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PREFACE 

This study is an attempt to fill in some gaps in the theory of pul

sar radiation ·as it stands today. At the present time progress in under

standing the source of the radiation seems to be stalled. In developing 

this thesis a number of ideas were generated dealing with precession of· 

the pulsar, correlation of circular polarization with the height of the 

region in which the radiation is generated and the contribution of the 

supersonic aspect of the plasma to the production of shock fronts. 

In the present work radiation by linear acceleration of charge, 

radiative transfer through a plasma traveling at relativistic speeds and 

shock waves in a supersonic plasma were studied. W~ have tried to add 

to the present knowledge in each of these areas. Work in each of these 

areas has suggested further refinements which might make the results 

agree more closely with observations. 

I would like to express my appreciation to Dr. N. V. V. J. Swamy 

for serving as my adviser and for his contribution to the chapter on 

shocks in supersonic flow. I would also like to thank Dr. Larry Halli

burton, Dr. Leon Schroeder, Dr. Larry Scott and Dr. Rao Yarlagadda for 

serving on my .committee. 

I would also like to make note of my friend and fellow traveler 

Weldon Wilson with whom I started out together with on this course of 

study in physics. He has provided a good mind and a degree of expertise 

for our discussions. I would like to thank Ms. Janet Sallee for typing 

this work in her normal excellent style. In addition I would like to 
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thank the Department of Physics at Oklahoma State University, Phillips 

Petroleum, and the people of the State of Oklahoma for providing the 

funds in the form of various research and teaching positions to support 

me during my course of study. 

All in all I find this kind of work quite enjoyable and I look for

ward to more of the same. 

iv 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION •.. 

Model Pulsar . 
study outline. 

II. RADIATION CHARACTERISTICS 

Integrated Pulse Observations. 
Single Pulse Characteristics 
Summary. • . . 

III. RADIATION MECHANISM THEORIES AND A CALCULATION FOR THE 

Page 

1 

2 
12 

17 

20 
24 
28 

SPECTRUM OF A LINEARLY ACCELERATED CHARGE 31 

Radiation Mechanisms . . . . . . . • 32 
Equation of Motion for Linearly Accelerated Charge . 38 
Retarded Radiation Fields and Their Spectral Analy-

sis •. 
Results. 

IV. RADIATIVE TRANSFER. 

Dispersion Relations 
Hartree-Appleton Equation .. 
Relativistic Treatment of Dispersion Relations 
Summary. • . . • . • • . . • • ·• • • 

V. RADIATION COHERENCE AND PLASMA SHOCKS 

Theory of Shocks . . . . . . 
Jump Conditions for a Moving Shock . 

VI. SUMMARY AND CONCLUSIONS 

A SELECTED BIBLIOGRAPHY . ~ . • 

APPENDIX. FUNCTION GENERATION AND THE FAST FOURIER TRANSFORM 
PROGRAM. . . • . . . . . • . . . . . . · · • • • · 

v 

42 
47 

56 

57 
60 
67 
81 

84 

85 
91 

95 

98 

99 



LIST OF FIGURES 

Figure 

1. Log-Log Plot of Differential Intensity Vs. Frequency. 

2. 

3. 

4. 

5. 

Radiation Pattern for Linearly Accelerated Charge . 

Determinant for Calculating the Dispersion Relation 

Energy-Momentum Tensor 8. and Electromagnetic Energy-
1k 

Momentum Tensor S ik . . . • . • . . . . . • . . . • 

Lorentz Transformation of Total Stress-Energy Tensor. 

vi 

Page 

48 

49 

76 

88 

89 



CHAPTER I 

INTRODUCTION 

Pulsars are a class of astronomical objects which emit intense, 

short duration, periodic pulses of electromagnetic energy primarily in 

the radio frequency spectrum. They were first discovered by Bell

Burnell in 1967 while working with a team under Hewish studying scin

tillations by the solar wind. 1 In the fourteen years since then these 

objects have been at the focus of a great deal of study in an attempt to 

explain their nature. Although at the present time there is agreement 

regarding the broader aspects of pulsar construction and operation, 

attempts to fill in the details have yet to produce a model upon which 

researchers can agree. One aspect of the model pulsar which has been 

worked on extensively, although without producing a clearcut theory, is 

the manner in which the observed radiation is produced. 2 Knowledge of 

the radiation mechanism is of obvious importance to the understanding of 

the nature of pulsars. The purpose of this work is to study some of the 

possible aspects of the radiation mechanism of pulsars which have not 

been closely examined by others. 

