11), Vlasov (20), Spitzer (16), Delcroix (6), Montgomery (14),
Chapman and Cowling (4), Green (5), Drummond (7), Druyvesteyn and '
Penning (8), Chandrasekhar (3), Rosenbluth (15), Jeans (9), and Taylor
(18). The period since 1960 has been one of even greater effort with
contributions principally covering the areas involving fully ionized
gases, such as MiD generation-and plasma propulsion.

The greatest problem unsolved in producing an exact theory of
gas ionization is the most fundamental problem in any theory: where . .
does oné begin, or with what does one begin? As with any theory
concerning the derivation of a quantity one expects to first agree upon
a definition of that quéntity. For the quantity of intefest in this

specific case,electrical conductivity of the ionized gas, a simple

stated definition has seldom been agreed upon by investigators. Many
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authors do not specify in any se;se what they intend the fesearcher to
believe to be a common definitive agreement. Electrical conductivity
in the case of classical conductors has been somewhat unanimously
agreed to be an inherent property of the material, inherent, for
example, as mass density is considered an inherent property. For some
cases.this is not a bad assumption; a functional rglatiqnship épproii~
mately correct for specific material, can be written which holds for
that material over broad ranges of time, temperature, and any other
parameter of intefest, external or internal. The surﬁrising tning is
that electrical conductivity is seldom defined properly as a function-
al property, not of the material, but of the response of that material
to an electrical field whether externally applied or intermally
generated or both. Any expression; therefore, for electrical conductivity
must reflect the presence of an.electric field -either directly or
indirectly, Electrical conductivity is explicitly defined in Chapter
11, ‘ ,;”“

The process of ionization is represented by the separation of
electrical charges; it is the stripping of electrons from neutral gas
atoms to produce positive ions or the impregnation of neutral gas atoms
with electrons to produce negative ions. By either mechanism, if the
gas wgré initially neutral, a separation of charge takes place. One
\cannot separate ‘charges without developing an electric field, and the
act of separation demands movement of charged particles. The movement
establishes two other properties of the ionization process which must
be considered, current density and magnetic fiux density. Any theory

'proposing to derive an expression for electrical conductivity must
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have accounted for ail three of the aforementioned properties of charge
separaéion (ionization), The influence of ionization and ionization
-processes on the conductivity is treated in Chapter IV.

With the very beginning of the process of ionization and the
separation of electrons from atoms, forces new to the classical kinetic
theory of gases develop. In addition to the thermal-pressure forces,
dispersion férces, and molecular_momentumvforces, the coulomb forces
between unalike to alike charged particiés become‘apparent, in fact
become dominant. While the increase in the thermal pressure forces
in classical kinetic theory accounts for the most significént part of
the increase in molecular energy (or atomic energy) and is aésumed to
accompany a uniform temperature rise of the whole molecule (or atom),
the thermal-pressure energy in an ionized gas is significantly found
. in the "free" electrons. (This is not precisely true; but so long as
atoms remain intact, the assumption does not materially effect the
results). For this reason and because the realm of influence of free
electrons is wide in that interaction occurs at "coulomb distances'
with many other particles or many different ions, classical gas-kinetic
theory cannot be applied witho;t modification, The thermal-pressure
energy assoclated with a free electron is entirely contained in its
momentum and, thence, is a function of its position, velocity
magnitude, and velocity direction., The interchange of energy or the
transfer of momentum during an interaction between particles depends
in addition to particle momentum and position on interaction probability
time, The classical gas-kinetic theory does not account in any proper

©

way for this dependency. For this reason a new theory is justified
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and in fact has been developed in bart, and for specialized models, for
sometime, It is the development of the statistical-probability theory
ploneered by such profound searchers as Maxwell and Lorent; that
occupies the energy of modern investigators. TPapers published since
1960, and indeed since 1950, have almost unanimously attempted to
elaborate upon this theory. Chapter III discusses the significance of
élassical gas-~dynamic theory to plasmé theory, and the influence of
the statistical model is treated in Chapter V.

Numerbus theories have been suggested to define and explain
conductivity. Theories take on a wide variety -~ from extremely
specific to very general, from apparently original to obviously exten-
sional, and from complicated to ever simplified. However, the major
portion of these works can be broken into two groups which rely om
gréatly differing frames of approach, In phe macroscoplc approach
the ionized gaé is tested in the classical hydrodynamic manner,
although the approach is more complicated than for ordinary fluids
since the ionized gas is a mixture of several interacting comnstituents.
In the microscopic approach the ionized gas is treated as a statistical
interation of the atomic particles compesing the gas, The twe ‘k
methods are generaily complimentary, but the former has given away to
the 1at£er in recent years, as the more popular concept. 1In the end
the gsefulness of a theory can best be evaluated in light of observa-
tional proof frpm controlled experimentation, Unfortunately, experimenta-
tion under the ﬁost ideal of conceivable laboratory conditions does not
completely bear out the validity of any ;;; theory as yet proposed.

This seems to be due to two very significant realities: first, the
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laboratory models (including all conditions of generation, measurement,
and confinement) influence the net forces acting on the gas whether
considered;as macroscopic fluid or mii;pééopic particles; second, no
theory asj;et proposed has been carried out without the involvement
of a large number of simplifying assumptions, both mathematical and
physical. 1In this regard a description of a laboratory model to be
introduced into the theoretical derivation of the properties of the
plasma presents a significant constraint upon the generality of the
theory and has not induced the theorist to devote a great deal of time
to considering specific model constraints. This has seemed reasonable
in light of the fact that plasma theory is in its most energetic -
period of evolution., The years since 1960 have experienced a
tremendous growth in both experimental and theoritical research into
the understanding of ionized gases.

Beginning with the Maxwell's probability distribution (Appendix
A) as the statistical frame of references, the Boltzmann's transport
_ equation (Appendix B) is expanded in Chapter VI to generate three
coupled equations relating the distribution function and its
perturbaticns in velocity space. The sciutien:of these ordinary
differential equations allows the current density to be calculated
and the conductivity to be determined in complex form. The theory
'discussed in.Chapter VI deviates substantially from that pursued in
the literature, and the assumptions necessary to produce a
mathematical solution represents a significant extension to the
techniques currently employed. It is possible, as shown in Chapter
VI, to solve the Boltzmann's equation without neglecting cross-product

terms or higher order terms,



CHAPTER II

THE DEFINITION OF ELLECTRICAL é?NDUCTIVITY

WITi RESPECT TO A CONDUCTING GAS

Many definitions can and have been imposed on the general and
rather broad term."conductivity", depending upon the context and the
mutual agreement between investigators. The conductivity in any case
will be an approximation, depending uﬁon a variety of simplifying
assumptions and upon the proposed theory. It is unfortunate that
there is no universally agreed upon general definition for electrical
conductivity; it is significant to note that even for specific cases
a considerable variation in the definition exists,

Conductivity is 6ften spoken of as though it were one of the
simple properties of the material, much as mass and charge may be
properties. This is obviously not true even as a functional relationship
evolving time and temperature variables. Conductivity is a measure
of the responéivenesg of a material to external excitation. This
responsiveness is normally a functional reiationship incorporating many
variables, The external exéitation is always an applied electric field
gradient. The response is always a net trangsfer of electric charge
with respect to the gradient. Within a material;electric field
intensities, electric current dehsities, and magnetic field intensities

may be generated internally by whatever means. The relationships

7
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between an internally generated excitation and its response can often
appear similar in every respect to conductivity; many authors refer
to conductivity in this regard. It is not incoﬁceivable that one
would wish to study such an internal relatiohship, and it would not be
deemed incorrect to speak of such a rélationship as electrical
conductivity. However, the term should carry an adjective which would
identify the.considérations involved. Such internal reactions
as dispersion or diffusion, polarization, and ionization will soundly
affect conductivity.

Although the nécessary”external exciltation to the definition
of conducti?ity is the presence of an electric field, this is not
necessarily sufficient in a more general sense. Other external
excitations cause major influences on the conductivity; therefore,
the conductivity functional relationship should express these as
independent variaﬁles. The influence of gas composition, time,
temperature, density, gravitation, and magnetic intensity must be
considered.

This paper presents a dérivatioh of an expression which relates

the current density, J, to the electric field intensity, E, in the

following manner:

Jj = oL ' (1)

o is defined as the conductivity. E is a vector whose direction is
specified; the current density, J, is expected to be a vector quantity
with quadrature components; ¢ is, therefore, a compound function involv-

ing at least three terms which allow oL to have quadrature components.



9

Under these conditions equation (1) can be rewritten:
G+ (J)y + (J3) = (oy8), + (aE), + (o3E), (2

From whigh, the conductivity components with respect to E can be written:

P YN
e =, / E, g, = J,/E, o = Jg /L (3)
/f,«“" f
/f’ where direction 1, 2, and 3 are understood to be in quadrature., For the

purpose of this paper conductivity is defined in its general sense to
be the functional relatiomship, o (E,J), expressed by equation (1). .In
particular it is a complex quantity which relates the quadrature current

density responsiveness of an ionized gas to an applied electric field.

&



CHAPTER I1III

CLASSICAL GAS KINETIC THEORY AND ITS SIGNIFICANCE

TO THE STUDY OF IONIZED GASES

In this chapter it is proper to preview the task which the
paper strives to accémplish and to.teview the contributions upon
which it is set.

Two classical achievements are of particular significance., The
first is due primarily to the early works of Boltzmann and Maxwell
and later extended by Chapman, Cowling, Spitzer, et.al., The works
of these men and others who followed their theory began with a phase-
space distribution function called the Maxwell-Boltzmann equatiom or
some small quification thereto and developed expressions for the
electrical conductivity. The second achievement is primarily due
to the work of Lorentz in studying optical dispersion. This theory
begins with the premise that the system can be defined in terms of
a classical oscillator. Exﬁensions and modifications to this theory
have likewise  followed. 1In both céses mentioned, the results are
much the same. This has not been because spfficient simpiifying
assumptions were necessary to relieve the mathematical burden that
hese assumptions.
The assumptions were essentially the same; thus it is not startling

to have observed similar results.

10
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llaving briefly summarized these achievements, this paper presents
a derivation of an expression for the electrical conductivity which is
founded in the well-established kinetic theory of gases based on a
statistical model and extended by the application of the classical
electrmagnetic theory propbsed by Maxwell. In classical kinetic
theories of gases the gas is generally visualized in one or the other
of two different ways, macroscopically or micfoscopically; In‘the
former the gas is considered as a uniform fiuid, and the properties of
the gas are considered as many individual but uniform particles. One
is interested, for example, in particle velocity, particle forces,
particle temperatures, etc, So far as a gas remains completely uniform,
or on the average uniform, with respect to the particles that make up
the gas, the macroscopic and the microscopic models produce much the
same results. This 1s because the fluid acts precisely like the
algebraic summation of its uniform constituents, It is not necessary
to examine the gas in a model more microscopic than that of its particles
at the point where uniformity of substance exists, In microscopic
classical gas-kinetic theory the point of particle uniformity is the
gas molecule; or if the gas is monatomic, the ?oint of particle uniformity
is the gas atom. The wmicroscopic study of a gas involves the
interaction of particles. Particles arefknown to "interact" in a
variety of ways, and the manner of "interaction" depends upon the type
of particle to a considerable extent. Thus the validity of an interac-
tion theory for gas particles depends largely upon the number, type, and

energy of the particles involved. Classical gas-kinetic theories,

especially those of Boltzmann, et.al., appreciate the variation of
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energies of individual particles even under steady-state conditions;
it appreciates the possible variation in type of particle to the extent
tha; gas mixtures can bq}con§idered. Because particle type and energy
are allowed.to be variables, the theory becomes necessarily intangled
with statistical mathematics, and a probability relationship is. re-
dui:ed to define tﬂe model. The theory, however, does not generally
appreciate the type-variation of interaction. As loung as a 'classical"
gas is the subject of interest, interaction is, for the substantial
part, of a single kind, called collision. Particles are seen to "bump"
into one another with insuing transfers of momentum and energy. Only
when the subject paréicles are considered to take on properties which
produce fields 1s there necessity to re-evaluate and redefiﬁe the |
interaction phenomena between particles, Gravitational and electro-
magnetic fields must be considered. The gravitational field effects
do not drastically differ between particles and essentially are functions
of the mass property of the particle, Gravitational field forces are
generally neglected in kinetic theories as being small in comparison
to other particle forces or as on~the~average tending to cancel out,
This policy of neglecting inter-particle gravitational field forces is
not altogether valid, but it seems justified in that its effect does
not seriously disrupt the "collision" theory of interaction between
particles with energies insufficient to -influence nuclear reactions.
In other words, at atomic distances and beyond inter-particle
gravitational field effects are generally small., When particles take
on net charge, electric and magnetic fields can result. The effects

of these fields are appreciable; their interaction distances are

atomically long, and their result is to require complete revision of
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the collision theory of interaction., This, more than any other, is
the reason the ciassical kinetic theory of gases breaks down when
the gas particles approach energies which produce ionization.

