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PREFACE

This study is concerned with determining the dominance structure
of the solution space of two term n-th order linear quasi-differential
equations. This is a burgeoning field of inquiry, and in this study I
have tried to give a comprehensive development of the current state of
the theory. Special attention has been given to isolating and identi-
fying those points at which the theory is weak and where further work
is needed.
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Without his help I might never have known the thrill of the hunt in
Mathematics. I also wish to thank the other members of my committee,
Dr. Hermann Burchard, Dr. John Wolfe, Dr. Thomas Karman, and Dr. Donald
Fisher, for their assistance and suggestions in preparing this thesis.
Special thanks are due Charlene Fries for her typing of the first draft,
and to Barbara Newport for her expert and beautiful typing of the final
copy.

Finally, I would like to thank my wife Susan for her patience in
seeing me through my studies. Without her support and understanding
this work could never have been completed, and so it is to her this

thesis is dedicated.
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CHAPTER I
INTRODUCTION

The study of the solutions of a differential equation is frequently
divided into two classes: quantitative behavior and qualitative behav-
ior. A quantitative study provides solutions either by an explicit for-
mula or by numerical techniques, and in one sense this type of descrip-
tion is best since questions of a numerical nature can be answered.
However, for many applications invblving differential equations, only
the qualitative behavior of the solutions is of interest. It may be pos-
sible to give qualitative descriptions of solutions of differential equa-
tions for which particular solutions are unobtainable. Furthermore, par-
ticular solutions may not be useful for answering qualitative questions.
Calculating one solution might be so difficult or time consuming that it
would be impractical to find enough solutions to describe the solution
space of a higher order problem. And if all the solutions could be found,
information might be available only point by point, rendering any descrip-
tion in the large virtually impossible.

Much effort, therefore, has been devoted to the separate study of the
qualitative behavior of solutions. Such study seeks to describe the be-
havior of the solutions in general terms apart from any of their specific
numerical values. For the differential equations considered in this work,
such efforts have been quite varied and disorganized in the past. Many

different settings have been considered, and each has evolved its own



notation. A major goal of the current study is the unification of these
efforts within a consistent notational framework. Many of the questions
discussed here are still being actively researched, and such a frameﬁork
may make the remaining difficulties more clear.

To be specific, consider the n-th order linear homogeneous differen-

tial equation

(n)

y +pn_l(x)y(n'l) +.

Ly . +pl(X)y' +pO(X)y =0 (1.1)

where the coefficients pi(x) are real-valued and continuous on the inter-
val I = [0,») (other intervals may be considered, but primarily the in-
terval [0,») is used here to simplify the discussion). One objective of
this thesis is to study the behavior of solutions of (1.1) on the inter-
val I. The conditions given in Equation (1.1) are sufficient to guaran-
tee the existence and uniqueness of solutions of the initial value prob-
lem, and so the limiting behavior of a solution y(x) is predetermined by

the values y(0), y'(0),..., Y(n—l)

(0). In practice, however, this behav-
ior may be difficult to ascertain, and may be greatly affected by small
changes in the initial conditions. One problem of current interest would
be to determine a setting in which the limiting behavior of solutions can
be effectively characterized in terms of their initial conditionms.

The basic descriptive terminology and notation is developed in this
introductory chapter, and a few examples are provided of the variety of
behaviors possible for Equation (1.1). In Chapter II the notion of a
disconjugate operator is explored and a canonical framework is establish-
ed which is essential for the later chapters. The concept of dominance

of solutions of differential equations is introduced in Chapter III,

based on the work of Dolan and Klaasen. With the aid of several examples,



the problems associated with trying to analyze Equation (1.1) in its

full generality are also discussed in this chapter, suggesting that a
more restricted equation should be considered. In Chapter IV, utilizing
the recent work of Uri Elias, the equation Lny + p(x)y = 0, where Ln is
an n-th order disconjugate operator, is shown to be a very natural re-
striction of Equation (1.1) with sufficient conditions to allow a more
detailed study. In Chapter V the dominance of solutions of the new equa-
tion is discussed, and in Chapter VI the focus is restricted still fur-

(n)

ther to a consideration of the equation y + p(x)y = 0.

Definitions and Examples

In order to discuss the problem in more detail, some descriptive
terminology must be established. A nontrivial solution y(x) of Equation
(1.1) is called oscillatory on the interval I provided it has an infinity

of zeros in I, and nonoscillatory if the number of zeros in I is finite.

Note that no nontrivial solution y(x) can have an accumulation of zeros
at some point x = a in I, or else the continuity of y and its first n-1
derivatives in conjunction with Rolle's theorem would imply that y(a) =
y'(a) = ... = y(n-l)(a) = 0. This in turn would imply y(x) = 0 by the
uniqueness of solutions of the initial value problem, a contradiction.
Thus the zeros of an oscillatory solution are isolated and unbounded in
the interval I. The equation (1.1) is called nonoscillatory provided no
nontrivial solution of (1.1) is oscillatory, and oscillatory otherwise.

The equation (1.1) (and the operator L) is called disconjugate provided

no nontrivial solution has more than n-1 zeros in I, counting multipli-
- k
cities. That is, if y(b) =y'(b) = ... = y(k l)(b) = 0, y< )(b) # 0,

then y is said to have a zero of multiplicity k (or order k) at x = b.



In what follows, the term "solution'" means "nontrivial solution" unless
otherwise noted.

In the second order case

y'+ p(x)Y' + q(x)y = 0, (1.2)

the classic 1836 work by Sturm [115] showed that either every solution

of Equation (1.2) oscillates, or none do. This is illustrated by the

equations

'ty =0 (1.3)
and

y'-y=0 (1.4)

, . , X -X
with solutions of the form y = acosx + bsinx and y = ce” + de ~, re-
spectively, where a, b, ¢, and d are arbitrary constants. The second
equation is disconjugate as well as nonoscillatory. When n>2 in (1.1),

however, the picture is more complicated. The equation
-— y = 0, (1'5)

X -X
with solutions of the form y = asinx + bcosx + ce” + de ~, has both
oscillatory and nonoscillatory solutions. On the other hand, the equa-

tion

y(4) - Sy" + 4y = O (1-6)

is nonoscillatory and disconjugate since its solutions are given by

X -X -2x
y = ae” + be” + ce " + de .

A major question in the early study of disconjugacy was whether non-



oscillation and disconjugacy were equivalent concepts for Equation (1.1)
with n> 2. Leighton and Nehari [76] in 1958 answered the question in

the affirmative for the fourth order equation
(rx)y"H" + px)y =0 1.7)

where r(x) >0 and either p(x) >0 or p(x) <0. Essentially, they showed
that because of its special form, Equation (1.7) behaves quite similarly
to the second order equation (1.2). In a like manner, other authors
such as Keener [53, 56] have analyzed various forms of Equation (1.1) by
identifying similarities with the second order problem. However,
Gustafson [34] showed in 1970 that in general these concepts are not
equivalent. For every n> 2, Gustafson gave an example of an n-th order
equation for which there exist solutions with arbitrarily large numbers
of zeros, but for which every solution is nonoscillatory. Thus for the
general n-th order equation (1.l1), disconjugacy is a stronger property
than nonoscillation.

It is important to underscore the difficulty involved in trying to
study Equation (1.1) in its most general form. As suggested before,
Keener [54], Ridenhour [106], and others have used a variety of assump-
tions and techniques in approaching questions of nonoscillation and dis-
conjugacy. A large part of the current study, beginning in Chapter IV,
will be devoted to a type of equation which does guarantee the equiva-
lence of these properties.

Several additional definitions will be useful in what follows. If
Equation (1.1) is not disconjugate on the interval [a,b), b <=, then
there is a (nontrivial) solution y(x) with at least n zeros in [a,b).

Define the first conjugate point nl(a) of a to be the infimum of those




values ¢, a<c<b, for which a solution y(x) exists with at least n

zeros in [a,c]. If Equation (1.1) is disconjugate on [a,®), set nl(a)=‘».
In a like manner, the i-th conjugate point ni(a) of a is defined to be

the infimum of those values ¢, a<c, for which there is a solution of
Equation (1.1) with at least n + i - 1 zeros in [a,c]. If there is no
such solution, take ni(a) = o, The i-th focal point ;i(a) of a is the
infimum of those values c > a for which there is a solution with at least
i zeros for each of y(x), y'(x), . . ., y(n-l)(x) in [a,c].

This use of the terms conjugate point and focal point is rooted in
the calculus of variations. Weierstrass introduced the concept of a con-
jugate point in 1879 for the second order Jacobi equation, where the ab-
sence of conjugate points is associated with the location of minimums of
functionals. The term focal point (in German, Brennpunkte) was used
first for the Jacobi equation by Kneser in about 1900 [104, p. 22].
Sherman [111], in 1965, extended the notion of conjugate point to the
n-th order equation (1.1), and it is in this spirit that the term is used
here. The extension of the focal point terminology to the n-th order
equation is less well established. A definition based upon first order
differential systems may be found in Reid [104]. The definition used here
can be traced to Nehari [93].

Considering the solution y = sinx of Equation (1.3) reveals that
n; (0) = im, for i =1,2,..., and that ¢, (0) = n/2 + (i-1)7, 1 =1,2,....
Equation (1.4), on the other hand, has ni(O) = » gnd gi(O) = » for all i.
Since y = sinx is also a solution of Equation (1.5), it is easy to see
that ni(0)< im + 2w, but the actual minimum values which define ni(O),
i=1,2,..., for Equation (1.5) are more difficult to determine. The

problem of determining these values is discussed in Chapter IV. It is



worth noting at this point, however, that it follows immediately from
Rolle's theorem that Ci(a):ini(a), i=1,2,..., for every equation of
the form (1.1).

A solution y(x) is said to have a (k,n-k) zero distribution om [a,b]

if y has a zero of order not less than k at x=a and not less than n-k at

x=b. The interval [a,b] is called a (k,n-k) interval of oscillation for

Equation (1.1) provided there is a solution which is positive on (a,b) and
has a (k,n-k) zero distribution on [a,b]. Equation (1.1) is said to have

(k,n~k) oscillation type provided there is a (k,n-k) interval of oscilla-

tion in every half-line [M,~), M>0. Finally, if no such interval exists
in [M,») for some M> 0, then the equation is said to be (k,n-k) discon-
jugate there, and Equation (1.1) is called eventually (k,n-k) disconju-
gate. As will be made clear later, in certain situations there is a di-
rect relationship between (k,n-k) disconjugacy and the existence of os-
cillatory solutions. Keener and Travis [57] have also given a definition
for (k,n~k) disfocal, but this terminology will not be needed here.

For examples of these concepts, again consider Equation (1.3). The
solution y(x) = sinx has a (1,1) zero distribution on [0,7], and since
sinx >0 for x€ (0,m), this interval is a (1,1) interval of oscillatiom.

It follows similarly that each interval [kw,(k+1l)w] is a (1,1) interval
of oscillation, and so Equation (1.3) has (1,1) oscillation type. For
Equation (1.4), no nontrivial solution ever has two zeros on any interval
since the equation is disconjugate, so consequently it is also (1,1) dis-
conjugate. Trivially, by the uniqueness of solutions, every equation of
the form (1.1) is (n,0) and (0O,n) disconjugate. In the previously men-
tioned paper of Leighton and Nehari [76], the fourth order equation (1.5)

is shown to have (2,2) oscillation type, and to be (1,3) and (3,1) dis-



conjugate on [0,~). These results will follow from the more general work
presented in Chapter IV.
A useful tool for amalyzing the behavior of the solutions of Equa-

tion (1.1) is its adjoint. The differential operator

(n)

L*z

qn(X)z + ...+ qo(x)z (1.8)

is the adjoint operator of the operator L given by Equation (1.1) pro-

vided that for all y,z € Cn[O,co) we have

zLy-yL*z = é%-J(y,z), (1.9)
where
J(y,2z) = I o, (X)y(j)z(k)
0<j+k<n

is a bilinear form with coefficients ajké C'. As shown in Coppel [15],

Equation (1.9) uniquely determines both the adjoint operator L* and the

bilinear form J. The equation

is the adjoint equation of Equation (1.1). It is clear from Equation

(1.9) that L** =1L, 1f1* = L, then the operator L is said to be self-

adjoint. Every second order equation of the form (1.2) can be written

in the self-adjoint form
(rx)y")' + s(x)y =0 (1.11)

by means of the integrating factor exp(/p(x)dx). The fourth order equa-
tion (1.7), which was considered by Leighton and Nehari [76] as described

earlier, is also self-adjoint. The similar form of the two equations



(1.7) and (1.11) provided Leighton and Nehari with the motivation for
their work.

One of the properties associated with the adjoint operator which is
of fundamental importance in the types of questions considered here is

contained in the following theorem, which can be found in Coppel [15].

THEOREM 1.1: 1f Equation (1.1) has a solution y(x) with a (k,n-k)
zero distribution on [a,b], then the adjoint equation (1.10) has a solu-

tion z(x) with an (n~k,k) zero distribution on [a,b].

Since Equations (1.1) and (1.10) have the same form, Theorem 1.1
can reduce the number of cases to be considered in the analysis of cer-
tain problems.

As will be seen in later chapters, disconjugate operators play a
key role in establishing a setting in which the analysis of the limiting
behavior of solutions is tractable. 1In the following chapter, the notion

of a disconjugate operator is explored more fully.



CHAPTER II
DISCONJUGATE OPERATORS

Disconjugate operators have been studied, in effect, since the last
century, but only recently has the study become formalized. The concept
of disconjugacy is adapted from the calculus of variations, where discon-
jugate meant the absence of a conjugate point for the second order Jacobi
equation. Wintner [131], in 1951, extended this notion and applied the
term disconjugate to more general second order problems. Since then, as
suggested by the definitions of the previous chapter, the terminology
has spread to a wide variety of situations. A clear understanding of

these situations first requires a more detailed analysis of the basic

concept itself.

Disconjugacy and Interpolation

Recall that the operator L defined by the equation

- ()

Ly = ¥ (n-1) +

+ pn_l(x)y e .+ po(x)y = 0, (2.1)

with continuous coefficients po(x),. . .y pn_l(x) on I = [0,») is said
to be disconjugate on I provided no nontrivial solution of Equation (2.1)
has more than n-1 zeros (counting multiplicaties) on I. In other words,
the only solution with a total of n zeros on I is the identically zero
solution. It is possible to draw a parallel between disconjugate opera-

tors as defined above and nonsingular matrices in linear algebra, where

10
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an nxn matrix A is said to be nonsingular provided the only vector solu-
tion 3 of AZ = 0 is the identically zero vector. One consequence of
this property is that the equation Ag = E always has a unique solution g
for each choice of §. In the current setting the corresponding result
is the following theorem, which may be found in Coppel [15], but which

is proved here for completeness.

THEOREM 2.1: The operator L is disconjugate on I if and only if

for every m<n distinct points x . xm in I, for arbitrary positive

100

integers r » * with sum r, +.. .i-rm==n, and for n arbitrary real

170 - o 1

numbers Bl,l" ..y Bl,rl’ 32,1,. ..y 82,r2" . ey Bm,rm’ there is a
unique solution y(x) of Ly = 0 such that
(3-1) - | . .
VU =By lidsTplsdcm
PROOF: Let yl(x),. N yn(x) be n linearly independent solutions

of Equation (2.1) and let A be the matrix defined by

yl(xl) e e yn(xl)

yi(xl) .o yI'1 (xl)

- -1
yirl l)(xl) . e . yérl )(xl)

y{rm—l (xm) . . yérm_l)(xm)

e e

-) .
Let v be a column vector with components Vis e Vo> and suppose that
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Az = 0. Then the solution ;(x) = vlyl(x) +...+ vnyn(x) has a zero of
order r, at each X, in I, and so has at least n total zeros in I. If L
is disconjugate, then §(x) = 0, and so 3 = 0. Therefore, A is a nonsin-
gular matrix. If § is now chosen with components Bl,l" . .y Bm,r , then
there is a unique column vector Z with components al,. . ey an suc: that
Ag = E, so that y(x) = ulyl(x) +...+ anyn(x) is the unique solution
desired.

On the other hand, if L is not disconjugate, then Ly = 0 has a non-

trivial solution y(x) satisfying the conditions

y(J_l)(xi) =0, l2jzr;, l<izm,

for some choice of X, and ros 1l <1i<m. Since the identically zero solu-
tion also satisfies these conditions, the solution y is not unique. This

completes the proof of Theorem 2.1.

This theorem states that disconjugacy is equivalent with the ability
to interpolate at up to n points (counting multiplicities) in I by means
of solutions of the differential equation (2.1). It suggests a link be-
tween disconjugate operators and certain matrices which can be exploited
to express L in a much more meaningful form than that given in Equation

(2.1).
Polya Factorization

In 1922, Palya [102] revived an 1874 result due to Frobenius [30]
and applied it to the operator L. If, as in the proof of Theorem 2.1,
{yl(x), c e yn(x)} is a fundamental set of solutions for Ly = 0, then

the Wronskians Wk = W(yl,. . ey yk), k=1,...,n, may be defined as
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yl(x) e yk(x)

v, &) vy (%)
W(yl,. .. ,yk) =

yik—l)(x) C. yék—l)(X)

For notational convenience, define W

]}
[

5 =
THEOREM 2.2 (Frobenius): If the Wronskians Wi satisfy
Wi(x) > 0, i=0,...,n, (2.2)
on the interval I, then the operator L can be expressed as
Ly = r (x)-g—r (x)-g—. c. T (x)—d—r X))y (2.3)
n 7dx n-1""dx 1""dx 0 )

with ri(x) >0, i =0,1,...,n, where

(2]
1]
]

1
-, (2.4a)
0 vy W

(2.4b)

and

i
r, = ————— , i=1,...,n-1. (2.4¢c)
WieWio1

THEOREM 2.3 (Pélya): The equation Ly = 0 has a fundamental set of
solutions {yl,. .. ,yn} such that the Wronskians Wi satisfy Equation
(2.2) on I if and only if L is disconjugate on I. That is, L has the

factorization (2.3) on I if and only if L is disconjugate there. (The

factorization (2.3) is known as a Pélya factorization of L.)
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Before the theorems are proved, it should be noted that if the
Wronskians Wi are all nonzero on I, then the inequalities (2.2) can be
achieved by replacing yj by —yj as required in the fundamental set of

solutions.

PROOF (Theorem 2.2): This proéf is based on the fact that if two
k-th order linear differential equations of the form (2.1) have the same
fundamental set of solutions and the same leading coefficient, they must
in fact be identical equations. For if not, then their difference would
be a nontrivial equation of order less than k with k independent solu-
tions, a contradiction.

If L, is defined by

k
Wy s - o o 5¥57)
Ly=—% k. k=1,...,n, (2.5)
k wk
then ka = 0 is the k-th order differential equation with leading coeffi-
cient 1 and solutions MAEICIEIIES AN Consequently, Lny = Ly. In addition,

d w(yl’ L yn_l,Y) =

dx Wk

0

W

-1 and solutions
k

is a differential equation with leading coefficient
SATICITINIES AN Thus it follows that

wk _Sl_ W(yl’ LS )yk_l,Y)

Ly = v - & W

W _d_(wk_l WOy, - ,yk_l,y)>

k k-1

or



15

W W
k d [ k-1
Ly = -_-< L ) . (2.6)
KW dx| W k-l |

Equation (2.6) holds for 1 < k < n. If the definition of ka is extended

to include Loy = y, then Equation (2.6) holds for k=1 as well. Applying

this relation to the operator L Ln gives

W

Ly-= n d wn—lL ] Wn d Wn—l. Wn—l d wﬁ-ZL

n W dx\ W n-17 W dx\ W W dx \ W n-27 :
n-1 n n n-1

Repeating in this fashion, applying Equation (2.6) a total of n-1 times,
and identifying the coefficients as in Equation (2.4) yields the desired

result. This completes the proof of the theorem.

PROOF (Theorem 2.3): Assume first that L is disconjugate on I, and
let the fundamental set of solutioms {yl(x),. .. ,yn(x)} be defined by

(n-3) -

where Gij denotes the Kronecker delta. If for some k the Wronskian Wk
vanishes at a point ¢ >0, then some nontrivial linear combination of
yl, JEIIED A would have k zeros at x=c¢ and n-k zeros at x=0. If L
is disconjugate this cannot occur, and so every disconjugate operator
has a factorization (2.3).

For the other direction, suppose L is given by the factorization

(2.3). Following Willett [128] and Trench [125], a fundamental set of

solutions {yl,. - ,yn} may be defined by fixing a € I and setting

-1
Yl(x) = ro(x) s
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1 X 1

v,(x) = [ ds,
2 ro(x) a rl(s)
s
1 X 1 1 1
y (%) = by /
n ro(x) a rl(sl) a rz(sz)
s
-1 1
S ————d4s . ...ds.ds.. (2.7)
a n—l(sn—l) n-1 2771

Suppose now that some nontrivial linear combination y(x) = alyl(x) +...

+ anyn(x) has at least n zeros on I. Then so does ro(x)y(x), and by
Rolle's theorem it follows that é%ro(x)y(x) has at least n-1 zeros on
I. Continuing in this manner, applying the factors of Equation (2.3) in
. . d d
succession, leads to the conclusion that rn—l(x)dx' .. rl(x)dxro(x)y

has at least one zero on I. But from Equation (2.7) it is easy to see

that for each k<n-1,
d d _
rk(x)dx. .. rl(x)dxro(x)yk = 0,
so that
d d _ 4 4 ]
rn_l(x)dx. .. rl(x)dxro(x)y = rn_l(x)dx . .rl(x)dxro(x)yn =1,

a contradiction. Thus the operator L given by Equation (2.3) is discon-
jugate. In fact, it can be shown that the coefficients ri(x), i=0,...,n,
of the given factorization are the same as those determined by the solu-
tions defined in Equation (2.7) by means of Equation (2.4). This is most
easily seen by row reducing each Wi. This completes the proof of Theorem

2.3.

