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CHAPTER I 

INTRODUCTION 

Background 

Radiation-induced defects in insulating (i.e., wide band gap) 

materials have been widely studied in the last fifty years. Much of 

the interest has arisen because of their fundamental properties and 

also because of their technological potential. Optical and magnetic 

resonance techniques have been primarily used in these investigations 

and a number of sophisticated combinations of these techniques have 

evolved. Point defects in insulators are generally known as color cen­

ters because they usually have two or more electronic states lying 

within the band gap between which optical transitions are possible. A 

vast amount of research has been done on color centers in alkali halides 

and much of this work has been described in depth by Fowler (1). A 

similar large amount of work on defects in alkaline-earth oxides has 

been reviewed by Henderson and Wertz (2) • 

In more recent years, researchers have focused their attention on 

piezoelectric materials such as quartz, LiNbo3 , LiTao3 , and berlinite 

(AlP04) because of the many applications in precision frequency control 

and surface acoustic wave (SAW) devices. Since many of these latter 

materials have complex crystal structures, a much wider variety of de­

fect configurations are possible and, as a result, it is very difficult 

1 
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to determine precise models for defects or to disentangle the observed 

kinetic behavior of defects. However, because of the vast amount of 

work previously done on point defects in the simpler materials such as 

alkali halides and alkaline-earth oxides, researchers today have a 

base of information which allows progress to be made more rapidly in the 

studies of the more complex, but more useful, materials. 

Since its discovery by E. Zavoisky in 1945 (3), the electron spin 

resonance (ESR) technique has been widely used in different branches of 

the physical and biological sciences. In solid state physics, ESR is a 

very powerful technique making it possible to obtain an exact knowledge 

of the electronic structure and the local environment of a defect. 

Also, it has been used to study the influence of external stress and 

the effects of electric fields upon the properties of color centers and 

their interactions, and it can measure concentrations of these defects. 

Magnetic resonance is an experimental technique that can be applied 

to the study of materials containing permanent magnetic dipole moments. 

Both electrons and nuclei have permanent magnetic moments. Let's con-

sider a spin system consisting of non-interacting electron spins. The 

+ 
magnetic moment µ of an electron is related to the spin angular momentum 

+ 
S as follows 

+ 
µ = 

+ 
-g ss e 

where S is the Bohr magneton (S ell -21 = 2mc = 9.2741 x 10 erg/gauss) and ge 

is the free spin g factor. The energy of a magnetic dipole of moment 

+ + 
µ in a magnetic field H is 

++ 
W = - µ•H 



From the above two equations, the Hamiltonian can be written as 

"H = 

If the electron spin is quantized along the direction of the mag-

netic field (taken to be Z) then 

A 

where S is a spin operator. z 

The energy is given by 

A 

g S H S 
e z 

E = <M I "l11 M > .s ,/f, s 

which reduces to the following 

E = g 8 H M . 
e s 

There are two values for M , +1/2 and -1/2. This gives us two 
s 

energy levels 

MS = +1/2 

MS = -1/2 

MAGNETIC FIELD 

The separation in energy is 

3 



6E = = g SH 
e 

Transitions between the two energy levels can be induced by an 

electromagnetic field of the appropriate frequency v, if the photon 

energy hv matches the energy-level separation 6E. Then 

hV = g$H 
r 

4 

where H is the magnetic field at which the resonance condition is met. 
r 

Further details of the magnetic resonance techniques have been well re-

viewed in the literature (4-7). 

Defects in Quartz 

Structural and radiation-induced defects in quartz have been 

studied extensively over the last twenty-five years because of the wide 

application of this material in precision frequency control devices; 

one example being in crystal-controlled oscillators in communication 

satellites that are continuously bombarded by high-energy radiation. 

It is now well-known that defects in the quartz crystals play an im-

portant role in determining the performance of these oscillators. One 

of the first radiation-induced defects in quartz to be studied by ESR 

was reported by Weeks (8) in 1956. It is an oxygen-vacancy-associated 

trapped electron center and is known as the El center. Since the mid-

1950s, many people have reported studies of defects in quartz. Some of 

the more pertinent of these studies are discussed briefly in the 

following paragraphs. 

Weeks and Nelson (9) investigated radiation-induced defects in 

quartz and fused silica using optical and magnetic resonance techniques. 



Evidence was presented showing a correlation of the observed optical 

absorption band at 210 nm with the Ei center and a correlation of the 

230 nm band with the E2 center, in both quartz and fused silica. For 

crystalline quartz it was observed that the E2 band was more easily 

produced than the Ei band, and the E2 band could be bleached easily at 

78K using an ultraviolet lamp. Heating treatments between 250-300°c 

5 

revealed an increase in the Ei optical absorption band and the ESR 

absorption associated with this center. In contrast to the behaviour of 

crystalline quartz, the El optical absorption band in high purity fused 

silica seemed to decrease in intensity upon heating above the room 

temperature. Another optical absorption band at 260 run was observed 

in irradiated fused silica, which annealed in the same manner as the 

E' optical band. This band was not associated with any of the defects 
1 

observed by ESR. Models for the Ei, E2, and El centers were proposed. 

[The E" notation used in this dissertation is different from their 

notation.] These workers have suggested that the Ei center is an oxygen 

vacancy with one trapped electron at the vacancy and the El center is 

an oxygen vacancy with two electrons (S=O) . They proposed that the E2 

center is an oxygen vacancy with a trapped electron in an unsaturated 

silicon bond. 

Silsbee (10) reported a detailed ESR study of the Ei center which 

followed the initial work by Weeks (8). Neutron irradiation of the 

quartz crystals at room temperature was used to produce the Ei centers. 

The optical rotation and etch patterns indicated that the crystal 

was left-handed quartz. The observed ESR spectrum was interpreted as 

being due to a single unpaired electron interacting strongly with one 

29 . l d kl . h h 29 . l . Si nuc eus an wea y wit two ot er Si nuc ei. 
~ ~ 

The g, A 
29Si 
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+ 
(strong hfs) and A (I,II) (weak hfs) matrix parameters were obtained. 

29Si 

On the basis of experimental results and calculations, it was suggested 

that possibly the El center is an oxygen vacancy with the electron in a 

nonbonding sp3 hybrid orbital localized primarily on one silicon. But 

this model could not explain the observed weak hyperfine ESR spectrum. 

Further work on the El center has been reported by Feigl et al. 

(11) and Yip and Fowler (12) . A linear combination of localized orbital-

molecular orbital (LCLO-MO) cluster method was used to calculate the 

electronic structure of the E' center in a-quartz. As a result of their 
1 

calculations, it was suggested that the El center is an O vacancy with 

a highly asymetric relaxation of the two silicons adjacent to the O 

vacancy. The unpaired electron is strongly localized in the nonbonding 

3 
sp hybrid orbital centered on the closest silicon and oriented along 

the Si-0 short bond direction toward the oxygen vacancy as shown in 

Figure 1. 

The E2 center in a-quartz was studied in detail by Weeks (13) using 

ESR. The observed ESR spectrum when the magnetic field is along the 

c-axis consisted of two primary lines separated by 0.4G at 300K. From 

the ESR measurements at 24 GHz it was decided that the two-line spectrum 

was due to an unpaired electron (S = 1/2) at the defect interacting with 

a single 100% abundant nuclear spin I = 1/2. In addition to the primary 

lines, additional pairs of weak lines, one pair at high field and one 

pair at low field, separated by 412.0G were observed in the c-axis spec-

trum. The separation within these pairs of lines was the same as the 

primary doublet, 0.4G. The ratio of the intensities of each of these 

lines to each component of the primary lines was 0.03. No additional 

weak pairs of lines with 7G and 8G splittings were observed for the E2 



y 

z 

Q Silicon 

, ,--.( 
I \ 
\ I 

... "' I 

O·oxygen 

Figure 1. Proposed Model for the Ei Center (Yip and 
Fowler Ref). The Arrows Indicate the 
Assymetric Relaxation of the Two Silicon 
Positions. The Unpaired Electron is 
Located on Si(O) (i.e., the Short-Bond 
Side) 
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center, in contrast to the El center (10). From the comparison of the 

crystals grown in H2o with one grown in o2o, it was determined that the 

doublet structure of the E2 center is due to a hyperfine interaction of 

the unpaired electron with a nearby proton. The weak (0.03 intensity), 

but widely separated, pairs of hyperfine interactions were interpreted 

as arising from an interaction of the defect electron with a 29si 

nucleus. Since only one pair of such lines and no additional weak in-

teractions were observed, Weeks proposed that the E2 center is an elec­

tron trapped in a nonbonding sp 3 hybrid orbital on a silicon with an 

oxygen and the next neighbor silicon missing, as shown in Figure 2. 

The excess charge due to the remaining oxygen ions around the silicon 

8 

vacancy are compensated by the monovalent and divalent cation impurities 

present in the crystal. The nearby proton associated with the E2 center 

is one of these impurities. Considering the weak hyperfine interaction 

f th E I t • h b 29s • h d d 1 b k • o e cen er wit two near y i, t e propose mo e y Wee s is an 
1 

oxygen divacancy shown in Figure 2. In this model the weak hyperfine 

interaction arises from the two nearest-neighbor silicons through the 

oxygen vacancies. Such a defect could trap four or two electrons in a 

nonpararnagnetic state, and such a nonparamagnetic state has been 

observed indirectly according to Weeks and Nelson (9). 

In support of the models proposed by Weeks (13) for the El and E2 
center, Castle et al. (14), measured the spin-lattice relaxation time 

T1 by the inversion-recovery technique for these centers over a wide 

temperature range. The data were interpreted in terms of cross relaxa-

tion, direct processes, and Raman processes. The theory of spin-

lattice relaxation was extended to account for the modification of 

strain at a defect site due to a lattice wave. A detailed comparison 



z 

)Y 

0 Silicon oo~gen 
Proposed model for the E2 center. Location of nearby proton is not 

specified. The unpaired electron is located on Si(4). 

Figure 2. Models for the Ei and E2 Center as Proposed by R. A. Weeks 
(13) 
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)y 

0 silicon 0 o~~n 
Proposed model for the El center. The unpaired electron is located 

on Si(O). 

Figure 2 (Continued) 
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with theory of the relaxation rates observed for the two E' centers 

suggested that each center had two characteristic frequencies or tem-

peratures 8i. For the E2 center, one of these was ascribed to the vi-

bration of a neighboring impurity ion, probably a proton. The authors 

proposed that the El center is an electron trapped at a silicon ion 

located in an oxygen divacancy, which is similar to the model proposed 

by Weeks (13) . 

Feigl and Anderson (15) used ESR to study paramagnetic defects 

produced by low energy ionizing radiation in crystalline quartz doped 

with germaniwn. Their analysis indicated that these defects are simi-

11 

lar to the El and E2 centers in pure crystalline quartz with a germanium 

ion substituted for the central silicon ion in the E'-defect structures. 

Two distinct but similar spectra of the El-type associated with Ge 

impurities were observed, each characteristic of a specific irradiation 

and heating treatment. In contrast to the proposed divacancy model of 

Weeks (8) , a single-oxygen-vacancy model for the El (Ge) center was pro­

posed where the unpaired electron occupies a non-bonding sp 3 orbital 

strongly localized on the Ge impurity. 

Another oxygen-vacancy center, the E4 center, first reported by 

Weeks and Nelson (9), has been studied in more detail by Isoya et al. 

(16) using ESR. Weeks and Nelson (5) suggested that the ESR spectrum of 

this center, which consisted of four equally spaced and equally lines, 

was a result of an electron (S = 1/2) interacting with an alkali ion 

(I = 3/2) present in the crystal as a charge compensating impurity. 

Isoya et al. (16) observed that for low microwave power levels, the in-

tensity ratio of the outer pair of lines to the inner pair is approxi-

mately 1.2:1 at 9.85 GHz. This is not consistent with an S = 1/2 and 
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I = 3/2 system. In a detailed angular dependence study of the E4 

spectrum at X-band, it was observed that as the separation of the inner 

pairs of lines decreases, the intensities of these inner lines increases 

and remain equal while the intensities of_ the outer pair of lines cor-

respondingly decrease and remain equal. Further, as the splitting be-

tween the inner pair of lines approached zero, the outer pairs of lines 

were separated by 10.SG, which is very nearly twice the proton Larmor 

frequency. Therefore, they concluded that the E4 center has S = 1/2 

and the hyperfine structure arises from interaction with a proton (I = 

2 
1/2) in a situation permitting observation of all 2S(2I+l) possible 

ESR transitions. The near equality of the amplitudes and spacings of 

the four primary absorption lines observed at X-band were not found 

when the spectrum was taken at 20.4 GHz (K-band) with the magnetic field 

parallel to the c-axis. Also, to a first-order approximation, the 

separation of the outer pair of lines scaled with the magnetic field 

and thus with the proton Larmer frequency. This additional work at 

K-band confirmed their conclusion that the E4 center is an S = 1/2, 

+ + 
I = 1/2 spin system. The spin Hamiltonian parameter matrices g, AlH' 

+ 
A (1,2) have been measured. 

29Si 
A proposed model of the E4 center, 

consisting of an O vacancy between Si(l) and Si(2) with a hydride ion 

bonded to Si(l), is shown in Figure 3. Ab initio SCF-MO calculations 

for a 15-atom cluster using the Gaussian 70 quantum chemistry computer 

program allowed them to obtain the minimum energy configuration for 

this cluster. The results of this calculation supported the model 

and gave good agreement with the experimental ESR data. 



y 
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Q Silicon 
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\ I 

... r " 
I 

I 

0 oxygen .H 
Figure 3. Model for the E4 Center as Proposed by Isoya 

et al. (16). The Unpaired Electron is 
Unequally Shared Between Si(O) and Si(l) 
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Present Study 

Additional new oxygen-vacancy centers, other than the Ei, E2 and 

E4 centers, have been observed in a-quartz following electron irradia-

tion at room temperature. In the past, lengthy electron irradiations 

at room temperature had raised the sample temperature during the 

process and thus thermally annealed these new defects as soon as they 

14 

were formed. Reduction of radiation times minimized the sample heating 

effects and allowed the new defects to be monitored in subsequent ESR 

measurements. After recognizing the heating problem during irradiations, 

the samples were irradiated at o0 c by immersing them in ice water. 

These three new centers, labeled as E" E" and E" centers, were 
l' 2' 3 

observed along with the E;2 and E4, centers. The ESR linewidths for 

these centers are 0.05 G. The c-axis doublet separations for the E" 
l' 

E" and E" centers are 5.00 G, 11.00 G and 17.87 G, respectively. 
2 3 

Initial efforts were concentrated on the most intense El center spectrum. 

Preliminary angular dependence showed that the doublet separation 

varied from approximately 5.00 G to 192.00 G. Such a large angular 

dependence of the splitting effectively eliminated the proton as a 

cause of the splitting. A half-field line, characteristic of S = 1 

spin systems, was observed for this center. The double primes repre-

sent the number of unpaired electrons in the centers, in contrast to 

the double primes denoting a diamagnetic center as proposed by Weeks 

and Nelson (9). Centers similar to the present E" defects have been 

reported by Weeks and Abraham (17,18) and Solntsev et al. (19). 

However, complete analyses were not presented in the above three-

referenced papers. 

In this study, an analysis of the main line spectra for the El 



and E3 centers has been presented along with an analysis of the hyper-

fine interactions for the El center. From the parameters obtained for 

+ + + 
the g, D and A matrices, models will be proposed for the El and E3 
centers. 
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CHAPTER II 

EXPERIMENTAL PROCEDURE 

All the ESR spectra reported in this dissertation were obtained 

using a Varian 4502 ESR spectrometer. The block diagram of this homo­

dyne X-band (9-10 GHz) spectrometer is shown in Figure 4. 

Microwave power was supplied by a VA153C klystron and the microwave 

frequency was stabilized by an automatic frequency control system in 

which the klystron was locked to the sample cavity. This AFC used 10 

kHz frequency modulation of the klystron, via the reflector voltage, to 

create an error signal. A home-built microwave bridge having both a bias 

and sample arm was substituted for the less-versatile Varian bridge. 

The sample arm contained a precision attenuator (0-60 db) to control 

the level of microwave power incident on the sample. The bias arm con­

tained a phase shifter and an attenuator to vary the detector bias. A 

self-locking HP 5340A frequency counter was used to measure the micro­

wave frequency. 

A home-made TE102 rectangular cavity was used to measure the angu­

lar dependence of the main-line spectra, whereas a V-4531 rectangular 

cavity was used for the hyperfine spectra measurements. The static 

magnetic field was amplitude modulated at 100 kHz, with the modulation 

coils mounted on the outside of the TE102 home-made rectangular cavity 

and within the wall of the Varian cavity. A GaAs FET solid state micro­

wave amplifier (Narda N62445-37) was incorporated in the sample arm to 

16 
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increase sensitivity especially at lower microwave power. The output 

from the amplifier was detected using a properly-biased low noise 

Schottky barrier diode (MA40075 ) . This resulting signal from the 

diode was then amplified and fed to a phase-sensitive detector. The 

output from the phase-sensitive detector was fed to an oscilloscope 

and to a Houston Instruments (Model 2000) x-y recorder. 

A Varian 12-inch fieldial-regulated electromagnet was used to 

produce the static magnetic field. Stabilization of the magnetic field 

was achieved by use of a Hall probe, mounted on one of the pole caps, 

and its associated error-feedback circuitry. The Hall probe supplied 

a signal proportional to the magnetic field, which was compared to a 

reference in order to obtain an error signal. This error signal was 

then used to adjust the magnet current and maintain a fixed magnetic 

field. All the magnetic field values reported in this dissertation were 

measured using a self-tracking Varian E-500 digital Gaussmeter. 

Samples used in this investigation were obtained from Toyo Corn-

munications Company and from Western Electric and all were unswept. The 

angular dependence of the main ESR spectra for the E" and E" centers 
1 3 

were measured using sample SQA-10(2.lx8.7x25.0 
3 

mm ) , an X-plate cut from 

a pure Z growth bar of Toyo Supreme Q quartz. 
29 . . 

The Si hyperfine angu-

lar dependence data for the E]_ center were obtained from Sample WEA-1, 

~ 3 
a Z-plate (2.7ixl0xl3 mm) cut from the X-growth region of a Western 

Electric synthetic quartz stone. 

