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PREFACE 

This study is concerned with determining the dominance structure 

of the solution space of two term n-th order linear quasi-differential 

equations. This is a burgeoning field of inquiry, and in this study I 

have tried to give a comprehensive development of the current state of 

the theory. Special attention has been given to isolating and identi

fying those points at which the theory is weak and where further work 

is needed. 
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CHAPTER I 

INTRODUCTION 

The study of the solutions of a differential equation is frequently 

divided into two classes: quantitative behavior and qualitative behav

ior. A quantitative study provides solutions either by an explicit for

mula or by numerical techniques, and in one sense this type of descrip

tion is best since questions of a numerical nature can be answered. 

However, for many applications involving differential equations, only 

the qualitative behavior of the solutions is of interest. It may be pos

sible to give qualitative descriptions of solutions of differential equa

tions for which particular solutions are unobtainable. Furthermore, par

ticular solutions may not be useful for answering qualitative questions. 

Calculating one solution might be so difficult or time consuming that it 

would be impractical to find enough solutions to describe the solution 

space of a higher order problem. And if all the solutions could be found, 

information might be available only point by point, rendering any descrip

tion in the large virtually impossible. 

Much effort, therefore, has been devoted to the separate study of the 

qualitative behavior of solutions. Such study seeks to describe the be

havior of the solutions in general terms apart from any of their specific 

numerical values. For the differential equations considered in this work, 

such efforts have been quite varied and disorganized in the past. Many 

different settings have been considered, and each has evolved its own 
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notation. A major goal of the current study is the unification of these 

efforts within a consistent notational framework. Many of the questions 

discussed here are still being actively researched, and such a framework 

may make the remaining difficulties more clear. 

To be specific, consider the n-th order linear homogeneous differen-

tial equation 

_ (n) (n-1) 
Ly= y +pn-l (x)y + ••. +p1 (x)y' +p0 (x)y = O (1.1) 

where the coefficients p.(x) are real-valued and continuous on the inter-
1. 

val I = [0, 00 ) (other intervals may be considered, but primarily the in-

terval [0, 00) is used here to simplify the discussion). One objective of 

this thesis is to study the behavior of solutions of (1.1) on the inter-

val I. The conditions given in Equation (1.1) are sufficient to guaran-

tee the existence and uniqueness of solutions of the initial value prob-

lem, and so the limiting behavior of a solution y(x) is predetermined by 

I (n-1) the values y(O), y (0), •.• , y (0). In practice, however, this behav-

ior may be difficult to ascertain, and may be greatly affected by small 

changes in the initial conditions. One problem of current interest would 

be to determine a setting in which the limiting behavior of solutions can 

be effectively characterized in terms of their initial conditions. 

The basic descriptive terminology and notation is developed in this 

introductory chapter, and a few examples are provided of the variety of 

behaviors possible for Equation (1.1). In Chapter II the notion of a 

disconjugate operator is explored and a canonical framework is establish-

ed which is essential for the later chapters. The concept of dominance 

of solutions of differential equations is introduced in Chapter III, 

based on the work of Dolan and Klaasen. With the aid of several examples, 
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the problems associated with trying to analyze Equation (1.1) in its 

full generality are also discussed in this chapter, suggesting that a 

more restricted equation should be considered. In Chapter IV, utilizing 

the recent work of Uri Elias, the equation L y + p(x)y = O, where L is 
n n 

an n-th order disconjugate operator, is shown to be a very natural re-

striction of Equation (1.1) with sufficient conditions to allow a more 

detailed study. In Chapter V the dominance of solutions of the new equa-

tion is discussed, and in Chapter VI the focus is restricted still fur

ther to a consideration of the equation y(n) + p(x)y = 0. 

Definitions and Examples 

In order to discuss the problem in more detail, some descriptive 

terminology must be established. A nontrivial solution y(x) of Equation 

(1.1) is called oscillatory on the interval I provided it has an infinity 

of zeros in I, and nonoscillatory if the number of zeros in I is finite. 

Note that no nontrivial solution y(x) can have an accumulation of zeros 

at some point x = a in I, or else the continuity of y and its first n - 1 

derivatives in conjunction with Rolle's theorem would imply that y(a) = 

y' (a) = •• = y(n-l)(a) = O. This in turn would imply y(x) = 0 by the 

uniqueness of solutions of the initial value problem, a contradiction. 

Thus the zeros of an oscillatory solution are isolated and unbounded in 

the interval I. The equation (1.1) is called nonoscillatory provided no 

nontrivial solution of (1.1) is oscillatory, and oscillatory otherwise. 

The equation (1.1) (and the operator L) is called disconjugate provided 

no nontrivial solution has more than n - 1 zeros in I, counting multipli

cities. That is, if y(b) = y'(b) = ... = y(k-l)(b) = 0, y(k)(b) # 0, 

then y is said to have a zero of multiplicity k (or order k) at x = b. 
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In what follows, the term "solution" means "nontrivial solution" unless 

otherwise noted. 

In the second order case 

y" + p(x)y' + q(x)y = 0, (1. 2) 

the classic 1836 work by Sturm [115] showed that either every solution 

of Equation (1.2) oscillates, or none do. This is illustrated by the 

equations 

y" + y = 0 (1. 3) 

and 

y" - y 0 (1. 4) 

x -x 
with solutions of the form y = a cosx + b sinx and y = ce + de , re-

spectively, where a, b, c, and d are arbitrary constants. The second 

equation is dis conjugate as well as nonoscilla tory. When n > 2 in (1.1), 

however, the picture is more complicated. The equation 

(4) 
y - y = 0' (1. 5) 

x -x 
with solutions of the form y = a sinx + b cosx + ce + de , has both 

oscillatory and nonoscillatory solutions. On the other hand, the equa-

ti on 

y( 4 ) - Sy" + 4y 0 (1. 6) 

is nonoscillatory and disconjugate since its solutions are given by 

2x x -x -2x 
y = ae + be + ce + de • 

A major question in the early study of disconjugacy was whether non-
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oscillation and disconjugacy were equivalent concepts for Equation (1.1) 

with n > 2. Leighton and Nehari [76) in 1958 answered the question in 

the affirmative for the fourth order equation 

(r (x)y")" + p (x)y = 0 (1. 7) 

where r (x) > 0 and either p (x) > 0 or p (x) < 0. Essentially, they showed 

that because of its special form, Equation (1.7) behaves quite similarly 

to the second order equation (1.2). In a like manner, other authors 

such as Keener [53, 56) have analyzed various forms of Equation (1.1) by 

identifying similarities with the second order problem. However, 

Gustafson [34) showed in 1970 that in general these concepts are not 

equivalent. For every n > 2, Gustafson gave an example of an n-th order 

equation for which there exist solutions with arbitrarily large numbers 

of zeros, but for which every solution is nonoscillatory. Thus for the 

general n-th order equation (1.1), disconjugacy is a stronger property 

than nonoscillation. 

It is important to underscore the difficulty involved in trying to 

study Equation (1.1) in its most general form. As suggested before, 

Keener [54), Ridenhour [106), and others have used a variety of assump

tions and techniques in approaching questions of nonoscillation and dis

conjugacy. A large part of the current study, beginning in Chapter IV, 

will be devoted to a type of equation which does guarantee the equiva

lence of these properties. 

Several additional definitions will be useful in what follows. If 

Equation (1.1) is not disconjugate on the interval [a, b), b ~ 00 , then 

there is a (nontrivial) solution y(x) with at least n zeros in [a,b). 

Define the first conjugate point n1 (a) of a to be the infimum of those 
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values c, a< c < b, for which a solution y(x) exists with at least n 

zeros in [a,c]. If Equation (1.1) is disconjugate on [a, 00), set n1 (a) = 00 • 

In a like manner, the i-th conjugate point n.(a) of a is defined to be 
l. 

the infimum of those values c, a< c, for which there is a solution of 

Equation (1.1) with at least n + i - 1 zeros in [a,c]. If there is no 

such solution, take n.(a) = oo, The i-th focal point ~.(a) of a is the 
l. l. 

infimum of those values c >a for which there is a solution with at least 

i zeros for each of y(x), y'(x), ... , y(n-l)(x) in [a,c]. 

This use of the terms conjugate point and focal point is rooted in 

the calculus of variations. Weierstrass introduced the concept of a con-

jugate point in 1879 for the second order Jacobi equation, where the ab-

sence of conjugate points is associated with the location of minimums of 

functionals. The term focal point (in German, Brennpunkte) was used 

first for the Jacobi equation by Kneser in about 1900 [104, p. 22]. 

Sherman [111], in 1965, extended the notion of conjugate point to the 

n-th order equation (1.1), and it is in this spirit that the term is used 

here. The extension of the focal point terminology to the n-th order 

equation is less well established. A definition based upon first order 

differential systems may be found in Reid [104]. The definition used here 

can be traced to Nehari [93]. 

Considering the solution y = sinx of Equation (1.3) reveals that 

n.(O) = i7f, for i = 1,2, ••• , and that ~.(O) = 7r/2 + (i-l)7r, i 
l. l. 

1,2, .... 

Equation (1.4), on the other hand, has ni(O) = 00 and ~i(O) = 00 for all i. 

Since y = sinx is also a solution of Equation (1.5), it is easy to see 

that n. (O) < i7f + 27r, but the actual minimum values which define n. (O), 
l. l. 

i = 1,2, ... , for Equation (1.5) are more difficult to determine. The 

problem of determining these values is discussed in Chapter IV. It is 
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worth noting at this point, however, that it follows immediately from 

Rolle' s theorem that r.;. (a) < n. (a), i = 1, 2, ••. , for every equation of 
1. - 1. 

the form (1.1). 

A solution y(x) is said to have a (k,n-k) zero distribution on [a,b] 

if y has a zero of order not less than k at x =a and not less than n-k at 

x = b. The interval [a, b] is called a (k, n-k) interval of oscillation for 

Equation (1.1) provided there is a solution which is positive on (a,b) and 

has a (k,n-k) zero distribution on [a,b]. Equation (1.1) is said to have 

(k,n-k) oscillation~ provided there is a (k,n-k) interval of oscilla-

tion in every half-line [M, 00), M > 0. Finally, if no such interval exists 

in [M, 00 ) for some M~ 0, then the equation is said to be (k,n-k) discon-

jugate there, and Equation (1.1) is called eventually (k,n-k) disconju-

gate. As will be made clear later, in certain situations there is a di-

rect relationship between (k,n-k) disconjugacy and the existence of os-

cillatory solutions. Keener and Travis [57] have also given a definition 

for (k,n-k) disfocal, but this terminology will not be needed here. 

For examples of these concepts, again consider Equation (1.3). The 

solution y(x) = sinx has a (1,1) zero distribution on [O,rr], and since 

sinx> 0 for xE (O,rr), this interval is a (1,1) interval of oscillation. 

It follows similarly that each interval [krr,(k+l)rr] is a (1,1) interval 

of oscillation, and so Equation (1.3) has (1,1) oscillation type. For 

Equation (1.4), no nontrivial solution ever has two zeros on any interval 

since the equation is disconjugate, so consequently it is also (1,1) dis-

conjugate. Trivially, by the uniqueness of solutions, every equation of 

the form (1.1) is (n,O) and (O,n) disconjugate. In the previously men-

tioned paper of Leighton and Nehari [76], the fourth order equation (1.5) 

is shown to have (2,2) oscillation type, and to be (1,3) and (3,1) dis-
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conjugate on [0,c:o), These results will follow from the more general work 

presented in Chapter IV. 

A useful tool for analyzing the behavior of the solutions of Equa-

tion (1.1) is its adjoint. The differential operator 

(1. 8) 

is the adjoint operator of the operator L given by Equation (1.1) pro-

n 
vided that for all y,z EC [O,c:o) we have 

* d zLy- yL z = dx J(y,z), (1. 9) 

where 

J(y,z) = 

is a bilinear form with coefficients ajk EC'. As shown in Coppel [15], 

Equation (1.9) uniquely determines both the adjoint operator L* and the 

bilinear form J. The equation 

L*y = 0 (1.10) 

is the adjoint equation of Equation (1.1). It is clear from Equation 

(1.9) that L** = L. If L* = L, then the operator L is said to be self-

adjoint. Every second order equation of the form (1.2) can be written 

in the self-adjoint form 

(r(x)y')' + s(x)y 0 (1.11) 

by means of the integrating factor exp(fp(x)dx). The fourth order equa-

tion (1.7), which was considered by Leighton and Nehari [76] as described 

earlier, is also self-adjoint. The similar form of the two equations 



(1.7) and (1.11) provided Leighton and Nehari with the motivation for 

their work. 

9 

One of the properties associated with the adjoint operator which is 

of fundamental importance in the types of questions considered here is 

contained in the following theorem, which can be found in Cappel [15]. 

THEOREM 1.1: If Equation (1.1) has a solution y(x) with a (k,n-k) 

zero distribution on [a,b], then the adjoint equation (1.10) has a solu

tion z(x) with an (n-k,k) zero distribution on [a,b]. 

Since Equations (1.1) and (1.10) have the same form, Theorem 1.1 

can reduce the number of cases to be considered in the analysis of cer

tain problems. 

As will be seen in later chapters, disconjugate operators play a 

key role in establishing a setting in which the analysis of the limiting 

behavior of solutions is tractable. In the following chapter, the notion 

of a disconjugate operator is explored more fully. 



CHAPTER II 

DISCONJUGATE OPERATORS 

Disconjugate operators have been studied, in effect, since the last 

century, but only recently has the study become formalized. The concept 

of disconjugacy is adapted from the calculus of variations, where discon

jugate meant the absence of a conjugate point for the second order Jacobi 

equation. Wintner (131], in 1951, extended this notion and applied the 

term disconjugate to more general second order problems. Since then, as 

suggested by the definitions of the previous chapter, the terminology 

has spread to a wide variety of situations. A clear understanding of 

these situations first requires a more detailed analysis of the basic 

concept itself. 

Disconjugacy and Interpolation 

Recall that the operato.r L defined by the equation 

Ly = Y(n) + Pn-1 (x)y(n-1) + ... + Po(x)y = O, (2 .1) 

with continuous coefficients p0 (x), ••. , pn-l (x) on I = [0, 00 ) is said 

to be disconjugate on I provided no nontrivial solution of Equation (2.1) 

has more than n-1 zeros (counting multiplicaties) on I. In other words, 

the only solution with a total of n zeros on I is the identically zero 

solution. It is possible to draw a parallel between disconjugate opera

tors as defined above and nonsingular matrices in linear algebra, where 

10 
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an nxn matrix A is said to be nonsingular provided the only vector solu-
-+ -+ 

tion a of Aa = 0 is the identically zero vector. One consequence of 
-+ -+ -+ this property is that the equation Aa = S always has a unique solution a 

-+ 
for each choice of S. In the current setting the corresponding result 

is the following theorem, which may be found in Cappel [15], but which 

is proved here for completeness. 

THEOREM 2.1: The operator L is disconjugate on I if and only if 

for every m < n distinct points x1 , •.. , xm in I, for arbitrary positive 

integers r 1 , ... , rm with sum r 1 + ... +rm= n, and for n arbitrary real 

numbers s1 1 , ... , 131 , 13 2 l' · · · , S2 • · • · ' ' ,rl ' ,r2 
unique solution y(x) of Ly = 0 such that 

y(j-l)(x.) = S. ,, 
l. l.,J 

1 _< j < r. , 1 < i < m. 
- l. 

0 there is a 
µ r ' m, m 

PROOF: Let y1 (x), .•. , y n (x) be n linearly independent solutions 

of Equation (2.1) and let A be the matrix defined by 

A= 
(r1-l) ( ) 

Y1 xl 

(r -1) ( ) 
Y1 m xm 

(r -1) ( ) y m x n m 

-+ • h t vn' and suppose that Let v be a column vector wit componen s v1 , • • · , 



12 

At= O. Then the solution y(x) = v1y1 (x) + ... + vnyn(x) has a zero of 

order r. at each x. in I, and so has at least n total zeros in I. If L 
l. l. 

is disconjugate, then y(x) = O, and so t = 0. Therefore, A is a nonsin-

-+ 
gular matrix. If $ is now chosen with components Sl,l' •.. , $ , then 

m,rm 
-+ 

there is a unique column vector a. with components a.1 , ••• , a.n such that 

-+ -+ 
Aa. = $, so that y(x) = a.1y1 (x) + ... + a.nyn (x) is the unique solution 

desired. 

On the other hand, if L is not disconjugate, then Ly = 0 has a non-

trivial solution y(x) satisfying the conditions 

for some choice of x. and r., 1 < i < m. Since the identically zero solu-
l. l. - -

tion also satisfies these conditions, the solution y is not unique. This 

completes the proof of Theorem 2.1. 

This theorem states that disconjugacy is equivalent with the ability 

to interpolate at up to n points (counting multiplicities) in I by means 

of solutions of the differential equation (2.1). It suggests a link be-

tween disconjugate operators and certain matrices which can be exploited 

to express L in a much more meaningful form than that given in Equation 

(2 .1) • 

Polya Factorization 

,. 
In 1922, Polya [102] revived an 1874 result due to Frobenius [30] 

and applied it to the operator L. If, as in the proof of Theorem 2.1, 

{y 1 (x) , ... , y n (x)} is a fundamental set of solutions for Ly = 0, then 

the Wronskians Wk: W(y1 , ... , yk), k = 1, ... ,n, may be defined as 



yl (x) 

yl (x) yk_(x) 

(k-1) ( ) 
Yl x 

(k-1) ( ) 
yk x 

For notational convenience, define w0 - 1. 

THEOREM 2.2 (Frobenius): If the Wronskians W. satisfy 
J. 

W. (x) > O, 
J. 

i = 0, ... ,n, 

on the interval I, then the operator L can be expressed as 

d d 
Ly = r (x)-d r 1 (x)-d • n x n- x 

with r. (x) > O, i 0,1, .•. ,n, where 
J. 
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(2.2) 

(2.3) 

1 1 
ro=-=w-· (2.4a) 

Y1 1 

and 

r 
n 

w 
n =--w 
n-1 

w2 
i 

(2.4b) 

i = 1, ... ,n-1. (2.4c) 

,, 
THEOREM 2.3 (Polya): The equation Ly= 0 has a fundamental set of 

solutions {y1 , ..• ,y } such that the Wronskians W. satisfy Equation 
n i 

(2.2) on I if and only if L is disconjugate on I. That is, L has the 

factorization (2.3) on I if and only if L is disconjugate there. (The 
,, 

factorization (2.3) is known as a Polya factorization of L.) 



Before the theorems are proved, it should be noted that if the 

Wronskians W. are all nonzero on I, then the inequalities (2.2) can be 
l. 

achieved by replacing y. by -y. as required in the fundamental set of 
J J 

solutions. 

PROOF (Theorem 2.2): This proof is based on the fact that if two 

14 

k-th order linear differential equations of the form (2.1) have the same 

fundamental set of solutions and the same leading coefficient, they must 

in fact be identical equations. For if not, then their difference would 

be a nontrivial equation of order less than k with k independent solu-

tions, a contradiction. 

If Lk is defined by 

k = 1, .•. ,n, (2.5) 

then ~y = 0 is the k-th order differential equation with leading coeffi-

cient 1 and solutions y 1 , • • • , Yk • 

d W(yl' 
dx 

= 0 

Consequently, 1 y = Ly. 
n 

In addition, 

w 
is a differential equation with leading coefficient ~-l and solutions 

k 
Thus it follows that 

or 
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Equation (2.6) holds for 1 < k < n. If the definition of Lky is extended 

to include L0y = y, then Equation (2. 6) holds for k = 1 as well. Applying 

this relation to the operator L 

L ___ n_ ~ n-1 1 w (w ) 
ny - Wn-l dx w0 n-ly 

L gives 
n 

= wn d (wn-1 wn-1 d ( wn-2 ) ) 
W-1 dx -w-· W-2 dx W-1 1n-2 Y · 

n- n n- n-

Repeating in this fashion, applying Equation (2.6) a total of n -1 times, 

and identifying the coefficients as in Equation (2.4) yields the desired 

result. This completes the proof of the theorem. 

PROOF (Theorem 2.3): Assume first that Lis disconjugate on I, and 

let the fundamental set of solutions {y1 (x), ... ,yn(x)} be defined by 

y~n-j)(O) = o .. , 
1 1J 

where o .. denotes the Kronecker delta. If for some k the Wronskian Wk 
1J 

vanishes at a point c > 0, then some nontrivial linear combination of 

y1 , ••. ,yk would have k zeros at x= c and n-k zeros at x= 0. If L 

is disconjugate this cannot occur, and so every disconjugate operator 

has a factorization (2.3). 

For the other direction, suppose L is given by the factorization 

(2.3). Following Willett [128] and Trench [125], a fundamental set of 

solutions {y1, 

1 

• , y } may be defined by fixing a E I and setting 
n 

=-...,--,.... 
r 0 (x) ' 
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(2. 7) 

Suppose now that some nontrivial linear combination y(x) = a1y1 (x) +. 

+a y (x) has at least n zeros on I. Then so does r 0 (x)y(x), and by 
n n 

Rolle's theorem it follows that d~r0 (x)y(x) has at least n-1 zeros on 

I. Continuing in this manner, applying the factors 

succession, leads to the conclusion that r 1 (x)dd . 
n- x 

of Equation (2.3) in 

d 
.. rl (x) dx ro (x)y 

has at least one zero on I. But from Equation (2.7) it is easy to see 

that for each k~n - 1, 

so that 

d 
r l(x)-d . n- x 

d 
r l(x)-d n- x 

a contradiction. Thus the operator L given by Equation (2.3) is discon-

jugate. In fact, it can be shown that the coefficients r. (x), i = O, ... ,n, 
1. 

of the given factorization are the same as those determined by the solu-

tions defined in Equation (2.7) by means of Equation (2.4). This is most 

easily seen by row reducing each W .. This completes the proof of Theorem 
1. 

2.3. 

The proof of Theorem 2.3 can be used to gain information about the 



functions which locate conjugate points, as the following corollary 

shows. 

COROLLARY 2.4: If n1 (a)< 00 for Equation (2.1), then for some k, 

12_ k 2_ n - 1, there is a solution y (x) of Equation (2 .1) with n - k zeros 

at a and k zeros at n1 (a). 

PROOF: Let the fundamental set of solutions y 1 (x) , .•. , y n (x) be 

defined by 

yi~n-j) (a) = o .. 
l.J 

where o .. denotes the Kronecker delta. Let these solutions define the 
l.J 

Wronskians W., i= 0, ••. ,n. Since Equation (2.1) is disconjugate on 
l. 
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[a, n1 (a)) but not on [a, n1 (a)+ e::) for e: > 0 arbitrarily small, then for 

some k, l_s.k_s.n-1, the Wronskian Wk must vanish at n1 (a). Then there 

is a nontrivial linear combination of y1 , .•• ,yk with k zeros at n1 (a) 

and n - k zeros at a, as desired. This completes the proof of Corollary 

2.4. 

A proof of this result based on Green's functions is due to Levin 

[78) [119, p. 169). 

Clearly there is a strong connection between disconjugate operators 

and Cebysev and Markov systems (and hence total positivity). From the 

definition above, a fundamental set of solutions {y1 , ... ,yn} for Equa-

" " tion (2.1) forms a Cebysev system on I if and only if L is disconjugate 

there. Theorem 2.3 shows that Equation (2.1) has a fundamental set of 

solutions forming a Markov system on I if and only if L is disconjugate 

there. While this terminology is merely noted in passing here, a devel-
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opment based on such systems can be found in Coppel (15]. 

Quasi-Derivatives 

The Polya factorization (2.3) of a disconjugate operator L leads 

very naturally to an extension of the idea of derivative. Let the oper-

ators Lk, k = O, ... , n, be defined by 

k = 1, •.. ,n, (2.8) 

where the positive functions rk(x), k=O, ••• ,n, are those found in 

Equation (2.3). The function Lky is ~alled the k-th quasi-derivative of 

y. Since rk(x) >O for k=O, .•• ,n, it follows that the quasi-deriva-

tives of y exhibit many of the same characteristics as its derivatives, 

when both are defined. For example, Lky is increasing or decreasing as 

Lk+lY is positive or negative. More importantly, y has a zero of exact 

order i at x =a if and only if L0y(a) = L1y(a) = = L. 1y(a) = 0, and 
1.-

L.y(a.) ~O. For if f(x) E Ci is nonzero and if y has a zero of exact 
1. 

order i at x =a, then the product differentiation formulas imply that 

f(x)y(x) also has a zero of exact order i at x =a. Thus L0y(x) = 

ro(x)y(x) has 

d 

a zero of exact order i at x =a, implying that L1y(x) 

r 1 (x) dx Loy (x) has a zero of exact order i - 1 at x =a.. The claim then 

follows by an induction argument. 

The similarity between derivatives and quasi-derivatives led Nehari 

[93], in 1967, to consider a generalization of Equation (2.1). Let the 

positive functions r. (x), i = O, .. , ,n, be given, and let the quasi-
1. 

derivatives L0y, ••. ,Lny be defined by Equation (2.8). Consider the 

operator L on I defined by 
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with continuous coefficients p.(x) as for Equation (2.1). A function y 
l. 

is said to be a solution of Ly = 0 provided each quasi-derivative L0y, 

.,Ly exists, and provided Ly - 0 on I. In this new setting, Wron
n 

skians are defined in terms of quasi-derivatives, as opposed to ordinary 

derivatives. That is, the i- j element of W(y1 , ... ,yk) is taken to be 

L. 1y. (x), for 1 < i,j < k. Using these Wronskians, Nehari showed that 
].- J - -

the same analysis which applied to Equation (2.1) also applies to Equa-

tion (2.9): Lis disconjugate on I if and only if it has a P~lya fac-

torization there. However, note that the Polya factorization for L is 

probably different from that for L for Equation (2.9), just as the fac
n 

torization of L for Equation (2.1) is probably not dn/dxn. 

Polya factorization, and the canonical Trench factorization dis-

cussed later in this chapter, are extremely powerful tools for use in 

the study of disconjugate operators. For example, suppose L is a dis-

conjugate operator given in the factored form (2.3), and suppose L* is 

its adjoint as defined in Chapter I. Theorem 1.1 suggests that L* is 

disconjugate as well, since it must be (n - k,k) disconjugate for every 

choice of k. That this is in fact the case can now be shown, along with 

the remarkable result that L* has a P~lya factorization in which the 

factors of Lare reversed [15]. 