The proof of Theorem 2.3 can be used to gain information about the
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functions which locate conjugate points, as the following corollary

shows.

COROLLARY 2.4: If nl(a)<°° for Equation (2.1), then for some k,
l<k<n=-1, there is a solution y(x) of Equation (2.1) with n-k zeros

at a and k zeros at nl(a).

PROOF: Let the fundamental set of solutions yl(x),. .. ,yn(x) be
defined by

yj(.n—j)(a) = (SlJ

where sij denotes the Kronecker delta. Let these solutions define the
Wronskians Wi, i=0,...,n. Since Equation (2.1) is disconjugate on
[a,nl(a)) but not on [a,nl(a)i-a) for €>0 arbitrarily small, then for
some k, 1<k<n-1, the Wronskian W, must vanish at Ny (a). Then there
is a nontrivial linear combination of SAEICIEIRINS AN with k zeros at nl(a)

and n-k zeros at a, as desired. This completes the proof of Corollary

2.4,

A proof of this result based on Green's functions is due to Levin
[78] [119, p. 169].

Clearly there is a strong connection between disconjugate operators
and Eebygev and Markov systems (and hence total positivity). From the
definition above, a fundamental set of solutions {yl,. .. ,yn} for Equa-
tion (2.1) forms a Eeby;ev system on I if and only if L is disconjugate
there. Theorem 2.3 shows that Equation (2.1) has a fundamental set of
solutions forming a Markov system on I if and only if L is disconjugate

there. While this terminology is merely noted in passing here, a devel-
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opment based on such systems can be found in Coppel [15].
Quasi-Derivatives

The Polya factorization (2.3) of a disconjugate operator L leads
very naturally to an extension of the idea of derivative. Let the oper-

ators Lk’ k=0,...,n, 'be defined by

- - 4 -
Loy = ro(x)y, ka = rk(x)dx (Lk_ly), k=1,...,n, (2.8)

where the positive functions rk(x), k=0,...,n, are those found in

Equation (2.3). The function ka is called the k-th gquasi-derivative of

y. Since rk(x) >0 for k=0, ... ,n, it follows that the quasi-deriva-

tives of y exhibit many of the same characteristics as its derivatives,

when both are defined. For example, L,y is increasing or decreasing as

k

Lk+ly is positive or negative. More importantly, y has a zero of exact
order i at x=a if and only if Loy(oz) = Lly(u.) =, ,.= Li_ly(a) = (0, and
Liy(a) #0. For if f(x) € Ci is nonzero and if y has a zero of exact
order i at x=a, then the product differentiation formulas imply that
f(x)y(x) also has a zero of exact order i at x=a. Thus Loy(x) =
ro(x)y(x) has a zero of exact order i at x=a, implying that Lly(x) =
rl(x)iLoy(x) has a zero of exact order i -1 at x=a. The claim then
follows by an induction argument.

The similarity between derivatives and quasi-derivatives led Nehari
[93], in 1967, to consider a generalization of Equation (2.1). Let the
positive functions ri(x), i=0,...,n, be given, and let the quasi-
derivatives Loy, .. ,Lny be defined by Equation (2.8). Consider the

operator L on I defined by
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Ly = Lny + pn_l(x)Ln_ly +...+ pl(x)Lly + po(x)Loy, (2.9)

with continuous coefficients pi(x) as for Equation (2.1). A function y
is said to be a solution of Ly = 0 provided each quasi-derivative Loy,
. .,Lny exists, and provided Ly = 0 on I. 1In this new setting, Wron-
skians are defined in terms of quasi-derivatives, as opposed to ordinary
derivatives. That is, the i-j element of W(yl,. .. ,yk) is taken to be
Li—lyj (x), for 1<i,j<k. Using these Wronskians, Nehari showed that
the same analysis which applied to Equation (2.1) also applies to Equa-
tion (2.9): L is disconjugate on I if and only if it has a Pélya fac~-
torization there. However, note that the P6lya factorization for L is
probably different from that for Ln for Equation (2.9), just as the fac-
torization of L for Equation (2.1) is probably not dn/dxn.

Polya factorization, and the canonical Trench factorization dis-
cussed later in this chapter, are extremely powerful tools for use in
the study of disconjugate operators. For example, suppose L is a dis-
conjugate operator given in the factored form (2.3), and suppose L* is

its adjoint as defined in Chapter I. Theorem 1.1 suggests that L* is
disconjugate as well, since it must be (n-k,k) disconjugate for every
choice of k. That this is in fact the case can now be shown, along with
the remarkable result that L* has a Pélya factorization in which the

factors of L are reversed [15].

THEOREM 2.5: If L is disconjugate with factorizatiom

d d d

Ly = rn-&-rn_l-&;. .. rla-groy s

then its adjoint L* is the disconjugate operator (—l)nM given by
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d d

d
ro I= r:L = r z. (2.10)

Mz = . T -—
z n-1ldx n

.

PROOF: If it can be shown that the operator M with factorization
(2.10) gives the adjoint of L, Theorem 2.3 will then imply the adjoint
is disconjugate. Recall that the adjoint L* of L is the unique operator

defined by
zLy - yL¥z = —d—J( z)
dx Y

where J is a bilinear form in y and z.

Let LOy, PP ,Lny and M.z, . . . ,an be the quasi-derivatives given

0
by L and M, respectively, and let

n k-1
J(y,2z) = t (-1)" " _,2) @, ¥).
k=1

Then J(y,z) is a bilinear form, and

d n k-1, ,d d
IO = DTG 0 Wy )+ 02 Gl )]
o k-1, 1 1
= z (-1 [ z+L  y+M .ze——L_ _ v].
k=1 rn_kMk n-k Mk 1 T k+l n~k+1
This last sum is a collapsing sum, and so
d 1y, " iy Ly = gLy o (<P
dXJ(y,z) = rnMoz Lny+( 1) T an Loy zLy - (-1) yMz.

Thus L*¥z = (-1)"Mz. This completes the proof of Theorem 2.5.

Because‘of their importance in the study of differential equatioms,
it is not surprising that factorization results have attracted the at-
tention of many authors. For example, Frobenius and Pr;lya were not the
only early contributors in this area. In 1833, Libri [83] arrived at an

integral version of Theorem 2.2, while in 1931, Mammana [90] worked with
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a factorization of an operator L into linear factors of the form (é% +
p(x)). More recently, Zettl [132-135] has produced a series of papers
relating to factorizations and disconjugacy, and Kim [59] has obtained
factorizations with higher order factors for operators which are not
disconjugate.

In the next section the Polya factorization for a disconjugate op-
erator is considered in more detail. The relationship between fundamen-
tal solutions, Wronskians, and factorization as presented in Theorems

2.2 and 2.3 is exploited to describe a canonical factorization.
Nonuniqueness and Canonical Factorizations

Although every disconjugate operator has a Polya factorization as a
result of Theorem 2.3, such factorizations are not unique. The Wrons-

kians Wk which determine the coefficients depend upon the choice and

order of the fundamental system {yl,. .. ,yn} of solutions. For example,

the second order operator L, with factors determined by the solutions

2
{e_{ ex} of L2y =0 is

xd -2xd x
—e —e

L2y = ¢ I ax - 7

. X =X .
When the order of solutions is changed to {e,e "}, the corresponding

Wronskians change to yield the alternate factorization

-xd 2xd -x
L2y =e ——e ——e y.

This same operator has still a third factorization,

X
d b:4 -x.2 d e
Ly = 2x | E;(e te ) dx 2x

e T+ e +1

b
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. . X, =X X
derived from the solutions {e" +e 7, e"}.

Because the factorization of a disconjugate operator is not unique,
the definitions of the quasi-derivatives are also not unique. Therefore,
certain questions involving quasi-derivatives are not always well-defined.
Consider, for example, the problem of locating conjugate points and focal
points for Ly = O, where L is given in the generalized form (2.9). Mul-
tiple zeros of y counted with respect to é% agree with those counted with
respect to the quasi-derivatives, and so if L is re-expressed in terms of
different quasi-derivatives, the existence and location of conjugate
points is not altered. On the other hand, focal points can be affected
by changes in the factorization when defined in terms of quasi-deriva-
tives since the zeros of quasi-derivatives are not necessarily located

at the immutable zeros of y.

Consider the example
y'-y=0

with solutions v, = sinx and y, = cosx. In this form, it is clear that
conjugate and focal points for x=T7 are located by s and so nl(w)= 27
and cl(n)= 3w/2. 1If the operator d2/dx2 used here is permitted to change,

this equation may be written in the form

iixz_d_.i - = O
x dx dxxy y

with solutions as before. The solution Y1 still locates the conjugate
and focal points for x=m, and nl(ﬂ)= 2w is unchanged. With derivatives

now given in terms of the quasi-derivatives of this new factorizationm,

37

2 d sinx 3
—_— R

cl(w) is a solution of x pp—

= 0, and so Cl(ﬁ) <

Changing the factorization for a disconjugate operator redistributes



23

the weight of the coefficients among the quasi-derivatives. This in
turn alters the growth relationships among the corresponding solutioms.
In the first example above, three ordered sets of solutions were consid-
ered.. If the solutions in each of these are labeled in order as ¥y and

Yoo then only the first set of solutions has the additional property

. yl(X)
}];i.zy—z'm = 0. (2.11)

This property is desirable because it implies that the solution

y = ayl-l-by2 resembles Yo for large values of x exactly when b#0. Be-

cause of the condition (2.11), the solutions vy, = e % and Yy = e® are

said to form a principal system of solutions for L2y = 0.
For the more general equation (2.1), when the operator L is discon-
jugate, the solutions MAEIEICIEINS AN form a principal system of solutions

provided that these solutions are eventually positive and

v;(®)
lim = 0, 1 <i<j<n. (2.12)

X yj (X) - -

It is known that Equation (2.1) has a principal system of solutions for
every disconjugate operator L. These systems had been studied and dis-
cussed extensively by Coppel [15], Hartman [37, 38, 39], Levin [80], and
Willett [128, 129], but it remained for Trench [125], in 1974, to estab-
lish a link between such systems and the factorization of L.

Recall that when L is given the factorization (2.3), then a funda-
mental system of solutions {yl,. .. ,yn} of Equation (2.1) is determined
by Equation (2.7). Suppose the factorization (2.3) has the additional

property that
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@ 1
'6 r, (x)
1

dx = o, 1 <i<n-1. (2.13)
Then simple applications of 1'Hopital's rule reveal that the system
{yl,. .. ,yn} is actually a principal system of solutions. The contri-
bution made by Trench in 1974 was to show that every disconjugate oper-
ator L has a canonical factorization satisfying (2.13). His method is
constructive, so that if an operator is given in terms of a Polya fac-
torization, then it gives a technique for determining the coefficients
of a new factorization satisfying (2.13). Furthermore, Trench showed
that the factorization of L satisfying (2.13) is unique up to positive

multiplicative constants with product 1. The factorization of L satis-

fying (2.13) will be called the Trench factorization of L.

The proof of Trench's theorem is instructive both because of its
constructive nature and because of the role played by the Trench factor-
ization in what follows. By means of Lemmas 2.6 and 2.7, a device is
constructed for placing one term of the factorization in the form (2.13)
while altering the other terms as little as possible. This device is
then employed in Theorem 2.8 for the existence portion of the result.
Throughout these results, all coefficients in the factorizations of the
various operators will be taken to be positive continuous functions on

the interval I.

LEMMA 2.6: If

(<]

1
fo Pl(x) dx < =,

then the operator M given by

T S
Y = Pyax P1ax Po’
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can be rewritten as
- _g_ d -~
My = P2d deOYs
with the property that

© 1

/

O ~
pl(X)

PROOF: Define the coefficients ﬁo, ﬁl, and §2 according to

~ _ o dt (-1
~ - o dt |2
pl(x) = Pl(x) (fx Pl(t)) )
and
~ _ © dt ..l
Then
) 1 o o dt -2 dx . dt -1|b
f = ey —_—— = = o

and so ﬁl(x) satisfies (2.13), as desired. To verify that the operators

are the same, observe that

~ d. d~_ _~ d. d -1,
PraxP1 3P0’ = PraxP1lax [(fX (t)) po(x)y]

~ o 1
d .__]

ISZE}EPI[(J;{ (t)) dxpoy pOY(J;c Py (t)) P;

. i(fw dt d y
Py ax (t) "P13x PoY T PY

. e dt 44 d_ 4
Py "y pl(t)dxpldxpoy Py ax P1ax Po¥"

]



26
This completes the proof of the lemma.

It is clear from this lemma that the coefficient p, can be placed
in the form (2.13) only at the cost of altering the coefficients to the
left and right. These coefficients might now fail the condition (2.13)
even if they met it before. For the factorization (2.3), only the func-
tions rl(x),. .. ,rn_l(x) need meet this condition, but even if only
these are considered it is still reasonable to question whether the pro-
cess of applying Lemma 2.6 will terminate. Lemma 2.7 indicates to what

extent the changes to a coefficient such as pl(x) are stable.

LEMMA 2.7: Suppose the operator given by

My = i -i .i..
Y = P3ax Paax P1ax Po’

satisfies

< and [

1
—dx = =, 2.14
0 pl(X) x ( )

1
b pz(X)dx
Suppose further that Lemma 2.6 is applied to pz(x) so that
oo 4~ d- d
Y = P3axPoax P1ax Po”

with

= — dx < =,
0 pz(x) 0 Pl(X)

If Lemma 2.6 is now applied to ﬁl(x) yielding the factorization

U N S §
7 = 93 Y2ax 1ax Yo7

then both q; and q, satisfy the condition (2.13).



27

PROOF: After applying Lemma 2.6 to pz(x) the coefficients are

dt
pz(t)

1

)7L 5,0 =, (0 (0 552

E;?ET) , (2.15)

53(X) p3(x)(§?

and

dt

pz(t)

-1

) (2.16)

ﬁl(X) = pl(X)(g?

Therefore, Lemma 2.6 acting on ﬁl(x) gives

. o dt -1
_ o= © dt 2
2 =BG T

and
- o dt -1

Only the behavior of q, requires verification. Based on Equations (2.15)

and (2.16), and integrating by parts, the appropriate computation is

jb b 1 o _dt

1
_d = — —
0 ,®@™ " h 5@k 5o

b ne% Rk 51%7‘”‘
o dt (-1 .= dt b b, dt -1 _ 1
"G hkno [ Th% e Fm®
@ dt -1 = _dt [P b _1
TR RE e e

The first term on the right is positive, while from Equation (2.14) the
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second diverges to +« in the limit as b approaches «, and so q, satis-

fies Equation (2.13). This completes the proof of Lemma 2.7.

As suggested earlier, these lemmas provide the basis of an itera-

tive technique for Trench factoring an arbitrary disconjugate operator.

THEOREM 2.8: Every disconjugate operator L on the interval I has a
factorization of the form (2.3) with coefficients ri> 0 satisfying (2.13)
for i = 1,2, ... ,n-1. This factorization is unique up to positive mul-

tiplicative constants with product 1.

PROOF: The existence portion of the proof involves a double induc-
tion aréument. Lemmas 2.6 and 2.7 imply existence for operators of order
n=2 and n=3. Suppose that existence has been established for opera-
tors of order n-1 where n>4. Then the n-th order operator L may be

written in the form

L = —_ -.(_i_ _d._

Y = PnaxPp-1dx * ° " PraxPo’
where the coefficients P> i=1,...,n-2, satisfy (2.13). If Po_1
satisfies Equation (2.13), there is nothing more to be shown, and taking
ri==pi, i=20,1,...,n gives the desired result. Otherwise, Lemma 2.6
may be applied to P-1 yielding coefficients P> P12 and P2 where
ﬁn-l satisfies (2.13), but where ﬁn—Z may no longer meet this condition.

If 5n—2 still satisfies (2.13), the required factorization is given by

setting r, =P i=0,1,...,n-3, ri=13i, i=n-2, n-1, and n. If
ﬁn—Z does not satisfy Equation (2.13), then Lemma 2.7 implies that Lemma
2.6 may be applied to 5n-2’ giving coefficients 9,1 95-0° and q_3

where a1 and 4.5 satisfy Equation (2.13), but where 4,3 is suspect.
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Suppose now that by repeated applications of Lemmas 2.6 and 2.7 the

operator L has been transformed to

L = —d— _g.. -d..
Yo Y axdn-1ax T WY

where the coefficients qi, l<i<k, k<i<n~-1, satisfy (2.13), for some
k, 1<k<n=-3. If at this point 9 satisfies (2.13), the process ter-
minates giving ri=qi, i=20,1,...,n. If not, then Lemmas 2.6 and 2.7
applied to q) Produce coefficients Eik+l’ ik, and Eik-l with ak+l and &k
satisfying (2.13), but with ak—l now suspect. By induction on k, this
process may be continued until k=1, If the procedure does not termin-
ate as described above, then setting ri==ii, i=20,1,2, and ri==qi,
i=13,...,n gives the Trench factorization for L. Finally, by induc-
tion on n, every disconjugate operator can be Trench factored.

To prove the essential uniqueness of the Trench factorization, sup-

pose
= .~ 4 4
Ly = Tdx Toeldx t C c f1axtoY (2.17)
and
-, 4 4 4
Ly = P axPn-13x * * " P1axP0Y (2.18)

are Trench factorizations for L. As discussed earlier, the fundamental
set of solutions {yl, e ,yn} for Ly=0 described by Equation (2.7)
using the coefficients of Equation (2.17) forms a principal system of
solutions. Similarly, there is a principal system of solutions

{zl, . e ,zn} for Ly=0 as described by Equation (2.7) using the coef-

ficients of Equation (2.18). Since the condition (2.12) must be met by

both of these systems, it is clear that
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i
y,. = I a..,z,
j=1 11 3]
where the coefficients aij are constants, with aii> 0. Comnsequently for

k=1,...,n,

W(yl,. .. ,yk) = CkW(zl,. .. ,zk) (2.19)

where C, =

Kk a,.,. The proof of Theorem 2.3 revealed that the Wron-

==

i=1
skians of s and z; give rise to the factorizations (2.17) and (2.18),

respectively. Thus Equation (2.19) implies that the corresponding coef-
ficients of the factorizations differ at most by positive constant mul-
tiples. Since these factorizations both define L, the product of these

constants must be exactly 1. This completes the proof of Theorem 2.8.

The principal solutions of a disconjugate equation enjoy a natural
dominance relationship as expressed by Equation (2.12). In order to be
useful in the context of later chapters, this concept must be defined
more explicitly and extended to settings involving oscillatory solutions
as well. Once this has been done in Chapter III, the main questions to

be considered here may be addressed.



CHAPTER III
DOMINANCE FOR THE GENERAL EQUATION

The concept of dominance of solutions of the general n~-th order

equation

(n)

Ly =y +. ..-+pl(x)y'-+p0(x)y =0, (3.1)

with continuous coefficients, was studied by Dolan and Klaasen [16] in
1975 in an attempt to characterize‘the asymptotic behavior of its solu-
tions. The major contribution provided by their work was that of defin-
ing the basic concepts used in discussing questions of the following
kind: Given an oscillatory solution y and a nonoscillatory solution z
of Equation (3.1), is the linear combination y+ Az oscillatory or non-
oscillatory? Although Dolan and Klaasen were primarily interested in
identifying dominance between the class N of all nonoscillatory solu-
tions and the class 0 of all oscillatory solutions of Equation (3.1),
the terminology may be extended easily to a comparison between classes
of nonoscillatory solutions alone. Dominance among pairs of oscillatory
solutions is more difficult to define, and a suitable definitiom is
still being sought. As examples considered here will show, under cer-
tain circumstances the dominance of solutions may be used to separate
the solution space of Equation (3.1) into disjoint subsets from which
the limiting behavior of all solutions is easily determined.

Dolan and Klaasen [16] identified two kinds of dominance. Again

31
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taking y to be oscillatory and z to be nonoscillatory, then y dominates

z at zero provided y+ Az oscillates for IA[ sufficiently small.

If y+ Az

oscillates for all real A, then y dominates z at infinity (or simply, y

dominates z).

If, as suggested earlier, 0 and N are taken to be the

classes of all oscillatory solutions and all nonoscillatory solutions of

Equation (3.1), respectively, and if PcN and Qc 0, then Q is said to

dominate P at zero provided y dominates z at zero for all y€Q, z€P.

Similar definitions hold for Q dominates P at infinity, and for when the

roles of y and z are reversed.

These definitions have equivalent expressions in terms of limits of

quotients, the proofs of which are immediate from the definitioms.

LEMMA 3.1:

Let the solutions y €0 and z € N be given.