Crystal Structure 

There are three well-known polymorphic crystalline forms of silica: 

Quartz, Tridymite and Cristobalite (20). Quartz is the most common and 
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important of these three forms of silica. The structure of all forms 

of crystalline silica consists of Si04 tetrahedra sharing each of their 

corners with other tetrahedra in a continuous three-dimensional net-

work. Quartz occurs in two distinct forms, a low-temperature form 

called low-quartz (or a-quartz) and a high temperature form called 

high-quartz (or S-quartz) . The transition from one form to the other 

occurs at about 846K and can take place reversibly; although cooling 

through the a-f$ transition temperature nearly always results in an 
.• 

electrically twinned crystal. Both high and low quartz can exist in 

two enantiamorphous forms, right-handed and left-handed crystals, which 

are mirror images of one another. 

Quartz has a hexagonal unit cell which consists of 3 formulas 

with a = 4.9157~ and Co = 5.406~ (21). The space group for right­
o 

handed quartz is P3221. Symmetry elements for quartz consist of a 

+ + -+ -+ 
threefold axis (c) and three twofold axes (a1 ,a2 and a 3). A projection 

of right-handed a-quartz in a plane perpendicular to the c-axis is 

shown in Figure 5. The crystallographic coordinate system is formed 

-+ -+ • 0 
from two axes a1 and a 2 , making an angle of 120 with each other, and a 

-+ 
third axis c. 

The atomic position coordinates are evaluated in terms of these 

-+ -+ -+ 
three axes (a1 , a 2 , c) by Wyckoff (22) using fractions of the unit cell 

dimensions. 

Sil: (u,u,1/3) Si2: (u,o,o) Si3: (o,u,2/3) 01: (x,y,z) 

02: (y-x,x,z+l/3) 03: (y,x-y,z+2/3) 04: (x-y,y,z) 

05: (y,x,2/3-z) 06: (x,y-x,1/3-z) 

The position parameters x,y,z and u at room temperature have been re-

ported by Lepage and Donnay (23) using cell dimensions measured at 298K 
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Figure 5. Projection of Atomic Positions in Right Quartz 
Onto [001] Plane, Showing Co-ordinate System 
Conventions Used in This Dissertation. 
Wyckoff's Atomic Positions are Labeled 
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by Cohen and Summer (21). These parameters are as follows. 

x 0.41372~ y = 

and 

u = 

0 
0.26769A, 

o.469s1R 

z = 
o· 

0.ll880A 
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Quartz exhibits a piezoelectric effect and the positive end of the 

x-axis {or a-axis) is defined as the side developing a negative charge 

during compression of the crystal along that axis (24). A projection 

of quartz on the plane perpendicular to the x-axis is shown in Figure 

6. One can generate every atomic position in the quartz lattice by 

+ + + 
lattice translations along a 1 , a 2 and c from one of the nine positions 

specified by Wyckoff. ~he nomeclature used to specify any atom posi-

tion in the lattice is A(i,j,k), where A represents one of the Wyckoff 

atoms and i,j and k are integers representing the numbers of lattice 

+ + + 
translation along a 1 , a 2 and c, respectively. 

The Sio4 groups which form the quartz lattice are not perfect 

tetrahedra and local synrrnetry at a silicon site is c2 . Thus, there 

are two types of Si-0 bonds, slightly different in bond lengths from 

each other. The equilibrium bond lengths for these two types are 

0 0 
l.611A and l.607A at room temperature (23). Consequently, when con-

sidering the environment of a particular silicon the neighboring oxygens 

are in general referred to as long-bonded and short-bonded oxygens. For 

our discussion, a shorter nomenclature for atoms surrounding Si2(0,0,0) 

is introduced in Table I and Figure 6. As an example, ox[0,2] repre-

sents the oxygen bonded between Si(O) and Si(2). The x,y,z coordinates, 

separation distances, and bond directions for the set of atoms in Table 

I are listed in Tables II and III. 
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Figure 6. A Thirty-three Atom Projection of Right Quartz on the Plane Perpen­
dicular to the X-axis. The Six Outer Silicons Actually Represent 
Two Silicon Sites Each, One Above the Other 
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TABLE I 

RELATION BETWEEN FULL SPECIFICATION AND SHORT FORM NOMENCLATURE 

Full Short Full Short 
Specifications Form Specifications Form 

Si2(0,0,0) Si (0) 04(0,0,0) 0[1,0] 

Si3(0,l,l) Si {l) 03(0,1,1) 0[1,5] 

Sil(l,1,0) Si (2) 02(0,0,l) 0[1,6] 

Si3(1,0,l) Si (3) 05(0,1,1) 0[1,7] 

Sil(l,0,0) Si (4) 01(0,0,0) 0[2,0] 

Si2(1,l,O) Si (5) 05(0,0,0) 0[2,8] 

Sil(O,O,l) Si (6) 02(1,1,0) 0[2,9] 

Sil(l,0,l) Si(7) 06 (1,1,0) 0[2,10] 

Si3(0,0,0) Si (8) 03(1,0,1) 0[3,0] 

Si3(1,0,0) Si (9) 05(1,0,l) 0[3,ll] 

Si2(0,l,O) Si (10) 04(1,1,0) 0[3,12] 

Sil(2,l,l) Si (11) 02(1,1,1) 0[3,13] 

Si2(1,l,O) Si(l2) 06(1,0,0) 0[4,0] 

Sil(l,1,1) Si (13) 05(0,1,0) 0[4,14] 

Si3(0,l,O) Si(l4) 02(1,0,0) 0[4,15] 

Si3(1,l,O) Si (15) 01(0,1,0) 0[4,16] 

si2(o,i,o) Si (16) 
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TABLE II 

ATOMIC POSITION CO-ORDINATES OF ATOMS IN QUARTZ AT 300K 

Short Form x y z 

Si (0) 2.30944 0.0 0.0 

Si (1) 1. 30313 -2.25708 -1.80206 

Si(2) 1. 30313 2.25708 1.80206 

Si (3) 3.76097 2.00004 -1.80206 

Si (4) 3.76097 -2.00004 1. 80206 

Si (5) -0.14840 -4.25712 0.0 

Si (6) -1.15472 -2.00004 -3.60413 

Si (7) 3.76097 -2.00004 -3.60413 

Si (8) -1.15472 2.00004 3.60413 

Si (9) 3.76097 2.00004 3.60413 

Si (10) -0.14840 4.25712 o.o 

Si(ll) 6.21882 2.25708 -3.60413 

Si(l2) 4.76729 4.25712 0.0 

Si (13) 1. 30313 2.25708 -3.60413 

Si (14) 1.30313 -2.25708 3.60413 

Si (15) 6.21883 -2.25708 3.60413 

Si(l6) 4.76729 -4. 25712 o.o 

0[1,0] 1. 37578 -1.13958 -0.64226 

0 [l, 5 J 0.78305 -3.63545 -1.15981 

0[1,6] 0.29902 -1. 76125 -2.06187 

0[1,7] 2.75687 -2.49586 -2.44432 

0[2,0] 1. 37578 1.13958 0.64226 

0[2,8] 0.29902 1.76125 2. 96187 
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TABLE II {Continued) 

Short Form x y z 

0[2,9] 2.75687 2.49586 2.44432 

0[2,10] 0.78305 3.63545 1.15981 

0[3,0] 3.24089 0.62166 -1.15981 

0[3,ll] 5.21472 1. 76125 -2.44432 

0[3, 12] 3.83363 3.ll753 -0.64226 

0[3,13] 2.75687 2.49586 -2.96187 

0[4,0] 3.24089 -0.62166 1.15981 

0[4,14] 2.75687 -2.49586 2. 96187 

0 [ 4, 15 J 5.21472 -1. 76125 2.44432 

0[4,16] 3.83363 -3.117529 0.64226 



TABLE III 

INTERATOMIC DISTANCES AND BOND DIRECTIONS BETWEEN 
ATOMS IN QUARTZ AT 300K 

Distance Direction 
Atoms in ~ e 

Si (0) - Si (1) 3 .0585 126.1° 

Si (0) - Si (2) 3.0585 53. 9° 

Si (0) - Si (3) 3 .0585 126.1° 

Si (0) - Si(4) 3.0585 53.9° 

Si (1) - Si (2) 5.7764 51. 39° 

Si (1) - Si (O) 3.0585 53.9° 

Si (8) - Si (7) 9.598 138. 7° 

Si (0) - ox[l,o] 1.6071 113. 5° 

Si(O) - ox[2,o] 1.6071 66.4° 

Si (0) - Ox[3,0] 1. 6122 136.0° 

Si (0) - Ox[4,0] 1. 6122 44.0° 

Si (1) - ox[l,o] 1.6122 49.0° 

Si (8) - ox[l,o] 5.8559 136. 5° 

Si (8) - ox[2,o] 3.9895 137.9° 

ox[2,o] - Si(2) 1.6122 44.0° 

Ox[l,C] - Si (2) 4.1853 54.3° 
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ijJ 

245.0° 

114.0° 

54.0° 

306.0° 

90.0° 

65.97° 

320.9° 

230.7° 

129.3° 

33.7° 

326.3° 

86.3° 

308.9° 

341.2° 

93.7° 

91.2° 



27 

All the results reported in this work are for right-handed a-quartz 

using a right-handed coordinate system. The x axis is parallel to a 

twofold axis having the same sense, as determined by the piezoelectric 

response on compression of the crystal. The proper point group govern­

ing the symmetry-related properties of most defects is o3 . There are 

six equivalent symmetry sites for defects containing an oxygen site, all 

of which can be obtained from a particular site by using the proper 

transformation matrices for point group D3 • 



CHAPTER III 

THEORETICAL ANALYSIS 

The spin Hamiltonian describing an S = 1 system (two unpaired elec-

trons) interacting with one magnetic nucleus is given, in general by 

where the first term represents the electron Zeeman interaction, the 

second term represents the dipolar and/or exchange interaction (fine 

structure) between the two unpaired electrons, and the third term repre-

sensts the hyperfine interaction due to the magnetic nucleus. The last 

term is the nuclear Zeeman interaction. 

The following coordinate systems are used in converting this spin 

Hamiltonian to a suitable form for computer manipulation. 

x,y,z: 

x ,y ,z : 
c c c 

x ,y ,z : 
g g g 

magnetic coordinate system chosen such that the mag-

netic field is along the z direction. 

Crystal coordinate system. 

Principal axes of the g-matrix. 

Principal axes of the D-matrix. 

+ 
Principal axes of the hyperfine matrix A. 

Rewriting the Hamiltonian in terms of these different coordinate 

systems, we have 

28 
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H s [s gx H + s gy H + s gz H J x x yg yg z z g g g g 

+ s D s + s D s + s D s 
xl x xl Y1 y Y1 zl z zl 

+ s A I + s A I + s A I 
x2 x X2 Y2 y Y2 22 2 22 

gJN HI 
22 

The relationships between the different coordinate systems are 

I xl [TG] I y 

L 2 _ 

and 

= [Tz] [: l 
z I -

where [TG], [TH], and [TZ] are rotation matrices transforming the princi-

++ ++ ++ 
pal axes coordinate systems of the g, D, and A matrices to the magnetic 

field coordinate system. The spin vectors and magnetic field transform 

in the same manner, i.e., 



s 

s 

x 
g 

z 
g 

H 

= [TG] 

H 

x 
g 

z 
g 

1 
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= [TG] 
0 

H 

etc. Similar expressions are used for the (x1 ,y1 ,z1 ) and (x2 ,y2 ,z2) co­

ordinate systems when [TH] and [TZ], respectively, replace [TG]. 

Using the above transformations, the Hamiltonian is written only 

in terms of the magnetic field coordinate system (x,y,z), as follows: 

H Wl s + W2 S + W3 S + W4 s 2 
+ ws s 2 

W6 
2 

+ s 
x y z x y z 

+ W7 s s + W7 s s + W8 s s + W8 S S 
y x x y x z z x 

+ W9 s s + W9 s s + WlO S I + Wll S I + Wll S I 
z y y z x x x y y x 

+ Wl2 S I + Wl2 S I + Wl3 S I + Wl4 S I + Wl4 S I 
x z z x y y z y y z 

+ Wl5 S I - (gJN) HI 2 z z 

where the W's are: 

Wl HS [TG(l,l)TG(l,3) g + TG(2,l)TG(2,3)g +TG(3,l)TG(3,3)g2] 
x y 

W2 HS[TG(l,2)TG(l,3)g +TG(2,2)TG(2,3)g +TG(3,2)TG(3,3)q J x y -z 

W3 = HS[TG(l,3)TG(l,3)g +TG(2,3)TG(2,3)g +TG(3,3)TG(3,3)g J 
x y z 

W4 = TH(l,l)TH(l,l)D +TH(2,l)TH(2,l)D +TH(3,l)TH(3,l)D 
x y z 

ws TH(l,2)TH(l,2)D +TH(2,2)TH(2,2)D +TH(3,2)TH(3,2)D 
x y z 

W6 = TH(l,3)TH(l,3)D +TH(2,3)TH(2,3)D +TH(3,3)TH(3,3)D 
x y z 

W7 = TH(l,l)TH(l,2)D +TH(2,l)TH(2,2)D +TH(3,l)TH(3,2)D 
x y z 

W8 TH(l,l)TH(l,3)0 +TH(2,l)TH(2,3)D +TH(3,l)TH(3,3)D 
x y z 

W9 = TH(l,2)TH(l,3)D +TH(2,2)TH(2,3)D +TH(3,2)TH(3,3)D 
x y z 
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WlO = TZ(l,l)TZ(l,l)A +TZ(2,l)TZ(2,l)A +TZ(3,l)TZ(3,l)A 
x y z 

Wll TZ(l,l)TZ(l,2)A +TZ(2,l)TZ(2,2)A +TZ(3,l)TZ(3,2)A 
x y z 

Wl2 TZ(l,l)TZ(l,3)A +TZ(2,l)TZ(2,3)A +TZ(3,l)TZ(3,3)A 
x y z 

Wl3 TZ(l,2)TZ(l,2)A +TZ(2,2)TZ(2,2)A +TZ(3,2)TZ(3,2)A 
x y z 

Wl4 = TZ(l,2)TZ(l,3)A +TZ(2,2)TZ(2,3)A +TZ(3,2)TZ(3,3)A 
x y z 

Wl5 TZ(l,3)TZ(l,3)A +TZ(2,3)TZ(2,3)A +TZ(3,3)TZ(3,3)A 
x y z 

Using the raising and the lowering operators 

s = s + is I s = s - is I + x y x y 

I I + iI I and I = I - iI , 
+ x y x y 

we can write the Hamiltonian in the following form, 

H W3S + Ql*S + Ql S + Q *52 + Q2 s2 
z + - 2 z 

W6 
2 

Q3 s s + s + Q3 s s + 
z + - - + 

+ Q4* s s + Q4 
+ z s s - z + Q4* s s z + 

+ Q4 s 2s_ + QS* I S + Q6 I S 
+ + + -

+ Q6 I S + QS I S + Q7 I S 
- + + - z -

+ Q7 r_s2 + Q7* I S + Q7*I S z + + z 

+ Wl5 r2 s 2 - gJ N HIZ . 

where 

Ql l/2(Wl + iW2) 

Q2 l/4(W4-W5+2iW7) 

Q3 = l/4(W4+W5) 

Q4 l/2(W8+iW9) 
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Q5 = l/4(Wl0+2iWll-Wl3) 

Q6 = l/4(WlO+Wl3) 

Q7 l/2(Wl2+iW14). 

. . 29 . 
Since we are concerned with an S=l electron spin system and a Si 

nucleus which has I = 1/2, the basis set chosen is JMSMI> where M8 can 

be +l, 0, or -1 and M1 can be + 1/2 or - 1/2. This basis set consists of 

six eigen vectors, which allows one to write the Hamiltonian in a 6x6 

matrix form. The Hamiltonian must be hermitian and the lower half of 

the matrix elements are sufficient to calculate the energy eigenvalues. 

The notation for the lower half of the matrix elements is presented in 

Table IV and the resulting energy level scheme, upon diagonalization of 

the 6x6 matrix, is shown in Figure 7. The non-zero elements of the 

energy matrix are given as follows: 

A(l,l) 

A(2,l) 

A(2,2) 

A ( 3, 1) 

A ( 3 I 2) 

A(3,3) 

A(4,l) 

A(4,2) = 

A(4,4) 

A(5,l) 

A (5, 3) 

Q7 

Wl5 gNBNH 
W3+W6 + 2Q3 - ~2- + 2 

.;2 (Ql + Q4 + Q?) 
2 

f2 QS 

./2 (Ql+Q4 - Q?) 
2 

2Q2 

12 (Ql - Q4 + 22) 
2 

A(5,4) = ./2 Q6 



«H, +1/2 I 

<+l, -1121 

<O I -1-1;2 I 

<D, -1.121 

< -1, +1/2 I 

< ..,.1, -112 I 

TABLE IV 

LOWER HALF OF 'I'HE SPIN HAMILTONIAN MATRIX FOR AN S=l, I=l/2 SPIN SYS'rEM 

1+1, +1/2> l+l - 1/2> 10, +1/2> lo, -1/2> 1-1, +1/2> 

----------

A ( l, 1) 

A(2,l) A(2,2) 

A(3,l) A(3,2) A(3,3) 

A(4,l) A(4,2) A ( 4, 3) A(4,4) 

A(S,l) A(S,2) A(S,3) A (5, 4) A(5,5) 

A(6,l) A(6,2) A(6,3) A(6,4) A(6,5) 

1-1, -1/2> 

A(6,6) 

w 
w 
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Figure 7. 

M =+l s 

M =O s 

Ms=-1 

HJ'10 

D;r!O 

A=O 

M =+~ 
I 

M =-~ 
I 

M =-~ 
I 

M =+~ 
I 

H~O 

DJ'10 

AJ'10 

Energy Level Diagram for an S=l, I=~ Spin System 
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A(5,5) 

A ( 6 I 2) = 2Q2 

A(6,3) = 12 Q5 

A(6,4) = 12 (Ql - Q4 - Q7/2) 

A(6,5) = - Q7 

A(6,6) w6 + w~5 + 2Q3 - W3 + 
gNSNH 

2 

++ ++ 
For the analysis of only the g and D tensors, the Hamiltonian can 

+-+-
be simplified by setting the A tensor and the nuclear Zeeman term equal 

to zero. In this case, the basis set of vectors chosen is !Ms>' where 

MS can be +l, 0, or -1. This allows one to obtain the 3x3 energy matrix 

shown in Table V. Three energy eigenvalues are calculated for this 

matrix and the corresponding energy level diagram is shown in Figure 8. 