THEOREM 2.5: If L is disconjugate with factorization 

Ly 

then its adjoint L* is the disconjugate operator (-l)nM given by 
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d 
r -r z. 
n-1 dx n (2.10) 

PROOF: If it can be shown that the operator M with factorization 

(2.10) gives the adjoint of L, Theorem 2.3 will then imply the adjoint 

is disconjugate. Recall that the adjoint L* of L is the unique operator 

defined by 

d 
zLy-yL*z = dxJ(y,z) 

where J is a bilinear form in y and z. 

Let L0y, ••• ,Lny and M0z, .• 

by L and M, respectively, and let 

,M z be the quasi-derivatives given 
n 

J(y,z) = 
n k-1 
E (-1) (~_1z)(Ln-ky). 

k=l 

Then J(y,z) is a bilinear form, and 

d 
dxJ(y,z) = 

n k-1 1 1 
E (-1) [r-~z·Ln-ky+~-lz·r Ln-k+ly]. = 

k=l n-k n-k+l 

This last sum is a collapsing sum, and so 

d 1 n-1 1 n 
dx J(y,z) = -M z •Ly+ (-1) -M z •Ly= zLy- (-1) yMz. 

rn 0 n ro n 0 

Thus L*z n = (-1) Mz. This completes the proof of Theorem 2.5. 

Because of their importance in the study of differential equations, 

it is not surprising that factorization results have attracted the at-
~ 

tention of many authors. For example, Frobenius and Polya were not the 

only early contributors in this area. In 1833, Libri [83] arrived at an 

integral version of Theorem 2.2, while in 1931, Mammana [90] worked with 



a factorization of an operator L into linear factors of the form (d~ + 

p(x)). More recently, Zettl [132-135] has produced a series of papers 

relating to factorizations and disconjugacy, and Kim [59] has obtained 

factorizations with higher order factors for operators which are not 

disconjugate. 
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In the next section the Polya factorization for a disconjugate op-

erator is considered in more detail. The relationship between fundamen-

tal solutions, Wronskians, and factorization as presented in Theorems 

2.2 and 2.3 is exploited to describe a canonical factorization. 

Nonuniqueness and Canonical Factorizations 

Although every disconjugate operator has a Polya factorization as a 

result of Theorem 2.3, such factorizations are not unique. The Wrens-

kians Wk which determine the coefficients depend upon the choice and 

order of the fundamental system {y1 , ... ,yn} of solutions. For example, 

the second order operator L2 with factors determined by the solutions 

-x x 
{e , e } of L2y = 0 is 

x d -2x d x 
= e -e -e y. 

dx dx 

x -x 
When the order of solutions is changed to {e ,e }, the corresponding 

Wronskians change to yield the alternate factorization 

-x d 2x d -x L2y = e - e - e y. 
dx dx 

This same operator has still a third factorization, 

x x 
e d ( x + -x) 2 d e 

2x dx e e dx 2x y' 
e +l e +l 



x -x x 
derived from the solutions {e + e , e } • 
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Because the factorization of a disconjugate operator is not unique, 

the definitions of the quasi-derivatives are also not unique. Therefore, 

certain questions involving quasi-derivatives are not always well-defined. 

Consider, for example, the problem of locating conjugate points and focal 

points for Ly= 0, where Lis given in the generalized form (2.9). Mul

d tiple zeros of y counted with respect to dx agree with those counted with 

respect to the quasi-derivatives, and so if L is re-expressed in terms of 

different quasi-derivatives, the existence and location of conjugate 

points is not altered. On the other hand, focal points can be affected 

by changes in the factorization when defined in terms of quasi-deriva-

tives since the zeros of quasi-derivatives are not necessarily located 

at the immutable zeros of y. 

Consider the example 

y" - y 0 

with solutions y1 = sinx and y 2 = cosx. In this form, it is clear that 

conjugate and focal points for x='IT are located by y1 , and so n1 (1f)=21f 

and i;;1 ('IT)= 311"/2. 
2 2 If the operator d /dx used here is permitted to change, 

this equation may be written in the form 

1 d 2 d 1 --x --y-y = 0 
xdx dxx 

with solutions as before. The solution y1 still locates the conjugate 

and focal points for x ='IT, and n1 ('IT) = 211" is unchanged. With derivatives 

now given in terms of the quasi-derivatives of this new factorization, 

( ) . 1 . f 2 d sinx 0 d ( ) 311" 
i;;1 'IT is a so ution o x dx -x- = , an so i;;1 'IT < 2· 

Changing the factorization for a disconjugate operator redistributes 



23 

the weight of the coefficients among the quasi-derivatives. This in 

turn alters the growth relationships among the corresponding solutions. 

In the first example above, three ordered sets of solutions were consid-

ered. If the solutions in each of these are labeled in order as y1 and 

y2, then only the first set of solutions has the additional property 

y1 (x) 
lim = 0. 
x-+oo Y 2 (x) 

(2.11) 

This property is desirable because it implies that the solution 

y = ay 1 +by2 resembles y 2 for large values of x exactly when b -:f 0. Be-

-x x 
cause of the condition (2.11), the solutions y1 = e and y2 = e are 

said to form a principal system of solutions for L2y = 0. 

For the more general equation (2.1), when the operator Lis discon-

jugate, the solutions y 1 , ... , y n form a principal system of solutions 

provided that these solutions are eventually positive and 

y. (x) 
lim 1 = O, 

y. (x) 
x-+oo J 

1 < i < j < n. (2.12) 

It is known that Equation (2.1) has a principal system of solutions for 

every disconjugate operator L. These systems had been studied and dis-

cussed extensively by Coppel (15], Hartman (37, 38, 39], Levin (80], and 

Willett (128, 129], but it remained for Trench (125], in 1974, to estab-

lish a link between such systems and the factorization of L. 

Recall that when Lis given the factorization (2.3), then a funda-

mental system of solutions {y1 , ..• ,yn} of Equation (2.1) is determined 

by Equation (2.7). Suppose the factorization (2.3) has the additional 

property that 
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co 1 
JO r . (x) dx = co' 

l. 

1 < i < n-1. (2.13) 

Then simple applications of l'Hopital's rule reveal that the system 

{y1 , .•• ,yn} is actually a principal system of solutions. The contri

bution made by Trench in 1974 was to show that every disconjugate oper-

ator Lhasa canonical factorization satisfying (2.13). His method is 

constructive, so that if an operator is given in terms of a Polya fac-

torization, then it gives a technique for determining the coefficients 

of a new factorization satisfying (2.13). Furthermore, Trench showed 

that the factorization of L satisfying (2.13) is unique up to positive 

multiplicative constants with product 1. The factorization of L satis-

fying (2.13) will be called the Trench factorization of L. 

The proof of Trench's theorem is instructive both because of its 

constructive nature and because of the role played by the Trench factor-

ization in what follows. By means of Lemmas 2.6 and 2.7, a device is 

constructed for placing one term of the factorization in the form (2.13) 

while altering the other terms as little as possible. This device is 

then employed in Theorem 2.8 for the existence portion of the result. 

Throughout these results, all coefficients in the factorizations of the 

various operators will be taken to be positive continuous functions on 

the interval I. 

LEMMA 2.6: If 

co 1 dx fo pl (x) < ""• 

then the operator M given by 

My 
d d 

Pz dx P1 dx PoY 
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can be rewritten as 

with the property that 

J,oo 1 dx = co, 

o P1 (x) 

PROOF: Define the coefficients p0 , p1 , and p2 according to 

and 

Then 

= l" (100· dt )-lib= oo, 
~ x P1 (t) 0 

and so p1 (x) satisfies (2.13), as desired. To verify that the operators 

are the same, observe that 
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This completes the proof of the lemma. 

It is clear from this lemma that the coefficient p1 can be placed 

in the form (2.13) only at the cost of altering the coefficients to the 

left and right. These coefficients might now fail the condition (2.13) 

even if they met it before. For the factorization (2.3), only the func-

tions r 1 (x), .•. ,rn-l (x) need meet this condition, but even if only 

these are considered it is still reasonable to question whether the pro-

cess of applying Lemma 2.6 will terminate. Lemma 2.7 indicates to what 

extent the changes to a coefficient such as p1 (x) are stable. 

LEMMA 2.7: Suppose the operator given by 

My 

satisfies 

/"' 1 dx d/0 1 d= JO Pz (x) < co an ,0 pl (x) x co. 
(2.14) 

Suppose further that Lemma 2.6 is applied to p2(x) so that 

My 

with 

00 1 !0 _ dx 
P 2 (x) 

00 1 
= co and J0 _ ( dx 

P1 x) 
< 00. 

If Lemma 2.6 is now applied to p1 (x) yielding the factorization 

My 

then both q1 and q2 satisfy the condition (2.13). 
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PROOF: After applying Lemma 2.6 to p2(x) the coefficients are 

(2.15) 

and 

- 00 dt -1 
P1 (x) = P1 (x) (fx P2 (t)) (2.16) 

Therefore, Lemma 2.6 acting on p1 (x) gives 

- 00 dt -1 
= P2(x) (~ P (t)) , 

1 

and 

Only the behavior of q 2 requires verification. Based on Equations (2.15) 

and (2.16), and integrating by parts, the appropriate computation is 

b 1 00 dt 
!0 - ( ) fx - ( ) dx Pz x P1 t 

f,b 1 00 dt -2 00 dt 
= (x)(fxp2(t)) ·fxi\(t)dx 0 Pz 

00 dt )-1. /%> dt lb+ f,b(foo dt )-1 1 
= (f _ ( ) dx x p2(t) x p1 (t) O 0 x p2 (t) pl x 

00 dt -1 00 dt lb b 1 = (!x ) • f o + fo P1 (x) dx. Pz (t) x i\ (t) 

The first term on the right is positive, while from Equation (2.14) the 
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second diverges to + 00 in the limit as b approaches 00 , and so q2 satis

fies Equation (2.13). This completes the proof of Lemma 2.7. 

As suggested earlier, these lemmas provide the basis of an itera-

tive technique for Trench factoring an arbitrary disconjugate operator. 

THEOREM 2.8: Every disconjugate operator L on the interval I has a 

factorization of the form (2. 3) with coefficients r. > 0 satisfying (2 .13) 
1 

for i = 1,2, •.. ,n-1. This factorization is unique up to positive mul-

tiplicative constants with product 1. 

PROOF: The existence portion of the proof involves a double induc-

tion argument. Lemmas 2.6 and 2.7 imply existence for operators of order 

n = 2 and n = 3. Suppose that existence has been established for opera-

tors of order n - 1 where n > 4. Then the n-th order operator L may be 

written in the form 

Ly 

where the coefficients pi' i = 1, ••• ,n- 2, satisfy (2.13). If pn-l 

satisfies Equation (2.13), there is nothing more to be shown, and taking 

ri =pi' i = 0,1, .•• ,n gives the desired result. Otherwise, Lemma 2.6 

may be applied to pn-l yielding coefficients pn' pn-l' and pn_2 where 

p 1 satisfies (2.13), but where p 2 may no longer meet this condition. 
n- n-

If pn-Z still satisfies (2.13), the required factorization is given by 

setting ri=pi' i = 0,1, •.. ,n-3, ri=pi, i=n-2, n-1, and n. If 

p 2 does not satisfy Equation (2.13), then Lemma 2.7 implies that Lemma 
n-

-2.6 may be applied to pn_2, giving coefficients qn-l' qn_2 , and qn_3 

where q 1 and q 2 satisfy Equation (2.13), but where q 3 is suspect. 
n- n- n-
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Suppose now that by repeated applications of Lemmas 2.6 and 2.7 the 

operator L has been transformed to 

Ly 

where the coefficients q., 1 ~ i < k, k < i ~ n - 1, satisfy (2 .13), for some 
l. 

k, 12_k2_n- 3. If at this point qk satisfies (2.13), the process ter-

minates giving r. = q., i = 0,1, . 
l. l. 

,n. If not, then Lemmas 2.6 and 2.7 

applied to qk produce coefficients qk+l' qk' and qk-l with qk+l and qk 

satisfying (2.13), but with qk-l now suspect. By induction on k, this 

process may be continued until k = 1. If the procedure does not termin-

ate as described above, then setting r i = qi, i = 0, 1, 2, and r i = qi, 

i = 3, ... ,n gives the Trench factorization for L. Finally, by induc-

tion on n, every disconjugate operator can be Trench factored. 

To prove the essential uniqueness of the Trench factorization, sup-

pose 

Ly d d d = r -r - . rl dx ray n dx n-1 dx · (2.17) 

and 

Ly d d d 
pndxpn-ldx' . P1 dx PoY (2.18) 

are Trench factorizations for L. As discussed earlier, the fundamental 

set of solutions {y1 , . , y } for Ly= 0 described by Equation ( 2. 7) 
n 

using the coefficients of Equation (2.17) forms a principal system of 

solutions. Similarly, there is a principal system of solutions 

{ z1 , .•• , zn} for Ly= 0 as described by Equation (2. 7) using the coef

ficients of Equation (2.18). Since the condition (2.12) must be met by 

both of these systems, it is clear that 



i 
y. = l: a .. z. 

l. j=l l.J J 
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where the coefficients a .. are constants, with a .. > O. Consequently for 
l.J l.l. 

k = 1, ... , n, 

(2.19) 

k 
where Ck = II a ..• 

i=l l.l. 
The proof of Theorem 2.3 revealed that the Wron-

skians of y. and z. give rise to the factorizations (2.17) and (2.18), 
l. l. 

respectively. Thus Equation (2.19) implies that the correspondirtg coef-

ficients of the factorizations differ at most by positive constant mul-

tiples. Since these factorizations both define L, the product of these 

constants must be exactly 1. This completes the proof of Theorem 2.8. 

The principal solutions of a disconjugate equation enjoy a natural 

dominance relationship as expressed by Equation (2.12). In order to be 

useful in the context of later chapters, this concept must be defined 

more explicitly and extended to settings involving oscillatory solutions 

as well. Once this has been done in Chapter III, the main questions to 

be considered here may be addressed. 



CHAPTER III 

DOMINANCE FOR THE GENERAL EQUATION 

The concept of dominance of solutions of the general n-th order 

equation 

Ly (n) + ( ) (n-1) + =y p lxy • 
n-

. + p1 (x)y' + p0 (x)y = o, (3.1) 

with continuous coefficients, was studied by Dolan and Klaasen [16] in 

1975 in an attempt to characterize the asymptotic behavior of its solu-

tions. The major contribution provided by their work was that of defin-

ing the basic concepts used in discussing questions of the following 

kind: Given an oscillatory solution y and a nonoscillatory solution z 

of Equation (3 .1), is the linear combination y +AZ oscillatory or non-

oscillatory? Although Dolan and Klaasen were primarily interested in 

identifying dominance between the class N of all nonoscillatory solu-

tions and the class 0 of all oscillatory solutions of Equation (3.1), 

the terminology may be extended easily to a comparison between classes 

of nonoscillatory solutions alone. Dominance among pairs of oscillatory 

solutions is more difficult to define, and a suitable definition is 

still being sought. As examples considered here will show, under cer-

tain circumstances the dominance of solutions may be used to separate 

the solution space of Equation (3.1) into disjoint subsets from which 

the limiting behavior of all solutions is easily determined. 

Dolan and Klaasen [16] identified two kinds of dominance. Again 
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taking y to be oscillatory and z to be nonoscillatory, then y dominates 

z at ~ provided y +AZ oscillates for I A J sufficiently small. If y +AZ 

oscillates for all real A, then y dominates z at infinity (or simply, y 

dominates z). If, as suggested earlier, 0 and N are taken to be the 

classes of all oscillatory solutions and all nonoscillatory solutions of 

Equation (3.1), respectively, and if PcN and Q£0, then Q is said to 

dominate P at zero provided y dominates z at zero for all y E Q, z E P. 

Similar definitions hold for Q dominates P at infinity, and for when the 

roles of y and z are reversed. 

These definitions have equivalent expressions in terms of limits of 

quotients, the proofs of which are immediate from the definitions. 

LEMMA 3.1: Let the solutions yEO and zEN be given. Then 

(1) y dominates z at zero if and only if 

ll.·m i·nf _ti& < 0 < li·m sup Yi&. 
z(x) z(x)' 

X-7<10 X-7<X> 

(2) z dominates y at zero if and only if 

lim sup I;~~~ J 

X-7<X> 

< 00. 

' 

(3) y dominates z at infinity if and only if 

lim inf _ti& = - 00 and lim sup _ti& = 00 • 
· z(x) z(x) ' 
X-7<10 X-7<X> 

(4) z dominates y at infinity if and only if 

1 . Yi& - 0 imz(x) - . 
X-7<10 

(3. 2) 

(3. 3) 

(3.4) 

(3. 5) 

Such equivalent formulations as the limits (3.2) through (3.5) provide 

for the concept of dominance can be immediately extended to pairs of 
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nonoscillatory solutions. Specifically, if z and w are both nonoscilla

tory, then z is said to dominate w at zero provided lim sup I;~:~ I < co, 

x-+oo 
and z dominates w at infinity provided lim;~~~ = O. When considering 

X-+<X> 

pairs of oscillatory solutions the problem of division by zero cannot be 

avoided, making comparable definitions difficult to find in that case. 

In Chapter V one definition is suggested, but the definition is only ap-

plicable to the equations considered in that chapter. 

It is worth noting that if y E 0 dominates z EN at zero, then it is 

not necessarily the case that z dominates y at zero, since conceivably 

one might have lim sup .Y.ffi < co 
~ z(x) 

also dominates y at zero, then 

while lim inf .Y.ffi = - co • 
z(x) x-+oo 

necessarily lim sup I~~~~ I 
x-+oo 

However, if z 

= c, 0 < c < oo, 

and so their relative magnitude remains roughly the same as x approaches 

infinity. 

The constant coefficient case of Equation (3.1) can provide several 

helpful examples. Consider the equation 

(4) 
y -y = o. (3.6) 

A fundamental set of solutions for this equation is given by the func-

. x . -x 
tions y1 = e , Yz = sinx, y3 = cosx, y4 = e • Clearly y1 dominates y2 , 

y3, and y4 at infinity while y2 and y3 each dominate y4 at infinity. 

fact, y1 dominates every other solution to Equation (3.6) at zero, since 
4 

In 

every solution can be written in the form y = l: c. y. for some choice of 
i=l 1 1 

the constants c., i = 1,2,3,4, and hence limsup j...Y...! = c1 <co. 

1 x-+oo yl 
The same analysis applied to Equation (3.6) also applies to any 

constant coefficient equation of the form 

(n) y + ky = o. (3. 7) 
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When k< 0, -k always has a positive real n-th root A1 , and y1 = e 1 

dominates every other solution at zero. The solution y1 dominates at 
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infinity solutions given by the other roots of -k. 

always has a negative real n-th root >.. 2 , and Yz = 

When (-l)nk < 0, -k 
A2x . 

e is dominated by 

every other solution at zero. The solution y2 is in fact dominated at 

infinity by every solution linearly independent from y2 . 

It is interesting that in the case of Equation (3.6), or in the 

case of Equation (3. 7) when n is even and k < 0, there is no useful dom-

inance relationsh1p among the classes 0 and N, and yet the dominance 

structure of the fundamental set of solutions given by the roots of -k 

makes it possible to predict whether an arbitrary solution oscillates or 

does not oscillate based upon its initial conditions. Specifically, a 

particular solution y = aex + bcosx + csinx +de -x of Equation (3. 6) can be 

identified as belonging in 0 or N simply by observing which of the coef-

ficients a, b, c, and d are not zero. 

The ability to discern oscillatory or nonoscillatory behavior based 

upon initial conditions alone exists for every constant coefficient prob-

lem with roots (or conjugate pairs of roots) with distinct real parts. 

In the case of a repeated root A., such as A.= 1 for 

y" - 2y' + y = 0, 

AX solutions typically take the form y1 = e and y2 = xy1 . Consequently, 

a useful dominance relation still exists for this case. On the other 

hand, the problem 

y'" - 3y" + 4y' - 2y 0 

has solutions 
x 

e ' exsinx, and excosx, and no one solution dominates any 
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other at infinity. Therefore, the process of determining whether a 

linear combination oscillates or is nonoscillatory will not be as simple 

as merely identifying which coefficients are nonzero. 

Another example which will be considered in greater detail later is 

the Euler equation 

n (n) 
x y - ky = 0 ( 3. 8) 

on the interval [l, 00). Substituting xa. for yin Equation (3.8) reveals 

that y a 
= x is a solution of Equation (3.8) whenever a. is a solution of 

a.(a.-1)( ... )(a.-n+l)-k = O. (3.9) 

Depending on the parity of n and the sign and magnitude of k, Equation 

(3.9) may have anywhere from none up to n real roots. Real roots yield 

nonoscillatory solutions while complex conjugate roots yield pairs of 

oscillatory solutions. Regardless of these considerations, however, the 

roots a.1 ,a.2 , ••. ,a.n of Equation (3.9) correspond to solutions y1 , ... , 

y of Equation (3.8) which divide into three subsets: The set 0 of os
n 

cillatory solutions, the set N1 of nonoscillatory solutions which domin

ate 0, and the set N2 of nonoscillatory solutions which are dominated by 

0. Using these solutions as a basis for the solution space of Equation 

(3.8), the oscillatory or nonoscillatory nature of an arbitrary linear 

combination again can be determined merely by observing which coeffi-

cients are not zero. 

The notion of dominance has appeared, although not always by name, 

in the works of many authors, including Kim [64], Elias [25], Etgen and 

Taylor [27], Keener [53, 54], and Cheng [12]. One of the topics dis-

cussed in this regard is the uniqueness of the strongly decreasing solu-
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tion of Equation (3.1). A solution w(x) of Equation (3.1) is said to be 

strongly decreasing provided there exists a point c E I such that 

(-l)iw(i)(x) > 0 for x.?_c, i=O,l, ..• ,n-1. (3.10) 

By way of contrast, a solution u(x) of Equation (3.1) is called strongly 

increasing provided there exists c E I such that 

u(i)(x) > 0 for x.?_c, i=O,l, ..• ,n-1. (3.11) 

The strongly decreasing solution w is said to be essentially unique if 

the only solutions of Equation (3.1) satisfying (3.10) are constant mul-

tiples of w. Etgen and Taylor [27] have addressed the question of the 

essential uniqueness of the strongly decreasing solution for the equation 

(2m) 
y - py = 0 with p > 0, and dominance plays an important role in their 

work. Using a systems approach, this same question is considered by 

Cheng [12]. In many respects, the types of results sought by these 

authors mirror the questions of dominance which are studied in the later 

chapters here. 

Because Equation (3.1) analyzed by Dolan and Klaasen is so general, 

their results are necessarily limited in scope. Unless some less gener-

al equation is considered, such as the ones studied by Etgen and Taylor 

or Cheng, stronger results are not likely. In Chapter IV an equation is 

studied which seems to offer considerable hope of analysis along these 

lines. 



CHAPTER IV 

THE EQUATION L y + PY = 0 
n 

Motivated by the examples of the previous chapters, it seems rea-

sonable to consider the equation 

L y + p(x)y = 0 
n 

(4 .1) 

where p(x) is continuous and nonzero on I [O,oo), and where L is the 
n 

factored disconjugate operator defined by 

d d 
L y = P (x) -d P 1 (x) -d • n n x n- x 

with p. (x) continuous and positive on I, i = 0,1, ... ,n. Equation 
1. 

(4. 2) 

(4.1) is similar in form to the constant coefficient equation (3.7), and 

as has already been observed, the quasi-derivatives L,y, i = 0,1, .•. ,n, 
1. 

defined implicitly by Equation (4.2) share many characteristics with or-

dinary derivatives. One might ask, then, whether Equation (4.1) shares 

any properties with Equation (3.7). The behavior of the solutions of 

Equation (3.7) is completely characterized by the nature of then-th 

roots of -k. The main goal of the present chapter is to study the be-

havior of the solutions of Equation (4.1) and to describe a useful clas-

sification scheme for 'the solutions based on their behavior. Once this 

behavior is understood, questions of dominance such as those raised in 

Chapter III for the general equation may be addressed. 

Classifying the solutions of a differential equation into oscilla-

37 
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tory and nonoscillatory subsets, or on the basis of the signs of deriva

tives, is by no means new. Leighton and Nehari [76] used this technique 

in their study of the fourth order self-adjoint equation 

[r(x)y"]" + p(x)y = 0. (4. 3) 

Some of their results were anticipated by Svec [117], who studied Equa

tion (4.3) for r(x) = 1, p(x) ~O. Svec also classified the solutions of 

the equation 

y"' + p(x)y = 0 (4. 4) 

for p (x) ~ O, and this work on third order problems was continued in the 

major papers by Hanan [35] and Lazer [72]. 

Various n-th order equations related to Equation (4.1) have been 

studied by Kiguradze [58], Nehari [92-95], Johnson [47, 48], Kim [59-

64], and Elias [18-26], as well as a host of others. Kiguradze devised 

a classification scheme for the nonoscillatory solutions of the equation 

y(n) + p(x)y = 0, (4.5) 

and this scheme has been used extensively by Kim [60-63]. Recently, Kim 

[64] extended the Kiguradze classification scheme to Equation (4.1), but 

the results obtained are not the best possible. Nehari [95], Peterson 

[99-101], and Elias [26] have attempted an analysis based on Green's 

functions, but this approach too does not appear to yield the type of 

results required here. Instead, the primary tool will be a counting 

technique first devised by Johnson [47] and later improved by Elias in 

the papers [18, 19, 24, 25]. 

Let S(c0,c1 , ••• ,en) denote the number of sign changes in the se-



.•. , c of nonzero real numbers. 
n 

tion y(x) of Equation (4.1), and for x > 0, set 
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For a nontrivial solu-

S(y,x-) = lim S(L0y(~) ,L1y(t;), • 
~+x-

(4.6) 

S(y,x+) = lim S(Loy(~).-Lly(~), •.. ,(-l)nLny(t;)). 
~+x+ . 

(4. 7) 

Since Ly= -p(x).y from Equation (4.1), if any quasi-derivative had an 
n 

accumulation of zeros in I, then by Rolle's theorem y would also have an 

accumulation of zeros, along with every other quasi-derivative. But 

then y would have a zero of multiplicity n at some point, contradicting 

the choice of y as a nontrivial solution. Consequently, every point 

x > 0 has a deleted neighborhood in which no quasi-derivative vanishes, 

and so the limits (4.6) and (4.7) exist. By virtue of the definitions, 

S(y,x-) counts the number of sign changes in the sequence L0y(x), ... 