For this introductory section of our study we will first discuss 

those aspects of pulsar theory which are accepted by most researchers. 

This model pulsar is the starting point for more detailed models. 

1 
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Model Pulsar 

The development of the model pulsar proceeded in large part by the 

process of elimination. The sky is full of objects whose periodic flue-

tuations in intensity have been well studied and successfully explained. 

What was needed was an object which could produce intensity variations 

at intervals between 0.03 and 4 seconds with a stability of 1 part in 

108 over a period of several months and a pulse duration of about 10% of 

"od 3 the pulse per1 • The stability of the pulse period demanded that the 

mechanism producing it be the conservation of angular momentum of a very 

4 
massive body. This meant that either eclipsing binary systems or 

rotating stars were the source of the pulses. Physically pulsating stars 

were discarded since the pulse durations were short enough to demand 

expansion and contraction speeds beyond what were possible for a stable 

star. Also stars pulsating at this rate would radiate energy through 

5 
gravity waves and thereby slow down at a greater rate than was observed. 

Eclipsing binary star systems would require orbits with semi-major axes 

less than 105 km (R = 3.85 x 105 km). This lies within the Roche 
moon 

6 
limit and the tidal forces would destroy the components of the system. 

Furthermore when the resolution on the pulses was improved they exhibited 

structure which would be very difficult to explain with an eclipsing 

binary system model. This left rotating stars with the radiation associ-

ated with a small area on its surface as the only possible candidate. 

The only star types which had sufficiently strong gravitational fields 

to hold them together at the observed high angular velocities were white 

dwarfs and neutron stars. When pulsars with periods shorter than 0.1 

second were discovered the white dwarfs were also eliminated leaving 

. h . 7 neutron stars as the only possible c 01ce. 
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At that time neutron stars were hypothetical objects which had been 

first introduced by Baade and Zwicky in 1934 as the end product of a 

supernova explosion, the final stage of stellar evolution for very mas

sive stars. 8 In a supernova explosion the core of a star undergoes a 

gravitational collapse in which electrons and protons react to become 

neutrons. In the course of this collapse the energy which is released 

violently blows off the mass surrounding the core producing an expanding 

cloud of gas or a nebula. If the core of the star has a mass that is 

less than 2-3 solar masses, then the energy of the neutrons in their de-

generate state is believed to be sufficient to halt the gravitational 

collapse. The remnant becomes a rapidly rotating body composed primarily 

of neutrons. Calculations of the Oppenheimer-Volkoff equation, the 

equation of state, for this nuclear matter have shown that the star will 

be stable with a mass between l and 2 solar masses and a radius of 10 

9 . -6 
km. The increase in rotational speed (Q = 2.7 x 10 rad/sec., 

Q 
pulsar 

sun 

102 rad/sec.) is .due to the conservation of angular momentum. 

The fact that two pulsars have been discovered in nebulae associated 

·with supernova explosions lends support to the choice of neutron stars 

10,ll 
as being responsible for pulsars. 

The next step in constructing the model pulsar was to learn the 

cause of the intense pulses of radiation. Since the star no longer has 

a nuclear energy source its surface temperature decreases and it loses 

luminosity. Pre-pulsar neutron star searches consisted in looking for 

X-ray sources in nebulae associated with supernovae. It was thought 

that charged matter falling into the star would be accelerated by the 

large gravitational fields to the extent that it would emit X-rays. This 

method is still used to search for black holes and the mechanism is used 
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12 
to explain X-ray pulsars. The radiation from pulsars is extremely in-

tense. If the source were emitting incoherent radiation the temperature 

30 13 
would have to be of the order of 10 K. Since this temperature is 

unrealistic the radiation from the pulsar must be coherent. 