TABLE V 

LOWER HALF OF THE SPIN HAMILTONIAN MATRIX 
FOR AN S=l SPIN SYSTEM 

l+l> jo> J-1> 

<+lJ A(l,l) 

A(2, 1) A(2 ,2) 

A ( 3, l} A(3,2) A(3,3) 

36 
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Figure 8. Energy Level Diagram for an S=l Spin System. The 
Two Allowed ~Ms = ±1 Transitions are Shown 
Along With the Semi-forbidden ~Ms = ±2 (Half­
Field) Transition 
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CHAPTER IV 

EXPERIMENTAL RESULTS 

When high quality synthetic quartz was irradiated at 300K, followed 

by a short 77K electron irradiation, the ESR spectrum shown in Figure 9 

was observed at 300K for the magnetic field H parallel to the [001] 

direction. This c-axis primary-line spectrum consists of three doublets 

with 5.00G, 11.00G, and 17.87G separations and intensity ratios of 

approximately 3:2:1, respectively. 

The doublet with 11.00G separation annealed in about 6 hours at the 

room temperature and the doublet with 5.00G separation annealed in a few 

days. The ESR spectrum taken after the sample had been sitting at room 

temperature for a few days consi-ted of only the doublet with 17.87G. 

Hence it was concluded that the three doublets were due to three differ-

ent centers. These doublets have been assigned the labels of El, E2, 

and E) centers, respectively. Since the ESR linewidths were extremely 

narrow (=0.05G) and the lines were easily power saturated because of 

long spin-lattice relaxation times, the phase of the lOOkHz modulation 

unit was adjusted out-of-phase to optimize the intensity of the lines and 

to prevent modulation "sidebands" from appearing and giving distorted ESR 

line shapes. All the ESR spectra presented in this chapter (except for 

the half-field line discussed in the next paragraph) were recorded with 

the phase adjusted in this manner. 

In principle, a doublet ESR spectrum can either result from an inter-

action between an unpaired electron (S=l/2) and a nuclear spin I=l/2 or 

38 
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Figure 9. ESR Trace Showing the E" Centers at 300K When H is Along 
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from a triplet system (S=l) with no hyperfine as shown in Figure 8 in 

Chapter III. The definitive evidence for the triplet nature of a center 

is the presence of the semi-forbidden transition (MS = +l +-r M8 = -1) at 

half the magnetic field of the allowed transitions. Such a half-field 

line was observed for the E" centers and it is shown in Figure 10. Since 

the three centers have nearly identical g values, the three half-field 
c 

lines overlap and only one line was observed when the magnetic field was 

along the c-axis. This spectrum was recorded at higher microwave power, 

higher gain, and in-phase relative to the primary lines. 

An angular dependence study of the El center was carried out using 

-#- ++ 
sample SQA-10. This allowed the g and D matrix principal values and 

directions to be determined. The magnetic field was rotated about a 

twofold crystal axis (i.e., the x axis) and ESR spectra were recorded at 

20°, 40°, 60°, and 70° on each side of the [001] direction. Spectra 

0 beyond the 70 angle were not obtained because the signal intensity was 

dropping rapidly. This is because the microwave field component per­

pendicular to the static magnetic field is proportional to cos 2S for the 

orientation of the rectangular cavity being used where S is the angle 

between the static field and the crystal's c-axis. The magnetic field 

values and corresponding microwave frequencies are listed in Table VI 

for each measured ESR line. Since the gaussmeter probe was not located 

3+ at exactly the same place as the sample, a standard sample MgO:Cr 

(having a known g value of 1.9799) was placed in the cavity and correc-

tion factors determined for the different orientations of the magnetic 

field. These are listed in Table VII. 

-+ -+ 
The best sets of parameters for the g and D matrices were obtained 

using the two computer programs listed in Appendix A and B. The first 
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TABLE VI 

ORIGINAL DATA FOR THE PRIMARY LINES OF THE E]_ CENTER 

Uncorrected Corrected Calculated Microwave 
Field Field Field Frequency 

Angle in Gauss in Gauss in Gauss in GHz 

-70° 3185.1 3185.51 3185.44 9.1151497 
(-69. 70°) 3202.46 3202.90 3202.84 9.1151451 

3239.82 3240.26 3240.21 9.1151460 
3268.23 3268.68 3268.61 9.1151423 
3306.04 3306.50 3306.45 9.1151389 
3321.89 3322.34 3322.30 9.1151377 

-60° 3173.42 3173.94 3173.81 9.1145077 
(-59.76°) 3211.31 3211.84 3211.72 9.1145028 

3217.71 3218.24 3218.13 9.1145014 
3290.34 3290.88 3290.76 9.1145014 
3296.54 3297.09 3296.97 9.1145016 
3333.04 3333.59 3333.49 9.1144987 

-40° 3175.36 3175.73 3175.74 9.1145658 
(-39.86°) 3195.38 3195.75 3195.75 9.1145661 

3232.00 3232.38 3232.38 9.1145609 
3275.75 3276.12 3276.13 9.1145617 
3313.48 3313.86 3313. 89 9.1145598 
3331. 36 3331. 74 3331. 76 9.1145571 

-20° 3207.98 3208.27 3208.38 9.1146018 
(-19.92°) 3208.58 3208.88 3208.96 9.1146014 

3247.84 3248.14 3248.19 9.1145992 
3259.91 3260.21 3260.26 9.1145946 
3299.12 3299.42 3299.42 9.1145944 
3300.08 3300.39 3300.42 9.1145959 

00 3251. 38 3251.58 3251.72 9.1146036 
3256.38 3256.68 3256.75 9.1146013 

+20° 3203.26 3203.60 3203.59 9.1152273 
(19.94°) 3210.71 3211. 05 3211. 04 9.1152218 

3241.24 3241. 58 3241.56 9.1152224 
3267.12 3267.46 3267.43 9.1152201 
3298.42 3298.77 3298.73 9.1152169 
3304.35 3304.70 3304.65 9.1152175 

+40° 3164.94 3165.32 3165.27 9.1151215 
(39.88°) 3195.46 3195.84 3195.82 9.1151183 

3221.75 3222.13 3222.08 9.1151099 
3286.64 3287.03 3287.02 9.1151012 
3313.85 3314.24 3314.18 9 .1151003 
3342.35 3342.74 3342.70 9.115097 
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TABLE VI (Continued) 

Uncorrected Corrected Calculated Microwave 
Field Field Field Frequency 

Angle in Gauss in Gauss in Gauss in GHz 

+60° 3159.21 3159.53 3159.59 9.1150115 
(59. 76°) 3202.26 3202.59 3202.64 9.1150053 

3212.81 3213 .13 3212.17 9.1150000 
3295.72 3296.06 3296.10 9.1149937 
3306.23 3306.57 3306.60 9.1149901 
3347.85 3348.19 3348.22 9.1149850 

+70° 3170.09 3170.36 3170.47 9.1149567 
(69. 76°) 3195.43 3195.70 3195.83 9.1149560 

3231.83 3232 .11 3232.23 9.1149549 
3276.12 3276.40 3276.51 9.1149545 
3313.10 3313.39 3313.50 9.1149530 
3336.85 3337.14 3337.27 9.1149541 



Degrees 

-40° 

-60° 

-70° 

TABLE VII 

FIELD-CORRECTION FACTORS AS DETERMINED FROM 
STANDARD MgO:Cr3+sAMPLE 

(H 3+) Microwave Frequency 
Cr (GHZ) 

3300.87 9.1478600 

3300.88 9.1478843 

3300.80 9.1478717 

3300.61 9.1478134 

3300.69 9.1477849 

3300.79 9 .1477551 

3300.75 9.1477739 

3300.82 9.1477996 

3300.87 9.1477980 

(H ) 
sample 

- (H ) 
3+ Gaussmeter 

Cr 

(H ) 
sample 

3+ 
Cr 

3+ 
Cr 

hv 
gl3 

= 

-27 
6.6262xl0 x v 

3+ 
Cr 

-21 
9.274lxl0 xl.9799 
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L}H 

0.308 

0.307 

0.381 

0.543 

0.453 

0.349 

0.391 

0.337 

0.284 
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program, listed in Appendix A, was used to predict line positions (i.e., 

magnetic field values) for different orientations of the magnetic field 

when given a set of spin Hamiltonian parameters and a microwave fre-

quency. The second program calculates the final set of parameters when 

the microwave frequencies and experimental ESR line positions are pro-

vided as input data. 

+ 

+ 
In the first program, it was assumed that the parameters for the g 

and D matrices were known. Then the magnetic field values associated 

with different ESR resonance lines were predicted by an iteration scheme. 

The direction of the magnetic field relative to the crystal axes was 

specified by the angles alpha(a) and beta(B) as shown in Figure 11. For 

each set of these angles there were two transitions per inequivalent 

defect site according to the spin selection rules tiM8 = ±1. These pas-

sible transitions for one site are shown in Figure 8 in Chapter III and 

were determined by the following procedure. First, an initial value of 

magnetic field, H, was assigned. Then the 3x3 matrix shown in Table V 

was diagonalized by the computer and three energy eigenvalues D(I) given 

in order of ascending values were obtained. The microwave frequency 

necessary for a transition is the difference between the appropriate 

eigenvalues. The assigned magnetic field was then varied systematically 

and the microwave frequency corresponding to a particular transition was 

recalculated and compared with the experimental microwave frequency for 

each assigned magnetic field value. The iteration continues until the 

calculated microwave frequency lies within 0.1 MHz of the experimental 

frequency, the last value of the magnetic field was taken to be the par-

ticular line position. 

The values of the different spin Hamiltonian parameters were sys-

tematically varied in the second program, listed in Appendix B, until 
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Figure 11. Definition of Angles Alpha (a) and Beta ($) 
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good agreement between the calculated and experimental microwave fre-

quency for each experimental transition was obtained. The program 

essentially uses a least-squares-fit method. An initial set of para-

meters was assumed and the magnetic field positions for different 

orientation of the magnetic field were provided as experimental data. 

Using this information the energy eigenvalues were obtained as in the 

first program and the microwave frequency associated with each reson-

ance was calculated. 

Since the assumed set of parameters was most likely not the correct 

one, the calculated microwave frequency was not the same as the experi-

mental value. Hence a quantity called SUM 

SUM = ~ [ exp _ cal]2 
.~l v. v. 
1= 1 1 

was calculated where the summation is over all measured ESR lines. In 

each iteration, one of the parameters was increased by a pre-determined 

amount and a new set of microwave frequencies were obtained. The new 

value of SUM thus obtained was compared against the previous value of 

SUM. If the new value of SUM was greater than the previous value, then 

the value of that parameter (which had just been increased) was 

decreased by twice the specified increment. All the microwave fre-

quencies were recalculated and the new value of SUM was obtained. This 

SUM was again compared with the initial value of SUM and the value of 

this parameter which gave the smallest SUM was retained. This procedure 

was repeated for all the other parameters. The final set of parameters 

correspond to the case when any variation in any of the parameters 

failed to lower the value of SUM. 

The above discussed procedure was used to fit the experimental 
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field values and microwave frequencies for different transitions at 

various magnetic field directions of the El center in the y-z plane. 

The final set of parameters as determined from these computations is 

listed in Table VIII. This set of parameters was used in the first 

(i.e., line position) program to predict the angular dependence for the 

main line spectrum, shown in Figure 12. The O's represent the magnetic 

field values used as experimental data in the fitting program. The 

calculated magnetic field values for different lines are listed in 

Table VI for comparison with the measured field values. Angles listed 

in the first column of Table VI were also varied as parameters in the 

fitting program since the angular scale on the magnet seemed to be very 

slightly in error. The best values of the angles obtained from the 

program are listed in parenthesis (in the first column of Table VI). 

Similar analysis was done for the E3 center using the two programs 

discussed above. The measured values of the magnetic field and micro­

wave frequency for different line positions are listed in Table IX. 

The best set of parameters for the E) center is presented in Table X. 

The predicted angular dependence for the E} center is shown in Figure 

13. The O's represent the magnetic field values used as experimental 

data in the fitting program. 
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TABLE VIII 

SPIN-HAMILTONIAN PARAMETERS FOR THE El CENTER AS 
DETERMINED AT ROOM TEMPERATURE . 

e cp 

gx 2.0004 32.3° 246.0° 

gy 2.0006 91.8° 333.1° 

gz 2.0014 57.8° 61.9° 

D 110.0 MHZ 34.2° 234.9° 
x 

D 117 .6 MHZ 86.0° 330.8° 
y 

D -227.6 MHZ 56.0° 63.5° 
z 
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TABLE IX 

ORIGINAL DATA FOR THE PRIMARY LINES OF THE E3 CENTER 

Uncorrected Corrected Calculated Microwave 
Field Field Field Frequency 

Angle in Gauss in Gauss in Gauss in GHZ 

-70° 3237.64 3238.08 3238.07 9.1151368 

(-69. 70°) 
3241. 92 3242.36 3242.35 9.1151351 
3243.01 3243.45 3243.46 9.1151352 
3267.06 3267.51 3267.49 9.1151350 
3267.96 3268.41 3268.00 9.1151314 
3270.63 3271. 08 3271. 04 9.1151312 

-60° 3232.27 3232.80 3232.71 9.1144975 

(-59.76°) 
3241.27 3241.80 3241. 73 9.1144960 
3243.45 3243.98 3243.95 9.1144937 
3265.97 3266.51 3266.48 9.1144928 
3268.04 3268.58 3268.55 9.1144930 
3275.15 3275. 69 3275.64 9.1144890 

-40° 3228.14 3228.51 3228.52 9.1145589 

(-39. 86) 
3243.89 3244.26 3244.28 9 .1145555 
3250.14 3250.51 3250.51 9.1145517 
3259.47 3259.85 3259.85 9.1145490 
3265.12 3265.50 3265.50 9.1145455 
3279.24 3279.62 3279.63 9.1145440 

-200 3233.23 3233.53 3233.60 9.1145947 

(-19.92) 
3251. 27 3251. 57 3251.61 9.1145912 
3252.49 3252.79 3252. 85 9.1145895 
3256.10 3256.40 3256.44 9.1145866 
3257.87 3258.17 3258.21 9.1145856 
3274.48 3274.78 3274.82 9.1145860 

00 3245.26 3245.56 3245.61 9.1146003 
3263 .13 3263.43 3263.47 9 .1145986 

+20° 3237.92 3238.26 3238.24 9.1152095 

(19.94°) 
3244.52 3244.86 3244.85 9.1152064 
3250.75 3251. 09 3251.05 9.1152061 
3258.93 3259.27 3259.23 9.1152086 
3263.74 3264.08 3264.05 9.1152097 
3271.13 3271. 48 3271.44 9.1152085 

+40° 3237.02 3237.40 3237.40 9.1150955 

(39.88°) 3242.66 3243.04 3242.98 9.1150984 
3248.93 3249.31 3249.31 9.1150985 
3258.98 3259.37 3259.33 9.1151017 

3267.41 3267.80 3267.73 9 .1151006 

3272.31 3272.70 3272.67 9.1151078 
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TABLE IX (Continued) 

Uncorrected Corrected Calculated Microwave 
Field Field Field Frequency 

Angle in Gauss in Gauss in Gauss in GHZ 

+60° 3242.88 3243.21 3243.24 9.1149813 

(59. 76°) 
3243.27 3243.60 3243.68 9.1149801 
3251. 34 3251. 67 3251. 76 9.1149804 
3256.73 3257.06 3257.14 9.1149771 
3266.42 3266.75 3266.85 9 .1149781 
3267.03 3267.36 3267.40 9.1149777 

+70° 3246.24 3246.52 3246.63 9 .1149604 

(69.76°) 
3247.53 3247.81 3247.97 9.1149618 
3248.29 3248.57 3248. 72 9.1149609 
3260.80 3261.08 3261. 24 9.1149582 
3261.55 3261.83 3262.01 9.1149617 
3263.40 3263.68 3263.79 9.1149601 



TABLE X 

SPIN-HAMILTONIAN PARAMETERS FOR THE E3 CENTER AS 
DETERMINED AT ROOM TEMPERATURE 

e ¢ 

gx 2.0004 83.6° 78.9° 

gy 2.0005 47.4° 343.0° 

gz 2.0013 136.7° 355.8° 

D -25.0 MHZ 5o.o0 335.4° 
x 

D -25.2 MHZ 79.3° 236.3° 
y 

D +50.2 MHZ 138.0° 314.3° 
z 
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CHAPTER V 

HYPERFINE RESULTS FOR THE El CENTER 

When samples WEA-1 or SQA-10 were electron irradiated at 300K and 

then irradiated at low temperature (77K), additional weak ESR lines 

were observed, four on the low field side and four on the high field 

side of the main line spectrum for each of the E" centers when the mag­

netic field is along the c-axis of the crystal. These lines are shown 

in Figures 14 and 15. This means that there are four pairs of these 

smaller-intensity lines for each defect and they are approximately cen­

tered on the two primary lines for each center. These widely-split 

pairs of lines have been assigned to hyperfine interactions of each 

triplet center with two inequivalent 29si nuclei (I= 1/2 and 4.7% 

natural abundance). 