L y(x), while S(y,x+) counts the number of sign agreements. Suppose 
n 

k = S(y,x+) for some point x at which no quasi-derivative vanishes. 

Then S (y, x-) = n - k, and there are n - k changes in sign in the sequence 

of quasi-derivatives. Thus 

sgn[L0y(x)] n-k = (-1) sgn[L y(x)]. 
n 

But p 0 (x) >O, so that sgn[y(x)] = sgn[L0y(x)]. Then, from Equation (4.1), 

the previous equation becomes 

n-k sgn[y(x)] = (-1) sgn[-p(x)y(x)], 

or 

sgn[y(x)] 
n-k = -sgn[(-1) p(x)y(x)]. 
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Therefore, 

n-k 
(-1) p(x) < O. (4. 8) 

This important restriction on k will appear again, and is known as the 

parity condition for Equation (4.1). 

Zeros for a solution y of Equation (4.1) are counted according to 

the zeros of its quasi-derivatives, so that y has a zero of order three 

at x =a if L0y(a) = L1y(a) = L2y(a) = O. In addition, by virtue of Equation 

(4.1), the quasi-derivatives L0y, •.• ,Ln-ly can be arranged in a cyclic 

order with L0y following Ln-ly. If for example n = 3, and L0y(a) = 0 = 

L2y(a), L1y(a)-:/: O, then x =a is a zero of order two for L2y(x). For the 

arbitrary interval [a,bJ £I, let a_s_x1 ..s._x2 ..s._ .•. _s_xr~b be the zeros 

of L0y, ..• ,Ln-ly in the interval. In this enumeration of zeros, zeros 

of consecutive quasi-derivatives are counted as multiple zeros, while 

zeros of nonconsecutive quasi-derivatives are given separate subscripts. 

The exact multiplicity of the zero x. is denoted by n(x.). For example, 
l l 

let n = 5 and suppose that L0y(a) = L1y(a) = L3y(a) = 0, and L0y(b) = L3y(b) = 

L4y(b) = 0. Then x1 =a, x2 =a, and x3 = b are the zeros, with n(x1) = 2, 

n(x2) = 1, and n(x3) = 3. Finally, let <In> denote the greatest even inte

ger not greater than m. Then an important relation between the sign 

changes in the list of quasi-derivatives and the zeros x. in [a,b] is 
l 

given by the following result of Elias [24], which generalizes Johnson 

[ 4 7 J. 

LEMMA 4.1: Every solution y of Equation (4.1) satisfies 

N(y) - S(y,a+) + S(y,b-) + L: <n(x.)><n. 
l -a<x.<b 

l 

(4.9) 
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If N(y) =n, then Lj+lY has exactly one sign change between two consecu

tive zeros of L.y in [a,b]. The quasi-derivative L.+lY changes sign be-
J . J 

fore the first zero of Ljy in (a,b] if and only if sgn[Lj+ly(a+s)] = 

sgn[L.y(a+s)] for small E > 0, and this sign change is unique. Similar-
] 

ly Lj+lY changes sign after the last zero of Ljy in [a,b) if and only if 

sgn[Lj+ly(b-E)] = -sgn[Ljy(b-E)] for small E > 0, and this sign change is 

unique. 

PROOF: Let j be an integer, 0 _:_ j _:_ n - 1. First note that if 

Ljy(a) = 0, then sgn[Ljy(a+E)] = sgn[Lj+ly(a+s)] for E> 0 sufficiently 

small, while if Ljy(b) = O, then sgn[Ljy(b-s)] = -sgn[Lj+ly(b-E)] for 

E > 0 sufficiently small. Thus 

S(y,a+) > E n(x.), 
1 x.=a 

1 

S(y,b-) > E n(x.). 
x.=b 1 

1. 

Let {x .. } c {x.} be the zeros of L.Y which are not zeros of L. 1y. 
l.J - 1 J J-

(4.10) 

Hence n(x .. ) is the exact number of quasi-derivatives which vanish at 
1] 

x .. , starting with L.y. 
l.J J 

Let y. be the total number of zeros of L.y in [a,b], counting mul-
J J 

tiplicities. If the quasi-derivative L. 1y has zeros at the points 
. J-

z1 < ••• < zq in [a, b] with multiplicities m1 , ,m , then 
q 

At these same points, Ljy has zeros of orders m1 - 1, .•• ,mq - 1, as well 

as new zeros at the points of {x .. }. Thus, 
1] 

yJ. = (m1 -l)+ ... +(m -l)+En(x .. ) = y. 1 -q + En(x .. ). 
q 1.J J- 1] 

Since Ljy must change sign between each pair of zeros zi, zi+l of 
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L. 1y, then L.y has at least q-1 zeros of odd order on the interval 
J- J 

(z1 ,zq). Hence, if for each zero of L.y in (z1 ,z ), n(x .. ) is replaced 
J q l.J 

by <n(x .. )>,the greatest even integer in n(x .. ), this last equation be-
1.J l.J 

comes 

yJ. ~y. 1 -1+ E n(x .. )+ E <n(x .. )>+ E n(x .. ). 
J - x < z l.J z < x < z l.J l.J 

ij 1 1 ij q zq<Xij 

i:: > 0 sufficiently small. So if sgn[L.y(a+i::)] = sgn[L. 1y(a+E)] for i:: > 0 
J J-

sufficiently small, then Ljy must change sign on (a,z1). Employing a 

similar idea at x = b leads to 

yJ. > y. 1 -l+S(L. 1y(a+i::),L.y(a+i::)) + E <n(xiJ.)> 
- J- J- J z <x < z 

1 ij q 

+S(L. 1y(b-E),L.y(b-E)). 
J- J 

Using the relation L y = -py, Equation (4.11) includes the case 
n 

(4.11) 

Note that S(ci,ci+l) + S(ci+l'ci+Z) = S(ci,ci+l'ci+Z). Then adding 

Equation (4.11) for j = 0,1, ... ,n -1 leads to 

n > S(y,a+) + S(y,b-) + 

as desired. 

E <n(x.)>, l. a<x.<b l. 

If N(y) = n, then equality must hold in (4.11) for all values of j. 

This happens only when there is exactly one sign change between consecu-
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tive zeros of the quasi-derivatives, and when the zeros predicted by 

S(y,a+) and S(y,b-) are unique. This completes the lemma. 

If no quasi-derivative for y vanishes at b, then clearly 

S(y,b+) + S(y,b-) = n. Taken together with (4.9), this implies 

S(y,a+) < S(y,b+) (4.12) 

for all b>a for which L.y(b)#O, i=O, ••. ,n-1. Since every point 
- l. 

b has a deleted neighborhood in which no quasi-derivative vanishes, 

Equation (4.7) extends (4.12) to all b~a. Thus S(y,x+) is an increas-

ing integer valued function of x. Since this function is bounded above 

by n, the following lemma of Elias [24] is immediate. 

LEMMA 4.2: For every nontrivial solution y of Equation (4.1), 

there is an x0 > 0 and an integer k~ 0 such that S(y,x+): k and 

S (y, x-) : n - k for every x > x0 • Furthermore, by virtue of ( 4. 9) , the 

functions L0y, ... ,Ln-ly may have only simple zeros on (x0 , 00). 

Recalling the parity condition (4.8), Lemma 4.2 implies that the 

solution space of Equation (4.1) may be divided into disjoint subsets or 

classes Sk: {yllimS(y,x+) =k}. There are two key questions to be an
x-+<» 

swered in determining whether such a division is useful: Are the classes 

nonempty? Do the members of a class have any other common characteris-

tics? The next theorem (Elias [24]) answers the first of these questions 

in the affirmative; a definitive answer to the second will require some 

further work. 

THEOREM 4.3: For each k, O.::_k.::_n, satisfying the parity condition 

(4.8), the class Skis nonempty. 
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PROOF: The proof uses a limiting procedure to construct a solution 

in each class. To begin, let k satisfying l..::_k..::_n-1 and (-l)n-kp(x) < 0 

be fixed, and let y(x,s) be a nontrivial solution of Equation (4.1) sat-

isfying the n - 1 homogeneous boundary condition 

L.y(a) = 0, 
1 

L.y(s) = 0, 
J 

i = 0, ,k - 1, 

j=O, ••• ,n-k-2, 

(4.13a) 

(4.13b) 

where 0 <a< s. The inequalities (4.10) reveal that S(y(x,s) ,a+) ..'.::.k and 

S(y(x,s),s-)_.:.n-k-1. Since S(y,a+) + S(y,s-)..::_n by Lemma 4.1, then 

S(y(x,s),a+)2_k+l and S(y(x,s),s-)2_n-k. 
n-k 

But since (-1) p (x) < 0, 

then S(y(x,s),a+) = k+l would violate the parity condition (4.8), and 

so S(y(x,s),a+)=k. Similarly, S(y(x,s),s-)=n-k-1 would violate the 

parity condition, and so S(y(x,s) ,s-) = n - k. Since S(y,x+) is increas-

ing in x, then for any x E (a, s) it follows that 

S(y(x,s),x+) > S(y(x,s),a+) = k, 

while at the same time from (4.9), 

S(y(x,s),x+) < n - S(y(x,s),s-) = k. 

Therefore, S(y(x,s),x+) = k .. Similar reasoning reveals that for all 

xE (a,s), S(y(x,s),x-) = n-k. That is, 

S(y(x,s),x+) = k, a..::_x<s, (4.14a) 

S(y(x,s),x-) = n-k, a<x<s. (4.14b) 

The solution y(x,s) satisfying (4.13) is essentially unique, for if 

there were another independent solution for these conditions, then some 
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linear combination y of the two would have at least k + 1 zeros at x =a 

and at least n-k-1 zeros at x=s. Then the inequalities (4.10) and 

(4. 9) would imply that S <Y ,a+) = k + 1 and S <Y, s-) = n - k - 1, in violation 

of the parity condition. 

For each s >a, normalize the solution y(x,s) by setting 
n-1 

E (L.y(a,s)) 2 =1, and choose a monotone, increasing, unbounded sequence 
j=O J 

co 

{s.}. 1 such that the functions L.y(x,s.) converge for each j uniformly 
1 1= J 1 

on compact subsets of [0, 00). Let y(x) be the solution of Equation (4.1) 

such that limy (x, s.) = y (x). Then by Lemma 4. 2, there is an x 0 .::_ 0 such 
. 1 
1~ 

that S(y,x+) is constant for x > x 0 . Take x1 > x0 such that Lj (x1 ) # 0 for 

j=O, ... ,n-1. For i sufficiently large, then, L.y(x1 ,s.) # 0 and 
J 1 

sgn[L.y(x1 )]=sgn[L.y(x1 ,s.)] for j=O, ••. ,n-1. Consequently, 
J J 1 

S(y,x1+) = S(y(x,si),x1+) for i sufficiently large. If in addition i is 

chosen so large that si > x1 , then Equation (4.14) implies S(y,x1+) = k, 

and hence by choice of x1 the solution y is in the class Sk. Thus for 

n-k 
(-1) p(x) < 0, l..:::_k..:::_n-1, the class Skis nonempty. 

If k = 0 is allowable by (4. 8), let y(x, s) satisfy the conditions 

L.y(s)=O, j=O, .,n-2, 
J 

n-1 2 
normalized by E (L. y (a, s)) = 1, and then argue as before. If k = n sat

f j=O J 
isfies (4.8), take y(x) to be the unique solution of (4.1) satisfying 

L.y(a) = O, 
1 

i=O, ... ,n-2, 

Then S(y,a+) = n by (4.10), and hence S(y,x+) = n on [a, 00 ) since S(y,x+) 

is increasing in x. This implies that no quasi-derivative can change 



sign in (a, 00), and so the solution y(x) in fact satisfies L.y(x) > O, 
1 

i= O, •.• ,n-1, on (a,oo). Thus the class S is nonempty. 
n 

eludes the proof of Theorem 4.3. 

This con-

46 

The proof of Theorem 4.3 demonstrates not only that the class Sk is 

nonempty, but also that for every choice of a~ 0, Sk contains a solution 

y(x) such that L.y(a) =O, i=O, ... ,k-1, and S(y,x+) =k for all 
1 

x E [a, 00). These solutions in fact generalize the "principal solutions" 

used by Leighton and Nehari [76] and the "fundamental solutions" employed 

by Hanan [35]. As will be seen shortly, a further generalization of 

these solutions is possible. 

The evidence suggests that the classes Sk play a key role in the 

dominance of solutions of Equation (4.1). For the equation 

(4) 
y - y = O, 

-x x 
for example, straight-forward computations show e E s0 , e E s4 , and 

sinx, cosx E s2• In the sense defined in Chapter III, the solutions in 

class s2 dominate those in s0 , and are themselves dominated by the solu

tions in class s4 . This role is supported further by the nature of the 

classes themselves. 

While at first it might seem that there need not be any logical 

organization in the division of solutions of Equation (4.1) among the 

classes Sk, it will be shown in Theorem 4.14 that, for fixed k, the 

solutions in Sk are either all oscillatory or all nonoscillatory. Be

fore this result can be proved, however, it will be necessary to develop 

the idea of extremal points for Equation (4.1). 
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Extremal Points and Extremal Solutions 

The development in this section, leading eventually to a proof of 

the result described above, is based upon the recent paper [24) of Elias. 

The results in Elias' paper are a natural outgrowth of the work done on 

the fourth order equation (4.3) by Leighton and Nehari [76), and gener-

alize many of their ideas. These results also involve an extension of 

the notion of conjugate point and focal point, and suggest several lines 

of future investigation as described in Chapter VII. 

For the interval [a,s] c [O,~), consider the boundary conditions 

L.y(a) = 0, 
]. 

L.y(s) = 0, 
J 

(4.15a) 

(4.15b) 

where {i1 , . , ik} and {j 1 , ... ,jn-k} are two arbitrary (not necessar-

ily distinct) sets of indices chosen from {0, ••• ,n - l}. If Equation 

(4.1) has a nontrivial solution y satisfying (4.15), then (4.10) implies 

S(y,a+) 2:_k and S(y,s-) 2:_n-k. But since S(y,a+) + S(y,s-) ~n by 

Lemma 4.1, then S(y,a+) =k and S(y,s-) =n-k. Therefore, Equation (4.1) 

has a nontrivial solution subject to (4.15) only if k satisfies the par-

ity condition (4.8). In the remainder of this section, it will be as

n-k sumed that O~k~n and (-1) p(x) < 0, unless explicitly stated otherwise. 

Many classical results are more easily understood in light of this 

parity restriction on k for (4.15). If pis negative and n=2, than a 

(1,1) zero distribution is prohibited, and hence the corresponding second 

order equation has no oscillatory solutions. For n = 4, this parity re-

sult reduces to the restrictions on possible zero distributions discov-

ered by Leighton and Nehari [76). The Class I and Class II solution 
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conditions utilized by Hanan [35] for the general third order equation 

reduce to the parity conditions for n= 3 in Equation (4.1). General 

n-th order versions of the parity restrictions have appeared in the works 

of virtually every author considering higher order equations since the 

1967 paper of Nehari (93]. The parity condition is primarily geometric 

in nature, and similar geometric considerations are at the heart of the 

disconjugacy conditions considered by Barrett [7], Peterson [97], 

Ridenhour and Sherman (108], and Keener (54] for the general fourth order 

problem. 

As an extension of the notion of conjugate or focal point, define 

the i-th extremal point 8.(a) of a corresponding to (4.15) to be the 
l 

i-th value of s in (a, 00) for which Equation (4.1) has a nontrivial solu-

tion satisfying (4.15). Such a nontrivial solution is called an extre-

mal solution. These definitions presume that the points s E (a, 00 ) for 

which extremal solutions exist have no accumulation point in [a, 00). 

Since no nontrivial solution may have n zeros at a, then a cannot be an 

accumulation point of the set of extremal points for (4.15). That there 

can be no accumulation point in (a, 00 ) will follow from Theorem 4.7, to 

be shown shortly. Solutions meeting these definitions were discussed by 

Leighton and Nehari [76] for the fourth order problem (4.3), while 

Johnson (47, 48, 49] and Elias [18, 19, 24, 25] have devoted much effort 

to the study of such solutions for Equation (4.1). 

Since (4.15) has n conditions on y, nontrivial solutions may not 

always exist. If one of these conditions is removed, however, a solu-

tion always exists for the remaining set of n-1 homogeneous conditions, 

and may be used to analyze (4.15). 
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LEMMA 4 . 4 : If the n - 1 boundary conditions 

L.y(a) = O, 
1 

(4.16a) 

L.y(s) = 0, 
J 

are considered, then the following results hold: 

(4.16b) 

(1) Equation (4.1) has an essentially unique solution y(x,s) sat-

isfying (4.16). 

(2) At the point a, S(y(x,s) ,a+)= k, and sgn[Li+ly(a+e:,s) J = 

sgn[Liy(a+e:,s)J if and only if iE{i1 , •.. ,ik}. In particular, no 

quasi-derivatives other than those specified in (4.16) can vanish at a. 

(3) At the points, S(y(x,s),s-) =n-k, and n-k-1 of the sign 

changes among consecutive quasi-derivatives are determined by j 1 , ... , 

jn-k-l' At most one additional quasi-derivative may vanish at s other 

than those specified in (4.16). 

(4) S(y(x,s),x+) ::k for xE [a,s) and S(y(x,s),x-) :n-k for 

x E (a, s]. 

(5) Lty(x,s), t=O, ..• ,n-1, may have only simple zeros in (a,s). 

Lt+ly(x,s) has exactly one simple zero between two consecutive zeros of 

Lty(x,s) in [a,s]. 

(6) Lty(x,s), t=O, ... ,n-1, and its simple zeros are differen

tiable as functions of s. 

PROOF: Note that the boundary conditions (4.16) are a generalized 

version of the boundary conditions (4.13) considered in the proof of 

Theorem 4.3. The inequalities (4.10) again show S(y(x,s),a+)_::k and 

S(y(x,s),s-)_?:n-k-1, so that parts (1) and (4) may be proved as in the 

case of the earlier theorem. Parts (2) and (3) then follow immediately 
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from Lemma 4.1 and the parity condition (4.8), 

The quasi-derivatives Lty(x,s), t = O, . , n - 1, can have only sim-

ple zeros in (a,s) by virtue of (4.9) since S(y(x,s),a+)+S(y(x,s),s-) 

=n. Lemma 4.1 showed that Lt+ly(x,s) has exactly one change of sign be

tween the zeros of Lty(x,s) in [a,s]; since all the zeros of Lt+ly(x,s) 

in (a,s) must now be simple zeros, Lt+ly(x,s) has exactly one simple zero 

between the zeros of Lty(x,s) in [a,s]. 

It remains only to prove (6). Let {u1 , ... ,un} be an independent 

set of solutions of Equation (4.1), and consider the determinant 

z(x) - (4.17) 

L. u (a), ••. ,L. u (a),L. u (s), •.• ,L. () () 
1 1 n 1 k n J1 n Jn-k-lun s ,un x 

Clearly z(x) is a solution of Equation (4.1) satisfying (4.16). Choose 

x0 in (a,s) such that y(x0,s) # 0. Then the determinant defining z(x0) 

must be nonzero since the solution y(x,s) is essentially unique. There-

fore, z(x0) # 0, and thus z(x) is a nontrivial solution of Equation (4.1). 

Hence y(x,s) = z(x), and part (6) follows by the implicit function theorem 

applied to the determinant (4.17). This completes the proof of Lemma 4.4. 

The proof of Lemma 4.4 rests on the fact that any solution y of 

Equation (4.1) satisfying the boundary conditions (4.16) must also sat-

isfy N(y) .:::_n - 1, where N(y) is given by (4. 9). The proof can be extend-

ed to include any homogeneous set of k boundary conditions at a and 

n - k - 1 conditions at s, or k - 1 boundary conditions at a and n - k con-

ditions at s, which force N(y) .:::_n - 1. This is summarized for future 

reference in the following lemma. 
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LEMMA 4.5: The properties of Lemma 4.4 can be proved for the solu-

tions of Equation (4.1) satisfying any set of n -1 homogeneous boundary 

conditions at a and s which give N(y) ~ n - 1. 

Comparing Lemma 4.1 and parts (2) and (3) of Lemma 4.4 reveals that 

Li+ly(x,s) has a simple zero before the first zero of Liy(x,s) in (a,s] 

if and only if i E { i 1 , ••• , ik}, and that there is precisely one value 

of j other than those given by {j 1 , ... ,jn-k-l} for which Lj+ly(x,s) 

has a simple zero after the last zero of L.y(x,s) in [a,s). It is clear 
J 

from the boundary conditions (4.15) and (4.16) that s is an extremal 

point for (4.15) if and only if L. y(x,s)I =O. Thus ifs is an ex-
Jn-k x=s 

tremal point, then y(x,s) is the essentially unique extremal solution. 

These remarks may be summarized as follows. 

COROLLARY 4. 6: Let y = y (x, e.) be the unique extremal solution cor-
1. 

responding to ei(a). Then Lt+lY has exactly one simple zero between two 

consecutive zeros of Ly in [a,e.(a)], and these are its only zeros in 
t 1. 

(a' e. (a))' for t = 0' ... 'n - 1. 
1. 

The essential uniqueness of such solutions for the fourth order 

problem (4.3) was shown by Leighton and Nehari [76, Theorem 2.6). For 

the case n = 2 the result is trivial since no solution may have a double 

zero. For n= 3 the essential uniqueness of these solutions can be de-

rived from Hanan's Class I and Class II conditions. Johnson [49] also 

has several results of this type for Equation (4.1) with n even. 

Equation (4.17) suggests a relationship between extremal points and 

certain Wronskian-like determinants. The next few results explore this 

relationship in order to establish a link between the extremal points of 

Equation (4.1) and its oscillatory solutions. Recall that, in addition, 
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Theorem 4.7 will show that the set of extremal points of Equation (4.1) 

has no finite accumulation point. 

By comparison with Equation (4.17), it is clear that the determin-

ant W(s) = W(s, j 1 , ••• ,jn-k) defined by 

L. u1 (a), ••• ,L. u1 (a),L. u1 (s), ••• ,L. u1 (s) 
1 1 1 k J 1 Jn-k 

W(s) = (4.18) 

L. u (a), ••• ,L. u (a),L. u (s), ••• ,L. u (s) 
1 1 n 1 k n J 1 n J n-k n 

satisfies W(s) = L. y(x,s)I , and so W(s) vanishes if and only ifs 
Jn-k x=s 

is an extremal point for (4.15). A more precise relationship between 

the zeros of W(s) and the extremal points of Equation (4.1) is expressed 

in the next theorem. 

THEOREM 4.7: The extremal points for (4.15) are simple zeros of 

W(s). 

PROOF: Differentiating by columns in Equation (4.18) gives 

(4.19) 

The proof consists in showing that the derivative is nonzero for those 

values of s for which W(s) vanishes. In particular, the proof will show 

that the right side of Equation (4.19) has at least one nonzero term, 

and that each nonzero term has the same sign. To that end, assume 

throughout the proof that s satisfies 

(4.20) 
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Recall that 1 ~ k ~ n - 1 in the boundary conditions ( 4 .15) , so that 

there is at least one term on the right side of Equation (4.19) for 

which · + 1 ..J. • J t T J t+l 0 
Suppose such a term vanished, so that 

W(s;j 1 , ..• ,jt +l, ,j k) = 0. n-
(4. 21) 

Equation (4.20) implies that y1 (x) =y(x,s) is an extremal solution sat

isfying (4.15), while Equation (4.21) implies the existence of a non-

trivial solution y2(x) satisfying the same boundary conditions with jt 

replaced by j t + 1. Since these solutions share n - 1 boundary conditions, 

they are linearly dependent by Lemma 4.4. But then each has a total of 

n-k+l zeros at s, contradicting part (3) of Lemma 4.4. Consequently, 

the determinant in Equation (4.21) cannot vanish, and the derivative in 

Equation (4.19) has at least one nonzero term. If it has exactly one 

nonzero term, the proof is complete. 

Suppose now that the sum in Equation (4.19) has nonzero terms for 

t = q and t = r, with j < j . In order to prove that these terms have the 
q r 

same sign, each will be shown to be a quasi-derivative of a constant 

multiple of the extremal solution for (4.15). By means of an auxiliary 

function, the signs of the constant multiples can be determined. 

Let y1 (x,s) and y2 (x,s) be defined by the determinants in Table I. 

Then as in Lemma 4.4, y1 (x,s) is the essentially unique solution of 

Equation (4.1) satisfying the boundary conditions 

L.y(a) = O, 
]_ 

L.y(s) = 0, 
J 

j E {jl, ' ' ' ,j k}\{j }, n- q 

while y2(x,s) is the essentially unique solution satisfying 



Y1(x,s). 

y 2 (x,s) • 

y3 (x,s) • 

TABLE I 

MATRIX DEFINITIONS OF THE FUNCTIONS y1 , y2, AND y3 

Li u1 (a), ... ,Li u1 (a),Lj u1 (s), ... ,Lj u1 (s),Lj u1 (s), ... ,Lj u1 (s),u1 (x) 
1 k 1 q-1 q+l n-k 

Liu (a), ••• ,Li u (a),Lj u (s), ... ,Lj u (s),Lj u (s), ..• ,Lj u (s),u (x) 
1 n k n 1 n q-1 n q+l n n-k n n 

L1 u1 (a). ••. ,L1 u1 (a),Lj u1 (s), .• .,Lj u1 (s),Lj u1 (s), ... ,Lj u1 (s),u1 (x) 
1 k 1 r-1 r+l · n-k 

Liu (a), •.• ,Li u (a),Lj u (s), ••. ,Lj u (s),Lj u (s), •.• ,Lj u (s),u (x) 
1 n k n 1 n r-1 n · r+l n n-k n n 

Li u1 (a), ... ,Li u1 (a),Lj u1 (s), ... ,Lj u1 (s),Lj u1 (s), ... ,Lj u1 (s),Lj u1 (s), •.. ,Lj u1 (s),u1 (x) 
1 k+l 1 q-1 q+l r-1 r+l n-k 

Liu (a), •.. ,Li u (a),Lj u (s), .•• ,Lj. u (s),Lj u (s), ..• ,Lj u (s),Lj u (s), ... ,Lj u (s),u (x) 
1 n k+l n 1 n q-1 n q+l n r-1 n r+l n n-k n n 

IJl 
.i::-



L.y(a) = 0, 
l. 