(1) vy dominates z at zero if and only if

liminf y(x) <0< limsup y(x),

X

z (x)

o0 z(x)’

(2) 2z dominates y at zero if and only if

limsup[ii§l| < w3

X0

z(x)

(3) v dominates z at infinity if and only if

liminf
X

vx) _ _ . . y(x) _ o
2 (%) and lim sup 2 (%) ;

X+

(4) =z dominates y at infinity if and only if

1lim
z
X0

yx) _
(x) )

Then

(3.2)

(3.3)

(3.4)

(3.5)

Such equivalent formulations as the limits (3.2) through (3.5) provide

for the concept of dominance can be immediately extended to pairs of
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nonoscillatory solutions. Specifically, if z and w are both nonoscilla-

. . . . . w
tory, then z is said to dominate w at zero provided lim sup | EX;I < o,
o) < z(x
and z dominates w at infinity provided lﬁnz(x) = 0. When considering

X->®©
pairs of oscillatory solutions the problem of division by zero cannot be

avoided, making comparable definitions difficult to find in that case.
In Chapter V one definition is suggested, but the definition is only ap-
plicable to the equations considered in that chapter.

It is worth noting that if y € 0 dominates z € N at zero, then it is
not necessarily the case that z dominates y at zero, since conceivably

one might have lim sup:zLE% < « while 1lim inf%% = -, However, if z

X X0 (x)
also dominates y at zero, then necessarily 1imsuplzizyl =c, 0 <¢c < o,
oo 2(X
and so their relative magnitude remains roughly the same as x approaches
infinity.
The constant coefficient case of Equation (3.1) can provide several

helpful examples. Consider the equation
-y = 0. (3.6)

A fundamental set of solutions for this equation is given by the func-
. _ X = ad - N .
tions y,=e, y,=sinx, y,=cosx, y, =e . Clearly 71 dominates Voo
Y32 and Yy at infinity while Y and Vs each dominate s at infinity. In

fact, ¥y dominates every other solution to Equation (3.6) at zero, since

4
every solution can be written in the form y= I A for some choice of
i=1
the constants cyo i=1,2,3,4, and hence limsup|§?ﬂ =cy < o,
X0

The same analysis applied to Equation (3.6) also applies to any

constant coefficient equation of the form

y(n)i-ky = 0. (3.7)
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ALX

1

When k<0, -k always has a positive real n-th root A,, and y;=e

1
dominates every other solution at zero. The solutiom v1 dominates at
infinity solutions given by the other roots of -k. When (—1)nk < 0, =~k
A, X

always has a negative real n-th root Az, and v, = e is dominated by
every other solution at zero. The solution Yo is in fact dominated at
infinity by every solution linearly independent from Yo

It is interesting that in the case of Equation (3.6), or in the
case of Equation (3.7) when n is even and k<0, there is no useful dom-
inance relationship among the classes 0 and N, and yet the dominance
structure of the fundamental set bf solutions given by the roots of -k
makes it possible to predict whether an arbitrary solution oscillates or
does not oscillate based upon its initial conditions. Specifically, a
particular solution y==aexi-bcosxﬁ-csinx-kde_x of Equation (3.6) can be
identified as belonging in 0 or N simply by observing which of the coef-
ficients a, b, ¢, and d are not zero.

The ability to discern oscillatory or nonoscillatory behavior based
upon initial conditions alone exists for every constant coefficient prob-

lem with roots (or conjugate pairs of roots) with distinct real parts.

In the case of a repeated root A, such as A=1 for
yv' - 2y' +y=0,

solutions typically take the form v, = e>\x and Yy = X¥q- Consequently,
a useful dominance relation still exists for this case. On the other

hand, the problem
yuv - 3}’" + 4}7' - 2y =0

. X X . X . .
has solutions e”, e sinx, and e cosx, and no one solution dominates any
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other at infinity. Therefore, the process of determining whether a
linear combination oscillates or is nonoscillatory will not be as simple
as merely identifying which coefficients are nonzero.

Another example which will be considered in greater detail later is

the Euler equation

Sy iy = 0 (3.8)
on the interval [1l,»). Substituting x* for y in Equation (3.8) reveals

that y = x* is a solution of Equation (3.8) whenever o is a solution of
oala=-1)(. . D)(e-n+1)-k = 0. (3.9)

Depending on the parity of n and the sign and magnitude of k, Equation
(3.9) may have anywhere from none up to n real roots. Real roots yield
nonoscillatory solutions while complex conjugate roots yield pairs of
oscillatory solutions. Regardless of these considerations, however, the
roots Ugslps v oo 50 of Equation (3.9) correspond to solutions ST
v, of Equation (3.8) which divide into three subsets: The set 0 of os-
cillatory solutions, the set Nl of nonoscillatory solutions which domin-
ate 0, and the set N2 of nonoscillatory solutions which are dominated by
0. Using these solutions as a basis for the solution space of Equation
(3.8), the oscillatory or nonoscillatory nature of an arbitrary linear
combination again can be determined merely by observing which coeffi-
cients are not zero.

The notion of dominance has appeared, although not always by name,
in the works of many authors, including Kim [64], Elias [25], Etgen and

Taylor [27], Keemer [53, 54], and Cheng [12]. One of the topics dis-

cussed in this regard is the uniqueness of the strongly decreasing solu-
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tion of Equation (3.1). A solutiom w(x) of Equation (3.1) is said to be

strongly decreasing provided there exists a point c € I such that

i (1)

(-1) (x) >0 for x>c, i=0,1,...,n-1. (3.10)

By way of contrast, a solution u(x) of Equation (3.1) is called strongly

increasing provided there exists c € I such that
(1) .
u (x) >0 for x>c¢, i=0,1,...,n-1. (3.11)

The strongly decreasing solution w is said to be essentially unique if

the only solutions of Equation (3.1) satisfying (3.10) are constant mul-
tiples of w. Etgen and Taylor [27] have addressed the question of the
essential uniqueness of the strongly decreasing solution for the equation
y(zm)-py==0 with p > 0, and dominance plays an important role in their
work. Using a systems appfoach, this same question is considered by
Cheng [12]. In many respects, the types of results sought by these
authors mirror the questions of dominance which are studied in the later
chapters here.

Because Equation (3.1) analyzed by Dolan and Klaasen is so gemeral,
their results are necessarily limited in scope. Unless some less gener-
al equation is considered, such as the ones studied by Etgen and Taylor
or Cheng, stronger results are not likely. 1In Chapter IV an equation is
studied which seems to offer considerable hope of analysis along these

lines.



CHAPTER IV
THE EQUATION Lny +py =0

Motivated by the examples of the previous chapters, it seems rea-

sonable to consider the equation
Lny +pX)y =0 (4.1)

where p(x) is continuous and nonzero on I = [0,®), and where Ln is the

factored disconjugate operator defined by
- 4 4 4
Ly =e ®gze &3z .0 3704y, (4.2)

with pi(x) continuous and positive on I, i = 0,1, ... ,n. Equation
(4.1) is similar in form to the constant coefficient equation (3.7), and
as has already been observed, the quasi-derivatives Liy, i=20,1,...,n,
defined implicitly by Equation (4.2) share many characteristics with or-
dinary derivatives. One might ask, then, whether Equation (4.1) shares
any properties with Equation (3.7). The behavior of the solutions of
Equation (3.7) is completely characterized by the nature of the n-th
roots of -k. The main goal of the present chapter is to study the be-
havior of the solutions of Equation (4.1) and to describe a useful clas-
sification scheme for the solutions based on their behavior. Once this
behavior is understood, questions of dominance such as those raised in
Chapter III for the general equation may be addressed.

Classifying the solutions of a differential equation into oscilla-

37
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tory and nonoscillatory subsets, or on the basis of the signs of deriva-
tives, is by no means new. Leighton and Nehari [76] used this technique

in their study of the fourth order self-adjoint equation
[x(x)y"]" + p(x)y = O. (4.3)

Some of their results were anticipated by Svec [117], who studied Equa-
tion (4.3) for r(x) =1, p(x) >0. Svec also classified the solutions of

the equation
y"'" + p(x)y =0 (4.4)

for p(x) >0, and this work on third order problems was continued in the
major papers by Hanan [35] and Lazer [72].

Various n-th order equations related to Equation (4.1) have been
studied by Kiguradze [58], Nehari [92-95], Johnson [47, 48], Kim [59-~
64], and Elias [18-26], as well as a host of others. Kiguradze devised

a classification scheme for the nonoscillatory solutions of the equation

y(n) + p(x)y =0, (4.5)

and this scheme has been used extensively by Kim [60-63]. Recently, Kim
[64] extended the Kiguradze classification scheme to Equation (4.1), but
the results obtained are not the best possible. Nehari [95], Peterson
[99-101], and Elias [26] have attempted an analysis based on Green's
functions, but this approach too does not appear to yield the type of
results required here. Instead, the primary tool will be a counting
technique first devised by Johnson [47] and later improved by Elias in
the papers [18, 19, 24, 25].

Let S(c ,cn) denote the number of sign changes in the se-

0°C17 "+
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uence c.,C., « » « y¢ Of nonzero real numbers. For a nontrivial solu-
0’71 n

tion y(x) of Equation (4.1), and for x>0, set

S(y,%-) = Lim S(Lyy(8),L7(D), - - - L y(8)), (4.6)
n
Erx-
S(y,x+) = lim S(Lyy(8),-L;7(8), . . ., (1)L y(8)). 4.7
n
Erx+t ~
Since Lny = ~p(x)y from Equation (4.1), if any quasi-derivative had an

accumulation of zeros in I, then by Rolle's theorem y would also have an
accumulation of zeros, along with every other quasi-derivative. But
then y would have a zero of multiplicity n at some point, contradicting
the choice of y as a nontrivial solution. Consequently, every point
x>0 has a deleted neighborhood in which no quasi-derivative vanishes,
and so the limits (4.6) and (4.7) exist. By virtue of the definitionms,
S(y,x-) counts the number of sign changes in the sequence Loy(x), e ey
Lny(x), while S(y,x+) counts the number of sign agreements. Suppose

k = S(y,x+) for some point x at which no quasi-derivative wvanishes.

Then S(y,x-) = n-k, and there are n-k changes in sign in the sequence

of quasi-derivatives. Thus
n-k
sgn[Lyy(x)] = (-1)" “sgn[L y(x)].

But po(x)>-0, so that sgnly(x)] = sgn[LOy(x)]. Then, from Equation (4.1),

the previous equation becomes

1]

sgnly(x)] (-l)n—ksgn[-p(X)y(x)],

or

sgaly(x)] = -sgal (-1 p )y 1.
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Therefore,
1 @) < o. (4.8)

This important restriction on k will appear again, and is known as the

parity condition for Equation (4.1).

Zeros for a solution y of Equation (4.1) are counted according to
the zeros of its quasi-derivatives, so that y has a zero of order three
at x=a if Loy(a) =L1y(a) =L2y(a) =(0. In addition, by virtue of Equation
(4.1), the quasi-derivatives Loy, . e ’Ln-ly can be arranged in a cyclic

order with Loy following Ln_ly. If for example n= 3, and Loy(a) =0=

Lzy(a), Lly(a) #0, then x=a is a zero of order two for Lzy(x). For the

arbitrary interval [a,b] € I, let a<x <X, < .. ._<_xr_<_b be the zeros

1—-"2

of Loy, ««+,L .y in the interval. 1In this enumeration of zeros, zeros

n-1
of consecutive quasi-derivatives are counted as multiple zeros, while
zeros of nonconsecutive quasi-derivatives are given separate subscripts.
The exact multiplicity of the zero X, is denoted by n(xi). For example,

let n=5 and suppose that Loy(a) = Lly(a) = L3y(a) =0, and Loy(b) = L3y(b) =

L4y(b)=0. Then x, =a, X

1 =a, and x

=b are the zeros, with n(xl) =2,

2 3

n(xz) =1, and n(x3) = 3. Finally, let <m> denote the greatest even inte-
ger not greater than m. Then an important relation between the sign
changes in the list of quasi-derivatives and the zeros X, in [a,b] is
given by the following result of Elias [24], which generalizes Johnson

[47].
LEMMA 4.1: Every solution y of Equation (4.1) satisfies

N(y) = S(y,at) + S(y,b-) + I <n(x;)> <n. (4.9)
a<xi<b
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If N(y) =n, then Lj+ly has exactly one sign change between two consecu-
tive zeros of Ljy in [a,b]. .The quasi-derivative Lj+ly changes sign be-
fore the first zero of Ljy in (a,b] if and only if sgn[Lj+ly(a+e)] =

sgn[Ljy(a+e)] for small €> 0, and this sign change is unique. Similar-

ly L,,.y changes sign after the last zero of Ljy in [a,b) if and only if

i+l
sgn[Lj+ly(b—e)] = —sgn[Ljy(b—e)] for small €>0, and this sign change is

unique.

PROOF: Let j be an integer, 0<j<n-1. First note that if

Ljy(a) = 0, then sgn[Ljy(a+e)] = sgn(L (a+e)] for €>0 sufficiently

j+17
small, while if Ljy(b) = 0, then sgn[Ljy(b—e)] = —sgn[Lj+ly(b—s)] for
€ >0 sufficiently small. Thus

S(y,at) > I n(x,), 8(y,b-) > I n(x). (4.10)

x.=a , x,.=b
i i
Let {x.,.} ¢ {x.} be the zeros of L.,y which are not zeros of L, .y.
ij7 — i 3j j-1

Hence n(xij) is the exact number of quasi-derivatives which wvanish at
Xij’ starting with Ljy.

Let Yj be the total number of zeros of Ljy in [a,b], counting mul-

tiplicities. TIf the quasi-derivative Lj—ly has zeros at the points

Zp<.. . < zq in [a,b] with multiplicities My .. ,mq, then
=m +...+
Vi1 T M "q
At these same points, Ljy has zeros of orders ml-l, . e .,mq-—l, as well
as new zeros at the points of {xij}. Thus,
, = (m, -D+...+m -1)+2In(x..) =v. .-q + In(x..).
Y (m; = 1) (q‘) (13) Yi-1 4 (lJ

Since Ljy must change sign between each pair of zeros 2. 2544 of
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Lj—ly’ then Ljy has at least g-1 zeros of odd order on the interwval
(zl,zq). Hence, if for each zero of Ljy in (zl,zq), n(xij) is replaced

by <n(xij)>, the greatest even integer in n(xij), this last equation be-

comes

Y, > Y. -1+ I n(x,)+ z <n(x,.)>+ I n(x,.).
] i-1 X, .<z g <x, <z +J z <x,, 3
ij 1 1 i ¢q q 1j

Since z, 1s a zero of Lj—ly’ then sgn[Ljy(zl-—s)] =-sgn[Lj_ly(zl—e)] for

€ >0 sufficiently small. So if sgn[Ljy(a+z-:)] = sgn[Lj_ly(a+s)] for e>0
sufficiently small, then Ljy must change sign on (a,zl). Employing a
similar idea at x=b leads to

-1+ + +£)) +
Yy 2 Y50 1 S(Lj_ly(a e),Ljy(a €)) z <n(xij)>

J < <
z; xij z

+S(Lj_ly(b—e),Ljy(b—a)). (4.11)
Using the relation Lny=—py, Equation (4.11) includes the case

Yo 2 Yoy~ 1+ S _,y(ate),L y(ate)) + z <n(x; )>

- z.<X, <2z
1 74,0

0

+ 5L y(b=e),L_y(b-e)).

Note that S(ci,ci+l) + S(c ) = S(ci,ci+l,ci+2). Then adding

i+1°%i+2

Equation (4.11) for j=0,1,...,n-1 leads to
n > S(y,at) + S(y,b=) + z <n(xi)>,
a<x_<b
i
as desired.
If N(y) = n, then equality must hold in (4.11) for all values of j.

This happens only when there is exactly one sign change between consecu-
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tive zeros of the quasi-derivatives, and when the zeros predicted by

S(y,a+) and S(y,b-) are unique. This completes the lemma.

If no quasi-derivative for y vanishes at b, then clearly

S(y,b+) + S(y,b=) = n. Taken together with (4.9), this implies
S(y,a+) < S(y,b+) (4.12)

for all b>a for which Liy(b) #0, i=0,...,n~-1. Since every point

b has a deleted neighborhood in which no quasi-derivative vanishes,
Equation (4.7) extends (4.12) to all b>a. Thus S(y,x+) is an increas-
ing integer valued function of x. Since this function is bounded above

by n, the following lemma of Elias [24] is immediate.

LEMMA 4.2: For every nontrivial solution y of Equation (4.1),
there is an Xy > 0 and an integer k>0 such that S(y,x+) =k and

S(y,x=) =n-k for every x> x Furthermore, by virtue of (4.9), the

0
functions Loy,. .. ’Ln—ly may have only simple zeros on (xo,w).

Recalling the parity condition (4.8), Lemma 4.2 implies that the
solution space of Equation (4.1) may be divided into disjoint subsets or
classes Sk = {y|1im S(y,x+) =k}. There are two key questions to be an-
swered in determzzzng whether such a division is useful: Are the classes
nonempty? Do the members of a class have any other common characteris-
tics? The next theorem (Elias [24]) answers the first of these questions

in the affirmative; a definitive answer to the second will require some

further work.

THEOREM 4.3: For each k, 0<k<n, satisfying the parity condition

(4.8), the class Sk is nonempty.
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PROOF: The proof uses a limiting procedure to construct a solution
in each class. To begin, let k satisfying 1<k<n-1 and (-l)n—kp(x) <0
be fixed, and let y(x,s) be a nontrivial solution of Equation (4.1) sat-

isfying the n -1 homogeneous boundary condition

]
o
-
H
]
o
-

-
=
|
=

Liy (a) (4.13a)

]

%y@) 0, §j=0,...,n-k=-2, (4.13b)

where 0<a<s. The inequalities (4.10) reveal that S(y(x,s),a+) >k and
S(y(x,s),s-)>n-k-1. Since S(y,at) + S(y,s-) <n by Lemma 4.1, then
S(y(x,s),a+) <k+1 and S(y(x,s),s-) <n-k. But since (—l)n_kp(x) <0,
then S(y(x,s),a+) = k+1 would violate the parity condition (4.8), and
so S(y(x,s),a+) =k. Similarly, S(y(x,s),s-) =n-k-1 would violate the
parity condition, and so S(y(x,s),s-)=n-k. Since S(y,x+) is increas-

ing in x, then for any x € (a,s) it follows that
S(y(x,s),x+) > S(y(x,s),a+) = k,

while at the same time from (4.9),
S(y(x,8),x+) < n - S(y(x,s),s-) = k.

Therefore, S(y(x,s),x+) =k. Similar reasoning reveals that for all

x€ (a,s), S(y(x,8),%x-)= n-k. That is,

1]

S(y(x,s),xt) k, a<x<s, (4.14a)

S(y(x,s8),x-) n~-k, a<x<s. (4.14b)

The solution y(x,s) satisfying (4.13) is essentially unique, for if

there were another independent solution for these conditions, then some
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linear combination y of the two would have at least k+1 zeros at x=a
and at least n-k-1 zeros at x=s. Then the inequalities (4.10) and
(4.9) would imply that S(y,a+)=k+1 and S(y,s-)=n-k-1, in violation
of the parity condition.

For each s> a, normalize the solution y(x,s) by setting
n-1
z (Ljy(a,s))2=l, and choose a monotone, increasing, unbounded sequence
j=0

{si};;l such that the functions Ljy(x,si) converge for each j uniformly
on compact subsets of [0,»). Let y(x) be the solution of Equation (4.1)

such that limy(x,si) =y(x). Then by Lemma 4.2, there is an x
i

that S(y,x+) is constant for x> x

030 such

0 Take x> X such that Lj (xl) #0 for
j=0,...,n=-1. For i sufficiently large, then, Ljy(xl,si) # 0 and
sgn[Ljy(Xl)] = sgn[Ljy(xl,si)] for j=0,...,n-1. Consequently,
S(y,xl+) = S(y(x,si),xl+) for i sufficiently large. If in addition i is

chosen so large that si>xl, then Equation (4.14) implies S(y,xl+) =k,

and hence by choice of x, the solution y is in the class § Thus for

1 k'

(-l)n-kp (x)<0, 1<k<n-1, the class S, is nonempty.

k
If k=0 is allowable by (4.8), let y(x,s) satisfy the conditions

Ljy(s) =0, j=0,...,n-2,
n-1 2
normalized by I (Ljy(a,s)) =1, and then argue as before. If k=n sat-
s 3=0

isfies (4.8), take y(x) to be the unique solution of (4.1) satisfying

Liy(a) = 0, i=0,...,n~-2,

Ln_ly(a) = 1.

Then S(y,a+) =n by (4.10), and hence S(y,x+) =n on [a,») since S(y,x+)

is increasing in x. This implies that no quasi-derivative can change
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sign in (a,»), and so the solution y(x) in fact satisfies Liy(x)> 0,
i=0,...,n-1, on (a,*). Thus the class Sn is nonempty. This con-

cludes the proof of Theorem 4.3.

The proof of Theorem 4.3 demonstrates not only that the class Sk is
nonempty, but also that for every choice of a>0, Sk contains a solution
y(x) such that Liy(a) =0, i=0,...,k-1, and S(y,x+) =k for all
x € [a,»). These solutions in fact generalize the "principal solutions"
used by Leighton and Nehari [76] and the "fundamental solutions'" employed
by Hanan [35]. As will be seen shortly, a further generalization of
these solutions is possible.

The evidence suggests that the classes S, play a key role in the

k

dominance of solutions of Equation (4.1). For the equation
-y =0,

for example, straight-forward computations show e Fe SO’ e*e 54’ and

sinx, cosx € S In the sense defined in Chapter III, the solutions in

9
class 82 dominate those in SO, and are themselves dominated by the solu-
tions in class 54. This role is supported further by the nature of the
classes themselves.

