PREFERENCES FOR ACCOUNTING STANDARDS:
THE USE OF DISCRIMINANT ANALYSIS IN
FORECASTING CORPORATE MANAGER
LOBBYING BEHAVIOR

```
By
ARNOLD JAMES MCKEE, JR.
Bachelor of Science University of Maine Portland, Maine 1965
Master of Business Administration University of Maine Portland, Maine 1967
```

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
May, 1982

$$
\begin{aligned}
& \text { Thesis } \\
& 19820 \\
& \text { M154p } \\
& \text { C6p. } 2
\end{aligned}
$$

PREFERENCES FOR ACCOUNTING STANDARDS:

THE USE OF DISCRIMINANT ANALYSIS IN
FORECASTING CORPORATE MANAGER
LOBBYING BEHAVIOR

Thesis Approved:

I wish to express my sincere appreciation to Dr. James R. Boatsman, Chairman of my advisory committee, for his guidance both in this study and throughout most of my Ph.D. program. The suggestions and recommendations of the other members of my committee, Dr. C. Dwayne Dowell, Dr. Scott Turner, and Dr. William D. Warde are also greatly appreciated.

Special thanks are expressed to my good friend, Tim Bell, who gave so freely of his time. Discussions with Tim were invaluable in resolving difficulties encountered during the preparatory stages of this work.

It is important that I recognize my gratitude to my mother, Mrs. Margaret M. McKee, who never lost faith in my ability, and to my father, Mr. Arnold J. McKee, who by example instilled in me the unwillingness to quit when the going gets rough.

Finally, I dedicate this dissertation to my wife, Susie, and our children Brett, Sarah, and Seth for their enduring patience and willing sacrifice during my years of doctoral study.

TABLE JF CONTENTS

Chapter Page
I. INTRODUCTION 1
Management Compensation. 2
Political Costs. 4
Generalizing the W-Z Model 4
11. LITERATURE REVIEW 6
Volatility in Earnings 8
III. METHODOLOGY 10
Design of the Study. 10
Sample Selection 10
Data Source 11
Data Collection 13
Description of the Variables 13
Development of the Discriminant Functions 18
Analysis of Data 19
Classificatory Power of the Functions 19
Relative Importance of Each Variable. 22
IV. ANALYSIS OF DATA 23
Reasonableness of Approximations Obtained from the Parker Algorithm 23
Relative Importance of Each Variable 27
Classificatory Power of the Models 30
V. SUMMARY OF STUDY 33
A General Review 33
Summary of Findings 34
Limitations of Findings. 36
Recommendations for Further Research 36
REFERENCES 38
APPENDICES 40
APPENDIX A - THE ORIGINAL $W-Z$ MODEL AND MODIFICATIONS 41
APPENDIX B - LISTING OF FORTRAN COMPUTER PROGRAM. 46
Chapter Page
APPENDIX C - COMPUTER GENERATED PRINTOUT. 63
APPENDIX D - LIST OF COMPANIES INCLUDED IN STUDY. 78
APPENDIX E - POSTERIOR PROBABILITIES: DISCUSSION
MEMORANDUM DATA SET. 82
APPENDIX F - POSTERIOR PROBABILITIES: EXPOSURE DRAFT
data set 85
Table Page1. Margin of Safety Associated with Posterior ProbabilityClassification. 21
11. Companies in the W-Z Study Which Disagree with Direction of Restated (1974) Net Income Based on the Parker Algorithm. 25
III. Relative Importance of Each Variable Based on Stepwise MDA. 29
IV. Classification Matrix I 30
V. Classification Matrix 11 31
VI. COMPUSTAT Companies that Filed Letters of Comment in Response to the GPLA Discussion Memorandum and/or the Subsequent (1974) Exposure Draft 79
VII. Posterior Probabilities Associated with the SampleCompanies that Responded to the GPLA DiscussionMemorandum33
VIII. Posterior Probabilities Associated with the Sample Companies that Responded to the (1974) Exposure Draft86

LIST OF FIGURES

Figure Page

1. Financial Data Relating to Catepillar Tractor Co. 65
2. GNP Price Deflator Index 66
3. Computation of Purchases 67
4. Composition of LIFO Inventory, 1973. 68
5. Composition of LIFO Inventory, 1974. 69
6. Restatement of Cost of Goods Sold 69
7. Three Step Procedure for Restatement of Depreciation 70
8. Procedure for Determining Net Monetary Position. 72
9. Procedure for Determining Purchasing Power Gain/(Loss) 73
10. Restatement of the Income Statement 74
11. Summary of Financial Data 75
12. Restatement of the Income Statement to Constant (1978) Dollars 76
13. Summary of Financial Data in Constan't Dollars. 77

CHAPTER I

INTRODUCTION

This study was an extension of the work done by Watts and Zimmerman (1978), hereafter $W-Z . W-Z$ developed a positive theory which predicts managerial lobbying behavior toward proposed accounting standards. The theory is based on the premise that managers behave so as to maximize their personal wealth. In general, the theory describes management's position on a proposed accounting standard as a function of (1) firm size (which is purported to affect the magnitude of political costs which the firm may face), and (2) whether the proposed standard's implementation will increase or decrease reported earnings. The W-Z model did not include the effects of other confounding changes in future earnings such as trend changes, variance changes and the magnitudes of all such changes. This study analyzed the possible effects of such confounding changes in future earnings, on corporate lobbying behavior and empirically assessed the effects via generalizing the W-Z discriminant model. Conceivably such a model, if reasonably accurate, might be of value to the Financial Accounting Standards Board in setting accounting policy in a political environment. ${ }^{1}$
${ }^{l}$ For discussions of accounting policy-making in the political arena see Charles T. Horngren, "The Marketing of Accounting Standards," Journal of Accountancy (October 1973): 61-66, Dale S. Gerboth, "Muddling Through with the APB," Journal of Accountancy (May 1972): 42-49, Robert E. May and Gary L. Sundem, "Research for Accounting Policy: An Overview," Accounting Review (October 1976): 747-763, Stephen A. Zeff, "The Rise of Economic Consequences," Journal of Accountancy (December 1978): 56-63.

At least two theoretical reasons exist why a perception of increased variability in accounting earnings should affect management's attitude toward a proposed standard: management compensation and political costs.

Management Compensation

Incentive compensation has been found to be highly correlated with accounting income (Ronan and Saden, 1981). If one is willing to accept the assumption of general risk aversion it can be argued that management's utility can be enhanced simply by reducing volatility of reported earnings. The utility function that is quadratic contains two characteristics of probability distributions, the mean and the variance. One can think of the variance as measuring risk. Even if a utility function is not quadratic, it may be approximated by a quadratic function. ${ }^{2}$ Consider the following quadratic utility function:

$$
U(Y)=A+B Y+C Y^{2}
$$

where

$$
Y=\text { payoff. }
$$

The corresponding expected value of the utility function, given that Y is a random variable is

$$
E[U(\tilde{Y})]=A+B E[\tilde{Y}]+C E\left[\tilde{Y}^{2}\right]
$$

The expected value of the payoff, $E[\hat{Y}]$, is the first moment of the

[^0]distribution of the variable, or mean (i.e., \bar{Y}). The expected value of the square, $E\left[\tilde{Y}^{2}\right]$, is the second moment, or the variance of the distribution plus the mean squared (i.e., $\sigma_{Y}^{2}+\tilde{Y}^{2}$). Therefore, the expected utility function can be expressed as:
$$
E[U(\tilde{Y})]=A+B \bar{Y}+C \cdot\left(\sigma_{Y}{ }^{2}+\bar{Y}^{2}\right) .
$$

By successive rearrangement of terms

$$
\begin{aligned}
& \mathrm{E}[U(\tilde{Y})]=A+B \bar{Y}+C \bar{Y}^{2}+C \sigma_{Y}{ }^{2}, \\
& \mathrm{E}[U(\tilde{Y})]=\left(A+B \bar{Y}+C Y^{2}\right)+C \sigma_{Y}{ }^{2},
\end{aligned}
$$

and generalizing

$$
E[U(\tilde{Y})]=f(\tilde{Y})+g\left(\dot{\sigma}_{Y}{ }^{2}\right) .
$$

The expression for the expected utility contains two characteristics of probability distributions: the mean and the variance. The variance can be viewed as measuring the risk of individuals who have quadratic utility functions. The sign of its coefficient (-, $0,+$) indicating individual risk (averse, neutral, loving) determines the shape of the function.

Since incentive compensation (i.e., payoff) has been found to be highly correlated with accounting income it is reasonable to predict that management will oppose proposed standards which might increase variability in earnings and favor standards which might decrease variability.

Political Costs

Firms whose earnings are highly volatile will, at times, report what may appear to be abnormal profits and consequently may attract the attention of politicians prone to taxation or regulation. SFAS no. 8, "Accounting for the Translation of Foreign Currency Transactions and Foreign Currency Financial Statements" induced such volatility. For example, Exxon was highlighted in the news media for setting a record-the highest quarterly earnings ever for a United States publicly held corporation. SFAS no. 8 is responsible for 30% of those reported earnings ${ }^{3}$ and, consequently, contributed significantly to the attention given Exxon, and Exxon is clearly a member of an industry that would probably have preferred a lower profile with respect to reported profits.

Generalizing the W-Z Model

The W-Z model, as developed, is applicable only to proposed accounting standards that are perceived by managers to cause a shift in the time series of future reported earnings. Consequently, the model's applicability is restricted severely. The generalized W-Z model (GM) incorporated, initially, the following independent variables:

1. Relating to the proposed accounting standard

a. mean shift	
b. volatility change	
c. trend (growth) change) measuring magnitude

${ }^{3}$ First quarter, 1980. See Wall Street Journal (April 24, 1980, p. 3).
2. Relating to the firm
d. absolute size
e. relative (monopolistic) size within industry
f. debt-to-equity ratio

Details of the variable selection process including definition
of the variable, explanation for inclusion, and calculations are given in a later section.

CHAPTER II

LITERATURE REVIEW

For years, accountants were concerned with finding ways of reporting "truth" as if accounting numbers were measurements of absolutes such as wealth of the firm and changes therein. In the 1960's, literature began to focus on the concept of "income smoothing." Much of this body of 1 iterature was stock market related. 1 The evidence suggested that the market participants can adjust for changes in accounting standards. In light of such findings it seemed reasonable to conclude that firm managements deliberately attempting to smooth income must be naive. More recently, research has been conducted regarding the political nature of accounting policy determination. The results suggest (1) that from the standpoint of a manager's individual wealth maximization, income smoothing might be fruitful, and

[^1](2) that such a conclusion (that income smoothing managements are naive) was incorrect. Perhaps accounting researchers have been asking the wrong question; and the relevant question is 'What factors influence preference for principles in the po?itical arena? $"^{2}$ Watts and Zimmerman (1978) have addressed this question in their development of a positive theory of the determination of accounting standards.

W-Z developed a positive theory of accounting by exploring factors influencing management's attitudes on accounting standards which, in turn, affect lobbying behavior toward proposed accounting standards. Certain factors are expected to affect a manager's wealth either directly or indirectly through a firm's cashflows. These factors are taxes, regulation, management compensation plans, bookkeeping costs, and political costs; and W-Z combined them into a model which predicts that large firms experiencing reduced reported earnings due to changed accounting standards will favor the change. All other firms oppose the change if the additional bookkeeping costs justify the costs of
lobbying. This prediction was tested using the corporate submissions to the FASB's Discussion Memorandum on General Price Level Adjustments.

W-Z interpreted their results as supporting the theory.
Hagerman and Zmijewski (1978) utilized probit analysis in applying the $W-Z$ theory to select among alternative accounting principles.

[^2]The purpose of their study was to determine if size, risk, capital intensity, concentration, and the existence of incentive compensation plans, affect the choice of accounting principles. They concluded that they do, but not on a consistent basis. That is, the important explanatory variables tend to be different for each accounting principle tested.

Dhaliwal (1980) extended the W-Z theory to include capital structure as an economic variable that would affect management's attitude toward accounting standards. He argued that an accounting standard which causes a reduction in reported earnings or equity and/or increases the volatility of reported earnings may put a firm into technical default under its loan agreements. Therefore, he hypothesized that highly leveraged firms would be expected to oppose such an accounting standard. Dhaliwal interpreted the results of his study to be consistent with his hypothesis.

Volatility in Earnings

Each of the three studies previously cited is quite limited in terms of one of the possible consequences of adopting an accounting standard: a change in volatility of reported earnings. The $W-Z$ study ignored this possible outcome and the attitude of corporate managers anticipating a change in volatility of earnings. Hagerman and Zmijewski ($\mathrm{H}-\mathrm{Z}$) acknowledged the possible effects of volatility on the lobbying behavior of corporate managers. However, $\mathrm{H}-\mathrm{Z}$ excluded volatility from consideration in drawing inferences by choosing to employ empirical tests on accounting alternatives with effects on net income that are relatively unambiguous. As previously discussed,

Dhaliwal extended the $\mathbf{W}-Z$ theory to include capital structure as a variable influencing management's attitude toward accounting standards. His hypothesis is the notion that firms with high debt-to-equity ratios (a surrogate expected to capture risk associated with possible violation of restrictive covenants in credit agreements and indentures) will lobby in favor of proposed standards perceived to increase earnings and/or decrease volatility. Although Dhaliwal's findings are consistent with his hypothesis, his research design was deficient in that it failed to control for a shift in the mean of reported earnings. To the extent there was interaction, the results are inconclusive in determining whether managers favored the method because of increased earnings, or lower volatility, or both. His scenario was full cost vs. successful efforts accounting in the oil and gas industry. For the firms required to switch from full cost to successful efforts accounting, any increase in variability of earnings is probably accompanied by a downshift in the mean. The Dhaliwal study and the $\mathrm{H}-\mathrm{Z}$ study both failed to separate the effects of volatility from the effects of a shift in the mean of reported earnings.

Perhaps inclusion of volatility in the W-Z theory will both (1) enrich the theroy, and (2) improve the classificatory power of the discriminant function developed for explaining management lobbying behavior.

CHAPTER III

METHODOLOGY

The objective of the present chapter is to discuss the design of this study, the sample selection process, model formulation, and approach taken toward analysis of the data.

Design of the Study

The design of the study entailed the development of two discriminant models: (1) the original $W-Z$ model (OM), and (2) the generalized model (GM). The OM contains the original variables used in the $\mathrm{W}-\mathrm{Z}$ study, but the variables were restructured ${ }^{1}$ so as to be comparable with the GM which contains additional variables. The difference in explanatory power of the $O M$ and $G M$, therefore, was thus attributable to the additional variables contained in the GM.

Sample Selection

COMPUSTAT companies that filed letters of comment with the FASB in response to its Exposure Draft, "Financial Reporting in Units of General Purchasing Power" (hereafter ED) comprise the population frame. There are 94 such companies. Fourteen of them were excluded from the sample for various reasons including insufficient COMPUSTAT data
${ }^{1}$ See Appendix A for the original $W-Z$ model and modifications.
(ten companies), three changes in inventory valuation method within the time series, and one statistical outlier. Thus, 80 companies comprise the sample. Another sample, 30 companies, contained in the $W-Z$ study that responded to the $D M$, was also studied to see to what extent the findings based on the W-Z data set are consistent with those based on the ED data set. Details of the two samples employed in this study are contained in Appendix D.

Data Source

The reason for choosing this particular proposed accounting standard warrants some comment. Other proposed accounting standards were initially regarded as viable candidates for inclusion in this empirical investigation. They include three exposure drafts that ultimately became:

1. SFAS No. 8, "Accounting for the Translation of Foreign Currency Transactions and Foreign Currency Financial Statements,"
2. SFAS No. 12, "Accounting for Certain Marketable Securities,"
3. SFAS No. 34, "Capitalization of Interest Cost."

SFAS no. 8 caused an increase in volatility of reported earnings; SFAS no. 12 caused a mean shift (downward) and increased volatility in earnings. The consequence of SFAS no. 34 appeared to be exactly opposite that of SFAS no. 12. That is, SFAS no. 34 tended to cause a mean shift upward and "smooth" reported income. It would be desirable to incorporate in the discriminant model the consequence of accounting standards such as these three. Unfortunately, the time series of pro forma data that was available in the response firm's annual reports was
not long enough to enable measuring such consequences as: (1) mean shift, (2) volatility change, and (3) trend (growth) of reported earnings.

W-Z, in their empirical test, chose to investigate empirically firm response (letters of comment) to the FASB's general price level accounting discussion memorandum (GPLA-DM). This accounting issue, they contended, caused a mean shift in income. W-Z claimed to have investigated the consequence of a mean shift in income on the attitude of corporate managers although $\mathrm{W}-\mathrm{Z}$ measured income changes in only one accounting period. The $W-Z$ measurement of mean shift in income involved an approximation of restated net income using the Davidson and Weil (1975) procedure. Only the direction of the change, not its magnitude, was captured in the discriminant model.

Fortunately, Parker (1977) developed a procedure that also approximates restated earnings due to general price level accounting. The Parker algorithm has at least two advantages over the Davidson and Weil procedure. First, the Parker algorithm is in more strict compliance with the intent of the ED. ${ }^{2}$ Second, the Parker algorithm, unlike the Davidson and Weil procedure, requires only data which is obtainable from COMPUSTAT. The adoption of the ED would have affected reported earnings of firms in terms of (1) mean shift, (2) volatility change, and (3) trend (growth). Use of the Parker algorithm enabled generating
${ }^{2}$ For example, in Parker's study all adjustments were made in accordance with those methods set forth by the FASB since the purpose was to approximate financial statements prepared in accordance therwith. As such, the adjustment procedures are those being advocated by the FASB. Davidson and Weil, however, disagreed with the FASB adjustment factor for revenues and expenses, and adopted an alternative.
a maximum time series of 18 years, 1960-1978. ${ }^{3}$ The ED was issued in 1974. Although managers may not perceive the effects of an accounting standard on net income beyond 5-6 years, this longer time series was needed to obtain reliable measures of such parameters as volatility and trend given fewer data points.

Data Collection

A computer program was written to develop summary income statements reflecting general price level changes. The program (Appendix B) is based on Parker's technique for approximating amounts which would have been reported had the companies been applying the restatement procedures proposed in the ED. The computer generated data (illustrated in Appendix C) which were then used in obtaining measures of the variables contained in the discriminant models. Details of (l) the variable selection process, (2) the development of the two discriminant models, and (3) the methods of assessing the classificatory power of the models are given in the following sections.

Description of the Variables

The selection of variables to be tested for inclusion in the generalized W-Z model (GM) was based on three criteria. First, the values used in calculating the variables had to be accessible or estimable. Second, some logical reason should exist for these variables to be related to the lobbying behavior of the corporate manager.
${ }^{3}$ Some COMPUSTAT data are not available for the period 1960-1978 for all COMPUSTAT companies.

Third, the variables actually used in the model were ratios rather than absolute quantities. The ratios were selected in order to allow comparability of these values among the small and large firms.

The remainder of this section iists the variables included in the initial development of the discriminant function, giving (l) definition of the variable, and (2) an explanation of why it was proposed in this study.

Variables relating to the proposed accounting standard:
The tax benefits ratio:

$$
T=\frac{\Delta \operatorname{tax}}{\operatorname{tax}}
$$

This ratio, normalized tax change, is a measure of the tax benefits associated with the proposed accounting standard. Some accounting changes offer potential tax benefits (e.g., from FIFO to LIFO). ${ }^{4}$ This variable, a modification of the W-Z variable, was initially included in the GM, for the sake of comparability between the OM and GM. However, the ED affords no tax relief to the firm unless probabilities ${ }^{5}$ for tax adjustments (say in the form of indexing) are considered, which was beyond the scope of this study.

[^3]The mean shift ratio:

$$
M=\frac{\Delta N I}{N I}
$$

This ratio, normalized change in net income, is a measure of the shift in the mean of net income attributable to the ED. This is one of the proxy variables intended to capture "political costs," the argument being that large firms prefer accounting standards that reduce reported earnings and, in turn, their visibility in the public eye.
3. Volatility of earnings ratio:

$$
V=\frac{\Delta \sigma^{2} N I}{\sigma^{2} N I}
$$

where

$$
\left.\begin{array}{rl}
\sigma_{N I}^{2}= & \text { variance of the residuals of the regression of reported } \\
& \text { earnings on time }
\end{array}\right\}
$$

and

$$
\Delta \sigma_{N I}^{2}=\sigma_{E D}^{2}-\sigma_{N I}^{2}
$$

This ratio, V, measures the effect of the $E D$ on the volatility of earnings (exclusive of linear trend). The explanation for inclusion of this variable has been discussed earlier.
4. The linear trend ratio:

$$
B=\frac{\Delta B}{\beta}
$$

'where

$$
\begin{aligned}
\beta & =\text { the coefficient of the regression of reported net income on time } \\
\beta_{E D} & =\text { the coefficient of the regression of restated net income on time } \\
\Delta \beta & =\beta_{E D}-\beta
\end{aligned}
$$

This ratio, normalized change in growth of net income, is a measure of the effect, if any, of the ED on the linear trend in net income. Some research suggests it is important to corporate managers that they be able to exhibit some target growth in reported earnings. ${ }^{6}$

Variables relating to the firm:
5. The firm size ratio:

$$
S=\frac{S A L E S}{\text { ASALES }}
$$

The factor, $\frac{\text { SALES }}{\text { ASALES }}$, measures the sales size of the firm normalized by the average sales of the firms comprising the sample. The values correspond to the year 1974, the year in which the ED was issued. The term S is another proxy variable for "political costs," and purports to capture absolute size. Absolute size has been said to attract the attention of regulators. ${ }^{7}$
6. The firm concentration ratio:

$$
c=\frac{\text { SALES }}{T S A L E S}
$$

where
$\begin{aligned} \frac{\text { SALES }}{\text { TSALES }}= & \text { firm sales to total of the COMPUSTAT firms in the same } \\ & (\text { SIC) industry for the year } 1974 .\end{aligned}$

[^4]The factor, $\frac{\text { SALES }}{T S A L E S}$, is an attempted measure of visibility of the firm due to relative, rather than absolute, size of the firm within its industry.
7. The debt-to-equity ratio:

$$
R=\frac{\text { DEBT }}{\text { EQUITY }}
$$

This measure of financial leverage serves as a proxy variable for financial "risk." The higher this ratio, the greater the risk of the firm being in technical default on loan covenants. The calculation is based on 1974 data, the issuance date of the ED.