L.y(s) = 0, 
J 

j E {jl, ' ' ' ,j k}'{j }. n- r 
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Since each of these sets of boundary conditions is a subset of those in 

(4.15), then both y1 and y2 must be extremal solutions, and so constant 

multiples of each other. 

Differentiating and then exchanging columns in the definition of y1 

and y2 gives 

n-k-q 
(-1) L. +ly1 (x,s) = W(s;j 1 , ... ,j + 1, ... ,j k) - W 

Jq q n- q 
(4.22) 

and 

n-k-r 
(-1) L. +ly2 (x,s) = W(s;j 1 , .•• ,j +l, ... ,j k) :: W • 

Jr r n- r 
(4.23) 

The boundary conditions (4.13) imply that for s > 0 sufficiently small, 

each of y1 and y2 satisfies 

sgn[Ljy(s-e:)] = -sgn[Lj+ly(s-e:)] (4.24) 

if and only if j E {j 1 , ••• , jn-k}. Consequently, 

sgn[y1 (x,s)I ] = (-l)qsgn[L. +ly1 (x,s)I ], 
s-e: J s-s 

q 

and this together with Equation (4.22) becomes 

n-k I sgn[W] = (-1) sgn[y1 Cx,s) ]. 
q s-e: 

Likewise, Equations (4.24) and (4.23) combine to give 

sgn[W] = (-l)n-ksgn[y2 (x,s)I ]. 
r s-e: 

Since y1 and y2 are both constant multiples of the extremal solution 
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y(x,s), their product has constant sign for all x, and so 

sgn[W W ] = sgn[y1 (x,s) I y2(x,s) I ] = sgn[y1 (x,s)y2 (x,s)]. (4.25) 
q r s-e: s-e: 

Therefore, it suffices to show that y1 and y2 have the same sign. In 

order to do this, it is necessary to compare them at a point where it is 

known they do not vanish. 

Choose ik+l from {O, ... ,n- l},{i1 , ... ,ik}, so that 

L. y(x,s)j _ # O, and define y3 (x,s) by the determinant in Table I to 
1k+l x-a 

be the unique solution of Equation (4.1) satisfying the boundary condi-

tions 

L.y(a) = 0, 
1 

L.y(s) = 0, 
J 

j E {jl, ' ' ' ,j k}'{j ,j }. n- q r 

Differentiating and exchanging rows as before reveals that 

n-k-r I n-k-1 (-1) L. y3 (x,s) = (-1) L. y1 (a,s) 
Jr x=s 1k+l 

(4.26a) 

(4.26b) 

(4.27) 

and (recalling that the jr column is missing from y3 (x,s), with jr > jq) 

n-k-q-1 I (-1) L. y3(x,s) 
J x=s q 

n-k-1 (-1) L. y2 (a,s). 
1k+l 

(4.28) 

It is necessary to determine the signs of Lty3 (x,s), t=O, ... , 

n - 1, on a left neighborhood of s. From the boundary conditions (4.26) 

and the parity condition, then- k- 2 conditions Ljy3 (x,s) lx=s = 0, 

j E {j 1 , ... ,j k}\{j ,j }, locate all the sign changes exactly. So, 
n- q r 

among the functions L. y 3 , ••. , L. y 3 , there are exactly r - q - 1 sign 
Jq Jr 

changes in a left neighborhood of s, or 

sgn[L. y3 (x,s)j ] 
J x=s r 

= (-l)r-q-lsgn[L. y3 (x,s)]. 
. J 

q 
(4.29) 
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Combining Equations (4.27), (4.28), and (4.29) shows 

sgn[L. y1 (a,s)] = sgn[L. y2(a,s)]. 
ik+l ik+l 

Consequently the products in Equation (4.25) are positive, and so the 

nonzero terms of the derivative (4.19) are of the same sign. This com-

pletes the proof of Theorem 4.7. 

co 
Suppose that there existed a sequence of points {si}i=l converging 

to some point s0 in (a,co) such that W(si) = O, i = 1, ••• ,co, Since W(s) 

is differentiable on (a,co), then by Rolle's theorem there would be a 

sequence s!+s0 such that dd W(s~) =O, i=l, .•• ,co, The continuity of 
i s i 

W and dds W would then imply W(s0) = dds W(s0) = O, contradicting Theorem 

4.7. Hence the set of extremal points has no finite accumulation point, 

and the points in the set may be numbered accordingly. 

Each extremal point e.(a) depends upon the choice of a. For the 
i 

general problem investigated in earlier chapters, it could happen that 

e i (a) = e i (a') while a'/: a' • That this is no longer the case for Equa-

tion (4.1) is demonstrated next. In addition, the domain of e. is ana
i 

lyzed. This result is a generalization of earlier results due to 

Peterson [98], Johnson [47], Kim [59], and Nehari [95]. 

THEOREM 4.8: The function e.(a) is differentiable and strictly in
i 

creasing, with domain of the form [O, b), 0 < b <co, 

PROOF: To emphasize its dependence on a, denote the determinant 

(4.18) by W(a,s). As Theorem 4.7 has shown, if e.(a) exists, then it is 
i 

a simple zero of W(a,s). Hence by the implicit function theorem 6.(a) 
i 

is defined and differentiable in a neighborhood of a, and 
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da = aa I a; s=e. (a) • 
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58 

aw de. 
Analyzing ~ as in Theorem 4. 7 shows it is nonvanishing, so that dai,; 0 

and e. is monotonic. Since 9. can be continued as long as it is bounded, 
l. l. 

then it must be increasing. Otherwise, it could be continued for b >a 

until e. (b) > b is contradicted. 
l. 

If 9.(a) exists, then e. is defined in some largest open interval A 
l. l. 

containing a. Let a' =inf A. For every b E (a' ,a], 9. (b) exists and 
l. 

W(b,9.(b)) = 0. By the continuity of Wand e., e.(a') must also exist. 
l. l. l. 

If a' > 0, then 9. is defined in a neighborhood of a', contradicting the 
l. 

definition of a' = inf A. Thus a' = O, and 9. (a) is defined on some half
l. 

open subinterval of [0,oo). This completes the proof of Theorem 4.8. 

From Lemma 4.4 it is known that the unique solution y(x,s) of Equa-

tion (4.1) satisfying (4.16) has only simple zeros in (a,s), and at most 

one additional zero at s other than those specified by (4.16). The be-

havior of these zeros as functions of s is described next. 

THEOREM 4.9: The number of simple zeros of L y(x,s), O.::_r.::_n-1, 
r 

in (a,s) can vary, as s increases, only when a simple zero enters (a,s) 

through the variable endpoint s. 

PROOF: Since y(x,s) cannot have multiple zeros in (a,s), and since 

its simple zeros are continuous functions of s, their number can vary 

only when one simple zero enters or leaves the interval through the end-

points a or s. Lemma 4.4 forbids any additional zeros at a, and so the 

simple zeros may only enter or leave through s. The proof consists of 

showing that zeros may only enter through s. 



Suppose r E {j 1 , ... ,jn-k-l}' so that 1 y(x,s)I = 0. r x=s 
If for 

certain values of s, a simple zero of 1 y(x,s) does not enter or leave 
r 

(a,s) at s, then sgn[L y(x,s)j ] = -sgn[L +ly(x,s)j ] is con-r x=s-E r x=s-E 

stant, and so a simple zero of Lr+1y(x,s) cannot enter (a,s) at s. On 

the other hand, if a zero of L y(x,s) does enter or leave at s, then 
r 

Rolle's theorem implies the same holds for Lr+1y(x,s) as well. There-
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fore, it is sufficient to prove the theorem for those quasi-derivatives 

for which no condition is given at sin (4.16). 

Assume for the moment that r+ 1 f/. {j1 , ..• ,jn-k-l} as well. If 

then Lry(x,s0) has a zero at x= s 0 , it must be a simple zero, and so by 

the implicit function theorem there exists a simple z~ro x(s) of 

(4.30) 

Recall from Equation (4.17) that 1 y(x,s) has the determinant represen
r 

tation 

1 y(x,s) = 
r 

so that 

L. u (a), ... ,L. u (a),L. u (s), ... ,L. u (s),L u (x) 
J.l n J.k n J 1 n Jn-k-1 n r n 

'd'dx Lry(x,s) j W(so;jl, ... ,jn-k-l'r+ l)/pr+l (so), (4.3la) 

(so, so) 
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Since s 0 is an extremal point for the boundary conditions 

L.y(a) = 0, 
1 

(4.32a) 

L.y(s) = O, 
J 

(4.32b) 

the proof of Theorem 4.7 shows that the nonzero derivatives in (4.31) 

have the same sign, and d 
that Clxlry(x,s)j ~ 0. Thus, by Equation 

(so, so) 

(4. 30), x' (s0) .:s_ O. Let d(s) : x(s) - s measure the distance between the 

simple zero x(s) and the variable endpoint s. Since d(s0) = 0 and 

d' (s0) .:s_ -1, the zero x(s) enters the interval (a,s) at s = s 0 . 

Now consider the case where r + 1 E { j 1 , ,jn-k-l}. The argument 

used above fails here since 33x Lry(x, s) j = O, and the implicit 
(so, so) 

function theorem no longer applies. In order to analyze this case, it 

is necessary to locate an extremal point s1 following s 0 for (4.32), 

which in fact may not exist. Since extremal points for (4.32) are sim-

ple zeros of W(s;j 1 , ••. ,jn-k-l'r), fore:> 0 arbitrarily small, the 

zero x(s) must either have entered (a, s 0 + e:) at s = s 0 or left without 

entering. Therefore, choose c, c > s 0, and on [c,c:o) redefine p(x): p(c) 

and p.(x) :p.(c). Since the solution y(x,s) is unaffected on [a,c], the 
]. 1 

behavior of x(s) is also unaffected. On the other hand, on [c, 00 ) Equa-

tion (4.1) now has constant coefficients, and it is well known that 

6.(c) exists for all i for this problem (21]. By Theorem 4.8 6.(a) ex-
i ]. 

ists for all i as well. Without loss of generality, therefore, assume 

the extremal point s1 > s 0 exists. To prove that the zero x(s) entered 

(a,s) at s = s 0 , it will suffice to show that Lry(x,s1) has more zeros 

in (a,s1) than Lry(x,s0) has in (a,s0). 

From the set of n-k<n indices {j 1 , ••• ,jn-k-l'r} choose an index, 
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say j , for which j + 1 is not also in the set. Let y1 (x, s) be the es-
q q 

sentially unique solution satisfying the conditions 

L.y(a) = 0, 
l. 

L.y(s) = 0, 
J 

j E {jl, .•. ,j k l,r}'{j }. 
n- - q 

(4.33a) 

(4.33b) 

Clearly y(x,s0) = y1 (x,s0) and y(x,s1) = y1 (x,s1}, up to constant multi

ples, since the extremals for (4.32) also satisfy (4.33). Since 

jq +l r/. {j 1 , · • · ,jn-k-l'r}, the first part of the proof implies 

L. y1 (x,s1) has one more zero in 
Jq 

(a,s1) than has L. y1 (x,s0) in (a,s0). 
Jq 

By Corollary 4.7, it follows that Lry1 (x,s1) has exactly one more zero 

in (a,s1 ) than does Lry(x,s0) in (a,s0). This completes the proof of 

Theorem 4.9. 

For s sufficiently close to a, the solution y(x,s) and its quasi-

derivatives can have no zeros in (a,s) other than those predicted by 

Rolle's theorem from the boundary conditions (4.16). If there were an 

additional zero for values of s arbitrarily close to a, then Rolle's 

theorem would guarantee at least one zero for each quasi-derivative 

L y(x,s). 
t 

+ Choosing an appropriate sequence s. +a and passing to the 
l. 

limit would then give a nontrivial solution with n zeros at x =a, a con-

tradiction to the uniqueness of solutions for Equation (4.1). 

As s increases, Theorem 4.9 has shown that new zeros of the quasi-

derivatives enter (a,s) through the enpoint s. Since the zeros in (a,s) 

are subject to Rolle's theorem and the constraints of Lemmas 4.1 and 4.8, 

the exact order in which these zeros enter depends solely on the boundary 

conditions (4.16). Also, ass increases, the quasi-derivatives L y(x,s), 
r 

rE{O, .•. ,n-l}\{j 1 , •.. ,jn-k-l}, necessarily vanish in decreasing 



order at x = s. An example will help clarify exactly how these orders 

are determined by (4.15). 

Suppose n = 5 and p (x) > 0, and consider the boundary conditions 

L.y(a) = O, 
l. 

L.y(s) = 0, 
J 

i=O,l, 

j=0,2. 
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By Rolle's theorem, L y(x,s) vanishes in (a,s) for r=l,2,3, regardless 
r 

of how close s is to a. Assume s starts so near a that these are the 

only zeros in (a,s). Ass increases, the first new zero at s must occur 

for L4y(x,s), since any other location would force L4y(x,s) to vanish in 

(a,s), implying that the zero has already entered there. Allowing s to 

increase still further so that L4y(x,s) now vanishes in (a,s), the next 

zero at s must occur for L3y(x,s) so as to predict the zero of L4y(x,s) 

by Rolle's theorem. If this zero entered by way of any other quasi-

derivative, it would force L3y(x,s) to have an extra zero in (a,s), im

plying a zero had entered previously. The new zero of L3y(x,s) at s 

raises the multiplicity of the zero of L2y(x,s) at s. Therefore, in 

order to maintain S (y (x, s), s-) = 3, as s increases beyond this point both 

L2y(x,s) and L3y(x,s) gain a new simple zero in (a,s). That is, the 

multiple zero of L2y(x,s) at s breaks up into two simple zeros, and the 

new simple zero of L3y(x,s) is then forced by Rolle's theorem. Finally, 

L1y(x,s) would vanish at s, causing new simple zeros to enter (a,s) for 

both L0y(x,s) and L1y(x,s). 

Once a pattern such as this has been established, it cannot be var-

ied but must instead be repeated as s increases (provided new zeros con-

tinue to appear), by the same argument with Rolle's theorem. Therefore, 

Theorem 4.9 has the following corollary: 
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COROLLARY 4.10: Let t be the number of zeros predicted by Rolle's 
t 

theorem for Lty(x,s) in (a,s) for (4.16) withs near a. If 0_2t_2jn-k' 

then the quasi-derivative L y(x,8.(a)) of the extremal solution t ]. 

y(x,8.(a)) has exactly i+t -1 simple zeros in (a,8.(a)), i=l,2, ]. t ]. 

If t > j k' then L y(x, 8. (a)) has i + t simple zeros in (a,8. (a)). 
n- t 1 t 1 

Theorem 4.9 and Corollary 4.10 extend a result of Leighton and 

Nehari [76, Theorem 3.6] describing extremal solutions for the conjugate 

points of Equation ( 4. 3) with p (x) < 0. 

The boundary conditions (4.16) were obtained from (4.15) by delet-

ing a condition at s, and the results which followed described the be-

havior of the solution y(x,s) as s varied. Using precisely the same 

methods of proof, analogous theorems describe the behavior of solutions 

which satisfy boundary conditions obtained from (4.15) by deleting a con-

dition at a, and then allowing s to vary. 

Of particular interest in the proof of Theorem 4.14 is the situation 

where the sets {i1 , ..• ,ik} and {j 1 , ..• ,jn-k} of (4.15) are disjoint. 

The following lemma is slightly more general than the version used by 

Elias [24], but has the advantage of permitting a proof of Theorem 4.17 

which does not require any reference to the Trench factorization of the 

operator L in Equation (4.1). 
n 

LEMMA 4.11: Consider the boundary conditions 

L,y(a) 
]. 

0, 

L,y(s) = 0, 
J 

j E {0,1, ... ,n- l}'\{i1 , .•. ,ik}. 

If there is a solution y(x) of Equation (4.1) which satisfies 

(4.34a) 

(4.34b) 
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t=O,l, ... ,n-1, (4. 35a) 

(4.35b) 

(4.35c) 

on (a,b), then e1 (a)_:.b for (4.34). If iki=n-1 and if e1 (a)_:.b, then 

there is a solution y(x) satisfying (4. 35) on (a,b). 

PROOF: In this setting, with the assumption that ik i= n - 1, the 

boundary conditions (4.16) derived from (4.34) give tt = 0 for 

t = 0, .•• , n -1 . If e1 (a)~ b, then y(x, b) satisfies (4. 35) by Corol

lary 4.10 and Lemma 4.4. This proves the second part of the lemma. 

To prove the first part, assume e1 (a) <b, and suppose y1 (x) satis

fies (4.35). By the continuity of e1 , there is an a'> a such that 

e1 (a') < b. Let y 2 (x) be the extremal solution for e1 (a') on [a', e1 (a')], 

and assume, without loss of generality, that y1 and y 2 have the same 

sign in (a 1 ,e1 (a')). Set wA=y1 -A.y2 , and note that Ltw0 (x);'O on 

[a 1 ,e1 (a')] by (4.35) for t=O, •.. ,n-1. DeHne AO to be the smallest 

positive value of A. such that LtwA vanishes in [a 1 ,e1 (a')] for some t. 

Continuity with respect to A implies no quasi-derivative of wA changes 
0 

sign in [a 1 ,e1 (a')). Consequently, wA must vanish at either a' or 
0 

·e1 (a'). Suppose L wA (a') = 0 for some t. In light of the boundary con
t 0 

ditions on y 2 , necessarily t E {O, ... ,n-1},{ij, ••. ,ik}. Since 

sgn[L w, ] = sgn[L y1 J by definition of A0 , then sgn[L wA ] = 
t 1\0 t t 0 

-sgn[L +lw' ] by (4.35), contradicting L wA (a')= O. A similar argument 
t 1\0 t 0 

at e1 (a') shows the solutions y1 and y2 are incompatible. This com-

pletes the proof of Lemma 4.11. 
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The incompatibility of the conditions (4.34) and (4.35) is indeed 

the heart of the proof of Theorem 4.14. The basic idea of the proof is 

this: if the class Sk contains a nonoscillatory solution, then for some 

a> O, the solution satisfies conditions of the form (4.35) on [a, 00). On 

the other hand, the existence of an oscillatory solution will lead to 

the existence of an extremal point e1 (a') for some a' >a and for condi

tions of the form (4.34). The difficulty lies in that the set of indi-

ces {i1 , .•. ,ik} in (4.34) and (4.35) as determined by these solutions 

might be different. This requires, then, showing that the existence of 

an extremal point for one set of conditions of the form (4.15) implies 

the existence of extremal points for every other set of conditions of 

the form (4.15). Theorems 4.12 and 4.13 accomplish this task, allowing 

Theorem 4.14 to be proved. 

THEOREM 4 .12: If all the extremal points 6. (a), i = 1, 2, ... , ex
i 

ist for one system of boundary conditions of type (4.15), then all the 

extremal points exist for every system of boundary conditions of type 

(4.15). 

PROOF: It is sufficient to show that all the extremal points 8.(a), 
]. 

i = 1, 2, ..• , of ( 4 .15) exist if and only if the corresponding extremal 

points exist when a left or right boundary condition is increased by one. 

Let e.(a), i=l,2,. 
]. 

conditions 

L.y(a) 
]. 

0, 

L.y(s) = 0, 
J 

. . , represent the extremal points for the boundary 

(4.36a) 

,j +l, .. ,j k}, 
q n-

(4.36b) 

where jq+ l~ {j 1 , ... ,jq, .•. ,jn-k}. The proof shows that the points 
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{6.(a)} and {e.(a)} must separate each other. 
1. 1. 

Let y(x,s) be the solution satisfying the n-1 conditions 

L.y(a) = O, 
1. 

(4.37a) 

L,y(s) = 0, 
J 

j E {jl, ' ' ' ,j k}'{j }. n- q 
(4.37b) 

For s sufficiently close to a, all the zeros of y(x,s) and its quasi-

derivatives on (a, s) are given by Rolle' s theorem applied to (4. 37). As 

the argument before Corollary 4.10 shows, when s increases the quasi-

derivative L. +ly(x, s) gains a zero at x = s before L. y(x, s). As s in-
Jq Jq 

creases still more, L. y(x,s) must vanish at s before L. +ly(x,s) can 
Jq Jq 

gain its second zero. Likewise, allowing s to increase again, 

L. +ly(x,s) must achieve its second zero at x=s before L. y(x,s) does. 
Jq Jq 

Applying this argument to the points e. (a) and e. (a) reveals e . (a) < 
1. 1. 1. 

8i (a)< Bi+l (a)< ei+l(a). Hence (4.15) has infinitely many extremal 

points if and only if (4.36) does. 

A similar argument applies when a system of boundary conditions 

differs from (4.15) by one condition at x =a. In that case, y(x, s) is 

defined by deleting a condition at a instead of s. Theorems such as 

those proved earlier would show that, as s increases, zeros could enter 

(a,s) only by way of the endpoint a, allowing the proof to be completed. 

Actually the earlier results make new results about the endpoint a easy 

to prove, since at s = e. (a)' the solution y(x,s) defined by deleting a 
1 

condition at a must be the unique extremal solution. This completes the 

proof of Theorem 4.12. 

The point x0 ~ 0 at which a nonoscillatory solution y finally a

chieves its constant value of S(y,x+) can be arbitrarily large in gen-
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eral. In order to arrive at a contradiction in the proof of Theorem 

4.14, it is necessary to generate extremal solutions for e1 (a) for ar

bitrarily large values of a. That is one function of the next theorem. 

THEOREM 4.13: Let y(x) be an oscillatory solution of Equation 

(4.1) which satisfies S(y,x+):: k for x sufficiently large. Then for 

every system of type (4.15), and for every a~ 0, all the extremal points 

e. (a) , i = 1, 2, . 
l. 

. . , exist. 

PROOF: From Lemma 4. 2 there is an x0 ~ 0 such that S (y ,x+) = k for 

x > x0. Choose the point a~ x0 and the integer m >n 2 arbitrarily large, 

and let t 1 and s1 be chosen so that y(x) has at least m simple zeros in 

(t1 , s1) c (a, 00), with no quasi-derivatives vanishing at either t 1 or s1 . 

Since S (y, t 1 +) = k and S (y, s1 - ) = n - k, there are sets of indices 

{i1 , . ,ik} and {j 1 , •.. ,jn-k} such that 

For x0 < t 1 < s, let u(x,s) be the solution of Equation (4.1) satisfying 

the boundary conditions 

(4.38a) 

L . +lu ( s) + d . L . u ( s) = 0 , 
J J J 

(4.38a) 

Every solution u of (4.38) satisfies 

N(u) ~ S(u,t1+) + S(u,s-) ~ k + (n-k-1) = n-1, 

and so by Lemma 4.5 the solution u(x,s) has the properties given by 

Lemma 4.4. In particular, u(x,s) is essentially unique; since y(x) also 
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meets (4.38) for s=s1 , then u(x,s1) :y(x). Thus u(x,s1) has at least m 

simple zeros in (t1 ,s1 ). 

By Lemma 4.4, simple zeros of u(x,s) cannot coincide or meet t 1 as 

s decreases. In addition, when s is sufficiently close to t 1 , at least 

one quasi-derivative must be nonzero, so that as s decreases toward t 1 , 

zeros of the quasi-derivatives must leave (t1 ,s) through s. 

Suppose 

L. u(x,s) 
Jn-k 

that, as s decreases from s1 toward 

leaves (t1 ,s) for s = s 2 , 

L. u(x,s 2) I 
Jn-k 

x=s 2 

= 0. 

tl<s2<sl, 

tl, the first zero of 

so that 

As the number of zeros of L. u(x,s) in (t1 ,s) decreases by one, Rolle's 
Jn-k 

theorem implies that u(x,s) loses at most jn-k < n zeros from (t1 ,s). 

2 
Thus u(x, s 2) still has at least m - n > n - n zeros in ( t 1 , s 2). 

Let v(x,s) be the solution which satisfies 

L.+1v(s) + d.L.v(s) = O, 
J J J 

L. v(s) = 0. 
Jn-k 

By Lemma 4.5, v(x,s) also has the properties specified in Lennna 

4.4, and hence it follows that v(x,s2):: u(x,s 2) and has at least m- n 

Now let s decrease until L. v(x,s) has a zero at 
Jn-k-1 

Repeating in this fashion merges the zeros of y(x) 

at the endpoint s = sn-k" In a similar manner, by deleting conditions 

one by one at t from 

L.w(s) 
J 

0, 
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and allowing t to increase toward s merges the zeros at the endpoint 

t = tk. Thus, there is a solution y(x) which satisfies 

L.y(t) = 0, (4.39a) 
1 

L .y(s) = 0, 
J 

. 'j k}' n-

Furthermore, y has at least m- n 2 simple zeros in (t,s) c (t1 ,s1 ). 

(4.39b) 

The point s is an extremal point for t; that is, s = 8. (t) for some 
1 

integer i .::_ l. Theorem 4.8 implies 8.(a)<s, and so is defined. 
1 -

Since y 

has at least m-n2 simple zeros in (t,s), then Corollary 4.10 implies 

i2_m- n 2 - t 0 , where the constant t 0 is determined by the boundary condi

tions (4.39). Because m may be chosen arbitrarily large, it follows 

that 8. (a) exists for i = 1,2, . 
1 

Even though the conditions (4.39) 

may change with m, some set of conditions must be repeated infinitely 

often, and so 8.(a) exists for every set of conditions of the form (4.15) 
1 

by Theorem 4.12. Finally, since a itself was chosen arbitrarily large, 

8. (a) is defined for all a> 0. This completes the proof of Theorem 4.13. 
1 

Theorem 4.14 may now be proved easily. Theorems 4.3, 4.13, and 

n-k 
4.14 demonstrate the utility of the classes Sk, 0 .:::_k.:::_n, (-1) p(x) < 0. 

THEOREM 4.14: For fixed k, the solutions in Sk are either all os-

cillatory or all nonoscillatory. 

PROOF: 
n-k 

Recall that, for 0 .:::_k.:::_n, (-1) p(x) .:::_ O, the class Sk is 

the set of solutions {yjlimS(y,x+) =k}. Suppose Sk contains both a 
x-+co 

nonoscillatory solution u(x) and an oscillatory solution v(x). Let a> 0 

be chosen so large that no quasi-derivative of u(x) vanishes on [a, 00). 