While at first it might seem that there need not be any logical
organization in the division of solutions of Equation (4.1) among the
classes Sk’ it will be shown in Theorem 4.14 that, for fixed k, the
solutions in Sk are either all oscillatory or all nonoscillatory. Be-

fore this result can be proved, however, it will be necessary to develop

the idea of extremal points for Equation (4.1).
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Extremal Points and Extremal Solutions

The development in this section, leading eventually to a proof of
the result described above, is based upon the recent paper [24] of Elias.
The results in Elias' paper are a natural outgrowth of the work done on
the fourth order equation (4.3) by Leighton and Nehari [76], and gener-
alize many of their ideas. These results also involve an extemnsion of
the notion of conjugate point and focal point, and suggest several lines
of future investigation as described in Chapter VII.

For the interval [a,s]c [0,»), consider the boundary conditions

Liy(a) = 0, i€ {11,. .. ’lk}’ (4.15a)

Ljy(s) = 0, j G{Jl, .. .,Jn_k}, (4.15b)
where {11,. .. ’lk} and {Jl,. . ,Jn_k} are two arbitrary (not necessar-
ily distinct) sets of indices chosen from {0, ... ,n-1}. If Equation

(4.1) has a nontrivial solution y satisfying (4.15), then (4.10) implies
S(y,a+) >k and S(y,s-) >n-k. But since S(y,at) +S(y,s-) <n by
Lemma 4.1, then S(y,a+) =k and S(y,s-) =n-k. Therefore, Equation (4.1)
has a nontrivial solution subject to (4.15) only if k satisfies the par-
ity condition (4.8). 1In the remainder of this section, it will be as-
sumed that 0<k<n and (—l)n_kp(x)<<0, unless explicitly stated otherwise.
Many classical results are more easily understood in light of this
parity restriction on k for (4.15). If p is negative and n= 2, than a
(1,1) zero distribution is prohibited, and hence the corresponding second
order equation has no oscillatory solutions. For n=4, this parity re-
sult reduces to the restrictions on possible zero distributions discov-

ered by Leighton and Nehari [76]. The Class I and Class II solution
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conditions utilized by Haman [35] for the general third order equation
reduce to the parity conditions for n=3 in Equation (4.1). General
n~-th order versions of the parity restrictions have appeared in the works
of virtually every author considering higher order equations since the
1967 paper of Nehari [93]. The parity condition is primarily geometric
in nature, and similar geometric considerations are at the heart of the
disconjugacy conditions considered by Barrett [7], Peterson [97],
Ridenhour and Sherman [108], and Keener [54] for the general fourth order
problem.

As an extension of the notion of conjugate or focal point, define

the i-th extremal point Si(a) of a corresponding to (4.15) to be the

i~th value of s in (a,») for which Equation (4.1) has a nontrivial solu~
tion satisfying (4.15). Such a noﬁtrivial solution is called an extre-

mal solution. These definitions presume that the points s € (a,») for

which extremal solutions exist have no accumulation point in [a,®).
Since no nontrivial solution may have n zeros at a, then a cannot be an
accumulation point of the set of extremal points for (4.15). That there
can be no accumulation point in (a,») will follow from Theorem 4.7, to
be shown shortly. Solutions meeting these definitions were discussed by
Leighton and Nehari [76] for the fourth order problem (4.3), while
Johnson [47, 48, 49] and Elias [18, 19, 24, 25] have devoted much effort
to the study of such solutions for Equation (4.1).

Since (4.15) has n conditions on y, nontrivial solutions may not
always exist. If one of these conditions is removed, however, a solu-
tion always exists for the remaining set of n-1 homogeneous conditions,

and may be used to analyze (4.15).
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LEMMA 4.4: 1If the n-1 boundary conditions

]

Liy(a) 0, i€ {il,. . ,ik}, (4.16a)

Ljy(s) 0, J€Lags e i q? (4.16b)

are considered, then the following results hold:

(1) Equation (4.1) haé an essentially unique solution y(x,s) sat-
isfying (4.16).

(2) At the point a, S(y(x,s),a+) =k, and sgn[Li+ly(a+e,s)]=
sgn[Liy(a+a,s)] if and only if i€ {il,. .. ,ik}. In particular, no
quasi-derivatives other than those specified in (4.16) can vanish at a.

(3) At the point s, S(y(x,s),s-)=n-k, and n-k-1 of the sign
changes among consecutive quasi-derivatives are determined by jl,. .
jn—k—l' At most one additional quasi-derivative may vanish at s other
than those specified in (4.16).

(4) S(y(x,s),x+) =k for x¢€ [a,s) and S(y(x,s),x=) En-k for
x € (a,s].

(5) LtY(x,s), t=0,...,n-1, may have only simple zeros in (a,s).
Lt+ly(x,s) has exactly one simple zero between two consecutive zeros of
Lty(x,s) in [a,s].

(6) Lty(x,s), t=0,...,n-1, and its simple zeros are differen-

tiable as functions of s.

PROOF: Note that the boundary conditions (4.16) are a generalized
version of the boundary conditions (4.13) considered in the proof of
Theorem 4.3. The inequalities (4.10) again show S(y(x,s),at+) >k and
S(y(x,s),s=)>n-k-1, so that parts (1) and (4) may be proved as in the

case of the earlier theorem. Parts (2) and (3) then follow immediately
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from Lemma 4.1 and the parity condition (4.8).

The quasi-derivatives Lty(x,s), t=0,...,n-1, can have only sim-
ple zeros in (a,s) by virtue of (4.9) since S(y(x,s),a+) +S(y(x,s),s-)
=n. Lemma 4.1 showed that Lt+ly(x,s) has exactly one change of sign be-
tween the zeros of Lty(x,s) in [a,s]; since all the zeros of Lt+1y(x,s)
in (a,s) must now be simple zeros, Lt+1y(x,s) has exactly one simple zero
between the zeros of Lty(x,s) in [a,s].

It remains only to prove (6). Let {ul,. . ,un} be an independent
set of solutions of Equation (4.1), and consider the determinant

L, u(a),...,L, u(a),L, u,(s),...,L, u, (s),u, (x)
i 1 i 1 i1 1 Jp-k-1 1 1

z(x) = . . . . . (4.17)

L, u(a),...,L, u (a),L, u (8),...,L,
i, n i, n j;m Jn_k_lun(s),un(x)
Clearly z(x) is a solution of Equation (4.1) satisfying (4.16). Choose

x. in (a,s) such that y(xo,s) # 0. Then the determinant defining z(xo)

0
must be nonzero since the solution y(x,s) is essentially unique. There-
fore, z(xo)#(h and thus z(x) is a nontrivial solution of Equation (4.1).

Hence y(x,s) =z(x), and part (6) follows by the implicit function theorem

applied to the determinant (4.17). This completes the proof of Lemma 4.4,

The proof of Lemma 4.4 rests on the fact that any solution y of
Equation (4.1) satisfying the boundary conditions (4.16) must also sat-
isfy N(y) >n-1, where N(y) is given by (4.9). The proof can be extend-
ed to include any homogeneous set of k boundary conditions at a and
n-k-1 conditions at s, or k-1 boundary conditions at a and n-k con-
ditions at s, which force N(y) >n-1. This is summarized for future

reference in the following lemma.
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LEMMA 4.5: The properties of Lemma 4.4 can be proved for the solu-
tions of Equation (4.1) satisfying any set of n- 1 homogeneous boundary

conditions at a and s which give N(y) >n-1.

Comparing Lemma 4.1 and parts (2) and (3) of Lemma 4.4 reveals that
Li+ly(x,s) has a simple zero before the first zero of Liy(x,s) in (a,s]
if and only if i€ {il,. .. ,ik}, and that there is precisely one value

of j other than those given by {j1 } for which Lj+ly(x,s)

>0 dpeknl

has a simple zero after the last zero of Ljy(x,s) in [a,s). It is clear

from the boundary conditions (4.15) and (4.16) that s is an extremal

point for (4.15) if and only if Lj y(x,s) x=s=()' Thus if s is an ex-~
n-k

tremal point, then y(x,s) is the essentially unique extremal solution.

These remarks may be summarized as follows.

COROLLARY 4.6: Let y==y(x,ei) be the unique extremal solution cor-
responding to Gi(a). Then Lt+ly has exactly one simple zero between two
consecutive zeros of Lty in [a,ei(a)], and these are its only zeros in

(aﬁi@)L for t=0,...,n-1.

The essential uniqueness of such solutions for the fourth order
problem (4.3) was shown by Leighton and Nehari [76, Theorem 2.6]. For
the case n=2 the result is trivial since no solution may have a double
zero. For n=3 the essential uniqueness of these solutions can be de-
rived from Hanan's Class I and Class II conditions. Johmnson [49] also
has several results of this type for Equation (4.1) with n even.

Equation (4.17) suggests a relationship between extremal points and
certain Wronskian-like determinants. The next few results explore this
relationship in order to establish a link between the extremal points of

Equation (4.1) and its oscillatory solutions. Recall that, in addition,
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Theorem 4.7 will show that the set of extremal points of Equation (4.1)
has no finite accumulation point.
By comparison with Equation (4.17), it is clear that the determin-

ant W(s) EW(s,jl, .. ’jn-k) defined by

Li ul(a),...,L:,L ul(a),L, ul(s),...,Lj ul(s)

1 k I n-k
W(s) = . . . . (4.18)
L, u(a),...,L, u (@),L, u (s),...,L, u (s)
i, n i n j; n Jp-p B
satisfies W(s) = L. y(x,s)]x=s, and so W(s) vanishes if and only if s
n-k

is an extremal point for (4.15). A more precise relationship between
the zeros of W(s) and the extremal points of Equation (4.1) is expressed

in the next theoren.

THEOREM 4.7: The extremal points for (4.15) are simple zeros of

wW(s).

PROOF: Differentiating by columns in Equation (4.18) gives
—d—W(s,j seees] )=n;kW(sj cees] j.+1,j ceesi o )/p (s).
ds 1 >“n-k =1 -1 He=1"t T’ ’*n-k jt+l
(4.19)
The proof comnsists in showing that the derivative is nonzero for those
values of s for which W(s) vanishes. In particular, the proof will show
that the right side of Equation (4.19) has at least one nonzero term,

and that each nonzero term has the same sign. To that end, assume

throughout the proof that s satisfies

W(s33 5e-53_ ) = 0. (4.20)
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Recall that 1<k<n=-1 in the boundary conditions (4.15), so that
there is at least one term on the right side of Equation (4.19) for

which jti-l #j Suppose such a term vanished, so that

t+1°

W(s;jl,. .. ,jti-l,. .. ’jn—k) = 0. (4.21)

Equation (4.20) implies that yl(x)==y(x,s) is an extremal solution sat-
isfying (4.15), while Equation (4.21) implies the existence of a non-
trivial solution yz(x) satisfying the same boundary conditions with jt
replaced by jt4-l. Since these solutions share n -~ 1 boundary conditioms,
they are linearly dependent by Lemma 4.4. But then each has a total of
n-k+1 zeros at s, contradicting part (3) of Lemma 4.4. Consequently,
the determinant in Equation (4.21) cannot vanish, and the derivative in
Equation (4.19) has at least one nonzero term. If it has exactly one
nonzero term, the proof is complete.

Suppose now that the sum in Equation (4.19) has nonzero terms for
t=q and t=7r, with jq<:jr. In order to prove that these terms have the
same sign, each will be shown to be a quasi-derivative of a constant
multiple of the extremal solution for (4.15). By means of an auxiliary
function, the signs of the constant multiples can be determined.

Let yl(x,s) and yz(x,s) be defined by the determinants in Table I.
Then as in Lemma 4.4, yl(x,s) is the essentially unique solution of

Equation (4.1) satisfying the boundary conditions

Liy(a) 0, ie€ {il,. - ,ik},

LjY(S) 0’ je {jl’ o o o ’jn_k}\{Jq}!

while y,(x,s) is the essentially unique solution satisfying
2



TABLE I

MATRIX DEFINITIONS OF THE FUNCTIONS Yi2 Yoo AND Y3

Li ul(a)"°"Likul(a)'leul(s)'""Lj ul(s),L

-1 jq+lul(s),...,L

u. (8),u, (x)
Jpop 1 1

yl (X, S) -

Li un(a),...,L1 un(a),leun(s)....,Lj un(s),L

u (8)y...,L
1 k n

jn_kun(s).un(x)

L, u (a),...,Likul(a),Lj ul(s),....L ul(s),L ulgs),...,L ul(s),ul(x)

1 Y I dnk

yp(x,8) =

Lilun(a)""'Li un(a).leun(s),...,Lj u (a)?L

. un(s),...,Lj kun(s),un(x)

. u,(a),L, u,(8),...,L u, (s),L
1 w0 !t Jga1 !

-1 Jq+1ul(a)....,Lj u, (8),L ul(s),...,L-1 kul(s)’ul(x)

r-1 Jr+1 n-

y3(X.8) - .

L, u (a),...,L
im Ien

un(s),L un(s),...,L un(s),un(x)

jr+1 jn-k

u (a),L, u (8),...,L,. u_(s),L u (8),¢..,L
nt gy e g1 ® g ® de1

%G
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Liy(a) 0, i€ {il,. c.o,i},

k

LjY(S) 0, J€L3gs ¢ v e nd  IMIT

Since each of these sets of boundary conditions is a subset of those in
(4.15), then both vy and y, must be extremal solutions, and so constant
multiples of each other.

Differentiating and then exchanging columns in the definition of v1

and y2 gives

n—k—qL

(—l) j +lyl(X,S) = W(S;jl’ ¢ ’jq+l’ ¢ o0 ’jn_k) = Wq (4‘22)
q
and
~k- , .
(-1)" rLj 179 (®8) = W(s3d s e F1, 03 ) W (4.23)
r

The boundary conditions (4.13) imply that for € >0 sufficiently small,

each of yq and Y, satisfies
sgn[Ljy(s—e)] = -sgn[Lj+ly(s-e)] (4.24)

if and only if j G{jl, | }. Consequently,

n-k
sgaly, (x,8) | __ 1 = <—1)qsgn[qu+lyl<x,s) |l
and this together with Equation (4.22) becomes
sgn[W ] = (~l)n_ksgn[y (x,s)l 1.
q 1 s-€
Likewise, Equations (4.24) and (4.23) combine to give

sgn[Wr] = (—l)n_ksgn[yz(x,S)[S_el'

Since Y1 and y, are both constant multiples of the extremal solution
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y(x,s), their product has constant sign for all x, and so
sgn[Wqu] = sgn[yl(x,S)Is_eyz(x,S)IS_El = sgnly, (x,8)y,(x,8)]. (4.25)

Therefore, it suffices to show that vy and Y, have the same sign. In
order to do this, it is necessary to compare them at a point where it is
known they do not vanish.

Choose ik+l from {0, ... ,n-—l}\{il,. .. ,ik}, so that

L, y(x,s)] # 0, and define y_(x,s) by the determinant in Table I to
T+l x=a 3
be the unique solution of Equation (4.1) satisfying the boundary condi-

tions

09 ie{il,.-.,l

]

Liy(a) }, (4.26a)

K’ Tkl

Ly() =0, €{3y, .. nd  PMI L5 (4.26b)

Differentiating and exchanging rows as before reveals that

n-k-r

_ n-k-1
(-1) Ljry3<x,s)lx=s-(—1) L

. y,(a,s) (4.27)

Tt

and (recalling that the j_ column is missing from y,_(x,s), with j_>j )
r 3 r q

n-k-q-1 n-k-1,

(-1 Ly v = D) L 2@ (4.28)

q "k
It is necessary to determine the signs of Lty3(x,s), t=0, ...,
n-1, on a left neighborhood of s. From the boundary conditions (4.26)
and the parity condition, the n-k-2 conditions Ljy3(x,s)|X=S = 0,
3 G{jl,. .. ,jn_k}\{jq,jr}, locate all the sign changes exactly. So,
among the functions Lj y3,. .. ,Lj y3, there are exactly r-q-1 sign

T
changes in a left neighborhood of s, or

= (-1)F-9-1
sgn[Ljry3(x,s)|X=S] = (-1) sgn[quy3(x,s)]. (4.29)
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Combining Equations (4.27), (4.28), and (4.29) shows
sgn[L, y,(a,s)] = sgn[L, vy,(a,s)].
'L 412
Consequently the products in Equation (4.25) are positive, and so the

nonzero terms of the derivative (4.19) are of the same sign. This com-

pletes the proof of Theorem 4.7.

(=]
Suppose that there existed a sequence of points {Si}i= converging

1

to some point s, in (a,») such that W(si)=(3, i=1l,...,2. Since W(s)

is differentiable on (a,»), then by Rolle's theorem there would be a

1] _d_ [] - PR © . .
sequence si-*sO such that dSW’(si) 0, i=1,...,». The continuity of
W and iw would then imply W(so) = E%W(so) =0, contradicting Theorem

4.7. Hence the set of extremal points has no finite accumulation point,
and the points in the set may be numbered accordingly.

Each extremal point Si(a) depends upon the choice of a. For the
general problem investigated in earlier chapters, it could happen that
ei(a) = ei(a') while a#a'. That this is no longer the case for Equa-
tion (4.1) is demonstrated next. In addition, the domain of ei is ana-
lyzed. This result is a generalization of earlier results due to

Peterson [98], Johmson [47], Kim [59], and Nehari [95].

THEOREM 4.8: The function ei(a) is differentiable and strictly in-

creasing, with domain of the form [0,b), 0<b< e,

PROOF: To emphasize its dependence on a, denote the determinant
(4.18) by W(a,s). As Theorem 4.7 has shown, if ei(a) exists, then it is
a simple zero of W(a,s). Hence by the implicit function theorem ei(a)

is defined and differentiable in a neighborhood of a, and
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deé

_i_ 3W, 3W
da da’ 9s s=6. (a)
i
W o,
Analyzing 3a 2 in Theorem 4.7 shows it is nonvanishing, so that-zjk#iJ

and ei is monotonic. Since ei can be continued as long as it is bounded,
then it must be increasing. Otherwise, it could be continued for b>a
until ei(b):>b is contradicted.

If ei(a) exists, then ei is defined in some largest open interval A
containing a. Let a'=infA. For every b€ (a',a], Gi(b) exists and
W(b,ei(b)) = 0. By the continuity of W and Oi, ei(a') must also exist.
If a' >0, then ei is defined in a neighborhood of a', contradicting the
definition of a' = infA. Thus a'=0, and Si(a) is defined on some half-

open subinterval of [0,»)., This completes the proof of Theorem 4.8.

From Lemma 4.4 it is known that the unique solution y(x,s) of Equa-
tion (4.1) satisfying (4.16) has only simple zeros in (a,s), and at most
one additional zero at s other than those specified by (4.16). The be-

havior of these zeros as functions of s is described next.

THEOREM 4.9: The number of simple zeros of Lry(x,s), 0<r<n-1,
in (a,s) can vary, as s increases, only when a simple zero enters (a,s)

through the variable endpoint s.

PROOF: Since y(x,s) cannot have multiple zeros in (a,s), and since
its simple zeros are continuous functions of s, their number can vary
only when one simple zero enters or leaves the interval through the end-
points a or s. Lemma 4.4 forbids any additional zeros at a, and so the
simple zeros may only enter or leave through s. The proof comsists of

showing that zeros may only enter through s.
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Suppose r € {Jl,. . }, so that Lry(x,s)|X=S = 0. If for

* o dpk-1
certain values of s, a simple zero of Lry(x,s) does not enter or leave

(a,s) at s, then sgn[Lry(x,s)[ ] = -sgn[Lr+IY(x’S)[x=s—a] is con-

X=S-¢
stant, and so a simple zero of Lr+ly(x,s) cannot enter (a,s) at s. On
the other hand, if a zero of Lry(x,s) does enter or leave at s, then
Rolle's theorem implies the same holds for Lr+ly(x,s) as well. There-
fore, it is sufficient to prove the theorem for those quasi-derivatives
for which no condition is given at s in (4.16).

Assume for the moment that r-kl_i{jl, - ”jn-k-l} as well. If
then Lry(x,so) has a zero at =154, it must be a simple zero, and so by

the implicit function theorem there exists a simple zero x(s) of

Lry(x,s) such that x(so)= So and

dx _ .3 2
Is = -35 LY (&8) /5L y(x,8) e (4.30)
S=SO X"—'SO,S—SO

Recall from Equation (4.17) that Lry(x,s) has the determinant represen-

tation
L, u(a),...,L, u,(a),L, u (s),...,L, u, (s),L u (%)
i 1 i, 1 i1 1 3 k-1 1 rl
Ly(,s) = | : : : :
L, u(a,...,L, u(a),L, u (s),...,L, u (s),L u (x)
i, n i n j;n Jpk-1 B rn
so that
3 _ » )
5§-Lry(x,s)! = W(so,Jl,...,Jn_k_l,ri-l)/pr+l(so), (4.31a)
(so,so)
5 n-k-1
35 Ly (x,8) = I W(so;Jl,---,Jt4'l,---,Jn_k_l,r)/pj +1(80)-

(sgrsy)  t=1 © (4.31b)
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Since o is an extremal point for the boundary conditionms

Liy(a) 0, i€ {il, . e ,ik} (4.32a)

]

Ljy(s) 0, je€ {jl, e ’jn-k—l’r}’ (4.32b)

the proof of Theorem 4.7 shows that the nonzero derivatives in (4.31)

have the same sign, and that S%Lry(x,s) # 0. Thus, by Equation
(s458)

(4.30), x'(so)iO. Let d(s) = x(s) - s measure the distance between the
simple zero x(s) and the variable endpoint s. Since d(so) =0 and

d'(so)_<_-l, the zero x(s) enters the interval (a,s) at s=s,

Now consider the case where r+1 € {jl, .. ’jn—k—l}' The argument
used above fails here since ;—XL y(x,8) = 0, and the implicit
t (so,so)

function theorem no lomger applies. In order to analyze this case, it
is necessary to locate an extremal point $; following Sy for (4.32),
which in fact may not exist. Since extremal points for (4.32) are sim-
ple zeros of W(s;jl, . e ’jn—k—l’r)’ for € >0 arbitrarily small, the
+¢) at s=s, or left without

0 0

entering. Therefore, choose c, c> Sy and on [c,») redefine p(x) =p(c)

zero x(s) must either have entered (a,s

and pi(x) = pi(c). Since the solution y(x,s) is unaffected on [a,c], the
behavior of x(s) is also unaffected. On the other hamnd, on [c,») Equa-
tion (4.1) now has constant coefficients, and it is well known that
ei(c) exists for all i for this problem [21]. By Theorem 4.8 ei(a) ex—
ists for all i as well. Without loss of generality, therefore, assume
the extremal point Sl> Sy exists. To prove that the zero x(s) entered
(a,s) at s=s4> it will suffice to show that Lry(x,sl) has more zeros
in (a,sl) than Lry(x,so) has in (a,so).