In summary, the discriminant functions, $O M$ and $G M$, can be expressed as:

OM

$$
Z=\beta_{1} T \quad \beta_{5} S+\beta_{6} C
$$

GM

$$
Z=\beta_{1} T+\beta_{2} M+\beta_{3} V+\beta_{4} B+\beta_{5} S+\beta_{6} C+\beta_{7} R
$$

where:
$Z=$ the discriminant score
$T=$ tax benefits ratio
$M=$ mean shift ratio
$V=$ volatility of earnings ratio
$B=$ trend (growth) ratio
$S=$ size ratio
$C=$ concentration ratio
$R=$ debt-to-equity ratio
Certainly the set of ratios proposed above is not in the least unique. Among many other possible variations one might measure R,
debt-to-equity ratio, in terms of market values rather than accounting values. ${ }^{8}$

Development of the Discriminant Functions

The statistical technique in this study involved the use of multiple discriminant analysis (hereafter MDA). MDA allows the classification of an observation into one of several a priori groups, based on the characteristics of that observation. In this study an attempt was made to classify firms into two groups, those which favored the ED and those firms that opposed the ED. The characteristics of the two groups must be quantifiable in order to employ MDA. The characteristics were measured in terms of ratios so as to diminish the effects of scale, which was important since the response firms differed greatly in size.

In development of the discriminant function, the intent was to select that set of variables (ratios) which were most similar within groups (favoring and opposing firms). The entire profile of variables and their interactions are considered by MDA, which is an obvious advantage when the number of variables is large. The initial GM contained seven variables. Since interactions are considered, variables sometimes are very important in a multivariate analysis when they would be insignificant in a univariate analysis (Altman, 1968). The models (OM and GM) were developed using stepwise discriminant analysis. This approach allows for specification of a minimum amount of ability before a variable enters the model.

[^5]
Analysis of Data

Analysis of the data included a determination of the extent to which the generalized model (GM) outperformed the original model (OM) in classifying the sample firms. Also, the relative importance of the variables comprising the two models was investigated. Details to both approaches follow.

Classificatory Power of the Functions

One way to assess the classificatory ${ }^{9}$ power of the discriminant function is to determine whether the results are significantly different from those which a chance assignment would give. W-Z tested each observation with the discriminant function computed from all the observations. This method of estimating misclassification probabilities has been known for sometime to be subject to serious bias (Miller, 1974). W-Z were apparently aware of this bias for they stated the sample size used in the empirical test precluded them from employing an alternative approach, the holdout method. However, Lachenbruch and Mickey (1969) cited a number of drawbacks to the holdout method. One of the drawbacks relates to the size of the holdout sample, n. If n is large a good estimate of performance is obtained but the performance is likely to be poor. Lachenbruch and Mickey regard the "cross-validation" technique as an example of a large holdout. If n is small ("leave-one-out', being the extreme) the discriminant function will perform

[^6]better but the estimate of its performance will be highly variable. This study employed a nonparametric procedure termed the U method and recommended by Lachenbruch and Mickey. It made use of all observations, yet did not have the disadvantage of serious (favorable) bias. ${ }^{10}$

The U method tested each observation with the discriminant function computed from the data with that particular observation removed. This iterative process required the computation of a discriminant function for each observation, but yielded unbiased estimates of the misclassification probabilities. The misclassification probabilities were determined by summing the number of misclassified observations and dividing by the number in each group.

The Goodman and Kruskal (1978) index of predictive association was then used for calculating the percentage error reduction attributable to the discriminant function. To construct the index, let P_{1} be the probability of misclassifying a response firm (to the ED) given that the discriminant test has not been applied, and let P_{2} be the probability of misclassifying a response firm given the results of the discriminant analysis are available. Then

$$
\lambda=\frac{P_{1}-P_{2}}{P_{1}}
$$

where λ denotes the percent of reduction in error.
A random assignment of a particular firm (in a two-group
${ }^{10}$ W. G. Cochran, "Commentary on 'Estimation of Error Rates in Discriminant Analysis'," Technometrics (February 1968): 204-206, referred to the U method as an application of the jackknife principle. B. Efron, "Bootstrap Methods: Another Look at the Jackknife," Annals of Statistics (1979): Vol. 7, 1-26 showed that the bootstrap, a primitive variation of the jackknife, outperformed the cross-validation method in estimating misclassification probabilities in linear discriminant analysis.
classification scheme) has a probability of .50 of being incorrect; thus $P_{1}=.50$. Suppose the probability of incorrect classification using MDA is $P_{2}=.20$,
then

$$
\frac{.50-.20}{.50}=\frac{.30}{.50}=.60
$$

which is the percent of reduction in error. The index of predictive association also can be calculated directly from the classification matrix.

It was possible that the GM might yield significantly greater explanatory power than the $O M$ and still both models produce identical error rates. Consequently, in this study a complementary measure of classificatory power of the function, called the "margin of safety" (MS) measure was developed. The MS value was obtained by summing the signed differences between the posterior probability and the corresponding probability based on chance assignment for each observation (Table I).

TABLE 1
MARGIN OF SAFETY ASSOCIATED WITH POSTERIOR PROBABILITY CLASSIFICATION

OM					GM					
n Posterior		Margin			n Posterior		Prior	Margin		
		Prior	Correc	Wrong			Correct	Wrong		
1	. 65	. 50	. 15		1	. 74		. 50	. 24	
2	. 70	. 50	. 20		2	. 72	. 50	. 22		
-	-	-	-	-	-	.	-	-	.	
-	-	-	-	-	-	-	\cdot	-	-	
N	. 40	. 50	\cdot	. 10	N	. 45	. 50	\cdot	. 05	
			$\underbrace{2.85}$. 76				4.39	. 56	
	argin of sa	fety, n			Margin of safety, net					

The margin of safety can be applied to an index comparable to λ :

$$
\lambda^{\prime}=\frac{{ }_{M S}{ }_{G M}-M S_{O M}}{M S_{O M}}=\frac{3.83-2.09}{2.09}=.8325
$$

where
$\lambda^{\prime}=$ percent increase in "margin of safety"
$M S_{G M}=$ margin of safety attributable to the $G M$
$M S_{O M}=$ margin of safety attributable to the $O M$

Thus, while both models may produce identical success rates, the extent to which additional variables in the GM increase the difference between posterior and prior probabilities can be determined. This increase as percentage increase in margin of safety is attributable to the additional variables.

Relative Importance of Each Variable

To be able to interpret reason(s) for corporate manager lobbying behavior across issues (in future studies) the relative importance of each variable had to be investigated. The stepwise discriminant technique was employed to measure the importance of each variable.

CHAPTER IV

ANALYSIS OF DATA

The objective of the present chapter is to discuss the data analysis. The chapter is divided into the following areas:

1. Reasonableness of Approximations Obtained from the Parker Algorithm
2. Relative Importance of Each Variable
3. Classificatory Power of the Models
A. Error Reduction in Classification
B. Margin of Safety in Classification

Reasonableness of Approximations Obtained from the Parker Algorithm

The conclusions drawn by $W-Z$ from their test rely heavily on two important assumptions: (1) perceived rather than actual directional shift in reported net income attributable to inflation motivates corporate management behavior, and (2) the directional shift in net income approximated in one year, 1974, represents the direction of a permanent shift in net income. The reasonableness of these two assumptions warrants some consideration.

In addressing the first assumption no argument is presented here to oppose the assertion that human behavior is motivated by the perceived rather than the actual outcome. W-Z employed the directional shift in
net income based on the Davidson and Weil procedure as a surrogate for corporate managers' perceptions of directional shift in earnings. It is reasonable to assume a positive correlation between perceived and actual directional shift in net income, but the Davidson and Weil procedure approximated only actual. Hence, to the extent this procedure approximates restated net income in the wrong direction one can argue W-Z were wrong in assessing what corporate managers perceived to be the directional shift in reported earnings. Thirty of the thirty-four ${ }^{1}$ sample companies in the $W-Z$ study were also employed in this study to test for consistency of results using two competing models for approximating restated net income. Six of the thirty W-Z companies indicated directional shift in net income that disagreed with directional shift in net income based on the Parker algorithm (see Table ll). Unfortunately $\mathrm{W}-\mathrm{Z}$ did not disclose the magnitude of the directional shift. However, those six companies that conflicted with the W-Z study indicated a magnitude shift ranging from only 2.8% to 16% with an average of 8.4%. On the surface, the magnitude of shift associated with those companies in which the two approximation procedures conflicted does not seem so large as to suggest one of the two approximation procedures is necessarily inferior to the other. Still it is worth investigating which of the two competing procedures performed better on the $\mathrm{W}-\mathrm{Z}$ sample companies. W-Z had four companies showing an increase in earnings for which the Parker algorithm showed decreases ranging from 8.1% to 16% (averaging 11.5%). Each of these four companies in which the Parker algorithm indicated a decrease also showed a decrease in mean shift for the time series in this study. For two of these
${ }^{1}$ Four were excluded for reasons discussed in Appendix D.

TABLE II

COMPANIES IN THE W-Z STUDY WHICH DISAGREE WITH DIRECTION OF RESTATED (1974) NET INCOME BASED ON THE PARKER ALGORITHM

Company	Positive change in 1974 net income, adjusted for inflation, based on:		Percentage shift in net income based on the Parker algorithm			1979 percentage shift in income based on the company's Annual Report^	
	W-Z Study	Parker Algorithm	1974	Average for the COMPUSTAT Series	COMPUSTAT years NI + / total	NOI	NI
1. Caterpillar Tractor Co.		\dagger	+ 5.6	$+3.9$	$2 / 18$	+18.	+13.
2. General Mills Inc.	\uparrow		+ 9.6	+9.1	$1 / 16$	$+24$.	+16.
3. Grace (W.R.) \& Co.	\uparrow	\uparrow	+ 4.1	$+21.3$	$2 / 16$	+55.	$+6$.
4. Owens-Illinois	\uparrow		$+8.1$	+21.3	$1 / 17$	+80.	+ 4.
5. Reliance Electric		\dagger	+ 2.8	$+8.8$	$1 / 17$	Not	
6. Rockwell International Corp.	\uparrow		+16.0	$+34.4$	$0 / 17$	+31.	+17.
7. Texaco Inc.	\uparrow		+12.4	+12.3	$0 / 13$	+47.	+12.

* For purpose of analysis, here, NOI represents net income from operations or net income exclusive of any purchasing power gain or loss, whereas NI represents NOI adjusted for this reported purchasing power gain or loss.
companies the level of disagreement was quite severe. W-Z categorized Rockwell International Corp. and Texaco Inc. as each having enhanced 1974 earnings, whereas the Parker algorithm approximated 1974 decreases of 16.0% and 12.4%, respectively, and an average downward shift in net income for their respective time series of 34.4% and 12.3%. The companies' annual report for 1979, the first year in which corporations were required to disclose restated earnings as supplemental information disclosed statistics that support the Parker algorithm. Even after netting for significant purchasing power gains these companies showed decreases of 17% and 12% which are contrary to the positive (permanent) shift in net income assumed in the $W-Z$ study. Both companies in their 1979 annual report commented, in general, on the depressing effect inflation has on corporate earnings.

The second W-Z assumption was that the directional shift in net income approximated in one year is indicative of a permanent shift in net income in that direction. Findings based on the Parker algorithm offered support for this assertion. However, of the thirty W-Z companies tested in this study using the Parker algorithm, five indicated a temporary shift in an opposite (positive) direction. Three of those companies had such "outlier" earnings increases in 1974, with magnitudes approximated as $2.8 \%, 4.1 \%$, and 5.6%. This evidence suggested W-Z's sample might have contained companies that, based on the Davidson and Weil procedure, were outliers for 1974 and consequently W-Z were incorrect in categorizing companies such as Rockwell International Corp. and Texaco Inc. as having permanently enhanced reported income when restated for the effects of inflation.

In summary, the Parker algorithm appeared to have outperformed the

Davidson and Weil procedure when applied to the companies used in the W-Z study. Therefore, the approximations generated from the Parker algorithm for purposes of formulating discriminant models in this study were assumed to be more valid than those employed by $W-Z$.

Relative Importance of Each Variable

The W-Z study indicated the single variable model based on sales (a measure of company size) had an R^{2} of 20.1% which represents 56% of the explanatory power of their full model having an R^{2} of 35.8%. W-Z did not, however, compare the single variable model based on sales with any other single variable model. Possibly with strong interaction some other variable could have outperformed sales. Therefore, in this study, those companies in the $\mathrm{W}-\mathrm{Z}$ data set that were also COMPUSTAT companies (30 of 34) were used to replicate the $W-Z$ experiment.

Replication of the W-Z experiment in this study using 30 of the 34 companies contained in the W - Z sample yielded a full model with explanatory power of 32.9%. This was somewhat less than the $\mathrm{W}-\mathrm{Z}$ statistic of 35.8% and could be attributed to exclusion of the four companies and the modification of the $W-Z$ model (discussed in Appendix A). The single variable model based on sales compared to all other single variable models (see Table III) unquestionably was the principal contributor to the total R^{2} of either the $W-Z$ original model (OM) or the expanded, generalized model (GM).

The R^{2} for the $O M$ was 32.9%. For the $G M$ which contained three additional variables the R^{2} was 33.8%. That meant that the three new variables contributed, in the aggregate, less than one percent to the
expanded model. Yet two of those variables, (1) volatility in earnings "(an accounting issue attribute) and (2) debt-to-equity ratio (a company attribute), were deemed significant in the Dhaliwal study. This evidence suggests that if corporate managers are motivated to respond to proposed accounting changes based on certain accounting variables, they react to different issues based on different variables. In other words, corporate managers do not behave consistently across issues based on the variables contained in this study.

This same experiment was applied to a larger data set of 80 companies that responded to the subsequent exposure draft (ED). The results are also summarized in Table 111 . There was no change in the order of entry of the variables into the model with the exception that the last two variables to enter based on the DM data set reversed sequence when based on the ED data set. Size remained the principal contributor to the R^{2} for the total model. Yet meanshift in net income, W-Z's other important theoretical variable, was one of the last two variables to enter the model being outperformed by trend and volatility in each analysis. The explanatory power of the model was reduced to 16.6%, one half the R^{2} corresponding to the (smaller, $N=30$) DM data set. One might assert that the W-Z inferences were drawn from an experiment based on a data set less representative of those companies that responded to the GPLA issue than those contained in the ED data set and to that extent their inferences may be misleading.

TABLE III
reLative importance of each variable based on stephise mda

Table IV is a summary of the performance of the models formulated from the DM data set.
table IV
CLASSIFICATION OF MATRIX I

		Predicted					
		Total	W-Z Modified Model		Generalized Model		
		Oppose	Favor	Oppose	Favor		
Actual	Oppose		20	16	4	17	3
		100\%	80\%	20\%	85\%	15\%	
	Favor	10	4	6	3	7	
		100\%	40\%	60\%	30\%	70\%	
	Total	30	20	10	20	10	
		100\%	66.67\%	33.33\%	66.67\%	33.33\%	

Data Set: Sample Respondents to the
GPLA Discussion Memorandum

It was expected that by expanding the $W-Z$ model to include three additional variables that the generalized model (GM) would outperform the original model (OM). The OM misclassified eight out of thirty companies (26.67%) used in the experiment. The GM misclassified six out of thirty companies (20.00%) . Therefore the improvement in classification attributable to inclusion of the three additional variables is an error reduction of $25.00 \% \div([26.67-20.00] / 26.67)$. This calculation of improved classificatory power, although not very
fieaningful, was more impressive than the 1% growth in R^{2} attributable to the three additional variables. The complementary measure of classificatory power, "margin of safety" or MS was analyzed. The OM yielded an MS of 5.6550 as opposed to the GM's MS of 8.7726 (see Appendix E). The MS improvement, then, attributable to the three additional variables was $55.13 \%=([8.7726-5.6550] / 5.6550)$.

The performance of the $O M$ and GM upon application to the ED data is summarized in Table V.

TABLE V
CLASSIFICATION OF MATRIX 11

		Predicted					
		Total	W-z Modified Model		Generalized Model		
		Oppose	Favor	Oppose	Favor		
	Oppose		$\begin{gathered} 64 \\ 100 \% \end{gathered}$	44 68.75%	$\begin{aligned} & 20 \\ & 31.25 \% \end{aligned}$	$\begin{aligned} & 28 \\ & 43.75 \% \end{aligned}$	$\begin{aligned} & 36 \\ & 56.25 \% \end{aligned}$
Actual	Favor	$\begin{gathered} 16 \\ 100 \% \end{gathered}$	$\begin{aligned} & 11 \\ & 68.75 \% \end{aligned}$	31.25%	$\begin{aligned} & 11 \\ & 68.75 \% \end{aligned}$	${ }^{5}$	
	Total	$\begin{gathered} 80 \\ 100 \% \end{gathered}$	$\begin{aligned} & 55 \\ & 68.75 \% \end{aligned}$	$\begin{aligned} & 25 \\ & 31.25 \% \end{aligned}$	$\begin{aligned} & 33 \\ & 48.75 \% \end{aligned}$	$\begin{aligned} & 41 \\ & 51.25 \% \end{aligned}$	

Data Set: Sample Respondents to the
(1974) Exposure Draft

The results were extremely poor especially in comparison with those summarized in Table IV. The OM misclassified thirty-one out of eighty companies (38.75\%). The GM misclassified forty-seven out of eighty
companies (58.75\%). ${ }^{2}$ The expanded model increased the error rate by 51.61% and reduced the net margin of safety (Appendix F) from 8.7476 to 1.8138 , a drop of 79.27%. Obviously the poor performance of both models on the ED data set was consistent with the effects on the models' R^{2} due to switching from the $D M$ data set to the ED data set.

In summary, both the $O M$ and GM yielded R^{2} measures based on the W-Z DM data set ($N=30$) that were twice as great as measures based on the ED data set $(N=80)$. Also, the classificatory power of the $O M$ and GM based on the former data set indicates the GM, having three additional variables, significantly outperformed the $O M$ in terms of correct classification and margin of safety measures. However on the larger, ED data set, both the $O M$ and $G M$ performed very poorly. In fact, a random chance assignment in classification of companies was superior to the results obtained by using the GM.
${ }^{2}$ The estimate of error rate (58.75%) associated with the GM was obtained using the jackknife technique (i.e., the U method) which yields unbiased results. For sake of comparison the Mahalanobis sample distance method, which includes all observations in formulating the discriminant function and consequently yields a favorable bias, was employed. This latter method estimated an error rate of only $45 \% ~(36 / 80)$.

The primary objective of the present chapter is to summarize and evaluate the findings of the study. In doing so, the chapter is divided into the following areas:

1. A General Review
2. Summary of Findings
3. Limitations of Findings
4. Recommendations for Further Research

A General Review

A proposed accounting standard, if adopted, could result in changes in the form and nature of the time series of future earnings. W-Z investigated the effect that the direction of changes in future earnings (i.e., increase vs. decrease) coupled with firm size has on corporate lobbying behavior towards proposed standards. The intent of this study was to enrich the W-Z theory and to generalize their model so as to be applicable to proposed accounting standards that could affect volatility and trend of reported earnings as well as a shift in the mean of reported earnings. The original $W-Z$ model (OM) and the generalized model (GM) were formulated based on two data sets relating to the GPLA issue: the Discussion Memorandum (DM) data set comprising the sample in the W-Z study and the subsequent Exposure Draft (ED) data set. The smaller

DM data set ($N=30$) was used to test for consistency of results of the W-Z study and the current study. This was important because the former study employed the Davidson and Weil procedure for determining the direction of change in reported earnings, whereas the current study employed the Parker procedure. In the event of inconsistent results, inferences drawn would be dependent upon the validity of the procedure used in the study. After the competing GPLA restatement procedures were tested for reasonableness of approximations the models were applied to the larger ED data set $(N=80)$. This larger data set was used because the sample was believed to be more representative of the population of companies that responded to the GPLA issue than the sample used in the W-Z study. The explanatory power of the models were investigated by determining the relative importance of each variable and its contribution to total model R^{2}. The classificatory power of the models were also investigated in terms of (1) estimates of error rates, and (2) margin of safety (MS) measures. Unbiased estimates of error rates were obtained using a jackknife procedure termed the U method. The MS procedure, developed in this study, measured the difference between the posterior probability due to the discriminant function and the probability due to chance assignment.

Summary of Findings

Instances were determined in which approximations obtained from the Davidson and Weil procedure used in the W-Z study conflicted with approximations obtained from the Parker procedure used in this study. Test results suggested the approximations obtained from the latter procedure appeared to be more reasonable than those obtained from the
former. Hence, inferences drawn in the current study were considered to be based on better approximations than those contained in the $W-Z$ study.

The current study contained a larger data set that was assumed to be more representative of the population of companies that responded to the GPLA issue than the sample contained in the W-Z study. The discriminant function when applied to this GPLA issue was found to be of little practical value in explaining corporate manager behavior. The results of this study contradict the findings of the $W-Z$ study. The positive theory for determination of accounting standards developed by W-Z and generalized in this study was not supported by empirical tests applied to the gRLA issue in this study.