Ionization is here defined as the process of stripping neutral
atoms or molecules of one or more electrons or as the process by
which_neutral atoms or molecules accept one’ or more electrons. Simply,
ionization is the procéss by which,atoms‘or molecules, originally
" meutral, take on charge. Therefore, the imstant at which gas energies
become sufficient to préduce ionization is that time when particle inter-
action must deviate from that proposed in classical gas~kinmetic theory.
An additional aspect of classical theory which must be changed as
"forces at a distance', or field forces, become appreciable is the
proposition.that interactions can be considered "binary" for anything
but a first approximation. Binary, as the word implies, means two at
a time, and a binary interaction means an interactiom by only two
particles at one time. As interaction distances become long, the
collision theory becomes invalid; and with it the assumption that
interactions are binary must be abandoned., Muitiple simultaneous
interactions betwee% each and every particle must, then, be considered.

Because classical kinetic theories have been verified experimentally
for the derivation of transport phenomena in gases with energies below
ionization levels, and because the procéss of ionization has been
observed to progress smoothly as a gas begins to be ionized, any theory
which correctly produces an expression for conductivity of a slightly
ionized gas must be soundly based on kinetic theories proven for gases

'up to ionization levels. The generation of a theory which properly
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produces an expression for electrical conductivity in ionized gases
is expectéd, or so it would seem, to logically begin with the case
of a simple gas under conditions of slight ionization. The theory
could be extended to include states of partial and complete ioniza-

tion as a natural evolution.

a
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CIAPTER 1V

IONIZATION PROCESSES AND THEIR INFLULNCE

ON THE ELECTRICAL CONDUCTIVITY

Ionization, defined previously as the absorption or depletion of
one or more electrons by an otherwise neutral gas atom or molecule,
can be acihieved in a variety of ways; In each case,-however, the
eanergy state of the electromns in the shell must bé ciianged. Of inter-
est here is the process of ionization by which a neutral gtom loses
an electron to produce a positive ion-electron pair. Macroscopically
the gas is always neutral, there being exactly the same number of
positive ions as electrons present at any time, Tonized gases of this
type auvtomatically exclude such gaseous states of ionization as
electron clouds and gases of a single particle type. A gas which is
initially neutral and ideally confined will remain electrically neu-
tral, though ionized, outside a spherical cross section of radius d
surrounding each particle of interest., This distance depends on
several propgrties of the gas particle. Illowever, fof each particle
type within the gas there is a distance, d , beyond which its cou-
lombic field cannot be detected; all particles beyond thié distance
becoie shielded from the electrical presence of the subject particle,
The distance 1s ealled the Debye length, the Debye radius, or the Debye
shielding distance. Because of this goulombic shielding an external

15
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clectric fleld applied to the gaé causes no significant separation of
charged ﬁarticles within the gas, so long as the Debye radius is small
with respect to the dimensions of the confinement. A gas of this type
becomes very similar to a metallié conductor, in that no polarization
or displacement currents are allowed, when the gas is in ionization
equalibrium.

In order to produce a positive ion-electron pair a bound electron
must be freed. Electrons bound to a nucleus may normally exist in a
nunber of states, each particular to some minimum energy level, In
order to reach a secondary étate the electron must receive and hold
a nigner minimum level. These mininum energy~level bands are discrete,
and an electron cannot exist in states between these discrete bands.
The energy of an electron can be referred to as thermal eﬂergy for
which a temperature can be designated, but the energy may equally well
be described in terms of kinetic energy for which a velocity can be
assigned. An electron in some discrete energy level may receive
additional energy sufficient to raise its state to the next higher
level. Trom this higher level two changes may occur; the energy of
the electron may decay radiatively, allowing the energy state of the
electron to reduce to the next stable and lower level, or, additional
energy may be added in which case the electron may achieve a yet
higher band and remain bound or be freed. If the energy is sufficient
to aliow the électron to escape‘the highest energy band, ionization
is said to have occurred.

The simplest atom has a single electron bound to a ﬁucleus conmposed

of a single proton. When this electron is freed, the proton represents
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a completely ionized atom. A more complex atom may contain many proton='
electron pairs. If energy is added in sufficient quantity to frée the
highest energy electron, the dtom is said to be "singly ionized," and
the amount of energy required is referred to as the "first ionization
potential." Similarly, when energy equivalent to the ''second ioniza-
tion potential" is supplied and another electron is freed, the atom
is "doubly ionized" and so forth. The energy necessary to produce
ionization need not be added in lump form but may result due to many
succeeding additions of lesser amounts; however, when the critical
maximum enerpy for existence in any one band 1is reached, transition
to the next allowable energy band or to freedom occurs immediately.

One of the simplest means of adding energy to a gas, and hence
producing ionization, is to raise the gas temperature, Adding heat
to a gas slowly, railses the temperature of the particles somewhat uni-
formly; thus, the kinetic temperature of both nucleus and electron
remains approximately equal. Raising the temperature of the nucleus

doeg not directlv

_______ y, in itgelf, produce ionization; the necessary ingre-

dient is that electron temperature or energy becomes sufficiently large.
Because the mass ratio of npcleus to electron is large, the majority

of heat added is soaked up by the nucleué rather than the electron

and does not appreciably assist {ionization directly. Therefore, ioni-
zation generated by slow thermal heating, while simple, is an extrenely
inefficient process unless a thermally hot pas is desired., There are
other ways to produce ionization through a rise in temperature; one

of the most common methods utilizes the shock technique. Dy producing

a pressure shock wave through the gas, pressure energy in the wave is
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applied to the gas particles as the wave passes. This energy is
delivered very quickly and, therefore, is almost entirely absorbed
by the electrons along the wave front., Shortly after the front has
passed, the energy in the electrons dissipates to become absorbed by
the nucleus mass,’thus raising the mean gas temperature slightly.
Ionization can readily occur along the shock wave, while the total
energy delivered to the gas remains quite small. Ionization is
transient; thermal efficiency is high; and the gas remalns ther-
mally cool.

Ionization can be induced in a gas by the external application of
a strong electric field., The field accelerates a few random free
electrons, raising their kinetic energies. These accelerated
particles strike neutral afoms, deliver momentum to the atoms, and
- knock out some bound electrons. These are in turn accelerated
to multiply the action. Hence, energy in the electric field is
.converted to produce ionization, but the process requires the initial
presence of a few free electrons.

The derivations described in this paper are produced by consider-
ing the ionization process to be dynamically stable and the gas to
maintain the property of eiectric;l neutrality. The process of
ionization is dynamic in that ionization and deionization are occur-
ing simultaneously and conﬁinuously. It is considered stable if the
rate of ionization equals the rate of deionization. Electrical
neutrality requires that external electric force fields produce no

significant charge separation across the gas and no net force on the

gas; in other words the ionized gas acts like a normal conductor.



GIAPTER V -
THE STATISTICAL MODEL

In classical gas~dynamic theory it 1s not necessary to consider
the gas in terms of individual particles, but it is sufficient to
investigate the gas in terms of the extefnal forces acting on the
gas. Properties of the gas can be determined in an average way
which does not require a microscopic treatment. Ilowever, these
same gas properties can be determined by an altogether different
approach which observes the gas as individual atoms or molecules
under thermal agitation and in collisions with one another.

Theories of ionized gases have been proposed utilizing both macro-
scopic and microscopic approaches; it appears, however, that especially
where ionization must be contended with, the microscopic approach
holds the most promise.

Where no ionization takes place and at normal pressure and tempera-
ture collisions between gas molecules occur at a rate of approximately
one thousand per micro-second. Because of the large number of colli-
sions, particles have a distribution of velocity with individual changes
in velocity magnitude and direction occurring with each collision.
Theoretically, the velocity distribution contains particles that at
any one time nave velocities varying from zero to very large in magni-
tude, and with no externally applied force the distribution in velocity

19



20

direction contains particles with all directions represented.

=

i . . .
{Assumption — For a gas with no external forces applied and in

thermal equilibrium the particle velocity directions for any volume

element will be entirely random. Under these conditions the gas is

-

) ]
assured isotropic.j Because for any volume element of the gas

there is no net observable velocity direction, only particle velocity
magnitudes will be of significance in the distribution fuaction.

Let dn be the number of particles which occuby a given volume
element of the isotropic gas that have random thermal velocities
¢, +de, , ¢, + de, , and cy + dc; in the quadrature velocity-
space coordinate system, The volume element has positioun-space
coordinates of s, , s, , and Sg The particle number, dn ,
is proportional to both the velocity-space element, dc , and the
position space element, ds ; the proportionality term must be a

function of not only position and velocity but also of time.

dn = f(s,c,t)dsdc (4)
Since ds = ds,ds;ds; and dc = dc ;dc,decg ,
dn = f(s,c,t)ds.dsads.sdc‘dcadc3 . (5)

The volume element consists of both position-space elewments and velo-
city-space elements and is defined in the literature as a phase-space
element. The function f(s,c,t) is referred to in the literature as

a distribution function. {Assumption — Because of thermal equilibrium
and no time-varying forces the function f(s,c,t) is constant with
time and can be written f(s,cﬂ . If properties of the gas are at

equilibrium with respect to time, the particle number becomes:
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dn = f(s,c)dsde (6)

The function f[(s,c) is referred to as a phase-space distribution
function. Each species of the gas will have its own distribution func-

tion; hence, for the r species
dn_ = fr(s,c)dsrdcr . ' N

The number density of a given species r which has velocities

.between ¢ and ¢ + dc is
dN_ = =¥ = fydc . (8)
Thus,

0o
N, = j:iNr = ffﬁrdc|dczdc3 = J;rdc (9)
- - OO

where fr approaches zero when ¢ approaches * infinity. The mass

density for species r with particle mass m is

O = Nrmr s (10)

773
The total mass density for all species present in the gas is
= = LNm . (11)
/;9 2;/Qr 2; r'r

The random kinetic energy associated with a particular particle of the

r species is given by

B ""i‘t .
KE W C (12)

[ 3R

The average random kinetic energy for all particles of the r species

is
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oo

= 1 2 { 4

KE, = [4mcifdc, 13 )
- 00

where frdcr is the number of particles of r species having velo-

cities between . and c. + dcr , and where integration over the
distribution function determines the process of averaging.
The average random kinetic energy of an r particle can be

expressed as a function of the average thermal kinetic energy (assu-

ming a Maxwellian energy distribution).

R, (14)

n|Ge

KE, =
where k is the Boltzmann's constant and Tr is the absolute tempera-
ture of the r particle. [Assumption — The number of particles of

any species having energy in a given intremental range obeys the Max-

well's energy distribution function, namely:

s o P AT

1
aE, = 2TNEy ('ﬂRTT

The average random thermal energy per unit volume is

KE, ZNRT . (15)

From equations (13) and (15) the average kinetic energy is equivalent
to the average thermal energy.
pog

2N RT, = _/ fwm, et de, (16)

-0Q
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Let w,. be the average velocity of the r species and w be the

mass—-average velocity for all species (to differentiate from the ran-

dom thermal velocity cr) . If w; is the particle velocity, then

©o

|
We =R [wr fdwy 17

- 00

and

w = Zr/orwr/ or - (18)
i g

Now the random thermal velocity can be expressed with respect to tiae

mass—-average velocity as

= yw' -y (19)

ey = w!l =w_, . \ (20)

Since w_ was defined as the average value of w! , the average value
4 4

of ¢ is zero,

From equations (19) and (20) the average value of c. is v, .

' oo
v. = w. =w = X [c_f_dv (21)
by r N, rrr'r»*

-00 '

where V. is referred to as the diffusion velocity of the r species
and is equal to the difference between the average particle velocity

and the mass—average particle velocity.
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The electrical current density is defined by the relationship

Jp = NeZpw, (22)

where e is the unit electrical charge on the particle (equal to the

magnitude of the charge on one electron), and Zr is the number of

net unit charges (negative or positive) on the r particle,

Je = Nz (v_+w) (23)

For all species
J = eE:Nrerr + ewEZNrZr , (24)
T . Py

where the conduction current j d1s given by the first term on the
right side of equation (24) and the convection current j' is given

by the second term on the right.

j = E;Nrezrvr (25)

r :
LAssumption — The gas under consideration will be electrically neutral

in every volume element.]
If the gas is electrically neutral, the E:Nrezr is exactly zero;
¥

hence,
Je = Jp = NpeZrgvp 27
and

J = j = §:Nrezrvr . - (28)
T
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The coanduction current density is, in the absence of external forces,
equal to the diffusion (or dispersion) current density. In terms of

tie random thermal velocity equation (28) becomes:

f‘ oQ
\ ; .
J = E:NrleFT_}Crfrdcr = E:ezrd/;rfrdcr {29)

T r. g

. ~ 00 -00

With the derivation of equation (29) the calculation of the current
density is simple only when f = f(s,c) 1is simple., This is never the
case,. In the succeeding chapter considerable effort is exhausted in

the deduction of an approximate formulation for the velocity distxib-

ution function.