Since u E Sk' then S(u,x+):: k for x> a. Consequently, there is a set of 



indices { i 1 , . . . , ik} such that 

sgn[Lju(x)] = sgn[Lj+lu(x)], 

on [a, 00). By Lemma 4.11, e1 (a) = 00 for the boundary conditions of the 

form (4.34) given by the indices {i1 , ••. ,ik}. But since v(x) is an 
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oscillatory solution in class Sk, e1 (a) must exist for every set of boun

dary conditions and for all a> 0 by Theorem 4.13, a contradiction. This 

completes the proof of Theorem 4.14. 

At this point, the classes Sk' 0 ~k~n satisfying (4.8), have been 

shown to be nonempty disjoint classes whose union is the entire solution 

space of Equation (4.1) (minus the trivial solution) with the additional 

property that each class consists solely of either oscillatory or nonos-

cillatory solutions. It is reasonable to suspect that the solution space 

of Equation (4.1) has a basis associated with the classes, and this in 

fact is the case. For convenience of notation in the next result, add 

the trivial solution to each class. This result, due to Elias [25], will 

play a fundamental role in Chapter V. 

THEOREM 4 .15: Let a > 0 be a fixed point. There exists a basis 

(1) 

(2) 

,u 1 } of the solution space of Equation (4.1) such that 
n-

u., i=O, •.. ,n-1, has a zero of multiplicity i at a. 
J.. 

the two-dimensional subspace spanned by uk-l and ~· 

u0 E s0, and if p < 0, then un-l E Sn. 

n 
If (-1) p<O then 



(3) If the set Sk' l~k~n-1, consists of nonoscillatory solu

tions, then span {l\.-l'l\.} contains two solutions v,w such that 

1 v/L w-+ 00 monotonically as x-+ 00 , t=O, ... ,n-1. If Sk consists of 
t t 
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oscillatory solutions, then the zeros of every two linearly independent 

solutions in span {uk-l'uk} separate each other in (a,oo), 

PROOF: n-k 
For l~k..:_n-1, (-1) p < 0, let y1 (x,s) be the solution of 

Equation (4.1) satisfying the n - 1 conditions 

L.y(a) 
l. 

0, 

L.y(s) = 0, 
J 

i = 0, 'k - 1, 

j=O, ... ,n-k-2, 

and let y 2 (x, s) be the solution satisfying the n - 1 conditions 

L.y(a) = 0, 
l. 

L.y(s) = 0, 
J 

i = O, ,k-2,k, 

j=O, •.. ,n-k-2. 

(4.40a) 

(4.40b) 

(4.4la) 

(4.4lb) 

n-1 2 
Normalize these solutions so that l: (1 y(a,s)) = 1, and define uk(x) 

t=O t 
= lim y1 (x,s), uk_1 (x) = lim y2 (x,s) as a tends to infinity through an 

appropriately chosen sequence. By using properly chosen subsequences, 

it may be assumed that both y1 and y2 converge along the same sequence 

of s values. As in Theorem 4.3, both uk and ~-l must belong in Sk. If 

k = 0 (k = n) is allowable by the parity condition, then take u0 (un) to 

be the solution found by Theorem 4.3 to be in class s0 (Sn). From these 

definitions, part (1) is immediate. 

Since y1 and y2 converge along the same sequence, then clearly 

c1uk(x) + c2uk_1 (x) =lim (c1y1 (x,s) + c2y2(x,s)). The conditions (4.40) 
s-+oo 

and (4.41) imply that the combination y(x,s):: c1y1 (x,s) + c2y2 Cx,s) must 

satisfy the n - 2 boundary conditions 



L.y(a) = 0, 
l. 

i = O, 'k - 2, 

L.y(s) = 0, 
J 

j=O, ••. ,n-k-2. 

Therefore, S (y(x, s) ,a+) 2:. k - 1, S (y(x, s), s-) 2:. n - k - 1. But the parity 

condition (4.8) then forces S(y(x,s),a+) =k, S(y(x,s),s-) =n-k. Now 

proceeding exactly as in Theorem 4.3, the limit function lim y(x,s) = 
s-+oo 

c1u1 (x)+c2u 2 (x) must belong in sk. Thus Sk contains span {uk-l'uk}, 

and part (2) is shown. 

Suppose that the class Sk, l~k~n-1, consists of nonoscillatory 

solutions. Then there exists c~O sufficiently large so that Lt~:/: 0 

on [c,co), t= O, ••• ,n-1. If, for some point x0 > c, it happened that 

(Lruk_/Lruk)' (x0) = O, then (Lr+l uk-l Lruk - Lruk-l Lr+l uk) (x0) = 0. 

Consequently, there would be constants c1 and c 2 _so that the solution 

y(x) = c1 uk (x) + c 2uk-l (x) satisfied Lry(x0 ) = Lr+1y(x0) = 0. Now, the 
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combination of ~ and ~-l must have at least k- 1 initial zeros, so 

that S(y,a+) = k by the parity condition. But from Lemma 4.1, for b > x0 , 

S(y,a+) +<n(x0)>+ S(y,b-) ~n. Hence S(y,b-) ~n- k-2, or S(y,b+) 2:.k+ 2, 

contradicting the fact that y E Sk. Therefore (Lr~-/Lr~)' :/: 0, and 

the quotient is monotone and hence convergent in RU {co}. If the limit 

is ""• then clearly the limit of Lr-l~-1/Lr-luk cannot be finite, and so 

Lt~-/Ltuk + "" for all t, t = 0,1, .•. ,n -1, by the cyclic nature of the 

quasi-derivatives. On the other hand, if the limit is A., I A. I < ""• then 

setting v= ~ and w= ~-l - "-1;c gives lim (Lrv/Lrw) = ""• and the result 
X"'l-<X> 

follows as above. 

Suppose finally that S. consists of oscillatory solutions. If 
l. 

there are two linearly independent solutions, v,wE span{uk-l'uk} whose 

zeros do not separate each other on (a, 00), then there is a linear com-
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bination of the form y = c1 v + c2w such that, for some index r and for 

some point x0 >a, Lry(x0) = Lr+ly(x0) = 0. As before, this implies 

S(y,x0+)2, k+2, a contradiction since y E span{~_1 ,uk}. This completes 

the proof of Theorem 4.15. 

The study of oscillatory solutions and extremal points, used here 

to produce a proof of Theorem 4.14, is an area worthy of greater consid-

eration than can be afforded in this study. There remains, however, one 

additional result from this study-which cannot justly be omitted. As 

discussed in Chapter I, nonoscillation is not equivalent to eventual 

disconjugacy for general n-th order differential equations. That these 

properties are equivalent for Equation (4.1) has been shown by Elias 

[20, 24]. The original proof [20] involved many of the same manipula-

tions with boundary conditions required for the broader paper [24], and 

undoubtedly inspired much of the later work. 

In order to produce a proof which does not depend upon the Trench 

factorization, a slightly more general lemma is needed here than used by 

Elias [24, Lemma 4]. Otherwise, the proof which follows for Theorem 

4.17 is based on that in Reference [24]. 

LEMMA 4.16: Let S.(a) represent the extremal points for the boun-
1 

dary conditions 

L.y(a) = O, 
1 

L.y(s) = 0, 
J 

i = 0,1, ,k - 1, (4.42a) 

j=O,l, •.• ,n-k-1, (4.42b) 

and let ei(a) represent the extremal points for (4.15). If 81 (a) exists, 

then e 1 (a)~91 (a), with equality only when (4 .15) is equivalent to 

(4.42). 



PROOF: Exactly as in the proof of Theorem 4.12, it can be shown 

that the extremal point decreases when either a left or right boundary 

condition is increased by one. That is, the first extremal point for 

(4.15) must occur before the first extremal point for the conditions 

L.y(a) = 0, 
l. 

L.y(s) = O, 
J 

This suffices to prove the lemma. 

THEOREM 4.17: Equation (4.1) is eventually disconjugate if and 

only if there does not exist an oscillatory solution. 
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PROOF: One direction is trivial, since the existence of an oscilla-

tory solution implies the existence of n1 (a) for arbitrarily large values 

of a. 

For the other direction, note from Corollary 2.4 that the conjugate 

point nl (a) coincides with the extremal point el(a) for the boundary con

ditions (4.42) for some k, 1 < k < n -1. If Equation (4.1) is not eventu-

ally disconjugate, then n1 (a) exists for arbitrarily large values of a, 

and hence for some fixed k, the extremal point el (a) exists for (4.42) 

for arbitrarily large values of a. The theorem will follow if it can 

be shown that this implies the existence of an oscillatory solution for 

Equation (4.1). 

Consider the solution uk E Sk of Equation (4.1) as given by Theorem 

4 .15 which has a zero of multiplicity k at x = 0. If uk is oscillatory, 

then the theorem is proved. If ~ is nonoscillatory, then there is a 

point a> 0 such that no quasi-derivative of uk vanishes on [a, 00). Thus, 

for some set of indices {i1 , ... , ik}, uk satisfies the conditions (4. 35) 
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of Lemma 4.11 on the interval [a, 00 ). Consequently, 81 (a)= 00 for the 

boundary conditions (4.34). But since 81 (a) exists, then Lemma 4.16 im-

plies \(a) 2. 81 (a) <co, a contradiction. This contradiction shows that 

l\ cannot be oscillatory. This completes the proof of Theorem 4.17. 

Using the basis {u0 , ..• ,un-l} and the classes Sk, the dominance 

of the solutions of Equation (4.1) may now be considered in Chapter V. 



CHAPTER V 

DOMINANCE FOR L y + PY = 0 
n 

In the study of a second order differential equation, the classic 

work of Sturm [110] showed that either all solutions oscillate or none 

do. Because of this simplicity in the structure of the solution space, 

dominance results such as those described in Chapter III would be of 

little value. As the order of the equation increases, however, the 

solution space becomes more complex and varied, and there is a greater 

need to discriminate between the behaviors of the various solutions. 

For the fourth order problem (4.3) studied by Leighton and Nehari 

[76], the work of Keener [53, Theorems 3.4 and 4.7] effectively charac-

terizes the dominance relationships among oscillatory and nonoscilla-

tory solutions. Lazer [72] has also characterized dominance relation-

ships for the solutions of the third order equation y"' + ry' + py = 0. 

On the other hand, as discussed in Chapter III, there are third order 

equations for which such results do not exist, and so any reasonable 

analysis of dominance must consider an equation less general than 

Equation (3.1). 

As in Chapter IV, consider the equation 

L y + p(x)y = 0, (5.1) 
n 

where p (x) is continuous and nonzero on I = [ 0, 00 ) , and where L is the 
n 

factored disconjugate operator defined by 

76 
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L y 
n 

d d 
= P (s)-d P l(x)-d n x n- x 

(5. 2) 

with p. (x) continuous and positive on I for i = 0,1, 
]. 

,n. For each 

solution y of Equation (5.1) set S(y) = lim S(y,x+), and define Sk:: 
x~ 

{y IS (y) = k}. Whenever mention is made of a class Sk of solutions in 

n-k this chapter, it will be assumed that 0 < k < n and (-1) p(x) < O. For 

emphasis, these values of k will be called admissible values. It will 

be convenient at times to refer to the classes Sk as the Elias classes 

for Equation (5.1). 

The main question to be discussed here is the following: Under 

what conditions does the class sk dominate the class sj for every j < k? 

At this point, the question is not even well defined. If two distinct 

classes Sk and Sj both consist of oscillatory solutions, then the defin

itions of dominance given in Chapter III do not apply. Therefore, in 

addition to the definitions found in that chapter, several new defini-

tions are needed. If y and z are both solutions of Equation (5.1), then 

y dominates z .£1. class at zero provided there is an e: > 0 such that 

S(y+ A.z) = S(y) whenever j>..j < e:. The solution y dominates z .£1. class at 

infinity (or simply, .£1. class) provided S(y+A.z)=S(y) for all real 

values of A.. If P and Q are subsets of the solution space of Equation 

(5.1), then P dominates Q by class at zero provided y dominates z by 

class at zero for every choice of y E P, z E Q. The set P dominates Q by 

class at infinity provided y dominates z by class at infinity for every 

yEP, zEQ. 

Let 0 be the set of oscillatory solutions of Equation (5.1), and 

let N be the set of nonoscillatory solutions. If y E 0 and z E N, then 

domination by class implies domination in the sense of Chapter III, since 
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k= S(y) and j = S(z) imply Skc 0 and S. c N. Whether the converse is true - ]-

remains an open question at this time. As part (3) of Theorem 4.15 shows, 

it is possible to find two solutions v and w in a nonoscillatory class 

such that w dominates v by class at infinity and yet w does not dominate 

v even at zero in the sense of Chapter III. 

While its proof is almost trivial, the following lemma of Elias [25] 

provides a key starting point for discussing dominance. 

LEMMA 5.1: If y.+y as i+ 00 and if S(y.)=k, i=l,2, ..• , then 
i i 

S(y)~k. 

PROOF: Suppose S (y) = j > k. Then there is a point x 0 2_ 0 such that 

S (y ,x+) = j for all x > x0 . Choose x1 > x0 so that no quasi-derivative of 

y vanishes at x1 . Since y i + y, then there is an integer i 0 such that 

sgn(Lty(x1)) = sgn(Ltyi (x1 )) for 0 < t < n whenever i < i 0 • Consequently, 

S(y. ,x1+) = j, and since S(y. ,x+) is increasing in x, this contradicts 
i i 

S(y.) = k. This contradiction completes the proof of Lemma 5.1. 
i 

-x 
As an example, consider the solutions y1 = sinx and y 2 = e of the 

equation y(4)_y = O, and note that S(y1 )=2 while S(y2)=0. In addi

tion, S (ay1 +by2) = 2 for every linear combination with a :f 0, since 

eventually such a combination must oscillate, and s2 is the only oscil-

latory class for this equation. 

defined by zi = y1 + y/i, i = 1,2, 

Let the sequence of functions {z.} be 
i 

= S(y1 ) for each i. On the other hand, if the sequence {w.} is defined 
i 

bywi=y/i+y2 , i=l,2, ... , thenwi+y2 as i+ 00 while S(wi)>S(y2). 

Thus both possibilities indicated by Lemma 5.1 may actually occur. 

Suppose y dominates z by class at infinity, and set z. = y/i+ z = 
i 
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( y + iz) Ii. By the def ini ti on of dominance by class at infinity, it fo 1-

lows that S (z.) = S (y) for every i, while z. + z as i + 00 • Thus Lemma 5 .1 
l. l. 

has the following immediate consequence: 

COROLLARY 5.2: If y dominates z by class at infinity, then S(y) ~ 

S(z). 

The major concern of what follows is to determine to what extent 

the converse of Corollary 5.2 is true. Lemma 5.1 comes tantalizingly 

close to proving that if S(y) ~S(z), then y must dominate z by class at 

zero. Instead, the strongest result available at this point from Lemma 

5.1 is more a description of dominance in the sense of Chapter III: 

THEOREM 5.3 (Elias [25]): For each q, U Sk dominates the entire 
k>q 

solution space of Equation (5.1) at zero. 

PROOF: The proof is virtually immediate from Lemma 5.1. If 

y1 E U Sk and if y2 is any solution of (5.1), then y1 +A.y2 +y1 as A.+O. 
k>q 

If there existed a sequence A.i+O as i+ 00 such that S(y1 +t..iy2)<q for 

all i, then the lemma would imply S(y1) < q, a contradiction. Consequent

ly, there is an e > 0 such that S(y1 + A.y2) ~q whenever jt..j < e. This com

pletes the proof. 

This theorem does not provide much information about comparisons 

between individual pairs of solutions or pairs of classes. Such infer-

mation is more difficult to extract from Lemma 5.1, as the next theorem, 

again due to Elias [25], demonstrates. 

THEOREM 5.4: For every pair of solutions y1 , y2 such that S(y1) > 

S(y2), there exists a positive constant c so that (in the extended real 



numbers) 

max IL y1 (x)/L y2(x)j ~ c > O, 
O<t<n-1 t t 

If in addition y1 E 0 and y2 EN, then 

lim supjLry1 (x)/Lry2 (x)I > 0, 
x-+<x> 
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O.<x<oo. (5. 3) 

r=O, ••• ,n-1. (5. 4) 

PROOF: Assume that (5.3) fails. Then there is an infinite se-

quence {x.} such that for every e: > 0 there is an integer i with the 
1 e: 

property that 

Thus 

max IL y1 (x.)/L y2 (x.)I < e:, 
O<t<n-1 t i t i 

i > i . 
e: 

t = 0, ..• ,n - 1, i > i ' e: 

and therefore, 

sgn [ e:L y2 (x.)] = sgn [L (e:y2 + y1)(x.)], 
t 1 t 1 

In other words, 

i > i . 
e: 

t=O, •.. ,n-1, 

If the sequence {x.} were unbounded, this would imply 
1 

i > i . 
e: 

As e:-+ O, e:y2 + y1 -+ y1 , so that by Lemma 5.1 this last equation would 

imply 



Since S (y 2) < S (y1 ) by assumption, this is impossible, so that the se

quence {xi} must be bounded, and must have a finite accumulation point 
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No nontrivial solution of Equation (5.1) has a zero of multiplicity 

n at x 0 , so that for some t 0 , O.::_t0 .::_n- l, the quasi-derivative L y1 to 
does not vanish at x0 . 

such that L y1 (x) :f. O, 
to 

Since L y1 to 
is continuous, there exists o > 0 

x E [x0 - o ,x0 

from zero on this compact interval. 

above here, the quotient 

IL y1 (x)/L y 2 (x)j 
to to 

+ 0]. 

Since 

Thus L y1 is bounded away 
to 

IL Yzl must also be bounded 
to 

is bounded away from zero on [x0 - o ,x0 + o]. This contradicts the choice 

of x0 as an accumulation point of the sequence {xi}, so that Equation 

(5.3) must hold 

Suppose 

(5.4) fails. 

point x > 0 
e:-

now Yz is nonoscillatory, and that 

Then limjLryl (x)/Lry2 (x) I= 0, and 
x-+oo 

such that 

x > x • 
e: 

for some r, O.::_r.::_n-1, 

for each e: > 0 there is a 

If IA.l~e:, then Lry1 (x)/Lry2 (x)-A. f:. 0 on (xe:, 00), and since Lry2 (x):f.O 

for x sufficiently large, then Lr(y1 - A.y2) :f. 0 on (xe:, 00). Consequently, 

-y1 -A.y2 is a nonoscillatory solution, so for some xA.~xe:' Lt(y1 -A.y2):f.O, 

t = 0, ,n -1, on (xA., 00). The solution y1 - e:y2 is itself nonoscilla-

tory, and since y1 E 0, Yz EN, then iA. may be chosen so that xA..::_xe:. 

Thus for every A. satisfying j,1..j ~e:, Lt(y1 -A.y2)f.O, t=O, ... ,n-1, on 

(xe:, 00), and so jLty1/Lty2 j < e: on (xe:, 00). Therefore, Lty/Lty2 -+0 as 

x-+co for every t, t=O, ... ,n-1, contradicting (5.3). This completes 
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the proof of Theorem 5.4. 

REMARK: In the statement of this theorem as it appears in Reference 

[25), Elias omits the condition y1 EO from the hypotheses for (5.4). 

Without this additional assumption, the conclusion is false. The proof 

fails because it is no longer possible to choose x, < x , and so the in
/\ - e: 

equality Lt(y1 - A.y2) :f 0 could not be forced to hold over a fixed in-

terval for all values of A.. More significantly, an easy counterexample 

exists. Consider, for the interval [l,oo), the equation 

2 2 2 2 
x (x (x (x y I) I) I) I - y = 0. (5. 5) 

Th . . h 1 . l/x -1/x is equation as so utions y 1 = e , y 2 = e 1 
y 3 =cos x' and y 4 = 

sin l, all of which are nonoscillatory. Direct computation reveals that 
x 

In particular, note that lim y 1 = 1 while 

limy4 =o, which contradicts (5.4) for r=O. 
x~ 

The problem with Theorem 5.4 hints at a much more significant dif-

ficulty in the task of analyzing dominance for Equation (5.1). The solu-

tions y1 , y2, y3 of Equatiotl" (5.5) all have limit 1 as x+oo, so that no 

one solution of the three dominates another at infinity. A closer ex-

amination of the quasi-derivatives for these solutions shows that y 3 E s2 

is dominated by class at zero by both y1 E s0 and y2 E s4 , and yet y3 is 
' 

not dominated by either of the others by class at infinity. For some 

reason, the sign structure of the quasi-derivatives as identified by 

the classes s0 , s2 , and s4 does not reflect the actual growth of the 

solutions as x + oo. 

Recall that the operator L as defined in Equation (5.2) is Trench 
n 

factored provided 
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i=l, •.. ,n-1. (5. 6) 

Taking a cue from the principal systems discussed in Chapter II, when 

the operator in Equation (5.5) is Trench factored the equation becomes 

x5 (x3y) (4) - y = 0. (5. 7) 

In this new factorization all three of the solutions y1 , y2 , and y3 are 

in the class s4 , which explains the similarity in the limiting behavior. 

Th 1 . . 1 d . h 1 . s h"l . 1 e so utions y 4 = sin x an y 5 = sin x are in 2, w i e y 6 = sin x -
. h 1 . . 1 s sin X is in C ass 0 . The class s4 dominates s2 by class at infinity, 

and s2 in turn dominates so by class at infinity. 

Since Equations (5.5) and (5.7) have only nonoscillatory solutions, 

it is tempting to think that the preceding work is a direct result of 

the existence of principal systems for Trench factored disconjugate equa-

tions of the form (2.1). It is important, therefore, to recognize that 

in Equation (5.7) only the operator L has been refactored into Trench 
n 

form. Theorem 4.17 in the previous chapter revealed that nonoscillation 

is equivalent to eventual disconjugacy for Equation (5.1), and so Equa-

tion (5.7) does have a Trench factorization for its left-hand side. But 

in general such a factorization would have little value, and would be 

difficult to find. Instead, the operator L of Equation (5.1) might be 
n 

Trench factored in an attempt to redistribute the weight of its coef-

ficients and obtain more growth information from the quasi-derivatives. 

The next two results lend further support to the idea that the 

Trench factorization of L is the natural choice for discussing ques
n 

tions of dominance (25, 64). 
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LEMMA 5.5: Let y be a nonoscillatory solution of Equation (5.1) 

such that y(x) > 0 on some interval [a, 00). If (5.6) holds, then there is 

an integer k, O~k~n, such that 

L.y(x) > O, 
1 

i = O, ••• ,k, 

(-l)j-~.y(x) > O, 
J 

j = k, ..• , n, 

on some interval [b, 00), b >a. Furthermore, 

lim L.y(x) = oo, 
~ 1 

lim L.y(x) = O, 
x-+<» J 

i = O, ••• ,k - 2, 

j =k+l,: .. ,n-1. 

(5.8a) 

(5. 8b) 

(5. 9a) 

(5. 9b) 

PROOF: As in the previous chapter, since y is nonoscillatory there 

is a point b >a such that all the quasi-derivatives of y are nonzero on 

[b, 00). If y does not satisfy (5.8) on this interval fork= O, then 

there is an integer t, O~t~n-1, such that 

sgn[Lty(x)] = sgn[Lt+ly(x)], x > b. (5 .10) 

From the definition of the quasi-derivatives L y and L 1y as given im-
t t-

plicitly by Equation (5.2), it follows that 

x 1 L 1y(x) = L 1y(b) + r ( ) L y(s) ds. t- t- "b p s t 
t 

(5 .11) 

If Lty(x) and Lt+ly(x) are negative on [b,oo), then Lty(x) is a neg

ative decreasing function bounded above by Lt (b) < 0. Hence Equation 

(5.11) leads to the inequality 

(5 .12) 

Since Lty(b) < 0, then (5. 6) implies Lt-ly(x) must eventually be nega-
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tive, and thus L 1y(x) < 0 on [b, 00 ) because it is nonzero there. Con-
t-

tinuing in this fashibn for Lt_2y(x), .. ,L0y(x) eventually leads to 

the contradiction L0y(x) < 0 on [b, 00). Consequently, Lty(x) and Lt+ly(x) 

must both be positive on [b, 00), so that Lty(x) is positive and increas

ing on [b, 00), bounded below by Lty(b) > 0. 

Equation (5.11) now leads to the inequality 

x 1 
L 1y (x) > L 1y (b) + L y (b) C ( ) ds . 
t- - t- t 'b p s 

t 
(5 .13) 

By virtue of (5.6) again, together with Lty(b) > 0, (5.13) implies 

L 1y(x) is eventually positive, and so L 1y(x) > 0 on [b, 00). Continu-
t- t-

ing as before, it follows that 

L.y(x) > O, 
1 

i=O,l, ... ,t+l, x>b. 

Let k be the largest integer for which 

L.y(x) > 0, 
1 

i=O,l, ..• ,k, x>b. 

Equation (5.10) led to (5.14), so that the maximality of k implies 

(5.14) 

(5 .15) 

k > t + 1 for every t satisfying Equation (S.10). Therefore, the quasi-

derivatives must alternate in sign beyond Lky, so that 

. k 
(-l)J- L .y(x) > 0, 

J 
j=k, ... ,n, x>b. 

This completes the verification of Equation (5.8). 

(5 .16) 

For the second part of the lemma, observe that L y(x) is positive 
t 

and increasing on [b, oo) , bounded below by L y (b) > 0, for every integer 
t 

t, O.::_t.::_k-1. Since the integral on the right-hand side of (5.13) is 

positive and unbounded as x -r oo for l _.::. t _.::. n - 1, taking i = t - 1 it follows 

that 



lim L.y(x) = co, 
1. 

X-+00 

i=l, ... ,k-2, 

which is the first portion of (5.9). 
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Let the ingeger j now be chosen from k+l, ... ,n-1. Without loss 

of generality it may be assumed that L.y(x) > 0 for x> b; otherwise y may 
J 

be replaced by -y without affecting this portion of the proof. From 

(5.8), Lj+ly(x) < 0 on [b, 00), so that Ljy(x) is a positive decreasing 

function on that interval. Consequently, lim L_y(x) = c > 0 must exist. 
x~ J -

Suppose c "I 0. Then Equation (5 .11) becomes 

L. 1y(x) 
J-

x 1 
= L. 1y(b) + 4; ( ) L.y(s) ds 

J- pj s J 

x 1 
..=:. Lj_1y(b) + cfb P. (x) ds , 

J 

from which (5.6) implies L. 1y(x) is eventually positive. Thus 
J-

contradicting (5. 8). This contradiction shows c = 0. This completes the 

proof of the lemma. 