However, the results of the study do not warrant the conclusion that corporate managers are not concerned with consequences of accounting changes on reports of net income in terms of such variables as mean shift, trend, and volatility given such firm attributes as absolute size, industry concentration, and capital structure. The Dhaliwal study indicated a strong concern with reduced reported earnings and/or increased volatility in earnings among highly leveraged companies.

One might argue that if the $\mathrm{W}-\mathrm{Z}$ theory has validity, the corporate managers who lobby are inconsistent in their response to accounting variables across issues. This suggestion that corporate managers are inconsistent is not very palatable. An alternative interpretation is that corporate managers, in fact, respond to proposed accounting changes on the basis of their perception of the theoretical merits of the issue (benefits) tempered by the practical problems of the company in implementation (costs), i.e., that the $\mathrm{W}-\mathrm{Z}$ theory is weak.

Limitations of Findings

Three limitations were associated with the present research. First, the results of the present research did not apply to companies outside the study. Only COMPUSTAT companies were candidates for inclusion in the data set contained in the study. To the extent the COMPUSTAT data base is not representative of companies that responded to the GPLA issue, the inferences drawn from the study are biased.

The second limitation is the inability to apply the discriminant function formulated from the data set employed in this study to companies responding to a different accounting issue. That is, the models developed from the ED were not applied to a different exposure draft to assess the predictive power of the models across issues. However, the classificatory power of the model was tested. Unbiased estimates of misclassification probabilities were obtained by testing each observation in the sample of companies in this study ($N=80$) with the discriminant function computed from the data with that particular observation removed. Finally, some of the data employed in model formulation involved only approximations obtained from the Parker procedure.

Recommendations for Futher Research

The $\mathrm{W}-\mathrm{Z}$ theory asserts the smaller companies that would be affected by a proposed accounting change would respond only if they oppose the proposal. This assertion could be tested easily by constructing a data base across issues and comparing the favorable response rate of the smaller companies with that of the larger companies. Also, one might test for consistency of behavior among "multiple response" companies,
one objective being to assess the extent to which reasons (for or against an exposure draft) are consistently cited in the company's letter of comment. Finally, the correlation between the position of the response company and its auditing firm might be investigated. If there is a high positive correlation, the FASB would need only to solicit and focus on the response of the major accounting firms that would be surrogates for corporate responses. The rationale for a high positive correlation might be one of coalition among the audit firm and its clientele. Alternatively, coalition among companies within major industries might be investigated by determining the extent to which the companies agree within the group.

REFERENCES

Altman, E. 1. 'Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy." Journal of Finance (September 1969): 589-609.

Barefield, Russell M., and Cominskey, Eugene E. "Depreciation Policy and the Behavior of Corporate Profits." Journal of Accounting Research, 9 (Autumn 1979): 351-358.

Barron's. "Curse of Bigness." June 30, 1969, pp. 1 and 8.
Beaver, William H., Kennelly, John W. and Voss, William M. "Predictive Ability as a Criterion for the Evaluation of Accounting Data." Accounting Review (October 1968): 675-683.

Beidleman, C. R. "Income Smoothing: The Role of Management." Accounting Review (October 1973): 653-667.

Bowman, Robert G. "The Debt Equivalence of Leases: An Empirical Investigation." Accounting Review (April 1980): 237-253.

Cochran, W. G. "Commentary of 'Estimation of Error Rates in Discriminant Analysis"". Technometrics (February 1968): 204-205.

Copeland, Ronald M. "Income Smoothing." Empirical Research in Accounting: Selected Studies, 1968, Supplemental to Journal of Accounting Research 6: 101-116.

Copeland, Ronald M. and Licastro, Ralph D. "A Note on Income Smoothing." Accounting Review (July 1968): 540-545.

Dasher, Paul E., and Malcolm, Robert E. "A Note on Income Smoothing in the Chemical Industry." Journal of Accounting Research, 8 (Autumn 1970): 253-259.

Davidson, Sidney, and Weil, Roman L. "Inflation Accounting: What will General Price Level Adjusted Income Statements Show?" Financial Analysts Journal (January-February 1975): 27-31; 70-81.

Dhaliwal, Dan S. "The Effect of the Firm's Capital Structure on the Choice of Accounting Methods." Accounting Review (January 1980): 78-84.

Efron, B. "Bootstrap Methods: Another Look at the Jackknife." The Annals of Statistics, Vol. 7 (1979): 1-26.

Gerboth, Dale S. "Muddling Through with the APB." Journal of Accountancy (May 1972): 42-49.

Goodman, L. A., and Kruskal, W. H. "Measures of Association for Cross Classifications." Journal of the American Statistical Association, Vol. 48 (1978): 732-764.

Hagerman, Robert L., and Zmijewski, Mark E. "Some Economic Determinants of Accounting Policy Choice." Journal of Accounting and Economics (August 1979): 141-161.

Horngren, Charles T. "The Marketing of Accounting Standards." Journal of Accountancy (October 1973): 61-66.

Ijiri, Yuji, and Jaedicke, R. "Reliability and Objectivity of Accounting and Measurements." Accounting Review (July 1966): 474-483.

Lachenbruch, Peter A., and Mickey, M. Ray. "Estimation of Error Rates in Discriminant Analysis." Technometrics (February 1968): 1-11.

May, Robert E., and Sundem, Gary L. "Research for Accounting Policy: An Overview." Accounting Review (October 1976): 747-763.

Miller, Merton H., and Modigliani, Franco. "Divident Policy, Growth, and the Valuation of Shares." Journal of Business, 34 (October 1961): 411-433.

Miller, Rupert G. "The Jackknife - A Review." Biometrika, 61 (1974): 1-15.

O'Donnell, John L. "Relationships Between Reported Earnings and Stock Prices in the Electric Utility Industry." Accounting Review (January 1965): 135-143.

Parker, James E. "Impact of Price-Level Accounting." Accounting Review (January 1977): 69-96.

Roman, J. and Soden, S. Smoothing Income Numbers: Objectives, Means and Implications. Reading, Mass.: Addison-Wesley, 1981.

Watts, R. L., and Zimmerman, J. L. "Towards a Positive Theory of the Determination of Accounting Standards." Accounting Review (January 1978): 112-134.

White, Gary E. "Discretionary Accounting Decisions and Income Normalization." Journal of Accounting Research, 8 (Autumn 1970): 260-273.

Zeff, Stephen A. "The Rise of Economic Consequences." Journal of Accountancy (December 1978): 56-63.

APPENDICES

APPENDIX A

THE ORIGINAL W-Z MODEL AND MODIFICATIONS

Original Model

The original model developed by $W-Z$ was as follows:

$$
\begin{aligned}
\rho_{\mathbf{i}}=\alpha_{1} & \left.+\alpha_{2}\left(\frac{\text { DEP }_{\mathbf{i}}}{\text { MKTVL }_{\mathbf{i}}}\right)+\alpha_{2}\left(\frac{\text { NMA }_{\mathbf{i}}}{\text { MKTVL }_{\mathbf{i}}}\right)+\alpha_{3} \text { SALES }_{\mathbf{i}}\right) C H G_{\mathbf{i}} \\
& +\alpha_{4}\left(\frac{\text { SALES }_{\mathbf{i}}}{\text { TSALES }_{\mathbf{i}}}\right) \text { CHG }_{\mathbf{i}}+\alpha_{5} \text { MCOMP }_{\mathbf{i}}+\alpha_{6} \text { REG }_{\mathbf{i}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \frac{\text { Number of oposing firms }}{\text { Total firms in sample }} \text { if the } i^{\text {th }} \text { firm favored GPLA } \\
& \rho_{i}= \\
& \frac{\text { Number of supporting firms }}{\text { Total firms in sample }} \text { if } i^{\text {th }} \text { firm opposed GPLA } \\
& \text { MKTVL }_{\mathbf{i}}=\text { the market value of the firm's equity (number of common } \\
& \text { shares outstanding } x \text { average share price) } \\
& R E G_{i}=\quad \begin{array}{l}
1 \text { if the } i^{\text {th }} \\
0 \text { if otherwise }
\end{array} \\
& \operatorname{MCOMP}_{i}=\quad \begin{array}{l}
1 \\
0 \\
\text { if the } i^{\text {th }} \\
\text { if irm had a management incentive scheme }
\end{array} \\
& D E P_{i}=\text { unadjusted depreciation expense in the } 1973 \text { for the } i^{\text {th }} \text { firm } \\
& \text { NMA }{ }_{1}=\text { net monetary asset position in } 1973 \text { for the } i^{\text {th }} \text { firm } \\
& +1 \text { if the price-level adjusted income is below } \\
& \text { unadjusted income or if the firm is regulated } \\
& C H G_{i}=+1 \text { if price-level adjusted income is above unadjusted income } \\
& 0 \text { otherwise } \\
& \text { SALES }_{i}=\text { sales of the } i^{\text {th }} \text { firm } \\
& \begin{aligned}
\text { TSALES }_{i}= & \text { total sales of the compustat firms with the same SIC code } \\
& \text { as firm } i
\end{aligned} \\
& \frac{\text { SALES }_{i}}{\text { TSALES }}=\text { a proxy variable for market share }
\end{aligned}
$$

W-Z asserted that the first two terms,
$\frac{\text { NMA }}{\text { MKTVL }}$ and $\frac{\text { DEP }}{\text { MKTVL }}$
normalized the unadjusted figures by the market value of the equity and the estimated coefficients measured the extent to which an increase in relative depreciation or net monetary assets affected voting behavior. These coefficients were expected to capture the effect of taxes and were predicted to be positive under the $W-Z$ assertion the larger the depreciation and net monetary assets the greater the decline in adjusted income and the greater the tax benefits.

W-Z also asserted that the next two variables
(SALES)CHG and $\left(\frac{\text { SALES }}{T S A L E S}\right)$ CHG, were proxies for political costs.
Modified Model

The original model was modified in the following respects.

The estimated coefficients of the first two terms
$\frac{\text { NMA }}{\text { MKTVL }}$ and $\frac{D E P}{\text { MKTVL }}$
were said to capture the "tax benefits." The two terms were replaced with the more generalized measure of tax benefits associated with different proposed accounting standards:

$$
\frac{\Delta T A X}{T A X}=\text { normalized tax change. }
$$

The next two variables,

$$
\text { (SALES) CHG and }\left(\frac{\text { SALES }}{\text { TSALES }}\right) \mathrm{CHG}
$$

were said to be proxies for "political costs." However, only the direction of earnings (indicated by CHG) and not the magnitude of change in earnings was reflected in the model. These two terms reflected the magnitude, as well, via the following expansion into three variables:

$$
\frac{\text { SALES }}{\text { ASALES }} \text { and } \frac{\text { SALES }}{\text { TSALES }} \text { and } \frac{\Delta N I}{\mathrm{NI}}
$$

where

$$
\frac{\Delta N I}{N I}=\text { change in net income, normalized. }
$$

The factor, CHG, was no longer required because $\frac{\Delta N I}{N I}$ carried the (\pm) sign, indicating direction as well as magnitude. The factor, SALES, was normalized by ASALES, a measure of the average sales of the firms comprising the sample.

The two remaining terms were dummy variables which simply allowed for classification of the firm as to regulation and/or existence of a management compensation plan. This classification scheme for the purpose of this study was not relevant and, therefore, these two terms were ignored.

The modified model was as follows:

After changes in notation to conform with the variables discussed on pages 16-19, the modified model can be written as

$$
Z=\beta_{1} T+\beta_{2} M+\beta_{5} S+\beta_{6} C .
$$

APPENDIX B

LISTING OF FORTRAN COMPUTER PROGRAM

```
TITLE: GPIA ALGORITHM
PURPOSE: THIS ALGORITHM DEVELOPS SUMMARY INCOME STATEMENTS
    REFLECTING GENERAL PRICE LIVE= CHANGES. THE ALGO-
    RITHM IS BASED ON PARKER'S =ECHNIQUE FOR APPRCXI
    MATING AMOUNTS WHICH WCUID FAVE BEZN REPORTED HAD
    THE FIRMS BEEN APPIYING THE RESTAPEMEN% PRCCEDURES
    PROPOSED IN THE FASB (1974) ËPOSURE DRAFT.
    AUTHOR: A. JAMES MCKEE, JR.
INPUT DATA:
```

1．DAIA FROM THE COMPUSTAT ANNUAI ENDUSTRIAL FILES．
2．GNP PRICE DEFLATOR INDEX TABIE，1947－78．

OUTPUT DATA：
1．COMPARATIVE INCOME STATEMENTS，UNADJUSMED AND ADJUSTED FOR INFIARION．THE ADUUSTED INCOME STATEMENTS ARE INTENDED TO APPECXIMATE COMMON DOILAR AMOUNTS BASED ON THE PRECE INDEX OF THE END OF THE REPORTING PERIOD．

2．COMPARATIVE INCOME STATEMENTS，UNADJUSTED AND ADJUSTED MO＂CONSTANT＂DOLIARS（I．E．，ADJUSTED INCOME STATEMENSS ARE ROLLED FCRWARD TO THE 78 YEAR END PRICE INDEX）．

3．KEY LINE ITEMS OF THE INCOME STATEMENTS ARE PRINTED AND PUNCHED FCR ADDITIONAL PRCCESSING AT THE USER＇S OPTICN．

NOTE－ALL OF THE KEY STEPS IN THE RESTATEMENT PROCEDURES ARE PRINTED TO ASSIST THE USER IN UNDERSTANDING THE PROGRAM．

LIST OF PRINCiPAL VARIABLES ．
VARIABLE
EXPLANATION
SUBSCRIPT J DENOTES YEAR ）
$\operatorname{ACC}(\mathrm{J}) \quad-\mathrm{ACCUMULATED} \mathrm{DEPRECIATION}$.
ACQ（J）－ACQISITION DATE CF DEPRECIABIE ASSETS．
ACQDEX（J）－GNP PRICE DEFLATOR INDEX RELATING IO ACQISITION DATE OF DEPRECIABIE ASSEES．
ACQYR（J）－ACQISITION YEAR OF DEPREC ABIE ASSETS．
ADP（J）－AVERAGE DAIIY PURCHASES．
ADPO（J）－AVERAGE（MONETARY）DESTCR POSITION FOR THE YEAR．
AGE（J）－AVERAGE AGE OF THE DEPRECIABLE ASSETS．
ARI（J）－AVERAGE RATE OF INFIATICN FOR THE YEAR．
BOT（J）－NET INCOME（OR BOTMOM I二ごE）．
CAE（J）－DATA（1，J）＝CASH AND SHCRI－TERM INVESTMENTS．
$\operatorname{CAR}(J) \quad-\operatorname{DATA}(8, J)=P \operatorname{IANT}$ ， VEF ．
CGA（J）－COST OF GOODS aVAiLmbLE．
CGAA（J）－CGA（J），ADJUSTED FOR EIFIAMyON．
CGS（J）－COSI OF GOCDS SOLD．

```
CONAME(7 - COMPUSTAT FIRM NAME.
CUL(J) - DATA(5,J)=CURRENT LIABILIMIES(TOTAL).
DATA(K,J) - COMPUSTAT VARIABLE, WHERE K DENOTES THE DATA ITEM.
DEL(j) - DATA(9,J)=LONG-TERM DEBT(TOMAL).
DEP(J) - DATA(14,J)=DEPRECIATION AND AMCRTIZAIION.
DEPA(J) - DEP(J), ADJUSTED FOR INFLATION.
DER - DEBT TO EQUITY RATIO FOR 1974.
DEV(J) - NUMBER OF DAYS PURCHASES IN ENDING INVENTORY,FIFO.
DEX(J,K) - GNP PRICE DEFLATOR INDEX.
ENV(J) - DATA(3,J)= ENDING INVENTORY.
ENVA(J) - ENV(J), ADJUSTED FOR INFLATION, FIFO.
ENVR(J) - " " " , AVERAGE.
ENVRR(J) - ENVR(J), ROLIED FORWARD.
FISH(J) - ENDING INVENTORY,IIFO (FIRST-IN, STIIL-HERE).
FISHA(J) - FISHA(J), ADJUSTED FOR INFIATION.
FISHAA(J) - FISHA(J) ROLLED FORWARD.
FISHR(J) - BEGINNING INVENTORY ROLIED FORWARD TO END OF
    YEAR PRICE INDEX.
FIX(J) - DATA(15,J)= DEPRECIATION AND AMORMIZATION.
FYR(J) - COMPUSTAT FISCAL YEAR.
GRO(J) - DATA(7,J)=PLANT, GROSS.
INAME(7) - COMPUSTAT INDUSTRY NAME.
J1 - START OF TIME SERIES OF FINANCIAL DATA. FOR
    EXAMPLE, J1=3 DENOTES COMPUSTAT YEAR 3, 1961.
JK - END OF TIME SERIES.
OPB(J) - DATA(13,J)= OPERATING INCOME BEFORE DEPRECIATION.
OPI(J) - OPERATING INCOME.
OPX(J) - OPERATING INCOME EXCLUSIVE OF DEPRECIATION AND
    AMORTIZATION.
OTH(J) - OTHER INCOME OR LOSS.
OXP(J) - OPERATING INCOME EXCLUSIVE OF PURCHASING POWER
    GAIN OR IOSS.
PBX(J) - PROFIT BEFORE EXTRAORDINARY ITEMS.
PNM(J) - NET MCNETARY POSITION.
POOL(J) - LIFO INVENTORY POOL (I.E., JTH LAYER).
POOLA(J) - POOLA(J), ADJUSTED FOR INFLLATION.
PPG(J) - PURCHASING POWER GAIN OR LOSS.
PUR(J) - PURCHASES.
PURA(J) - PURCHASES, ADJUSMED FOR INFLATION.
PURL1(J) - PURCHASE LAYER 1 (I.E., PURCHASES FROM THE FIRST
    QUARTER COMPRISING ENDING INVENTORY ), FIFO.
RATIO - RATIO OF ENDING INVENTORY TO COST OF GOODS
REC(J) - AVAIIABLE. . RATA(2,J)= RECEIVABLES.
SAL(J) - DATA(12,J)= SALES, NET.
TAX(J) - DATA(16,J)= INCOME TAXES (SOTAL).
YEAR(J) - COMPUSTAT YEAR.
XTR(J) - DATA (48,J)= EXTRAORDINARY ITEMS AND DISCONmINUED
        OPERATIONS.
THE ABOVE LIST IS NOT ALL-INCLUSIVE. THOSE OMITTED VARIABLES ARE BELIEVED TO BE SELF-EXPLANATORY WITHIN THE CONTEXT OF THE PROGRAM.
```

```
    INITIALIZE VARIABLES
```