CHAPTER VI

SOLUTION OF THE BOLTZMANN'S EQUATION

The electrical current density in the units of charge per unit

geometrical area can be defined for one species of charged particle as

J = nezv (30)

whére n 1is the number density of particles in the units of per geo-=
metrical volume, e 1is the basic charge Qnit equivalent to the electron
charge. Z is the number of unit electron charges on the particle, and
Vv is the diffusion or mean drift velocity of the particles im the units

of geometrical length per unit time,

T = )1 = )oners, (31)

is the total current density due to the contribution of r species of
particles composing the gas, from this definition of current it is obvi-

" ous that the contribution directly to | 2:]r will be composed only of
those species of the total gas species, : , which carry unité of electri-~
cal charge Z. ¥ 0 . Furthermore, the summation implies that the net
contribution to J will depend not only upon the magnitude and sién of
'Zr . but also uéog the magnitude and direction of the velocity drift V. .

' 26
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bution wili reduce the electron and any negative~ion contribution.
In order that the equation (31) be solvable, it is necessary that
. the gas'composition at all times be calculable; and the number density
of all species must be known. [Assumption — The gas composition and
number density of all particles are determinable at every point of the
time—phase—space.] The diffusion velocity can be related to the random

thermal kinetic velocity by the relationship,
Vy = fEfrdE » (32)

according to the definition for formulating the average. [Assumption —
The kinetic velocity € contains only translaéional components. In
other words, vibrational and rotational velocity components are entirely
negligible for the particles under consideration. This assumption is
generally invalid for heavy molecules. Assumption — The gas is composed
of only constituents haviné simple atomic or molecular struccuresaJ 1f

#r is to be calculable, the distribution function fr must be known;
it is necessary that an expression for fr(§,V,t) be available. The
distribution function fr can be determined by a solution of the Boltz-

mann's equation., A Boltzmann's equation for each species of the gas is

necessary, The collision term,

S —

el

L2l Ry

a)

| ——— )
(]
-
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must be expressed in terms of the digtribution functiong, and r equa=-
tions must be solved simultaneously. Because this is usually impossible,
various simplifying assumptions are normally employed. For this reason
an exact theoryvfor conduction in ionized gases has never been deter=-
mined,

Two theories are presently receiving major consideration. Both
theories héve received attention by many investigators; they are identi-
fied as the Lorentz method, or method of binary interaction, and the
Fokker-Planck method, or the method of simultaneous-multiple interactionm,
The”difference between the two theories arises from the manner in which
the collision or interaction term is evaluated. Considering binary
interaction, the interaction term is defined to be the time-rate-of-
chaﬁgg of the distribution function. When multiple interactions are
considered, the interaction term is proportional to the first and higher
time-derivatives of the distribution function. Sutton and Sherman (17)

. have shown that under the appfox?macions normally employed, the two
theories produce identical ?esultsa

~In the case of binary interactions the collision term in integral
form is &erived invthe_ Appendix B and repeated here for convenience in

the following form.

(-a—{) = f[_(f"f: - f f.)l\”r'- V.Jfrd’rd@]d?r‘ (33)
C
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(8, Jfr- e

(34)

£f(s,v,t) 1is the distribution function of the incident particle before
interactidn; it represents the number of particles in the phase-space
volume—-element per second in the'units of per length-cubed velocity-
cubed time. f£f'(S',v',t) is the distribution of the incident parti-
‘cle after interaction. f, (s,v ,t) islthe distribution of the scat-
tering particle before interaction, f"(§',Vn st) 1is the distribution
of the scattering particle after interaction. m 1is the incident par-
ticle mass., r is the scattering impact parameter in units of length.
0 1is the angle between the normal to the scattering plane and an
arbitrary reference direction in the plane normal to both the incident
path and the plane of scattering. F 1is the superposition of all exter=-
ﬂal forces in units of mass-length per time-squared. ¥V 1is the inci=-
dent particle average velocity in the laboratory frame of reference in
the units of length per time,

Exterhal forces might include many different types, but for the
purpose of this‘paper, the forces of interest are identified as follows:

(a) For charged particles

F o= (z/m)(E+Vx3) . (35a)
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{(b) For neutral particles

F = 0 . (35b)

[Assumption — For particles carrying electric charge the external force
is given by equation (35a); for neutral particles this force is negligi-
ble.j Replacing the laboratory velocity Vv by the random velocity ¢
and noting the assumption that <T  1s translational, does not change the
. form of the eqﬁation-(34); with this shift in coordinates the Boltzmana's

equation becomes:

:)TE+(E+§)1

Bl
qu:

¢1@

wff
+

ol

- f[(f'f: -f£)|c-1| ffrdrdd)]da (36)

If the gas is only slightly ionized, there will be few electrons or
ions in a volume element; on the other hand, the number of neutrals will
be correspondingly high. The thermal motion of the heavy particles may
be neglected in comparison to the motion of electrons because of the large
mass ratio; this is Lorentz's approximation. In the case of a slightly
ionized gas the approximation is a valid one., Because the number of elec~
trons and ions in a volume element is low, interactions between electron-
electron and electron-ion will be few; and because the thermal motion
‘of both ions and neutrals is relatively low, the interactions between

ion-ion, meutral-ion, and neutral-neutral are neglected. [Assumptions _—
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Interactions of interest are those between eleétron and neutral. Electri-
cal current is a function only of electron mobility., Neutrals are con-
sidered to be unaffected by electron impact. The gas is uniform in geo-
metry space. Particle interactions are elastic. ionization equalibrium
has been achie§ed.} For these assumptions thére is only one Boltzmann's

equation to be solved. In equation (36)

Of
ot

= 0

This term relates the change in the electron distribution funcfion with
reSpe;t to time while geometry and velocity components remain constaﬂt.
For of/dt to be non-zero, electrons would have to be added to, or remov-
ed from, an element of phase~-space., The only way this is possible for a
contained‘gas is through an increase or decrease in the degree of ioniza-
tion with time; this would invalidate the assumption that ionization
equalibrium has been achieved. The second term on‘the left of equétion
(36) relates the change in the number of electrons in the distribution as
a function of geometrical space while time and velocity components are
hel& constant; for there to be such a change, the assumption that the

gas is uniform would be invalidated., Hence,

T s Lom mTacmd mea o
AMG . AMLGAUDIVMLL U

subscripts for electron and neutral terms respectively gives the Boltzmann's

equation for this case,

/
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- & (5 - 5y . of
me(E + c % B) ‘Sgi
- ﬁ\féfr'l - ) lg, - 'Ea\ f Jf rdrd«b]d&'ﬁ (37)

where
(E'+T,xB) = (E+VxB) ,

.Ther neutral particle distribution functionm, fn , is taken as
Maxwellian in form prior to an interaction with an electron; and
because of the large mass ratio m,/m, the distribution does not

-appreciably change after an interaction. Thus,

0

f = f; = a exp(-Acy) . (38)
Because interactions and external forces exert significant influence
on.the electron distribution; fe cannot be Maxwellian. In the ab-
sence of an electric field (E' = () there can be no drift velocity
of electrons in the uniform gas. Under this condition the collision
term is zero and the electron distribution is exactly Maxwellian. For

a slightly ionized gas E' can be relatively small in magnitudé. This
allows the electron distribution to be perturbed from a Maxwellian func-
tion by an amount which is proportional to E' . The electron distrib-
ution is approximated by adding to a Maxwellian term, fg(c), a term

F[E'fg(ci] which is proportional to the perturbing force E' . Thus,

replacing ¢C

e byf € , the existing distribution function for electrons



33

can be written

f(0) = £() + FE'E ()] . (39)

[Assumption ~= The elect;on distribution function in a slightly ionized
gas under the influence of an external force field can be approximated

by a relationship of the form of equation (39ﬂ « This approximation is
in line with Coulomb's Law which states that the time-rate-of-change of
velocity of a charged particle in an electric field is directly propor=-

tional to the field intemsity, E ; in other words,

F = ma = mdV_=-qE
dt
and,
dV¥ _ q =
—zd E e
dt m

An alternate approximation to that proposed in eduation (39) coulﬂ be
attained by the addition of succeeding terms of higher order in E' .
Because of gas uniformiﬁy and ionization equalibrium the electron
distribution function, like the distribution function for neutrals, is a
function only of the particle velocity; and if electric currents aié to
result, then they must arise from the perturbation. Curreats will not re-
sult uniess the electron drift velocity, ¥V , is non-zero in equation (30);

Vv will be non-zero only if the integral in equation (32) is taken for an

/

/
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even function. The Maxwellian function of the form of equation (38) is
an even function of ¢ ; however, the product €f,(c) of equation (32)
is an odd function of c¢ . This requires that the perturbation’term
F[E'fg(cﬂ in équation (39) be defined such that the contribution of
this term in equation (30) does not disappear. No restriction is re-
quired at this time beyond that implied by designating F a function
of the product E' and fg(c) « The necessary restriction on
F[E'fg(ci] will become clear later,

The drift of electrons in the presence of electric and magnetic
fields is known to havé multi-component directions. In the presence of
Aonly an electric field the drift is in the direction E . If only a
magnetic field is present there is no resultant drift. When a mag-
netic field is gdded to an electric field already present, electrons
feel accelerations ioward E and transverse to E and'f + 7To account
for electron veiocity distribution perturbations in the directions 1 ,
2, and 3 (where 1 is in the direction of E ; where 1, 2 , and 3
signifiy directions mutually perpendicular, but with the additional
requirement that 2 is also perpendicular to B) the second term om the

right of equation {39) becomes:

F[E!fg(cﬂ - ,E‘[c‘fg‘(c) + czfgz(c) + cafgs(éﬂ
=[e+E'f, () + T-ExB (—%&)fg?_(c)

+ T+ (E'xB) x i'('%ﬁ)fga(c) (40)
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Equation (40) defines the perturbafion function which,when coupled to
the non-perturbed Maxwellian distribution, generates the distribution of
electrons in velocity-space. The subscripts on c¢ in the equation
identify the geometry-space coordinates. The subscfipt on E' indi-
cates the component of E' in the direction 1 } the fact that E'
appears with no other subscript verifies that the direction 1 has
been chosen for éonvenience to coincide with that of E' . Further, the
direction 2 1is obviously that of E' x B , and the direction 3 1is
that of (E'xB) xE' . éince fe(c) is a scalar function, each term
on the right of equation (40) is a scalar. E' is a vector; therefore,
the dot product is necessary, ¢ °* E' caﬁ be written cE'Cos¢®y ,
where g8 1is the angle between € and E' . The restriction méntioned
earlier on F[ﬁ'fg(cﬂ is in reality a restriction on EG} , and ic can
now be stated. If ¢ 4s random and E' is not, then 6, would ap-
pear to be random, Now, if fg|(c) is d scalar function,.the second
term on the right of equation (40) will have no megning. Thereforg,_pome

f—
restriction on FlE'fg(c)] is necessary. The required restriction is

simple and inmtuitively obvious. Since the existence of any perturbation

<
Q

is due to the exéernal forces, E and B s and since it was previously
supposed that the perturbation ié proportional to the force, it is also
reasonable to assume that the perturbation woﬁid not be negatively pro-
portional to the forée. In other words the angle 0, 1is restricted to
produce only positive .cosines. A similar restfiction is applied with re-
spect to the other coordinates.

With the substitution of equation (40) equation (39) becomes:’
, :

7
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fol0) = fe(c) + (3 ENE, () + (8 E' xBgfgale) -

= o (F - =¢ 1
+ ¢ * (E' xB) x E'-EE fgg(c) (41)

¢ 1is the random electron velocity. ff is the Maxwell's distribution
function (equation A=-20, Appendix A); E' 1is the electric field intensity,
and B 1is the magnetic flux density. fo 1is the perturbed electron

distribution; 'fgl » fgz y and fg3 are unknown perturbing functions.
The existence of the fg terms verifies the existence of quadrature
current densities.

It has been observedApreviously, but the absence of an electric
field (E' = 0) allows the electron distribution to be Méxwellian; If
B =0 the third and fourth terms of equation (41) are zero; the current
density is cbincid;nt with the electric intensity. If the applied B
field is parallel to the E' field, the third and fourth terms disap-
pear, and the situation duplicates the case where E = ¢, Should B and
E' be normal, the third and fourth terms are maximum. The final case
allows both E' x B#0 and (E' xB) xE' #0 to be non-maximal. Only
when the electric field is absent will equation (32) be expected to fail
to yield:a net electron drift velocitf and, therefore, no electrid'cufrent.
This juétifies the statement made earlier that elecffical conductivity
can only be discussed in terms of the existence both of average migration
of charged particles and the presence of an electric force field. Migra-
ticn of charged particles without the electric field gradient cannct lead

to evaluation of finite electrical conductivity in the engineering semse.

’
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Substitution of equation (41) into the Boltzmann's equation (37)
yields a term on the left side involving the partial derivative of

£ with respect to c .

e
Z i = o% fe + 5% [E - BT, (f)]
+ csﬁa.['é - E xB o 1(52_(‘)]
vafe- @B TG i@
where
D srfe = [FHE@]&c
= [RHER) < G ~GEh] e
= [ - () - B[+ < - <]
= [RE][) + @ - lead][e v - o]
= [&F*(c) ]% (43a)
b & & Efy(e) - 2 (@ E) 45, ()
+ (€ - E’);’—E 41 () (43b)

From the results of the preceding work

Vi

/
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@ -E)&fg () = E-E)E 24,

and
2E ) = fE@k[E. E]
=) @) ¢ G[se B s8]
= fs.'[(éz}. NECANNCY
= fs‘(c)té’] .