The strict restrictions (5.8) and (5.9) on the sign and growth of 

the quasi-derivatives of (eventually positive) nonoscillatory solutions 

under the assumption (5.6) gives the solution space of Equation (5.1) 

sufficient structure to permit a proof of a dominance result for non-

oscillatory solutions. 

THEOREM 5.6: With the assumption (5.6), if y1 and y2 are two non

oscillatory solutions of Equation (5.1) and if S(y1) > S(y2), then 

lim ILtyl (x)/Lty2 (x)i = 00 , t=O, ... ,n-1. (5 .17) 
X-+00 
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Consequently, y1 dominates y2 at infinity and by class at infinity. 

PROOF: Without loss of generality, assume y1 and y2 are eventually 

positive; otherwise, y. may be replaced by -y. as required without af-
i i 

fecting the limits in (5 .17). Let k1 = S (y1), k2 = S (y 2), and observe 

that the parity condition forces k2 .:::_ k1 - 2. 

Since Lk +ly2 (x) is eventually negative by (5.8), the eventually 
2 

positive function Lk y2 (x) must have a finite limit. 
2 

unbounded by (5. 9) , and so (5 .17) holds for t = k . 
2 

But Lk y1 (x) is 
2 

Similarly, Lk _1y1 (x) 
1 

must have a nonzero limit since Lk y1 (x) > 0 for x sufficiently large. 
1 

Since (5.9) shows lim Lk _1y2 (x) =O, (5.17) holds for t=k1 -1 as well. 
~ 1 

In fact, the limits (5.9) show easily that (5.17) holds for all t, 

k <t<k -1. 
2- - 1 

If lim Lk _1y 2 (x) < 00 , then (5 .17) follows for t = k2 - 1 as for the 
~ 2 

case t = k2 • Otherwise, the limit in (5.17) is indeterminate, and 

l'Hopital's rule may be employed. Furthermore, l'Hopital's rule may be 

applied to all the indeterminate limits (5 .17) for 0 .:::_ t .:::_ k2 - 2, 

k1 + l .:::_ t .:::_ n - 1. In the case of t = n - 1, observe that (provided the 

limit is indeterminate) 

lim l1n-1Y1 (x)/Ln-ly2(x)I = lim jL1 (x)/Lny2 (x)I 
x-+<» x-+«> 

= lim [(-p(x)y1 (x)/(-p(x)y2 (x)j 
x-+o:> 

lim jL0y1 (x)/L0y2(x)[. 
x-+o:> 

Thus, after an appropriate number of application of l'Hopital's rule, 

(5.17) holds for 0 .:::_ t .:::_ k2 - 2 or k1 + l .:::_ t .:::_ n - 1 by comparison with 

t = k2 - 1. Finally, if lim Lk y1 (x) is nonzero, (5.17) follows immedi
x-+o:> 1 
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ately for t = k1 since lim Lk y 2 (x) = 0. Otherwise, the limit is indeter
x-+oo 1 

minate and l'Hopital's rule may be used. 

From (5.17), y1 dominates y2 at infinity by definition. Also, 

(5.17) shows that for any real constant A, 

for x sufficiently large. Thus S(y1 + Ay2) = S(y1), and so y1 dominates 

y2 by class at infinity. This completes the proof of Theorem 5.6. 

The strength of the Trench factorization and Lemma 5.5 can be dem-

onstrated further by an easy oscillation criterion for Equation (5.1). 

Recall that the classes s0 and Sn' when admissible by the parity con

dition, must be nonoscillatory. In the case n even and p (x) < O, both 

s0 and Sn are admissible, and Equation (5.1) is said to have property 

(H) provided all other classes are oscillatory. This property has fig-

ured prominently in the efforts of Etgen and Taylor [27, 29] to show that 

the class s0 has at most one linearly independent solution. 

Consider the second order equation 

y" + p(x)y 0, 

with p(x) continuous on [0, 00). Wintner [126] and Leighton [74] have 

00 

shown that this equation is oscillatory if JQ p(x)dx = 00 • The following 

theorem is in the same vein: 

THEOREM 5.7: If Equation (5.1) is Trench factored, and if 

f,Ooo I P (x) I dx 
po(x)pn(x) 

= 00 

' 
(5 .18) 



89 

then for all k, l ..::_ k ..::_ n - 1, the class Sk is oscillatory. In particular, 

if n is even and p (x) < 0, then Equation (5 .1) has property (H) . 

PROOF: n-k 
Let k, l..::_k..::_n-1, (-1) p < 0, be given. Equation (5.1) 

can be rewritten as 

d n-k-1 I I 
• dx P oY + ( -1) p y = 0' 

or, dividing by jpj, 

Pn d 
-cr-p 
I l:' I dx n-1. 

d n-k-1 
• dx P oY + ( -1) Y = o • 

Applying the operator Lk to both sides of Equation (5.19) gives 

which is the same as 

(5.19) 

(5. 20) 

Equation (5.20) is an n-th order equation in the function Lky, and the 

operator 

(5. 21) 

implicitly defines quasi-derivatives L., 0 < i < n. The condition (5 .18) 
l. 

is merely the condition that i is Trench factored, since the coeffi
n 

cients p., 1 < i < n - 1, already satisfy (5. 6). Since L y = -py = 
l. - - n 

(-l)n-kjpjy, then Equation (5.21) shows 



Thus S (y) = S (Lky) • If y E Sk is nonoscilla tory, then by Lemma 5. 5, 

sgn(Lky) = -sgn(Lk+ly), while sgn(i.0 (Lky)) = sgn(i.1 (Lky)). Since 
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f.0 (Lky) = Lky and f.1 (Lky) = Lk+lY, this is a contradiction, so that y E Sk 

could not have been nonoscillatory. This completes the proof of Theorem 

5.7. 

Theorem 5.7 is not the most complete result known of this type (see 

[64, Theorem 5] or [32, Theorem 4], for example), but it lends support 

to the use of the Trench factored form of L in analyzing Equation (5.1). 
n 

What art eht problems associated with changing the factorization? 

The most obvious concern is that the analysis of Equation (5.1) for one 

factorization might not carry over to another factorization. As Equa-

tions (5.5) and (5.7) have already shown, the Elias classes Skare not 

invariant for changes in the factorization, and domination results that 

hold for one form may break down in another. Certain properties are pre-

served, however, and they and their consequences are discussed in Theorem 

5.8 and Corollary 5.9. 

THEOREM 5.8: Let L and L be two different Polya factorizations 
n n 

of the same disconjugate operator. For fixed a.:_ O, let {u0 , •.• ,un-l} 

and {uo, ... 'un-1} be the fundamental sets of solutions given by Theorem 

4.15 for the equations L y+py= 0 and i. y+py= 0, respectively, and 
n n 

let Sk and Sk, O.::_k.::_n, (-l)n-kp < 0, be the corresponding Elias classes. 
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Then 

(1) 

(2) If (-l)np < 0, then u0 and u0 are linearly dependent. If p < 0, 

then un-l and un-l are linearly dependent. 

-
(3) The class Sk is oscillatory if and only if the class Sk is 

oscillatory. 

PROOF: For l_::.k_::.n-1, (-l)n-kp < 0, it is necessary to consider 

four sets of boundary conditions. Specifically, let y1 (x,s) be the 

solution of Equation (5.1) satisfying the n-1 conditions 

L.y(a) = 0, 
l. 

L.y(s) = O, 
J 

i = o, ,k - 1, 

j=O, ••• ,n-k-2, 

and let y2 (x,s) be the solutibn satisfying 

L.y(a) 
l. 

0, 

L.y(s) = 0, 
J 

i = 0, ,k-2,k, 

j=O, ••• ,n-k-2. 

(5. 22a) 

(5. 22b) 

(5. 23a) 

(5. 23b) 

In addition, let y1 (x,s) be the solution satisfying the conditions 

i.y(a) = 0, i = o, 'k - 1, 
l. 

(5.24a) 

i. .y(s) 
J 

= 0, j = O, . . . ,n-k-2, (5.24b) 

and let y2 (x,s) be the solution satisfying 

i.y(a) 0, i = 0, ,k-2,k, 
l. 

(5. 25a) 

i.y(s) = 0, j = 0, . . . ,n-k-2. 
J 

(5. 25b) 
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The solutions ~· uk-l' uk, and ~-l are defined in terms of limits over 

appropriate sequences ins of the solutions y1 (x,s), y2(x,s), y1 (x,s), 

and y2(x,s), respectively. Suppose the sequence { s.}, s. +ca, is chosen 
l. l. 

so that y1 (x,si) converges uniformly on compact subsets of [O,oa). Then 

there is a subsequence {s!}c {s.} such that y2 (x,s1!) converges uniformly 
l. - l. 

on compact subsets of [O,oa). Continuing in this fashion, there is a se-

quence {cri}.£. {si} so that all four of the functions y1 (x,ai), y2 (x,cri), 

y1 (x,cri)! and y2 (x,cri) converge uniformly on compact subsets of [O,oa), 

as cr.+oa. Without affecting the results of Theorem 4.15, it may be as-
l. 

sumed then that ~· uk-l' uk, and ~-l are defined as limits over the 

same sequence {cr.}, cr. + °"· 
l. l. 

As discussed in Chapter II, multiple zeros of y counted with re

d spect to dx agree in number with those counted with respect to quasi-

derivatives. This principle applied first to the zeros of (5.22) and 

d then to the zeros of y with respect to dx shows that y1 (x,s) must 

also satisfy (5.24). Since solutions satisfying these conditions are 

essentially unique by Lemma 4.5, then y1 (x,s) = y1 (x,s) when these solu

tions are properly normalized. Consequently, ~ = uk. 

The proof of Theorem 4.15 showed that S(y2(x,s),a+)=k. Therefore, 

~-1y2 (a,s) '/; 0, for then S(y2 (x,s),a+) ~k+l. Applying the principle 

described above, Lk-ly 2 (a,s) '/; O, and _y 2 (x,s) must satisfy the n - 2 boun

dary conditions 

1.y(a) = o, 
l. 

L.y(s) = O, 
J 

i = 0, ,k- 2, 

j=O, ••. ,n-k-2. 

In addition, since S (y1 (x, s) ,a+) = k, then Lkyl (a, s) '/; O, so that there 
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exists a constant \ = Lky2 (a,s)/~y1 (a,s) for which y3 (x,s) = y2(x,s) 

-Asyl (x,s) must satisfy the boundary conditions (5.25). By the essen-

tial uniqueness of these solutions, it follows that 

(5.26) 

when these solutions are properly normalized. 

Notice that the sequence ~y1 (a,cri) = Lkyl (a,cri) converges to 

i.k Uk (a)' which is not zero by Theorem 4 .15' since ~ E sk' and already 

has k zeros at x =a. On the other hand Lky 2 (a,cri) converges to ~uk-l (a), 

which is finite. Thus the sequence {A } is bounded, and so there is a 
cr. 

1 

subsequence {cr'.} c {cr.} and a constant A such that A. , +A as cr'. + 00 • Con-
1 1 cr. 1 

1 
sequently, passing to the limit along this subsequence, (5.26) becomes 

(5. 27) 

Since it is already known that uk = uk, then span{~_1 ,uk} ~ span{uk-l 'uk} · 

Reversing the roles of ~-l and uk-l obtains the reverse containment, 

and completes the proof of part (1). 

The solution u 1 is defined to be the unique solution satisfying 
n-

the initial conditions 

L,y(a) = O, 
1 

i = O, ••• ,n - 2, 

and as a result of the principle enunciated earlier, it follows that 

u 1 and u 1 are linearly dependent. n- n-
n 

If (-1) p < O, then u0 is defined 

as ~ from (5. 22) with k = O, so that as in the earlier case, u0 and u0 

are linearly dependent. This completes part (2). 

Part (3) is the immediate consequence of (1), (2), and Theorem 
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4.14. This completes the proof of Theorem 5.8. 

The following corollary shows that Theorem 5.8 justifies a change 

in factorization in studying the dominance characteristics of the solu-

tions of Equation (5.1). 

COROLLARY 5.9: Suppose, in addition to the hypotheses of Theorem 

5. 8, it is known that sk dominates s. by class at infinity whenever k > j. 
n-1 J 

If y = L c.u. is a nontrivial solution of Equation (5.1), and if tis 
i=O i i 

the largest index such that the constant ct is nonzero, then y is oscilla-

tory or nonoscillatory as ut is oscillatory or nonoscillatory. 

PROOF: 
n-k 

Suppose t = k, (-1) p < 0, so that ut = uk E Sk. Theorem 

5. 8 shows that ck Uk+ ck-1 Uk E sk, and also that cj uj and cj-1 uj-1 E s j for 

all j < k. 
n-1 

- -Since Sk dominates Sj by class at infinity, it follows that 

y = L c.u. E Sk. Consequently, part (3) of Theorem 5.8 shows that the 
i=O i i 

behavior of y is determined by the behavior of ~· 

If t = 0, n, or k - 1, the argument is similar. This completes the 

proof of Corollary 5.9. 

All the theorems and examples so far seem to indicate that the best 

setting from which to analyze the dominance structure of the solution 

space of Equation (5.1) is to Trench factor L . From this point on, 
n 

then, it will be assumed that the operator L is in its Trench factored 
n 

form, with coefficients given in Equation (5.2) satisfying (5.6). In 

Theorem 5.6 it was seen that, with this assumption, the nonoscillatory 

Elias classes of Equation (5.1) satisfy a natural dominance relationship. 

In fact, with (5.6), all of the Elias classes have satisfied this natural 

dominance relationship in every example studied to date. This suggests 



the following conjecture, which remains an open question: 

CONJECTURE 5.10: If Equation (5.1) is Trench factored, then Sk 

dominates Sj by class at infinity for every j < k, for all admissible 

values of j and k. 
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The main problem that has arisen in trying to demonstrate this con-

jecture has been a basic lack of understanding of the growth of oscilla-

tory solutions of Equation (5.1). Because nonoscillatory solutions are 

eventually single-signed, the Trench factorization can restrict their 

growth, as in Lemma 5.5. 

Perhaps Conjecture 5.10 is too strong--it may not be possible to ob-

tain the necessary information only from the Trench factorization. It is 

still reasonable to suggest that the control on the nonoscillatory solu-

tions is great enough to permit a weakened version of Conjecture 5.10 to 

be proved: 

CONJECTURE 5.11: If Equation (5.1) is Trench factored, and if Sk 

is nonoscillatory, then sk dominates sj by class at infinity for every 

j < k, for all admissible values of j and k. 

While this, too, remains an open question, a little more information 

can be extracted from the recent work of Kim [64]. If A is a set of 

solutions of Equation (5.1), define q(A) to be the maximum number of lin-

early independent solutions in A such that every nontrivial linear com-

bination of the solutions is again in A. Theorem 4.15 may be interpreted 

as saying that for l~k~n-1, q(Sk)~Z, while q(S0)~1 and q(Sn)~l 

when these classes are admissible. As will be seen below, for 1 .::_ k .::_ n - 1, 

then q (S ) = 2, while q (S 0) = 1 and q (S ) = 1 whenever these classes are ad-
k n 



missible. But first, an intermediate result: 

THEOREM 5 .12 (Kim [ 35]) : For 1 .::_ k .::_ n - 1, if the class Sk is non

oscilla tory, and if y1 ,y2 E Sk are eventually positive solutions such 

that 
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lim 
y 2 (x) 

Y1 (x) 
= 00 

' 
(5.28) 

x+"" 

then either 

lim sup 
w(x) 

f: c:o ' Y1 (x) 
(5. 29a) 

X-+<xl 

or 

lim sup 
w(x) f: 0 
Y2 (x) x-+<x> 

(5.29b) 

for every solution w of Equation (5.1). 

If the class Sn is admissible, and if y1 E Sn is eventually posi-

tive, then 

1 . w(x) ..J. 00 im sup r 
x~ Y1 (x) 

(5.30) 

for every solution w of Equation (5.1). 

PROOF: For the first part of the theorem, let k, l.::_k.::_n-1, be 

given, and let w be an arbitrary solution of Equation (5.1). Suppose 

that w is oscillatory. 

5.4. Suppose, on the 

. w(x) 
while 11m sup (x) = 

X-+<xl y 1 

If S (w) > k, then lim sup ;((~) > 0 by Theorem 
x~ 2 ( ) 

other hand, that S(w) <k and lim sup w () = 0 
x-+<x> y 2 x 

00 • Since y1 (x) is eventually positive, this sec-

ond limit implies w(x) - Ay1 (x) is an oscillatory solution for every 

A E [O,c:o). Thus the solution f w(x) -y1 (x) oscillates for every positive 

A. Since lim Cfw(x)- y1 (x))=-y1 (x) ESk, Lemma 5.1 implies that there 
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1 
is a constant A.0 >0 such that S(;\w(x) - y1 (x))2:_k. Since Skis nonos-

1 0 
cillatory it follows that S (~w(x) - y 1 (x)) > k. 

0 
Applying Theorem 5. 4 to w(x) - A.0y 1 (x) and y 2 (x) gives 

w(x) -A.0y1 (x) 
lim sup ( ) > 0. 
~ Y2 x 

Yl (x) 
However, since lim = 0 by Equation (5. 28) , then 

x-+<x> y2(x) 

w(x) - A. 0y1 (x) w(x) 
lim sup ---(---)-"'-- = lim sup ( = 0. 

x-+oo y 2 x x-+<x> Y 2 x) 

This contradiction verifies Equation (5.29) when w is oscillatory. 

If w is nonoscillatory and S(w):/:k, then Equation (5.29) follows 

immediately from Theorem 5.6. Thus it remains only to argue the case 

where w E Sk. Suppose lim sup w(x) - 0 Since both solutions are posi-
x-+oo y 2 (1) - • 

tive, then lim w((x~) 0. Suppose 'in addition that lim sup w((x)) - co. 

x-+oo Y2 x-+a> yl x 
lim w((x~) does not exist, then for some constant A. the solution 
x-+oo Y 1 
w(x) - A.y1 (x) is oscillatory. But clearly 

w(x) - A.y1 (x) 
lim sup = co 

x-+oo Y1 (x) 

and 

w(x) - A.y1 (x) 
lim sup ( ) 0, 

x-+<x> Y2 x 

contradicting the first portion of the proof. Hence lim w(x) =co. 
x-+oo yl (x) 

these limits it follows that c1y 1 +c 2y 2 + c 3w E Sk for every choice of 

the constants c1 , c 2 , c 3 . 

If 

From 
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Let {x.} be a positive, increasing, unbounded sequence of real num-
1 

bers. Since the solutions y1 , y 2 and w are necessarily linearly indepen

dent, there exist nontrivial constants c. 1 , c. 2 , and c. 3 , normalized 
3 l., l., l., 

2 
so that E c .. = 1, with the property that the solution z.: c. 1y1 + 

j=l l.J_ l. l., 

c. 2y 2 + c. 3w has a double zero at the point x.. Since this solution is 
l., l., l. 

in Sk, then S(z.,x.+) <k; consequently, by Lemma 4.1, S(z.,x+) <k for 
l.l. - l. 

x < x., i = 1, 2, . . • • Using subsequences as necessary, let 
l. 

c. = lim c .. , 
J i-+oo l.,J 

be in sk by 

the previous paragraph, so that for some x0 sufficiently large, S(z,x+) 

= k for x > x 0 . Let x > x0 be chosen so that no quasi-derivative of z 

vanishes at x, and choose x. > x so large that sgn (L z. (x)) = sgn (Ltz (x)), 
l. t l. 

t=O, ... ,n. Then S(z. ,x+) = k, contradicting the choice of x. > x. 
l. l. 

This contradiction shows that wE Sk cannot be chosen so that Equation 

(5.29) is violated. 

For the second part of the theorem, observe that (5.30) is immed-

iate from Theorem 5.6 if w is nonoscillatory and S(w) #n. If w is os-

cillatory and (5. 30) is violated, then w- A.y1 is oscillatory for every 

1 
positive A. But Iw - y1 converges to -y1 E Sn as A.+ 00 , and so for some 

A.0 , Lemma 5.1 implies w-A.0y1 ESn. But then w-A. 0y1 is nonoscillatory, 

a contradiction. Thus, as before, it remains only to consider the case 

w E S nonoscilla tory. 
n 

. w(x) 
If 11m sup (x) = 00 , 

x-+oo Y1 

. w(x) 
then as before it may be argued that 11m (x) 

x-+oo Y1 

must exist, leading to the conclusion that every nontrivial combination 

d1y1 +d2w2 Esn. If y satisfies S(y,x+)=n, then every quasi-derivative 

of y must agree in sign. Thus, if x 0 is even a simple zero of y, it fol-

lows that S(y,x+)<n for x<x0 . Hence, choosing constants d. 1 and d. 2 so 
l., l., 

that d. 1y1 +d. 2w has a simple zero at x., x.-+O, the proof may be com-
1, l., l. l. 
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pleted as in the previous part. This completes the proof of Theorem 5.12. 

If it could be shown that, for 0 .::_ k .::_ n - 1, U S . is a linear sub
j< k J 

space of dimension exactly k + 1, this would imply the truth of Conjec-

ture 5.10. Thus the next two results of Kim [64] provide partial sup-

port for the conjecture above. 

THEOREM 5.13: For l.::_k.::_n-1, q(Sk) = 2. In addition q(S0) = 1 and 

q (S ) = 1 whenever these classes are admissible. 
n 

PROOF: For l .::_ k .::_ n - 1, if class Sk contains three solutions y 1 , y 2 , 

and y 3 such that every nontrivial linear combination is again in Sk, then 

exactly as in the proof of Theorem 5.12 it is possible to construct a 

combination c 1y1 +c2y2 +c3y 3 with S(c1y1 +c2y 2 +c3y 3 ) <k, a contradiction. 

Alternatively, if Skis nonoscillatory, then as in Theorem 4.15 part (3), 

it is possible to construct solutions u, v, w E span{y1 ,y2 ,y3} such that 

and 

lim u(x) = 00 

v(x) 
x-+» 

lJ.·m v (x) = 
w(x) 00

' 
x-+» 

contradicting the conclusion of Theorem 5 .12. Thus q (Sk) = 2. 

For k=n, if class Sn contains two solutions y1 , Yz such that every 

nontrivial linear combination is in S , then again as in the proof of 
n 

Theorem 5 .12 this leads to a contradiction, and hence q (S ) < 1. By 
n -

Theorem 4 .15, q (S ) > 1 when the class is admissible, and so q (S ) = 1. 
n - n 

Finally, for k = 0, if y E s0 , then y cannot vanish anywhere in [0, 00). 

For if y(x0 ) = 0, then sgn[L0y(x0+E:)] = sgn[L1y(x0+e:)] for e: > 0 suffici-
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ently small, and so S(y,x0+) ~l. Since S(y,x+) is an increasing func

tion, this contradicts y E s0 • Consequently, s0 cannot contain two 

linearly independent solutions for which every nontrivial linear combin-

ation is back in s0 . Thus it follows that q(s0) =l. This completes the 

proof of Theorem 5.13. 

Note that Theorem 5 .13 says q (S0) = 1, not dim(S0) = 1 as a subspace. 

Thus this theorem does not show the strongly decreasing solution is es-

sentially unique. In fact, Theorem 5.13 does not require the Trench fac-

torization of L for its proof, and 
n 

Equation (5.5). Both the solutions 

so is applicable to the example of 

l/x d . 1 . h 1 y = e an y =sin- - sin - were 
1 6 x x 

seen to be in the class s0 , and yet these solutions are linearly inde

pendent. Theorem 5.13 is not violated, however, because the combination 

y1 +2y6 is in class s 2 and not s0 • 

The next theorem comes closer to describing the dimension of US., 
"<k J J_ 

and does require the Trench factorization [64]. 

THEOREM 5.14: Suppose the class Sk is nonoscillatory for some k 

0 < k.::_n, and set 

for k = n 

y(x) = (5. 31) 

Then there are at most k linearly independent solutions v. (x), i = 1, 
i 

..• , k, such that 

lvi(x)I 
lim sup y(x) #= 00. (5. 32) 
x~ 

PROOF: The result is trivial for k = n since the dimension of the 
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entire solution space is n. 

Suppose that for some k, 0 < k < n, there are k+ 1 linearly indepen-

dent solutions v1 (x), ••. ,vk+l (x) satisfying (5.32). Without loss of 

generality, assume y2 is eventually positive, and choose b > 0 so that 
k+l 

Liyl (x) =f:. 0 on [b, 00), O.::_i.::_n. Let v = E c.v. be a nontrivial linear 
i=l J. J. 

combination satisfying 

L.v(b) = 0, 
J. 

i=O, •.. ,k-1, 

and such that v(x) is positive somewhere in (b, 00). 

(5.33) 

y 2 (x) 

Since lim (x) = 00 , 

X-700 yl 
then (5.32) implies 

lim v(x) = 0, 
x-+<x> Yz(x) 

and hence 

L.v(x) 
lim = 0, L.y2 (x) 
X-700 J 

(5.34) 

j = 0,1, ••. ,n. 

For (5.34) implies that y 2 +A.v is nonoscillatory for every A., so that 

the limits in (5. 35) must exist. Since the limit with j = 0 is zero by 

(5.34), the others must also be zero by virtue of (5.6). 

Let H be the set of positive numbers A such that 

L. y 2 - A.L. v > O on [b, ""), 
J J -

j=O,l, .•• ,k-1. 

The limits (5. 35) show H is nonempty, and since v (x) > 0 somewhere in 

[b, 00 ), H must be bounded above. Set AO= sup H, and let 

If Liz(x) > 0 on [b, 00 ) for i= 0, ... ,k-1, then given e:1 >0, by (5.35) 
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there would exist c > b such that 

i=O, .•. ,k-1. 

In addition, since Liz(x) > 0 on [b,c], there would exist e 2 , 0 < e 2 < s 1 , 

such that 

i=O, ••. ,k-1, 

and hence 

i = o, ... ,k - 1, 

contradicting the choice of A. 0 • Therefore, Liz (x0) = 0 for some i, 

0 .:S.. i .:S.. k - 1, and for some point x0 E [b, oo) • By the choice of b and from 

(5. 33), it is clear that x 0 ':/: b. From the definition of H it follows 

that Liz.::_O on (b, 00). Since Liz(x0) = O, then Li+lz(x0) = 0 and changes 

sign at x0 • This will contradict the definition of H and the choice of 

A.0 unless i+ 1 = k. Thus Lkz(x0) = 0. 