 PBXA 25\(),\) XTRA (25), BOTA (25), RES (25)
 INITALIZE VARIABLES
in $\mathrm{N}=10$
$L P=6$
$\operatorname{PUR}(1)=0.0$
PURA(1) $=0.0$
ENVA(1) $=0.0$
CGA(1) $=0.0$
$\operatorname{CGAA}(1)=0.0$
$\operatorname{RATIO}(1)=0.0$
$\operatorname{ADPO}(1)=0.0$
$\operatorname{ARI}(1)=0.0$
$\operatorname{CGSA}(1)=0.0$
$\operatorname{CGSA}(1)=0.0$
$\operatorname{PPG}(1)=0.0$
$\operatorname{DEPA}(1)=0.0$
$\begin{array}{ll}\text { PPG(1) } & =0.0 \\ \operatorname{DEPA}(1) & =0.0\end{array}$
$\begin{array}{ll}\operatorname{DEPA}(1) & =0.0 \\ \operatorname{RES}(1) & =0.0\end{array}$
J1 $=1$
$J K=20$
$J 2=J 1+1$
$\mathrm{KTR}=1$
READ (IN, 2) (CONAME (I), $I=1,7$), (INAME (II), $I I=1,7$), CNUM, DNUM
WRITE (IP, 2$)(C O N A M E(I), I=1,7)$, (INAME (II), $I I=1,7)$, CNUM, DNUM
FORMAT (1X,7A4,7A4, 2F8.0)
WRITE (LP, 3)
FORMAT (2X,'YEAR',13X,'FYR',1X,'INVENTORY', $2 X, ' C O S T-S A L E S ', 1 X$,
DO $140 \quad$ VALUATION'
$\operatorname{READ}(I N, 4) Y E A R(K), \operatorname{FYR}(K), \operatorname{DATA}(3, K), \operatorname{DATA}(41, K)$,
DATA $59, K), \operatorname{DATA}(7, K), \operatorname{DATA}(8, K)$
WRITE(LP, 4)YEAR (K), FYR(K), DATA ($\mathcal{H}, \mathrm{K}), \operatorname{DATA}(41, K)$,
DATA $(59, K), \operatorname{DATA}(7, K), D A T A(8, K)$
FORMAT(1X,7(F10.j,1X))
CONTIMUE
WRITE (LP,5)
FORMAT ($2 \mathrm{X}, '$ YEAR', 6 X, 'DEP, +AMORT' 1 X, 'CASH + EQ.', 1 X ,
'RECEIVABIE', $1 \mathrm{X}, ' \mathrm{CURR} . \dot{I} I A B^{\prime}, 2 X, ' L T . ~ D E B T ', j X$,
'NET SALES'/)
DO $141 \quad \mathrm{~K}=1,20$
READ (IN, 4)YEAR(K), DATA (14, K), DATA (1, K), DATA ($2, K$),
DATA $(5, K), \operatorname{DATA}(9, K), \operatorname{DATA}(12, K)$
WRITE(LP, 4)YEAR (K), DATA ($14, K$), DATA (1, K), DATA ($2, K$),
DATA $(5, K), \operatorname{DATA}(9, K), \operatorname{DATA}(12, K)$
CONTINUE
WRITE (IP, 6)
FORMAT($2 \mathrm{X},{ }^{\prime}$ YEAR', 6 X, 'NOI.B.DEP', $2 \mathrm{X},{ }^{\prime}$ 'EXTRA.B.TAX', 1 X, 'NEM INC',
2X,'X-ITEMS',4X,'PR.STOCK', $\overline{\mathrm{X}}$, 'COMM.STOCK' /)
DO $142^{\mathrm{K}=1}, 20$
DEPRECIATION:
DIMENSION DEX(50,9)
DIMENSION GRO(20), $\operatorname{CAR}(20), \operatorname{DEP}(25), \operatorname{ACC}(20), \operatorname{AGE}(20), \operatorname{ACQ}(20)$,
$1 \operatorname{ACQYR}(20), \operatorname{DEPA}(25), \operatorname{ACQDEX}(34,9)$
DIMENSION DATA $(60,20), \operatorname{YEAR}(21), \operatorname{CONAME}(7), \operatorname{INAME}(7), \operatorname{FYR}(20)$,
1
BLANK (17), NAME (10)
LIPO:
DIMENSION ENV (20), CGS(25), FLO(20), PUR(20), POOL(20),
1 POOLA(20), FISH(20), FISHÁ(20), FISHR(20),
1
1
FIPO:
DIMENSION ADP(20), DEV (20), PURL4(20), PURL3(20), PURL2(20)
DIMENSION PURI1 (20), PURL4A(20), PURL3A(20), PURL2A(20), PURL1A(20)
DIMENSION ENVA(20), ENVR(20)
DIMENSION ENVRR(20),CGA(20), CGAA(20), RATIO(20)
PPG:
DIMENSION $\operatorname{CAE}(20), \operatorname{REC}(20), \operatorname{CUL}(20), \operatorname{DEL}(20), \operatorname{PNM}(20), \operatorname{ADPC}(20)$,
1 ARI(20), PPG(25)
DIMENSION SAL(25),OPX(25), OPB(25), OXP(25),OPI(25), FIX(25), TAX(25),
1 OTH 25$), \operatorname{PBX}(25), \operatorname{XTR}(25), \operatorname{BOT}(25), X N N(25), S A L A(25), O P X A(25)$,
OPBA (25), OXPA (25), OPIA (25), FIXA (25), TAXA (25), OTHA (25),
FRMAT(2X',

```
                                    READ (IN,4)YEAR(K), DATA(15,K),DATA(17,K),DATA(18,K),
                        DATA(48,K),DATA(10,K),DATA(11,K)
                            WRITE(IP,4)YEAR(K),DATA(13,K),DATA(17,K),DATA(18,K),
            CONTIMUE
            WRITE(IP,7)
            7,
                            FORMAT(2X,'YEAR',6X,'INTANGIBLES',1X,'FIXED CHARG',1X,
            DO 145 K=1, 20
                                    READ (IN, 8)YEAR(K),DATA( 33,K),DATA(15,K),DATA(16,K)
                    WRITE(LP,8)YEAR(K),DATA(弓З,K),DATA(15,K),DATA(16,K)
                        FORMAT(1X,4(F10.j,1X))
            CONTINUE
            IN = 5
    READ IN TABLE OF GNP PRICE DEFLATOR INDICES
    WRITE(LP,12)
    12 FORMAT(///31X,'GNP PRICE DEFLATOR',16X,'AVERAGE FOR FISCAL YEARS')
    WRITE(IP,13)
    13 FORMAT(3IX,'QUARTERLY INDEX',28X,'ENDING')
    WRITE(LP, 14)
    14 FORMAT(/21X,'YEAR',4X,'FIRST SECOND THIRD FOURTH',8X,
C
            DO 144 J=1,34
                READ(IN, 1) ( DEX(J,K),K=1, 9)
                    FORMAT(F5.0,1X,4F7.2,7X,4F7.2)
        1
                            WRITE(IP,15) ( DEX(J,K), K=1, 9)
                            15 FORMAT( 21X, F5.0,1X,4F7.2,7X,4F7.2)
C
    144 CONTINUE
    CALCULATIOR OF PURCHASES
        WRITE(IP,16)
        FORMAT(//40X,'STEP 1-DETERMINE PURCHASES FOR ALL YEARS'//)
        WRITE(IP,17)
        FORMAT(39X,'COST OF')
        VRITE(IPP,18)
        FORMAT( 39X,'ENDING',6X,'GOODS',7X,'BEGINNING')
        WRITE(LP,19)
        FORMARY20X,'YEAR',15X,'INVENTORY',jX,'+',1X,'SOLD',6X,'-',
    1 IINVENTORY',1X,'=',1X,'PURCHASES')
1240
C C 
    YR(J) = DEX((J+12),1)
    ENV(J) == DATA(3.J)
    CGS(J) = DATA(4i,J)
    DO 145 J=2, JK
    YR(J) = DEX((J+12),1)
    ENV(J) = DATA(3,J)
    CGS(J) = DATA(41,J)
    CGSA( J) = 0.0
        PUR(J) = ENV (J) + CGS(J) - ENV (J-1)
    PPG(J) = 0.0
    DEPA(J) =0.0
        WRITE(IP,21) YR(J), ENV(J),CGS(J),ENV(J-1),PUR(J)
    21 FORHAT(19X,F6.0,13X,4(F10.j,2X))
    145 CONTINUE
    INV. CODE: J.O=FIFO, 2.0=LIFO, 4.O=AVERAGE
            IF (DATA(59,15).EQ.(1.0)) GO TO 2110
            IF (DATA(59,15;.EQ.(2.0)) GO TO 1000
            1F(DATA(59.15).EQ.(4.0)) GOTO 146
    46 WRITE(LP,22)
    22 FORMAT(///19X,'STEP 2- RESTATE BEGINNING INVENTORY OF THE PERIOD')
    WRITE(IP,2j)
```

```
    23 FORMAT(/10X,'ASSUMPTION: INVENTORY-BEGINNING WAS ACQUIRED AT ',
    1 'THE AVERAGE OF PREVIOUS 弓'RD AND 4TH QUARTER PRICE',
    WRITE(IP,24)
    24
    1
        J=J1
        ADEX = ( DEX((J+12),4) + DEX((J+12),5) )/ (2.0)
        ENVA(J) = ENV(J)*DEX((J+12),5)/ADEX
C
    WRITE(IP,25
    25 FORMAT(19X,'RESTATED BEGINNING INVENTORY:'/)
    WRIME(IP,26) ENV(J), DEX((J+12),5), ADEX , ENVA(J)
    26 FORMAT(25X,F8.2,2X,'X',1X,F7.2,'/',F7.2,2X,'=',F8.2)
        WRITE(LP,27)
    27 FORMAT(///19X,'STEP 3--RESTATE INV(B), ADJUSTED, TO 1959 DOLLARS')
C
    STEP ##3
        J=J2
        ENVR(J-1) = ENVA(J-1)*DEX((J+12),5)/DEX((J+11),5)
C
    .28
    WRITE(IP,28) ENV(J-1), DEX((J+12),5), DEX((J+11),5), ENVR(J-1)
    FORMAT(///19X,'STEP 4--RESTATE ENDING INVENTORY AND COST OF',
        I J=1
            DO 399 J=1, JK
            CGA(J) = 0.0
            CGAA(J) = 0.0
```



```
    J=J1
    ENVR(J) = ENVA(J)
        DO 400 J=J2, JK
            ENVRR(J-1) = ENVR(J-1)*DEX((J+12),5)/DEX((J+11),5)
            PURA(J) = PUR(J)*DEX((J+12),5)/DEX((J+12),9)
            CGA(J) = ENV (J-1) + PUR(J)
            CGAA(J) = ENVRR(J-1) + PURA(J)
            RATIO(J) = ENV (J)/CGA(J)
                        ENVR(J) = RATIO(J)*CGAA(J)
C

\section*{CONTINUE}
```

C C CONTINUE DETERMINE AVERAGE DAILY PURCHASES(ADP) DURING THE CURRENT YEAR
J=J1
ADP(J)=0.0
C
DO 200 J=J2, JK
ADP(J) = PUR(J)/(365.0)
WRITE(LP,41) ADP(J).
FORMAT(1X,'ADP = ',2X,F10.3)
200 CONTINUE
C
C
CALCULATE \# OF DAYS PURCHASES(DEV) IN ENDING INVENTORY
J=J1
DEV (J)=0.0
C
DO 300 J=J2, JK
DEV(J)= ENV (J)/ADP(J)
WRITE(IP,42) DEV(J)
FORMAT(1X,'DEV (J) = ',1X, F9.3)
300 CONTINUE
DECOMPOSE INV(E) INTO PURCHASE LAYERS
WRITE(LP, 43)
4弓 FORMAT(j8X,'DECOMPOSITION OF YEAR-END INVENTORY'//)
WRITE(IP, 44)
44 FORMAT(19X,'YEAR',7X,'TOTAL',8X,'4TH-QTR',8X,'3RD-QTR',8X,
1 '2ND-QTR',8X,'1ST-QTR'/)
C
J=1
PURL4(J) = 0.0
PURL3(J) = 0.0
PURL2(J) = 0.0
PURL1(J) = 0.0
C
J=J1
PURL4(J) = 0.0
PURL3(J) = 0.0
PURL2(J) = 0.0
PURI1 (J) = 0.0
DO 500 J=J2, JK
PURI4(J) = 0.0
PURL3(J) = 0.0
PURL2(J) =0.0
PURI1(J) = 0.0
IF(DEV(J).LE.(92.)) GO TO 401
IF(DEV(J).LE.(18j.)) GO TO 402
IF(DEV(J).LE.(274.)) GO TO 403
IF(DEV(J).IE.(365.)) GO TO 404
IF(DEV(J).GT.(365.)) GO TO 405
C
4 0 1
C
4 0 2
NUMBER OF DAYS INVENTORY < 92
PURL4(J) = ENV(J)
GO TO 410
NUMBER OF DAYS INVENTORY < 183
PURI4(J) = ADP(J)*(92.0)
PURL3(J) = ENV(J) - PURL4(J)
GO TO 410

```
```

 51 FORMAT(18X,'3RD-QTR',3X,F8.2,jX,F7.2,'-/',F7.2,7X,F8.2)
 WRITE(LP,52) PURI2(J), DEX((J+12),5),DEX((J+12),3),
 PURI2A(J)
 52' FORMAT(18X,'2ND-QTR',3X,F8.2,3X,F7.2,'-/',F7.2,7X,F8.2)
 WRITE(LP,53) PURI1(J), DEX((J+12),5),DEX((J+12),2),
 PURL1A(J)
 53 FORMAT(18X,'1ST-QTR',3X,F8.2,3X,F7.2,'-/',F7.2,7X,F8.2)
 WRITE(IP,54) ENV(J), ENVA(J)
 54 FORMAT(/18X,'TOTAL',5X,F8.2,26X,F8.2//)
 C
CONTINUE RESTATE PURCHASES TO \$J
WRITE(LP, 55)
55 FORMAT(///19X,'STEP 6--RESTATE PURCHASES TO PRICE LEVEL ADJUSTED',
1
WRITE(IP, 47)
56 FORMAT(19X,' ',4X,'UNADJUSTED',2X,'(INDEX-TO)',
C
PURA(J) = PUR(J)*DEX((J+12),5)/DEX((J+12),9)
WRITE(IP, 57) DEX((J+12),1), PUR(J), DEX((J+12),5),
1 DEX((J+12),9), PURA(J)
FORMAT(/18X,F6.0,3X,F8.2,3X, F7.2,' /',F7.2,7X,F8.2)
RESTATE BEGINNING INVENTORY TO \$J
J=J1
WRITE(LP,58)
58 FORMAT(///19X,'STEP 7--RESTATE INV(B) , ADJUSTED, TO EOY INDEX'//)
WRITE(LP, 20)
WRITE(LP, 61)
ENVA(J) = ENV(J)
C
DO 888 J=J2, JK
ENVR(J-1) = ENVA(J-1)* DEX((J+12),5)/DEX((J+11),5)
WRITE(LP, 57) DEX((J+12),1), ENVA(J-1), DEX((J+12),5),
1
8 8 8 ~ C O N T I N U E ~
C
C
C
RESTATE COST OF GOODS SOLD TO \$J
J=J1
CGSA(J) = 0.0
C
C
WRITE(LP,60)
60 FORMAT(//J7X,'RESTATEMENT OF COST OF GOODS SOLD'/)
C
DO 900 J=J2, JK
CGSA(J) = ENVR(J-1) + PURA(J) - ENVA(J)
WRITE(LP,61)
FORMAT(77X,'COST OF')
WRITE(IP,62)
FORMAT(41X,'BEGINNING',15X,'ENDING',6X,'GOODS')
WRITE(LP,63) DEX((J+12),1)
FORMAT(19X,F6.0,16X, 'INVENTORY',1X,'+',1X,'PURCHASES',
1X,'-',1X,'INVENTORY',iX,'=',1X,'SOID'/)
WRITE(IP,64) ENV(J-1), PJJR(J), ENV(J), CGS(J)
FORMAT(19X,'UNADJUSTED',10X,F8.2,4X,F8.2,4X,F8.2,4X,F8.2)
WRITE(LP,65)
FORMAT(19X,'ADJUSTMENT(S)',8X,'VARIOUS')
WRITE(IP,66)
FORMAT(19X,'ADJUSTED-BEGINNING')
WRITE(LP,67) ENVA(J-1)}4X,F8.2
FORMAY(28X,'OF YEAR', 4X,F8.2)

```

```

 WRITE(LPP,68) DEX((J+12),5),DEX((J+12),9)
 FORMAT(19X,'ADJUSTMENT(S)',16X,F7.2,'/',F7.2,1X,
 WRITE(IP,69)
 FORMAT(19X,'ADJUSTED-END OF')
 WRITE(LP,70) DEX((J+12),1), ENVR(J-1), PURA(J), ENVA(J),CGSA(J)
 FORMAT(25X,F7.0 ,7X,F8.2,4X,F8.2,4X,F8.2,4X,F8.2///)
 9 0 0 ~ C O N T I N U E ~
 GO TO 1600
 1000 CONTINUE
 C
C CALCULATE LIFO POOLS AND POOLS,ADJUSTED
WRITE(IP,71)
FORMAT(//40X,'STEP 2--DETERMINE LIFO POOLS'///)
J=J1
POOL(J) = ENV (J)
FISHAA(J1)= POOL(J1)* DEX((J+12),5)/DEX((J+12),9)
C
C

```

C
```

68
DO }700\mathrm{ J=J2, JK
WRITE(6,72) ENV(J), ENV(J-1)
FORMAT(1X,2F10.3)
IF(ENY(J).GE.ENV(J-1)) GQ TO 500
POOL(J) = 0.0
DELTA = ENV(J-1) - ENV (J)
IP (DELTA.LE.POOL(J-1)) GO TO 160
IP((J-2).LE.0) GO TO 900
BAL}=POOL(J-1)+POOL(J-2
IF(DEITPA.LE.BAL) GO TO }20
IP((J-3).LE.0) GO TO 900
BAL = POOL(J-1) + POOL(J-2) + POOL(J-3)
IP(DELTA.LE.BAL) GO TO }30
IF((J-4).IE.O) GO TO 900
BAL =POOL(J-1) + POOL(J-2) + POOL(J-3) + POOL(J-4)
IF(DELTA.LE.BAL) GO TO 400
IF((J-5).LE.0) GO TO 900
BAL = POOL(J-1) + POOL(J-2) + POOL(J-3) + POOL(J-4)
+ POOL(J-5
IP(DELPA.LE.BAL) GO TO 450
IF((J-6).IE.0) GO TO 900
BAL = POOL(J-1) + POOL(J-2) +POOL(J-3) + POOL(J-4)
+ POOL(J-5) + POOL(J-6)
IF(DELTA.LE.BAL) GO TO 460
WRITE(LP,73) (
FORMAT(1X,'INVENTORY EXCEEDS FOUR LAYERS')
GO TO 1600
LIQUIDAPION OF INVENTORY < }1\mathrm{ POOL
POOL(J-1) = POOL (J-1) - DELTA
GO TO 550
LIQUIDATION OF INVENTORY < 2POOLS
POOL (J-2) = BAL - DELTA
POOL(J-1) = 0.0
G0 TO 550
LIQUIDATION OF INVENTORY < 3POOLS
POOL (J-5) = BAL - DELTA
POOL(J-2) = 0.0
POOL (J-1) =0.0
GO TO 550
LIQUIDATION OF INVENTORY < 4POOLS
POOL (J-4) = BAL - DELTA
POOL(J-3) = 0.0
POOL (J-2) =0.0
POOL(J-1) = 0.0
GO TO 550
LIQUIDATION OF INVENTORY < 5POOLS
POOL(J-5) = BAL - DELTA
POOL (J-4) =0.0
POOL (J-3) = 0.0
POOL (J-2) =0.0
POOL(J-1) = 0.0
GO TO }55

```
```

`460 LIQUIDATION OF INVENTORY < 6POOLS
POOL(J-5) = 0.0
POOL(J-4) = 0.0
POOL (J-3) =0.0
POOL(J-2) = 0.0
5 1 0 0
C
500
C
C
550
ADD JTH POOL TO LIFO INVENTORY
POOL(J) = ENV(J) - ENV (J-1)
ADJUST INVENTORY POOLS TO END OF YEAR-J DOLLARS
POOLA(J) = POOL(J), ADJUSTED
FISH = FIRST-IN,STILI-HERE(IE,IIFO VALUE ENV(J))SUM OF POOL
FISHA = FISH ENV, ADJUSTED
POOLA(J1)= POOL(J1)* DEX((J+12),5)/DEX((J+12),9)
FISHA(J1) = POOLA(J1)
FISH(J1)= POOL(J1)
WRITE(LP, 74)
FORMAT(///27X,'HIST, COST',2X,'GNP PRICE DEFLATOR',
WRITE(IP, 75)
FORMAT(19X,'POOL',4X,'UNADJUSMED',2X,'(INDEX-TO)',
'/(INDEX-FROM)',2X,'ADJUSTED'/)
I = J1
WRITE(LP,76) DEX((I+12),1),POOL(I),DEX((J+12),5),
DEX((I+12),9),POOIA(I)
76
C
C
74
7 5
CONTINUE
FISHAA(J) = FISHA(J)
WRITE(IP,77)FISH(J),FISHA(J)
FORMAT(19X,'TOTAL',2X,F10.3,26X,F10.3///)
700 CONTINUE
C
CALCULATE SUBSEQUENT POOLA , FISH, AND FISHA
DO 580 K=J2, J
POOLA(K)}= POOL(K)* DEX((J+12),5)/DEX((K+12),9
FISH(K) = FISH(K-1) + POOL(K)
FISHA(K)=FISHA(K-1) + POOIA(K)
WRITE(LP,76)DEX((K+12),1),POOL(K),DEX((J+12),5),
DEX((K+12),9),POOLA(K)
CALCULATE COST OF GOODS SOLD, PRICE LEVEL ADJUSTED
WRITE(LP,78)
FORMAT(//40X,'STEP 3--RESTATE COST OF GOODS SOLD'//)
78
DO }800\textrm{L}=\textrm{J}2, J
FISHR(I-1) = FISHAA(I-1)*(DEX((I+12),5)/DEX((I+11),5))
PURA(L) = PUR(L)* DEX((L+12),5)/DEX((I+12),9)
CGSA(L) = FISHR(L-1) + PURA(L) - FISHAA(L)
WRITE(LP,79)
FORMAT(77X,'COST OF')
80 WRITE(IP,80)
7 9
81 WRITE(IP,81) DEX((I+12),1)
FORMAT(19X,F6.0,16X, 'INVENTORY',1X,'+',1X,' PUN
WRITE(IP, 82), ENV(I-1),PUR(I), ENV(I),CGS(L)
FORMAT(19X,'UNADJUSTED', 8X,4(F10.3,2X))
WRITE(IP,83)
WRITE(LP,84)
FORMAT(19X,'ADJUSTED-BEGINNING')
WRITE(IP,85) FISHAA(I-1)
85 FORMAT(28X,'OF YEAR', 2X,F10.3)
WRITE(IP,86) DEX((I+12),5), DEX((I+12),9)
FORMAT(19X,'ADJUSTMENT(S)',16X,F7.2,'/',F7.2,1X,
'VARIOUS')

```
```

 87 WRITE(LP,87)
 FORMAT(19X,'ADJUSTED-END OF')
 WRITE(LP,88)DEX((I+12),1),FISHR(I-1),PURA(L),FISHAA(L),CGSA(L)
 FORMAT(25X,F7.0 ,5X,4(F10.3,2X))
 800 CONTINUE
 820 GO TO 1600
 C
PRINT MESSAGE AS APPROPRIATE
C
900 WRITE(IP,89
89 FORMAT(1X, 'LOGIC ERROR IN CALCULATION OF LIQUIDATION')
C
GO TO
J=1
DO 1041 J=1, JK
CAR(J) = DATA(8,J)
DEP(J) = DATA(14,J)
ACC(J) =0.0
AGE(J) =0.0
ACQ(J) = 0.0
ACQYR(J) = 0.0
ACQDEX (1,1) = 0.0
1041
CONTINUE.
YEAR(21) = 79.0
C

```