 Therefore,

'I é%‘;[— - E a1 (‘-)] = E fai(c) 4T E %— §-c ‘fg. (c) .« (44)

. ¢) From the results just obtained
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Substituting equations (43a), (44) (45), and (46) into equation (42)
yields the value,

The substitution of equation (47) into equation (37) yields the left

side of the Boltzmann's equation. The left side of equation (37) now

becomes:
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} (48)

1@-c « E)}i& (<)
+ |B'eB o+ E . Exﬁ]fa.(c)
v+ [ 2.8y .E
_E- c - = [ ] C Iy —9—
¢ S (@260
+ r-é—(.é’ x B « E’)
_+ (E' x 8) « (& E)_] fgg(c)
[ e, = = =, 7
+ -é—c'(c « E x B) - E
L+ B—CE(E‘E’ xE} - (Z\ é)J %fsz(()
+ FL(E' x E) %= El . .E, -
8E
i = 2 ' =/ = =
L“+ BE'(E » 8) x £ « (€« B)d f”(c)
I- 7-\: E g =\ - ="-
+ ' BEe s (ExB/)xE t
S C(ExBNE « (Fxp)] 2
y +§—E-{= c (EXB)XE-o(CX-B)Jse‘fS;(C)
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The second, sixth, seventh, tench,‘eleventh, and fourteenth terms in
equation (48) are precisely zero, since a triple scalar product is zero

if any two constituents are the same,

With respect to the third term

- - "2
(E' * E') £ (c) = Efg‘(c) . ’ (49)

The fifth term becomes ¢

'[.E_ €+ E -'E']g.f -
c - Jae B

0 |-

'The fourth term may be written:

E + TxDg () = -G+ E xB) f,(0) (5D

-

. The eighth term can be rearranged to give

(B xB) « @xBfgy(c) = LE xB) + Tx T £5,(c)
B v .

= 1% G- HE + @ BE] £,,()
-[—-}_(E « B)(B-E) + BT ° E'] Vfg (e) - (52)
B . 2 :

The twelfth term can be rearranged as follows:

7/
/

/

/
’
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fga () ge[E xB) xE] @ xB)

- L@ BB - G ENE - @ x B,

_‘__ 12(R ¢ & R - __‘__
[BEE (B * ¢ xB) BE'(

= [-(a xB*EYEG - E')E‘E,]fga(c)

= (©+E xB)E - Egpfg,()

The thirteenth term becomes:

Rty [gh[e - @ =D < 7] - B

]
—
°°|
”~~
ol
=i
-
Ner?
ol
R ——
L ]
-~
=l
»n
[-<]
]
~
=]

- (g~ E')[(a «B)E'? - (8« E')(B o E')]

B+E)E' + € x'ﬁ]fga(c)

[é-fg.;(a « E9E « (E' x B) xﬁ']é‘%fga(c)

B . E')E']__

(53)

¢  fc)
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The ninth and first term can remain unchanged. With the substitution
of equations (49) through (54) into equation (48) the left side of the

Boltzmann's equation (37) can be written as follows:

Et e R Ey L D
-%(E' + & xB) - (S—Efe(c)

)
+ (E'®* - ¢ ¢ E'" x -ﬁ)fg‘(c)
+ F(E  EN(E - ENZEE,, (o)
+ [B@ B - 3@« BB + B g, (0
[+ g(@ -+ ENE « E' x B)%E,,(0)
+ ge(B - BNGE - B x B, (0)
+ [ E@ . 8@ B 1 V(59
- 5EE * ENGE - ENG ¢+ B 5ifg, ()

/

The right hand side of the Bolczma_nn's equation (37) is now expanded by

the substitution of equation (41)., The right hand side of (37) becomes:
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D L . ' et - - -
(QW 'e)c - ffﬁfe'.fn - fe fn)lc - S|t dr af -6g,
- f‘[[([fi + (8" - BEy + (8" ¢ Bx E'gfy,

e mes v '
+ (E' . B)(B . E')g}féa‘l f:llci - cnlr dr d¢ (.icﬁ‘l

e - (56)
- [ee+ (&« BOEg, + @ - B x BN,

- (C - ﬁ)(ﬁ'f Et)é;fés]fnli - Enlr dr d¢ d§?]

\

Equating equation (55) to (56) yieéelds the compiete Boltzmann's equation.
Many techniques have been proposed to formulate an approximate solution
for this equation, but a complete solution has not yet been achieved.

A number -df simplkificatiions, however, can be suggested. The ratio of .
the electron mass to the neutral mass is very 1afge. Eiectron-neut’ra];

i

for this reason

o0 = Ty o

. Because

1

me << my

the random velocity of the neutral pérticle is much smaller than that

for the electron; in other words,

/ 6= &] = ¢ ¢
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=~ ¢ , (57)

ic - cnl

Since momentum is conserved under the presumption that the binary

interaction is elastic,

mc = mc

and the electrdn'velociCy magnitudes before and after interaction

are equivalent

c =c' . 2 ' (58)

The term €' can be written with respect to © and the angle of

scattering 0 ,
g = T (Cos 8-1) ,

And

(" -8 = ECos€~- 1) (39)
An interaction betweenran electron and a neutral is of the type
often referred to as "hard-sphere collision", vhere the interaction
force is not a field-funcﬁion. ' The two partiédles collide when the

impact parameter, r , is equal to the sum of the radii of the two

particles, R, Note Pigure No. 1.



Figure No. 1

Scattering Angle for Hard-sphere Interaction

From Figure No. 1

r = RSin'\P

at the point of impact, and

Note that

Cos €& =

1 - Cos &

In the integrals of equation (56)

‘cle distribution qr/ velocity.

R Cos Wy dy

We 202 )

Cos (T - 2)

-Cos(=20c) = <=Cos 2oL

1 + Cos 20¢ = 2 Cos®e
\

e
F N\

r and 6 are not functions of parti-
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&I

r : '
fﬁl - Cos®) r df dr

()
2w /e

- fz Cos* ¥ (R Sin wdy ) df
o

27 w /2 -

= 2 R? Cos3\y(s;1n\y dy ) df

/2 ‘ w/e
dp = -IR*(G-1)[ddp
o .

27T
21 4+
= 2R q_-!’-Cos y
o N
= —T‘R" . ' (60)

The third integration in equation (56) can be written quite simply upon

noting that

since

and that
£, (cp) = £y (cad

~ The integral becomes:

/
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48 .

o~
)

ffn(cn) dé, = n, . (61)

- 00

Under the conditions proposed and with the substitution of equa~
tions (58) through (61) into equation (56) equated to equation (55),

the complete Boltzmann'’s equation becomes:

-2 FE C EDE e

+ (E'* - T E' x B)fy, (c)

+ (@« E(E - E')5LFg (o)

+ [BGEED - 3@ DG - T]gg, 00
\ /= EIRY e v = 9 |

+ —(c * E')(c » E' x B)éﬁsfgz(c)

+ —(B - E')@E + E' x B)fg, ()

T ENGE - ENG - B Seg,(0)
\ : ‘ J

= TR nge i (€ » E’)fgl(c)‘+:%(é « B ox E)fgz(c)

l,';[g-'(a * B) ~ gp(E * EG - ‘ﬁ')] fg,(c) } (62)
/
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- In the absence of external forces the velocify distribution of electrons
is fg(c), a Maxwellian function. Appendix A develops this function.
From Appendix A ‘

fe(c) = n(EEE%ﬁj":xp [-mcz/ZkT]‘ . ’ (63)

Equation (62) is a differo-integral relationship involving the four
functions fg¢, fg‘, fg,, and fgs +» The function, f§f , is known; this |
is the Maxwellian function given by equation (63). Equatidn (62) and
the idenﬁity (63) can be combined such that a single equation in three
unknoﬁns results. A direct solution to equation (62) has not been formu-
lated. One technique which has been used to find a solution to eﬁuationa
of the same type as (62) suggests that terms involving alike coefficients
be equated. Hopefully, there are precisely the correct numberlof alike
terms to allowba unique solution; otherwise, the technique failsAor be~

_comes much less precise, This technique is a valuable tcol, even when

-

-~

s ecoafflad a2 = S -
he coefficients, so long as any

approximations are required to adjust t
adjustment of the coefficients necessary to produce a solutiom cam .be
justified as a reasonable approximation. An often used method to solve
the Boltémann's equation requires that the equation be separated into at
least as many parts as there are unknowns. Each part is made to include
an equality. The equatiéns thus formed are then solved for the desired

unknowns. With respect to equation (62), including identity (63) at least

'three equations would be required. The alike coefficients would hopefully

7

/
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be, for the first equation, simple multipliers; for the second equation,
the scalar product, € ¢ E' ; for the third equation, the triple scalar
product, T - E“x—i ; and for a fourth equation, the scalar triple-
vector product, € * (E' xB) xE'  From equating (62) and (63) no
such seg of coupled equations can be formulated without drastic approxi-
mations., The literature contains'ample cases where approximations have
been made and where useful results have followed, as proof of the util-
ity.of this technique as a tool. Because of the many varied approxima-
tions that would be required to soive equation (62) by this method,
" another technique is proposed.

. Equation (62) was derived in a formal.way, accounting for the fact
that the result might produce vector components in the mﬁtually perpen=-
dicular geometrical directions, 1, 2 ,and 3, as definéd previously.
s £ are unknown

At the same time the functions, f , and f

g1 g3’

functions of the random velocity magnitude.

g2

Equation (62) can be separated into three mutually coupled equa-
tions corresponding to three choices for the evaluation of E'xT.

The three cases of interest are:
(1) Ex8 = 0 .

This is the case for B parallel to 'E'I. (It is élso equivalent to

B = 0.)
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This is the case for B perpendicular to E' .

(3) The general case where both
E' X § * 0 'Y

and

'8 4 0 .

In equation (62) the cross and dot product terms are expanded to
~eliminate the vector notation and to generate only scalar coefficients.

~ Equation (62) becomes:

-%(%cE'Coscﬁ =fs

|+ ("™ - cE'BCoscﬂ'z Sin!ea)fsl
+ ée:"E"' Cos® 8, §;;f8|

+ (cE'BCosy®, - cE'BCosg8,Cos 8. )fg,

g2

+ CE'? Cosg#, Cosc®, Sin B¢ é—ﬂ-cf

+ (cE'® CoscB,CoscOg = cE'® Cos®9,Cos $;) fzfgs

+ cE'BCoxs aoa Cos @ Sin BOE f g3

Ve
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= R*mn, [(c‘E'Cosce,) £, + (*E'Cos 8, 51n §,) £5, # (PE'CoscB,

- ¢*E'Cos 8, Cos Bﬂé)fgs ] - (64)

The three coupled equations can now be written,

I. For BXxE' = 0, and B * E' = BE, i.e., E'"ﬁ'

-2 [E'césco‘g_cff + E'fg, + CcE'Cos @, ‘:-;%fg‘ ]

= TR®n, [ c‘E'CQsce. fg',] | : (65)
| Reafranging

cE"ZCoszcﬁ‘j—cfg‘ + ®'2 4 BmRn, c*E'Cosg®, ) fg,

= -E'Cosc®, 2ff .

And, .

Coazc{)]g%fg‘ + (% + k,Cosc® c)fg,

2

i ) - ‘ ‘ '
= -gCos® gicfsr » . (66)
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where,
- =Bgpd
k, eE;ﬁR nn
and @, is the angle between € and E' . Because of the coefficients,

CoszéQ' and Cos #, , the function f; would involve B

, » should

an attempt be made to solve equation (66) directly. In fact, equation
(66) can only be solved bi a numerical process whereby values for Cos @,
are specified and then only with the assistance of tabulated functions.
This process does not yield the solution in general terms.

" It is recalled that the solution for the £, functions will yield

the drift velocity through integration of ¢€f,dc over the complete

range of € . It was shown in. the evaluation leading to equation (43)

that
N SNTR -
3c c de
Therefore,.
dc = £ dc ' (67)
c H .
and the integral
[ & dE (over all T ) (68)
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becomes

j cfodc/ - (69)

This is true so long as fe remains only a function of ¢ ; With the
Cos 8 coefficients of equatioﬁ. (66), integr#ls (68) and (69) would'not' o /
be equivalent. For equivalence 1ntegfa1 (69) must in some way include a |
sumnation over the range in @, , in order that all € be included.