From the set of n-k<n indices {jl, “ e ’jn—k—l’r} choose an index,
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say jq, for which jq-kl is not also in the set. Let yl(x,s) be the es-

sentially unique solution satisfying the conditions

Liy(a) 0, ié€ {il,. . e ,ik}, (4.33a)

Ljy(s) 0, j¢ {Jl, RPN ,jn_k_l,r}\{jq}- (4.33b)

Clearly y(x,so)==yl(x,so) and y(x,sl)==yl(x,sl), up to constant multi-
ples, since the extremals for (4.32) also satisfy (4.33). Since

jq+—l ¢ {jl,. - _l,r}, the first part of the proof implies

’Jn_k
Lj yl(x,sl) has one more zero in (a,sl) than has Lj yl(x,so) in (a,so).
By Corollary 4.7, it follows that Lryl(x,sl) has exactly one more zero

in (a,sl) than does Lry(x,s ) in (a,so). This completes the proof of

Theorem 4.9.

For s sufficiently close to a, the solution y(x,s) and its quasi-
derivatives can have no zeros in (a,s) other than those predicted by
Rolle's theorem from the boundary conditions (4.16). If there were an
additional zero for values of s arbitrarily close to a, then Rolle's
theorem would guarantee at least one zero for each quasi-derivative
Lty(x,s). Choosing an appropriate sequence si-+a+ and passing to the
limit would then give a nontrivial solution with n zeros at x=a, a con-
tradiction to the uniqueness of solutions for Equation (4.1).

As s increases, Theorem 4.9 has shown that new zeros of the quasi-
derivatives enter. (a,s) through the enpoint s. Since the zeros in (a,s)
are subject to Rolle's theorem and the constraints of Lemmas 4.1 and 4.8,
the exact order in which these zeros enter depends solely on the boundary
conditions (4.16). Also, as s increases, the quasi-derivatives Lry(x,s),

re{0,... ,n-l}\{jl,. .. }, necessarily vanish in decreasing

»dp-k-1
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order at x=s. An example will help clarify exactly how these orders

are determined by (4.15).

Suppose n=15 and p(x) >0, and consider the.boundary conditions

Liy(a) 0, i=0,1,

Ljy(s) 0, j=0,2.

By Rolle's theorem, Lry(x,s) vanishes in (a,s) for r=1,2,3, regardless
of how close s is to a. Assume s starts so near a that these are the
only zeros in (a,s). As s increases, the first new zero at s must occur
for L4y(x,s), since any other location would force L4y(x,s) to vanish in
(a,s), implying that the zero has already entered there. Allowing s to
increase still further so that Lay(x,s) now vanishes in (a,s), the next
zero at s must occur for L3y(x,s) so as to predict the zero of Lay(x,s)
by Rolle's theorem. If this zero entered by way of any other quasi-
derivative, it would force L3y(x,s) to have an extra zero in (a,s), im-
plying a zero had entered previously. The new zero of L3y(x,s) at s
raises the multiplicity of the zero of Lzy(x,s) at s. Therefore, in
order to maintain S(y(x,s),s-) =3, as s increases beyond this point both
Lzy(x,s) and L3y(x,s) gain a new simple zero in (a,s). That is, the
multiple zero of Lzy(x,s) at s breaks up into two simple zeros, and the
new simple zero of L3y(x,s) is then forced by Rolle's theorem. Finally,
Lly(x,s) would vanish at s, causing new simple zeros fo enter (a,s) for
both Loy(x,s) and Lly(x,s).

Once a pattern such as this has been established, it cannot be var-
ied but must instead be repeated as s increases (provided new zeros con-
tinue to appear), by the same argument with Rolle's theorem. Therefore,

Theorem 4.9 has the following corollary:
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COROLLARY 4.10: Let Kt be the number of zeros predicted by Rolle's

theorem for Lty(x,s) in (a,s) for (4.16) with s near a. If Ojj;ijn_k,
then the quasi-derivative Lty(x,ei(a)) of the extremal solution
y(x,ei(a)) has exactly i-Flt-l simple zeros in (a,ei(a)), i=1,2,....

If t> 3w then Lty(x,ei(a)) has 1-+2t simple zeros in (a,ei(a)).

Theorem 4.9 and Corollary 4.10 extend a result of Leighton and
Nehari [76, Theorem 3.6] describing extremal solutions for the conjugate
points of Equation (4.3) with p(x) <O0.

The boundary conditions (4.16) were obtained from (4.15) by delet-
ing a condition at s, and the results which followed described the be-
havior of the solution y(x,s) as s varied. Using precisely the same
methods of proof, analogous theorems describe the behavior of solutions
which satisfy boundary conditions obtained from (4.15) by deleting a con-
dition at a, and then allowing s to vary.

Of particular interest in the proof of Theorem 4.14 is the situation
where the sets {il,. .. ,ik} and {jl,. . ’jn—k} of (4.15) are disjoint.
The following lemma is slightly more general than the version used by
Elias [24], but has the advantage of permitting a proof of Theorem 4.17

which does not require any reference to the Trench factorization of the

operator Ln in Equation (4.1).

LEMMA 4.11: Consider the boundary conditions

Liy(a) 0, i€ {il,. .. ,ik}, (4.34a)

Ljy(s) 0, je{o,1,... ,n—l}\{il, “ e ,ik}. (4.34b)

If there is a solution y(x) of Equation (4.1) which satisfies
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Lty(x) # 0, t=0,1,...,n-1, (4.35a)

sgn[Liy(X)]==sgn[Li+ly(X)], ié€ {il,- .. ,ik}, (4.35b)

sgn[Ljy(x)] =-sgn[Lj+ly(x)], je{0, ... ,n—l}\{il, c . ,ik},
(4.35c)

on (a,b), then el(a)ib for (4.34). 1If ik#n—l and if el(a)_>_b, then

there is a solution y(x) satisfying (4.35) on (a,b).

PROOF: 1In thisr setting, with the assumption that ikaén—l, the
boundary conditions (4.16) derived from (4.34) give 2t= 0 for
t=0,...,n-1. If el(a)_>_b, then y(x,b) satisfies (4.35) by Corol-
lary 4.10 and Lemma 4.4. This proves the second part of the lemma.

To prove the first part, assume el(a) <b, and suppose yl(x) satis-
fies (4.35). By the continuity of Bl, there is an a' > a such that
el(a’) <b. Let yz(x) be the extremal solution for el(a') on [a',el(a')],
and assume, without loss of generality, that v1 and Y, have the same

sign in (a',el(a')). Set w - Ayz, and note that Ltwo(x) #0 on

]

[a',el(a')] by (4.35) for t=0,...,n-1. Define )\0 to be the smallest

positive value of A such that Ltw vanishes in [a',el(a')] for some t.

A

Continuity with respect to A implies no quasi-derivative of Wy changes

0
sign in [a',el(a')). Consequently, w, must vanish at either a' or
0

~el(a'). Suppose LtWA (a') = 0 for some t. In light of the boundary con-
0

ditions on Yo necessarily t € {0, . .. ,n-—l}\{ij, Pe s ,ik}. Since

sgn[Ltwko] = sgn[Ltyl] by definition of }‘O’ then sgn[Ltwko] =

-sgn[L_,.w, ] by (4.35), contradicting L _w, (a')=0. A similar argument
t+1 KO t KO

at el(a') shows the solutions vy and y, are incompatible. This com-

pletes the proof of Lemma 4.11.
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The incompatibility of the conditions (4.34) and (4.35) is indeed
the heart of the proof of Theorem 4.14. The basic idea of the proof is
this: if the class Sk contains a nonoscillatory solution, then for some
a>0, the solution satisfies conditions of the form (4.35) on [a,®). On
the other hand, the existence of an oscillatory solution will lead to
the existence of an extremal point el(a') for some a'>a and for condi-
tions of the form (4.34). The difficulty lies in that the set of indi-
ces {il,. .. ’ik} in (4.34) and (4.35) as determined by these solutions
might be different. This requires, then, showing that the existence of
an extremal point for one set of conditions of the form (4.15) implies
the existence of extremal points for every other set of conditions of
the form (4.15). Theorems 4.12 and 4.13 accomplish this task, allowing

Theorem 4.14 to be proved.

THEOREM 4.12: If all the extremal points ei(a), i=1,2,..., ex-

ist for ome system of boundary conditions of type (4.15), then all the
extremal points exist for every system of boundary conditions of type

(4.15).

PROOF: It is sufficient to show that all the extremal points ei(a),
i=1,2,..., of (4.15) exist if and only if the corresponding extremal
points exist when a left or right boundary condition is increased by one.

Let éi(a), i=1,2,. .., represent the extremal points for the boundary

conditions
Liy(a) = 0, ic¢€ {il,. .. ,ik}, (4.36a)
Ljy(s) =0, 3 E{Jl, - .,Jq+l,. .. ,Jn_k}, (4.36b)

where jq+—l ¢ {Jl,. .. ,Jq, .. .,Jn_k}. The proof shows that the points
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{ei(a)} and {éi(a)} must separate each other.

Let y(x,s) be the solution satisfying the n-1 conditions

Liy(a) 0, i€ {il,. - ,ik}, (4.37a)

LjY(S) 0, j€ddgs 2353 {Jq} (4.37b)

For s sufficiently close to a, all the zeros of y(x,s) and its quasi-
derivatives on (a,s) are given by Rolle's theorem applied to (4.37). As
the argument before Corollary 4.10 shows, when s increases the quasi-
derivative Lj +ly(x,s) gains a zero at x=s before Lj y(x,8). As s in-

q
creases still more, Lj yv(x,s) must vanish at s before Lj +ly(x,s) can

q
gain its second zero. Likewise, allowing s to increase again,
Lj +ly(x,s) must achieve its second zero at x=s before Lj y(x,s) does.
Applying this argument to the points ei(a) and 5i(a) reveals 5i(a)<

Oi(a)'<§i+l(a)-<9 (a). Hence (4.15) has infinitely many extremal

i+l
points if and only if (4.36) does.

A similar argument applies when a system of boundary conditions
differs from (4.15) by one condition at x=a. In that case, y(x,s) is
defined by deleting a condition at a instead of s. Theorems such as
those proved earlier would show that, as s increases, zeros could enter
(a,s) only by way of the endpoint a, allowing the proof to be completed.
Actually the earlier results make new results about the endpoint a easy
to prove, since at s= Si(a), the solution y(x,s) defined by deleting a

condition at a must be the unique extremal solution. This completes the

proof of Theorem 4.12.

The point x,> 0 at which a nonoscillatory solution y finally a-

0

chieves its constant value of S(y,x+) can be arbitrarily large in gen-
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eral. In order to arrive at a contradiction in the proof of Theorem
4.14, it is necessary to generate extremal solutions for el(a) for ar-

bitrarily large values of a. That is one function of the next theorem.

THEOREM 4.13: Let y(x) be an oscillatory solution of Equation
(4.1) which satisfies S(y,x+) =k for x sufficiently large. Then for
every system of type (4.15), and for every a>0, all the extremal points

ei(a), i=1,2,..., exist.

PROOF: From Lemma 4.2 there is an x0_>_0 such that S(y,x+) =k for

x> X5, Choose the point a>xg, and the integer m>n 2arbitrarily large,
and let t; and 51 be chosen so that y(x) has at least m simple zeros in
(tl,sl) c (a,»), with no quasi-derivatives vanishing at either t; Or s,.
Since S(y,tl+) =k and S(y,sl-) =n-k, there are sets of indices

{il, .. ,ik} and {jl, . oe ’jn—k} such that

C

i Li+lY(tl)/Liy(tl) > 0, ié€ {11, .. ’lk}’

-d,
J

Lj_,_ly(sl)/Ljy(sl) < 0, j€ {Jl, .. 1.

»J -k

For X < t;<s, let u(x,s) be the solution of Equation (4.1) satisfying

the boundary conditions

Li+lu(tl) —ciLiu(tl) = 0, ic¢€ {11, .« . ’lk}’ (4.38a)

Lj+lu(s)+diju(s) =0, j€ {jl, .. }. (4.38a)

»Jn-k-1
Every solution u of (4.38) satisfies

N(u) > S(u,tl+) + S(u,s=) >k + (n-k-1) =n-1,

and so by Lemma 4.5 the solution u(x,s) has the properties given by

Lemma 4.4. 1In particular, u(x,s) is essentially unique; since y(x) also
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meets (4.38) for s=s;, then u(x,sl) Zy(x). Thus u(x,sl) has at least m

simple zeros in (tl,sl).

By Lemma 4.4, simple zeros of u(x,s) cannot coincide or meet tl as

s decreases. In addition, when s is sufficiently close to t,, at least

1
one quasi-derivative must be nonzero, so that as s decreases toward tl,

zeros of the quasi-derivatives must leave (tl,s) through s.

Suppose that, as s decreases from s, toward tl, the first zero of

1
L. u(x,s) leaves (tl,s) for $=5,, tl<sz<sl, so that
n-k
L. u(x,s,) = 0.

Jn—k 2 %=
2

As the number of zeros of Lj u(x,s) in (tl,s) decreases by one, Rolle's
n~-k

theorem implies that u(x,s) loses at most jn— <n zeros from (tl,s).

k
Thus u(x,sz) still has at least m-n:>n2-n zeros in (tl,sz).

Let v(x,s) be the solution which satisfies

Li+lv(tl) - ciLiv(tl) = 0, i€ {11,. .. ’lk}’
Lj+1V(S) + dijv(s) =0, R T MY

L. v(s) = 0.
Jn--k

By Lemma 4.5, v(x,s) also has the properties specified in Lemma
4.4, and hence it follows that v(x,sz) Ell(X,Sz) and has at least m-n

zeros in (tl,sz). Now let s decrease until Lj v(x,s) has a zero at
n-k-1
32 tl< s3< 52' Repeating in this fashion merges the zeros of y(x)

at the endpoint S=s

s=s
n-k’ In a similar manner, by deleting conditions

one by one at t from

Li+lw(t) - ciLiw(t) = 0, i€ {11,. .. ’lk}’

LjW(S) = 0, je€ {Jl’ .. an_k}9
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and allowing t to increase toward s merges the zeros at the endpoint

t= tk. Thus, there is a solution ;(x) which satisfies

Liy(t) =0, ié€ {11, ..

} ’ (4- 393.)

iy

[l
<
—~
o |
-~
]

0, jé€ {jl, “ e ,jn_k}, (4.39b)

Furthermore, ; has at least m—n2 simple zeros in (?,;) c (tl,sl).

The point s is an extremal point for t; that is, s= ei(-t-) for some
integer i>1. Theorem 4.8 implies ei(a) i;’ and so is defined. Since ;
has at least m-n2 simple zeros in (_t_,g), then Corollary 4.10 implies

2
i>m-n - %02 where the constant %, is determined by the boundary condi-

0
tions (4.39). Because m may be chosen arbitrarily large, it follows
that ei(a) exists for i=1,2, ... . Even though the conditions (4.39)
may change with m, some set of conditions must be repeated infinitely
often, and so ei(a) exists for every set of conditions of the form (4.15)

by Theorem 4.12. Finally, since a itself was chosen arbitrarily large,

Gi(a) is defined for all a>0. This completes the proof of Theorem 4.13.

Theorem 4.14 may now be proved easily. Theorems 4.3, 4.13, and

4.14 demonstrate the utility of the classes S O<k<n, (-l)n_kp(x) < 0.

k’

THEOREM 4.14: For fixed k, the solutions in Sk are either all os-

cillatory or all nonoscillatory.

PROOF: Recall that, for 0<k<n, (—l)n—kp(x) <0, the class S, 1is
the set of solutions {yllimS(y,x+) =k}. Suppose Sk contains both a
X0
nonoscillatory solution u(x) and an oscillatory solution v(x). Let a>0

be chosen so large that no quasi-derivative of u(x) vanishes on [a,®).

Since u € Sk’ then S(u,x+) =k for x>a. Consequently, there is a set of
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indices {11, ... ’lk} such that
sgn[Liu(x)] = sgn[L,  u(x)], i€{i, .. .54 L
sgn[Lju(x)] = sgn[Lj+lu(x)], je{0, ... ,n-l}\{ll, ... ’lk}’

on [a,»). By Lemma 4.11, el(a) = o for the boundary conditions of the
form (4.34) given by the indices {il, e ,ik}. But since v(x) is an
oscillatory solution in class Sk’ el(a) must exist for every set of boun-
dary conditions and for all a> 0 by Theorem 4.13, a contradiction. This

completes the proof of Theorem 4.14.

At this point, the classes S, , 0<k<n satisfying (4.8), have been

K’
shown to be nonempty disjoint classes whose union is the entire solution
space of Equation (4.1) (minus the trivial solution) with the additional
property that each class consists solely of either oscillatory or nomnos-—
cillatory solutions. It is reasonable to suspect that the solution space
of Equation (4.1) has a basis associated with the classes, and this in

fact is the case. For convenience of notation in the next result, add

the trivial solution to each class. This result, due to Elias [25], will

play a fundamental role in Chapter V,

THEOREM 4.15: Let a>0 be a fixed point. There exists a basis

{u .o ’un—l} of the solution space of Equation (4.1) such that

0’ "

@B u,» i=0,...,n-1, has a zero of multiplicity i at a.

n-k .
(2) For 1<k<mn-1, (-1) p<0, Sk contains span {uk_l,uk},
the two-dimensional subspace spanned by w1 and - If (-l)np <0 then

uy € SO’ and if p< 0, then un—l € Sn.
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(3) If the set Sk’ 1<k<n-1, consists of nonoscillatory solu-
tions, then span {uk_l,uk} contains two solutions v,w such that
Ltv/Ltw—M0 monotonically as x+~, t=0,...,n-1. If Sk consists of

oscillatory solutions, then the zeros of every two linearly independent

solutions in span {uk

l’uk} separate each other in (a,x).

PROOF: For 1<k<n-1, (—l)n-kp <0, let yl(x,s) be the solution of

Equation (4.1) satisfying the n-1 conditions

Liy(a) 0, i=0,...,k-1, (4.40a)

ij@) 0, j=0,...,n-k-2, (4.40b)

and let Yy (x,s) be the solution satisfying the n-1 conditions

Liy(a) =0, i=0,...,k-2,k, (4.41a)
Ljy(s) =0, j=0,...,n-k-=-2 (4.41Db)
n-1 2
Normalize these solutions so that I (Lty(a,s)) =1, and define uk(x)
t=0

= lim yl(x,s), u (x) = 1lim yz(x,s) as a tends to infinity through an

k-1

appropriately chosen sequence. By using properly chosen subsequences,
it may be assumed that both Y1 and Yy converge along the same sequence

of s values. As in Theorem 4.3, both u, and W, must belong in S If

K

k=0 (k=n) is allowable by the parity condition, then take uy (un) to

k

be the solution found by Theorem 4.3 to be in class S (Sn). From these

0

definitions, part (1) is immediate.
Since Y1 and Yy converge along the same sequence, then clearly

(x) + ¢ (x,s8) + czyz(x,s)). The conditions (4.40)

€1% 2%k-1 171
and (4.41) imply that the combination y(x,s) =c

(x) =1im (c
s

lyl(x,s) + czyz(x,s) must

satisfy the n-~ 2 boundary conditions
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]
o
-
He
I
o
M

LiY(a) . k=2,

]
o
-
(SN
(]
(@]

Ljy(s) e e.y,n=-k-2,

Therefore, S(y(x,s),a+) >k-1, S(y(x,s),s=) >n-k-1. But the parity
condition (4.8) then forces S(y(x,s),a+) =k, S(y(x,8),s-)=n-k. Now

proceeding exactly as in Theorem 4.3, the limit function lim y(x,s) =
S>>

clul(x) +c2u2 (x) must belong in Sk. Thus Sk contains span {uk_

and part (2) is shown.

1%

Suppose that the class S 1<k<n-1, consists of nonoscillatory

k,
solutions. Then there exists ¢ >0 sufficiently large so that Ltuk# 0

on [¢,»), t=0,...,n-1. If, for some point x,>c, it happened that

0

' = ] — =
(Lruk_l/Lruk) (xo) 0, then (Lr+luk—lLruk Lruk-lLr+luk) (xo) 0.