```

 CAR(J) = DATA(8,J)
 DEP(J) = DATA(14,J)
 ACC(J) = GRO(J) - CAR(J)
 AGE(J) = ACC(J)/DEP(J)
 ACQ(J) = YEAR(J+ 1) + 1900.0 - AGE(J)
 ACQYR(J) = AINT(ACQ(J))
 FRA = ACQ(J) - ACQYR(J)
 IF(FRA.LE.(0.25)) GO TO 1201
 IF(FRA.IE.(0.50)) GO TO 1202
 IF(FRA.LE.(0.75)) GO TO 1203
 IF(FRA.GT.(0.75)) GO TO 1204
 KFRA = 2
 GO TO 1220
 KFRA = 3
 GO TO 1220
 KFRA = 4
 GO TO 1220
 KFRA = 5
 GO TO 1220
 C
1220 CONTINUE
WRITE(LP,90)
90 FORMAT(///23X,'STEP 1- DETERMINE AVERAGE AGE ')
WRITE(LP,91)
91 FORMAT(//96X,'AVERAGE AGE OF,')
WRITE(LP,92)
FORMAT(65X,'ACCUMULATED',5X,'DEPRECIATION',3X,'ASSETS ON HAND')
WRITE(IP,95)
FORMAT(23X,'YEAR',9X,'GROSS PLANT',4X,'NET PLANT',5X,
'DEPRECIATION', 4X,'EXPENSE',8X,'AT YEAR END'/)
WRITE(LP,94) DEX((J+12),1),GRO(J),CAR(J),ACC(J),DEP(J),AGE(J)
94 FORMAT(21X,F10.3,5X,F10.3,2X,'-',2X,F1O.3,2X,'=',2X,F10.3,
1 2X,'/',2X,F1O.3,2X,'=',2X,F10.3)
WRITE(LP,95)
95 FORMAT(///23X,'STEP 2- DETERMINE ACQUISITION DATE')
WRITE(IP,96)
96 FORMAT(//32X,'FOR ASSETS',38X,'GNP PRICE')
WRITE(LP,97)
FORMAT(32X,'ON HAND AT',19X,'ACQUISITION',7X,'DEFLATOR')
WRImE(IP,98)
98 FORMAT(32X,'FISCAL YR-END',8X,'AGE',5X,'DATE',14X,'INDEX')

```
```

 DO 1308 JJ=1, 34
 IF(ACQYR(J).NE.DEX(JJ,1)) GO TO 1305
 K = KFRA
 ACQDEX(JJ,K) = DEX(JJ,KFRA)
 WRITE(LP,99)YEAR(J), AGE(J),ACQ(J), ACQDEX(JJ,K)
 FORMAT(33X,F10.3,5X,F10.3,4X,F10.3,5X,F7.2)
 GO TO 1318
 CONTINUE
 CONTINUE
 CONTINUE
 WRITE(LP,100)
 FORMAT(///23X,'STEP 3-RESTATE DEPRECIATION')
 DEPA(J) = DEP(J)*DEX((J+12) ,5)/ACQDEX(JJ,K)
 MRITE(LP,101)
 FORMAT(//52X,'HIST. COST',9X,'CONVERSION',9X,'PR. LEVEL')
 WRITE(IP,102)
 FORMAT(52X,'UNADJUSTED',9X,'FACTOR',13X,'ADJUSTED'/)
 WRITE(IP,103) DEP(J),DEX((J+12) ,5),ACQDEX(JJ,K),DEPA(J)
 FORMAT(5iX,F10.3,7X,F7.2,'/',F7.2,6X,F1O.3)
 CONTINUE
 WRITE(LP, 104)
 104 FORMAT(///21X,'STEP 1- DETERMINE AVERAGE DEBTOR POSITION'/)
 WRITR(LP,105)
 105 FORMAT(27X,'NET MONETARY POSITION AT YEAR END:'/)
 WRITE(LP,106)
 106 FORMAT(94X,'NET')
 WRITE(IP,107)
 107 FORMAT(9.4X,'MONETARY')
 WRITE(LP, 108)
 108 FORMAT(34X,'CASH AND',22X,'CURRENT',8X,'LONG-TERM',6X,'POSITION')
 WRITE(LP,109)
 109 FORMAT(27X,'YEAR',3X,'EQUIVALENT',5X,'RECEIVABLES',4X,
 1 'LIABIIITIES',4X,'DEBT',11X,'AT YEAR'/)
 DO 2900 J=J1,20
 GAE(J) = DATA(1,J)
 REC(J) = DATA(2,J)
 CULL(J) = DATA(5,J)
 DEL(J) = DATA(9,J)
 PMA(J) = CAE(J) + REC(J) - CUL(J) - DEL(J)
 WRITE(LP,110) DEX((J+12),1),CAE(J),\operatorname{REC}(J),CUL(J),DEL(J),PNM(J)
 VRITE(IP,110) DEX((J+12),1),CAE(J),REC(J),CUL(J),DEL(J),PNM(J)
 1 '-',2X,F10.3,2X,' =',2X,F10.j)
 CONTIMUE
 WRITE(IP,111)
 1:11 FORMAT(///27X,'AVERAGE FOR CURRENT YEAR'/)
 WRITE(IP,112)
 112 FORMAT(37X,'AT END OF',8X,'AT END OF',11X,'AVERAGE FOR')
 WRITE (LP,113)
 1+3 FORMAT(27X,'YEAR',6X,'CURRENT YEAR',5X,'PRIOR YEAR',10X,
 DO 3000 J=J2, JK
 ADPO(J) = -(PNM(J-1) + PNM(J))/(2.0)
 ARI(J) = DEX((J+12),5)/DEX ((J+11),5) - 1.0
 PPG(J) = ADPO(J)*ARI'(J)
 WRITEE(LP,114) DEX((J+12),1),PNM(J),PNM(J-1),ADPO(J)
 114 FORMAT(27X,F6.0,4X,'(',1X,F10.3,3X,'+',2X,F10.3,1X,')',1X,'/',
 CONqTNUE
 WRITE(LP, 115)
 115 FORMAT(///21X,'STEP 2- DETERMINE ANNUAL RATES OF INFLATION'/)
 WRITE(ILP,116)
 1.16 FORMAT(37X,'INDEX AT END OF ',4X,'INDEX AT END OF',3X,
 WRITE(IP, 117)
 11:7 FORMAT\27X,'YEAR',6X,'CURRENT YEAR',8X,'PRIOR YEAR',5X,'=',2X,
 1 'INFLATION'/)
 DO 3100 J=J2, JK
 WRITE(LP,11岁)DEX((J+12),1), DEX((J+12),5),DEX((J+11),5),ARI(J)
 FORMAT(27X,F6.O,6X,F10.3,3X,'/',2X,F10.j,8X,F10.3)
 3100 CONTIMUE

```
```

 WRITE(IP,119)
 119 FORMAT(///21X,'STEP 3- DETERMINE PURCHASING POWER GAIN/(IOSS)'/)
 WRITE(IP,120)
 120 FORMAT(37X,'AVERAGE',7X,'INFLATION',7X,'GAIN/')
 WRITE(LP,121)
 121 FORMAT(27X,'YEAR',6X,'NET DEBT',6X,'RATE',11X,'(IOSS)'/)
 DO 3200 J=2, JK
 WRITE(IP,122)DEX((J+12),1) ,ADPO(J),ARI(J),PPG(J)
 FORMAT(27X,F6.0,4X,F10.3,2X,'X',2X,F6.3,4X,'=',1X,F10.3)
 122
 3 2 0 0 ~ C O N T I N U E ~
J = 1
DO 3250 J=1, JK
SALA(J) = 0.0
OPXA(J) = 0.0
OPBA(J) = 0.0
FIXA(J) = 0.0
OPIA(J) = 0.0
OXPA(J) = 0.0
TAXA(J) = 0.0
OTHA(J) = 0.0
PBXA(J) = 0.0
XTRA(J)}=0.
BOTA(J) = 0.0
j250 CONTINUE
DO 4000 J=J1, JK
SAL(J) = DATA(12,J)
CGS(J) = VALUE PREV. ASSGNED
OPX(J) = DATA(12-41-13,J), DETERMINED BELOW
OPB(J) = DATA(13,J)
DEP(J) = VALUE PREV. ASSGNED
OXP(J) = DATA(13-14,J), DETERMINED BELOW
PPG(J) = VALUE PREV. ASSIGNED
OPI(J) = DATA(13-14,J)-PPG(J), DEMERMINED BELOW
FIX(J) = DATA(15,J)
TAX(J) = DATA(16,J)
OTH(J) = DATA(13-14-15-16-18-17-48,J), DETERMINED BELOW
PBX(J) = OPI(J)-FIX(J)-TAX(J)--OTH(J), DETERMINED BELCW
XTR(J) = DATA(48,J)
BOT(J) = DATA(18,J)
OPX(J) = SAL(J)-CGS(J)-OPB(J)
OXP(J) = OPB(J)-DEP(J)
OPI(J) = OXP(J)
XNN(J) = DATA(17,J)
OTH}(J)=OPB(J)-DEP(J)-FIX(J)-TAX(J)-BOT(J) -XTR(J
PBX(J) = OPI(J)-FIX(J)-TAX(J)-OTH(J)
SALA(J) = SAL(J)*DEX((J+12),5)/DEX((J+12),9)
CGSA(J) = VALUE PREV. ASSIGNED
OPXA(J) = OPX(J)*DEX((J+12),5)/DEX((J+12),9)
OPBA(J) = SALA(J) -CGSA(J) -OPXA(J)
DEPA(J) = VALUE PREV. ASSIGNED
OXPA(J) = OPBA(J) - DEPA(J)
PPG(J) = VALUE PREV. ASSIGNED
OPIA(J) = OXPA(J) + PPG(J)
FIXA(J) = FIX(J)*DEX((J+12),5)/DEX((J+12),9)
TAXA(J) = TAX(J)*DEX((J+12),5)/DEX((J+12),9)
OTHA(J) = OTH(J)*DEX((J+12),5)/DEX((J+12),9)
PBXA(J) = OPIA(J)-FIXA(J)-TAXA(J)-OTHA(J)
XTRA(J) = XTR(J)*DEX((J+12),5)/DEX((J+12),9)
BOTA(J) = PBXA(J)-XTRA(J)
CONTINUE
WRITE(IP, 4255)
4255 FORMAT(///21X,'RESTATEMENT OF INCOME STATEMENT'//)
WRIME(LP,4256)
4256 FORMAT(//21X,'STEP 1- DETERMINE RESTATEMENT FACTORS FOR:',
1 1X, 'NET SALES , OPERATING EXPENSES(EXCL. OF CGS + DEP.)'/)
WRITE(LP,4257)
4257 FORMAT(63X,'FIXED CHARGES, INCOME TAXES, AND "OTHER" INCOME'//)
WRITE(IP,4258)
4258 FORMAT(59X,'4TH-QTR',3X,'AVERAGE',5X,'RESTATEMENT')
WRITE(LP,4259)
4259 FORMAT(51X,'YEAR',4X,'INDEX',5X,'INDEX',7X,'FACTOR'/)

```
```

 D0 4280 J=1 ,20
 RES(J)= DEX((J+12),5)/DEX((J+12),9)
 WRITE(IP,4260) DEX'(J+12),1), DEX((J+12),5), DEX((J+12),9),
 RES(J)
 4260 FORMAT(51X,F6.0,jX,F7.2,'/',F7.2,3X,'=',F7.4)
4280 CONTINUE
WRITE(LP,4281)
4281 FORMAT(//21X,'STEP 2- RESTATE THE INCOME STATEMENT'//)
JKK = 1
4 2 9 0 ~ C O N T I N U E ~
JJ=J2
DO 4700 J=J2, JK , 4
J4 = J + 3
HRITE(IP,4301) (DEX((JJ+12),1), JJ=J,J4)
FORMAT(///40X,F5.0,3(17X,F5.0))
WRITE(LP,4302)
FORMAT(31X,',
-------------------------')
WRITE(IP,4303)
FORMAT(3iX,4('HIST. COST PR. LEVEL',1X))
WRITE(IP,4304)
FORMAT(31X,4('UNADJUSTED ADJUSTED',2X))
WRITE(IP,4305)
FORMAT(31X,4('---------- ----------',1X))
WRITE (LP,4306)
FORMAT(2X,'INCOME STATEMENT')
WRITE(IP,4307) (SAL(JJ),SALA(JJ) , JJ=J,J4)
4307 FORMAT(6X,'NET SALES',16X, '8(F10.3,1X))
WRITE(IP,4308) (CGS(JJ),CGSA(JJ) , JJ=J,J4)
4 3 0 8 ~ F O R M A T (6 X , ' C O S T ~ O F ~ G O O D S ~ S O L D ' , 7 X , ~ 8 (F 1 0 . 3 , 1 X)) ~
WRITE(ILP,4309) (OPX(JJ),OPXA(JJ), JJ=J,J4)
4309 FORMAT(6X, 'OP.EXP.(EXCI-DEP +AMORT)',1X,8(F10.3,1X))
WRITE(IP,4j10) (DEP(JJ),DEPA(JJ) , JJ=J,J4)
4310 FORMAT(6X,'DEPR. + AMORT.',11X, 8(F10.3.1X))
WRITE(LP,4305)
WRITE(LP,4312) (OXP(JJ),OXPA(JJ), JJ=J,J4)
4312 FORMAT(6X,'OPER ICOME(EXCI-PPG)',5X, ' 8(F10.3,1X))
WRITE(LP,4j13) (PPG(JJ),JJ=J,J4)
4313 FORMAT(6X,'PURCH PWR GAIN/(IOSS)',15X,4(F10.3,12X))
WRITE(LP,4305)
WRITE(IP,4315) (OPI(JJ),OPIA(JJ), JJ=J,J4)
4 3 1 5 ~ F O R M A T (6 X , ' O P E R A T I N G ~ I N C O M E ' , 9 X , ~ 8 (F 1 0 . 3 , 1 X) ~) ~
WRITE(LP,4316) (FIX(JJ),FIXA(JJ) , JJ=J,J4)
4316 FORMAT(6X,'FIXED CHARGES',12X,, 8(F10.3,1X))
WRITE(IP, 4317) (TAX(JJ),TAXA(JJ) , JJ=J,J4)
4 3 1 7 FORMAT(6X,'INCOME TAXES',13X,' 8(F10.3,1X))
WRITE(ITP,4318) (OTH(JJ),OTHA(JJ) , JJ=J,J4')
4318 FORMAT(6X,'OTHER(INCOME) OR LOSS',4X, 8(F10.3,1X))
WRITE(LP,4305)
WRITE(LP,4320) (PBX(JJ),PBXA(JJ) , JJ=J,J4)
4 3 2 0 ~ F O R M A T (6 X , ' I N C O M E ~ B E F O R E ~ X - I T E M S ' , 4 X , ~ 8 (F 1 0 . 3 , 1 X) ~) ~
WRITE(IP, 4321) (XTR(JJ),XTRA(JJ) , JJ=J,J4)

```

```

 WRITE(LP,4305)
 WRITE(IP,4323) (BOT(JJ),BOTA(JJ) , JJ=J,J4)
 WRITE(IP,4323) (BOT(JJ),BOTA(JJ) , JJ=J,J4)
 WRITE(IP,4305)
 WRITE(IP,4305)
 c
4 3 0 1
4 3 0 2
4 3 0 3
4 3 0 4
4 3 0 5
4 3 0 6
DER = (CUL(16) + DEL(16))/ (DATA(10,16) + DATA(11,16))
WRITE(LP,5001)
5001 FORMAT(7X,'DEBT TO EQUITY RATIO(1974):'//)
WRITE(IP,5002)
5002 FORMAT(11X,'C.LIABILITY',2X,'LT.DEBT',6X,'PR.STOCK',5X,
1 'COMM.STOCK',4X,'D/E RATIO'/)
WRITE(LP,5003) CUL(16),DEL(16),DATA(10,16),DATA(11,16),DER
5003 FORMAT(10X,'(',F10.3,1X,'+',1X,F10.3,')/(',F10.3,1X,'+',1X,F10.3,
1 ()',1X,'=1,1X,F10.3///}
WRITE(LP,5004)(CONAME(I),I=1,6),CNUM,(INAME(II),II=1,6),DNUM,KTR
WRITE(7,5004)(CONAME(I),I=1,6),CNUM,(INAME(II),II=1,6),DNUM,KTR
5004
FORMAT(1X,6A4,1X,F10.3,1X,6A4,F10.3,1X,'CARDH=', I2/)

```
```

 WRITE(IP,5005)
 5005 FORMAT(2X,'YR',5X,'NET SALES',8X,'OPI-EXC-PPG',6X,'PPG',9X,
WRITE(LP,5006)
5006 PORMAT(/1X,2(8X,'U--------A'),16X,'U--------A',13X,I2)
DO 5100 J=J2, JK
YR(J) = YEAR(J)
KTR = KTR + 1
WRITE(LP,5007) YR(J),SAL(J),SALA(J),OXP(J),OXPA(J),PPG(J),
1
WRITEE 7,5007) YR(J), SAL(J),PBALA (J),,OXP(J),0XPA(J),PPGG(J),
1 PORMAT(1X,P3, PBX(J),PBXA(J),KTR
5007 FORMAT(1X,F3.0,1X,7F9.2,10X,I2)
CONTINUE
WRITE(LP,5111)
FORMAT(/2X,'YR',5X,'NET INCOME'/)
WRITE(LP,5112)
5112 FORMAT(8X,'U A'/)
DO 5200 J=J2 , JK
KTR = KTR + 1
WRITE(LP,5114) YR(J),BOT(J),BOTA(J),KTR
WRITE(7,5114) YR(J),BOT(J),BOTA(J),KTR
5114 FORMAT(1X,FJ.O,1X,2F9.2,55X,I2)
5 2 0 0 ~ C O N T I N U E ~
WRITE(LP,5201)
PORMAT(1X,'FINANCIAL DATA RELATING TO 1974:'/)
KTR = KTR + 1
SAL(16) = DATA (12,16)
WRITE(LP,5202) SAL(16),DER,KTR
WRITE(7,5202) SAL(16),DER,KTR
5202
FORMAT(9X,'NET SALES, UNADJUSTED =',F10.3,1X,',',1X,
1
C
JKK = JKK + 1
IF(JKK.GT.2) GRITE(IP, 4701)
4701 FORMAT(//21X,'STEP 3- RESTATE THE INCOME STATEMENT TO CONSTANT',
C
KTR = KTR + 1
DO 4710 J=J1, JK
SALA(J) = SALA(J) * DEX (32,5)/DEX((J+12),5)
CGSA(J) = CGSA(J) * DEX(32,5)/DEX((J+12),5)
OPXA(J) = OPXA(J) * DEX(32,5)/DEX((J+12),5)
DEPA(J) = DEPA(J) * DEX(32,5)/DEX((J+12),5)
OXPA(J) = OXPA (J) * DEX (32,5)/DEX((J+12),5)
PPG(J) = PPG(J) * DEX (32,5)/DEX((J+12),5)
OPIA(J) = OPIA(J) * DEX(32,5)/DEX((J+12),5)
FIXA(J) = FIXA(J) * DEX (32,5)/DEX((J+12),5)
TAXA(J) = TAXA(J) * DEX (32,5)/DEX((J+12),5)
OTHA(J) = OTHA(J) * DEX(32,5)/DEX((J+12),5)
PBXA(J) = PBXA(J) * DEX(32,5)/DEX((J+12),5)
XTRA(J) = XTRA(J) * DEX (32,5)/DEX((J+12),5)
4710 CONTINUE
GO TO 4290
C
5400 CONTINUE
STOP
1947. END
49.00
49.20
50.64

```
49.40
49.60
52.10
\(53.30 \quad 53.20 \quad 52.86\)
52.59
\(\begin{array}{llll}52.41 & 52.47 & 52.94 & 53.64\end{array}\)
\(\begin{array}{llll}54.77 & 55.88 & 56.61\end{array}\)
57.47
\(\begin{array}{llll}58.26 & 58.57 & 58.84 & 58.88\end{array}\)
59.08
\(\begin{array}{lllll}59.92 & 60.18 & 60.57 & 60.98\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1956. & 62.03 & 62.54 & 63.25 & 63.77 & 61.37 & 61.81 & 62.33 & 62.90 \\
\hline 1957. & 64.51 & 64.77 & 65.37 & 65.44 & 63.52 & 64.08 & 64.61 & 65.02 \\
\hline 1958. & 65.69 & 65.83 & 66.21 & 66.41 & 65.32 & 65.58 & 65.84 & 66.01 \\
\hline 1959. & 66.98 & 67.45 & 67.70 & 67.95 & 66.36 & 66.76 & 67.14 & 67.52 \\
\hline 1960. & 68.40 & 68.60 & 68.90 & 69.00 & 67.88 & 68.16 & 68.46 & 68.73 \\
\hline 1961. & 68.90 & 69.20 & 69.50 & 69.6 & 68.85 & 69.00 & 69.15 & 69.30 \\
\hline 1962. & 70.20 & 70.50 & 70.60 & 71.10 & 69.63 & 69.95 & 70.23 & 70.60 \\
\hline 1963. & 71.40 & 71.50 & 71.70 & 72.20 & 70.90 & 71.15 & 71.43 & 71.70 \\
\hline 1964. & 72.40 & 72.60 & 73.00 & 73.20 & 71.95 & 72.23 & 72.55 & 72.80 \\
\hline 1965. & 73.80 & 74.10 & 74.60 & 75.00 & 73.15 & 73.53 & 73.93 & 74.38 \\
\hline 1966. & 75.70 & 76.60 & 77.00 & 77.70 & 74.85 & 75.48 & 76.08 & 76.75 \\
\hline 1967. & 78.20 & 78.50 & 79.30 & 80.10 & 77.38 & 77.85 & 78.43 & 79.03 \\
\hline 1968. & 81.10 & 82.10 & 82.80 & 84.00 & 79.75 & 80.65 & 81.53 & 82.50 \\
\hline 1969. & 85.00 & 86.10 & 87.50 & 88.60 & 83.48 & 84.48 & 85.65 & 86.80 \\
\hline 1970. & 89.90 & 91.10 & 91.80 & 93.00 & 88.03 & 89.28 & 90.35 & 91.49 \\
\hline 1971. & 94.40 & 95.70 & 96.50 & 97.40 & 92.58 & 93.73 & 94.90 & 96.00 \\
\hline 1972. & 98.70 & 99.40 & 100.20 & 101.50 & 97.08 & 98.00 & 98.93 & 99.95 \\
\hline 1973. & 102.90 & 104.70 & 106.40 & 108.70 & 101.00 & 102.33 & 103.88 & 105.68 \\
\hline 1974. & 110.60 & 113.30 & 116.30 & 119.60 & 107.60 & 109.75 & 112.23 & 114.95 \\
\hline 1975. & 122.70 & 124.20 & 126.40 & 128.70 & 117.98 & 120.70 & 123.23 & 125.50 \\
\hline 1976. & 129.90 & 131.10 & 132.70 & 134.70 & 127.30 & 129.03 & 130.60 & 132.10 \\
\hline 1977. & 136.50 & 138.90 & 140.70 & 142.90 & 133.78 & 135.73 & 137.73 & 139.78 \\
\hline 1978. & 144.90 & 148.90 & 151.40 & 155.00 & 141.85 & 144.35 & 147.03 & 149.98 \\
\hline 1979. & 158.20 & 161.20 & 164.20 & 167.50 & 153.38 & 156.45 & 159.65 & 162.78 \\
\hline 1980. & 171.20 & 175.30 & 179.20 & 184.00 & 166.03 & 169.55 & 173.30 & 177.43 \\
\hline END & \[
\begin{aligned}
& \text { DATA } \\
& \text { ive }
\end{aligned}
\] & & & & & & & \\
\hline
\end{tabular}

APPENDIX C

COMPUTER GENERATED PRINTOUT
```