The magnetic field values for the hyperfine lines corresponding to 

the El_ center when the field is parallel to the c-axis are given in 

Table XI along with the assignments to specific nuc~ei. The fine struc­

ture line splittings of the two hyperfine doublets on the low field side 

of the main spectrum are 4.90G and 4.30G, whereas the similar splittings 

of the two hyperfine doublets on the high field side are 13.12G and 

12.75G. The separation between the doublets on the low and high field 

side are 202.23G and 195.82G for nucleus l and 2, respectively. All 

the ESR spectra were recorded with the 100 kHz modulation "in-phase" 

and with higher microwave power and gain, which is quite different from 

the conditions found to optimize the primary lines. 
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TABLE XI 

MAGNETIC FIELD POSITIONS OF THE PRIMARY DOUBLET AND THE EIGHT 
29si HYPERFINE LINES FOR THE El CENTER. THE MAGNETIC 

FIELD VALUES ARE IN GAUSS AND THE MICROWAVE 
FREQUENCY IS 9.3165 GHZ 

Primary Lines: 3323.74 3328.75 

Hyperfine Lines: 

Nucleus l 3219.43, 3224.25 3417.56, 3430.75 

Nucleus 2 3223.18, 3227.44 3414.75, 3427.54 
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l d d f h I 29 • h • An angu ar- epen ence study o t e E' center Si yperfine lines 
l 

+ 
for rotation in the plane perpendicular to the X(or a) axis was done at 

300K. The interactions with the two nuclei proved to be similar and it 

was very difficult to determine to which nucleus a particular hyperfine 

line should be assigned. In order to distinguish between lines result-

ing from the two different nuclei, data was taken for every one-tenth 

of a degree of rotation of the magnetic field up to fifteen degrees on 

each side of the c-axis. Although very tedious and time-consuming, 

this helped considerably in making proper line assignments and for later 

use in the computer program to determine hyperfine matrix principal 

values and directions for two 29si nuclei. The angular dependence for 

-15° to +15° rotation of the magnetic field are shown in Figures 16 and 

17 for the low and high field sides. The solid and dashed lines repre-

sent the calculated angular dependence for nucleus l and 2, respec-

tively, using parameters determined later in this chapter, whereas the 

O's represent the measured field values at five degree intervals. 

ESR spectra for the angles beyond fifteen degrees on each side of 

the c-axis were obtained by rotating the sample in the Varian Cavity 

(instead of rotating the magnetic field and keeping the sample fixed as 

in the -15° to +15° case). Normally, the samples were not cut with 

perfect x-plane ends and the rotating mechanism could not maintain the 

sample properly in the plane at all angles; therefore, the following 

procedure was used. First, the sample was placed at an approximate 

angle setting, making sure that the magnetic field was perpendicular to 

the two-fold (a) axis. [The approximate settings of the angles were 

0 0 0 . 0 0 0 0 
-30 , -48 , and -70 on one side and 30 , 40 , 60 and 75 on the other 

side of the c-axis.] Then, at each approximate angle setting, the 

values of the magnetic field and the microwave frequency were recorded 
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recorded for each of the main line and hyperfine line positions. This 

set of raw data for the various approximate angles is listed in Appen-

dix C. Also, ESR spectra were recorded at several in-between angles to 

follow the different hyperfine lines as they shifted positions. 

Since the angles at which the hyperfine data were taken were known 

to be slightly in error, a separate computer program making use of the 

+ + 
previously determined g and D matrix parameters was designed to correct 

+ + 
the values of these angles. The best set of values for the g and D 

matrices for the E" center, listed in Table VIII, was given to the line 
l 

position program. The separations within pairs of fine-structure-split 

lines in the primary spectrum were used as experimental data. For a 

particular angular setting, the experimental fine-structure separations 

(DF} were compared to the calculated separations (DFC) and the value of 

SUM 

SUM ~ [DFC(k} - DF(k)] 2 
K=l 

was evaluated. Then the value of the angle was increased by a speci-

fied increment and the value of SUM was calculated again. The new 

value of SUM was compared with the previous value and the smaller of the 

two was retained along with the corresponding angle. If the new value 

of SUM was greater than the previous value, then the angle was decreased 

by twice the specified increment and another new value of SUM was cal-

culated and compared to the previous value. Using this iteration 

scheme, the minimum value of SUM and the corresponding angle were 

obtained. This process was repeated for each of the other approximate 

angles. The best values of the angles obtained from this program were 

+ 
used in analyzing the hyperfine data, i.e., to evaluate the A and 

29Sil 

matrices. 



63 

Two programs, quite similar to the ones discussed in Chapter IV, 

were written to analyze the hyperfine data. These are listed in Appen-

dix D and E. The first program predicts the line positions given a set 

of parameters and a microwave frequency. The fitting program (second 

program) was modified to allow analyzing the hyperfine data in a slightly 

different fashion, as discussed below. 

+ + 
Best values of the g and D matrices were provided as non-varying 

+ 
parameters and initial parameters for the A matrix were chosen. Instead 

of individual line-position field values, experimental differences in 

the field values for each particular site were provided along with the 

average frequency for a particular angle. The magnetic field values 

associated with different ESR resonance lines were predicted by an iter-

ation scheme. An initial value of the magnetic field, H, was assigned. 

For each angle, there were four transitions according to the spin selec-

tion rules ~MS = ±1, ~MI = o. These possible four transitions are shown 

in Figure 7. The 6x6 spin-Hamiltonian matrix shown in Table IV was 

diagonalized and six energy eigenvalues D(I) given in order of ascending 

value were obtained. The four transitions are given by 

hv1 = D (4) - D (1) 

hv2 = D (6) - D (4) 

hv3 = D(S) - D (3) 

hv 4 = D (3) - D (2) 

The assigned field value was then varied and the microwave frequency cor-

responding to a particular transition was recalculated and compared with 

the experimental microwave frequency. If the calculated microwave fre-

quency was within 0.1 MHz of the experimental frequency, then the micro-

wave frequency for the other 3 transitions were calculated by a similar 

iteration. The differences were calculated for each angle for the dif-
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ferent sites as follows: 

DFC (MM, l) HF (3) - HF (2) 

DFC(MM,2) = HF(4) HF(l) 

Since the initial parameters for the A tensor were not necessarily 

the correct ones, the calculated differences were not the same as the 

experimental values DF(MM,l) and DF(MM,2). Therefore, a quantity called 

SUM 

SUM = 6f [(DFC(MM,l) - DF(MM,1)) 2 + (DFC(MM,2) - DF(MM,2)) 2] 
MM=l 

was calculated. Then the value of SUM was minimized by the iteration 

technique discussed in Chapter IV until any variation in parameters 

failed to lower the value of the SUM. It was necessary for us to use 

the differences in field values, instead of individual line positions, 

since the corrections to the magnetic field were not measured because of 

3+ 
the obstacles involved in placing the standard MgO:Cr sample in the 

cavity at the same position as the quartz sample. This procedure of 

minimizing the SUM in the above-discussed program does not in anyway 

hinder us in obtaining the best set of parameters since each individual 

line would have to be corrected by an almost identical amount for a par-

ticular angle, and this correction is not necessary if differences are 

used. 

Tables XII and XIII lists the experimentally measured and calcu-

lated differences for nucleus 1 and 2, respectively. A fairly good 

agreement is obtained between the measured and calculated differences 

using the best set of parameters listed in Table XIV. The calculated 

angular dependence for the low and high field side are shown in Figures 
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TABLE XII 

HYPERFINE DATA FOR NUCLEUS 1 IN THE El CENTER 

Measured Differences 
in Gauss 

199.22 
217.02 

201.4 
218.57 
196. 71 
211. 32 

202.08 

192.14 
206.42 
198.63 
214.98 

200.43 
218.14 

188.05 
201. 71 
198.14 
215.49 

197.01 
215.53 

188.68 
204.54 

196.2 
214.02 

195.8 
214.3 

189.93 
206.53 

195.35 
213. 27 

191.37 
208.82 

Calculated Differences 
in Gauss 

199.02 
216.80 

202.30 
219.48 
196.71 
211. 35 

201. 92 
218.87 

192.69 
206.98 
198.69 
215.05 

200.39 
218.17 

188.29 
201.95 
198.20 
215.61 

196.94 
215.55 

188.67 
204.51 

196.19 
214.05 

195.70 
214.3 

189.72 
206.45 

195.30 
213.24 

191.28 
208.75 
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TABLE XII (Continued) 

Measured Differences Calculated Differences 
Angle in Gauss in Gauss 

0 
193.3 193.28 0 
211. 37 211. 30 

+50 192.26 192.17 
(4.98°) 209.72 209.67 

195.66 195.66 
214.02 214.04 

192.3 192.21 
210.3 210.23 

+10° 191.28 191.19 
(9.93°) 208.08 208.02 

198.32 198.34 
216.7 216.79 

191. 27 191.16 
209.2 209.13 

+15° 190.42 190.37 
(14.95) 206.45 206.39 

201.21 201.30 
219. 35 219.53 

190.45 190.15 
208.09 208.02 

+30° 188.78 188.67 
(29. 71°) 202.64 202.55 

209.99 210.38 
226.26 226.67 

187.99 187.84 
205.06 204.94 

+43° 188. 03 187.93 
(43.09°) 201.55 201. 46 

187.08 186.96 
203.14 203.02 

+75° 190.48 190.19 
(75.02°) 208.2 207.99 
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TABLE XII (Continued) 

Measured Differences 
in Gauss 

190.36 
203.3 

67 

Calculated Differences 
in Gauss 

190.29 
203.69 
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TABLE XIII 

HYPERFINE DATA FOR NUCLEUS 2 IN THE E" CENTER ·1 

Measured Differences 
in Gauss 

212.02 
226.73 

182.93 
199.64 

181.86 
195.35 

211.9 
221. 91 

181.05 
194.41 

179.92 
195.43 

204.45 
220.l 

181.98 
194.8 

181. 22 
197.96 

194.59 
212.62 

184.06 
'.!.99.88 

184.07 
201.2 

192.41 
209.9 

185.03 
200.94 

185.17 
202.31 

Calculated Differences 
in Gauss 

211. 76 
226.54 

183.26 
199.97 

181.91 
195.39 

211. 71 
225. 77 

181.25 
194.61 

181.01 
195.53 

204.42 
220.07 

182.08 
194.89 

181.34 
198.10 

195.38 
212.60 

184.04 
199.00 

184.11 
201.24 

192.48 
209.88 

184.95 
200.75 

185.16 
202.30 
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TABLE XIII (Continued) 

Measured Differences Calculated Differences 
Angle in Gauss in Gauss 

-50 186.11 186.05 
(4. 96°) 202.6 202.55 

00 187.3 187.27 
204. 35 204.33 

+50 185.17 185.13 
(4.98°) 201. 78 201. 71 

206.05 206.02 

188.33 188.37 
205. 3 205. 25 

+10° 183.43 183.40 
(9.93°) 199.34 199.32 

. 189. 99 190.00 
207.56 207.60 

189.26 189.19 
206.12 206.05 

+15° 182.12 182 .13 
(14. 95°) 196.99 197.23 

191.65 191.45 
208.89 208.98 

189.91 190.02 
206.81 206.73 

+30° 181.09 181.10 
(29. 71°) 194.01 193.99 

195.21 195.41 
211.49 211.68 

191. 76 
207.84 207.72 

+43° 183.23 183.22 
(43. 09°) 195.87 195.84 

192.22 192.14 
207.35 207.24 



Angle 

TABLE XIII (Continued) 

Measured Differences 
in Gauss 

196.87 
213.15 

188.87 
202.96 
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Calculated Differences 
in Gauss 

196.64 
212.93 

188 .53 
201.41 



71 

TABLE XIV 

29 
Si 1 AND HYPERFINE PARAMETERS FOR NUCLEUS 

NUCLEUS 2 IN THE El CENTER 

8 ¢ 

A -544.6 MHZ 95.9° 359.5° 
xl 

A -546.6 MHZ 152.2° 100.1° 
Y1 

A -637.1 MHZ 63.0° 86.5° 
zl 

A -526.6 MHZ 79.2° 300.5° 
x2 

A -525.6 MHZ 148.7° 12.2° 
Y2 

A -616.1 MHZ 61.0° 36.5° 
z2 
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18 and 19, respectively. The solid lines represent nucleus 1 and the 

dashed lines represent nucleus 2. 
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CHAPTER VI 

DISCUSSION 

It is concluded from the experimental results that the E" centers 

are S = 1 spin systems, interacting with two almost equivalent 29si 

nuclei with nuclear spin I = 1/2. 
+ + + 

The g, D and A matrices have been 

+ + 
determined for the El center and the g and D matrices for the E3 cen-

ters. Since the ESR spectra of the E" centers could be observed only 

if the sample had been irradiated at 300K prior to 77K irradiation, 

further detailed growth and pulse anneal studies not reported in this 

dissertation were performed by Dr. Robert B. Bossoli and the present 

author. It was possible to produce only very small concentrations of 

these E" centers in hydrogen-swept quartz crystals. 

A variable-temperature electron irradiation between 77K and 300K 

of an as-grown Premium Q quartz sample was performed where each irradi-

ation was followed by a short 77K irradiation. It was observed that 

the 77K irradiation by itself will not produce the E" centers unless 

the sample has previously received an electron irradiation above 200K. 

This is the temperature at which the alkali interstitial ions become 

mobile under electron irradiation, as reported by Markes and Hallibur-

ton in the ESR studies of the [Al +] 0 centers in quartz (25). Since 
e 

the E" centers have not been observed in Sawyer-swept Premium Q 

samples, it suggests that alkalis (Na+,Li+) must be present in the 

quartz samples and must be removed from the Al3+ substitutional ions 
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(by the above-200K irradiation) in order for the E" centers to be 

formed. No hyperfine ESR lines due to alkalis (Na is 100% abundant and 

Li is 93% abundant, both with nuclear spin I 3/2) were observed for 

the E" centers even though the ESR linewidth is less than 0.05 gauss. 

Thus far, it has been impossible to determine the precise role of the 

alkalis in the formation or stabilization of the E" centers. 

It has also been observed that if we keep a sample, which has E" 

centers, at 300K for a few days then the El and E] centers slowly con-

vert into Ei centers, whereas the E2 centers convert into the E2 and 

the E4 centers. This conversion suggest a correlation between the 

S = 1 spin systems and the S = 1/2 spin systems. But, during pulse 

anneal studies, it was observed that the E2 centers decay at 40°c while 

the El and E3 centers decay at 9o0 c and none of the E' (S = 1/2) cen-

ters seem to grow in while the E" centers are decaying. The concentra-

tion of the E" centers is approximately the same as the concentration 

of the E]_ center obtained after a 3So0 c anneal. The conversion of E" 

to E' centers seems to be a complicated process. And the dynamics of 

this process are not yet understood well. 

A simple way to look at the S = 1 centers is that there are two 

S = 1/2 centers at a distance r from each other. An approximation to 

the value of r can be made by examining the D matrix. The electron 

-+ 
dipole-electron dipole contribution to D is given by 

2 2 
r -3x 3xy 3xz 

< 5 > <- --> <- --> 
5 5 

(/1l;2) 
2 
-3y 

2 
3yz> -+ 3xy r 

D <- --> < > <-
5 5 5 

iyz 
2 
-3z 

2 
3xz r 

<- --> <- --> < 5 5 5 
r r r 

r 

> 
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where x, y, and z are the components of the position vector r between 

the two electrons. The integrals are over the spatial distribution of 

the electron. In the point dipole approximation we have 

D = - (3/2)D 
zz 

= 
2 2 2 

(3/4)g p (3cos e - 1) 

from which we get the value R, the separation of the electrons: by 

using the value of D obtained from fitting the spin-Hamiltonian: 

+ + 
g, D, 

R = 

R 

4.85~ at room temperature for the E" center 
1 

0 
8. 03A at room temperature for the E" center 

3 

Taking into account the value of R and the principal directions of 

+ + 
A ' and A ' a plausible model for the EJ'.. center is shown 

298 . 298 . 
1.1 1.2 

in Figure 20. It is suggested that two oxygens and a silicon are miss-

ing from the cluster and the two electrons are in the sp 3 hybrid orbi-

tals extending from Si(l) and Si(2). The separation between Si(l) and 

Si(2) is 5.78~ as reported in Table III. Each hybrid orbital extends 

approximately 0.6~ out from the silicon. Taking this extension of sp 3 

hybrid orbitals into account, the separation between the two unpaired 

electrons is 4.58~. This separation is about 5% from the predicted 

separation 4.85~. This discrepancy could be explained by taking into 

consideration the relaxation effects associated with the lattice. The 

possible model proposed for the El center has a net charge of -2. 

Numerical values of the different principle axes directions and Si-o 

and Si-Si directions are presented in Table XV for comparison. 

The precursor of this center could possibly consist of the two 

oxygen and one silicon vacancies with charge compensating impurities 



.. y 

0 Silicon 

Figure 20. Proposed Model for the E1 Center. One Electron is 
Located on Si(l) and the Other is Located on 
Si (2) 
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TABLE XV 

SUMMARY OF DISTANCES AND DIRECTIONS FOR VARIOUS SILICON-SILICON 
AND SILICON-OXYGEN PAIRS IN QUARTZ, AND COMPARISON WITH 

Z-COMPONENT DIRECTIONS OF THE SPIN HAMILTONIAN 

Atoms 

Si(l)-Si(2) 

Si(l)-Si(O) 

Si(l)-Ox[l,O] 

Ox[2,0]-Si(2) 

Ox[l,O]-Si(2) 

Si(l)-Ox[ 2,0] 

D 
z 

MATRICES OF THE El CENTER 

Distance e 

5.7764R 51.39 

0 
3.0585A 53.9° 

i.61221R 43.99° 

i.61221R 43.99° 

4.1s531( 54.3° 

4.185R 54.26° 

e 

57.77° 

56.05 

63.0° 

61.0° 

90.0° 

65.97° 

86.28° 

93. 71° 

88. 77° 

61.9° 

63.5° 

86.5° 

36.5° 
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nearby. It has been observed by Sibley, et al. (26) that two infrared 

bands, at 3367 cm-land 3306 cm-1 , appear with irradiation at tempera-

tures above 180K, which is the same temperature reported by Markes and 

Halliburton (20) for movement of alkalis away from Al 3+ ions. Kats 

(27) has postulated that these two infrared bands are due to OH ions 

in the vicinity of Al3+ ions, with no alkali ions nearby. This model 

can be explained in the following manner. Alkali ions near Al 3+ ions 

+ 
are moved away by irradiation above 180K and are replaced by H ions or 

holes trapped in the non-bonding orbitals of neighboring oxygen ions. 

We have observed that it is very difficult to form the E" centers in 

hydrogen-swept quartz crystals. Thus it is not possible to form the E" 

centers unless one is able to move hydrogen in the crystal. This fact 

along with the appearance of the two Al-OH infrared bands for irradia-

tions above 180K suggests that the protons may be somehow associated 

with the precursors of the E" center. A variety of such models are con-

ceivable. 

A similar type of model is reasonable for the E} center except for 

the fact that the two unpaired electrons are separated by 8.033~. For 

this center also there are two slightly inequivalent 29si nuclei giving 

rise to hyperfine ESR spectra. Since the concentration of this center 

is almost one third that of the E" center it was not possible to col­
l 

lect experimental data for evaluating the 
+ . 
A29 matrices. 