Consequently, there would be constants ¢, Emd_c:z so that the solution
y(x) = cluk(x) + Cyu 1 (x) satisfied Lry(xo) = Lr+ly(x0) =0. Now, the
combination of u and L] must have at least k-1 initial zeros, so
that S(y,a+) =k by the parity condition. But from Lemma 4.1, for b> Xy»
S(y,at) +<n(x0)>+ S(y,b=) <n. Hence S(y,b-)<n-k=-2, or S(y,b+)>k+2,

contradicting the fact that y €S Therefore (Lruk_l/Lruk)' # 0, and

K
the quotient is monotone and hence convergent in RU {«}. If the limit

is =, then clearly the limit of L / cannot be finite, and so

r-1%-1"Fr-1%

Ltuk—l/Ltuk -+ o for all t, t=0,1, ... ,n~1, by the cyclic nature of the

quasi-derivatives. On the other hand, if the limit is A, |>\l <o, then

setting v=u, and w= wo_1” Auk gives ;L;I;: (Lrv/Lrw) =o_ and the result

follows as above.
Suppose finally that Si consists of oscillatory solutions. If

there are two linearly independent solutions, v,w € span{u uk} whose

k-1’

zeros do not separate each other on (a,»), then there is a linear com-
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bination of the form y==clv-kc2W such that, for some index r and for
some point X,>a, Lry(x0)='Lr+ly(xo)= 0. As before, this implies
S(y,xo+)3jc+2, a contradiction since y € span{uk_l,uk}. This completes

the proof of Theorem 4.15.

The study of oscillatory solutions and extremal points, used here
to produce a proof of Theorem 4.14, is an area worthy of greater comnsid-
eration than can be afforded in this study. There remains, however, omne
additional result from this study -which cannot justly be omitted. As
discussed in Chapter I, nonoscillation is not equivalent to eventual
disconjugacy for general n-th order differential equations. That these
properties are equivalent for Equation (4.1) has been shown by Elias
[20, 24]. The original proof [20] involved many of the same manipula-
tions with boundary conditions required for the broader paper [24], and
undoubtedly inspired much of the later work.

In order to produce a proof which does not depend upon the Trench
factorization, a slightly more general lemma is needed here than used by
Elias [24, Lemma 4]. Otherwise, the proof which follows for Theorem

4.17 is based on that in Reference [24].

LEMMA 4.16: Let 5i(a) represent the extremal points for the boun-

dary conditions

Liy(a) 0, i=0,1,...,k-1, (4.42a)

Ljy(s) 0, §=0,1,...,n-k-1, (4.42b)

and let ei(a) represent the extremal points for (4.15). If él(a) exists,
then el(a).iél(a), with equality only when (4.15) is equivalent to

(4.42).
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PROOF: Exactly as in the proof of Theorem 4.12, it can be shown
that the extremal point decreases when either a left or right boundary
condition is increased by one. That is, the first extremal point for

(4.15) must occur before the first extremal point for the conditions

Liy(a) 0, ié€ {11,. .. ’lk}’

0, S C PPN BT T

LjY(S) q . ’Jn_k .

This suffices to prove the lemma.

THEOREM 4.17: Equation (4.1) is eventually disconjugate if and

only if there does not exist an oscillatory solution.

PROOF: One direction is trivial, since the existence of an oscilla-
tory solution implies the existence of nl(a) for arbitrarily large values
of a.

For the other direction, note from Corollary 2.4 that the conjugate
point nl(a) coincides with the extremal point 51(3) for the boundary con-
ditions (4.42) for some k, 1<k<n-1. If Equation (4.1) is not eventu-
ally disconjugate, then nl(a) exists for arbitrarily large values of a,
and hence for some fixed k, the extremal point él(a) exists for (4.42)
for arbitrarily large values of a. The theorem will follow if it can
be shown that this implies the existence of an oscillatory solution for
Equation (4.1).

Consider the solution ukG S, of Equation (4.1) as given by Theorem

k
4.15 which has a zero of multiplicity k at x=0. If u is oscillatory,
then the theorem is proved. If Uy is nonoscillatory, then there is a

point a> 0 such that no quasi-derivative of uy vanishes on [a,«). Thus,

for some set of indices {il,. .. ,ik}, u, satisfies the conditions (4.35)
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of Lemma 4.11 on the interval [a,~). Consequently, el(a)=<=° for the

boundary conditions (4.34). But since él(a) exists, then Lemma 4.16 im-

plies Gl(a);iél(a)-<m, a contradiction. This contradiction shows that

u cannot be oscillatory. This completes the proof of Theorem 4.17.

Using the basis {uo,. .. ,un_l} and the classes S, , the dominance

k

of the solutions of Equation (4.1) may now be considered in Chapter V.



CHAPTER V
DOMINANCE FOR Lny +py =20

In the study of a second order differential equation, the classic
work of Sturm [110] showed that either all solutions oscillate or none
do. Because of this simplicity in the structure of the solution space,
dominance results such as those described in Chapter III would be of
little value. As the order of the equation increases, however, the
solution space becomes more complex and varied, and there is a greater
need to discriminate between the behaviors of the various solutions.

For the fourth order problem (4.3) studied by Leighton and Nehari
[76], the work of Keener [53, Theorems 3.4 and 4.7] effectively charac-
terizes the dominance relationships among oscillatory and nonoscilla-
tory solutions. Lazer [72] has also characterized dominance relation-

ny

ships for the solutions of the third order equation y"' +ry'+py = 0.
On the other hand, as discussed in Chapter III, there are third order
equations for which such results do not exist, and so any reasonable
analysis of dominance must consider an equatibn less general than

Equation (3.1).

As in Chapter IV, consider the equation
Ly+p®y =0, (5.1)

where p(x) is continuous and nonzero on I= [0,~), and where Ln is the

factored disconjugate operator defined by

76
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- 4 4 4
Ly=p (8)g-e )3 .. 0,(8) 50 (X)y, (5.2)
with pi(x) continuous and positive on I for i=0,1,. .. ,n. For each
solution y of Equation (5.1) set S(y)=1lim S(y,x+), and define Sks
Xro
{yIS(y)==k}. Whenever mention is made of a class S, of solutions in

k
this chapter, it will be assumed that 0<k<n and (-l)n—kp(x) <0. For

emphasis, these values of k will be called admissible values. It will

be convenient at times to refer to the classes Sk as the Elias classes

for Equation (5.1).

The main question to be discussed here is the following: Under
what conditions does the class Sk dominate the class Sj for every j<k?
At this point, the question is not even well defined. TIf two distinct
classes Sk and Sj both consist of oscillatory solutions, then the defin-
itions of dominance given in Chapter III do not apply. Therefore, in
addition to the definitions found in that chapter, several new defini-

tions are needed. If y and z are both solutions of Equation (5.1), then

y dominates z by class at zero provided there is an € >0 such that

S(y+ Az) = S(y) whemever |A| <e. The solution y dominates z by class at
infinity (or simply, by class) provided S(y+Az) =S(y) for all real
values of A. If P and Q are subsets of the solution space of Equation
(5.1), then P dominates Q by class at zero provided y dominates z by
class at zero for every choice of y€P, z€Q. The set P dominates Q by
class at infinity provided y dominates z by class at infinity for every
yeP, z€Q.

Let 0 be the set of oscillatory solutions of Equation (5.1), and
let N be the set of nonoscillatory solutions. If y€0 and z €N, then

domination by class implies domination in the sense of Chapter III, since
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k=S(y) and j=S(z) imply SkSO and S, cN. Whether the converse is true

J
remains an open question at this time. As part (3) of Theorem 4.15 shows,
it is possible to find two solutions v and w in a nonoscillatory class
such that w dominates v by class at infinity and yet w does not dominate
v even at zero in the sense of Chapter III.

While its proof is almost trivial, the following lemma of Elias [25]

provides a key starting point for discussing dominance.

LEMMA 5.1: 1If y; Ty as i+ and if S(yi)=k, i=1,2,. .., then

S(y) < k.

PROOF: Suppose S(y) =j>k. Then there is a point x,> 0 such that

0

S(y,x+)=j for all x>x Choose x, > X, so that no quasi-derivative of

0’ 1 0
y vanishes at Xq- Since yi+y, then there is an integer i0 such that
sgn(Lty (xl)) = ggn (Ltyi (Xl)) for 0< t < n whenever i< iO. Consequently,

S(yi,xl+) =j, and since S(yi,x+) is increasing in x, this contradicts

S(yi) =k. This contradiction completes the proof of Lemma 5.1.

As an example, consider the solutions yl= sinx and Vo= e X of the
equation y(4? -y = 0, and note that S(yl) =2 while S(yz) =0. In addi-
tion, S(ayl+by2) =2 for every linear combination with a# 0, since

eventually such a combination must oscillate, and S, is the only oscil-

2
latory class for this equation. Let the sequence of functions {zi} be
defined by zi=yl+y2/i, i=1,2,.... Then zi—>yl as i—»», and S(zi)
= S(yl) for each i. On the other hand, if the sequence {Wi} is defined
by wi=yl/i+y2, i=1,2,..., then W, >y, as i~+® while S(Wi) > S(yz).

Thus both possibilities indicated by Lemma 5.1 may actually occur.

Suppose y dominates z by class at infinity, and set zi=y/i+z=
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(y+1iz)/i. By the definition of dominance by class at infinity, it fol-
lows that S(zi)= S(y) for every i, while z, >z as i+o, Thus Lemma 5.1

has the following immediate consequence:

COROLLARY 5.2: If y dominates z by class at infinity, then S(y) >

S(z).

The major concern of what follows is to determine to what extent
the converse of Corollary 5.2 is true. Lemma 5.1 comes tantalizingly
close to proving that if S(y) > S(z), then y must dominate z by class at
zero. Instead, the strongest result available at this point from Lemma

5.1 is more a description of dominance in the sense of Chapter III:

THEOREM 5.3 (Elias [25]): For each q, U Sk dominates the entire
k>q

solution space of Equation (5.1) at zero.
PROOF: The proof is virtually immediate from Lemma 5.1. If
y1€ us

k
k>q
If there existed a sequence Ai-*O as i+ ® such that S(yl+-kiy2)< q for

and if Y, is any solution of (5.1), then ylﬁ-ky2-+yl as A=+0.

all i, then the lemma would imply S(yl)< q, a contradiction. Consequent-
ly, there is an € >0 such that S(yl4-Ay2)3;q whenever ]k|< €. This com-

pletes the proof.

This theorem does not provide much information about comparisons
between individual pairs of solutions or pairs of classes. Such infor-
mation is more difficult to extract from Lemma 5.1, as the next theorem,

again due to Elias [25], demonstrates.

THEOREM 5.4: For every pair of solutions V159, such that S(yl)>

S(yz), there exists a positive constant c¢ so that (in the extended real
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max lLtyl(x)/LtYZ(x)l-i c >0, 0<x<w, (5.3)
O<t<n-1
If in addition yl.EO and Yy €N, then

lim sup[Lryl(x)/Lryz(x)I > 0, r=0,...,n-1. (5.4)

X

PROOF: Assume that (5.3) fails. Then there is an infinite se-
quence {Xi} such that for every € >0 there is an integef iE with the

property that

max |Ly (x.)/L y. (x,)]| <&, i>1i .
O<t<n-1 t7171 t’271 €
Thus
E|Lt>'2(xi)[ > ILtyl(xi)l, €=0,...,0n-1, i>i,

and therefore,
sgﬂe%yzﬁa)]=sgﬂLt®y2+yﬁ(gﬁ], t=0,...,n-1, i>1i .
In other words,

S(s—:yz,xi+)=S(ey2+yl,xi+), i>i .

If the sequence {xi} were unbounded, this would imply

As -0, eyzi-yl-+yl, so that by Lemma 5.1 this last equation would

imply

S(yl) 1S(ey2 + yl) = S(yz) .
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Since S(yz) < S(yl) by assumption, this is impossible, so that the se-
quence {xi} must be bounded, and must have a finite accumulation point

XO.

No nontrivial solution of Equation (5.1) has a zero of multiplicity

n at x,, SO that for some t,, 0<ty<n-1, the quasi-derivative L, vy

0’
0
does not vanish at Xy Since Lt yl is continuous, there exists §>0
0
such that Ltoyl(x) #0, x€ [x0 - G,XO

from zero on this compact interval. Since lLt y2| must also be bounded
0

+ 8]. Thus Lt vy is bounded away
0

above here, the quotient

L y. x)/L_y,]|
£y 1 ty’2

is bounded away from zero on [xo— §,x.+38]. This contradicts the choice

0

of X, as an accumulation point of the sequence {xi}, so that Equation
(5.3) must hold

Suppose now Yy is nonoscillatory, and that for some r, 0<r<n-1,
(5.4) fails. Then limILryl(x)/Lryz(x)| =0, and for each €>0 there is a

X0
point xeio such that

Ly, ®/L y, ()] < e, x> % .

If i)t] >e¢, then Lryl(x)/Lryz(x) -2 # 0 on (x€,°°), and since Lryz(x) #0
for x sufficiently large, then Lr(yl- )\yz) #0 on (xe,w). Consequently,
vy~ Ayz is a nonoscillatory solution, so for some xxlxe, Lt(yl— >\y2) #0,
t=0,...,n-1, on (il,m). The solution y, - €y, is itself nonoscilla-

tory, and since Y1 €0, Yoy € N, then ;c)\ may be chosen so that ;<>\_<_2~<€.

Thus for every A satisfying |A| > e, Lt(yl-Xyz) #0, t=0,...,n~1, on
(x€,°°), and so ]Ltyl/Ltyzl <g on (xs,w). Therefore, Ltyl/Lty2—>O as

x>» for every t, t=0, ... ,n~-1, contradicting (5.3). This completes
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REMARK: 1In the statement of this theorem as it appears in Reference
[25], Elias omits the condition 1 €0 from the hypotheses for (5.4).
Without this additional assumption, the conclusion is false. The proof

fails because it is no longer possible to choose x SX and so the in-

A
equality Lt(yl- >\y2) # 0 could not be forced to hold over a fixed in-
terval for all values of A. More significantly, an easy counterexample

exists. Consider, for the interval [1l,»), the equation
2,2,2,2
T EEEYyYDD -y =0. (5.5)

1/x e-l/x’

This equation has solutions y;=e > Vo= ¥4 = cos i, and Y, =

sin -;L;, all of which are nonoscillatory. Direct computation reveals that
Y1 € SO’ Yy € S4, and Y329y, € SZ' In particular, note that }];_1;2 yl= 1 while

lim Y, = 0, which contradicts (5.4) for r=0.
X->0

The problem with Theorem 5.4 hints at a much more significant dif-
ficulty in the task of analyzing dominance for Equation (5.1). The solu-
tions Y12 Yoo y3 of Equation (5.5) all have limit 1 as x—+=, so that no
one solution of the three dominates another at infinity. A closer ex-
amination of the quasi~derivatives for these solutions shows that V3 € 82

is dominated by class at zero by both v1 €S and Yy € 54’ and yet y3 is

0

not dominated by either of the others by class at infinity. For some
reason, the sign structure of the quasi-derivatives as identified by

the classes S SZ’ and S, does not reflect the actual growth of the

O’

solutions as x-+ =,

4

Recall that the operator Ln as defined in Equation (5.2) is Trench

factored provided
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dx = o, i=1,...,n-1. (5.6)

Taking a cue from the principal systems discussed in Chapter II, when

the operator in Equation (5.5) is Trench factored the equation becomes
5,3 (4
x (x y)( )-y = 0. (5.7)

In this new factorization all three of the solutions yl, y2, and y3 are
in the class 84, which explains the similarity in the limiting behavior.
, .1 s 1l , . I
The solutions y,=sin - and y5 = sinh = are in SZ’ while y6 sin -
sinh-i is in class S,.. The class S, dominates S, by class at infinity,

0 4 2

and 82 in turn dominates S0 by class at infinity.

Since Equations (5.5) and (5.7) have only nonoscillatory solutions,
it is tempting to think that the preceding work is a direct result of
the existence of principal systems for Trench factored disconjugate equa-
tions of the form (2.1). It is important, therefore, to recognize that
in Equation (5.7) only the operator Ln has been refactored into Trench
form. Theorem 4.17 in the previous chapter revealed that nonoscillation
is equivalent to eventual disconjugacy for Equation (5.1), and so Equa-
tion (5.7) does have a Trench factorization for its left-hand side. But
in general such a factorization would have little value, and would be
difficult to find. Instead, the operator Ln of Equation (5.1) might be
Trench factored in an attempt to redistribute the weight of its coef-
ficients and obtain more growth information from the quasi-derivatives.

The next two results lend further support to the idea that the

Trench factorization of Ln is the natural choice for discussing ques-

tions of dominance [25, 64].



84

LEMMA 5.5: Let y be a nonoscillatory solution of Equation (5.1)
such that y(x) >0 on some interval [a,»). If (5.6) holds, then there is

an integer k, 0<k<n, such that

Liy(x) >0, i=0,...,k, (5.8a)

(—l)j-ijy(x) >0, j=k, ...,n, (5.8b)

on some interval [b,~), b>a. Furthermore,

lim L.y(x) = =, i=0, , k=2, (5.9a)
x> T
lim L.y(x) = 0, j=k+1,:..,n-1. (5.9b)
x>0 I

PROOF: As in the previous chapter, since y is nonoscillatory there
is a point b>a such that all the quasi-derivatives of y are nonzero on
[b,°). If y does not satisfy (5.8) on this interval for k=0, then

there is an integer t, 0<t<n-1, such that
sgn[Lty(x)] = sgn[Lt+ly(x)], x>b. (5.10)

From the definition of the quasi-derivatives Lty and Lt—ly as given im-

plicitly by Equation (5.2), it follows that
_ x 1
Lt__ly(x) = Lt_l}’(b) + J{) —pt(s) Lty(s) ds. (5.11)

If Lty(x) and Lt+1y(x) are negative on [b,»), then Lty(x) is a neg-
ative decreasing function bounded above by Lt (b) <0. Hence Equation

(5.11) leads to the inequality

X 1
Loy <L _;y(b) + L y®)L o () ds . (5.12)

Since Lty(b) <0, then (5.6) implies Lt_ly(x) must eventually be nega-
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tive, and thus Lt_ly(x) <0 on [b,») because it is nonzero there. Con-
tinuing in this fashion for Lt_zy(x), “ e ,Loy(x) eventually leads to

the contradiction Loy(x) <0 on [b,»). Consequently, Lty(x) and L _,.y(x)

t+1
must both be positive on [b,»), so that Lty(x) is positive and increas-

ing on [b,»), bounded below by Lty(b) > 0.

Equation (5.11) now leads to the inequality
X 1
L,y > Lt_ly(b) +Ly®)L o (&) ds . (5.13)

By virtue of (5.6) again, together with Lty(b) >0, (5.13) implies
Lt_ly(x) is eventually positive, and so Lt_ly(x) >0 on [b,»). Continu-

ing as before, it follows that

Liy(x) >0, i=0,1,...,t+1, x>b. (5.14)
Let k be the largest integer for which

Liy(x) >0, i=0,1,...,k, x>b. (5.15)

Equation (5.10) led to (5.14), so that the maximality of k implies
k>t+1 for every t satisfying Equation (5.10). Therefore, the quasi-

derivatives must alternate in sign beyond ka, so that
i-k .
-1 Ljy(x) >0, j=k,...,n, x>b. (5.16)

This completes the verification of Equation (5.8).

For the second part of the lemma, observe that Lty(x) is positive
and increasing on [b,»), bounded below by Lty(b) >0, for every integer
t, 0<t<k-1. Since the integral on the right-hand side of (5.13) is
positive and unbounded as x+« for 1<t<n-1, taking i=t-1 it follows

that
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lim Liy(x) = o, i=1,...,k-2,

X0
which is the first portion of (5.9).

Let the ingeger j now be chosen from k+1,...,n-1. Without loss
of generality it may be assumed that Ljy(x)> 0 for x>b; otherwise y may
be replaced by -y without affecting this portion of the proof. From
(5.8), Lj+ly(x)<<0 on [b,»), so that Ljy(x) is a positive decreasing
function on that interval. Consequently, lim L,y(x) =c >0 must exist.

X+
Suppose c# 0. Then Equation (5.11) becomes

= x_1
Lj_lY(X) = Lj_ly(b) + L pj(s) Ljy(S) ds

1
oy (x)

|v

X
Lj_ly(b) + cﬁ) ds ,

from which (5.6) implies Lj_ly(x) is eventually positive. Thus
sgn[Lj_ly(x)] = sgn[Ljy(X)], x>Db,

contradicting (5.8). This contradiction shows c=0., This completes the

proof of the lemma.

The strict restrictions (5.8) and (5.9) on the sign and growth of
the quasi—derivati&es of (eventually positive) nonoscillatory solutions
under the assumption (5.6) gives the solution space of Equation (5.1)
sufficient structure to permit a proof of a dominance result for non-

oscillatory solutions.

THEOREM 5.6: With the assumption (5.6), if v, and Y, are two non-

oscillatory solutions of Equation (5.1) and if S(yl)> S(yz), then

lim |Ltyl(x)/Lty2(x)| = t=0,...,n-1. (5.17)

X
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Consequently, y. dominates y, at infinity and by class at infinity.
1 2

PROOF: Without loss of generality, assume Y1 and Yy are eventually
positive; otherwise, y; may be replaced by -y as required without af-

fecting the limits in (5.17). Let kl=S(yl), k =S(y2), and observe

2

that the parity condition forces kzikl— 2.