To overcome the predicament confronting a direct solution to equa-
tion (66), the Cos 5, » terms are treated as sources of weighting func-
tions that can be evalpated.and appiied to equaﬁion (66) in terms of
constant coefficients; If this process can be performed, fg‘ will
then truly be a function only of ¢ , and the partial derivative opera-
ting on fg; ‘becomes an ordinary derivative., Since f; is the Maxwell's
distribution previewed earlier as a knownvfunctioﬁ_only of ¢, the .
partial operating on ff can be replaced by the ordinary derivative and |
derivative taken forthwith. Thus, a firsf order., first degree. linear,
ordinary differential equation replaceé equation (66) if the weighting‘
coefficients can be determined. Integral ,(68) demands that the complete:f
range of. ¢ be included. Integral (69) allows for the complete range
of € to be considered. The weighting=goefficients must account for -
the complete range of the argument of € ,‘sincé equation (69) takes c#re

of only the magnitude of ¢ . The complete range of &,» can be stated:

1)

Oé 0' = Ii“/_?.
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Observing that
S . D o ¢ d.p
aclg Q)_c'f& + o0& {:%Idce&' : (70)
precisely and that the -Cos’h 9‘ term would appear preceding both
particles on the right of equation (70), the weighting coefficient
multiplying the ﬁfg‘ term should be double the value obtained
‘by the integration process that follows.
To determine the weighting coefficients the modified equation
(66) is multiplied term-wise by d&&‘ and integrated over 8,
from 0 to TW/2 . [Assumption — The € coefficients can be eval-
uated prior to determining the general relationship for the . fg func-
tion by a process of integration which ignores the contribution to:the
]
fg's of @ ]

n/2 n/2

’ : \
2 f Cos® ¢8; d e, [ é%f_g\] + f dc8, [-cfg.]
(o) [+

w/e
+ [coses dceg[ kyc fm]

0
w2 A2
] 2 - C
- - f(:osce. dc& [ T A(l ~xc*)c e ] (71)
S N _ .

where:

3/2
A = sow(zmeT) .

\»

= = @m/2kT

//
Equation (71) bécomes with integration:
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' 2
Tickg + G + ko, = -HA -ac)e™* (72)
Multiplying thrbugh by ’
) ’ -ac?
+ (3 + ko)fg, = kil - wc?e (73)

where k, := 2k,/w and where k; = -2A/WE' /[

II, For B+E'" = 0, BxE ¢ 0, ie, BLE'

m{E Cosc®, ff + (E"- - cEBCose8,)fg, |
™
+ CcE'®Cos Cﬁ'acfg + cE'BCosc-G fg,
"” o
|+ cE"*Cos#8, Cos eaacfga
s 2~ .Y
:- CE Cos 5, \.Gscvascfgs )
= 'ngznn{ c*E'Cos 8, £,
+ c*E'Cos elfgz ,s
‘ . (74)
\ + Cc*E'Cos 8, f

c’B 83 /

111, For BxE' # 0, B°E' # 0, i.e, the third equation
. :
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making up the three coupled sets is equatiori (64).
Since equations (65) and (74) represent two of the necessary equations
coupling the fg functions, the Qifference, equation (74) minue (65),

must be an equality. This relationship becomes:
. - SR
- ( -cE'BCos 6, fg, + CcE'BCosg, fg, -

+ cE'*Cos @ COSc%:?T;fgz 4 >

\ + gE'ZCoqce, Coscfy gy - /

= TlR"nn c*E'Cos g8, fg,

s (75)

+ c*E’Cosg9, fgs -

- where: Cosc®; = Cos8c®; ; B; is the angle between c¢ and the third

axis lB is along 3 in equation (74)J 3 B, is the angle between ¢

. 9
and 2 [2 is the E' x B axis_l o

Equation (75) can be simplified and réarranged as folilowsz'

i

5 B
(E’nggz[coscet Cosce-z] = Bfg Cos 8, \

(+ wR n, cfg, Cosg®, >

\ + E's'%fga(:ossﬁ, Cos 8, + %nR.zznn.cf&Coscﬁ:a)
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= Bf, Cos®, (76)

8t
Since equations (62) and (74) represent two of the necessary equations
coupling the f; functions, the difference, equation (62) minue (74),

must be an equality, Thig relationship becomes:

\

_'% [-cE'B Cos 8, (1 - Sin &) fg,

- cE'B Cos E_GE,Cosc&Bfgz

+ cE'2 Cos 8, Cos g, (Sin 8, - Sf,,

)

' 7
|+ cE'B Cos -ge'ac°3-cez51“f.e-afgs A

- CE'2Cos®.8. )
\ cE'*Cos cﬁ,Coseﬁagcfga )

= TR'ny ( c®E'Cosc®, (Sin 8, - 1)fg,

2 ' .
- E'Cosce-‘ Cos Eaafga ) - (77)

Equation (77) can be simplified and rearranged as follows:

( E'=f_ Cos.8. Cos.©, (Sin H. = 1) )
oC 52 L] Ce to ;

+ ’-é‘-ﬂR n, cfg, Coscfp(Singy = 1)
/

/
/

\

—



59

: 3 a
- Bfg, CoscB,Cos B + E'Jz fg, Cos "B, Cos by

2 o :
< - ¥mR'n, cfg; Cos¢8 Cos By >

Pl

+ Bfg, Cosc¢B,Co8 H,5in O o . | y,
- Bfg,[CosscG_z (Sin r;ﬂa - 1)] ‘ (78)

Coefficients of equations (76) and (78), containing trigonometric
functions of c~&| vy ¢ » % » and B, , can be evaluated
by' the process uséd in equation (71). Application of this process

to equation (74) follows.

e /e n/z oW/ ) '
E'ﬁ;fgzz fCoscﬁ. dcﬂ"ICoscﬂ;_dcﬁzfdcﬂ_,
o

'n/a

/2

' e e
{ 4+ DuR?*n_ cf d¢8, | CosB,dc8, fdﬁ '
< € n Bzoj '_/ c c3 >

<

T/ /2
'éd(—:fgs 2 f Cos 8, dcB f dc®; f Coscﬁ dc8y
'n/z /2

+ Iﬂ-'n'RFn Cf fdc‘e" fdc'e‘ fCosc&,dcﬁ' -
~ J

/2
Bfg. f g8, f Cosc8,dct; f dc8, J ({9) |

/
/

+
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Evaluation of the integrals of equation (78) produces the following

results,

-

E"j%fgz[Z(l)(l)-g] - Beg, [(WFD) ]

+ prkia; cfg, [(1)-‘%(—2)]

+ g 200 T ]

+ I’elnkznn cfgs[(g)%(l)] |
= Bfg, [(1)%(%)] | (80)

Continuing the ‘evaluation of the weighting coefficients,

, |
((weyde, - (B - WmR'ng o)fg,

g2
+ 1'rE:j-9%:-fg3 +1}‘_-3-“"e-nn n c fg, J
Equation (81) is multiplied termwise by o

- s -
aciga se(B - B™Rn, ofy,

Vd

///
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de Mm
L+dcf83 + gpre MR oy ¢ fg,y J

T B
[-—-—4_E,f8.]

Applic.ation_ of the preceding process to equation (78) follows.

/2 /2

(=]

~

. . /2. /2
+ ré’-nRznn(SinEGB - 1)(:fg‘2 fdcﬁ',fCosc‘szcez
. o

o

/e

/2
- Bfngc08c'e| dc'e"fdc'e'z

o o
/e . wle

| + E'Cos_Eﬁ-B‘-é%f‘gs 2 f Cos* 8, dg8, f dgb,
[+ () )

: /2 w/2
- '-‘g-'nRznnCos acfgs f Cos 8, d¢t,. [ deby
o ) .

n/2 _n/a
C . @

: w2 w/
= [B(Sing&'a - 1)fg‘fdcﬁ| '/'Cosd&zd,.:__ez ]
o )

w
rEl(SinEG-B - 1)6%.fga 2[Cosc~9. dc-e-,fCoscﬂzdc{}z
o

‘\

(82)

(83)

Where: Cosgb, = Cos.9, [Cos¢Bg and Sin © Cos & = %Sin 20.

Evaluation of the integrals of equation (83) produc'es the following

results.

/

E'(Sin 6, = 1) & fgz[Z(l) (1)] ]
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+ ."%nR"nn(SinE&B - l)cfga [(l)'—'%]

- Bfga[(l)IéL] + E'Cosée-aa%fgs[z('%)'g‘]

IR g
+ Bsin2 @ fg. [(£)BW)]

= Bsing, - D g [ TD] | (84)

Continuing the evaluation of the weighting coefficients and dividing

through by the coefficient of the first term, equation (84) becomes
d

g - om0z R - I A
gefge + [4- TR, ¢ 4 E (s;nae,-l)] fgo

T2(_Ces ¢

g
* a\sm ses-l)dc fes

' T 2, (Cosea o B ——95'“ 260 Y] ¢
+ [- - Bor*n (g5 o1/t 8 F (Sm Sl ]fg
- [32g] - - >

Equations (83) and (85) are two coupled equations relating the three

=3
=2
L)
=N
e
I=h
"
ol
o]
D
o
n
™
Q
[a1]
i

quations (85) minué (83) is another
coupled equation independent of either (83) or (85) but not both.

Equation (85) minus equation A(83) bacomes 3
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-

PR N T3 _Ces 'a__es'.) - ].d_
;_1 sil’l EeB- ‘] fgz‘ + [ 8 \S!ﬂ E'ea- l l\dcfg

ma=|
M

o e o 1.8, (Sn2e%)
+ L- g-e_é'“R % (Sir\ e ~ | M l)c * 8 E\G5in e€s I fg
- o (86)

i
il

Equation (86) is simplified \;“\,“.as follows:

!
T
l:ﬁ, (2 - Sin t:_9‘5) fgaJ

j

. . T'z N . . i
:f- (-B—COSE‘Q'B - Sin®, + l)dcfga

2
|+ = ,&%“R n,(Cos &, + Sin®, - l)c
B : ~
L + —B--E—,SinZ é&s } <87)
Equation (87) can be readily solved for fy, in terms of f85‘ .
[ ™
PP -1 g (R peiy) - Si
82" TYTW (2-3.,. 103) [ (BC"S.EQB + 1 Sinsee) fefs
m '
Zegr "R'n,(Cos B, + Sin®, - l)cf,,
+ J&Sin 2,8, f,, ]
- | - J
~

- . El l -
= JI E’T(—_—_—Z‘Sh ‘98)[11‘(}99 fe + 8(1 - Sinf_ﬁ,,)fgfgg]

/

;
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C \ . 1
- I aR® .(Cos £€p *+ Sin gOg =i
r~ TR Ry Q\ 2 = Sin Eea )C
+ .
~ J

For: 0 = 6,6 =

o}

Equations (73) , (83) , and (88) are three independent equations

in the functions fg| » fg, » and fg3 . The equétionsare repeated

below.
B . . —ocC"
(1) [dcjz fg, * (T':' + ch)fg = K,(1 ~-wc*)e .- ] (89)
r d . o ) ‘ - .
,(.2) fg, = K3ygcfg, + (K, + Ksc)f33 (90)
. r d -
- Kafg; ] (91)
Where: [ oc = - m/f 2kT
2 2 !
K| = +E_E‘¢‘HR nn
m en 3/2
Ky, = z.nk' i)
Ky -/z“(z 5 )[ﬂC030+ 8 - 8 Sin B, ]
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_Q(Sm 2 Eéﬁ )
Kﬂ‘ = 2 7-_5!'\5'9'5

~
[
i

- mp2. _n(Cos 883 + Sin g8y = l)
€ n 2 - Sin B4

o

=
*
a
!
A
m

T
4efE’

T B .
Kg = =2 - j 92)
— ‘ :

Equation (89) can be solved directly for fg‘ . Equations (90) and (91)

2
Ky = + TIR™n

can be combined to give' fg 3 in terms of fg \ by substitution for

fgz in equation (91). Equation (90) specifies fgz in terms of f83 HE

from equétion (91} the derivative of fsa in terms of f.g3 becomes

< - a2 + K d
ac fgz Ks d cafga dde fss \L
' - :
+ K fg3 + Kgc Y fg‘s I (93)

Equations (90) and (93) are substituted into equation (91) to genei‘ate'

equation (94);. (94) is then simplified.

W,

¥
X

Ke€of  + R,oSfF  + R.E. + 49
Ide*gs 4dc 83 5°g3 - Kge 3¢ Tes
d
| * KK fofgs + KKEgy + KeKee £




where:

K‘l - (Kq, + K_;Ks‘ + 1)/K3

66

+ KgK,e Sf,, + KiKqe f

L
dc g3 + KgKoc fg3

e3

o - :
i [Kef"’ I (94)
J o
d* ‘ { . g .
Safe, + [ [®e + KK F D+ (®s + KsK?’“]é‘E'fga\
N I TN
+ (KgKy) c* )

- K |
(@] e

IR L

(96)

+ (K, + Kpe + Kgc?) fg; = Ky fg,

Ko = (Kg +'K3K7)/K3
Ky, = (Kg + K4K¢,)/K3

(RsK,''# KKy + Kq)/Ky

~
»
]
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K = (KsKqp) /Ky

K, = Kg/K, (97)
“

The solution for equation (89) follows.