It had long been suspected that when a star collapsed the magnetic 

flux of the star was compressed, greatly increasing the star's field 

strength. This is fairly well established by the freezing-in theory of 

plasma physics. Since the dipole field is proportional to the inverse 

cube of the distance from the magnetic moment a reduction in stellar 

radius from 105 km to 10 km, a reduction by 104 , meant that the field at 

12 
the pole would increase by a factor of 10 . For typical fields of 

1 Gauss this meant that the surface field of a pulsar could be of the 

12 
order of 10 Gauss, perhaps the strongest magnetic field in the uni-

verse. Interestingly enough several months prior to the discovery of 

the first pulsar Pacini suggested that a neutron star with a rotational 

12 
period of 0. 01 seconds and .a magnetic field strength of 10 G was the 

source of energy for the expansions and the synchrotron radiation 

14 
.observed in the Cr ab Nebula. Within a year the pulsar was found with 

15 
a period of 0.033 second. 

Several months after the discovery of the first pulsar Gold made 

the suggestion that the radiation pulses were asssociated with the in-

. f' 1 16 tense magnetic ie d. He noted that the fields were strong enough to 

cause charged particles to corotate with the star. This corotation 

would cause charges at a distance of 
c T 
2rr 

from the axis of rotation of 

a pulsar with rotational period of T to travel at the speed of light, c. 

This distance from the axis has come to be known as the radius of the 

light cylinder. Although the charges do not reach the speed of light, 



they do become highly relativistic. Charges traveling at these speeds 

could then radiate for a number of relativistic reasons. Unfortunately 

the gravitational field of a neutron star which is 108 times stronger 

than the Earth's will only allow an atmosphere a few centimeters in 

17 
height according to the normal barometer formula. This problem was 

5 

addressed by Goldreich and Julian in 1969 when they noted that there was 

a mechanism available which could provide a neutron star with an exten

sive atmosphere of charged particles. 18 It had been known for some time 

that rotating conductors with embedded magnetic fields would produce 

electric fields about them in a process known as· unipolar induction. 

Goldreich and Julian pointed out that the interior of a neutron star was 

an excellent conductor and that the same process should occur there. 

The effect is due to the Lorentz force on the charges within the star. 

If the charges are considered inertialess in the first approximation 

they will distribute themselves in such a manner that the electric field 

they produce negates the induction field. This field would be given by 

+ l+ ->- + 
E (Q x r) x B 

c 

where Q is the angular velocity. If we assume the magnetic moment is 

aligned with the angular velocity vector and that the field is due to a 

dipole at the center of the star, the external field becomes 

+ 
E = ~~ A 

5 (P 2 (cose)~ +sine case 8) 
c r 

12 6 
At the poles of the star B = 10 G, R = radius of the star = 10 cm r, 

and Q = angular velocity is typically 10 rad/sec. The field in this 

case would be of the order of 109 V/cm which exceeds the gravitational 



12 9 19 
force by a factor of 10 for electrons and 10 for protons. The 

charges would then be expected to leave the surface of the star follow-

ing the strong magnetic field lines to produce an atmosphere of corotat-

ing plasma about the star. This argument ignores the magnitude of the 

work function for removing the charges from the surface. It is felt, 

however, that the electrons would move freely from the surface into the 

atmosphere and the ions would not be sufficiently bound to prevent them 

from escaping. In 1971 Mestel, Cohen and Toton proved that this magne-

tosphere would be produced even if the magnetic moment was perpendicular 

. . 20,21 
to the rotational axis. 