Since L (x) is eventually negative by (5.8), the eventually

y
k2+l 2

positive function L. y.(x) must have a finite limit. But L, y.(x) is
k2 2 kz 1

unbounded by (5.9), and so (5.17) holds for t=k2. Similarly, (x)

Lkl—lyl
must have a nonzero limit since Lk yl(x) >0 for x sufficiently large.
1
Since (5.9) shows lim Lk _lyz(x) =0, (5.17) holds for t=kl—l as well.

R>® 1
In fact, the limits (5.9) show easily that (5.17) holds for all t,

kzi tikl - 1.
If 1lim Lk _lyz(x) <o, then (5.17) follows for t=k2—l as for the
x>0 2
case t=k2. Otherwise, the limit in (5.17) is indeterminate, and

1'Hopital's rule may be employed. Furthermore, 1'Hopital's rule may be
applied to all the indeterminate limits (5.17) for 0< t<k,- 2,
kl+l_<_ t<n-1. In the case of t=n-1, observe that (provided the

limit is indeterminate)

lim !Ln—lyl (%) /Ln_ly2 (x)| = lim lLl (%) /Lny2 (%) ]

X x>0

= lim l(—p(x)yl(X)/(-p(x)yz(X)|

X

lim |L.y. (x)/L.y.(x)].

X

071 072

Thus, after an appropriate number of application of 1'Hopital's rule,

(5.17) holds for O_<_t_<_k2—2 or k. +1<t<n-1 by comparison with

1
t=k,-1. Finally, if lim L yl(x) is nonzero, (5.17) follows immedi-~
1

2 k
X0
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ately for t==kl since lim Lk yz(x)=(). Otherwise, the limit is indeter-
X0 1

minate and 1'Hopital's rule may be used.

From (5.17), dominates v, at infinity by definition. Also,

Y1

(5.17) shows that for any real constant A,
sgn[L .y, (x)] = sgnlL (y, + Ay,) ()]

for x sufficiently large. Thus S(yli-Ky2)==S(yl), and so vy dominates

Y, by class at infinity. This completes the proof of Theorem 5.6.

The strength of the Trench factorization and Lemma 5.5 can be dem-
onstrated further by an easy oscillation criterion for Equation (5.1).
Recall that the classes SO and Sn’ when admissible by the parity con-
dition, must be nomoscillatory. In the case n even and p(x) <0, both
SO and Sn are admissible, and Equation (5.1) is said to have property
(H) provided all other classes are oscillatory. This property has fig-
ured prominently in the efforts of Etgem and Taylor [27, 29] to show that
the class S0 has at most one linearly independent solution.

Consider the second order equation
y'+px)y =0,

with p(x) continuous on [0,~). Wintner [126] and Leighton [74] have

(o)

shown that this equation is oscillatory if &) p(x)dx = =, The following

theorem is in the same vein:

THEOREM 5.7: If Equation (5.1) is Trench factored, and if

© |p(x)

h 5 G @™ T (5.18)
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then for all k, 1<k<n-1, the class S, is oscillatory. In particular,

k
if n is even and p(x) <0, then Equation (5.1) has property (H).

PROOF: Let k, 1<k<n-1, (—l)n-kp<0, be given. Equation (5.1)

can be rewritten as

n-k-1

d d
S 1" dxpoy+("l) [Ply = 0,
or, dividing by Ipl,
pn d i + (_l)n'k"l =0 (5 19)
[p] dx "n-1" " " ax o’ v | '

Applying the operator L, to both sides of Equation (5.19) gives

k

P
n d d d n-k+l _ _
Lol a1 " &P " axPo?/ T Ly = 0,
which is the same as
4 d PrPoa |
P axPk-1"" " dx |p| dx’n-1"""
d n-k+1
4 - = 0. .20
P g i T Ly = 0 (5.20)

Equation (5.20) is an n~th order equation in the function ka, and the

operator

~ d d PnP0 d d

g L, .., L 20d 4 5.21
L= o P1dx [p| dx P+l dx (5.21)

~

implicitly defines quasi-derivatives Li, 0<i<n. The condition (5.18)
is merely the condition that in is Trench factored, since the coeffi-
cients PP l<i<n-1, already satisfy (5.6). Since Lny= -py =

(-l)n—k[ply, then Equation (5.21) shows
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n-k

~ = _ n-k
SLyLyy)seeesl L)) =8 y,..05L 17, (<17 "Lyysee., (<1)7 TLy)

i
= S(ka, cen ,Ln_ly,Lny) + S(Loy, cee ,ka)
= S(Loy,...,Lny).

Thus S(y)==S(ka). If y¢€ Sk is nonoscillatory, then by Lemma 5.5,
sgn (ka) = —sgn(Lk+ly) , while sgn(LO (ka)) = sgn(Ll (ka)) . Since
LO (ka) = ka and Ll (ka) =

this is a contradiction, so that y €S

Let1Vs k

could not have been nonoscillatory. This completes the proof of Theorem

5.7.

Theorem 5.7 is not the most complete result known of this type (see
[64, Theorem 5] or [32, Theorem 4], for example), but it lends support
to the use of the Trench factored form of Ln in analyzing Equation (5.1).

What art eht problems associated with changing the factorization?
The most obvious concern is that the analysis of Equation (5.1) for one
factorization might not carry over to another factorization. As Equa-
tions (5.5) and (5.7) have already shown, the Elias classes Sk are not
invariant for changes in the factorization, and domination results that
hold for one form may break down in another. Certain properties are pre-

served, however, and they and their consequences are discussed in Theorem

5.8 and Corollary 5.9.

THEOREM 5.8: Let Ln and f‘n be two different Polya factorizations

}

of the same disconjugate operator. For fixed a> 0, let {uo, SIS

and {{io, .. ’Gn—l} be the fundamental sets of solutions given by Theorem

4.15 for the equatioms Lny +py=0 and iny +py=0, respectively, and

let Sk and ék’ 0<k<n, (—l)n—kp <0, be the corresponding Elias classes.
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Then
(1) span{uk_l,uk} = spah{ﬁk_l,ﬁk} for 1<k<n-1, (-l)n_kp <0.

(2) 1If (—l)np <0, then U, and ﬁo are linearly dependent. If p<0,

then u_q and uo_q are linearly dependent.

(3) The class Sk is oscillatory if and only if the class ék is

oscillatory.

PROOF: For l1<k<n-1, (-l)n—kp <0, it is necessary to consider
four sets of boundary conditions. Specifically, let yl(x,s) be the

solution of Equation (5.1) satisfying the n-1 conditions

Liy(a) = 0, i=0, k=1, (5.22a)

Ljy(s) = 0, i=0,. ,Ai—-k-2, (5.22b)
and let Y, (x,8) be the solution satisfying

Liy(a) = 0, i=0,...,k-2,k, (5.23a)

%y@)=(h j=0,...,n-k-2, (5.23b)

In addition, let §1(x,s) be the solution satisfying the conditions

iiy(a) 0, i=0,...,k-1, (5.24a)

%y@) 0, j=0,...,n-k=-2, (5.24b)
and let ;rz(x,s) be the solution satisfying

iiy(a)

]
o
-
[
[}
o
=
|
N
-
~

(5.25a)

ijy(s)

1]
o
“
(4
]
o
“
-
=]
|
=
|
N
.

(5.25b)
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, and U are defined in terms of limits over

The solutioms u,, -1

K Y17 Uk
appropriate sequences in s of the solutions yl(x,s), yz(x,s), §rl(x,s),
and §r2(x,s), respectively. Suppose the sequence {si}, s; >, is chosen
so that yl(x,si) converges uniformly on compact subsets of [0,«). Then
there is a subsequence {S;.}S{Si} such that yz(x,s]{) converges uniformly
on compact subsets of [0,»). Continuing in this fashion, there is a se-
quence {oi}g_{si} so that all four of the functions yl(x,ci), yz(x,ci),
§l(x’ci)»’ ‘and 572(x,0 ) converge uniformly on compact subsets of [0,x),
as o, re. Without affecting the results of Theorem 4.15, it may be as-
sumed then that o uk—l’ ﬁk, and ak—l are defined as limits over the
same sequence {ci}, g,

As discussed in Chapter II, multiple zeros of y counted with re-
spect to Ed; agree in number with those counted with respect to quasi-
derivatives. This principle applied first to the zeros of (5.22) and
then to the zeros of y with respect to ad; shows that yl(x,s) must
also satisfy (5.24). Since solutions satisfying these conditions are
essentially unique by Lemma 4.5, then yl(x,s) = f{rl(x,s) when these solu-

tions are properly normalized. Consequently, Gk=u

o
The proof of Theorem 4.15 showed that S(yz(x,s),a+) =k. Therefore,

Lk_lyz(a,s) # 0, for then S(yz(x,s),a+) >k+1. Applying the principle

described above, ik_lyz(a,s) #0, and y,(x,s) must satisfy the n-2 boun-

dary conditioms

iiy(a) 0, i=0,...,k-2,

ijy(s) 0, j=0,...,n-k=2.

In addition, since S(yl(x,s),a+) =k, then L (a,s) # 0, so that there

k1
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exists a constant As=f.ky2(a,s)/f. (a,s) for which y3(x,s) =y2(x,s)

K1
-Asyl(x,s) must satisfy the boundary conditions (5.25). By the essen-

tial uniqueness of these solutions, it follows that
7, (%,8) = y,(x,8) =4y, (x,8) (5.26)

when these solutions are properly normalized.

Notice that the sequence L (a,ci) =L (a,ci) converges to

k1 k1
Lkuk(a), which is not zero by Theorem 4.15, since ukE Sk’ and already

has k zeros at x=a. On the other hand kaz(a,oi) converges to Lkuk_l(a),
which is finite. Thus the sequence {AO } is bounded, and so there is a
i
subsequence {U:;.}C {oi} and a constant A such that }\c' + )\ as cr;_->°°. Con-
i

sequently, passing to the limit along this subsequence, (5.26) becomes

W = w " Auk. (5.27)

Since it is already known that uk=uk, then span{uk_l,uk}Espan{uk_l,uk}.

Reversing the roles of w1 and u obtains the reverse containment,

k-1
and completes the proof of part (1).
The solution U is defined to be the unique solution satisfying

the initial conditions

Liy(a) = 0, i=0,...,n-2,

Ln_lY(a) = l’

and as a result of the principle enunciated earlier, it follows that
u_q and an_l are linearly dependent. If (-1)np< 0, then u, is defined
as w from (5.22) with k=0, so that as in the earlier case, u, and Clo

are linearly dependent. This completes part (2).

Part (3) is the immediate consequence of (1), (2), and Theorem
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4,14, This completes the proof of Theorem 5.8.

The following corollary shows that Theorem 5.8 justifies a change
in factorization in studying the dominance characteristics of the solu-

tions of Equation (5.1).

COROLLARY 5.9: Suppose, in addition to the hypotheses of Theorem

5.8, it is known that §
k
n-1
Ify= I c u, is a nontrivial solution of Equation (5.1), and if t is
i=0
the largest index such that the constant c

dominates §j by class at infinity whenever k> j.

v is nonzero, then y is oscilla-

tory or nonoscillatory as u, is oscillatory or nonoscillatory.

PROOF: Suppose t=Kk, (-l)n—kp <0, so that u =u € Sk' Theorem

. + S, , S

5.8 shows that C Yy Ck—luke Sk and also that cjuj and Cj—luj—le 3 for

all j<k. Since ék dominates S, by class at infinity, it follows that
n-1 . 1

y = _Z ciuié S
i=0

behavior of y is determined by the behavior of -

K Consequently, part (3) of Theorem 5.8 shows that the
If t=0, n, or k-1, the argument is similar. This completes the

proof of Corollary 5.9.

All the theorems and examples so far seem to indicate that the best
setting from which to analyze the dominance structure of the solution
space of Equation (5.1) is to Trench factor Ln. From this point on,
then, it will be assuﬁed that the operator Ln is-in its Trench factored
form, with coefficients given in Equation (5.2) satisfying (5.6). In
Theorem 5.6 it was seen that, with this assumption, the nonoscillatory
Elias classes of Equation (5.1) satisfy a natural dominance relationship.
In fact, with (5.6), all of the Elias classes have satisfied this natural

dominance relationship in every example studied to date. This suggests
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the following conjecture, which remains an open question:

CONJECTURE 5.10: If Equation (5.1) is Trench factored, then S

k

dominates Sj by class at infinity for every j <k, for all admissible

values of j and k.

The main problem that has arisen in trying to demonstrate this con-
jecture has been a basic lack of understanding of the growth of oscilla-
tory solutions of Equation (5.1). Because nonoscillatory solutions are
eventually single-signed, the Trench factorization can restrict their
growth, as in Lemma 5.5.

Perhaps Conjecture 5.10 is too strong--it may not be possible to ob-
tain the necessary information only from the Trench factorization. It is
still reasonable to suggest that the control on the nonoscillatory solu-
tions is great enough to permit a weakened version of Conjecture 5.10 to

be proved:

CONJECTURE 5.11: If Equation (5.1) is Trench factored, and if Sk
is nonoscillatory, then Sk dominates Sj by class at infinity for every

j <k, for all admissible values of j and k.

While this, too, remains an open question, a little more information
can be extracted from the recent work of Kim [64]. If A is a set of
solutions of Equation (5.1), define q(A) to be the maximum number of lin-
early independent solutions in A such that every nontrivial linear com-
bination of the solutions is again in A. Theorem 4.15 may be interpreted
as saying that for 1<k<n-1, q(Sk)_>_2, while q(SO)il and q(Sn) >1
when these classes are admissible. As will be seen below, for 1<k<n-1,

then q(Sk)==2, while q(SO)=.l and q(Sn)==l whenever these classes are ad-
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missible. But first, an intermediate result:

THEOREM 5.12 (Kim [35]): For 1<k<n=-1, if the class Sk is non-

oscillatory, and if Y129, € Sk are eventually positive solutions such

that

YZ(X)
lim —— = o, (5.28)
K-> yl(x)

then either

. (x)
lim sup X 4 o, (5.29a)
K-> yl ()
or
lim sup W(Z‘X)) #0 (5.29b)
K> g

for every solution w of Equation (5.1).
If the class Sn is admissible, and if y1 € Sn is eventually posi-

tive, then

lim sup ;"—&% # o (5.30)

X0 1

for every solution w of Equation (5.1).

PROOF: For the first part of the theorem, let k, 1<k<n-1, be

given, and let w be an arbitrary solution of Equation (5.1). Suppose

that w is oscillatory. If S(w) >k, then lim sup ;((}2) > 0 by Theorem
X 2
5.4. Suppose, on the other hand, that S(w) <k and lim sup ;(z{x)) =
x> 2
while lim sup ;7((};)) = o, Since yl(x) is eventually positive, this sec-
X0 1

ond limit implies w(x) - Ayl (x) is an oscillatory solution for every
A€ [0,2). Thus the solution %w(x) —yl(x) oscillates for every positive

A. Since lim (-]i-w(x) - yl(x)) =-yl(x) € Sk’ Lemma 5.1 implies that there

X
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is a constant AO> 0 such that S(Tl—w(x) - yl(x))_>_k. Since Sk is nonos-
0
cillatory it follows that S(-il-—w(x) - yl(x)) > k.
0

Applying Theorem 5.4 to w(x) - }\Oyl (x) and Y, (x) gives

W(X)-AOYI(X)
lim sup o) > 0.
X0 Yt
v, (x)
However, since lim ———=0 by Equation (5.28), then
X0 72 (x)
. v - Ay ) w(x) _
lim sup ) lim sup )
K> 4 X0 2

This contradiction verifies Equation (5.29) when w is oscillatory.
If w is nonoscillatory and S(w) # k, then Equation (5.29) follows

immediately from Theorem 5.6. Thus it remains only to argue the case

w(x)__,

where w € Sk' Suppose lim sup ) . Since both solutions are posi-
X0 27 :
tive, then lim w((xx)) =0. Suppose in addition that lim sup ;((}{X)) =w, If
x> 72 X 1
lim w (x) does not exist, then for some constant A the solution
X0 yl(x)

w(x) - }\yl(x) is oscillatory. But clearly

W(x)-Kyl(x)
lim sup ) = @
X->0 yl

and

W(X)-kyl(X)

lim sup
Koo

yz(X)

contradicting the first portion of the proof. Hence lim ;W((LX))= ©, From
x>0 71

these limits it follows that clyl+c2y2+c3wé Sk for every choice of

the constants c1» c2, c3.
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Let {xi} be a positive, increasing, unbounded sequence of real num-
bers. Since the solutions Y10 Y, and w are necessarily linearly indepen-

dent, there exist nontrivial constants c,

3, 1,1° S4,2° @d ¢4 4

so that I c:ij = 1, with the property that the solution ziE
3=1

. 4y, tc, .w has a double zero at the point x,. Since this solution is

i,272 i,3 i

, normalized
+

€i,171

c

in Sk’ then S(zi,xi+) <k; consequently, by Lemma 4.1, S(zi,x+) <k for

x<x,, 1=1,2,. ... Using subsequences as necessary, let c,=1lim c, .,
1 ] i 1,]

+ . i s b

171t ey, teqw The solution z must be in Sk y

the previous paragraph, so that for some x

j=1,2,3, and set z=c¢ +c

0 sufficiently large, S(z,x+)

=k for x> Xg* Let x> X, be chosen so that no quasi-derivative of z

vanishes at x, and choose xi> x so large that sgn(Ltzi(x)) = sgn(Ltz(x)),
t=0,...,n. Then S(zi,x+) =k, contradicting the choice of xi>x.

This contradiction shows that w€ Sk cannot be chosen so that Equation

(5.29) is violated.

For the second part of the theorem, observe that (5.30) is immed-
iate from Theorem 5.6 if w is nomoscillatory and S(w) #n. If w is os-
cillatory and (5.30) is violated, then w- )\yl is oscillatory for every

positive A. But %w-— y; converges to =¥y € Sn as A+, and so for some

AO’ Lemma 5.1 implies w- )\Oy € Sn. But then w- A is nonoscillatory,

1 0’1

a contradiction. Thus, as before, it remains only to consider the case

w € Sn nonoscillatory.

. w(x) _ . .

If 1lim sup ) =, then as before it may be argued that lim
x> J1 X0

must exist, leading to the conclusion that every nontrivial combination

w(x)
v1 (%)

d +d.w, € Sn. If y satisfies S(y,x+) =n, then every quasi-derivative

1717 %%

of y must agree in sign. Thus, if x., is even a simple zero of y, it fol-

0

lows that S(y,x+)<n for x<x,. Hence, choosing constants d, 1 and di 9 so

0 i, >

that di,lyl+di,2w has a simple zero at X5 xi->0, the proof may be com-
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pleted as in the previous part. This completes the proof of Theorem 5.12.

If it could be shown that, for 0<k<n-1, U Sj is a linear sub-

j<k
space of dimension exactly k+1, this would imply the truth of Conjec-
ture 5.10. Thus the next two results of Kim [64] provide partial sup-

port for the conjecture above.

THEOREM 5.13: For 1<k<n-1, q(Sk) =2, In addition q(SO) =1 and

q(Sn) =1 whenever these classes are admissible.

PROOF: For 1<k<n-1, if class Sk

and y3 such that every nontrivial linear combination is again in S

contains three solutions yl, y2,

K’ then

exactly as in the proof of Theorem 5.12 it is possible to comstruct a

. . +
combination Clyl c2y2

Alternatively, if S

+ i + i i .
cq¥4 with S(clyl c2y2+c3y3) <k, a contradiction

K is nonoscillatory, then as in Theorem 4.15 part (3),

it is possible to comstruct solutions u, v, w € span{yl,yz,yB} such that

u(x) _

lim
o0 v (x)

and

. v(x)
}];iz w(x)

]
8

contradicting the conclusion of Theorem 5.12. Thus q(Sk) = 2.

For k=n, if class Sn contains two solutiomns L y2 such that every
nontrivial linear combination is in Sn’ then again as in the proof of
Theorem 5.12 this leads to a contradiction, and hence q(Sn) <1l. By
Theorem 4.15, q(Sn)il when the class is admissible, and so q(Sn) =1.

Finally, for k=0, if y¢€ SO’ then y cannot vanish anywhere in [0,®).

For if y(xo) =0, then sgn[LOy(x0+e:)] = sgn[Lly(x0+e)] for €>0 suffici-
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ently small, and so S(y,x0+) >1. Since S(y,x+) is an increasing func-

tion, this contradicts y ¢ SO. Consequently, SO cannot contain two

linearly independent solutions for which every nontrivial linear combin-

ation is back in SO. Thus it follows that q(SO) =], This completes the

proof of Theorem 5.13.

Note that Theorem 5.13 says q(SO) =1, not dim(SO) =1 as a subspace.
Thus this theorem does not show the strongly decreasing solution is es-
sentially unique. In fact, Theorem 5.13 does not require the Trench fac-

torization of Ln for its proof, and so is applicable to the example of

el/x

Equation (5.5). Both the solutions vy = and Ve = sin% - sinh;lg- were

seen to be in the class SO’ and yet these solutions are linearly inde-

pendent. Theorem 5.13 is not violated, however, because the combination

+ i ] .
¥y 2y6 is in class 82 and not SO
The next theorem comes closer to describing the dimension of U S
i<k
and does require the Trench factorization [64].