-aC?®

£+ (¢ + K,c)fg' = Kp(l =-eacte (89)

An integrating factor is

‘4 “.K. LY '} 5' 2
[e.f(‘e+ |°)dc] . onC o+ Ec - e ®C

Ky o? [ 2
fg. [cez ¢ ] - sz (1 - «c¥)e¢ e(". o)e + K'

o Vo) ' Ko 2 '
- K,_fc e'(é: ~)e dc-Ki«f@ 2 °~)‘;dc + K
: o (98)

Let c¢* = y , a change of variable.
Then: ¢ = Yy .,
2cdc = dy

de = dy/2Vy

. With the change in variable the right side of equation (98) becomes

.', f(f.'—odv N {_'E-;u7y .
‘ “Tdy + K
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K
- 3 [ ’ 2 (2 =9y ’
K|‘Z°L 1 -y + T(T-_Z"‘- e 2 + K

- K, K ('é"u')y /
k.-zx[ K -2 ""'y]e + K

With the substitution back to c? and multiplying both sides of equa-

tion (98) by

yield the following solution for f

Lo ® ]

where:

4
Ko K \ —aC? v o Kucz
g K.-ax[K,-éuc -«.c]e t ce ®
ac® ' _kcz

£,(@ = Kt + K oe + £ (99)

2
Ks = K,K/(K, - 20
K,g = -NKg/(K| - 2‘1)
k = K./Z:
K' is a constant of integtaﬁion. ' (100)

The complete solution for fg‘(c) -as displayed by equation (99) consists

of a complimentary solution fg|(c)c°"‘P. plus a particular solutiqg

(c) ,
hd ’Po.l't.

———
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-kc? l‘

v 4
fg' (C)Gomp. K -é-e

I —ac?
fo (®p . = &Kisg + Kio)e

The arbitrary constant K' can be evaluated by the requirement that -
Ty

fo be zero for c¢ equal to zero; i.e.,

£,00) = £:(0) + T« E'f (0) = 0 .

ff(O) = A(0)e® = 0 -

1 -ke? l _ al’
fg. (0) = ¢ ECos 8, [%e < 4 (_‘és + K, c)e xc ] - 0
o .

......

3 a
= ECos® | K'é S + (Kis + Kie®e ™% | = 0
) ]C =0
/ ! .
K'¢l) = [K.s + K.,,(O)] (1)

K' = -K‘S
Equation (959) can now be written

-acc? .. -kc?® - 2
fg. (c) = K.S-:-;-[e et ke ]+ K, ¢ e™¢ (101)

1

With the solution for fg. accomplished in equation (101),attention
can be turned to finding a solution for the linear, second order, non-
homogeneous, ordinary differential equation with polynomial coefficients
given by equation A(96). No  general method of solution for equations of

this type is knowﬂ. For certain special equations within this type,
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group methods have been worked out, usually involving an eipedient
change of variable, transformatio;, oi operational factoring which al-~
lows the equation to reduce to a first order equatiop. For equation (96)
no such technique has been discovered by the author. Différential eqéa-
tions of the form of equation (96) often yield to a series solution.

This technique is attempted; the equation is repeated.

+ (Kq + Koc)Sf + (K, + K,c + K,c)f
9 10 [ 2 3 g3

dzf
dc? dc g3

83

-nc ~ke*] - -og?
Kof, = KoKz -";-[e ML E ] + KaKee&© (96)

14 g|
The homogeneous case will be treated first; the homogeneous equation

becomes:

d2

dc"f83 + (Kq + Koo

d
gc fg3
+ (Ku + K.-,_C + K,ac )f83 = 0 (102)

A series solution is assumed of the type

(-]

f = . }: a'c" - ‘ o (103)

2
£ nse n

Where the an's are coefficients to be determined., From equation (102)

the derivatives can be written

o (

P et -

a¢ fas L az(n)c > - . (104)
‘and

<o
2
j%afg- = 5“ ‘a (n)(n - 1T .
2 M=o

/,

Equation (74) noQ becomes : -
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e

(=]
E: a,(n)(n - 1)en 2 +
Mm=0 - )
[~"]
+ K, Z a (n)c"
MNM=0
v T §
+ K, [/, ac
k M=o0

To solve equation (102) requires that the

D e R

Kq Z a_(n) et

n=o

| -

n

oKy Z n®
mn=zo

oo
T -
¥ Ky [, adt j(105)

a coefficients of equation

(105) be determined. This may be done by setting the coefficients of

like powers of c¢ equal to zero.

order one expects two arbitrary constants.

Since equation (102) is of second

To begin, the indices on

¢ in each of the summations of equations (105) are adjusted to be

equivalent in the following way.

oo ‘ ©o
Z a@@m-1*  + K, Z ap-, (= 2
n=0 Mn=A
0 ' °°.
- Mn=-2 A Z N-2
+ K‘°-“Z_.z a . (n - 2)c + K, e a,_,¢
0 oo N v" [~ -]
: T~ Z - a -
* ‘K‘l T\Z.-.a %n-3¢ +v K n=4 %n-a € 0 (106)

For n = 0 only the first summation in equation (106) exists.

t

ao(O) (-1) = 0

ao'"is
n = 1
a,(1)(0) + K,ao(O) = 0
{ 7
-/ . a,

K4

arbitrary.

is arbitrary.
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a;(2)(1) + Kqa, (1) + K,oao(O) + Kya, = 0
2a, = Kqa, + K,a, = 0, 8, = =-%(Kea, + K,a)
n = 3

33(3)(2)."' Kqaz(2) + K,,a, (1) + Kya, + Kpa = 0

6a; + 2Ksa, + (Ko + K, )a, + Kp,a, = 0
a; = - % [Zanz_ + (Ko + K, )a, + K,zao]
n = 4

a,(4)(3) + Kqa;(3) + K, a,(2) + K,a, + Knpa, + K,ya

l .
A, = -'_5[3.&‘&3 + 2Ka, + Kya, + Kyoa, + K'380]

The recurrence relationship of a_ coefficients for n>1 becomes :

a

. ‘ -
+ Kya _, + Kaa, 5 + Kuaan-5] (107)

- where:

The complimentary solution to equation (96) is, therefore, equationm (103).

/
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.This solution will be truncated at 'm = 4 , and the abbreviated form
of the solution is taken to be an accept#ble-approximation to the com-
pléte solution. [Assumption - The complimentary solution to equation
(96) can be approximated by a series of the form of equation (103) trun- .

cated at n = 4 .]‘ For this approximation (f83%> becomes:

(£,)e = 3, + ac + a,e* + age® + a.c’ (108).

= a + ac - 5 (Kqa, + K.‘ao)c

+ % [(K: = KIO - K, J)a, + (KK, =~ K'Z)ao] c?

- 2%,.[ (an - 3KqK‘° ‘ZKqK“ "‘: ZK'Z.) a,

2 .. 2
+ (KoK, = K¢k, = K, K, =K,

+ .2K.3)ao]c+

(fgg)e [ao(l + Kgc* + Kgc? + Kqe?)

+ a|(1 + KZoc + Kzlcl, + Knc")c] (109)

where:
r K = - J?:Kt\ | 7
Kne = T\,'(quu - Km)

Kig = -i'z(K;Kll = KqKip = 2K, K,, = K, + 2Kg3)
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| 2 . ‘
Kz = '(';(Kq = K = K,)

Kaa = -3(K7 = KK = KKy + 2Kp) Y (110)

\ a, and a, are arbitrary

As a check on the validity of the foregoing assumption and approximation,
equation (96) can be expanded through terms up to and including c%* .
A check was made for all terms through c¢?* ; the only terms not cancelling

involved the a0 » These were

a (~%K, K, + £K,] )e* = 0 ,

. 0T

K“ - 1{.2 # 0 .

'

" Each of the additional thirty-two ‘terms cancelled.

A particular solution to equation (96) must be found. In
order to generate terms 6n the left of (96) of the fc;rm _‘ae.c" , the
particular solution will require a term of -thé form ¢(ln c)e” e* « In
order to generate terms on the left of equation (96) of the form ce’°z ’
the particular solution must include a term on the form e‘ct . Other
than the information just given the form of the particular solution is
vague, If a fecurrence relationship for the a's involving only n an;i
the constants K_g s Kio s K, » K,z , and K,3 can be specified, it
appears that the best procedure for def.etmiﬁing the particular solution

is the method of "variation of parameters'". The solution to the homo-

geneousv equation ‘(102) is an infinite eeries which was truncated at the
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c* term as an approximation. It seems justified to seek a recurrance
relation involving only n and the constant K's which holds through
the ag; as a reasonable approximation, from which an acceptable partic-
ular solution can be formulated. As a first step in this procedure, the
values for the a's through a, are found in termé of the K's by

referring to the recurrance relationship of equation (107).
a_ = arbitrary.
a, = arbitrary.

a, = - -zl-an, + K, a,

ay = + [ - Ko = RWAL F EKRa = KidAo]

3
a, = -3z |(K§ = KK = KK+ 2Kj,)A,

o+ (K; Ky = KgKp = KoKy, = K:- + . 2K|3)Ao‘

- ‘ : v -
ag = + o [(R] = 6K3K, = 3KEK,, + SK,K, + 3K + 4K K,

+ K} = 6K, )A,

3 2 2
+ (K3K, = KiK,, = 5KK, K, = 2KK. + 2K,

-L + 3K, K, + 4K, K,,)A,

[-4
*
]
|
B

~
»
(=]

A RS - 10K3K,. - 41(;1(,, + 9K Kiz
2 2
+ ISKKe + LSKK, K, + 3KK]

- 18K K, = 12K,K,, = 6K, K,;)A,
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+ (KK, - KiK. = 9K§ KoK, = 3KJ K,

2 r
+ WIK,; + TKK, K, + 9KK,K,

—~2 ., -y o 2
+ &K, K, + 6K, X -s».,ox,s

' 3
- 16K, K,y + Ky = 4K3)A;

r~

. . v amckt
b = | - IR, ¢ LK+ SR

+ 36K3K,,K, + 6K3K), = 38K{K,;-

3
52K9K,° K,z - 21K9K‘| K‘z -15K 1o

23K, K, = 9K, K}, + 50K,.K,
3 ' ,. 2
=K} + 26K, K,; + 10K;)A,
+ (K3K, = KiK,, =14K3K, K, - = 4KIK;
+ 2KgK,; + 12KiK,K,, + 15KK, K,
+ 33KqKg Ky + 21KK, K = 18K.K, K,

36K K, K,; + 3KGK3 - 9K,K;3

[

15K2K,, = 33K,,K, K,

9K} K., + 30K,K,;) A, ~
- L

With. a, through a, specified in terms of the arbitrary a, and a,
. y ‘ .

4
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a recurrence relationship that holds through a, can be written. This
relationship is given in equation (111)

. (_l)(""")
n Y

. : -
(k) o o) &0 LGy

nn-3 , n-4) n-)(n-2)(n-3)(n-4) (n-5)
+ z Kq Kip + EE— g = Kq K-o

(a1 (n-3)(n-a4) ,, (=5 (a=3)(n-a) . (-5) 2
4+ 40 nz_ n K, K,OK“ + {n znq K‘, K2

- {oca)@’-2n03) k&% Ky - 2(0-5) T30k Y KK,y

- Q-‘i*l!";lnx‘“ VKo Kyz = (a-2) (a=4) (a=-6)K™Y) K3

2

. _ (Y"""zg‘!'""q')l(:n-j) K.’; K

- 3(m-a)(n-o) K"k K2

-2Y(n- - (n-7) n- 7) 3
+ 2L Z){ﬂz.s)(n &) K K, - (n=6)Kq Ky

1+ -(n-»G)(n"»-O-n»-Q)K»(n-"r) K,K, + {n-2)(n-3)(n-6) -K»‘(in:‘!)K?