Si 
A plausible 

model for the E3 center is shown in Figure 21 taking into account the 

separation between the two dipoles and the z-components directions for 

+ + 
the g and D matrices. 

It has also been observed in our study that the separation of the 

c-axis primary lines of the El center increases from 5.00G at room 



Si (5) 

(below) 

Ly 
Figure 21. 

(above) 

(above) (above) (below) 

Proposed Model for the E] Center 

Si (10) 
(below) 

Si ( 12) 
(above 

00 
I-' 
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temperature to approximately 7.40G at about 90K. Hence, calculations 

+ + + 
of the principal values and directions for the g, D and A matrices at 

90K will enable one to shed more light on the defect structure and 

associated relaxation effects of the lattice. The correlation of the 

ESR results for the El centers with known results for the E' (S = 1/2) 

and [Ale+] centers will help to determine the role of the E" centers 

in the overall response of high-quality quartz to radiation. 
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e ~ "p 4 7 l •T"' ( l • 2 J •T 1-( t , 2 J +? ( '! l •T"'( 2 • 2) •THC 2, 2) +"' ( Sl • 1'1-1( :!t 2 I *TH ( J •2 ) 
• Qaj:i ( 7 l *TM ( 1 • .:! J • T 1-( l ,J ) +!:I ( '! l *TH ( Z 13) •Tl- ( 2 , ~ J •"' (.; l •T !- ( 31 3 l *TH C3, .J l 
• 7:.:a ( 7 l •TH ( t, :a> • H•( l , 1 ) .,P( 3 t *TH ( 2, 2) * TH( 2 , l) +.::> ( r;) *TH ( 3 o 2J *Ti- ( J ol I 
i1t d•,;I ( 7 l • n· ( 1 , I ) "T 1-( 1 , 3 l +? C 3 l •Ti- ( 2, l l *TH 2 t : ) +.::> ( <: l *Tl-( 3o I ) •TH ( Jo J l 
• ... ::.:a ( 7) • Th ( 1 •. :n •TH ( 1 • 2 J +.:> ( e). TH (a. 3 '. Tl-4 ( 2 .z) +P ( ,., •T 1-( 3 • .J) .. 