The limits (5.35) imply zESk, and therefore S(z,x0+)2_k. Since 

Liz(x)=Lk_1 z(x).::_O on (b, 00), then Lkz(x0 +e) >O for e>O sufficiently 

small. Since Lkz changes sign at x0 , then Lk+l z(x0 + e) > 0 as well for 

e > 0 sufficiently small. In addition, by definition of H and the choice 

of 1..0 , for 0.:S..j.:S..k-1, Ljz(x).::_O on (b,oo), so that S(z,x0+).::_k+l. 

contradiction shows that k + 1 linearly independent solutions v. (x), 
l. 

This 

i = 1, •.• , k + 1, cannot be found satisfying (5. 32). This completes the 

proof of Theorem 5.14. 

Theorem 5.14 places an upper bound on the number of solutions which 

y(x), chosen as in Equation (5.31), can dominate at zero. In fact, this 
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maximum number is actually achieved for each nonoscillatory class Sk, 

0 < k2_n- 1, for a certain choice of the function y(x), as the following 

theorem shows. 

THEOREM 5.15: Suppose the class Sk is nonoscillatory for some k, 

0 < k < n. If y(x) E S , then there are exactly n linearly independent 
n 

solutions v., i = 0, .•. ,n - 1, such that 
J. 

Iv. (x) j 
J. lim sup ~~~- # co. 
y(x) 

x-+«> 
(5.36) 

If 0 < k < n, then there exist solutions v,w Sk with lim v(x) = 00 such 
w(x) 

x~ 

that there are exactly k linearly independent solutions v., i = O, ••• , 
J. 

k-1, such that (5.36) is satisfied with y=w. 

PROOF: The case k = n follows immediately from Theorem 5 .12, which 

states in part that (5.36) is satisfied for any choice of yE S. Thus, 
n 

taking {v0 , .•. ,vn-l} to be any basis for the solution space suffices. 

For 0 < k < n, consider the k + 1 sets of n - 1 boundary conditions de-

scribed by 

L.y(a) = 0, 
J. 

L.y(s) = 0, 
J 

i E {O, • ,k}'{t}' (5.37a) 

j=O, ... ,n-k-2, (5.37b) 

02_t2_k, and suppose y (x,s) satisfies (5.37) for the given value oft. 
t 

There exists a sequence {s.}, s. + 00 , such that when appropriately nor-
J. J. 

malized the functions y (x, s.) + y (x) uniformly on compact sets, 0 < t < k. 
t J. t - -y (x) 

As in the proof of Theorem· 4 .15, y t E Sk for each t, and ;: y: (x) exists, 

finite or infinite, whenever 0 2_ t, r 2_k. Note that yk = uk, Yk-l = ~-l' 

where { u0 , ... , un-l} is the basis described by Theorem 4 .15. Let 
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v,wE Sk be as in Theorem 4.15 so that in particular lim v(x) = oo. The 
w(x) x-;.oo 

claim is that there exist k independent solutions satisfying (5.36) with 

y(x) = w(x). 

Recall from the proof of Theorem 4.15 that v(x) was chosen to be 
. yk(x) 

either yk(x) or yk_1 (x). For example, if lim () = c < 00 , then 
x-+<x> Yk-1 x 

v(x) = yk-l (x), w(x) = yk (x) - cyk-l (x). Hence, for O 2. t 2. k, 

y (x) 
lim t = ct < 00 (5.38) 

v(x) 
~ 

exists in the extended real numbers. Suppose for some t, say t 0 , this 

limit is infinite. Then clearly 

y (x) 
to 

lim --- = oo, w(x) x-;.oo 
(5. 39) 

and v(x) violates Theorem 5.12 for the pair w(x), y (x). Hence the 
to 

limit in (5.38) is finite for every t. Without loss of generality, 

assume v(x) =yk(x); otherwise, reverse the role of yk(x) and yk-l (x) in 

what follows. Define the set of functions v.(x), i=O, ... ,k-1, by 
1 

v. (x) = y. (x) - c. v (x) = y. (x) - c. yk (x) • 
1 1 1 1 1 

Then, for 02.i2.k-l, 

v. (x) 

lim v\x) = O, 
x-;.oo 

and so (5.36) follows from Theorem 5.12. This completes the proof of 

Theorem 5.15. 

Consider the Euler equation 

4 (4) 
x y - e:y 0 (5. 40) 
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on the interval [l,oo). a. This equation has solutions of the form x , 

where a. is a root of the equation 

a.(a.-l)(a.-2)(a.-3) - E = 0. (5.41) 

Choose E > 0 so small that this equation has four real roots, a.0 < 0, 

and 3 < a.3• 
a.. 

a.a a.1 a.2 
In this example x E s0 , {x , x } ~ s2, 

y. = x l.' 0 < i < 3. l. - -

Observe that y1 dominates both itself and y0 at zero, achieving 

the maximum allowed by Theorem 5.14 without benefit of the argument used 

in Theorem 5.15. Note also that y2 dominates both y0 and y1 by class at 

infinity. Strictly speaking, y2 cannot dominate itself by class at in

finity since y2 - A.y2 fails to be in s2 for I..= 1. However, y2 does dom

inate the solution y 1 +y2 by class at infinity, and this solution is in

dependent of both y0 and y1 • This example suggests the following corol

laries to Theorems 5.14 and 5.15. 

COROLLARY 5.16: 

0 < k < n, and suppose 

Suppose the class Sk is nonoscillatory for some k, 
y2 (x) 

y l' y 2 E Sk satisfy lim (x) - 00 • Then y 2 dominates 
x~ yl 

at most k + 1 linearly independent solutions by class at infinity. 

PROOF: Suppose there are k + 2 linearly independent solutions vi, 

i = 1, .•• ,k+ 2, such that 

i=l, .•. ,k+2 (5.42) 

for all real values of A.. 

v. (x) 
If lim l.(x) does not exist in the extended real numbers for some 

x~ Y2 
i, l.:s_i.:s_k+2, then there is a constant 1..0 such that the solution 
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y 2 + >.. 0 vi is oscillatory, contradicting (5. 42). Thus 

v. (x) 
lim i = c. < w, 
x-+<><> y2(x) i -

i=l, ..• ,k+2 (5.43) 

exists in the extended real numbers. If any limit in (5.43) is infinite 

for some i, then y2(x) will violate Theorem 5.12 for the pair vi(x), 

Consequently, c. < w, and so 
l 

v. (x) - c. y 2 (x) 
lim i i = O, 
X-+<X> y 2 (x) 

i=l, ..• ,k+2. 

By Theorem 5.12, then 

v. (x) - c.y2 (x) 
1 . l i ..L 

im ( ) r w, 
~ Y1 x 

i=l, .•. ,k+2 

k+2 
Since the set { v. - c. y2}. 1 contains at least k + 1 linearly independent 

l l i= 

solutions, this contradicts Theorem 5.14. Xhis completes the proof of 
? 

Corollary 5.16. 

COROLLARY 5.17: Suppose the class Sk is nonoscillatory for some k, 

0 < k < n. Then there exist solutions v,w E Sk with lim v(x) = 00 such that 
w(x) ' 

x-+<» 
there are exactly k + 1 linearly independent solutions dominated by v by 

class at infinity. 

PROOF: This is virtually innnediate from the proof of Theorem 5.15. 

Let y. (x), i = 0, .•. , k be defined as in that proof, and again assume 
i 

without loss of generality that v(x) = yk (x). Then the proof of Theorem 

5.15 showed that v(x) dominates the k+ 1 solutions y0 , • · · ,yk-l'yk + Yk-l 

by class at infinity. This completes the proof of Corollary 5.17. 

While these results have provided some information about the dom-
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inance of solutions of Equation (5.1), they are too weak to lead to re-

sults such as Conjecture 5.10 or 5.11. The reason in part has to do 

with the imprecise nature of the limits (5.32) and (5.36). If these 
v. (x) 

limits could be strengthened to lim y1(x) = 0, then Conjecture 5.11 would 
x-+<x> 

follow almost immediately. Even so, it would not follow that an oscil-

latory class dominated all lower order nonoscillatory classes. 

Considerations such as these suggest that the major problem is lo-

cated at the interface between groups of oscillatory classes and nones-

cillatory classes. That is, if the classes Si, k1 ~ i ~ k2 , are all non
Y i (x) 

oscillatory, if yi,yi-l E Si are chosen so that lim . (x) - co, k1 ~i~k2 , 
x-+<><> yi-1 

and if w is an oscillatory solution, then either lim sup w(x) ~co or 
x-+<x> Yk -l(x) 

1 
Thus w must dominate, or be dominated by, every solu-w(x) 

lim sup (x) > 0. 
x-+<><> Yk 

. 2 
tion Y k ! . • . ' y k -1 • 

1 2 
However, the relationship between w(x) and yk 

2 
or 

yk _1 remains unclear at this time. 
1 

The study of the dominance properties of solutions of Equation 

(5.1) is still quite active. Even if the interface problem outlined 

above could be solved, many questions would still remain about the in-

teraction between pairs of oscillatory Elias classes. 

Another major question not even touched on here is whether there 

are restrictions, other than those due to parity, as to which classes 

may be oscillatory or nonoscillatory. Even though this is not directly 

a question of dominance, it does deal with a description of the possible 

locations of the interfaces mentioned earlier, and so affects the dom-

inance problem. Chapter VI takes up this question for a slightly less 

general version of Equation (5.1). 



CHAPTER VI 

THE EQUATION y (n) + py = 0 

Chapters IV and V considered the equation 

L y+ p(x)y = 0, 
n 

(6 .1) 

where p(x) is a nonvanishing continuous function on I= [0, 00), and where 

L is the factored disconjugate operator defined by 
n 

d d 
L y == P (x) -d P 1 (x) -d . n n x n- x 

(6.2) 

with pi(x) continuous and positive on I. The equation considered in 

this chapter is 

y(n)+p(x)y = 0, (6.3) 

which is of the form (6.1) with coefficients p. (x):: 1, i = 0, ••. ,n. 
1. 

Note in particular that the operator L = dn/dxn used in Equation (6.3) 
n 

is Trench factored. As a consequence, the results discussed in Chapters 

IV and V for Equation (6.1) apply to Equation (6.3) as well. In addi-

tion, because of the simplicity of the operator dn/dxn, many results can 

be obtained for Equation (6.3) that are unavailable in the general case. 

Historically, interest in Equation (6.3) was the natural outgrowth 

of the surge of activity in lower order problems which followed the 1958 

paper of Leighton and Nehari [76], even though it was studied at least 

as early as 1955 by Mikusinski [91]. After the 1967 Nehari paper [93] 

which laid the groundwork for the use of quasi-derivatives, and the 1974 
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paper by Trench [125] which established a canonical factorization for 

disconjugate operators, Equation (6.3) served at least in part as a mo-

tivating factor for the study of Equation (6.1). For example, the 

papers [62, 63] of Kim yielded techniques for Equation (6.3) he was able 

to apply later to Equation (6.1) in Reference [64]. Throughout this 

time, however, Equation (6.3) also maintained a separate identity, and 

is still of tremendous current interest apart from Equation (6.1). 

The primary distinguishing feature of Equation (6.3) is that in-

n n tegrals derived from the operator d /dx do not involve the unknown co-

efficients of the general theory. As a result, such integrals fre-

quently can be simplified in terms of elementary functions. The fol-

lowing lemma, which has its origins in the work of Kiguradze [58], is an 

example. 

LEMMA 6.1: n-k For l.:_k~n-1, (-1) p(x) < 0, if the Elias class Sk 

of Equation (6.3) is nonoscillatory, then there are positive constants 

A and B such that 

k k-1 
Ax ~y(x) ~Bx (6.4) 

for x sufficiently large, and for every y E Sk which is eventually posi

tive. If y E s0 is eventually positive, then 

A~y(x) > O, 

and if y E S is eventually positive, then 
n 

n-1 
y(x) ~Bx 

(6.5) 

(6.6) 

for some choice of the positive constants A and B, and for x sufficient-

ly large. 
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PROOF: n-k 
Let k, l.:5..k.:5..n-1, (-1) p(x) < 0, be chosen so that Sk is 

nonoscillatory. If y E Sk is eventually positive, then by Lemma 5.5 y 

must satisfy the conditions 

y(i) (x) > O, i=O, ••• ,k, (6.7a) 

(-l)j-ky (j) (x) > 0, j=k, ..• ,n, (6.7b) 

on some interval [b,m). As a result, y(k)(x) is a positive decreasing 

function on [b, 00). Take M:max{r!/k-r)(b)/brlo.::.r~k} and 

N: min{ (r - 1) ! y (k-r) (b) /b r-l I l ~ r.::.. k}. In particular, then M ~y (k) (x) 

for x E (b , 00 ) so that integrating from b to x gives 

Mx- Mb ~ y (k-1) (x) - y (k-1) (b)' xE[b, 00). 

By choice of M, Mb~ y (k-l) (b), so that in fact 

(k-1) 
Mx ~ y (x), x E [b, oo). 

(k-1) Now y (x) is a positive increasing function, and thus by choice of N, 

xE[b,oo). 

Continuing to integrate in this fashion, employing the definition of M 

and N to remove the constants of integration, eventually yields 

Mxk k-1 
k! ~ y(x) ~ ~~-1) ! , x E [b,co). 

Identifying A = 1!.. and B = N produces Equation ( 6. 4) . 
k! (k-1)! 

The proofs for Equations (6.5) and (6.6) are handled similarly. 

This completes the proof of Lemma 6.1. 

It is clear that the technique used in this lemma can be duplicated 



111 

for Equation (6.1) when the operator L is Trench factored, but in that 
n 

case the inequality (6.4) becomes ([25, p. 31)) 

on some interval [b,oo). 

The proof of Lemma 6.1 is particularly easy because it combines the 

strength of the general results known for the Elias classes of Equation 

(6.1) with the simplicity due to the form of Equation (6.3). In his 

1978 paper [61], Kim did not have the benefit of knowledge of the Elias 

classes, and so was forced to consider more possible cases than actually 

existed. In light of what is now known about Equation (6.1), much of 

which Kim discovered independently (see References [62, 63, 64)), the 

1978 paper can be seen to contain little more than a weakened version of 

Lennna 6 .1. 

As was observed in Chapter V, the oscillatory solutions of equations 

such as (6.1) and (6.3) do not seem to be governed by the same rules as 

control the nonoscillatory solutions. Using Lemma 6.1, this can actual-

ly be used to advantage to test for the existence of oscillatory solu-

tions, as described in the next result. 

COROLLARY 6.2: Let y be a solution of Equation (6.3). If for some 

k, l~k~n-1, (-l)n-kp(x) <O, and for every choice of positive con-

stants A and B there is an increasing unbounded sequence {xi} of real 

numbers such that 

k+l k Ax. > y(x.) > Bx. 
1. - 1. 1. 

(6. 9) 
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for all i sufficiently large, then y is oscillatory. 
n 

If (-1) p (x) > 0 

and 

lim y (x.) = 0, 
i-+a> l 

(6 .10) 

or if p (x) > 0 and for every choice of B > 0, 

n y(x.) >Bx., 
l - l 

then y is oscillatory. 

(6.11) 

Corollary 6.2 is an innnediate consequence of Lenma 6.1. As an ex-

ample, consider the constant coefficient problem 

y"' - y = O, (6.12) 

1 1 
1 . . x . /3 . -zx: /3 -zx: 

with so utions y 1 = e , y 2 = sin(-2-x) e , and y 3 = cos (-2-x) e Note 

that y1 E s3 and y2,y3 E s1 • Since lim y2(x) = O, it follows from Equa
x-+a> 

tion (6.10) that y2 oscillates, which is clearly the case for this exam-

ple. On the other hand, while the conditions (6.9) through (6.11) are 

sufficient, they are not necessary to identify oscillation. The solu-

tion y2 of Equation (6.12) is also a solution of the equation 

(6 .13) 

In the case of Equation (6.13), the condition (6.10) no longer applies 

since (-1) 6 (-1) < 0. Thus the limit y 2 (x) + 0 as x +co is acceptable be-

havior for a nonoscillatory solution, and so the oscillatory behavior of 

y 2 is not detectable by Corollary 6.2. 

Lemma 6.1 shows that, for l.::_k.::_n-1, nonoscillatory solutions in 

the class Sk exhibit polynomial growth. Read (103] has obtained results 

which describe the growth of solutions in the classes s0 and Sn more 
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accurately than Lemma 6.1, for the case n even. Read's results predict 

the exponential growth and decay of the nonoscillatory solutions of the 

equation y (Zn) - AY = 0 where A> 0 is a constant. 

While such results as these provide additional information about 

the nature of the solutions of Equation (6.3), they fail to shed any 

new light on the problem of the dominance of the solutions. Since the 

nonoscillatory solutions satisfy a natural dominance relationship as de-

scribed by Theorem 5.6, and since this dominance can be disrupted only 

at the interface between oscillatory and nonoscillatory classes, what 

is needed are results describing the location of the oscillatory classes 

among the list of Elias classes for Equation (6.3). 

In 1976, Nehari [95] claimed to have shown that, for n even, if 

some class Sk, 1 < k < n - 1, was oscillatory, then all the classes S., 
- - J 

1 ~j ~n - 1, were oscillatory. If this result had been true, the ques-
·~ 

tion of dominance would have been virtually answered by Theorem 5.6 

alone for Equation (6.3) with n even. However, Jones (50] in 1980 was 

able to produce counterexamples to Nehari's result and other related 

claims. Such an example will be discussed here shortly. Nonetheless, 

the failure of Nehari's result left unanswered the question of which 

classes could contain oscillatory solutions, and when. 

A sufficient test for the existence of oscillatory solutions for 

Equation (6.1) was devised by Kim [64]. For notational purposes, it is 

necessary to define several iterated integrals. For l~R.~n-1, and for 

a~O, set 

R.+l~k~n-1, 



114 

t -1 
fa p .I/, (s) ds, <l>kQ. ( t) = 1 if k > Q, ' 

and for 1 < k < n -1 define 

Kim [64] proved that if Hk = 00 , then the class Sk is oscillatory. Unfor

tunately, the condition Hk = 00 can be difficult to verify, and the com

plexity of the integral in the general case for Equation (6.1) makes it 

unclear just how strong a result this is. As an example of the applica-

tion of the test, consider the equation 

x(x(x(xy')')')' - y = 0, 

for x E [l, 00). The admissible classes for this equation are s0 , s2 , and 

s4 • For the fourth order equation the classes s0 and s4 are nonoscilla

tory, and so only the class s2 has the potential to be oscillatory. In 

order to test the condition H2 =CC>' the functions ip 3 , 3 Ct) and <Pl,l (t) must 

be computed. Applying the definitions above with a= 1 gives 1)J 3 , 3(t) = 

<P1 , 1 (t) =lnt, t >l, and so 

co 2 
H2 = r0 ln t/t dt = lim (lnb) 3/3 =co 

b-+<>=> 

Hence the class s2 is oscillatory; in fact sinln x E s2 , which does os

cillate as predicted. 

When expressed in terms of Equation (6. 3), the conditions ~=ex» 

k=l, •.. ,n-1, are all equivalent to the condition 

(6.14) 
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Thus for the problem (6.3) this result is not sensitive enough to detect 

the oscillation of one class Sk when another class Sj is nonoscillatory, 

12.j,k2_n-1. When the test (6.14) is successful, however, it does im-

ply that only s 0 and Sn' if these are admissible, are nonoscillatory. 

(Compare this result to Theorem 5.7.) When n=2, Equation (6.14) re-

duces to the classic test of Wintner (131) and Leighton (74) cited ear-

lier, while for n = 4 the corresponding test was given by Leighton and 

Nehari [76]. For arbitrary n, condition (6.14) was known to Anan'eva 

and Balaganskif [5] and Kondrat'ev [66], while a slightly more general. 

test was given by Kiguradze (58]. 

Consider the Euler equation 

( 8) -8 
y "'."AX y = 0' (6.15) 

for x E [l, 00), with solutions of the form y = xa. where a. is a root of the 

equation 

a.(a. - 1) ... (a. - 7) - A. = 0. (6.16) 

The constant A.> 0 can be chosen so that Equation (6 .16) has six real 

roots a.1 < 0, 1 < a.2 < a.3 < 2, 4 < a.4 < a.5 < 5, 6 < a.6 , and two complex conju

gate roots with real part 7/2. It follows then that the classes s 0 , s 2 , 

s6, and s8 are nonoscillatory, while s4 is oscillatory, so that the test 

(6.14) fails for Equation (6.15). This example is also the counterexam-

ple for the earlier cited claim of Nehari (95]. 

If now A. is taken so large that Equation (6.16) has only two real 

roots, then Skis oscillatory for all admissible k, 12_k2_n-l, and yet 

Equation (6.14) still fails since the integrand has been changed only by 

a constant multiple. Thus, even though the test for oscillation devised 



116 

by Kim is one of the best results of its kind for Equation (6.1), its 

merit is limited in dealing with Equation (6.3). 

The first positive efforts in analyzing the relative location of 

the oscillatory classes in the list of Elias classes for Equation (6.3) 

are due to Jones [51), published in 1981. Some of the intermediate re-

sults used by Jones were also shown independently by Elias [23), but 

Jones' conclusions based on these results were quite novel. In essence, 

he showed that in the ordered list of Elias classes, the nonoscillatory 

classes are gathered at the beginning and end, with the oscillatory 

classes collected in the middle. Thus, in discussing the dominance of 

Equation (6. 3), there can be at most two interfaces between oscillatory 

and nonoscillatory classes. 

Jones' result is based on a series of comparison theorems which in 

turn rely on the following lennna, due in part to Kiguradze [58) and 

Lazer [ 72], and also fonnd in Elias [23). 

LEMMA 6.3: Suppose for some integer k~2, y E Ck+l[a,b) satisfies 

the condi ti ans 

y (i) (a) = 0, i = 0, ,k - 1, y(k)(a) = 1, (6 .17a) 

y (i) (x) ~ 0, i = 0' ,k, (k+l)() 0 y x < ' xE(a,b). (6 .17b) 

Then, for j=l,2, •.• ,k -1, 

y(x) /y (j) (x) > (k - j) ! (x - a) j /k ! , xE(a,b). (6.18) 

PROOF: The proof given here is different from that of Reference 

[51). Applying Taylor's theorem about the point a to both y(x) and 

y (j) (x) gives 



y(x) 
(k) (x - a)k 

= y(a) +y' (a) (x- a)+ •.. +y (a) k! 

y (j) (x) 

k 
+ 1x (x - t) (k+l) (t) dt 

a k! Y ' 

k . 
= y (j) (a) + .•• + y (k) (a) (x - a) -J 

(k - j) ! 

+fx (x- t)k-j y(k+l) (t)dt. 
a (k-j)! 

The conditions at a in (6.17) reduce these to 

k k 
Y(x) = (x - a) + 1x (x - t) (k+l) (t) dt 

k! a k! Y ' 

= (x-a)k-j + 1x (x-t)k-j y(k+l)(t)dt. 
(k - j ) ! a (k - j ) ! 

Consequently, the result will follow if it can be shown that 

k x k (k+l) 
(x-a) +f (x-t) y (t)dt 

a (x - a)j . 
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(6.19) 

The sign conditions in (6.17) imply both the numerator and denominator 

are positive, and so (6.19) is equivalent to 

k (k+l) . k . (k+l) fx(x-t) y (t)dt > (x-a)JJX(x-t) -Jy (t)dt. (6.20) 
a - a 

k . k-· (k+l) 
For t E (a,x), then (x - t) ~ (x - a)J (x- t) J. Since y (t) .::_ 0 on the 

interval (a,x), then (x-t)ky(k+l)(t)~(x-a)j(x-t)k-jy(k+l)(t), and 

thus (6.20) must hold. This in turn proves (6.19), from which (6.18) 

follows. This completes the proof of Lemma 6.3. 

A series of five comparison theorems are required for the proof of 

Jones' main result. The first, Theorem 6.4, can be deduced from Theorems 

3.3 and 3.5 in the paper [95] by Nehari. It will be convenient, however, 
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to prove this result in a different manner here, and thereby introduce a 

technique used again in Theorem 6.5. After Theorem 6.4, the remaining 

four comparison theorems establish relationships between classes of non-

oscillatory solutions for equations of different orders. By starting 

with Equation (6.3), stepping down to a lower order equation, and then 

back up to Equation (6.3), it will be possible to establish relation-

ships between different Elias classes for Equation (6.3). Theorem 6.4 

will play an important role in the proof of Theorem 6.6, as well as the 

major result. 

THEOREM 6.4: If Equation (6.3) is eventually (k,n-k) disconjugate, 

and if p(x) is a continuous nonvanishing function on [O,oo) such that 

sgn[p(x)]=sgn[p(x)] and ip(x)j > lp(x)I, then the equation 

y(n) + p(x)y = 0 (6 .21) 

is also eventually (k, n - k) dis conjugate. 

PROOF: Observe that any k, 0 ~k~n, satisfying the parity condi-

tion for Equation (6.21) also satisfies the parity condition for Equa-

tion (6.3). The proof is trivial for k=O or k=n since no nontrivial 

solution ever has n zeros at one point. Assume, then, that 1 < k < n - 1. 

Note that the hypotheses imply Sk is nonoscillatory by Theorem 4.13. 

Let y E Sk for Equation ( 6. 21). Since y is nonoscillatory, there is 

an interval [b, 00) on which y satisfies the conditions 

y(i)(x) > 0, i=O, •.• ,k, (6.22a) 

. k ( •) 
(-l)J- y J (x) > 0, j=k, •.• ,n. (6.22b) 
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If y (k) (x) is expanded about some point a> b by Taylor's formula, then 

+Ix (x - t)n-k-1 (n) 
a (n-k-1) ! Y (t)dt. (6.23) 

For x <a, by virtue of (6.22), the polynomial terms on the right side of 

Equation (6.23) are all positive, and so 

n-k-1 
Y (k) (x) > Ix (x - t) (n) (t) dt 

- a (n-k-1) ! Y 

k (t-x)n-k-l (n) 
= (-l)n- lxa (n-k-1)! y (t)dt. (6.24) 

In the limit as a+ 00 , (6.24) becomes 

n-k-1 
y(k) (x) > (-l)n-k/0 (t - x) y(n) (t)dt 

- x (n-k-1) ! ' 
(6.25) 

for xE [0, 00). From Equation (6.21) and the parity condition, however, 

Inserting this expression in (6.25) yields 

(k) oo ( t - x) n-k-l 
Y (x) _:. fx (n-k-l) ! !p(t) !y(t)dt. 