K 2 | "3 2 z-.)
~ - (n-3) ) (n=4) N
K‘?“‘I)Ku K‘P Klz = “_Q‘Z—HK? ) KnoKn
- (o~ 3)K (n- 4)

,

' -a) : : (O
+ KV Ry o+ Dewdeen gl gy

2

+ (n-q}zgn..gz K(:-S) K, K

1z

+ Lo2)nealnes)nag) g (P KiLK,

+ nn-a)(n-s) K(“*b) K _K*

2 q 10 ™y

- (7\‘4)(7\-52(7\*2) Kg”")x K

',/ In-s)ﬁn;t)(-n* 2) K n-e) K, K.,
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+ (n-a)(n-s) K'(hv-u) Ks

2 9 u

(n=-s5)( ) n-6 2
- ‘ 5)in+2 Kq ) Klz

2

- (n-n\(nd)(n-k) Kg‘"-") K2 K,.
io

2
v (n-7
- (n=6) (n®=2n=-2)K, KoK, Kz
-(n-6) (n + 2)K§"") KiK.,z
K+ (n-1) (n-2) (n-6) K .(,n'-'} K2 K3 } A, (111)

-

I

. Equation (111) holds for all a, through n = 7 ; however, the last
seven terms preceding 'a, and the i_as.t four terms preceding a, are
not expected to be precisely correct. ('}enerationvof ar.xv ag and aq
would be necessary to compute these terms with acceptable accuracy. The
‘first eight terms preceding a, and the first seven terms preceding
a, 1in equation (11l) are precisely cbrrect through n = 7; the fifteen
terms 'a'r.e non-zero for n = 5 . All other t:erms'are zero for n<5 ,
Under the approximation that terms for n=>5 cén be neglected, the racur-

rence relationship can be approi;imated by equation (i12).
‘\

-

-y r _1

="

+3@=Da kYR, + Le-1) (@-2) (@=3) (a=0)KFKE

+ 3D (a-3) (=K P K K,

Mmes) =
+ -%(n—B) (n~4)K, K,

3(a=4) (2 =20#3)K ™Y K 4 §

%
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: 3
(n- - -
kP R, - KO R, - 2@ kY K K,
- (n—3)1<f,“"‘) KZ o+ Ik,
( >ag
+ @@+ DY kK,
> (nz)
+ 2(a-4) @)K Pk K
k 2 9 " [} .J
- | y

Equation (109) gives the complimentary solution to equation (96).
The method of "variation of parameters" uses the complimentary solution
to generate the particular solution by finding-a function X,(c) and a

function X,(c) such that

£ = X, fgy + Kfg, (113)

where X, and X, are chosen to satisfy the equatioms

é—’i‘ ' é—x-? =
() 5efgse, ¥ dc'fgae; = O

d¥X 2
‘-:‘--‘-:-'[ao(l-i-Kl.,c’L +. K,Bc3 + ch“)] +3—é3[a,(c + K,,c

+ Kp,c® + Kzzc‘*)] = 0 . (114)
and
. ‘ X3 2
(2 P Sfne, 4 9% Yuen gk, 1[e*

de . dc¢ dc A

C?.

-0
"
t KWK,bce, .

(1%

2. r

cl

+ %’[a,(l+ K,oe + 3Ky, c* +szzc3)]

21
ag(2K,;c + 3K,ac* + AK)\c’)J

o
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From equation (114)
dx, — dxz (___L) ¢ + Keo c* + Kay ¢ + Keact (he)
de - 1 + K ¢* + Ko €3 + K, c¥

Substituting equation (116) into equation (115) yields the following:

(3 3
dXa (l +2Kao € + 3Ka C + 4Kaz Ay kimet + KigC + Ky C-4)-.1
dc (1l + Kigc®* & Kige?® & Kuqc%)

a,

(c+ Kaoc*+ Kz 4 Kzac¥)(2knc + 3.1ge%+ Gy <3)
(\ “+ 'Cncz “* K\%C.‘ “+ K,q C“')

.4
cocc?  -kce?* -ac? R
= [Kw s (&5 - e T Kk c e . )
dx = 1 ' 1 + Kge* + Kage® + Kiqe*
dc 1+ ZK 20C + (3Kz, =Kix)c? + (4Kyp-2K ) c?

+ (Kl'l Kli- KlSKZO - 3K‘:‘ )C‘* + (ZK‘T Kza"' ZKszo)cs-——

1
sectghe) e

+ (KDGKZZ -K“KZI) C’.][K“’K.SC[ -e + K K bceJ

' (118)

The function X, can be determined by integration of equation (118) with
respect to c¢ . Formulation of this ini:egtation is extremely difficult

if the equation is to remain genérale From equations (116) and (118)

4%, can be written.

~

B

dx, — _1 (el +K.qc + Kiic?* + Kaac?) (same 'exponientials)]
dc a,| (same denominator )" . S (119)

7
J
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. Eéuacions (118) and (119) do not offer readily accessable general
solutions. To procede any further requires numerous approximationms
because of the math;matical complexity required to‘maintain the solution
general., Several approximations could be made and»applied; however,
those simplifications that allow a general integration of (118) and
(119) seem to destroy the validity of the equétions. For this reason

an attempt to determine fgz and f explicitly is not advisable. It

83
is likewise not necessary or desirable.

From ghe outset the purpose of this research has been to discover
techniques which might permit the determination of electrical coanduc-
tivity in an analyticél manner more accurate than possible with methods
presently employed. The. term "accurate" is employed here in its engi-
ne;ring connotation. The accuracy of a theory and the usefulness of
developed iechniques are judged in an engineering sense, on the basis
of the validity with which they may be used to verify and p;edict the
naturai behavior observed in scientific experimentation. |

Determination of the perturbing functiong, £ 2 and fg3 s can

g
reaéily be accomplished by numerical means from the equationsderived in

~ this chapter, when the experimentaL model is known and specified. The
derivations through equation (119) involve few simplifying approxima-
tions comparatively. It will be noted that the crdss product terms
fromAequation (48) have not geep neg%ected in the succeéding deriQations;
this marks a considerable deviation from the techniques employed in the
literature. Coupléd eﬁuations (89), (90), and (91) represent the exten-

tional contribution of this paper, These ordinary linear differential

equations are extremely difficult to solve except by numerical means.

ol
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p4

Equation (101) specifies the solution for fg;<°)§ it is repeated
below for convenience.

-ac® .'k.c."] —act

fg‘(c) = K.s-% [ e -e + Kiec e (101)

For the case, BJJE' or B = 0 , the perturbing function is f_ (c) ,
) 8\

and the complete distribution function is given by equation (120).
fo(c) = fe(c) + T .E'fg‘(c) : (120)

For this case a general solution for the conductivity can be calculated.
The first step in this procedure requires that the average or drift

velocity of electrons be calculated from equation (32).

oo

v = f EfedE | (32)

-2
where V his the electronldrift velocity. The limits of integration

are explicit for the functi;n ff; fpr the function fg| tAe limits
are imﬁlicit. In both cases the integration is to be taken over all

¢ . Since the function f; is fhe unperturbed Maxwell's distribution,
the limits -0 to o on ¢ hold. The perturbing function f_, was
defined previously in such a way that the perturbation would be in the
direction of the perturbing force. In the case of fg‘ the direction
includes all possibilities in the half-space enclosing positive E ;
i.e., all directions are possible in the positive half-space 1 . 1In
the integrations of equations (79) Cos ®, was integrated. over limits on

g\
be for ¢ between 0 and oo in order to avoid the negative half-spade.

B, from 0 to /2, The integration on £ in equation (32) must

.
/
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oo ) ‘ oo '
v = f'éfedE = fEfde + (l)fcfg‘dc . (121)
=0 o ©
where (1) defines the direction of the drift for the fg; term.
With
f, = Kcze'mcz

the integration over ¢ from ~-oo to oo will be zero for the first term
in equation (121) because the unperturbed Maxwell's function is even while
cf¢ is odd. The contribution of the first integration on the right is

zero. The second term gives ¥V ; it becomes:

- - oa , .
- 2 - L3 - by
v = fcfg‘dc - -fc %K‘s [e“c -e ‘fc ] de + c[cK,be = dc]
© © (- . - D ‘°°
_ ke —ec?
= K,sf e“dc-K.gfe “de + K..,fcze “de
o' c” ' °
\/ \/ ..'...\/JI.
= K:s[é’ 2 - zVE+ Kw[‘*"‘" o ]
ke VT IE-VE . i, .
T T L E L, @

where:
Kig = K\Kz/(Kt - 2“)2

K = =%Kz/(K,-2%)

K = 2mR‘nn/eE'

o, ”mk\”}/z

= (
K = —g \Irer

% = &H/2k'T
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k = mR‘?‘nn/eEi

The current density J was given in equation (31), and for

one species of part:'icle (ngmely, electrons) it becomes:
J = ne¥ = Kyne(d) (123)
o, = J/E' -. Kggge/E'

where:

R Kie T

< Ve ‘
n = Number density of electrons.-:

Kas



CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

A proven theory for the electrical conductionvin ionized gases has
never been developed. This is true for two significant reasons. First,
the problem arises from ahnecessarily statistical probability phenomena,
and the process is not entirely understood, Second, the mathematical
burden in éarrying~out a soiﬁtion in general terms requires simplifying‘
approximations. These apﬁroximations cause major efféctive deviations
from the theory as originally proposed. Thus, it is difficult to exam-
ine a theory without deviating from it. Indeed, a valid theory may
already exist, but any proof of the theory has not been shown or even
indicated. |

All current treatment of the subject in the literature seems to
begin with the Maxwell's probability statistics and to develop through
application of the Boltzmann's transport equation. No theory greatly
deviating from this genzral approach has received any substantial

<
consideration. The hunt for an altogether new theory may be progress-—
ing among some theorists, principally theoretical physicists, but one
would gather from the literature that the greatest majority of both
: .physicists and engineers are concerned with the problems of applying

the Maxwell~Boltzmann theory.

Two major conclusions can be drawn from the work in Qhapégr Six.

85
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First, it is entirély possible to solve the Boltzménn's equation (62)
without neglecting‘crossfproduct térms and higher order terms. Second,
a complete solution of the Boltzmann equation can best be accomplished
by numerical means after a laboratory model has beén specified. Equa-
tions (89), (90), and (91) are three coupled equations, the solution to
which produces the key to the calculation of electrical conductivity
for a slightly ionized gas of simple atomic structure. The solution

to these equations requires evaluation of integrals of the form of
equation (118). ‘Integrals of this type are normally solved by numeri-
cal techniques which are not applicable to equations involving unspeci=~
fied constants.

An experimental program is recommended to verify the results
obtained in this paper. The characteristics of the gas and conditions
of containment should be made to duplicate the assumptions stated.

With a laboratory model specified, the constants K, through K,; could
be determined. Knowing these coefficients, a numericallcalculACion of
drift velocities and conductivities could be made., The only proof of
the value of the techniques used and the results obtained must come
through experiﬁental validation 1if practical‘enginéering significance

is of major concern.
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APPENDIX A

This Apbendix discusses the derivation of the Maxwell's distrib-

ution function from the Maxwell's probability statistics.
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MAXWELL'S DISTRIBUTION TFUNCTION

The puysical problem to be considered is that of the distribution
of velocities Qithin a gas. The gas is composed of a large number of
- particles in thermal agitation. The problem is to determine the proba-
bility that a particular particle has a specified:velocity. At a ran-
dom time a particle of the gas is observed, and its velocity is noted.
It is necessary to determine the probability that the observed vel-
ocity components lie between ¢, and ¢, + dg. » ¢, and ¢, + dc, ,
and c; and C3 + dc3 s respectively.

p(c,) is the probability that the component of the gas velocity
in that directon lies within the interval ¢, and ¢, + dey 3 p(cz)
and p(cy) are similarly defined. Now if the probability of component
c, is 6ompletely independent of the propabilities of the other two

cemponents,

pleys can ) = B(eIplednley) .+ (A-1)

[Assumption —— The velocity probabilities in the velocity quadrature
coordinate directions'aré mutually independent. l(This assumption seems
reasonable on the surface, but investigators from Maxwell's time hence
have questioned, then accepted, it.) Other assumptions cqncerning the
state of the gas are implied; namely, the gas is in thermal equalibriunm,
contained, and under the influence of no external forces.]

From equation (A-1)
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log p(c,, ¢,, c3) = log p(e,) + log p(c,) + log p (c3) . .
(A-2)
For a gaé in thermal agitation with no external forces applied and in
an equilibrium state, all directions of motion are equally likely.
;i ) .
LAsSumption ~— For any randomly selected time of observation all

-
velocity directions of observed particle motion are equaily 1ikely.J

" In this case
pleys ¢c,5 €3) = plc) ,

where

e o= e+ R+ ch(l). + (1), + (1)3} .

and where [(l)‘ + (J_.)z + (l%] represents the direction coordi-~

nates only. Since the directional information is unnecessary p(c)

is a function of (% + 2 + %) only; therefore,
plc,, €,5 €3) = £(c? + c2 + c) , (A-3)
and one may write equation (A-2)

log p<c| H Cz’ c3) = (CT + sz + C;') . . (A"li-)

Suppose that the function f(cf + c§ + cg) can be expanded in an

infinite power series; then,,

%
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fc? + e+ c?) = a, +a,(c*+ cz + cg)

2\ %
+ az(c% + ci + c3)
2N
+¢aoa+ah(clz+cz+ca) .
= log p(c,) + log p(c,) + log plez) - (A-5)

But the third term of the equality contains no cross product terms
involving . ¢,, c,, and c;. Since cross products of this type appear
ior each term in the expansion except the first two, all cocfficients
beyond a,, must be zero. [Assumption — The function f(c% + ci + c;)
is of such a nature that it can be expanded in a power series. With

equation (A~-5) truncated at n = 1 and substituted into equation (A-5),
log plc,5 ¢y, c3) = a, + a,(c3‘+ c§‘+ cg) » (A~6)

and X,

\

N,

ple,, €5y €3) = exp[éo +a, (e?+ e + ¢ ]
= Ae @ (c§ + ¢ + c3) ' (A=T7)

The probability of the particle having some veloclity between the limits

of positive and negative infinity is obviously one. This may bé expressed

'

U[J[/;(c,, C,s ¢3)de;deyde, = 1 , (A-8)

.

functionally as

or
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r 2.+2+z 3
~Lj Aea‘(c‘ 2 .Acﬁ)dc,qczdc3 - A[;%Jz o= 1 . (A-8)
- 00 ) .
. ilence,

N

A = 71—1‘3') . e

By letting .--a, = a , equation (A~7) becomes:

2
2

1 - 2 2 2
ple,,c,,¢5) = Flc?+ci+c)) = [%) emalel + ez + ¢5) <A.-lo)

Noting that

(c? + C; + c;) = c* »
F(c* + c3 + c3) = F(c*) or f(e) .
Equation (A-10) now becomes: -
3 A
- > =-Qac
(@) = |&)e . (A-11)

This is the Maxwell velocity distribution function; it can be trans-
formed into an energy distribution function, réadily, by noting that
. the kinetic energy is a function of the square of velocity. The func-
tion often appears in the literature in terms of thé Rinetic tempera-
ture, and the arbitfary constant has been shown to be a function only

of the temperature.
-

—

In the Maxwell velocity distribution function of “equation (A-11),

the arbitrary constant, a , can be determined in an intuitive way |
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by observing that the exponential term has no nmeaning unless it is non-
demensional. This argues that the constant must have the dimensions
of time-squaréd per length. The energy of a particle can be expressed
directly in terms of its kinetic temperature by noting that the energ

is directly proportional to the absolute kinetic temperature.