:::r 1- c 3 , 2 > 
,;.4,;. =•l /2 ,.JC+OO 
.J 11:: e2/2, CO+ C') 
~~~:(114-W5l/4oOC+OO 

JZL :o;o7,12. CO+vJ 
;,,;;a;;.: 4• .i+w !! ) /4.0D+CO 
.. -.~ ::w ::l.12 • OC+•l 0 
~ -+4 = •; "2. ao +a o 
.... 0 1" .J l..: 1 • J 
..1.; 1 Qu "'=1 ,.:i 
,,.~, ........ > .. o.oo+oo 

16J Alll..oM>= o.oo•oo 

:>eT l,;? iieAL ANO r llAGI 'IA;;v "*AT\;fX el..!:" efl;TS 
.:.c(3,J), .t.!( 3,3), 

""~' 1, 1 J::wJ+.,.e +2•QJR 
,1,;;.,4 a. l >=< o 1i:<+c.;1< > >10 sm:~rt 2.00+001 
,>, L I Z o l. l :o ( C 1 l +CA I ) •OS Qi:!T ( 2 eO 0 +" 0 ) 
"' ... ( 2. 2 ) =4 •0.31'< 
A 1'( .5 t i ).: 2 *0 21" 
A l I 3 11 l 22 • C2 I 
A~1312l=!Q1R-C41')*0SQRT(2•00+00) 

"' [ ( .3, <? l: ! Q 1 l- C4 I I •')SORT ( 2 • 00+ 00 I 
A;<(.J 1.J)aw6-w;!+(2•CJQ l 

iJIAGONALIZe s:>t ...... e:P..cF\IGY "14'mtx. 
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CAI..~ HT~lOl (~M.~.4~oAleOtEtE2,T4~) 

C.l.i..~ P4TCl..l (N,C,E.XERRI 
:;,o ro l170 .1 ec> .I 

110 FM.; Q:O <2 l-C t 1 > 
~o re 210 

1ao F~EQ•O(J)-0(2) 

21.J lF{CA6S(F~eca-FREQ1-1.oa-0Jl220,22J,2!0 

ZZJ HF\ I l •HH 
~ TO <l40 

2.JO Hi'r.SHH•<FRECQ/FREQ l 

GO TC 150 
~ ~J i F ( l- 2 l 2 ~ O, 2 f 0, 2 e 0 

2~J L = • +-1 
~o ro i .. o 

z~"' ;) IrF :.JASS( HF ( 1 >-r.F( 2 J) 

..... ire 'e .270 > ( 1-F ( l l , l :a 1 , Z l, 0 Il"F 
Z 70 F C~ Iii AT ( .3F 2 0 , ,. ) 

CF\,...-J12ao.2;c,2;c 
'~" I<.,."' .. l ,,,,;; ro .a.l 

~~u ~~TA:aETA+-lOeCO+O~ 

1 F \ S.i:oT 4-9 \ .oo +00 120 • 31l0 • J()') 

~;JJ •iO.LTi!(!:oJlO) (P(I).tzltlZl 
Jl:) FiJ.:<,,.Af('0'd2FlOo~l 

S TCP 
~N.J 

// l..A~.J • :ii:iiP 0 0 OS1'iA~ !:OSU • 4CT 12 105 e.:O SPl.. l 3 ,;:> t SP-= S!-i~ 
/.I 
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APPENDIX B 

LISTING OF THE FITTING PROGRAM 

FOR AN S;l SPIN SYSTEM 
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//Ul•'1.J5A .108 { 1111?, 4.4S-70-37Sl I,' .I AN[', Cl..~S :1<, T [ ~E:( 4 • JJ >. 
// /lob~C.l..AS;;;..z X,NQT IFY=t.. 1 H oeA 
/• i:.i.~s •C.no 1 
// ;X~c; FORTGCL.G 
//FQ~T.SYSIN 00 • 
c; 
c 
c 
c 

Tl1{$ pqQG~AM FtlS SPt"l-HA~IL.TCNlA~ 
TO ESR CATA F.lR s~t oeFecr. 

I.14Pt..lCIT REAL* 9 (A-H,O-ZJ 
REM.* a .i.i:;c:i,.3>1AIC3.:n.e<3l.e213),TAU('.?oJ) ,;)(;'!) tHF(3) ,P(21l). 

C. :i l ~ o .l J ti"t ( J ,3 l , ;:; I' ( J o .3 l • ;: 2 C 3, 3 l , ::; J ( 3 1 3 I , :;r ( 3, J l , T <: ( 3 1 3 l , T'-t ( 3, J ) , 
C~(.3,Jl ,F!=:EQl( 46J ,F~ECQC46J 

c r .... c: i:>.i.i:o•eTe;:;s FO? T,..e G TENSO~ "~:: t~G:C, ~-G'ft 3-GZo ~-n-1e:T..i., 

c s-~Hio 6-?SI. T,..E =ACA~€Te~s FC~ THE FI~e-sT~UCTu:;e TE~SOR A~E 

.; 7-v. ~-~. 9-Tl-ETA. l 0-?!-+I. t !-?St. 12-19 ;;;:1:n:e:seNl' ANGl...ES 
c aET•Ec~ r,..e ~•G~eTIC Fta,.: ANO T~e c-•XIS ~F ~~lSTAt... 

c 

~ 

?(l >•a.~OC•lO+QO 
P ca i .. a .oooeiao+uo 
?<JJ•2.~a1Jesc+ao 

? < -+ J a :S 7. 7 !SO+ o C 
~(~ J a.32.00+00 
:i ( ol :9;o, 1o+OO 
P( 7J:.34t.!!550+00 
;:l(.;,):a.3.aO+OO 
Pt ,;):a:H:o.JSO+.JO 
? ( 1 0 ) :33 • 5 C +O 0 
? U 1 J • 35 , 1 C: +O 0 
:i < • .2 > .. ! ; • 7 eo + co 
P03l•!9.76C+OO 
:i < 1-'> .. :n.aeo+o.J 
?( lSJ:a t9.Cl4C+CO 
?1lol:-t9.9•C+OO 
:it17>=-39.Eeo~ao 

i' \ 1dJ.:-39.7SC+OO 
~{.~l:-~9.72Ci00 

~=~·~7410+0~/~.C.2t20+00 

·'<=.3 
~~=3 

"''-"i"tA= loJO+OC 

c C~•N(S ~N<:t..es [~ oe~~e~s TC ~AOt~NS. 

c 
:JO ~ 1 1..: 1 , 3 
j {1..+J) :,:I( 1..+:ll •( 3. u 1390+00/ 1 .!!)+1'12) 

~~ =>(_+<;~:~{L.+<;).t(3ol~l'!<i0+00/lo!0+021 

.:i .... 11 ~ .. 1.a 
11 ?1~+1ZJ:?(~+t2J•<J.t41!90+!lJ/t.ac+>2) 

•RlT~(ColJl (i=(f),!:t,201 
lJ FC.."l'IAIT <oFt•loSI 
~ .:. .) c ~ .; \..J.. = 1 • l <; 
,... 'l ~ l 
,;.5 : .. 1'4=1 
~o ~C TC lJSlo3!2o3!3.3~4.J551JSC1JS7,J5S•JS9o3!'•361.352, 
~~6~1Je•,3cs,Jee,J~7.Je3.~e;,310,311.312,373,374,375,37~.377,379, 

c31,,3ao,3a1.~a2.3e3,3s4,3e5,3ee,3e1,3ee,33;,390,J91,J92,393, 
;;:3.; ... J9!t39!:),#"I 

.:.:i.i. 11H=3.27Ce40C+!l0 
::ic;TAR:P(l2) 
II(. =l 

I :1 
l":t::~'4< 1Ja<;.l14<i54.~H03 
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92 

GO ro c; 7 
3s;a ,.,..;=JZ..J 2. 1 o eo+ oo 

I=Z 
F~~OQ(2)29oll4~54'i0+03 

~.:J TO 97 
3~ HH•Jl 7 C .. .360+00 

"'=<. 
1 •l 
!=~~QQ( ::ll•9e 11 •9!! eT.H03 
~~ T' S7 

3~ -ll"l:al.l 37. l 40+<)0 
I•.a 

F i-icQQ (4 l •9 o l l 495410 +OJ 
.; Ci TC c;7 

~~= -1r.:.;:,: l:? .:3 ;o•OC 
<. ,.3 
• = 1 
~,:;e;Q~(S)a9oll49~JC+O! 

:.4.w TC. ;1 
~;g r1 ,., .. J l ; s. 71 0 + 0 0 

l "'..?. 
F' i<~ QQ ( 6 l .,.9. 1149S 6 C+O ::l 
Gu re H 

c 
c 

J:)7 l"IH•.J2 i6o ~.60+<l0 
dE T Ai< :.:i ( 1 J l 
i<..:L 

t = 1 
Fi0.ca1a 7 >=:;. 11499370+03 
;.;u n .. ;7 

J;;io 1'1,.,•3C:l3e 1JO+'lC 
~:.;a 

~"~QQ(2):9.11S~O+o3 

...... TO 97 
35.,; H "'"' .3 1 5:; o SJ C toO Q 

l(,=.a 
r = 1 
F'F.cOC( <; l=9oll501 l ~ +03 
...... Ti.> ;7 

J6;.J ,.,,.,.~.;:4e.1c;o+oc 

t =2 
;:4:; ·J;.H t ll a;• 1 14.9 !!50+·13 
~ ... TO ,., 

.3ol ,.,,., = 33 ..i 6. 5 ':' 0+ 0 0 

·'=..;a 
I= l 
F~~~~(lll=9oll499010+03 

..;u TC n 
Jb.r. ,..,..,. JZ.;;;. .S90+0C 

i =c: 
=~:~cl !Zl ::<;.t !50CS30+03 
... .:; TC e~ - ( 

...;~~ Hl"la.JJ l 4e ;o40+00 
a c7 A><.:~ (14) 
1<.: 1 

I= 1 
F ;<.;;c;,i;; l 13) =9 ell St 0030+03 
:;o TU c;7 

.J c<l> .-tl'l.a:;1;e.S4C+OC 
I =.! 
: '< e .J 14 ( l 4 l ~ <; • 1 l 51 1 S3 o + 03 
GC, TO ~., 

~o.- l"IH=,>1.-;.::izc+oo 



93 

<. =z 
i=l 
F J;.C. ~ Q ( 1 ~ ) : 9 • 1 1 S 1 .2 l S 0 +0 3 
;,;o TO <;1 

.aoo HH:z 3342 e 740+00 
I =a 
:=~;::QQ( 16)•q.11509870+03 
.Oil TO <;7 

367 ,;,,.3 .28 7. 0 3 0+0 0 
.... =.3 
I =l 
~~C.OY(l7)•9o115l0120+03 

GU TC <;7 
Jc~ MH:32.22 • 13.0+0 0 

I : "-
F;<:;:QQ( l!l='iol lSl~9~0+03 
.01.i TC 97 

.• -c: 
36; Hl"!a.32 i ! • 770 +00 

"C.T ..l.A•PCl 5) 
... "'1 

I "'' ~~EQQ(l~),,,9.115216~0+03 

:.o.:i TO $7 

.37il HH=.3211.050+00 

t "'"' F~C.QQ(Z~l='iellS.22130+03 ..... TC 97 
J 71 l'iH•.32 J3 • 60+ 00 

i<.=.a 
1 •l 
:"~EQC(Z1):9oll52Z730+q3 

Gu ro ~7 

J 72. 11Ha33u4.700+00 
I sz 
i' ;;.;;:·J~( .<2J :9. 11~2 l iO:O+C::! 
...... r~ 97 

.a 7;. '11"1•J2 6 7.4 60+0 c 
<:J 
l =1 
=~SCQ423J='i.1152201D+03 

Gu TC ~7 

.j 7+ ,,..,=32-+1 .sac+oo 
1 =.:. 
F~C.00(24):<;.11522240+03 

.au TC 'i7 
;;: 

J 7;, 11,;:3.:;:;e .e. :i 0+011 
"ET ,l,.:C "'0 • J'.) + 0 J 

... =.a 

'=1 
i'~~QQ(25)a9.11460130+03 

.. iJ TO ;1 
:i 7;. 111"1=3 ZS 1. 6!0+00 

1-=2 
F~l:.00( 26) a9o l 14603~ 0+03 
~o ro <;7 

c; 
... 

377 HH.-.3260.210+()0 
dET AF<.:;: ( 16 l 
1<;..:.J 

l=l 
Fi:<~.;.;(27)2<;.l 145<;460+03 



"" ()\ 

r1 M 1·1 n M "' r1 n l'l r1 r1 "' M 
o e o o o o " o o o o o o 
+ + + + ~ + + + + + + • + 
0 0 0 0 0 0 0 0 0 0 0 0 0 

f,! :: "'" ~ ;; !:; g J: ~ :!. ~ !! g; 
111 ·O Ill ' ' '° '4> >CJ 0 Cl' 0 0 O 0 
" If) UI " Ill tll Ill tll <f " lfl Ill Ill 
<t .. ., <Y ., ., • ., ., <t <t ., <t 

o- o ...... o-o _.o~o -o- o -o ...... o .... u_.o .... u 
o"""4 o _.o-o ~o-o -o ...... c _,,_e -o-o -" 
.... + •+ •+ •+ •+ ••• + •+ •+ .... •+ •+. 
0 • u- ~ 0 ~ 0 Cl' 0 Cl' 0 ~ 0 Cl' o- ~ 0 ~ u Cl' 0 Cl' 0 Cl' 0 ~ 
<f II n 1-- ft <t ff -l) Q VI II N ff !JI II <t "' 11 11' II 11) II <f II (I' M <f ft 

- - ,.__ - r-- - m r-- - .... - l'l - •- - ~ - 11) - "' - o - m -r-. • (I'),.... •""""' tr-,..._• O,.._ • _,... • N,..._ • f"l,.._ • ff,.._ •- lOf'. • ~,.._ • ,....,..._ • ftl,.._ • O',... • Ot-
(J'i QJ N l1' VI (l N 0- ...,. r1 tJ't M ,., U" Wt f') V' 'ti r1 \I' N M v• ,., Q. rrt tr f"J f'1 V" C 1'1 '" m rJ t" f... f') ti' - q- ()'I 

• - ~11 - ~ • - - ~ - - - ~ - ~~ ~ '1 - ~ - - - ~ - - -o "' ., o - a: cJ o "l ,_, o '1 a u .... <.J -.:J "' a u "' tl a ... 11: ,, LJ "" " a "' :i n "' '' u "' :i o ,,. a n 
,_,.., 01- ,..,., o ... n a1-n 01-n 01-n ahn 01- l'lC a~"' a1-n a~"l ~~..., QhM 01-

n N lll 11 ... _. ... •rJ II '>I •IJ 11 (II - lrJ n "' 'ti 11 1-i - •IJ n ... 111 " 1- - .... Ill 11 01 llJ 11 '\I .... •1J II 1\1 .u 11 •1 _., Ill fl "1 ctl 
0 r " rt 0 J: ltJ " II 11!: • .., I: II fJ' 0 I: II n r.C u r " ,, 0 .c II II ,, "1 .[ ,, 1( 0 t: •ti ,, " 11'. ,, I: ,, .c [J .[ " " I( [) .[ " •( I) x: " " I( () r. " U'. '.J t, J: .... I.I. ,, l! rn '#. .... u. '·' J: •4 11. "' I: ~ ... 'L ,, r ... lL ,, t: '{; ~ lL " t: .... I.I. " t: n "- - u_ ., t: ·~ 11. ,, I: "- ... lL ,, .[ ~ IL ,, '[ "- ... ,._ "' r ... IL " 

•fl (JI ? .... I'll 1 'f •I) 0 "' .n "' :> 
~ r:; ~ ·~ ~ :!I ~ . ~ .~ .~ .~ .~ :!; 

u u !.J '..J 'J 



' c 
c 

J»l HM=~lJ~eSlO+OC 
t:IETAOi.a~(l~l 

)(.: l 

1.: l. 
F~~Q~(4ll=9.ll514'i70+03 

.00 TO '>7 

.39~ Ht.=JJZt.J4C+QO 
I=' 
F~~QQl 42):19.11513770+03 
GO TU <i7 

3~.3 MH•32ae.6!C+OO 
.<.:a' 
I .:q 
F~a,::(~J):9.ll514230+03 

;;o ra ~ 1 
J»~ MM:3Z4C.250+00 

I,., 
i"Ra~Q(44l:a9. l l~l460+03 
,..., ro c;-:-

3 ,,o ~M=JJu6.;oo+oo 

Jvo 

;7 

.<. .. J 
t •l 
F~aQQ(45)•<i•ll513!90+03 

.;.;i TO <i 7 
,.,,..,.3zu2. 90 c•o o 
i ,. ' 
;;:;.~:::o< 4cl=9.l 1514!:lO+oJ 

SiS1' u>i ::ct.r.TtC~ .. .ATRtC:!!:S G(J,Jl. t-(,J,J ), ~'4(J,J), 

A_.=OS11'1P(4ll 
A A.a.au CC 5 ( i:I ( 4 ) ) 
::.;;.aost r-< P< SJ> 
cc,.=occs < >i < 5 1 > 
: ... =u Sl H := ( 1!> l l 
FFG4C(;;CS(?( ~I I 
A l't'" 0 S ( I'. ( P { l 0 ) ) 
_.,.,,:IJCCS( i::I( l 0 l I 
Ct-«OSLN<P ( 11 l) 
CCrt=CCCS(i:i<lt ll 
i'""1-"0S!l'l.(P( 12) J 
FFH:OCCS ( ;:> ( l 2 ) l 

CC=OCCS\2 • 094J95C •·10 I 
st=~~r~c2.o'i•Jc;so+oo1 

"' L d ).:FFG•CCC0-4.AC::aC(;'l!FG 
.. <l1ZJ=FFG•CG+A.AG•CCG•~G 
.. ( l o.J):FG•AG 
"'Zo1l=-F~•CC~-4AG•CG*FPG 

-i <-', <!J :-FG•CG+AA G*CC G'*FFG 
_.( J., ,3 l:FFG *AG 

.,. <.3 • 1) =AG'*CC: 
;.; {;~, ,o =-AG-*CC G 
,.,( _,, :lJ:AAG 

n ll • l J =FFl-•CCl--4.41-*Cl-•fl· 
'"' ( 1, .id :FFH•CJ-t+AAH< CH •FH 
1"!(1 0 J )zFJ-t•Al1 
H(Za1)a-~H•CC!--AAl-*Cl-*FF~ 

H ( z, 2) :-f'H*Cl'1+AAM*CC H•FFH 
H(2o.3J=FFi"!$.411 
H (J , 1) :AH*C:!-
,"I ( ;; , .2 ) :-A r·UC Cl-i 

rl \~ o.3) :AAH 
_.U A...,:>t-i.a.~:Al.~HA• (3 o l4l 5~t:+(')0/\ .'3C+)2) 
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:;.,.,.( 1 tl l=OCCS( ALPHARl 
;;;~ 41 ,z l =-OS IN (AL?l-.t.~ l•OS [N (SETA~ l 
~ ,"4( l • .J l =OS I 1'( ALl=!<U~l •CCCS (SET .u~ l 
r1.M( 21l):zl')•00+00 
~~l21ZJ=CCCS<EETA~) 

;::;M(Z.~>=OSI~<eeTAP) 

~,..( 3 • l ):a-O S!N (AL? 1-.t.R > 
rl~\3oZl•-CCCS(ALPl-ARl*OSIN(8ETlRl 

R~,3 • .Jl•OCOS{ALPHARl•OCCSCSET~Rl 
4J .aw Tu <So,so.~0.00.00.601,K 
50 i<c <l t l) :at• OC+OO 

~ 2( L 12 l:sO, CO+ CO 
R' ( 1 ,,J) :o • OC+QO 
::c ~' z • 1 ) .. 0 • 00 + 0-:1 
R .Z ( 2 t ' ) : l • 00 "° C 0 
R2 l Z 13 ):aQ • OC +•lO 
i< zc J, u .. o • :;o + Q o 
~2t3,z >=o .nc+Jo 
=<<HJ • .3 ,.,.1 .oo+oo 
,..., ro <7o,ao,;oJ,i< 

ou Ra< 1.1 , .. t .oc+oo 
:;. i( 1 oZl ::zo. OC+CO 
;:i2< 1, .J J:ao. oc+oo 
i<21Z.1 JsO,OC+OO 
;;.<;cz., )a-1.00+00 
:.z< z ,3 >=o .oo+oo 
:iz CJ tl > ~o. oo+oo 
:i.zt J,2>=0.co+co 
;:;z •.l ,,al =-1.IJC+OO 
i(,< .. .<-3 
GC TO ( 70, ao ... 0), I(){ 

7U ;;,3(ltl):at.OC+oo 

~ .3' 1. 2 > "". 00+ c 0 
i:\ • .Hl.J):aQ,OC+CO 
i<J ,,a .1 J =o .oc+oo 
R.:H 21 Z l= l • 00+ CO 
;::;~l Z e.3 J"SO .oo +OtJ 
::c J ( 3 • l l ao. 1)0+00 
< J{ J ,z l=O• 00+ 00 
::\JlJ,.Jl=l.OC+OO 
..,~ iC l·JJ 

d<J .;J{ lo l ):CO 
r<.3\ l ,z l=S Z 

::C:i( le.Jl=J• .:.O+C:l 
;;..;i 4 Z • l >=- S I 
>\.hZ 1Z l=CC 
i<J44e.J l=O.JO+~:) 
'i..,j(J, 11=0 • .:io+oo 
::;.;i \ .l tZ l :O • ,1C+·)O 
::; .3( .Je.J l=l •CO+ 00 
,;.., T~ MO 

ill ~JI l 11 l=CC 
::; .3( I I .. ) =- s I 
.'t.,j • 1 1.3 l :o • OC+OO 
~ .. h2ell•SI 
;,,J(Ze2):CO 
.:l.~H2oJ l=O.OC+OO 
;( ~ ( .JI l ) 2 0 o 00 + 0 0 
;:;. .3 ( .3 •.a l :O • 00 + 00 
'lJ<J • .3 >=1 • .:ic+ao 

lJJ ::io l lJ L..=t ,3 
vu l ill 111:11 .J 

1 l J ~ T ( L.. e:.4 l =~ 2 ( L • 1 l * i:; J ( 1 t ·"' l + ~2 ( L.. • 2) •Q 3 C 2, 14 l +.= 2 ( L.., 3 l •e> 3 C J • 'I I 
::io 12;J 1..:1,;? 
>J (; 121) .. ,. 1 I .J 
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~ 

c. 
c 

c 

1-'J :i,1. •• 1o1)::;::iT(t...l l•R'4(1,l')+F<T(t...Zl•i::1.q2.Ml+i:iT(L..Jl•!: 1•(J,1'1l 
i:) 0 1 J •J t...: l • 3 
1)0 1.JI.) ljl111 t.3 
T G( I.. 1 ,'of I aG ( l. • 1 ) •A ( 1 t M I +G (I.. • 2) *? ( 2 • '-'I+ G ( l. , J) •i:: ( 3 , ~I 

l.Jw Tl-t(l.,.-.J:l-(l..1l l•R(lol<IJ+l'4(l..12)•R( ;a,.\4)+"1(1..,Jl•R(3tl'l 
o .r.=P< 7 > n. oc;+oo-i= !'3 > 
J Y :zP ( 7 I / 3 • CD+ 0 0+ P < 8 l 
uZ=-2.oo+~o•i=t7l/~.oo+oo 

l ~ 1111 :a •HH'* ( Cl ( 1 l • TG ( 1 • l l •T G ( t ,3 l +o ( 2 ) •T G ( 2 • 1 I *T G ( 2, 3 I+? ( J l * T G( 3, t l • 
CTG( J.J >I 

•<ii. :s8•1'1 t-• ( S: ( 1 l itT G ( lo 2 I •T G ( l, 3) +? ( 2 I •TG ( c • 2) * TG ( 2 t J l +P( :?> • TG ( J • 2 l • 
:::T(O(J,.J)) 
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100 

Nucleus 1 

Low Field High Field 
Magnetic Microwave Magnetic Microwave 
Field Frequency Field Frequency 

Angle in Gauss in GHz in Gauss in GHz 

-70° 3163.58* 9.3657049 3380.60* 9.3657625 
3190.57 9.3657064 3387.28 9.3657957 
3227.43* 9.3657087 3428.83* 9.3658104 
3243.60 9. 3657107 3462.17* 9.3658222 
3286.78 9. 3657127 3498.1 9.3658355 
3308.08 9.3657149 3507.37 9.3658410 

-48° 3139. 84* 9.3448948 3352.59* 9.3449090 
3185.12 9.3448952 3377.26 9.3449114 