Now expand y(x) about the point b to obtain 

y (k-1) (b) (x - b)k-1 
y(x) = y(b) +y' (b) (x - b) + ... + (k-l) ! 

k-1 
+ (x (x- t) (k) (t)dt 

"b (k - 1) ! y 

y(k-l)(b) k 1 
~ y(b) + ••• + (k-l) ! (x - b) -

+ J, x (x - t) k-1 oo (s - t) n-k-1 
b (k-1) ! ft (n-k-1) ! lp(s) iy(s)dsdt. 

(6.26) 

(6. 2 7) 
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Recalling that Ip (x) I ~Ip (x) I , then finally from (6. 2 7) comes 

y(k-l)(b) k-1 
y(x) > y(b) + ..• + (k-l) ! (x - b) 

+ex (x-t)k-1 co (s - t)n-k-1 
o (k-1) ! ft (n-k-1) ! Ip (s) I y ( s.) dsdt. (6 .28) 

Define the sequence of functions {y i (x)} by setting y 0 (x) = y(x), 

and taking 

y(k-l)(b) k 1 
yi(x) =y(b)+y'(b)(x-b)+ ••• + (k-l)! (x-b) -

x (x - t) k-l co (s - t) n-k-l 
+~ (k-1)! ft (n-k-1)! jp(s)jyi-l(s)dsdt. 

All of the terms on the right side of Equation (6.29) which do not de-

pend on i are nonnegative for x > b. Since y(x) ~y(b) > 0 on [b ,co), an 

induction argument shows y. (x) > y(b) on [b ,co) as well. Beginning with 
1 -

(6. 28), another induction argument reveals y. (x) < y. 1 (x) , i = 1,2, •••• 
1 - 1-

Finally, differentiating in Equation ( 6. 29) shows that y ~j) (b) = y (j) (b) , 
1 

O<j <k-1, i>l. Consequently, the sequence {y.(x)} has a positive 
- - - 1 

limit function z(x) satisfying z(j)(b)=y(j)(b), O.:_j.:_k-1. By the 

monotone convergence theorem applied to Equation (6.29), z(x) also sat-

isfies the equation 

z (x) = z(b) + z' (b) (x - b) +. 
z(k-l)(b) (x-b)k-1 

. + (k-1) ! 

( )k-1 (s _ t)n-k-1 _ 
+ .fbx (;_~) ! 1; (n-k-l) ! Ip (s) I z (s) dsdt. (6. 30) 

Differentiating in Equation (6.30) and recalling that z(s) > 0 for s > b 

on the right gives that 

z (i) (x) > 0, i=O, ... ,k, 

j=k, ... ,n, 
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on [b,~), and also that z(x) satisfies Equation (6.21). Therefore, 

zESk for Equation (6.21), and so Equation (6.21) is eventually (k,n-k) 

disconjugate. This completes the proof of Theorem 6.4. 

Theorem 6. 4 provides a very nice generalization of the classical 

Sturm comparison theorem. If the class Sk is oscillatory for Equation 

(6.21), this theorem shows that Sk must oscillate for Equation (6.3) as 

well. More important for the moment is the technique of producing an 

appropriately structured nonoscillatory solution for one equation from 

that of another. This technique is used again in Theorem 6.5, which 

provides the "step back up" to Equation (6. 3) described earlier. 

THEOREM 6.5: If the class Skis nonoscillatory for the n-2 order 

equation 

2 
(n-2) + x p(x) = 0 

y (n-k-1) (n-k-2) Y ' (6. 31) 

then the class Skis also nonoscillatory for Equation (6.3), O.:_k.:_n-3. 

PROOF: Since the class s0 is always nonoscillatory, the proof is 

trivial for k = 0, and so assume 1 < k < n - 3. Let y be a solution of 

Equation (6. 31) and assume y E Sk. · Since y is nonoscillatory, Theorem 

5.5 implies there is an interval [b,oo) on which y satisfies the condi-

tions 

y(i) (x) > 0, i=O, •.. ,k (6. 32a) 

(-l)j-ky(j) (x) > O, j=k, •.. ,n-2. (6. 32b) 

Expanding y (k) (x) about the point a> b as before leads to the inequality 



(k) k 2 ( t - x) n-k-3 (n-2) 
y (x) > (-l)n- - 1; (n-k-3)! y (t)dt. 

From Equation (6.31) and the parity condition, however, 

Y(n-2)(t) = (-l)n-k-2 t 2 !p(t) I y(t). 
(n-k-1) (n-k-2) 

Inserting this expression in (6.33) yields 

n-k-3 21 l 
y(k)(x) >fa. (t-x) tp(t) y(t)dt 

x (n-k-1)! 

a> 

> f - x 

n-k-1 1 I 
(t - x)p(t) y(t)dt. 

(n-k-1)! 
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(6. 33) 

(6.34) 

Now y(x) may be expanded about the point b as in Theorem 6.4 to obtain 

y(k-1) (b) (x - b)k-1 
y(x) _:. y(b) + ... + (k-1) ! 

( k-1 ( )n-k-1 
+ rx x - t) fa. s - t I ( ) I ( ) d d 

"b (k-1) ! t (n-k-1) ! P s Y s s t. 

1 

(6. 35) 

Constructing a sequence and passing to the limit as in Theorem 6.4 

produces a positive function z(x) which satisfies the conditions 

z (i) (x) > 0, i=O, ••• ,k, 

j=k, ••. ,n. 

on [b,a.), and which also satisfies Equation (6.3). Therefore, zESk for 

Equation (6.3) so that Sk is nonoscillatory. This completes the proof 

of Theorem 6.5. 

Notice that the "step back up" from (6.31) to the original equation 

(6.3) takes place without any change in the k. Jones' theorem describes 

a relationship between nonoscillatory classes and adjacent classes. To 

accomplish this, a shift in the k must occur. This shift in fact takes 
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place in the "step down" from Equation (6. 3) as described by Theorem 

6. 6. 

THEOREM 6.6: If, for some k, 2~k~n, Equation (6.3) is (k,n-k) 

dis conjugate on [ 0, co) , then the n - 2 order equation 

2 
(n-2) + x p (x) y = 0 

y (k)(k -1) (6. 36) 

is eventually (k - 2,n - k) disconjugate. In particular, the class Sk_2 

for Equation (6.36) is nonoscillatory. 

PROOF: Since Equation (6 .3) is (k,n - k) dis conjugate on [O ,co), 

then there is a solution y(x) E Sk satisfying the boundary conditions 

y (i) (0) = 0' i = 0' .•. ,k - 1, (6. 37) 

as well as satisfying the inequalities 

y(i) (x) > 0, i=O, ••• ,k, (6. 38a) 

j = k, ••. ,n, (6. 38b) 

on the interval (O,co). In fact, the solution ~(x) defined in Chapter 

IV satisfies this description. Since 

y (n) +PY= (y") (n-2) + (py/y")y", 

then the equation 

(n-2) 
z + (py /y") z = 0 (6. 39) 

has a solution z = y" such that 

z (i) (x) > 0, i=O, •.• ,k-2, 
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j=k-2, ••• ,n-2, 

for xE (0,c.o). ·Thus Equation (6.39) must be eventually (k-2,n-k) dis-

conjugate. 

The function y(x) satisfying Equations (6.37) and (6.38) meets the 

2 
hypothesis of Lemma 6.3), so that y(x)/y"(x) ~x /((k) (k-1)) on (0,c.o). 

That is, 

I I I I x2p (x) I 
p(x)y(x) y"(x) ~ (k) (k -1) ' 

and then Theorem 6.4 implies that Equation (6.36) is eventually (k-2, 

n - k) dis conjugate. This completes the proof of Theorem 6 .6. 

When n is even, Equation (6.3) is self-adjoint, and so by Theorem 

1.1 if Equation (6.3) is (k,n-k) disconjugate then it is also (n-k,k) 

disconjugate. Thus a discussion which deals with (k,n - k) disconjugacy 

for k _s. n/2 also applies to k ~ n/2. The same is not true for the case 

where n is odd. In this case the adjoint for Equation (6 .3) is the equa-

ti on 

Y(n) -py = 0. (6.40) 

It is necessary, then, to develop theorems like the previous Dvo which 

handle this particular situation. The proofs of Theorems 6.7 and 6.8 

are similar to those just completed for Theorem 6 .5 and Theorem 6. 6, 

respectively, and so are omitted. 

THEOREM 6. 7 ! If the class Sk is nonoscillatory for the n - 1 order 

equation 

(n-1) + xp (x) = 0 
Y n-k-1 y ' (6.41) 
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then the class Skis also nonoscillatory for the adjoint equation (6.40), 

O<k<n-2. 

THEOREM 6.8: If, for some k, l_.:.k..:.n, Equation (6.3) is (k,n-k) 

disconjugate on [O , 00), then the n -1 order equation 

y(n-l)+xp(x)y = 0 
k 

is eventually (k -1,n - k) dis conjugate. 

The main theorem of Jones [24] may now be given. 

(6.42) 

THEOREM 6.9: If the class Skis nonoscillatory for Equation (6.3), 

and if k_::_n/2, then the class S. is nonoscillatory for all admissible 
J 

values j ..:.k and for all j ~n - k. If k~n/2, then the class s. is non-
J 

oscillatory for all j~k and for all j..:. n - k. 

PROOF: It is enough to prove the first half of the theorem, since 

then the second half would follow by considering the adjoint of Equation 

(6.3). Suppose k < n/2 is given, and Sk is nonoscillatory. Choose y E Sk, 

and let b > 0 be such that y satisfies the inequalities (6 .22) on [b ,oo). 

Then Equation (6.3) is (k,n-k) disconjugate on [b, 00). Let t=x-b, 

and set p(t) =p(t+b), so that the equation 

y(n) +p(t)y = 0 (6.43) 

is (k,n - k) dis conjugate on [O , 00). 

By Theorem 6.6, the equation 

(n-2) + t 2p(t) 
y (k) (k-1) y = 0 (6 .44) 

is eventually (k-2,n-k) disconjugate. But k_::_n/2 implies k<n-k+l 
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and k-l~n-k, so that by Theorem 6.4 the equation 

Y(n-2)+ t 2p(t) = 0 
(n-k+l)(n-k) y 

(6.45) 

is eventually (k- 2,n - k) disconjugate. Theorem 6.5 then shows that 

the class sk_2 is nonoscillatory for Equation (6.43), and hence for Equa

tion (6. 3) as well. Since j < k must satisfy the parity condition in or-

der for S. to be defined, it follows that S. is nonoscillatory for all 
J J 

admissible values of j, j ~ k. 

If n is even, then Equation (6. 3) is self-adjoint, and so (k,n - k) 

dis conjugacy is equivalent to (n - k,k) dis conjugacy. Thus the class sk 

is nonoscillatory exactly when Sn-k is nonoscillatory, and therefore if 

S. is nonoscillatory for j .:_k, then S. is nonoscillatory for j 2:_n - k. 
J J 

If n is odd and Sk is nonoscillatory for k ~ n/2, then Equation 

(6.43) is (k,n-k) disconjugate on [O,o:i). From Theorem 6.8 then, the 

equation 

(n-1) + tp ( t) y = 0 y k 

is eventually (k-1,n-k) disconjugate. Since k~n/2, then.k;:_n-k, 

and then by Theorem 6.4 the equation 

(n-1) + tp (t) y 0 
y n-k = 

is also eventually (k-1, n-k) disconjugate. Now applying Theorem 6.7 

shows that the class Sk-l is nonoscillatory for the adjoint equation 

(6.40). From the first part of the proof, the classes S. for Equation 
J 

(6.40) are nonoscillatory for all j ~k -1. Since k does not satisfy 

the parity condition for Equation (6.40), this is equivalent to saying 

that S. is nonoscillatory for all admissible values j .::_ k. Finally, 
J 
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since Equation (6.40) is the adjoint for Equation (6.3) when n is odd, 

this implies S. is nonoscillatory for Equation (6.3) for all admissible 
J 

values of j, j~n-k. This completes the proof of Theorem 6.9. 

The two Euler equations 

(10) A. 
y - 10 y = 0 ' (6 .46) 

x 

(7) A. 
y -7Y = 0, (6 .4 7) 

x 

provide excellent illustrations of the principles given in Theorem 6.9. 

Recall that xa is a solution of Equation (6.46) if a is a root of 

the characteristic equation 

f(cx) - A. = 0 (6 .4a) 

where f(a) = a(cx -1) •.. (a - 9). Let the points 131 <13 2 < •.. < 13 9 denote 

the zeros of f'(cx). Symmetry and elementary claculus show that 

f(S.)=f(s10 .), i=l,2, ••• ,9, and 1£<13.)I > lf(8.+1)!, i=l,2,3,4. 
1. -l. . l. 1. 

For A.> f(l3 2), Equation (6. 48) has two real roots and eight complex roots, 

from which it follows that the classes s0 and s10 are nonoscillatory 

while 82 , 84 , 86 . and Sa are oscillatory. 

If these classes are considered as set-valued functions of A, then 

as A decreases until f(S 2) >A> £(134), the classes s2 and Sa become non

oscillatory, while s4 and s6 remain oscillatory.· Allowing A. to decrease 

still further until f(S4) >A> 0 causes these two remaining classes to be

come nonoscillatory. At each step, the division of these classes into 

oscillatory and nonoscillatory groups satisfies the restrictions of 

Theorem 6.9. In particular, note that since Equation (6.46) is self-

adjoint, the classes change from oscillatory to nonoscillatory in 
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k, n - k pairs. Also note that as A. decreases toward zero, the number of 

nonoscillatory· classes does not decrease, in accordance with Theorem 

6.4. 

For Equation (6.47), the associated characteristic equation is 

g(a.) - A. = 0 (6.49) 

where g(a.) = et.(a - 1) ••. (a - 6). Again let s1 < s2 < ••• < s6 denote the 

zeros of g' (a.). In this case, g(S.) = -g(S 7 .) , and I g(S.) I> I g(S.+l) j, 
1 -1 1 1 

i=l,2. For A.>g(S6), the class s0 is nonoscillatorywhile s2 , s4 , and 

and s6 are all oscillatory. As A. decreases successively through g(S6), 

g(S2), and g(S4), the classes s6 , s2 , and s4 become nonoscillatory in 

turn. Again, this is the grouping predicted by Theorem 6.9. Any re-

maining oscillatory classes are always grouped and centered in the or-

dered list of Elias classes. 

The behavior of the adjoint of Equation (6.47) as discussed above 

can be observed by allowing A. to pass through negative values. Not sur-

prisingly, s7 is always nonoscillatory, while s1 , s5 , and s3 each 

changes from oscillatory to nonoscillatory as A. approaches zero through 

negative values. 

Perhaps more intriguing is to observe the behavior of Equation 

(6.46) as A passes through negative values. Consider the equation 

y(lO)+ ~oY = 0 (6.50) 
x 

for positive values of A. If the classes s1 , s3, •.. , s9 which arise 

from Equation (6 .50) are listed in order with the classes s0 , s2 , .•• , 

s10 coming from Equation (6.46), then the resulting list s0 , s1 , s2 , s 3, 

... , s9 , s10 still satisfies the conclusions of Theorem 6. 9 as a result 
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of the ordering of the magnitudes of the extrema of f(cr). That this re-

markable result holds in general for Equation (6.3) has been shown in a 

recent paper by Etgen and Taylor [29] for the case n even. In fact, the 

conclusion follows immediately from the proof of Theorem 6.9 for all 

values of n. 

To be more explicit, suppose the sign of p(x) is chosen so that 

n (-1) p < 0. Then the class Sk corresponds to Equation (6. 3) for all 

even admissible values of k, while Sk corresponds to Equation (6.40) for 

all odd admissible values of k. Let these classes form a single listing, 

THEOREM 6 .10: If Sk is nonos cillatory for some k .::_ n/ 2, then the 

class S. is nonoscillatory for all j .::_ k and all j ~ n - k. 
J 

PROOF: The proof of Theorem 6.9 showed that if Equation (6.3) is 

eventually (k,n - k) disconjugate, then Equation (6 .40) is (k - l ,n - k -1) 

disconjugate. Thus, if Skis nonoscillatory then so is Sk-l' It then 

follows that S. is nonoscillatory for all j < k. By considering the 
J -

adjoints of Equations (6.3) and (6.40), Theorem 1.1 then shows that S. 
J 

is nonoscillatory for all j ~ n - k. 

Results such as Theorem 6.9 and Theorem 6.10 greatly simplify the 

analysis of the dominance of solutions for Equation (6.3). Theorem 6.9 

can be restated as follows: 

COROLLARY 6.11: Let {u0 , •.. ,un-l} be the basis of solutions for 

Equation (6.3) given by Theorem 4.15. If the solution ~ is nonoscilla

tory for some k .::_ n/2, the uj is nonoscillatory for all j .::_ k. If ~ is 

nonoscillatory for some k~n/2, then u. is nonoscillatory for all j ~k. 
J 
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Combining this result with the results of Chapter V quickly leads 

to the strongest dominance result known so far for Equation (6.3): 

COROLLARY 6 .12: Let {u0 , ••• , un-l} be the basis of solutions for 

Equation (6.3) given by Theorem 4.lS. For O<j <n, if the class S. is 
u. (x) J 

nonoscillatory, assume without loss of generality that lim ( ) = 00 • 

u. 1 x x-+-<» J-
Set k0 = max{k ..:::_ n/2 I~ is nonoscillatory}, and set k1 = min{k ~ n/2 I~ is 

nonoscillatory}. If y(x) is any oscillatory solution of Equation (6.3), 

then y dominates ~ at infinity for all k ~ k0 - 1, and y is dominated at 

infinity and by class at infinity by ~ for all k _.:. k1 +1. 

As an example of the use of this corollary, consider Equation (6.47) 

once again. Choose A such that g(S2) >A> g(S4) > 0, so that the classes 

s0 , s2 , and s6 are all nonoscillatory, while s4 is oscillatory. That is, 

the solutions u0 , u1 , u2 , us, and u6 are nonoscillatory while u3 and u4 

both oscillate. In this case, k0 = 2 and k1 = S, and so Corollary 6.12 

claims correctly that u3 and u4 dominate u0 and ul, while they them-

selves are dominated by u6 • The corollary does not detect the domin-

ance of u2 by u3 and u4 , or the dominance of u3 and u4 by u5 • The solu-

tions u2 and us are the nonoscillatory solutions at the interface be

tween oscillatory and nonoscillatory classes for Equation (6.47). It is 

for precisely these solutions, that is~ and~ , that the current 
0 1 

theory fails to provide any answers. 

As a final example, it is fitting to consider a problem which calls 

on many of the resources developed so far. For specificity, consider the 

equation 

(ll) 
y - p(x)y o. (6 .51) 



131 

If it is known that class s 7 of the adjoint for Equation (6.51) is non

oscillatory, then the classes s8 and s10 for Equation (6.51) must also 

be nonoscillatory. If any solution y(x) satisfies boundary conditions 

at x= a such that S(y,a+) 2_ 8, it must then belong in either s8 or s10 , 

and so be nonoscillatory. If S(y,a+) = 10, then y(x) must dominate by 

class at infinity every solution in classes s0 , ••• , s8 • 



CHAPTER VII 

Sfil'lMARY 

The primary purpose of this thesis has been to develop the theory 

of the dominance of solutions for the equation 

L y +PY = 0 
n 

(7 .1) 

within a consistent and unified framework, and to demonstrate how such a 

theory can be used to determine the character of individual solutions. 

This development is intended to be self-contained so that a newcomer to 

the field might move comfortably from this study to the current research 

literature. At the same time, the intention has been to present the 

major results together in context so that even those well versed in the 

subject might find insights here. 

The main results are those presented in Chapters IV, V, and VI. In 

these chapters, it was observed that three major tools simplify the 

analysis of the solution space of Equation (7 .1). First., the parity 

condition (-l)n-kp(x) <O brings together the cases n even or odd and 

p(x) positive or negative that have been considered separately by most 

authors in the past. Second, the Elias classes Sk form a useful sub

division of the solution space of Equation (7.1) .that is most noteworthy 

for the similarity in behavior of the solutions within each class. 

Finally, the canonical Trench factorization serves to bring out the dif-

ferences in the behavior of solutions in distinct Elias classes. Whether 

132 
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these differences are strong enough to allow for the proof of a domin-

ance result such as Conjecture 5.10 remains to be seen. 

The three tools of parity condition, Elias classes, and Trench fac-

torization form the framework that was sought for the study of the solu

tions of Equation (7.1). These tools were applied to the less general 

equation y (n) + py = 0 in Chapter VI, and with the aid of a comparison 

theorem due to Nehari [95], several stronger results were obtained than 

had been available for Equation (7.1). The most striking weakness in 

the dominance theory developed in Chapters V and VI is its inability to 

deal directly with oscillatory solutions. 

Throughout this study, the coefficient p(x) in Equation (7.1) has 

been taken to be nonvanishing on [O,~). Virtually every result given 

here holds as written if the condition on p is relaxed to permit isolated 

zeros which are not sign changes. Most of the proofs involved counting 

arguments, and accounting for the zeros of p would have unnecessarily 

complicated these proofs. 

Notably absent from these pages are the many comparison theorems and 

integral tests for oscillation for Equation (7 .1) and its related equa-

tions. In the approximately twenty-five years of its modern era, oscil-

lation theory has grown from the basic Sturm theorems into a field far 

too broad to be adequately sampled here. A certain single-mindedness of 

purpose has had to be maintained in order to preserve the intended unity 

and clarity of presentation. Thus, even though some of the results con

tained here are major theorems in their own right, their significance 

has been downplayed to keep the other results in a proper perspective. 

For example, the comparison theorem, Theorem 6.4, is well known and easi-

ly generalized to include all equations of the form (7.1). But such a 
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generalization would have been out of place here in the absence of the 

other tools required to produce a Jones-type theorem for Equation (7.1). 

The classic books by Swanson (119], Cappel [15J, and Kreith [69] each 

present their own broad view of the subject, particularly for lower or-

der problems. The more recent book by Reid [104] is an excellent treat-

ment of the Sturmian theory for self-adjoint differential systems. To 

the best of the author's knowledge, there are no recent compilations 

which include quasi-derivatives and higher order problems of the kind 

addressed in this study. 

Through the use of the framework of analysis described here, it is 

now possible to specify some of the questions or problems still to be 

resolved, or areas which warrant further investigation for Equation (7.1). 

PROBLEM 1: If L in Equation (7.1) is a Trench factored differen
n 

tial operator defined by Equations (5.2) and (5.6), does the class Sk 

dominate the class S. by class at infinity for all admissible values 
J 

j < k? 

Recall that the strongly decreasing solution w(x) of Equation (7.1) 

satisfies (-l)jLjw(x) > 0, j = 0, ••• ,n -1, so that w(x) E s0 • A positive 

result to Problem 1 would also give an affirmative answer to the next 

problem. 

PROBLEM 2: If L in Equation (7.1) is a Trench factored differen
n 

tial operator defined by Equations (5.2) and (5.6), and if (-l)np(x) < 0, 

is the strongly decreasing solution w(x) E s0 essentially tmique? That 

is, is s0 U {0} a linear subspace of dimension one? 

In the absence of as strong a result as suggested by Problem 1, the 
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relationships aroong the oscillatory solutions remain a mystery, suggest-

ing a number of questions. 

PROBLEM 3: Does there exist an analogue to Theorem 6.9 for Equa-

tion (7.1) which isolates the oscillatory classes into a contiguous col-

lection of Elias classes? 

PROBLEM 4: Must a linear combination of two oscillatory solutions 

chosen from distinct Elias classes always oscillate? 

Problem 4 is equivalent to asking if, given two solutions such that 

one is oscillatory and one is nonoscillatory, must one always dominate 

the other at infinity? An affirmative answer here would permit the con-

struction of a basis of solutions such that the oscillatory or nonoscil-

latory behavior of linear combinations from the basis depends solely on 

which coefficients are nonzero, as in Corollary 5.9. 

PROBLEM 5: Do the signs of the quasi-derivatives of oscillatory 

solutions have any structure analogous to Equation (5.8) of Lemma 5.5? 

Do oscillatory solutions have any growth estimates compara~le to Equa-

tions (5.9) or (6.8)? 

Answers to questions such as these would provide valuable clues as 

to how to proceed in resolving questions such as Problem 1. 

Finally, e-./en though conjugate points and extremal points were used 

primarily as tools to gain information about the Elias classes, they con-

stitute a subject worthy of separate consideration. The work of Chapter 

IV suggests the following problems: 

PROBLEM 6: Does the conjugate point n.(a) always correspond to some 
]. 



extremal point e.(a)? 
1 

PROBLEM 7: Does the focal point ~.(a) always correspond to some 
1 

extremal point e.(a)? 
1 
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PROBLEM 8: Let i be fixed. Among all the possible boundary condi-

tions, for which does 6.(a) appear first? In particular, what is the 
1 

effect on 6.(a) as the number of boundary conditions at each endpoint is 
1 

changed? 

Since it is known that extremal points occur at the simple zeros of 

certain Wronskian determinants, one goal of these problems is to deter-

mine whether it is possible to effectively locate conjugate points and 

focal points using these Wronskians, and if so, how. 

One of the continuing goals of the research which has culminated in 

this study has been to identify the many sources that deal with Equation 

(7.1) and its variations. As the problem has grown, these sources have 

come to include disconjugacy and factorization results, Green's func-

tions, nonlinear and retarded equations, and so forth, in addition to 

dominance and oscillation results. Furthermore, much of the work on 

equations such as (7 .1) has been motivated by lower order examples. The 

bibliography given here, then, has three purposes beyond providing refer-

ences to those materials on which this study depends. First and fore-

most, it is intended to provide a comprehensive guide to the literature 

on the classification and dominance of the solutions of Equation (7.1), 

as an aid to those who might wish to work in this area. Second, it in-

eludes papers of historical significance which have helped motivate the 

more modern efforts. Finally, by providing references to a few select 
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works which are only indirectly related to the main ideas of this study, 

it is intended to serve as a guide for anyone interested in investigat

ing some of the related topics of oscillation theory. 
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