KE = K'kT (A-12)

XK' 1is a dimensionless constant of proportionality, and k is the

familiar Bolt:maan's constant,
o ~-16 o
k "= 1.380 (10) erg/°K (A-13)

in the cgs system of units.

From equation (A-12) and the kinetic energy relationship,
KE = —‘:,_.-mc2 ’ (A-14)
KE = K'kI = 3mc* . (4-15)

where m is the particle mass.

Solving for the square of velocity,

¢ = X' 2&kT/m . (A-16)

2

Since =-ac? mnust be dimensionless,

-a(2kT/m) = K .

a = =Ka/2kT . (A-17)
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Since on‘ly T 1is allbwéd to be a variable, it is obvious that a can
be written as a function of T .
The Maxwell velocity distribution function can now be written in
the following way: |

. 3 2 .
; = -me</2kT
(@ + ol 19

where n is the particle number-density per unit volume. Multiplying

equation (A-18) by the volume element in velocity-space,
47 c3de |,

produces the functional relationship for the number density of parti-

cles having speeds between ¢ and c¢ + dec ; thus

~mc? 2kT

3
f(e)de = évcan(‘,z—:}—(,—r)ze de . ’ (A-19)

From which

3 __ 2
}2 e me /ZkT (A—ZO)

f(c) = 41mcz{2-;‘m?r

is the distribution function for speeds between ¢ and .c + dc.
Equation (A-20) is one of the most common forms of the Maxwell's vel—

ocity distribution function. LEquation (A-20) expresses the number of
particles in velocity space having velocities between ¢ and c¢ + dc
The most probable speed for particles in £(c) occurs when f(c)

’

is a maximum. Allowing a change of variable,
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x = (m/2kT)%c

to be substituted into equation (A-20) makes the equation easier to
differentiate. This substitution gives

XZ

i
f(x) = 4nMx*e . - (A-21)

Further, letting

equation (A-21) becomes:

f(u) = AnCTT-)iue-u,

and
%
i) u 4u@rEY(L-uw) = 0 .
du
Then, ‘ u=1 ,
x*=1 ,
and x=1
for x>0 .,

Hence, the most probable value of the particle speed is

e = Vai/m = ¢, . | (A-22)

Other speeds for the function are of interest.

The speed equivalent to the root-mean-square value of f(¢) is

\/3kT/m = Crms ° (A-23)

s s

Pk



99

The speed equivalent to the average value of the function is

V8kT/mm = ¢, . (A-24)

Some resultant speeds and velocities for the Maxwellian function can

be summarized and discussed.

(a) The average value of the speed, ¢, , is larger than the most
prosable value, ¢co .-

(b) The rms value is somewhat larger than both ¢, and cg,. -

Use of the rms value in expressing the particle effective kinetic

energy gives the well-known result,

3 me? = @u(3kT/m) = 3KI/2 . (A-25)

2 TmS

Equation (A-25) ié valid for translational particle speed, but does
not account for particle vibration or rotation. {Assumption — TFor
particles of interest rotation and vibration are negligible. (This
dssumpcion appears valid for single particles and simplé atoms; it is
much less valid for heavy moleculesa)]

(c) The particle velocity direction is entirely random; hence, the

average value of the velocity vector is zero,

(g]l
]
(o]

av



APPENDIX B

This Appendix discusses the formulation of the Boltzmann's trans-
port equation. It interprets the physical meaning of the terms making
up this equation, and adapts it to the particular case of interest in

this paper,

k)
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THE BOLTZMANN'S EQUATION

The one-particle Maxwellian .velocity distribution function was
studied in Appendix A. A distribution function of this form, denoted

by £(s,v,t) , is of interest where

s = (s,), + (sa)? + (s3);
and

Vo= o (v), o+ (v), T (vy)y

in the laboratdry coordinate system, t 1is the scalar time variable,
The distribution functién £(s,v,t) is not necessarily known to be
isotropic at this poiﬂt, but it is assumed to hold for a gas in thermal
equalibrium, electrically neutral, homogeneous in the particle species,
and under the influence of external forces.

The function £(5,V,t) is defined such that £(§,V,t)dsdV is the
probable number of particles per second in the phase-space volume element
d5dc¢ at time t . In other words f(5,v,t)dsdV is the number of parti-
cle% in the geometricél volume between 5 and § + ds having veloci~
ties between V and ¥V + dV at the time t . The probable number
density of particles at a point in spaée determined by § at time ¢t

- 1is

n(s,t) = Jf(§ﬁ,t)d\7 . (B~1)
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Now,

= (3,%,8)d3dF (325

“Q
3]

is the number of particles in the differential phase-space volume dsdV
at time ¢t , as previously stated. In a differential time &t the

particle geometric coordinates change to

' = 5 + vat , (8-3)
and the velocity coordinates change to
v! = v + aat , (B=4)
where

3 = F/m ‘ (B=-5)

from Newton's force law. F is all external forces acting on the parti-
cle. Particle interactions are ignored for the present. Under these

1s the number density of particles does not change over At ;

dn = dn' = £(5',v',t + at)ds'dv' . (B=6)
If F 4is constant orlglowly time varying, if
' = § + ds ,
and if

v' = v + 4dv ,
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then
ds' = ds
and

dv' = 4v .

Equation (B-6) can be written as follows:
dn' = £(§3 + VAL, vV + %.{.\,c, t + At)dsdv (B-7)

A difference between equations {(B5-6) and (B~1l) will occur only if inter-
particle interaction takes place. Since the same phase-space volume is

involved and since the external forces F are presumed to remain constant
over the time at , any difference in the number density of particles is a

representation of the change in the distribution function during the time

at o,
b - dn m|2f e [2Ea0r gm0, am] o [22]  (aeg
o 98dVet] |9t OB dt OV dt tje 7

where

(]
(%)
[
oL
0|
|
<|

(%
ct
(=N
ct

AV =
dt

g =1

Q1@
(g4



Of 4+ g -2f 4 E.f . (3-9)
ot N m OV Dt |

where the subscript ¢ identifies the collision term. Equation (B-9)
is the well-known Boltzmann's equation; it represents little more than
‘an informed guess as to the form of the collision term.

Two particles having initial velocities Vv and Vv, and of masses
m’  and, m, are moving along paths whose proxiﬁity causes an interac;ion
between the particles. After thé interaction, dﬁe to whatever meauns,
the particle velocities are V' and V' respectively. The interaction
is a two~body encounter having functional relationships determined by the
force governing the interaction. In the techniﬁué known as the '"center-
of-mass method,'" the encounter is equivalenﬁ to ghg~interaction of a
particle having reduced mass with a fixed center of scattering. The
reduced mass of the auxiliary particle becomes mm,/(m + m,) , and the
\

velocities before and after the interaction are V =- v, and AN

respectively, Figure No. 1 displays the mechanics of the encounter

Figure No. B-1

Mechanics of Fixed Center Scattering

With no interaction the auxiliary particle would have equal initial and

terminal velocities and would pass the center of scattering within some.
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distance r , called the impact parameter. The path taken by the parti=-
cle after the interaction lies—in the plane determined by the path of
incidence and the center of scattering. The scattering is planar with
the scattering angle ¥ . The plane of séattering makes an aagle 0 with

the normal to that plane. The number of particles passing through an

element of geometric area rd@dr and ‘velocity area \V -'V\ldV is

dn‘

= £(5,%,t)rdfdr|v - v,|dv, . (B-10)

The incident auxiliary particles are scattered through angles € . The
number of particles between ﬂﬁ and V + dV with which the incident

e, ¥

particles react is

dn, = £(5,%,£)dv . (B-11)

The number of encounters per unit time, geometrically between r and r +

dr and § and § + d{ is
dn,dn, = £(5,9,,t)£(5,,t)rdddr |V - ¥,|d¥,dv . (B-12)

Integrating equation (B-12) over all V, , integrating r from 0 to

T (where r is the maximum impact parameter for which there is

maY mMax
an interaction), integrating € from O to 2W , and dividing out dV¥
gives the time-rate-of-change of particles due to collisions which scat=-

ter particles out of the velocity range V to Vv + dv ; i.e.,

o ~° 20 T
(%‘f)t i, -j |7 - 'G\]f('s’,V\,t)f(E.V.t)dGLJJc)rdq)dr . (3-13)

-

By a similar argument the rate-of-change of particles into the range is
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Q.
ft

OO

V =2 r'lr-'d)(
. = + _]]V - V‘[f(§',V',t)f(E’,Vi,t)dV‘J[/;der .
\n =
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(B~14)

Combining equations (B~13) and (B-14) for the collision term with equa-

tion (B-9), the complete Boltzmann's equation becomes:

245 4 E.f
ot 8 m oV
where
and

[Assumptions -

(a) T

another having velocity Vv, is

(d)

particle separation.]

2f

f'

is assumed not to modify

- J[iv - V,I(f'f; - ff‘)dvt[];dOdr

(B-15)

interacticn.

the process of

Many-particle interactions are assumed negligible.

The probability of one particle having velocity Vv and

f(§,V,t)f(§,ﬁ,t) .

The range of interaction is much less than the mean intra-

A brief discussion of the terms that make up the Boltzmann's

equation and their physical significance with respect to the collision

term follows. From Appendix A the Maxwellian distribution function,

f(s,v,t) , is observed to involve the independent time-phase-space volume
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’

elements, E‘, -‘?\, and t . The Boltzmann's equation is repeated.

£=§i+‘b_f.'£1§.+§:_§.'.@.=collisionterm-Fc
dt ot o8 dt oc dt
df Qf - o« f - o f
— - -+ * = +a’® = = F
dt ot ¢ 3% Y c
TERM ’ PHYSICAL EXPLANATION
sf o F - If there is a time-rate-of change
dt ¢ :
of the distribution functionm, Y, ,
this equation states that it must
be due'to collisions.
of __, dE" — e ee.om = — — This term asks the question, "Are
ot dt | s Const, _
C Const, there any new particles created at
f position s with velocity € 7"

If no particles are added or sub-
tracted externally, there is either
no change or the change must be
internally brought sabout. The only
mechanism for the demise or creation
of particles internally is certainly{
through collisions. Example: 1In
the case of electrons the process

of ionization or deionization could

be the mechanism,
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This term asks the question, "Is

onste _ the geometrical demsity of the parti-
cles. constant; in other words, is the
gas geometrically uniform?" The gas
would not be geometrically uniform
for single-type particles if the
particles possess chafge. It would
be non-uniform if grévitational or
‘other external force gia&ients were

present and unbalanced.

c This term asks if thermal equalibrium
Const,. ' . of the particles has beeﬁ achieved.

In other words, "Is the particle
number with velocity <€ increasing
or decreasing?" In the absence of
changing external influences, if
intérnal changes are observed, they
must be due to energy gransmitted
throggh collisioms.

Assuming no net loss or gain of p;rticles with time (ionization  equal-.

'

ibrium and a contained gas),
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If the gas is uniform throughout geometry-space

OJ’O/
@1,
[}
[e]

If thermal equalibrium is achieved

Df

se = 0 -
This leaves

af

ac = 0o .

and the function, f , is a constant with time. Only in the presence

of collisions is a distribution not constant with time.

Presume the following:

(a) A confained gas.

(b) TIonization equalibrium

(¢) Uniform geometric density.

(é) Electrical neutrality.

(e) Thermal equalibrium. J;

Under these assumptions,

[
Hh

|

(%
t

and

4%
mllv—n
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tlence, £(5,v,t) becomes f(V) , a velocity distribution function.
f(Vv) answers the question, '"What is the number density of particles
in velocity-spéce having velocity Vv ?" df(V) answers the question,
"What is the number demsity haﬁing velocity between V and V + dv ?"
The number demnsity having velocity between V and V + dv is just
the uniform average number density times the probability that a
particle lies in this velocity range. The question becomes one of
determining the probability fumction, p , but ghis is just the

Maxwellian probability statistiecs.