THEOREM 5.14: Suppose the class S, is nonoscillatory for some k

k
0<k<n, and set
lE Sk for k=n
= . (5.31)
y () ¥, (%)
v, if yl,y2€S and 11m ( ) =,

Then there are at most k linearly independent solutions vi(x), i=1,

.. .,k, such that
140)
# o, (5.32)

lim sup
X0

y(x)

PROOF: The result is trivial for k=n since the dimension of the
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entire solution space is n.

Suppose that for some k, O<k<n, there are k+1 linearly indepen-

dent solutions vl(x), (x) satisfying (5.32). Without loss of

cees Ve

generality, assume Yy is eventually positive, and choose b >0 so that

k+1
Liyl(x) #0 on [b,®), 0<i<n. Let v= I c,v, be a nontrivial linear
i=1
combination satisfying
LiV(b) = 0, i=0,...,k-1, (5.33)
v, (%)
and such that v(x) is positive somewhere in (b,»). Since lim —5—=,
v, (x)
x> 7]
then (5.32) implies
lim i% =0, (5.34)
x>0 Y2
and hence
L.v(x)
lim = 0, j=0,1, ... ,n. (5.35)
esoo Ljyz(X)

For (5.34) implies that y2+>\v is nonoscillatory for every A, so that
the limits in (5.35) must exist. Since the limit with j =0 is zero by
(5.34), the others must also be zero by virtue of (5.6).

' Let H be the set of positive numbers A such that
Ljyz—-lev > 0 on [b,x), j=0,1,...,k-1.

The limits (5.35) show H is nonempty, and since v(x) >0 somewhere in

[b,»), H must be bounded above. Set >\0= sup H, and let

z(x) = yz(x) - on(x) .

If Liz(x) >0 on [b,») for i=0,. .. ,k-1, then given al>0, by (5.35)
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there would exist c >b such that

LiYZ(X) > (Ao+el)LiV(x) on [c,®), i=0,...,k-1.
In addition, since Liz(x) >0 on [b,c], there would exist €55 0< €y < €1
such that

Liyz(x) > (AO+ ez)LiV(x) on [b,c], i=0,...,k-1,
and hence

Liy2(x) > (XO+€2)Liv(x) on [b,®), i=0,...,k~-1,

contradicting the choice of A_.. Therefore, Liz(xo) =0 for some i,

0

0<i<k-1, and for some point x, € [b,»). By the choice of b and from

0
(5.33), it is clear that xo#b. From the definition of H it follows

that Liz >0 on (b,»). Since Liz(xo) =0, then Li+lz(xo) =0 and changes

sign at x This will contradict the definition of H and the choice of

0
)\0 unless i+1=%k. Thus Lkz(xo) =0,

The limits (5.35) imply z € Sk’ and therefore S(z,x0+) <k. Since

Liz (x) =L, .z(x) >0 on (b,»), then Lkz (x0+ g) >0 for €>0 sufficiently

k-1

small. Since Lkz changes sign at X,

e >0 sufficiently small. In addition, by definition of H and the choice

, then L z(x0+ g) >0 as well for

k+1
of Ay, for 0<j<k-1, sz(x)lo on (b,®), so that S(z,xo+) >k+1. This
contradiction shows that k+ 1 linearly independent solutions vi(x),

i=1l,...,k+1, cannot be found satisfying (5.32). This completes the

proof of Theorem 5.14.

Theorem 5.14 places an upper bound on the number of solutions which

y(x), chosen as in Equation (5.31), can dominate at zero. In fact, this
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maximum number is actually achieved for each nonoscillatory class Sk’
O<k<n-1, for a certain choice of the function y(x), as the following

theorem shows.

THEOREM 5.15: Suppose the class S, is nonoscillatory for some k,

k

O<k<n. If y(x)E€ Sn’ then there are exactly n linearly independent

sclutions vi, i=0,...,n=-1, such that
. v, G|
llz;up ——};-(—};)— # o, (5.36)
If O0<k<n, then there exist solutions v,w Sk with li: ;(3 = o such
that there are exactly k linearly independent solutizns vi, i=0,...,

k-1, such that (5.36) is satisfied with y=w.

PROOF: The case k=n follows immediately from Theorem 5.12, which
states in part that (5.36) is satisfied for any choice of y € Sn' Thus,

taking {v . ’Vn—l} to be any basis for the solution space suffices.

0’ "

For O0<k<n, consider the k+ 1 sets of n-1 boundary conditions de-

scribed by
Liy(a) = 0, i€{0, ... ,kINtl, (5.37a)
Ljy(s) = 0, j=0,...,n-k=2, (5.37b)

0<t<k, and suppose yt(x,s) satisfies (5.37) for the given value of t.
There exists a sequence {si}, S, such that when appropriately nor-

malized the functions yt(x,si) +yt(x) uniformly on compact sets, 0<t<k.
v, (%)
K for each t, and lim t(x) exists,
x0Ty
finite or infinite, whenever 0< t,r<k. Note that Vi = Uy yk—l=uk—l’

As in the proof of Theorem 4.15, Y, €S

where {u ’un-l} is the basis described by Theorem 4.15. Let

0t
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be as in Theorem 4.15 so that in particular lim vx) _
R0 w(x)

claim is that there exist k independent solutions satisfying (5.36) with

v,w€S The

k

y(x) =w(x).

Recall from the proof of Theorem 4.15 that v(x) was chosen to be

¥, (%)
either yk(x) or yk_l(x). For example, if lim @ = ¢ < o, then
x¥0 k-1
v(x) = Vi1 (x), wx) = yk(x) -CY (x). Hence, for 0<t<k,
7, (®)
llm-m)— = Ct < ® (5.38)

exists in the extended real numbers. Suppose for some t, say tO’ this

limit is infinite. Then clearly

y, (%)
Y
}]:;1:: ——W—(—x)— = o, (5.39)

and v(x) violates Theorem 5.12 for the pair w(x), Ve (x). Hence the
0
limit in (5.38) is finite for every t. Without loss of gemerality,

assume v(x) =yk(x); otherwise, reverse the role of yk(x) and yk_l(x) in

what follows. Define the set of functions vi(x), i=0,...,k=-1, by
v,(®) =y, &) -c,vx) = yi(X)-ciyk(X)-

Then, for 0<i<k-1,

vi(X)

lim = 0,

so0 v (x)

and so (5.36) follows from Theorem 5.12. This completes the proof of

Theorem 5.15.

Consider the Euler equation

x4y(4) -ey =0 (5.40)
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on the interval [l,»). This equation has solutions of the form xa,

where o is a root of the equation

a(a-1)(a=-2)(a=-3) - e =0. (5.41)
Choose € >0 so small that this equation has four real roots, 0L0< 0,
%) al o,
1<al<a2<2, and 3<a3. In this example x ESO, {x °x }-C-SZ’

Q.
x 7€S,. Sety =x T, 0<i<3.

4

Observe that Y1 dominates both itself and Yo at zero, achieving
the maximum allowed by Theorem 5.14 without benefit of the argument used
in Theorem 5.15. Note also that Y, dominates both Yo and g by class at
infinity. Strictly speaking, Yy cannot dominate itself by class at in-
finity since Yo~ >\y2 fails to be in S2 for A=1. However, Yy does dom-
inate the solution y1+y2 by class at infinity, and this solution is in-

dependent of both Yo and v This example suggests the following corol-

laries to Theorems 5.14 and 5.15.

COROLLARY 5.16: Suppose the class S, is nonoscillatory for some Kk,

¥, (%)
satisfy lim ———=
k x Yl(X)

at most k+ 1 linearly independent solutions by class at infinity.

k

O0<k<n, and suppose Y12, €S o, Then Yy dominates

PROOF: Suppose there are k+ 2 linearly independent solutions Vs

i=1,...,k+ 2, such that

y,*Av, €8 i=1,...,k+2 (5.42)

2’
for all real values of A.

v, (x)
If 1im -yl—(x)_ does not exist in the extended real numbers for some
x> 72

i, 1<i<k+2, then there is a constant )\0 such that the solution
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y24-xovi is oscillatory, contradicting (5.42). Thus

v, (%)
limm = Ci < o, i=1l,...,k+2 (5.43)
2

X>

exists in the extended real numbers. If any limit in (5.43) is infinite
for some i, then yz(x) will violate Theorem 5,12 for the pair vi(x),

yl(x). Consequently, c < and so

vi(X) - ciYZ(X) )

lim =) =0, i=1,...,k+2.
K-»oo yZ
By Theorem 5.12, then
v, (x) -c,y,(x)
lim —= (X;Z £ =, i=1,...,k+2
X0 yl

Since the set {vi-ciyz}?:i contains at least k+1 linearly independent
solutions, this contradicts Theo%em 5.14. This completes the proof of

Corollary 5.16.

COROLLARY 5.17: Suppose the class S, is nonoscillatory for some k,

k

O0<k<n. Then there exist solutions v,w€ S with lim v(x)

k w(x)

X-»0
there are exactly k+ 1 linearly independent solutions dominated by v by

= o, such that

class at infinity.

PROOF: This is virtually immediate from the proof of Theorem 5.15.
Let yi(x), i=0,...,k be defined as in that proof, and again assume
without loss of generality that v(x)==yk(x). Then the proof of Theorem
5.15 showed that v(x) dominates the k+ 1 solutions yo,. .. ’yk-l’yk*-yk—l
by class at infinity. This completes the proof of Corollary 5.17.

While these results have provided some information about the dom-
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inance of solutions of Equation (5.1), they are too weak to lead to re-
sults such as Conjecture 5.10 or 5.11. The reason in part has to do
with the imprecise nature of the limits (5.32) and (5.36). If these
limits could be strengthened to ii: %&%;i

follow almost immediately. Even so, it would not follow that an oscil-

= (0, then Conjecture 5.11 would

latory class dominated all lower order nonoscillatory classes.
Considerations such as these suggest that the major problem is lo-
cated at the interface between groups of oscillatory classes and nonos-

cillatory classes. That is, if the classes Si’ klffiikj’ are all non-

¥4 (%)
oscillatory, if yi’yi-l € Si are chosen so that lim —5——(-5= o, k1_<_i ikz’
x>0 7i-1

and if w is an oscillatory solution, then either lim sup ___E£§l__¢(” or
x0Tk, =1(x)

1lim sup ;EL%%5>>O. Thus w must dominate, or be dominated by, every solu-
x> k
tion y, 5, < .. ,Y . However, the relationship between w(x) and y, or
kl» kz-l k2
Yy -1 remains unclear at this time.

1
The study of the dominance properties of solutions of Equation

(5.1) is still quite active. Even if the interface problem outlined
above could be solved, many questions would still remain about the in-
teraction between pairs of oscillatory Elias classes.

Another major question not even touched on here is whether there
are restrictions, other than those due to parity, as to which classes
may be oscillatory or nonoscillatory. Even though this is not directly
a question of dominance, it does deal with a description of the possible
locations of the interfaces mentioned earlier, and so affects the dom-
inance problem. Chapter VI takes up this question for a slightly less

general version of Equation (5.1).



CHAPTER VI

THE EQUATION y(n) +py = 0

Chapters IV and V considered the equation
Ly+px)y = 0, _ (6.1)

where p(x) is a nonvanishing continuous function on I= [0,»), and where

Ln is the factored disconjugate operator defined by
Ly=po (®)2p (D=...0 @®%p @y (6.2)
n n 7 dx " "n-1 dx 1 dx "0 ’ :

with pi(x) continuous and positive on I. The equation considered in
this chapter is

y(n)+p(X)y =0, (6.3)
which is of the form (6.1) with coefficients pi(x)E 1, i=0, ... ,n.
Note in particular that the operator Ln==dn/dxn used in Equation (6.3)
is Trench factored. As a consequence, the results discussed in Chapters
IV and V for Equation (6.1) apply to Equation (6.3) as well. In addi-
tion, because of the simplicity of the operator dn/dxn, many results can
be obtained for Equation (6.3) that are unavailable in the general case.

Historically, interest in Equation (6.3) was the natural outgrowth
of the surge of activity in lower order problems which followed the 1958
paper of Leighton and Nehari [76], even though it was studied at least

as early as 1955 by Mikusifiski [91]. After the 1967 Nehari paper [93]

which laid the groundwork for the use of quasi-derivatives, and the 1974

108
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paper by Trench [125] which established a canonical factorization for
disconjugate operators, Equation (6.3) served at least in part as a mo-
tivating factor for the study of Equation (6.1). For example, the
papers [62, 63] of Kim yielded techniques for Equation (6.3) he was able
to apply later to Equation (6.1) in Reference [64]. Throughout this
time, however, Equation (6.3) also maintained a separate identity, and
is still of tremendous current interest apart from Equation (6.1).

The primary distinguishing feature of Equation (6.3) is that in-
tegrals derived from the operator dn/dxn do not involve the unknown co-
efficients of the genmeral theory. As a result, such integrals fre-
quently can be simplified in terms of elementary functions. The fol-
lowing lemma, which has its origins in the work of Kiguradze [58], is an

example.

LEMMA 6.1: For 1<k<n-1, (—l)n—kp(x) <0, if the Elias class S
of Equation (6.3) is nonoscillatory, then there are positive constants

A and B such that
AxS > y(x) > B L (6.4)

for x sufficiently large, and for every y € S which is eventually posi-

k

tive. If y€S. is eventually positive, then

0
A>y(x) >0, (6.5)
and if y'ESn is eventually positive, then

y(x) > Bx™ T (6.6)

for some choice of the positive constants A and B, and for x sufficient-

1y large.
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PROOF: Let k, 1<k<n-1, (—l)n_kp(x) <0, be chosen so that Sy is
nonoscillatory. If y € Sk is eventually positive, then by Lemma 5.5 y

must satisfy the conditions
s Py >0,  i=o0,...,k (6.7a)
ISP w0, 3=k, ... n, (6.7b)

on some interval [b,»). As a result, y(k) (x) is a positive decreasing

function on [b,»). Take M= max{r!y(k_r) (b)/brl 0<r<k} and

(k-r) (k)

N=min{(r-1)!y (b)/br-lllirik}. In particular, then M>y

(%)

for x € [b,») so that integrating from b to x gives

(k-1)

we-mb > yE Dy -y E Dy, xe .

(k-1)

By choice of M, Mb>y (b), so that in fact

wx > yE D), xe[b,w).

(

Now y k-1) (x) is a positive increasing function, and thus by choice of N,
Mx > y(k_l) (x) > N, x € [b,»).
Continuing to integrate in this fashion, employing the definition of M

and N to remove the constants of integration, eventually yields

k k-1
Mx N
> y(x) > —(-1}-:-—1)_'" x € [b,»).

Identifying A = *

The proofs for Equations (6.5) and (6.6) are handled similarly.

ﬂ'- and B = (k—flli—' produces Equation (6.4).

This completes the proof of Lemma 6.1.

It is clear that the technique used in this lemma can be duplicated
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for Equation (6.1) when the operator Ln is Trench factored, but in that

case the inequality (6.4) becomes ([25, p. 31])

S S
-1 x -1 1 k-1 -1
ds, . ..d >
Ao, (x)fo G (sl)fb .. fb Py (sk) Sy 5, 2 y(x)

Sk-2 -1

b Pp-1(8p-p)d

-1, x -1 °1
2_390 (X)Q)pl (51)4) R ) Si_p * - .dsl, (6.8)
on some interval [b,«).

The proof of Lemma 6.1 is particularly easy because it combines the
strength of the general results known for the Elias classes of Equation
(6.1) with the simplicity due to the form of Equation (6.3). In his
1978 paper [61], Kim did not have the benefit of knowledge of the Elias
classes, and so was forced to consider more possible cases than actually
existed. In light of what is now known about Equation (6.1), much of
which Kim discovered independently (see References [62, 63, 64]), the
1978 paper can be seen to contain little more than a weakened version of
Lemma 6.1.

As was observed in Chapter V, the oscillatory solutions of equatiomns
such as (6.1) and (6.3) do not seem to be governed by the same rules as
control the nonoscillatory solutions. Using Lemma 6.1, this can actual-

ly be used to advantage to test for the existence of oscillatory solu-

tions, as described in the next result.

COROLLARY 6.2: Let y be a solution of Equation (6.3). If for some

k, 1<k<n-1, (-l)n-kp(x) <0, and for every choice of positive con-
stants A and B there is an increasing unbounded sequence {Xi} of real

numbers such that

kt+1 k
Ax; Z_y(xi) > Bx; (6.9)
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for all i sufficiently large, then y is oscillatory. If (—-l)np (x)>0

and

lim y(xi) =0, (6.10)

1>

or if p(x) >0 and for every choice of B>0,
y(x.,) > BxT, (6.11)
i’ =771
then y is oscillatory.

Corollary 6.2 is an immediate consequence of Lemma 6.1. As an ex-

ample, consider the constant coefficient problem

g -y =0, (6.12)

—5% , BT L
with solutions yl=ex, Vo= sin(—/g_‘x)e 2 , and vy = cos(—g—fx)e 2 . Note

that 1 € 83 and Y55¥3 € Sl' Slgce }];i: yz(x) =0, it follows from Equa-
tion (6.10) that Yy oscillates, which is clearly the case for this exam-
ple. On the other hand, while the conditions (6.9) through (6.11) are

sufficient, they are not necessary to identify oscillation. The solu-

tion Yy of Equation (6.12) is also a solution of the equatiomn
G (6.13)

In the case of Equation (6.13), the condition (6.10) no longer applies
since (—1)6(-1) <0. Thus the limit yz(x) +0 as x>+« is acceptable be-
havior for a nonoscillatory solution, and so the oscillatory behavior of
Yy is not detectable by Corollary 6.2.

Lemma 6.1 shows that, for 1<k <n-1, nonoscillatory solutions in
the class Sk exhibit polynomial growth. Read [103] has obtained results

which describe the growth of solutions in the classes SO and Sn more



113

accurately than Lemma 6.1, for the case n even. Read's results predict
the exponential growth and decay of the nonoscillatory solutions of the

(2n)

equation y - Ay =0 where A>0 is a constant.

While such results as these provide additional information about
the nature of the solutions of Equation (6.3), they fail to shed any
new light on the problem of the dominance of the solutioms. Since the
nonoscillatory solutions satisfy a natural dominance relationship as de-
scribed by Theorem 5.6, and since this dominance can be disrupted only
at the interface between oscillatory and nonoscillétory classes, what
is needed are results describing the location of the oscillatory classes
among the list of Elias classes for Equation (6.3).

In 1976, Nehari [95] claimed to have shown that, for n even, if
some class Sk’ l1<k<n-1, was oscillatory, then all the classes Sj’
1<j<n-1, were oscillatory. If this result had been true, the ques-
tion of dominance would have be‘éen virtualiy answebxiedi by Theorem 5.6
alone for Equation (6.3) with n even. However, Jones [50] in 1980 was
able to produce counterexamples to Nehari's result and other related
claims. Such an example will be discussed here shortly. Nonetheless,
the failure of Nehari's result left unanswered the question of which
classes could contain oscillatory solutions, and when.

A sufficient test for the existence of oscillatory solutions for
Equation (6.1) was devised by Kim [64]. For notational purposes, it is
necessary to define several iterated integrals. For 1<2<n-1, and for

a>0, set

(t) = fatp;l(s)ds, (£) =1 if k<2,

Yoo Yieq

ot -1

A (S)wk—l,l(s)ds’ 2+1<k<n-1,
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6,,() = [Fo7 (s)ds, 6, () =1 if k>2,
ot -1
¢k2’(t) = fapk <S)¢k+l,2,(s)ds’ lik_<_2,—l,

and for 1 <k<n-1 define

AT TN O O CTHOIES

Kim [64] proved that if Hk=°°’ then the class Sk is oscillatory. Unfor-
tunately, the condition Hk=°° can be difficult to vefify, and the com-

plexity of the integral in the general case for Equation (6.1) makes it
unclear just how strong a result this is. As an example of the applica-

tion of the test, consider the equation
x(x(x(xy")")")' -y =0,

for x€ [1,»). The admissible classes for this equation are S SZ’ and

O)
84. For the fourth order equation the classes S0 and S4 are nonoscilla-
tory, and so only the class S2 has the potential to be oscillatory. In
order to test the condition H2=°°, the functions ‘P3 3(t) and ¢l l(t) must
3 b
be computed. Applying the definitions above with a=1 gives 1P3 3(t) =
¢l,l(t) =4nt, t>1, and so
o, 2 . 3
H, = [ &n"t/t dt = 1lim (€nb)~/3 = o,
2 0
b

Hence the class 82 is oscillatory; in fact sindnx € SZ’ which does os-
cillate as predicted.

When expressed in terms of Equation (6.3), the conditions Hk=°°,

k=1,...,n-1, are all equivalent to the condition

P72 p(0) |t = -, (6.14)
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Thus for the problem (6.3) this result is not sensitive enough to detect
the oscillation .of one class Sk when another class Sj is nonoscillatory,
1<j,k<n-1. When the test (6.14) is successful, however, it does im~
ply that only SO and Sn’ if these are admissible, are nonoscillatory.
(Compare this result to Theorem 5.7.) When n=2, Equation (6.14) re-
duces to the classic test of Wintner [131] and Leighton [74] cited ear-
lier, while for n=4 the corresponding test was given by Leighton and
Nehari {[76]. Fbr arbitrary n, condition (6.14) was known to Anan'eva
and Balaganski;i'. [5] and Kondrat'ev [66], while a slightly more general.
test was given by Kiguradze [58].

Consider the Euler equation

(& -ax%y =0, (6.15)

for x € [1,»), with solutions of the form y=xa where o is a root of the

equation
a(a~1)...(a=-7)-Xx = 0. (6.16)
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