3202. 96 9.3448960 3401.59 9.3449126 
3256.59 9.3448976 3471.57 9.3449143 
3282.56 9.3448987 3488.98 9.3449157 
3314.86* 9.3449003 3516.94* 9.3449164 

-30° 3150.54 9.3255709 3363.88 9.3255487 
3175.83 9.3255934 3368.68 9.3255472 
3214.34 9.3255884 3412.48 9.3255418 
3231. 21 9.3255844 3446.70 9.3255368 
3282.50 9.3255818 3489.21 9.3255340 
3291.67 9.3255771 3492.1 9.3255325 

-15° 3180.32 9.3161709 3380.85 9.3161746 
3192.17 9.3161707 3395.85 9.3161746 
3219.2 9.3161712 3417.56 9.3161743 
3221.36 9.3161715 3433.22 9.3161740 
3257.39 9.3161712 3455.56 9.3161740 
3258.55 9.3161726 3461. 93 9.3161742 

-100 3193.0 9.3161886 3391. 59 9.3161842 
3201. 76 9.3161890 3407.30 9.3161827 
3218.23 9.3161896 3418.48 9.3161819 
3223.13 9.3161899 3431. 50 9.3161821 
3246.05 9.3161905 3443.04 9.3161811 
3247.24 9.3161907 3452.58 9.3161800 

-50 3206.16* 9.3162544 3403.93 9.3162780 
3212.56 9.3162517 3418.43* 9.3162745 
3218.27* 9.3162497 3419.03* 9.3162735 
3224.07* 9.3162483 3430.16* 9.3162697 
3233.18 9.3162473 3430.6* 9.3162686 
3235.62* 9.3162467 3442.0 9.3162661 

00 3219.2 9.3163091 3417.4 9.3162963 

3224.1 9.3163066 3430.57 9.3162945 
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Nucleus 1 (Continued) 

. . . . . . . . 

·Low Field ·High Field 
Magnetic Microwave Magnetic Microwave 
Field Frequency Field Frequency 

Angle • in· GQ.\).ss • · in GHz: in.Gauss. in GHz 

+50 3202.23 9.3096972 3402.87 9.3096862 
3210.61 9.3096964 3413. 22 9.3096838 
3218.81 9.3096957 3416.25 9.3096830 
3220.92 9.3096951 3429.11 9.3096810 
3229.65 9.3096942 3429.51 9.3096805 
3233.85 9.3096941 3439.37 9.3096799 

+10 
0 

3187.38 9.3096663 3391.50 9.3096596 
3200.22 9.3096657 3404.08 9.3096593 
3219.20 9.3096651 3410.47 9.3096588 
3221. 57 9.3096646 3430.77 9.3096585 
3241.53 9.3096637 3444.20 9.3096579 
3245.88 9.3096634 3449.61 9.3096576 

+15° 3172.59 9.3096562 3381.18 9.3096570 
3190.76 9.3096564 3391. 94 9.3096571 
3216.65 9.3096570 3406.90 9.3096577 
3225.16 9.3096573 3433.25 9.3096580 
3252.41 9.3096576 3458.86 9.3096608 
3257.82 9.3096577 3459.03 9.3096611 

+30° 3156.55 9.3715455 3382.62 9.3715419 
3193.84· 9. 3715442 3382.81 9.3715421 
3227.25 9.3715428 3415.24 9. 3715423 
3261.49 9.3715421 3466.55 9.3715425 
3296.70 9.3715419 3499.34 9.3715432 
3310.23 9.3715418 3520.22 9.3715434 

+43° 3122.61* 9.3377248 3359.16* 9.3377396 
3178.96 9. 3377258 3366.99 9.3377401 
3201.66 9. 3377271 3388.74 9.3377400 
3264.36 9.3377279 3467.50 9.3377398 
3288.23 9.3377281 3489.78 9.3377396 
3309.62* 9.3377290 3530.92* 9.3377400 

+75° 3152.59* 9.3754087 3378.69* 9.3754035 
3188.33 9.3754090 3391.11 9.3754024 
3238.75 9.3754088 3429.23 9.3754018 

3249.40 9.3754087 3457.60 9.3754004 
3303.43 9.3754081 3506.73 9.3753982 

3304.44* 9.3754075 3527.21* 9.3753965 

* These values were not used in the fitting procedure to determine 
the hyperfine matrix parameters. 
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Nucleus 2 

Low Field High Field 
Magnetic Microwave Magnetic Microwave 

Field Frequency Field Frequency 
Angle in Gauss in GHz in Gauss in GHz 

-70° 3159.23 9.3657035 3379.91 9.3657729 
3198.05 9.3657077 3385.96 9.3657839 
3236.66* 9.3657096 3419.59* 9.3658035 
3253.14* 9.3657120 3452.78* 9.3658156 
3294.88 9.3657133 3490.23 9.3658156 
3302.21 9. 365 7143 3514.23 9.3658464 

-48° 3136.82* 9.3448946 3358.73* 9.3449086 
3190.77 9.3448958 3371. 82 9. 3449107 
3212.32 9. 3448965 3392.24 9. 3449118 
3266.43 9.3448984 3461.86 9. 3449136 
3288.76 9.3448991 3483.17 9.3449152 
3310.41* 9.3448997 3522.31 9.3449170 

-30° 3149.94 9.3255721 3361. 02 9.3255509 
3179.04 9.3255909 3370.04 9.3255453 
3222.83 9.3255863 3404.05 9.3255434 
3240.07 9.3255831 3438.03 9.3255401 
3286.23 9.3255806 3481. 03 9.3255353 
3290.02 9.3255784 3494.47 9.3255311 

-15° 3182.1 9.3161706 3378.73 9.3161748 
3194.67 9.3161709 3394.72 9.3161746 
3225.78 9.3161717 3411.59 9.3161746 
3227.52 9. 3161712 3426.98 9.3161743 
3259.59 9.3161727 3455.03 9.3161739 
3260.44 9.3161722 3459.47 9.3161741 

-10 
0 

3195.51 9.3161888 3389.39 9.3161847 
3204.36 9.3161893 3405.41 9.3161837 
3223.91 9.3161901 3413.50 9.3161823 
3228.33 9.3161902 3426.22 9.3161814 
3249.08 9.3161916 3441.64 9.3161819 
3249.20 9.3161917 3450.02 9.3161807 

-50 3209.32* 9.3162530 3401.50 9.3162795 
3215.39 9.3162504 3414.52* 9. 3162770 
3222.99* 9.3162490 3416.43* 9.3162757 
3228.28* 9.3162476 3426.34* 9.3162723 
3236.57 9.3162463 3427.99* 9.3162707 
3238.20* 9.3162459 3439.17 9.3162670 

00 3223.00 9.3163076 3414.60 9.3162972 
3227.30 9.3163059 3427.35 9.3162954 



103 

Nucleus 2 (Continued) 

Low Field High Field 
Magnetic Microwave Magnetic Microwave 
Field Frequency Field Frequency 

Angle in Gauss in GHz in Gauss in GHz 

+50 3206.46 9.3096967 3399.49 9.3096869 
3214.32 9.3096959 3411. 45 9.3096854 
3221.61 9. 3096946 3412.51 9.3096844 
3223.12 9.3096945 3426.14 9.3096822 
3233.85 9. 3096941 3426.91 9. 3096814 
3237.52 9.3096441 3435.63 9. 3096801 

+10° 3192.18 9.3096660 3387.72 9. 3096599 
3204.29 9.3096653 3399.74 9.3096594 
3220.44 9.3096647 3409.70 9. 3096591 
3223.43 9.3096638 3409.70 9. 3096591 
3246.14 9.3096629 3440.18 9.3096582 
3250 .19 9.3096626 3445.48 9.3096576 

+15° 3178.02 9.3096562 3377.18 9.3096565 
3195.06 9.3096567 3386.91 9.3096572 
3216.99 9.3096573 3406.90 9.3096575 
3226.16 9.3096575 3432.97 9.3096581 
3257.25 9. 3096577 3454.24 9.3096581 
3262.85 9.3096575 3454.50 9.3096579 

+30° 3164.06 9.3715450 3375.55 9.3715417 
3197.84 9.3715437 3378.93 9.3715417 
3225.62* 9.3715433 ----- * ------
3260.52* 9.3715426 3468.36* 9.3715426 
3301.26 9.3715418 3495.27 9.3715426 
3317.66 9.3715415 3512.87 9.3715431 

+43° 3131. 96* 9.3377253 3353.42* 9.3377391 
3181.55 9.3377262 3364.78 9.3377400 
3199.42 9.3377268 3391.64 9. 3377400 
3262.70 9.3377274 3470.05 9.3377398 
3291. 35 9.3377284 3487.23 9.3377394 
3314.58* 9.3377293 3521. 26* 9.3377397 

+75° 3164.40* 9.3754088 3378.18* 9.3754042 
3189.31* 9.3754088 3385.57* 9.3754029 
3235.92 9.3754088 3432.79 9.3754008 
3247.37 9.3754088 3460.52 9.3753999 
3302.96* 9.3754085 3505.92* 9.3753992 
3309.62* 9.3754069 3514.70* 9.3753972 

* These values were not used in the fitting procedure to determine 
the hyperfine matrix parameters. 
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c 
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;2(;?)o&2 .000~20+00 
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A.4=0~ Ip.;(?( 16 J) 

AA4:0CCS(?(l6)l 
C.Z=OSIN(P(17) l 
cc...;.=occso•<i 7 » 
= Z: 0S1 MP ( 1 e I I 
r FZ::a CCOS ( ;.> ( 16 ) I 
;;;;;.oci:lS(Z.094:!950+oO l 
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H( ~, ZJ-.S.H•CCH 
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ri2 ,;i .1 l =o .oc+oo 
:c '"' J • .:n=o. oo+oo 
i'i2(J,Jl=t.OO+CO 
~l: T; 110 .ao. c;o > ,i( 

oi> 'l 2c i , t l = 1 • oo ... o o 
"'''1,2>=0.oc .. oo 
'l2l l 1..3l,.OeOO+CO 
::t2(2o1l:aO~OO+CO 
;:c2,2.2>=-1.oc+oo 
,. 2( 2. Jl ao. oo+co 
R2(J, 1 ):o. oc+oo 
~;a,3,2 i =o .oc+oo 
::t<:.iJeJ)s-l.00+00 
i<.J<. = 1'-.3 
.; .: TC (71) ,so ,c;o l, ~K 

7 J ::( .J( 1 • 1 ) = 1 • 00• Q 0 
;;J' 1 ,2 > :se .oo+oo 
:CJ( l ,3)::10.00•00 
RJ( 21 l)::tQ.CO•CO 
i:i.H a. 2l=1 .oc+oo 
::t~' 21JJ:11;;),QC+CO 
i:\J( .31 1 )aO. OC+OO 
;;.J(J,2):0,0C+QO 
'<~( JoJ)sl • 00+00 
..;..; TC 110 

.;iu ~.J• l ol ):CO 
~;l( 11<:.l=Sl 
R.l ( l 13 l =o ,o 0+00 
=<..3( 211 l=-SI 
~.3(2e2J=CO 

RJ42.3J:co.oc+oo 
:C .H ~h 11 ::J. OC+QO 
i<J (lo 2 ): 0 • QCfo Ol'l 
R.J(J,.J):t • .JC+OO 
,.Q TO lJO 

iiJ ;;.;]( l tl. J.:CO 
R~\lo2l=-S1 

:C~• loJ):O.OO+CO 
"~ l2t l ):$ t 
::( J~ 2.. 2 J =Cc 
::i "' 2 • .:: J=o •. co+ co 
i'...3(Jol ):Q,OC+OO 

~ .:: ' J. z J : o • ~o +co 
i<Jl Jo J ): 1. CC+ 00 

liJV .JU l lO t..=l ,3 
.Ju U.J "=lo.J 

dJ ;;.r,1..,.'4):~2(l .. , 1)*~1( 1,.10 .. e2t1..,,1•c:iJ(2, ... l+f'<2(L,3l•P3(J,:.OI 
.Ju l4J 1..=1 .J · 
.)<:;1.i..l'••!oJ 

l;;,;i ;u ... ,.,.J:i:<T(l.oll•i::i._(lo"l+RT(l..121*R"'(2o'4)+=!TCl..o.3l*i:;'~(3,."'l 
.);;.1.::Jt..:1,3 
,),;;; 13.J "'=lo.:! 
7 ;; l I..• 14 l: G (I.. , l l •I; ( 1 , M l • G (I.. , 2 l *::I ( 2t " ) +·:I ( 1.. , 3 l *I'< ( 3 , 'A l 
T i-14 L.. ,,,. I =H ( I.. t l ) * R ( l , ·"' l +H ( \.., 2 l * i:: ( 2 , ·"' l .. H (I.. t 3 ) •i:< ( 3 , .. ) 

l.l.1 T.l(J..., ... l:Z(\.., l l•f:I( 1 • .w1+zc1..,21•=< 2, .. l+Z!l..131 •C(J ,Joi) 

I "l. 
1 _.J ,;H"4• C CO+ 03 
l 511 • 1 = B•i- r• ( et ( 1 l * TG< lo I l •TG ( 1 , 3 l +P ( 2 J * TG ( 2, 1 I* TG C 2 ,3 l ~?( 3 l * TG ( 3 • l ) * 

.: r .. , J ,JJ> 
• <:=a •HI-•< :I ( t ) * TG ( 1 t 2 l • TG ( 1 t 3) +P ( 2 J • TG ( 2 , 2 ) • TG ( 2 13 I + != ( 3 ) * T G ( J , 2 ) • 

;:r;;;4J,.J» 
• J =d *I'! H* ( I= t 1 l * T G ( 1 , 3 ) * T <: ( 1 , 3 I •" ( 2 ) * T G ( 2 , .3 I • T G ( 2 , 3 l +" ( 3 l " T G C 3 , 3 l * 

.:TG(J,Jll 
• 4 :P ( 7 l *Tl- ( 1 , 1 ) *Ti- ( 1 t 1 ) +P ( 6 ) * T'"'( 2 • t ) *Tl-' ( 2 t 1 ) + e> ( S) * 'TI- ( ! t 1 ) *TH ( 3 t 1 ) 
•:ii=::> ( 7 ) *TH ( l t 2) •TH ( I , 2 l +e> ( 'H *TH ( 2 • Z) * TH ( 2 • 2 l •" ( 9) *TH( J, 2 l •TH { J ,z l 
•c:i=P(7 l•TI-( lo 3l•TI·( l oJJfoC>( 61•TH( 2o :!l•Tl-4( 2,JJ+:I( 'Sl•TH( 3o3l•TH(3 ,J) 
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c. 

• 7 :P ( 1 l ., T\1 (1 t 2 J * T 1-( 1 ol ) + P ( 3 l •TH ( 2 , 2 ) * T l- ( 2 , l )+:::> ( 9 ) 11 Tl·'l ::! , 2 ) ., TH ( J , 1 l 
•o=?(7)•TH( lt ll•T .. ( l13J+P(9J•TH(21ll•Tro(2,J)+.:>(9)•THJol )•T1'1(J,J) 
•~aP(7 )11T1"(1, 3 l•T!-( l 1 2 )+P( 3 l *TH( 2 ,J}• f;,( 21 2)+"' ( Sl *TH( J,.3) * 

C THL.Je2 l 
M 1.J2P( 13 l * T Z ( l 1 1 l * T4 ( 1 t 1l +.:> ( 1 4 I •T Z ( 2 , 1 l * T Z C.2 , 1 ) + ~ ( 1 Sl *T Z ( 3 , l l 

~· T 4 ( J, 1) 
• l.i. 21" ( 1 3) * TZ ( 1 t l l., TZ ( 1 t 2) +P'( 1 4 l •T Z ( 2 , 1 ) •T Z (2, 2 l + 

C?C15l•TZt31lJ•TZlJ02l 
>1 l .2 =P ( 1 J ) * T Z ( 1 t 1 J •T Z ( l 1 3 l +<> ( 1 4 l •T Z ( 2, l l * T Z ( 2, 3 l + 

C.? ( 1 5 I* TZ ( 3 , l l • T Z ( 3 t 3 l 
• 13 a P ( 13 l * T Z ( 1 , 2 ) * T Z ( 1 , 2 ) +;::t ( l 4 l • T Z ( 2 , 2 l * T Z ( 2 , 2 J + 

: :I ( 1 5 H• TZ ( ~ t 2) • T Z C3 t 2 l 
II l _..:? ( 13 l * T Z ( 1 , :1 l * T ! ( l , 3 l +.:> ( 1 4 l • T Z ( 2 , 2 l • T Z ( 2 , 3 ) + 

;?(~5l•TZ(J,zJ.,TZ(J,JJ 

• l~:;)l t::3l•TZ< loJl•TZ(1,JJ+Cl(\~l•TZ(2,3l•TZ\2,3 )+ 

;;> < l 5 l * TZ I 3 • 3 l •TZ I 3, 3 l 
'" i ;;i = • 1 /2 • :i c +o o 
Jll= •2/2a.JO+Q,) 
'"'""'(M4-•5 l/4 ,.JQ+OO 
C.21 .. •7/2,00+()0 
:;, ~ = ( • "+• 5) /4. co+ 0•) 
.,.-.;;. ••o/210 0+00 
,;4{ Ollli/2. 00•00 
.. ;;;a4• 1?-•1::;)/4e 00•00 
,,.:; I :i;e1 l/Z • OC +00 
.;. .i,; :( • lJ+w 13 l 14, JO+):) 
_.1;; ... ,. l Z/2 .oc+oo 
~ 11 awt <1./2 .oo+oo 
:.o ieo 1.= l• 6 
.:>C U1<.> '4•1•6 
.,.,1.,~1 .. o.ao+oo 

lc<J ~UL•·">"' o.oo+oo 

sar UP s=r~-1-!;l!olfl..TC!'d.t.N ~E~L ;INC l"AGIN.t.PY ... T<:){X 
:L~"ENTS A~<e.e>. AI(6.6l. 

~Pi ( l, 1) :tWJ+w6 +Wl !! /2 • OO+·J0+2 •) C+·)J •rlJF:i- ( G"!N *1-1- l / Z ,JO +<l 1 
.i. .:< l. z. ~ Jaw 3 +w e-w 1 ! .12 • co +o o+ 2. JO+ o" •aJi< + <Ga!' .. '"""" I .1 2. u".>+·1 '' 
Aii 43, ~ J :4 • OC + 00 *03i<-( G e'j *'"'"" l / 2 • 00 +00 
"~l~o•l=4eJO+JO•QJP+(G2~*""~l/2,lO+~J 

Ai'l.IS131=•6-•~-wl5/2o00+00+2ou0+00*03F-(G2N•H'"'l/2,00+00 

4 ~lo to ) : <16-"'3 +W 15 /2 • ·:10+00 +2 , .JC +O() •OJ "I t ( G 2N •!-!I- l / Z , i"J 0 +O ·) 
; ;:;, ( 2 • l ) :Q 7~ 

... ( z. l ':Q7 ! 

.i.;:;., J .1 J =( a 1 i:+ c~= > *Os oi::i1' < 2 • 1 a +:i J > +c1: / os.::~T < 2 • Jc +o ) 1 
".' J, 1):(a1I+C4f).., SOF:iT( 2. :JO+OOJ +c~t /0 SC~T (2. ?0+0,,' 
~~1J.~Jac6~•csc~T<2.00+001 
... ..;.1<1.,1 I :::Q51=*DSQ~T(.2 • '0+01 l 
.i. >I .... l ):05I•O!OF:T( 2o00+00l 
A~4~t~l=<Cl~+C~~l•OSC~T(2,JD+O~l-~7~/0SQ~T(Z,10+00) 

.:. I • 4< • ' I= ( Q 1 l + c 4 r ) ., s c: R T ( 2 • ')0 + c (} ) - i: 7 t I 0 s a ;::i T ( 2 • J c +o ,., I 
,>.i;.( :,.11=2 .oc+CO•C2"1 

"'".sol) =2 ,110+'10•02! 
O.rd 5. 3 ).: ( a lP- c: 41< I .. ., S=<R T( 2. 1)0 + 00' + c: 7~/0 ~ ·::l"'l T ( 2. , O+C 0 J 
-'1 ( 5 ,.;J): ( ~ 1 [-C4 l l •OSCRT( 2 .oo+Ol'l l+<J71/CSQ"I T( ::. JO+vQ) 
A~lit4)=05C~Tl2oJC+01)*06i< 
A,;;, l 6, 4 )a 2 , CC+ C 0 •Q ~ 
4 I ( 6 ,, l :2 • OC+OO•C 21 
A~(Q1~)::0SCRT(2o00+J~J•05~ 

Ail613l=OSQl<T<Z.OO+OOl.,05I 
"~ l Q. 4 ) = ( Q 1 ;;- C4 ~ ) •os Q :CT ( 2 .o 0+00 l- C:7~ / CSOQ T ( 2 • ) 0 +()' l 
4 [ ( 6 ... ) .: ( Q 1t-c4I ) ,.,., SORT ( 2. 00 + OQ 1-a 7I / 0 sai:; T ( 2. ,, ;J •I) 0 ) 
A.:016t3l=•C7;: 

"'I oe:)a-Q7( 
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c 
HTIHOI (NM.N.AP .A [ .o.e .ez. TAl,;) 
[)llTCLl (N1c.e.1ei::iR> 

~o To <170,1ec.1qo,2001.r 
170 FFiti\;=O (~1-C<l I 

~C TC 210 
1 a\I i" ~ QaO ( 61 -c ( 4 ) 

\aQ TO 210 
l9U FFiCfC,..0(5)-0C.Jl 

..ao TO 210 
200 FFiaa~O(Jl-O<i> 
21.J 'F< o..i.a s< F=eca-.=i:e c1 -1.J c-,Jt > 22'.l .220. 2 .J.J 