Description of Data on Computer
Generated Printout

```

This appendix describes and illustrates the various procedures incorporated in the computer program for generating partial income statements on both an historical cost basis and a price-level-adjusted basis. The procedures are discussed in the same sequence in which they were applied to the COMPUSTAT data of Caterpillar Tractor Co.

Printout of COMPUSTAT DATA. The company's financial data to be used in the program was printed out (Figure 1).

Printout of GNP Price Deflator Index. The index table (Figure 2) was then generated for the purpose of easy reference in testing the logic of computer computations.

Restating LIFO Inventories. The logic of the computer coding for LIFO inventories was rather difficult to follow and so Caterpillar Tractor Co., which used LIFO, was selected for illustration. Coding for FIFO and AVERAGE inventory was relatively straightforward and for sake of brevity is not illustrated. The reader might wish to refer to Parker's (1977) paper in which these simple steps are clearly presented.

Caterpillar Tractor Co.'s base year was assumed to be 1959. Observe in Figure 1 that the time series of COMPUSTAT data was from 1959 to 1978 and during that period the "valuation" was code 2, denoting LIFO. The assumption that 1959 was the base year was reasonable because the inventory level of 1959 was not subsequently eroded and, hence the arbitrary base year price index of 1959 did not impact on computations of future cost of goods sold.


Figure 1. Financial Data Relating to Caterpillar Tractor Co.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{GNP PRICE OEFLATOR quart erly index} & \multicolumn{4}{|l|}{AVEAAGE FOR FISCAL YEARS ENOING} \\
\hline YEAR & FIRST & secono & thiro & FOUR TH & FIRST & SECOND & TH:RO & FCURTH \\
\hline 1947. & 48.47 & 49.00 & 49.86 & 51.42 & 49.20 & 49.40 & 49.80 & 49.70 \\
\hline 1948. & 52.29 & \$2.90 & 53.79 & S3.53 & 50.64 & 51.02 & 52.10 & 53.13 \\
\hline 1949. & 52.98 & 52.49 & 52.43 & 52.44 & 53. 30 & 53.20 & 52.86 & 52.59 \\
\hline 1950. & 52.28 & 52.72 & 54.30 & 55.16 & 52.41 & 52.47 & 52.94 & 53.64 \\
\hline 1951. & 56.89 & 57.18 & 57.20 & ¢ 7.80 & 54.77 & 55.88 & 55.61 & 57.27 \\
\hline 1952. & 57.69 & 57.64 & 58.00 & 58.65 & 57.47 & 57.58 & 57.78 & 58.00 \\
\hline 1953. & 58.73 & 58.88 & 59.08 & \(\leq 8.81\) & 58.26 & 58.57 & 58.84 & 58.88 \\
\hline 1954. & 59.54 & 59.74 & 59.61 & 59.90 & 50.08 & 59.29 & 59.43 & 59.59 \\
\hline 1255. & 60.44 & 60.76 & 51.18 & 61.50 & 59.92 & 60.18 & 60.57 & 60.98 \\
\hline 1956. & 62.03 & 62.54 & 63.25 & ¢ \(3 \cdot 77\) & 61.37 & 61.81 & 62.33 & 62.90 \\
\hline 1957. & 54.51 & 64.77 & 55.37 & 65.14 & 63.52 & 64.08 & 64.61 & 65.07 \\
\hline 1958. & 65.69 & 65.83 & 66.21 & C6. 41 & 65.32 & 65.58 & 65.94 & 56.01 \\
\hline 1959. & 66.98 & 67.45 & 67.70 & 67.95 & 66.3t & 66.76 & 67. 14 & 67. 5.2 \\
\hline 1960. & 68.40 & 68.60 & 68.90 & 69.00 & 67.88 & 68.16 & 68.48 & 62.73 \\
\hline 1961. & 68.90 & 69.20 & 69.50 & 69.60 & 62.es & 69.00 & 69.15 & 69.30 \\
\hline 1952. & 70.20 & 70.50 & 70.60 & 71.10 & 69.63 & 69.95 & 70.23 & 70.60 \\
\hline 1963. & 71.40 & 71.50 & 71.70 & 72.20 & 70.90 & 71.15 & 71.43 & 71.70 \\
\hline 1954. & 72.40 & 72.60 & 73.00 & 73.20 & 71.95 & 72.23 & 72.55 & 72.80 \\
\hline 1965. & 73.80 & 74.10 & 74.60 & 75.00 & 73.15 & 73.53 & 73.93 & 74.38 \\
\hline 1966. & 75.70 & 76.60 & 77.00 & 77.70 & 74.85 & 75.48 & 76.98 & 76.75 \\
\hline 1957. & 78.20 & 78.50 & 79.30 & 80.10 & 77.38 & 77. 25 & 78.43 & 75.03 \\
\hline 1968. & 81.10 & 82.10 & 82.80 & 84.00 & 79.75 & 80.65 & 81.53 & 82.50 \\
\hline 1959. & 85.00 & 86.10 & 87.50 & \(\varepsilon 8.60\) & 83.48 & 24.48 & 85.65 & 8. 8 \% \\
\hline 1970. & 89.90 & 91.10 & 91.80 & 93.00 & 88.03 & 89.28 & 90.35 & 91.49 \\
\hline 1971. & 94.40 & 55.70 & 96.50 & 57.40 & 92.58 & 93.73 & 94.90 & 96.00 \\
\hline 1972. & 98.70 & 99.40 & 100.20 & 101.50 & 97.08 & 98.00 & 98.93 & 99.95 \\
\hline 1973. & 102.90 & 104.70 & 106.40 & 108.70 & 101.00 & 102.33 & 103.88 & 105.68 \\
\hline 1974. & 110.60 & 113.30 & 116.30 & 119.60 & 107.60 & 109.75 & 112.23 & 114.95 \\
\hline 1975. & 122.70 & 124.20 & 126.40 & 128.70 & 117.98 & 120.70 & 123.23 & 125.50 \\
\hline 1976. & 129.90 & 131.10 & 132.70 & 124.70 & 127.30 & 129.03 & 130.60 & 132.10 \\
\hline 1977. & 136.60 & 138.90 & 140.70 & 142.90 & 133.78 & 135.73 & 137.73 & 139.78 \\
\hline 1978. & 144.90 & 148.90 & 151.40 & 155.00 & 141.85 & 144.35 & 147.03 & 149.98 \\
\hline 1979. & 158.20 & 161.20 & 164.20 & 167.50 & 153.38 & 156.45 & 159.65 & 162.78 \\
\hline 1930. & 171.20 & 175.30 & 179.20 & 184.00 & 166.02 & 165.55 & 173.30 & 177.43 \\
\hline
\end{tabular}

Figure 2. GNP Price Deflator Index

The purchases component of cost of goods sold was needed and so computed for all years in the time series (Figure 3 ).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{4}{|l|}{Step 1-determine purchases for all years} \\
\hline & \multicolumn{4}{|l|}{cost of} \\
\hline & ENOING & Gooos & BEGINNING & \\
\hline YEAR & I NVENTORY & + S OLO & -INVENT ORY & = PURCHASES \\
\hline 1960. & 227.100 & 540.560 & 206.400 & 561.260 \\
\hline 1961. & 239.100 & 522.820 & 227.100 & 534.820 \\
\hline 1962. & 238.300 & 592.750 & 239.100 & 591.950 \\
\hline 1963. & 251.200 & 681.430 & 238.300 & 694.330 \\
\hline 1264. & 304.600 & 788.760 & 251.200 & 842.160 \\
\hline 1965. & 370.000 & 958.540 & 304.600 & 1023.940 \\
\hline 1965. & 422.400 & 1085.520 & 370.000 & 1137.920 \\
\hline 1967. & 478.300 & 1100.770 & 422.400 & 1156.070 \\
\hline 1969. & 489.800 & 1252.933 & 478.300 & 1263.433 \\
\hline 1969. & 599.018 & 1441.417 & 488.800 & 1551.635 \\
\hline 1973. & 678.170 & 1546.307 & 599.018 & 1625.459 \\
\hline 1971. & 698.875 & 1612.811 & 678.170 & 1633.516 \\
\hline 1972. & 706.894 & 1990.352 & 698.875 & 1898.371 \\
\hline 1973. & 818.300 & 2396.700 & 706.854 & 2508.108 \\
\hline 1974. & 1061.800 & 3192.500 & 818.300 & 3435.997 \\
\hline 1975. & 1183.400 & 3702.800 & 1061.800 & 3824.399 \\
\hline 1975. & 1244.900 & 3720.200 & 1183.400 & 2781.658 \\
\hline 1977. & 1298.600 & 4312.098 & 1244.900 & 4355.793 \\
\hline 1978. & 1522.300 & ¢349.257 & 1288.600 & 5582.992 \\
\hline
\end{tabular}

Figure 3. Computation of Purchases

For each year in which the ending inventory exceeded beginning inventory, the increment, or new "layer", was regarded as the result of a uniform addition throughout the current year and, hence, indexed
at the average for the year. For example, Caterpillar Tractor Co.'s inventory (in millions) grew from 818.300 to 1061.800 in 1974, a new layer of 243.500 , unadjusted (Figures 4, 5). This 1974 layer was adjusted using a conversion factor based upon the average index for the year in relation to the index for the last quarter of that year. The restated 1974 layer was \((243.500 \times 119.60 / 114.95=253.350)\).

STEP 2--VETERMINE LIFO PCOLS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{POOL} & HIST. CJS & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
GNP JRICE OEFLATOR \\
(INOEX-TO)/(INOEX-FROM)
\end{tabular}}} & \multirow[t]{2}{*}{PR. LEVEL AOJUSTED} \\
\hline & UNADJUSTED & & & & \\
\hline 1959. & 206.400 & 108.70 & ' & 67.52 & 212.298 \\
\hline 1960. & 20.700 & 108.70 & 1 & 68.73 & \(\geq 2.738\) \\
\hline 1961. & 11.200 & 108.70 & 1 & 69.30 & 17.568 \\
\hline 1962. & 0.000 & 108.70 & / & 70.60 & 0.000 \\
\hline 1963. & 12.903 & 108.70 & / & 71.70 & 19.557 \\
\hline 1964. & 53.400 & 108.70 & / & 72.80 & 79.733 \\
\hline 1965. & 65.400 & 108.70 & , & 74.38 & 95.576 \\
\hline 1966. & 52.400 & 108.70 & 1 & 76.75 & 74.213 \\
\hline 1967. & 55.900 & 108.70 & 1 & 79.03 & 76.887 \\
\hline 1968. & 10.500 & 108.70 & / & 82.50 & 13.825 \\
\hline 1969. & 110.218 & 108.70 & , & 85.8 .0 & 138.026 \\
\hline 1970. & 79.152 & 108.70 & / & 91.49 & 94.041 \\
\hline 1971. & 20.705 & 108.70 & / & 96.00 & 23.444 \\
\hline 1972. & 8.019 & 108.70 & 1 & 99.95 & 8.721 \\
\hline 1973. & 111.405 & 108.70 & 1 & 105.68 & 114.590 \\
\hline tora. & 818.300 & & & & 1001.226 \\
\hline
\end{tabular}

Figure 4. Composition of LIFO Inventory, 1973
\begin{tabular}{|c|c|c|c|c|c|}
\hline POOL & HIST. CJST unadjusted & \multicolumn{3}{|l|}{\begin{tabular}{l}
GNP JRICE deflator \\
(INDEX-TO)/(INOEX-FROM)
\end{tabular}} & PR. LEVEL a dusted \\
\hline 1959. & 206.400 & 119.60 & / & 67.52 & 214.749 \\
\hline 1960. & 20.700 & 119.60 & 1 & 68.73 & 35.021 \\
\hline 1961. & 11.200 & 119.60 & , & 69.30 & 19.329 \\
\hline 1962. & 0.000 & 119.60 & , & 70.60 & 0.000 \\
\hline 1963. & 12.900 & 119.60 & 1 & 71.70 & 21.518 \\
\hline 1964. & 53.400 & 119.60 & 1 & 72.80 & 87.729 \\
\hline 1965. & 65.400 & 119.60 & , & 74.38 & 105.160 \\
\hline 1966 & 52.400 & 119.60 & , & 76.75 & 81.655 \\
\hline 1967. & 55.900 & 119.60 & 1 & 79.03 & 84.556 \\
\hline 1968. & 10.500 & 119.60 & 1 & 82.50 & 15.222 \\
\hline 1969. & 110.218 & 119.60 & / & 86.80 & 151.867 \\
\hline 1970. & 79.152 & 119.00 & 1 & 91.49 & 103.471 \\
\hline 1971. & 20.705 & 119.60 & 1 & 96.00 & 25.795 \\
\hline 1972. & 8.019 & 114.00 & 1 & 99.95 & 9.596 \\
\hline 1973. & 111.406 & 119.60 & , & 105.68 & 126.080 \\
\hline 1974. & 243.500 & 119.60 & / & 114.95 & 253.350 \\
\hline rota_ & 1061.800 & & & & 1336.13 t \\
\hline
\end{tabular}

Figure 5. Composition of LIFO Inventory, 1974

The restatement of cost of goods sold for 1974 is illustrated in Figure 6.

STEP \(3-\) RESTATE COST OF GOODS SOLD


Figure 6. Restatement of Cost of Goods Sold

Restating Depreciation. Parker's procedures used for restating depreciation assume that all companies employ a straight line allocation scheme. He defends this assumption citing the 1975 edition of Accounting Trends and Techniques (AICPA, 1975), wherein 563 out of 600 companies (or 94 percent) depreciated all or part of their assets on a straight line basis for financial reporting purposes. Figure 7 illustrates that the average age of depreciable assets was obtained by dividing accumulated depreciation by depreciation expense. Next, the acquisition date was determined by subtracting the average from the current year. The price index corresponding to the acquisition date was then used as a basis for restatement.
```

SIEP I- DEtERMINE AvERAGE AGE

```

```

step 2- derermine acquisition date

```
FOR ASSETS
ON HAND AT
FISCAL YR-END
74.000
\begin{tabular}{ll} 
& ACCUISITION \\
AGE & DATE \\
6.214 & 1968.786
\end{tabular}

GNP PRICE
DEFLATOR
INDEX
84.00

STEP 3-RESTATE DEPRECIATIUN
\begin{tabular}{ccc} 
HIST. COST & CONVERSION & PR. LEVEL \\
UNADJUSTED & FACTOR & ADJUSTFD \\
125.500 & \(119.60 \%\) & \(E 4.00\)
\end{tabular}

Figure 7. Three Step Procedure for Restatement of Depreciation

Recognizing Purchasing Power Gain or Loss on Net Monetary Position. The procedure used by Parker for measuring purchasing power gain or loss is as follows. Determine net monetary position (NMP) held at year end. Then average the NMP for the current year by adding NMP at the start and end of the year and divide by 2 . The percentage increase in the GNP Price Deflator Index, a measure of annual inflation was then applied to the average NMP yielding an approximation of purchasing power gain or loss for the year. Figures 8 and 9 illustrate this procedure as applied to the COMPUSTAT data of Caterpillar Tractor Co. over the year. Also, the price level was assumed to have changed at a constant rate. Therefore, the restatement factor was the ratio of the price index of the fourth quarter to the average for the year. The remaining line items were restated via the conversion factor. Finally, price-level-adjusted income statements were prepared by combining the restatement factors and restated income statements for the years 1972-1974.

Summary Financial Data. After preparing restated income statements the computer program generated additional data, some of which were variable measures to be used in formulating the discriminant functions. The additional data generated in card and printout form included: (1) the 1974 debt-to-equity ratio, (2) a summary of key line items in the income statements, and (3) 1974 net sales. Figure 11 illustrates this output for Caterpillar Tractor Co. Finally, the computer program restates the price-level-adjusted income statements to constant (1978) dollars (Figure 12) and generates a corresponding summary (Figure 13).

STEP 1- OETERMINE AVERAGE DE日TCR POSITION
NET MCNETARY POSITION AT YEAR END:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & & & & & & & & & NET \\
\hline & & & & & & & & & MONETARY \\
\hline & CASH ANO & & & & CURRENT & & LONG-TERM & & POSITION \\
\hline YEAR & EQUivalent & & RECEIVABA ES & & LIABILITIES & & DEET & & AT YEAR \\
\hline 1959. & 18.500 & \(\pm\) & 51.800 & - & 110.700 & - & 100.000 & \(=\) & \(-140.400\) \\
\hline 1960 . & 17.400 & + & 66.900 & - & 157.300 & - & 100.000 & \(=\) & -173.000 \\
\hline 1961. & 19.400 & + & 94.000 & - & 119.100 & - & 140.800 & = & \(-152.500\) \\
\hline 1962. & 32.800 & + & 97.400 & - & 108.900 & - & 143.500 & \% & -122.200 \\
\hline 1963. & 109.300 & + & 102.400 & - & 171.200 & - & 136.800 & * & -96.300 \\
\hline 1964. & 111.500 & \(+\) & 134.600 & - & 204.400 & - & 130.000 & \(=\) & -88.300 \\
\hline 1965. & 94.300 & \(+\) & 171.100 & - & 233.200 & - & 123.300 & \% & -91.100 \\
\hline 1966. & 28.500 & \(+\) & 205.100 & - & 235.400 & - & 145.100 & \(=\) & -150.900 \\
\hline 1967. & 34.000 & \(+\) & 210.600 & - & 274.100 & - & 292.900 & * & \(-322.400\) \\
\hline 1968. & 43.100 & + & 215.600 & \(\cdots\) & 361.600 & - & 318.500 & \(=\) & -421.400 \\
\hline 1969. & 37.838 & + & . 234.628 & - & 453.086 & - & 306.471 & \(=\) & -4E7.091 \\
\hline 1970. & 37.471 & + & 274.773 & - & 551.588 & - & 283.865 & = & -523.609 \\
\hline 1971. & 4.4 .316 & + & 224.430 & - & 543.291 & - & 236.997 & \(=\) & -506.542 \\
\hline 1972. & 81.248 & \(+\) & 273.449 & - & 436.353 & - & 315.948 & \(=\) & \(-397.604\) \\
\hline 1973. & 47.100 & + & 343.600 & - & 575.800 & - & 320.200 & \(=\) & -505.300 \\
\hline 1974. & 80.300 & \(+\) & 288.800 & - & 814.600 & - & 655.900 & \(=\) & -901.400 \\
\hline 1975. & 121.300 & \(+\) & 477.900 & - & 774.900 & - & 851.000 & \(=\) & \(-1026.700\) \\
\hline 1976. & 88.100 & \(+\) & 604.600 & - & 821.200 & - & 1034.100 & \(=\) & \(-1162.600\) \\
\hline 1977. & 209.400 & + & 648.100 & - & 955.800 & - & 1011.000 & \(=\) & -1109. 200 \\
\hline 1978. & 244.500 & + & \(7 \in 7.800\) & - & 1237.100 & - & 1018.000 & \(=\) & \(-1242.800\) \\
\hline
\end{tabular}

AVERAGE FOR CURRENT YEAR


Figure 8. Procedure for Determining Net
Monetary Position
step 2- oetermine annual rates of inflaticn
\begin{tabular}{|c|c|c|c|c|}
\hline YEAR & I NOEX AT END CURRENT YEAR & CF & index at eno of PRIOR YEAR = & anNuA rate of INFLATICN \\
\hline 1960. & 89.000 & , & 67.950 & 0.015 \\
\hline 1961. & 69.000 & 1 & 69.000 & 0.009 \\
\hline 1962 . & 71.100 & 1 & 69.600 & 0.022 \\
\hline 1963. & 72.200 & 1 & 71.100 & 0.015 \\
\hline 1964. & 73.200 & , & 72.200 & 0.014 \\
\hline 1965. & 75.000 & , & 73.200 & 0.025 \\
\hline 1966. & 77.700 & , & 7 ¢.000 & 0.036 \\
\hline 1967. & 40.100 & , & 77.700 & 0.031 \\
\hline 1968. & 84.000 & 1 & 80.100 & 0.049 \\
\hline 1969. & 88.600 & , & 84.000 & 0.055 \\
\hline 1970. & 93.000 & ' & 88.600 & 0.050 \\
\hline 1971. & 97.400 & 1 & 93.000 & 0.047 \\
\hline 1972 . & 101.500 & 1 & 97.400 & 0.042 \\
\hline 1973. & 108.700 & 1 & 101.500 & 0.071 \\
\hline 1974. & 119.600 & , & 108.700 & 0.100 \\
\hline 1975. & 128.700 & 1 & 119.600 & 0.076 \\
\hline 1976. & 134.700 & 1 & 128.700 & 0.047 \\
\hline 1977. & 142.900 & , & 134.700 & 0.051 \\
\hline 1978. & 155.000 & , & 142.900 & 0.085 \\
\hline
\end{tabular}
step 3- determine purchasing fower gain/(loss)
\begin{tabular}{|c|c|c|c|c|c|}
\hline YEAR & AV ERAGE net degt & \multicolumn{3}{|c|}{INFLATION rate} & \[
\begin{aligned}
& \text { GAIN/ } \\
& \text { (LOSS) }
\end{aligned}
\] \\
\hline 1960. & 156.700 & \(x\) & 0.015 & \(=\) & 2.421 \\
\hline 1961. & 162.750 & \(x\) & 0.009 & = & 1.415 \\
\hline 1962. & 137.350 & \(x\) & 0.022 & \(=\) & 2.960 \\
\hline 1963. & 109.250 & \(x\) & 0.015 & \(=\) & 1.690 \\
\hline 1964. & 92.300 & \(x\) & 0.014 & \(=\) & 1. 278 \\
\hline 1965. & 89.700 & x & 0.025 & \(=\) & 2.206 \\
\hline 1966. & 121.000 & \(x\) & 0.036 & \(=\) & 4.356 \\
\hline 1967. & 236.650 & \(x\) & 0.031 & = & 7.310 \\
\hline 1968. & 371.900 & \(\times\) & 0.049 & \(=\) & 18.107 \\
\hline 1969. & 454.226 & \(x\) & 0.055 & I & 24.375 \\
\hline 1970. & 505.350 & X & 0.050 & \(=\) & 25.096 \\
\hline 1971. & 515.075 & \(x\) & 0.047 & = & 24.369 \\
\hline 1972. & 452.073 & \(x\) & 0.042 & \(=\) & 19.030 \\
\hline 1973. & 451.452 & \(x\) & 0.071 & \(=\) & 32.024 \\
\hline 1974. & 703.350 & \(x\) & 0.100 & = & 70.529 \\
\hline 1975. & 964.050 & \(x\) & 0.076 & \(=\) & 73.351 \\
\hline 1976. & 1094.050 & \(x\) & 0.047 & = & ミ1.032 \\
\hline 1977. & 1135.950 & \(x\) & 0.061 & = & 69.152 \\
\hline 1978. & 1176.050 & X & 0.085 & \(=\) & 59.581 \\
\hline
\end{tabular}

Figure 9. Procedure for Determining Purchasing Power Gain/
(Loss)
restatement of income statement

Step 1- determi me hestatement factors foq: net sales , operating expensestexcl. of cgs + oep.)
FIXED CHARGES. INCOME TAXES, ANC "OTMER" INCENE
\begin{tabular}{|c|c|c|c|}
\hline YEAR & \[
\begin{aligned}
& 4 \mathrm{TH}-\mathrm{QTR} \\
& \text { INDEX }
\end{aligned}
\] & a verage INDEX & restatement fACTOR \\
\hline 1959. & 67.95/ & 67.52 & \(=1.0064\) \\
\hline 1960. & 69.001 & 68.73 & \(=1.0039\) \\
\hline 1961. & \(69.60 \%\) & 69.30 & \(=1.0043\) \\
\hline 1962. & \(71.10 \%\) & 70.60 & \(=1.0071\) \\
\hline 1963. & 72.201 & 71.70 & \(=1.0070\) \\
\hline 1964. & 73.201 & 72.80 & \(=1.0055\) \\
\hline 1965. & 75.001 & 74.38 & \(=1.0083\) \\
\hline 1966. & 77.701 & 76.75 & \(=1.0124\) \\
\hline 1967. & \(80.10 \%\) & 79.03 & \(=1.0135\) \\
\hline 1968. & 84.008 & 82.50 & \(=1.0182\) \\
\hline 1969. & \(88.60 \%\) & 86.80 & \(=1.0207\) \\
\hline 1970. & \(93.00 \%\) & 91.49 & = 1.0165 \\
\hline 1971. & 97.401 & 96.00 & \(=1.0146\) \\
\hline 1972. & 101.501 & 99.95 & \(=1.0155\) \\
\hline 1973. & \(108.70 \%\) & 105.68 & \(=1.0286\) \\
\hline 1974. & 119.601 & 114.95 & \(=1.0405\) \\
\hline 1975. & \(128.70 /\) & 125.50 & \(=1.0255\) \\
\hline 1976. & \(13 * .70 \%\) & 132.10 & \(=1.0197\) \\
\hline 1977 . & \(142.90 /\) & 139.78 & \(=1.0223\) \\
\hline 1978. & 155.001 & 149.98 & \(=1.0335\) \\
\hline
\end{tabular}
step 2- restate the income statement
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|r|}{1972.} & \multicolumn{2}{|r|}{1573.} & \multicolumn{2}{|c|}{1974.} \\
\hline & HIST. COST unadjusted & PR. level adjustec & HIST. COST unadjusteo & Pr. LEVEL adJISTED & HIST. CCST unadjusted & pr. LEVEL adousted \\
\hline \multicolumn{7}{|l|}{l.nCume statement} \\
\hline NET SALES & 2602.178 & 2642.522 & 3182.400 & 3273.342 & 4082.100 & +247.230 \\
\hline CJit of goods scls & 1890.352 & 1928.291 & 2396.700 & 2477.359 & 3192.500 & 3340.476 \\
\hline UP.EXP.(EXCL-DEP +AMORT) & 250.133 & 254.012 & 297.800 & 306.310 & 374.600 & 389.753 \\
\hline DEPR. + AMORT. & 100.848 & 130.896 & 106.400 & 145.847 & 125.500 & 178.688 \\
\hline OPER ICOME (EXCl-PPG) & 360.845 & 329.333 & 381.500 & 343.826 & 389.500 & 338.313 \\
\hline PURGH PwR GRIN/(LOSS) & & 19.030 & & 32.024 & & 70.529 \\
\hline dotrating income & 350.845 & 348.363 & 381.500 & 375.849 & 389.500 & 408.842 \\
\hline fixes charges & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline INC MaE TaXES & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline OTHEA (INCOME) OR LOSS & 154.400 & 156.794 & 134.700 & 138.549 & 180.300 & 166.725 \\
\hline lincuiae before x-itens & 206.445 & 191.568 & 246.800 & 237.300 & 229.200 & 242.058 \\
\hline EXTRAORDINARY ItEMS & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline NEI I NCOME & 206.445 & 191.568 & 246.800 & 237.300 & 229.200 & \(242.0 \leq 8\) \\
\hline
\end{tabular}

Figure 10. Restatement of the Income Statement


Figure 11. Summary of Financial Data

STEP 3- RESTATE THE INCGME STATEMENT TO CONSTANT (177B) OQLARS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|r|}{1972.} & \multicolumn{2}{|c|}{1573.} & \multicolumn{2}{|r|}{1974.} \\
\hline & HIST. こOST UNADJUSTED & PR. LEVEL ADJUSTEC & HIST. COST UNACJUSTED & \begin{tabular}{l}
PR. LEVEL \\
ADJUSTED
\end{tabular} & HIST. COST UNACJUSTED & \begin{tabular}{l}
PR. LEVEL \\
ADJUSTED
\end{tabular} \\
\hline 1.NLIME STATEMENT & . & & & & & \\
\hline NET SALES & 2602.178 & 4035.393 & 3182.100 & 4667.598 & 4082.100 & 5504.352 \\
\hline CUST OF GOODS SOLD & 1870.352 & 2944.620 & 2396. 700 & 3532.573 & 3192.500 & 4329.211 \\
\hline OP. ミXP. (EXCL-DEP + AMORT) & 250.133 & 387.900 & 297.800 & 436.781 & 374.600 & 505.115 \\
\hline DEPR. + AMORT. & 100.848 & 199.850 & 106.400 & 207.970 & 125.500 & 231.577 \\
\hline O*ER ICOME (EXCL-PPG) & 360.845 & 502.922 & 381.500 & 490.276 & 389.500 & 438.449 \\
\hline PJHCH PWR GAIN/(LJSS) & & \(29.0<0\) & & 45.664 & & 91.405 \\
\hline OJERATING INCOME & 360.845 & 531.982 & 381.500 & 535.940 & 389.500 & \(529.8 \leq 4\) \\
\hline FIXEJ CHARGES & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline INOUHE TAXES & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline OrHER (INCOME) OR LDSS & 154.400 & 239.440 & 134.700 & 157.563 & 160.300 & 216.150 \\
\hline IVEJ:AE EEFORE X-ITEYS & 20.6.445 & 292.E42 & 246.800 & 338.377 & 229.200 & 313.703 \\
\hline EXTRIORDINARY ITEMS & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline ṅt INCDme & 206.445 & 292.542 & 246.800 & 338.377 & 229.200 & 313.703 \\
\hline
\end{tabular}

Figure 12. Restatement of the Income Statement to Constant (1978) Dollars
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Carexpillar tractor co} & \multicolumn{3}{|l|}{149123.000 COMSTHUCTION} & \multicolumn{2}{|l|}{MACHINERY 3531.000} & CARDE \(=41\) \\
\hline \multirow[t]{2}{*}{re} & NET S & sales & \multicolumn{2}{|l|}{OPI-EXC-PPG} & PPG & \multicolumn{2}{|l|}{N. \(1.3 . \mathrm{x}\).} & \\
\hline & U-- & --A & 」----- & --A & & U----- & & \\
\hline os. & 710.00 & 1614.72 & 79.15 & 163.84 & 5.44 & 42.58 & 86.81 & 42 \\
\hline ol. & 734.30 & 1642.37 & 114.31 & 245.71 & 3.15 & 55.82 & 118.04 & 43 \\
\hline 32. & 026.00 & 1815.05 & 118.91 & 245.10 & 6.45 & 61.92 & 127. 53 & 44 \\
\hline 54. & \$66. 10 & 2088.50 & 158.96 & 328.70. & 3.63 & 77.27 & 155.77 & 45 \\
\hline 04. & 1101.00 & 2471.91 & 236.60 & 488.33 & 2.71 & 123.83 & 250.54. & 46 \\
\hline ¢ذ. & 1405.30 & 2929.49 & 286.92 & 580.47 & 4.56 & 158.53 & 317.48 & 47 \\
\hline 36. & 1524.00 & 3077.78 & 256.65 & 493.14 & 8.69 & 150.09 & 286.63 & 48 \\
\hline 57. & 1482.50 & 2987.98 & 157.17 & 300.86 & 14.14 & 106.39 & 195.80 & 49 \\
\hline 68. & 1757.10 & 32.07 .28 & 215.40 & 365.63 & 33.41 & 121.60 & 222.81 & 50 \\
\hline Oy. & 2301.64 & 3574.35 & 281.55 & 451.75 & 43.52 & 142.47 & 246.52 & 51 \\
\hline 70. & 2127.75 & 3604.78 & 296.88 & 426.72 & 41.83 & 143.79 & 226.12 & 52 \\
\hline 7. & 2175.17 & 3511.99 & 241.95 & 325.81 & 38.78 & 128.29 & 181.07 & 53 \\
\hline 72. & 2502.18 & 4035.39 & 360.84 & 502.92 & 29.08 & 206.45 & 292.54 & 54 \\
\hline 73. & 3182.10 & 4667.60 & 381.50 & 490.28 & 45.66 & 246.80 & 338.38 & 55 \\
\hline 74. & 4082.10 & 5504.35 & 389.50 & 438.45 & 91.40 & 229.20 & 313.70 & 56 \\
\hline 75. & 7963.70 & 6130.46 & 853.20 & 705.85 & 88.34 & 398.70 & 480.87 & 57 \\
\hline 75. & 5042.30 & 5916.39 & 684.80 & 704.51 & 58.72 & 283.20 & 409.35 & 58 \\
\hline 77. & 5448.90 & 6485.75 & 837.10 & 8.17 .80 & 75.01 & 445.10 & 458.12 & 59 \\
\hline 70. & 121.20 & T*60.82 & 1026.80 & 930.70 & 99.58 & \(566 \cdot 30\) & 554.36 & 60 \\
\hline \multirow[t]{2}{*}{re} & \multicolumn{2}{|l|}{net income} & & & & & & \\
\hline & \(J\) & 4 & & - & & & & \\
\hline ふu. & 42.58 & 86.81 & & & & & & 61 \\
\hline 51. & 35.82 & 18.04 & & & & & & 62 \\
\hline 62. & 01.92 & 127.53 & & & & & & 63 \\
\hline 63. & 77. 27 & 155.77 & & & & & & 64 \\
\hline 64. & 123.83 & 250.94 & & & & & & 65 \\
\hline 65. & 153.53 & 317.48 & & & & & & 65 \\
\hline 65. & 150.09 & 286.63 & & & & & & 67 \\
\hline o7. & 100.39 & 195.80 & \(\because\) & & & & & 68 \\
\hline 68. & 121.60 & 222.81 & & & & & & 69 \\
\hline \%). & 142.47 & 246.92 & & & & & & 70 \\
\hline \%. & 143.79 & 226.12 & & & & & & 71 \\
\hline 71. & 123.29 & 181.07 & & & & & - & 72 \\
\hline 72. & 206.45 & 292.54 & & & & & & 73 \\
\hline 73. & 240.80 & 338.38 & & & & & & 74 \\
\hline 74. & 22.4. 20 & 313.70 & & & & & & 75 \\
\hline 75. & 393.70 & 480.87 & & & & & & 76 \\
\hline 75. & 383.20 & 409.35 & & & & & & 77 \\
\hline 77. & 445.10 & 458.12 & & & & & & 78 \\
\hline T3. & 50\%. 30 & 554.36 & & & & & - & 79 \\
\hline \multirow[t]{2}{*}{FIVA} & CIAL OATA & relating & TO 1974: & & & & . & \\
\hline & NET S & ES. UNAD & justeo = & 4082.100 & - debt & tequity ra & \(10=1\) & .00580 \\
\hline
\end{tabular}

Figure 13. Summary of Financial Data
in Constant Dollars

APPENDIX D

LIST OF COMPANIES INCLUDED IN STUDY

TABLE VI
```