220 rlF( l ):'"1M 

.;c TC 240 
2~.I "l!"l:MM4 ( F'~ ECO/ F~EC I 

~C TC:. 150 
2~J IF11-.12so.2eo,2eo 
.i:.:i.I t:(+l 

'iO TO 140 
~QJ ~1rFlaCA8S(~F(.J)-1-F(2l l 

O!i"F~aCASS('"'F(4l-.-IP{l)) 
•~ITt:.i6o270l (,..F( I>1Ia1,41,0JFFlo0Ii"F2 

27U FC~ ... u (5F20w•) 
1F<K-J>2eo.,;o,2~0 

.2dJ ,.. .. ,_ +1 

:00 TO 40 
.-91J '3;:;rA"'aeTA+lOoCO+OO 

tF ( 2cT A-'9 l .oc •OO) ::o. JOO • .;oo 
.JJ .I w1U Tc ( e 1.3 1 J) ( ~ {t ) , I "1 ol 8 ) 
J l J F Ci<,. AT ( ' 0 1 , e F l 0 • ~ ) 

:a T .,;? 

Ei'lu 
,// -";;;:.;,. ;)~? .)0 0 SNA ioe:o St,;. ACT 1z1 os. e $1..! e .o I ;;:i:si- ~ 

// 
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APPENDIX E 

LISTING OF THE FITTING PROGRAM FOR AN S=l, 

I=~ SPIN SYSTEM 

llO 



llU12105A JOS 1177??t•48-70-J751It'JAIH'eCLASS:s'-tTil'!E=ClOoOO11 
II ~SGCLASS2XoNOTIFY•U12105A 
l•PASSilOKO 1 
II EXEC FORTGCl.G 
/IFORT.SYSIN DO • 

c 
c 

!MPLICIT REAL • 8 CA•H•O-Z> 
REAL. a ARC6•6••AIC6.6J•E<6l•E2t6ltTAUt216l•OC6ltHFl6l1Plla1. 

CG C 3 t J) tl1C 3 • 3 t. RlllC l• l hK 2t J • l t. R.3 C 3 • 3 J 1 ~TC J t 3 l • T G4 3 • J h T Ht 3 • 3 I t 

CR ( J 1J l • Z C 3 • 3 h TZI 31 J hF RE QQ ( J 41 o Of'{ 34 • 2 I wOFC C 34 t 2) 

C TH£ PARAMETERS FOR THE G TENSOR ARE 1-GXt 2-GYo 3•GZo 4-THETAo 
C 5-PHit 6•PSl. THE PAIU14ETERS FOR THE: F INE-ST=!UCTURE TENSOR ARE 

c 7-ox. s-ov. 9-oz. 10-THETAt 11-PHI1 12-PSI.THE PARAl'IETERS 
C FOK HYPERFINE "ATRIX ARE lJ-AXt 14•AYt 1S-AZ1 16•THETAt 
C 17-PHio 16•PSI. 
c 
c 

c 
c 
c 
c 
c 
c 

?(11•2.000•10+00 
Pt21•2e00062D+OO 
?(Jl•2.00138700+00 
Pi41•57.770+00 
PC5 l•llo920+00 
Pio 1•92.180+00 
?(71•109.9550+00 
?<81•117.6010+00 
Pl91••227o557D+OO 
? ( 10 ... 56.050+00 
Pl11J'83J.480+00 
? t J. 2)&85o160+00 
?(131••5•5.60+00 
Pll41•-54S.6o+OO 
Pt15J•-63So10+00 
? ( 16 1'863. 00+00 
? '171 .. 55.50+00 
PC181•19J.660+00 
~RITEl6o10t CPttJtl•1•18t 

10 F ORl'IAT ( lH 16FtO. 51 
3=9.27410+0016.62620+00 
GBN=•B·•~eo-a .. 

91 
92 
94 
95 
91:1 

c 
c 
c 

'l=6 
.'1"'•6 
ALPHA• o.oo+oo 
DO 91 L"1•3 
PtL+3J•PCL+3l•C3.141590+00/1o80+02t 
PIL+91•~CL+9>•t3.141590+00/lo80+021 

? \ L +15 J:P( L+ 15 h( lol415 90+00/1 o80+02 I 
00 93 LL•1ltl8 
I<. l= l 

"""= 1 
GO TO ( J5lt352t353oJ54t355t3S6o357,358•359o..360t 

36J.J362tl~Jo36413651..3661367•3b6o3691J70J 

J71t372J373•374•l751376t377o3781J791J80t 
J81)t/ol1'1 

INPUT E~PERtMENTAL DATA IN THE FO~lll OF OIFFERENC~S 

BET•EEN DIFFERENT FIELD VALUES RiTHER THAN PARICULAR 
"'AGNETIC FIELD VALUES SINCE THE COR~ECTIONS ~ERE 

NOT OBTAINED FOR IN01WIOUAL LINE POSITIONS. 

J51 8ETAa14.950+00 
CFllolls190o420+00 
OF<lo21•206.45D+OO 
It al 
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FREQQC1J•9e30965780+03 
GO TO 97 

352 0Fl2oll•201.21D+00 
0Ft212J•219.J5D+OO 
I( :s2 
FREQQC21•FREQQC11 
GO TO 97 

35J DF(J11)•190•25D+OO 
OFC3•21•208e090+00 
k•3 
F RE QQC 3 t•FREQQU I 
GO TO 97 

354 BETA•9o930+00 
DFt•olJ•191.28o+OO 
DFt•121•208e08D+OO 
K•l 
FREQQ(41•9eJ096617D+OJ 
GO TO 97 

355 DF<5•11•198e32D+OO 
OFC5o21•216e70+00 
k•2 
F RE QQC 5 >•t'AEQGC 4 J 
GO TO 97 

356 DFl6t11•191.27D+OO 
DFC 6t21*209.20+00 
K•3 
FREQQC6)•FREQQC41 
GO TO 97 

357 8ETAa4e980+00 
0Ft7•11•192o26D+OO 
DFC7o2J•209e72o+OO 
Kal 
FREQQC 71•9.30968890+03 
GO TO 97 

358 Ot'l8t11•195e56o+OO 
DFC8o2t•21••02D+OO 
K•2 
F RE QQC 8 J•FAEQQCT J 
GO TO 97 

359 DF<9•1)•192.3D+OO 
DFC9t21•210.JD+OO 
k•3 
F REQQC 9 >•FAEfilQC7 J 
GO TO 97 

360 8ETA•O.OD+OO 
DFt !Otl 1•193.JD+OO 
OF«10t2J•211.l71J+OO 
K•2 
F RE QQC 10)•9.31630160+03 
GO TO 97 

361 8ETA•-4e96D+OO 
OFC11t11•191e370+00 
0Fl11t21=208.82D+OO 
k.a2 
FREQQC111•9.31626070+03 
GO TO 97 

362 BETA•-9e950+00 
DFC12tlJ•195.8D+OO 
DFl12•2tz214•30+00 
k•l 
FREQ~& 12 )•9.3l.618590+03 
GO TO 97 

363 OF( 13•11•189.830+00 
OFC1Jt21•206.53D+OO 
ir.=2 
F REQQC 13J•FREQQC121 
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113 

GO TO 97 
364 OF( l4o11•195e350+00 

DF,14•2)•213e270+00 
K•3 
F RE QCH 14 J•FREQQC 12 I 
GO TO 97 

365 BET A•-14.920+00 
OFC15•1>•197o010+00 
0Ft15o2J•215e530+00 
K•1 
FREQQC151•9.J1617280+03 
GO TO 97 

J66 OFC 16tl)•188o68D+OO 
OFC1612la204o540+00 
K.=2 
F REQQ( 16l•FREQQC151 
GO TO 97 

367 OFC17111•196e20+00 
OFC17•2l•214e02D+OO 
11.&3 
FRE QQ( 17 l•FREQQC 151 
(, 0 TO 97 

368 BET A•-J0.450+00 
DFC18•1l•188e050+00 
DFC l8•21•20le71D+OO 
1Cz2 

FREQQC18l•9oJ2556140+03 
GO TO 97 

369 OFC19oll•l98el40+00 
0Ftl9•21•21S.49D+OO 
l(.zJ 
FREQQC 19J•FREQQC lU 
GO TO 97 

370 DFt20•11•200.430+00 
DFC20•2J•218.14D+OO 
K•l 
f RE QQ( 20 J:irF REQQ( 181 
GO TO 97 

371 &ET A•-49.00+00 
0Fl21•1J•192el4D+OO 
0Ft21•2J•20bo420+00 
l'(:s2 
FREQ~C21la9o3449051D+OJ 

GO TO 97 
372 0Fl22111•198.6JO+OO 

0Fl22121•214o980+00 
K•J 
F RE QQC 2 2 t•FREQQC 211 
GO TO 97 

373 B!:TA•-70.270+00 
OF(2J111•199o220+00 
OF12J12t•217.020+00 
P<=l 
FREQQ(23i•9.J65755JO+OJ 
GO TO 97 

.3 74 OFC241ll2196.710+00 
OF124t2J•211e32D+OO 
F RE QO( 24 J•FREQQC 2 31 
K. •l 
GO TO 97 

375 BET A.s29o 710+00 
OFC 2511)•188.780+00 
0Ft25t21•202o640+00 
K:l 

FREQQC251•9e3715410+03 
CiO TO 97 



376 SETA#29e710+00 
OFC2611J•187e990+00 
OFC26t2J•205e06D+00 
l(s3 

FREQQC26J•9e3715•1D+OJ 
GO TO 97 

377 BETAs•JeC9~+00 
0Ft27•11•188.03D+OO 
0Ft27t2)a20l.550+00 
K a1 
F RE QQC 27 >•9 .33773 350+03 
GO TO 97 

378 UFl2S.1Js187.08D+OO 
OFC26t2Ja203.1•0+00 
ir;sJ 

FREQQC281aFRECQC27J 
G 0 TO 97 

379 BETA•75o02D+O.O 
OFC2911J•190.48D+OO 
Oft 29t2l•208•2D+00 
K.:ol 

FREC~C29>•9.37540450+03 

GO TO 97 
380 OFt 30t l 1•190.36D+OO 

OFC3012J•203e30+00 
11.•3 
F REQQ( .JO ts4"REQQ( 29 I 
GO TO 97 

381 8ETA•29e710+00 
Of(311ll•209.99D+OO 
0Ft3lt~l•226e260+00 

it.•2 
FRECQt31J•9.3715•10+03 

97 A Ga OS INC PC 4 It 
A AGaOCOSt Pt• I I 
C GaDSlNC Pt 5 J J 
CCG•OCOS( Pt 51 I 
FGaOSINCPC611 
FFGaOCOSCPC61J 
AH.aOSIN( PC 10 J J 
A AH •OC 0 S t PC 1 0 I ) 
CH•OSINtP< llJ I 
CCH•OCOSCPCll't 
F Ha OSINlPU2 JJ 
F FHaOCOS (Pt 12 It 
AZsOSINCPC16tt 
AAZ=OC0SlPt1611 
CZ:aOSI1'fCPC1711 
CCZ:aOCOSc PC 17 H 
FZ=-OSINC PC 18 >I 
FFZ•OCOSt Pt 18 J t 
COaCCOS(2.094395D+OOJ 
SiaOSINt2.094395D+OOt 
GtlalJzFFG•CCG-AAG•CG.,:G 
GC112>•FFG•CG+AAG•CCG.-FG 
Gllo3t•FG•AG 
GC2•1t•-FG•CCG-AAG•CG4'f'FG 
Gt2a2J•-FG•CG+AAG•CCG•FFG 
GC2t3t•FFG•AG 
GCJ1lt•AG•CG 
Gt3o2>•-AG•CCG 
GC3tJJ•AAG 
Hl11lt•FFH•CCH-AAH•CH•FH 
H(lt2JaFFH•CM+AAH•CCH•FH 
Hl1o31aFH•AH 
H<2•1J~-FH•CCH-AAH•CH.t'FH 

114 



H(212)••FH•CH+AAH•CCH•FFH 
Hf213J•FFH•AH 
HC3olt•AH•CH 
H C 3 12 t••AH•CCH 
tU 3 13 t•AAH 
Z(l1lt•FFZ•CCZ•AAZ•CZ•FZ 
Zt 1121•FFZ•CZ+AA.Z•CCZdZ 
ZCl13t•FZ•AZ 
Zl21lJ••FZ•CCZ•AAZ•CZ•FFZ 
Zf 212J••FZ•CZ+AAZ•CCZdFZ 
Lf21JJ•FFZ•AZ 
Z < J 11 J•A.Z•CZ 
Zl3121••AZ•CCZ 
;:c3.lt•AAZ 

20 ALPHAA•ALPHA•CJ.1•1590+0011.80+021 
bETA~•8ETA•tJ.141590+0011.80+02l 

RMCl11J•OCOSCALPHARI 
R~tl12J••OSl~CALPHAA>.OSINtBETARI 

RMI l131•0SlNCALPHA~l•DCOSC8ETAAI 
Rflll 2•11•0.00+00 
RMf2121•0COSCBETAR) 
RM&213t•DSlNC8ETARI 
RMll111••0SINCALPHAR) 
RMl312J••OCOSCALPHARl•OSINt8ETARI 
RMC3131•0COS&Al.PHARJ•OCOSCBET1RJ 

•O GO TO tso.s0150160160•60l1K 
50 R2llo11•1•0D+OO 

R2C 1121•0.00+00 
R2C h31•0e0D+OO 
R2l2o1t•O.OO+OO 
R2C 2o2J•le00+00 
R2C 213 l•CeOO+OO 
R2t 311 l•Oe00+00 
R2C 3o2)•0e00+00 
R2C 313J•1a00+00 
GO TO C70180•90J•K 

60 R2C l1lt•l.OO+OO 
R2c i.21•0.00+00 
R2t 113 J•0.00+00 
R 2C 21 l J=OeOD+OO 
R212121••1aOO+OJ 
R2t 21lJ•O.Oo+OO 
1o12c 311>ao.oo+oo 
R2t 312 J•O.OO+OO 
R2l31l1•-1.oo+oo 
Kit • K•3 
GO TO t70•80190>•KK 

70 R3l 1• ll•l.OD+OO 
R3& h2J•O.OO+OO 
R311.J1•0.oo+oo 
R3t 2•1 >•O.OO+OO 
f<3c2.2t.:11.oo+oo 
R3C 2•3J•0.00•00 
R3CJ11Ja0.0D+OO 
R3C .3•2 J•0.00+00 
R31 313 J•l.00+00 
GO TO 100 

80 R3C l• 1 l•CO 
R 3C 112 l•SI 
R3C h3J•O.OO+OO 
R Jl 2• 1 J••SI 
RlC2•2JaCO 
R3& 2131•0.00+00 
R JC 3o1 J•O.OD+OO 
R 31 Jo2J•Oe00+00 
R 313•31•1.0D+OO 
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GO TO 100 
90 RJC11l>•CO 

RJll121•-Sl 
RJC l1ll•O.OO+OO 
R3C 21ll•SI 
R3l 212JaGQ 
R3C 213J•Oe00+00 
RJC31lJ•O.OD+OO 
f-! Jc 3, 2 J•O .oo+oo 
R JC 3• J t•l .00+00 

100 00 110 L•l1J 
00 110 111•1.1 J 

ttO F! T< L• I'! l•R2C L.11J•R3(11141+R2C L.1 2J•R3C 2o Ill l+R2 t L13J•R3C 3• MJ 
DC 120 La113 
uo 120 lll•h 3 

120 RCL114J•RT(L•ll•R"C1•MJ+RTtL•2J•RM(21Ml+RTCL•ll•RMCJ1MJ 
00 130 Lat.3 
00 130 M•h3 
TGl l..114 l•GCL• l l•RC 1114 l+GI &.12 l•RC 21M l+Gl L• J J •IU 31'" l 
THtLolll)•HCL1ll•RCl•Mt+HCL121•Rt21llll+HCL1lJ•RlJ1llll 

1~0 TLCL1MJ•ZCL1ll•RCl1Mt+ZtL12l•Rt21Ml~ZtL1lt•RIJ1MI 
I :11 

l 40 HH=3.500+03 
150 ftl•S•HH•&Pt1J•TGC11lJ•TGCl13l+Pt2J•TGC211J•TGC21Jl+P(JJ•TGCJtll• 

CT Gt Jt J J J 
K 2•e•HH•C PC 1l•TGC112 J•T GC 11 3 I +Pt 2J•TGC212)•TGC213 )+PC 3 l•TGt 3• 2 I• 

CTGC J13J I 
113•8.•HH•CPt 1J•TG<1113 l•TGC l• 3 J+PC 2 t•TGC 21 3J•TGC213 t+PC 3 J•TGC 31 3 J• 

CTGC31J)I 
~•~PC11•THCla1J•THCl•ll+PC81•THC211l•THC211l+PC91•THt311J•THC311J 
w5•Pl7l•TH<1121•THC1a21+PC81•THC2121•THC2121+PC9t•THl312t•THC3o2J 
N6~Pl7JaTHt1e31•THll•3t+Pl8l•THC2131•THC21Jf+Pt91•THC3131•THCJ131 
W1•PC7t•THt1.2t•THC11lJ+PCSl•THC2121•THC211J+Pt91•THC312J•THC311J 
•8•PC7J•TH(11ll•THCl1Jl+PC81•THC21ll•THC2aJt+PC9t•THt311J•THC3a31 
N9 aP(7)•THC113t•THC1121+Pt8t•THC2aJl•THC212t+P(91•THC31ll• 

CT HC 3,;u 
ft10aPll31•TZC1111•TZl1•1~+PC14t•TZl211J•TZC211J+PC15J•TZ&311J 

C•TZC31J.t 
Wll=PC 13J•TZC1•11•TZC112t+PC14l•TZC211>•TZC2 .. 2J+ 

CPf15t•TZf 31ll•TZIJ12J 
~1~=Pt13J•TZtl1lJ•fZll13t+PCl4J•TZl2•1f•TZC213J+ 

Cf'<151•TZC31lhTZt 3131 
w1J•Ptl.3J•TZC1121•TZC1121+Pf141•TZC2121•TZC212J+ 

CPC15J•TZC312t•TZl3•21 
wl4aPtlll•TZl112t•TZCla3l+PC14t•TZC212t•fZC21JJ+ 

CPt15J•TZC3t2J•TZl3•lt 
'' l!)aPC 13JaTZl11.3I•TZC113J+PC14 t•TZC21J J •TZC 2•31+ 

CPl151•TZl313J•TZ131JJ 
u 1w=•1.12.oo+oo 
.o 1I = 112.12. OD+OO 
~2~•Cw•-•SJ.14e0D+00 
.021.-w1.12.oo ... oo 
UJP:Cw4+w5t.14e00+00 
Q 4R• •8.12 • 00 +00 
I.I 4! •W9.l 2eOD+OO 
wswscw10-•llll•·OO+OO 
1151=•1112.00+00 
116R•CwlO+wlJJ.14eOD+OO 
W 7R:1112.12. 00+00 
G71=11114.12.00+00 
DO 160 L•l16 
C>O loO "l.al.16 
A~' L•"'•'"' o.oo+oo 

l6C 'ltL1MJ• o.OD+OO 
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G 

AR(1~1•••3+•6+~1512.0D+00+2.oo+oo•QJR-lG8N•HHJl2.00+00 

AR( 2. 2 '"'•3••6-•1512.oo+oo +2 .o 0+00 •Q3R+( GBN•HH IJ2. 00+00 
ARC3•Jts4.00+00•QJR-(G8N•HH)/2e00+00 
ARl4o41•4.00+00•Q3R+CG8N•HHl/2eOO+OO 
ARC5•5J••6-~3-"15/2e00.00+2e00+00•QJR-lG8N•HH)/2.00+00 
ARC6•6J••6-•3+W15/2e00+00+2.00+00•Q3R+<GSN•HH)/2e00+00 
ARl2t11•Q7R 
A Il 211 l•Q7l 
AR(J11Ja(QlR+44RJ•OSQRTC2.00+00t+Q7R.IOSQ~TC2.00+00J 

Au 31 l l•"U l+Q•I> •DSQRTC2 .oo+ 00 t+Q7 l.IOSQRT( 2. 00+00 J 
ARI 3o2J:aQ6R•OSQRTC2.0o+OO t 
ARl41ll•Q5R•OSQRTl2e0o+00t 
All411)•Q5I•OSQRTC2e00+001 
AR(4o2taCQlR+Q4Rl•OSQRTC2.0o+OOJ-Q7R/OSQRTt2.00+00J 
AIC4o2J•(Qll+Q4It•OSQRTC2.00+00t-a7IIOSQRT(2.00+00J 
ARC511)•2oOO+OO•Q2R 
AilS11J•2.00+00•Q21 
ARl513t•CQ1R-Q4Rt•OSQRTC2.00+00J+Q7RIOSQRTC2eOO+OOI 
AlC51Jl•CQ1I-Q4Il•OSQRTt2.00+0Ct+Q71.IOSQRTf2.00+00> 
ARC5•4l•OSQRTi2.00+00l•06R 
AR(612J•2•00+00•Q2A 
Aif612>•2.00+00•G21 
ARC61JJ•OSQRTt2.~0+00J•Q5R 

A IC 6• 3 J•OSQRTC2.00+001•05 I 
ARt6••t••QiR-04Rt•OSORTC2.00+00J-Q7R/OSQRT,2oOO+OOJ 
All614)•4Q1I-Q4IJ•OSQRTC2.0D+OOt-Q7I/OSORTC2.00+00I 
A RC 605 Ja-Q7R 
AU 6•5>-Q7I 

C: OtAGONALIZE SPIN-ENERGY !UTAtX U6.6lo 
~ 

CALL HTRlOl CN~•N•AR•Al•0•£1E2.TAUJ 
CALL UITQ1.1 Clh o.e.IERA, 
GO TO c110.1ao.190.200•.1 

i 70 F REQ•OC 4 t-Oc .1) 

GO TO 210 
180 F REQ•O( 6 t-OC 4 I 

GO TO 210 
190 FREQ•OCSJ-O(JJ 

GO TO 210 
200 F REQaO( J 1-oc 2) 

210 IF,OABSfFREQQCM,.t-FAEOJ-1.oo-01J2201220•230 
220 Hf( U •HH 

GO TO 240 
230 HH• HH• CFREQQ(~Nl/FREQI 

GO TO 150 
240 IFl I-4J 250•2500260 
250 l•l+l 

GO TO 140 
260 CONTINUE 

OFCIMMoll•CHF(3t•HFC2J) 
OFC(~l'l•2J•(HFC4t-HFllJJ 

Mi"laMM+l 
IFCMM-31!96•96•399 

399 SUM•OeOD+OO 
DO 400 MM•1•31 

400SUM•SUM+COFCCMM•1t•OFCMMt1J1••2+COFClMMt21-0FCMM12Jl••2 
GO TO C4011408e41011«1 

4 Ol S UM2•SU!'I 
1FlLl.-l3J4021402•403 

402 SUHl•SlJl'I 
4 03 L Ll.:&LL-12 

GO TO l404o404e40414051405140511LLL 
404 PP.1.00+00 
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GO TO •07 
405 PP•le00+00•lle14159D+00/180e00+001 
407 PILl.l:aP(LLl+PP 

~1aK1+1 

GO TO 95 
408 IFlSUl'l•SUM2193•409•409 
409 PtLL1aP(LLl-2eOO+OO•PP 

IC. 1:aic:1+1 
GO TO 95 

410 1FCSUM•SUM2)93•411•411 
•11 PlLLJ•PCLLl+PP 

93 CONTINUE 
IFtSUl'l•SUM21412••12•413 

4 12 S UM2•SUl'I 
41J CONTINUE 

•RITEC6•4201SUM2 
•20 FORMATC' SU1'12 EQUALS 'tF12e31 

•RITEC6•4301 CPI Ihlah181 
•JO FOR"'ATC •o•. 6F12e6 I 

lf($Ul'll-SUM2J450•450•92 
450 CONTINUE 

00 451 l.•1•3 
Pll.+31•PCL+31•C180eOD+00/3e14159D+OOt 
PCL+91•PCL+91•C180e00+0013.141590+00J 

451 PtL+151•Pt1.+151•C180e00+00/lel41590+001 
11 IH Tft 6•452 I 

452 FORMATtlHO•• THE FINAL SET OF PARAMETERS IS•> 
WHlTEtto.4301 CPClhl•h18t 
STOP 
EkO 

//LKEO.SSP DO OSHAl'IE•OSUeACT12105.ESRl.IB•OISPzSHR 
I/ 
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