COMPUSTAT COMPANIES THAT FILED LETTERS OF COMMENT
IN RESPONSE TO THE GPLA DISCUSSION MEMORANDUM
AND/OR THE SUBSEQUENT (1974)
EXPOSURE DRAFT

```
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Company} & \multicolumn{2}{|l|}{Company Position in
\(\qquad\) Response to:} & \multirow[t]{2}{*}{Reason for Exclusion from Sample:} \\
\hline & Discussion Memorandum & \[
\begin{gathered}
\text { Exposure } \\
\text { Draft }
\end{gathered}
\] & \\
\hline AMF Inc. & & No & \\
\hline Amax Inc. & & No & \\
\hline American Cyanamid Co. & No & No & \\
\hline American Tele \& Telegraph & & Yes & \\
\hline Arkansas Best Corp. & & No & \\
\hline Armco Inc & & Yes & \\
\hline Avery International & & No & \\
\hline Avon Products & & No & \\
\hline Beatrice Foods Co. & & No & \\
\hline Bliss \& Laughlin Inds. & & No & \\
\hline Boeing Co. & & No & \\
\hline Boise Cascade Corp. & & No & \\
\hline Bunker Ramo Corp. & & Yes & \\
\hline Caterpillar Tractor Co. & Yes & Yes & \\
\hline Checker Motors Corp. & & No & \\
\hline Chrysler Corp. & & No & \\
\hline Coca-Cola Bottling Co. of NY & - . & No & \\
\hline Coca-Cola Co. & & No & \\
\hline Conoco linc. & No & No & \\
\hline Consolidated Freightways Inc. & & No & \\
\hline Copeland Corp. & No & No & \\
\hline Corning Glass Works & & No & \\
\hline Dart Industries & & No & \\
\hline Dillingham Corp. & & No & \\
\hline Dr. Pepper Co. & & No & \\
\hline Dresser Industries Inc. & & No & \\
\hline DuPont (E.1.) De Nemours & Yes* & & Statistical outlier \\
\hline Eaton Corp. & & No & \\
\hline Ex-Cell-O Corp. & & Yes & \\
\hline Exxon Corp. & Yes & & \\
\hline FMC & & No & \\
\hline Federal Paper Board Co. & & No* & Insufficient COMPUSTAT data \\
\hline Ford Motor Co. & Yes & & \\
\hline Frontier Airlines Inc. & & No & \\
\hline Gelman Sciences Inc. & & No & \\
\hline General Dynamics Corp. & & No* & Insufficient COMPUSTAT data \\
\hline General Electric Co. & No & Yes & \\
\hline General Foods Corp. & & No & \\
\hline General Mills Inc. & No & No & \\
\hline General Motors Corp. & Yes & & \\
\hline Gerber Products Co. & & No & \\
\hline Gillette Co. & No* & & Inconsistency in inven tory valuation methods \\
\hline
\end{tabular}

TABLE VI (Continued)
\begin{tabular}{|c|c|c|c|}
\hline Company & \[
\begin{aligned}
& \text { Company Pos } \\
& \text { Response } \\
& \hline \text { Discussion } \\
& \text { Memorandum }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ition in } \\
& \text { to: } \\
& \hline \begin{array}{c}
\text { Exposure } \\
\text { Draft }
\end{array}
\end{aligned}
\] & Reason for Exclusion from Sample: \\
\hline Glen Gery & & No* & Insufficient COMPUSTAT data \\
\hline Goodrich (B.F.) Co. & & No* & Inconsistency in inventory valuation methods \\
\hline Grace (W.R.) \& Co. Greyhound Corp. & No & No* & Insufficient COMPUSTAT data \\
\hline Guardsman Chemicals Inc. & & No & \\
\hline Gulf Oil Corp. & Yes & Yes & \\
\hline Halliburton Co. & & No & \\
\hline Harsco Corp. & No & & \\
\hline Hastings Mfg. Co. & & No & \\
\hline Heinz (H.J.) Co. & & No & \\
\hline Hoover Co. & & No & \\
\hline Ideal Basic Industries Inc. & & No* & Insufficient COMPUSTAT data \\
\hline Imperial Industries Inc. & & Yes & \\
\hline Ingersoll-Rand Co. & & No & \\
\hline Inland Steel Co. & No & No & \\
\hline Intermark Inc. & & No: & Insufficient COMPUSTAT data \\
\hline Intl. Harvester Co. & No & & \\
\hline Intl. Paper Co. & & Yes & \\
\hline Int1. Tele \& Telegraph & No & No & \\
\hline Kraft Inc. & & No & \\
\hline Kroehler Mfg. Co. & & No & \\
\hline Lilly (Eli) \& Co. & No & No & \\
\hline Lone Star Industries & & No & \\
\hline Marriott Corp. & & No & \\
\hline Masonite Corp. & No & No & \\
\hline Maytag Co. & & No & \\
\hline Merck E Co. & No & No & - \\
\hline Mobil Corp. & & Yes & \\
\hline Monumental Corp. & & No* & Insufficient COMPUSTAT data \\
\hline Northern Natural Gas & & No & \\
\hline Northwest Industries & & No & \\
\hline Occidental Petroleum Corp. & & No & \\
\hline Owens-lllinois Inc. & No & & \\
\hline Panhandle Eastern Pipeline & & No & \\
\hline Pargas Inc. & & No & \\
\hline Penny (J.C.) Co. & & No & \\
\hline Pennwalt Corp. & & No & \\
\hline Peoples Gas & & No: & Insufficient COMPUSTAT data \\
\hline
\end{tabular}

TABLE VI (Continued)
\begin{tabular}{|c|c|c|c|}
\hline Company & \begin{tabular}{l}
Company Pos
\(\qquad\) \\
Discussion Memorandum
\end{tabular} & \[
\begin{aligned}
& \begin{array}{c}
\text { ition in } \\
\text { to: }
\end{array} \\
& \hline \begin{array}{c}
\text { Exposure } \\
\text { Draft }
\end{array}
\end{aligned}
\] & Reason for Exclusion from Sample: \\
\hline Reliance Electric & No & & \\
\hline Reynolds (R.J.) Inds. & & No* & Insufficient COMPUSTAT data \\
\hline Rockwell International Corp. & No & Yes & \\
\hline Safeway Stores Inc. & & No & \\
\hline Schering-Plough . & & No & \\
\hline Schlitz (Joseph) Brewing & & No* & LIFO base layer eroded in subsequent years (1) \\
\hline Seagram Co. Ltd. & No & & \\
\hline Searle (G.D.) \& Co. & & Yes & \\
\hline Sears, Roebuck \& Co. & No & No & \\
\hline Shell 0 il Co. & Yes & Yes & \\
\hline Sherwin-Williams Co. & & No & \\
\hline Southern Natural Resources & & No & \\
\hline Standard Oil Co. (Calif.) & Yes & & \\
\hline Standard Oil Co. (Indiana) & No & No & \\
\hline TRW Inc. & & No* & Inconsistency in inventory valuation method \\
\hline Texaco Inc. & No & No & \\
\hline Texas Instruments Inc. & No & No & \\
\hline Times Mirror Co. & & No & \\
\hline Trans Union Corp. & & No & \\
\hline Union Carbide Corp. & No & Yes & \\
\hline Union Oil Co. of Calif. & & Yes & \\
\hline United Aircraft Products Inc. & . No & & \\
\hline Varian Associates Inc. & & Yes & \\
\hline Vermont American & & No* & Insufficient COMPUSTAT data \\
\hline Western Union Corp. & & No & \\
\hline White Motor Corp. & & No* & Inconsistency in inventory valuation method \\
\hline Wolverine World Wide & & No & \\
\hline Total responses & 32 & 94 & \\
\hline Total exclusions ( \(\%\) ) & 2 & 14 & \\
\hline Total in sample & 30 & 80 & \\
\hline
\end{tabular}
(1) For the purpose of restating LIFO inventory, the earliest year in the COMPUSTAT time series was assumed to be the base layer and valued on the basis of that year's fourth quarter GNP Price Deflator Index. This assumption was reasonable provided the base layer did not subsequently erode and include the arbitrarily indexed cost of inventory in the computation of cost of goods sold. Schlitz violated this condition and so was excluded from the sample.

\section*{APPENDIX E}

\section*{POSTERIOR PROBABILITIES: DISCUSSION MEMORANDUI DATA SET}

TABLE VII
POSTERIOR PROBABILITIES ASSOCIATED WITH THE SAMPLE COMPANIES THAT RESPONDED TO THE GPLA DISCUSSION MEMORANDUM
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Company} & \multicolumn{4}{|c|}{W-Z Modified Model} & \multicolumn{3}{|c|}{Generalized Model} \\
\hline & Actual Vote ( \(0=\) No, \(1=\) Yes) & Posterior Probability of Correct Classification & \[
\frac{\text { Margin }}{\text { Correct }}
\] & \[
\frac{\text { of Safety }}{\text { Incorrect }}
\] & Posterior Probability of Correct Classification & \[
\frac{\text { Margin }}{\text { Correct }}
\] & \[
\frac{\text { of Safety }}{\text { Incorrect }}
\] \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
1. American Cyanamid Co. \\
2. Caterpillar Tractor Co.
\end{tabular}} & 0 & . 8827 & .3827 & & . 7662 & . 2662 & \\
\hline & 1 & . 3378 & & . 1622 & . 7479 & . 2479 & \\
\hline 3. Conoco Inc. & 0 & . 6849 & . 1849 & & . 9238 & . 4238 & \\
\hline 4. Copeland Corp. & 0 & . 9050 & . 4050 & & . 8805 & . 3805 & \\
\hline 5. Exxon Corp. & 1 & . 9758 & . 4758 & & . 9946 & . 4946 & \\
\hline 6. Ford Motor Co. & 1 & . 8346 & . 3346 & & 1.0000 & . 5000 & \\
\hline 7. General Electric Co. & 1 & . 8841 & . 3841 & & . 9700 & . 4700 & \\
\hline 8. General Mills Inc. & 0 & . 8765 & . 3765 & & 1.0000 & . 5000 & \\
\hline 9. General Motors Corp. & 1 & . 9546 & . 4546 & & 1.0000 & . 5000 & \\
\hline 10. Grace (W.R.) \& Co. & 0 & . 8634 & . 3634 & & 1.0000 & . 5000 & \\
\hline 11. Gulf 0 il Corp. & 1 & . 7974 & . 2974 & & . 9258 & . 4258 & \\
\hline 12. Harsco Corp. & 0 & . 6764 & . 1764 & & 1.0000 & . 5000 & \\
\hline 13. Inland Steel Co. & 0 & . 8365 & . 3365 & & . 7520 & . 2520 & \\
\hline 14. Intl. Harvester Co. & 0 & . 3588 & & .1412 & . 3963 & & .1037 \\
\hline 15. Intl. Tele \& Telegraph & h 0 & . 3982 & & .1018 & . 9989 & . 4989 & \\
\hline 16. Lilly (Eli) \& Co. & 0 & . 8927 & . 3927 & & . 9797 & . 4797 & \\
\hline 17. Masonite Corp. & 0 & . 8887 & . 3887 & & . 9998 & . 4998 & \\
\hline 18. Merck \& Co. & 0 & . 8915 & . 3915 & & . 9301 & . 4301 & \\
\hline 19. Owens-lllinois Inc. & & . 6800 & . 1800 & & . 7099 & . 2099 & \\
\hline 20. Reliance Electric & 0 & . 9045 & . 4045 & & . 9964 & . 4964 & \\
\hline 21. Rockwell Intl. Corp. & 1 & . 6820 & . 1820 & & . 9996 & . 4996 & \\
\hline 22. Seagram Co. Ltd. & 0 & . 8258 & . 3258 & & 1.0000 & . 5000 & \\
\hline 23. Sears, Roebuck \& Co. & 0 & . 2425 & & . 2565 & .4142 & & . 0858 \\
\hline 24. Shell Oil Co. & 1 & . 3343 & & . 1657 & .1145 & & . 3858 \\
\hline
\end{tabular}

TABLE VII (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Company & \[
\begin{aligned}
& \text { Actual } \\
& \text { Vote } \\
& (0=\text { No, } \\
& l=\text { Yes })
\end{aligned}
\] & Posterior Probability of Correct Classification & \[
\frac{\text { Margin }}{\text { Correct }}
\] & \[
\frac{\text { of Safety }}{\text { Incorrect }}
\] & Posterior Probability of Correct Classification & \[
\frac{\text { Margin }}{\text { Correct }}
\] & \[
\frac{\text { of Safety }}{\text { Incorrect }}
\] \\
\hline \multicolumn{8}{|l|}{25. Standard 0il} \\
\hline Co. (Calif.) & 1 & . 4967 & & . 0033 & . 4844 & & . 0156 \\
\hline \multicolumn{8}{|l|}{26. Standard 0il} \\
\hline Co. (Indiana) & 0 & . 6003 & . 1003 & & . 6441 & . 1441 & \\
\hline 27. Texaco Inc. & 0 & . 0639 & & . 4361 & . 0359 & & . 4641 \\
\hline \multicolumn{8}{|l|}{28. Texas Instruments} \\
\hline Inc. & 0 & . 7028 & . 2028 & & . 9841 & . 4841 & \\
\hline \multicolumn{8}{|l|}{\multirow[b]{2}{*}{30. United Aircraft}} \\
\hline & & & & & & & \\
\hline Products Inc. & 0 & . 8848 & . 3848 & & 1.0000 & . 5000 & \\
\hline \multicolumn{2}{|l|}{Total posterior probabilities} & 20.6550 & & & 23.7726 & & \\
\hline \multicolumn{2}{|l|}{Total equal priors (0.5000 \(\times 30\) )} & -15.0000 & & & -15.0000 & & \\
\hline \multicolumn{2}{|l|}{Margin of safety} & \(5.6550=\) & 7.1250 - & 1.4700 & \(8.7726=\) & \(\overline{10.2034}\) & - \(\overline{1.4308}\) \\
\hline
\end{tabular}

\section*{APPENDIX F}

POSTERIOR PROBABILITIES: EXPOSURE DRAFT DATA SET

TABLE VIII

\section*{POSTERIOR PROBABILITIES. ASSOCIATED WITH THE SAMPLE COMPANIES THAT RESPONDED TO THE (1974) EXPOSURE DRAFT}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Company} & \multirow[b]{2}{*}{Actual Vote ( \(0=\mathrm{No}\), 1=Yes)} & \multicolumn{3}{|l|}{W-Z Modified Model} & \multicolumn{3}{|c|}{Generalized Model} \\
\hline & & Posterior Probability of Correct Classification & \[
\frac{\text { Margin }}{\text { Correct }}
\] & \[
\frac{\text { f Safety }}{\text { Incorrect }}
\] & Posterior Probability of Correct Classification & \[
\frac{\text { Margin }}{\text { Correct }}
\] & \[
\frac{\text { of Safety }}{\text { Incorrect }}
\] \\
\hline AMF Inc. & 0 & . 4971 & & . 0029 & . 9999 & . 4999 & \\
\hline Amax Inc & 0 & . 8340 & . 3340 & & . 3770 & & . 1230 \\
\hline American Cyanamid Co. & 0 & . 6748 & . 1748 & & . 1471 & & . 3529 \\
\hline American Tele \& Telegraph & 1 & 1.0000 & . 5000 & . & 1.0000 & . 5000 & \\
\hline Arkansas Best Corp. & 0 & . 8816 & . 3816 & & 1.0000 & . 5000 & \\
\hline Armco Inc & 1 & . 3867 & & . 1133 & . 8884 & . 3884 & \\
\hline Avery International & 0 & . 6032 & . 1032 & & . 1063 & & . 3937 \\
\hline Avon Products & 0 & . 8360 & . 3360 & & . 6900 & . 1900 & \\
\hline Beatrice Foods Co. & 0 & . 5361 & . 0361 & & . 1063 & & . 3937 \\
\hline Bliss \(\varepsilon\) Laughlin Inds. & 0 & . 7390 & . 2390 & & . 1625 & & . 3375 \\
\hline Boeing Co. & 0 & . 2514 & & . 2486 & . 9884 & . 4884 & \\
\hline Boise Cascade Corp. & 0 & . 8478 & . 3478 & & . 3152 & & . 1848 \\
\hline Bunker Ramo Corp. & 1 & . 1006 & & . 3994 & . 8567 & . 3567 & \\
\hline Caterpillar Tractor Co. & 1 & . 5975 & . 0975 & & . 9068 & . 4068 & \\
\hline Checker Motors Corp. & 0 & 1.0000 & . 5000 & & 1.0000 & . 5000 & \\
\hline Chrysler Corp. & 0 & 1.0000 & . 5000 & & 1.0000 & . 5000 & \\
\hline Coca-Cola Bottling Co. of NY & 0 & . 6993 & . 1993 & & .1706 & & . 3294 \\
\hline Coca-Cola Co. & 0 & . 3437 & & . 1563 & . 9762 & .4762 & \\
\hline Conoco Inc. & 0 & . 3.166 & & . 1834 & . 1480 & & . 3520 \\
\hline Consolidated Freightways Inc. & 0 & . 8583 & . 3583 & & . 8808 & . 3808 & \\
\hline Copeland Corp. & 0 & . 7634 & . 2634 & & . 1837 & & . 3163 \\
\hline Corning Glass Works & 0 & . 0912 & & . 4088 & . 2746 & & . 2254 \\
\hline Dart Industries & 0 & . 4678 & & . 0322 & . 3813 & & . 1187 \\
\hline Dillingham Corp. & 0 & . 9687 & . 4687 & & 1.0000 & . 5000 & \\
\hline Dr. Pepper Co. & 0 & . 8193 & . 3193 & & . 9040 & . 4040 & \\
\hline
\end{tabular}

TABLE VIII (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Company} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Actual } \\
& \text { Vote } \\
& (0=\text { No } \\
& 1=\text { Yes })
\end{aligned}
\]} & \multicolumn{3}{|l|}{W-Z Modified Model} & \multicolumn{3}{|c|}{Generalized Model} \\
\hline & & Posterior Probability of Correct Classification & \[
\frac{\text { Margin }}{\text { Correct }}
\] & \[
\frac{\text { of Safety }}{\text { Incorrect }}
\] & Posterior Probability of Correct Classification & \[
\frac{\text { Margin }}{\text { Correct }}
\] & \[
\frac{\text { of Safety }}{\text { Incorrect }}
\] \\
\hline Dresser Industries Inc. & 0 & . 4480 & & . 0520 & . 0741 & & . 4259 \\
\hline Eaton Corp. & 0 & . 6356 & . 1356 & & . 3076 & & . 1924 \\
\hline Ex-Cell-0 Corp. & 1 & . 3959 & & . 1041 & . 5377 & . 0377 & \\
\hline FMC & 0 & . 5799 & . 0799 & & . 6642 & . 1642 & \\
\hline Frontier Airlines Inc. & 0 & . 9712 & . 4712 & & 1.0000 & . 5000 & \\
\hline Gelman Sciences Inc. & 0 & . 5876 & . 0876 & & 1.0000 & . 5000 & \\
\hline General Electric Co. & 1 & . 9967 & . 4967 & & . 7755 & . 2755 & \\
\hline General Foods Corp. & 0 & . 6088 & . 1088 & & . 2268 & & . 2732 \\
\hline General Mills Inc. & 0 & . 8093 & . 3093 & & . 9812 & . 4812 & \\
\hline Gerber Products Co. & 0 & . 8168 & . 3168 & & . 4656 & & . 0344 \\
\hline Guardsman Chemicals Inc. & 0 & . 5763 & . 0763 & & . 0824 & & . 4176 \\
\hline Gulf Oil Corp. & 1 & . 9947 & . 4947 & & . 9995 & . 4995 & \\
\hline Halliburton Co. & 0 & . 4992 & & . 0008 & . 1530 & & . 3470 \\
\hline Hastings Mfg. Co. & 0 & . 5132 & . 0132 & & . 3812 & & . 1188 \\
\hline Heinz (H.J.) Co. & 0 & . 3712 & & . 1288 & . 0548 & & . 4452 \\
\hline Hoover Co. & 0 & . 5875 & . 0875 & & . 1583 & & . 3417 \\
\hline Imperial Industries Inc. & 1 & . 9988 & . 4988 & & . 0000 & & . 5000 \\
\hline Ingersoll-Rand Co. & 0 & . 6655 & . 1655 & & . 1814 & & . 3186 \\
\hline Inland Steel Co. & 1 & . 6285 & . 1285 & & . 0847 & & . 4153 \\
\hline Intl. Paper Co. & 1 & -. 6285 & . 1285 & & . 1379 & & . 3621 \\
\hline Intl. Tele. \& Telegraph & 0 & . 0904 & & . 4096 & . 0757 & & . 4243 \\
\hline Kraft Inc. & 0 & . 2118 & & . 2882 & . 0778 & & . 4222 \\
\hline Kroehler Mfg. Co. & 0 & 1.0000 & . 5000 & & 1.0000 & . 5000 & \\
\hline Lllly (Eli) \& Co. & 0 & . 7327 & . 2327 & & . 4622 & & . 0378 \\
\hline Lone Star Industries & 0 & . 4238 & & . 0762 & . 0769 & & . 4231 \\
\hline Marriott Corp. & 0 & . 9992 & . 4992 & & 1.0000 & . 5000 & \\
\hline Masonite Corp. & 0 & . 5591 & . 0591 & & . 4126 & & . 0874 \\
\hline Maytag Co. & 0 & . 7426 & . 2426 & & . 8515 & . 3515 & \\
\hline
\end{tabular}

TABLE VIII (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Company} & \multirow[b]{2}{*}{Actual Vote ( \(0=\mathrm{No}\), l=Yes)} & \multicolumn{3}{|c|}{W-Z Modified Model} & \multicolumn{3}{|c|}{Generalized Model} \\
\hline & & Posterior Probability of Correct Classification & \[
\frac{\text { Margin }}{\text { Correct }}
\] & \[
\frac{\text { of Safety }}{\text { Incorrect }}
\] & Posterior Probablility of Correct Classification & \[
\frac{\text { Margin }}{\text { Correct }}
\] & \[
\frac{\text { of Safety }}{\text { Incorrect }}
\] \\
\hline Merck \& Co. & 0 & . 7826 & . 2826 & & . 5567 & . 0567 & \\
\hline Mobil Corp. & 1 & . 9990 & . 4990 & & . 9992 & . 4992 & \\
\hline Northern Natural Gas & 0 & . 0001 & & . 4999 & . 0008 & & . 4992 \\
\hline Northwest Industries & 0 & . 7713 & . 2713 & & . 9996 & . 4996 & \\
\hline Occidental Petroleum Corp. & . 0 & . 2082 & & . 2918 & . 7396 & . 2396 & \\
\hline Panhandle Eastern Pipeline & 0 & . 9743 & . 4743 & & 1.0000 & . 5000 & \\
\hline Pargas Inc. & 0 & . 7454 & . 2454 & & 1.0000 & . 5000 & \\
\hline Penny (J.C.) Co. & 0 & . 4129 & & . 0871 & . 0613 & & . 4387 \\
\hline Pennwalt Corp. & 0 & . 5520 & . 0520 & & . 3174 & & . 1826 \\
\hline Rockwell Intl. Corp. & 1 & . 9850 & . 4850 & & . 1818 & & . 3082 \\
\hline Safeway Stores, Inc. & 0 & . 2996 & & . 2004 & . 0527 & & . 4428 \\
\hline Schering-Plough & 0 & . 7909 & . 2909 & & . 6532 & . 1532 & \\
\hline Searle (G.D.) \& Co. & 1 & . 0295 & & . 4705 & . 0000 & & . 5000 \\
\hline Sears, Roebuck \& Co. & 0 & . 0182 & & . 4818 & . 0010 & & . 4990 \\
\hline Shell Oil Co. & 1 & . 6905 & . 1905 & & . 5391 & . 0391 & \\
\hline Sherwin-Williams Co. & 0 & . 5096 & . 0096 & & 1.0000 & . 5000 & \\
\hline Southern Natural Resources & 0 & . 9198 & .4198 & & . 9999 & . 4999 & \\
\hline Standard Oil Co. (Indiana) & 0 & . 1695 & & . 3305 & . 0418 & & . 4582 \\
\hline Texaco Inc. & 0 & . 0000 & & . 5000 & . 0000 & & . 5000 \\
\hline Texas Instruments & 0 & . 2885 & & . 2115 & . 1287 & & . 3713 \\
\hline Times Mirror Co. & 0 & . 6574 & . 1574 & & . 8310 & . 3310 & \\
\hline Trans Union Corp. & 0 & . 9.975 & . 4975 & & 1.0000 & . 5000 & \\
\hline Union Carbide Corp. & 1 & . 5124 & . 0124 & & . 8952 & . 3952 & \\
\hline Union Oil Co. of Callf. & 1 & . 5194 & . 0194 & & . 8660 & . 3660 & \\
\hline Varian Associates Inc. & 1 & . 0884 & & . 4116 & . 2479 & & . 2521 \\
\hline
\end{tabular}

TABLE VIII (Continued)


\author{
2 \\ VITA \\ Arnold James McKee, Jr. \\ Candidate for the Degree of \\ Doctor of Philosophy
}

Thesis: PREFERENCES FOR ACCOUNTING STANDARDS: THE USE OF DISCRIMINANT ANALYSIS IN FORECASTING CORPORATE MANAGER LOBBYING BEHAVIOR

Major Field: Business Administration
Biographical:
Personal Data: Born in Bangor, Maine, August 7, 1943, the son of Mrs. Margaret M. McKee and Mr. Arnold J. McKee.

Education: Graduated from Camden High School, Camden, Maine, in June, 1961; received Bachelor of Science degree in Business Administration from the University of Maine in 1965; received Master of Business Administration from the University of Maine in 1967; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in May, 1982.

Professional Experience: Cost analyst, Medium Steam Turbine Generator Department, General Electric Company, 1967-68; member of audit staff, Price Waterhouse and Co., 1968-70; controller at Burgers Fobes Paint Co., 1971-74; accounting instructor, University of Maine, 1973-77; teaching associate, Oklahoma State University, 1977-81; in September 1981 appointed as a lecturer in the Department of Economics and Business at North Carolina State University.```


[^0]:    ${ }^{2}$ In the Taylor series expansion, the third and successively higher moments are less important in determining the value of the function. Also, these higher moments can be expressed in terms of the first two moments, provided the probability distributions are normal.

[^1]:    ${ }^{1}$ On investigations of security price behavior see John L. O'Donnell, "relationships Between Reported Earnings and Stock Prices in the Electric Utility Industry," Accounting Review (January 1965); 135-143, Ronald M. Copeland, "Income Smoothing," Empirical Research in Accounting; Selected Studies (1968) Supplemental to Journal of Accounting Research (1968): 101-116, Paul E. Dosher and Robert E. Malcolm, "A Note on Income Smoothing in the Chemical Industry," Journal of Accounting Research (Autumn 1970): 253-259, Russell M. Barefield and Eugene E Cominsky, "Depreciation Policy and the Behavior of Corporate Profits," Journal of Accounting Research (Autumn 1971): 351-358, C. R. Beidleman, "Income Smoothing: The Role of Management," Accounting Review (October 1973): 653-667. However, on management's motive (whether there was intent to smooth) see Gary E. White, 'Discretionary Accounting Decisions and Income Normalization," Journal of Accounting Research (Autumn 1970): 260-273. White's findings were that smooth trends were achieved by chance and/or controlling variables other than the accounting policy decisions included in the study.

[^2]:    ${ }^{2}$ The literature relating accounting to the political arena can be traced back to writings where researchers argued accounting numbers report not "truth" (absolutes) but value judgments. . See Yuji Ijiri and R. Jaedicke, "Reliability and Objectivity of Accounting and Measurements," Accounting Review (July 1966): 473-483, William H. Beaver, John W. Kennelly, and William M. Voss, "Predictive Ability as a Criterion for the Evaluation of Accounting Data," Accounting Review (October 1968): 675-683. Others, later, have argued that since accounting rules are value judgments it is only just that those parties affected by the rules be heard. In other words, the accounting choice involves a social choice.

[^3]:    4SFAS no. 44, "Accounting of Intangible Assets of Motor Carriers," which calls for an immediate charge to income of interstate operating rights that have been carried as assets by motor carriers, also, will reduce reported earnings with a corresponding tax benefit.
    ${ }^{5}$ SFAS no. 33, "Financial Reporting and Changing Prices,"requires as supplemental disclosure, adjustments to reflect inflationary effects. Exxon, which favors general price level accounting (GPLA) cited, in its 1980 annual report, the erosion taking place in its capital base due to inflation. One might argue that large firms such as Exxon perceive eventual tax relief resulting from the future reporting of GPLA data.

[^4]:    ${ }^{6}$ See Merton H. Miller and Franco Modigliani, "Dividend Policy, Growth, and the Valuation of Shares', Journal of Business (October 1961): 411-433.
    ${ }^{7}$ Size per se has been mentioned specifically as a criterion for action against corporations. See the "Curse of Bigness," Barron's June 30,1969 , pp. 1 and 8.

[^5]:    8
    Although a recent study concludes accounting and market measures of leverage are substitutes. See Robert G. Bowman, "The Debt Equivalence of Leases: An Empirical Investigation," Accounting Review (April 1980): 237-253.

[^6]:    ${ }^{9}$ If the coefficients of the discriminant function were employed on a separate data set, we would be testing the predictive (rather than classificatory) power of the function.