The discovery of this magnetosphere about the neutron star was of 

great importance in understanding the radiation from pulsars. The magne-

tosphere contains charged separated plasma, very strong electric and 

magnetic fields, and charges moving at speeds close 'to the speed of 

light. These ingredients would seem to be too adequate for producing the 

intense radiation which is observed. The problem then is in finding the 

configuration of the fields and currents which exist in the magneto-

sphere. To date no closed form solution has been found. Since the mag-

netosphere is central to developing a radiation mechanism we will review 

some of the aspects of current models. 

Magnetosphere 

Considering that we still have no complete understanding of the 

magnetosphere of the sun it comes as no surprise that the magnetosphere 

about a pulsar is even less understood. There is some common ground for 

the different theories which have been advanced. First is the idea of 

charge separated plasmas in the magnetosphere. In the case of aligned 
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magnetic moment and rotational axis the electric field lines run from 

the equatorial region to the polar caps. We ~ould therefore expect 

electrons to be emitted from the surface of the star at the higher lati

tudes and protons to be emitted at the lower latitudes. 22 In the 

absence of magnetic fields we would get currents flowing between the 

two regions. The very strong magnetic fields alter this situation. With 

fields of the order of 1012 G any motion perpendicular to the field will 

cause the particles to spiral about the field lines. Since the dipole 

configuration of the magnetic field is not similar to the quadrapole 

configuration of electric field their field lines will cross so that the 

magnetic field will inhibit the current flow. 

The regions close to the poles of the star will have a special sig-

nificance. The magnetic field lines will corotate with the star. This 

means that lines which originate from the polar zones will extend through 

what is known as the light cylinder. This is an imaginary cylinder 

enclosing the star whose ra~ius is equal to 
c T 
2n 

and whose axis is 

parallel to the stars rotational axis. Its significance is that any 

point beyond this cylinder which corotates with the star must move faster 

than the speed of light. When charges leave the surface of the star 

they are forced to follow the magnetic field lines. If they are emitted 

along lines originating from the polar regions they will travel to the 

light cylinder and reach relativistic speeds. At this point it is sus-

pected that due to a relativistic change in inertia the charges will 

alter the shape of the dipole configuration of the field causing the 

23 
magnetic field lines to be open. This gives the charges a route to 

escape from the star and raises the possibility of a continuous current 

flow from the polar regions .. The surface of the star where these 



charges originate is divided into two zones. The higher latitudes, 

where the field lines terminate, is referred to as the electron polar 

zone and the lower latitudes where the field lines originate is called 

24 
the proton polar zone. The names derive from the particles which are 

emitted there. The particles above these regions are thought to be 

8 

charge separated due to the outward current and the loss of charge along 

the open field lines. This is an important point since it allows for 

. concentrations of charge which could help explain the intensity of the 

radiation. 

It is important to bear in mind that the foregoing relates to the 

simplified case where the magnetic moment and rotational axis were 

aligned. The more realistic case where the two are at an inclination 

will start have open field liries but the geometry of the polar zones 

'11 b ' 25 wi e more complicated. 

The density of particles in the regions above these zones has been 

estimated to be of the order of io8 1012 cm- 3 by using estimates of 

mass loss in the Crab Nebula and by treating the corotating magneto-

sphere as an extension of the star and calculating the charge distribu-

26 
tion due to induction effects. 

A second important feature of the magnetosphere is its enormous 

field strengths. As has been noted, the magnetic field strength is 

quite important in determining the current flow in the magnetosphere. 

It has also been noted that in the case where the star is surrounded by 

12 
a vacuum the electric fields may be of the order of 10 V/cm. What 

actually happens is that charges leave the surface of the star along the 

field lines and distribute themselves in such a manner so as to reduce 

this field. How the fields are rearranged due to this charge redistri-
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bution and the current flow is the main problem concerning the research-

ers dealing with the magnetosphere. It is fa~rly certain however that 

extremely large electric fields do exist in the magnetosphere, whether 

close to the surface or to the light cylinder. 

A third point to be noted is that the magnetosphere is a relativis-

tic plasma in the sense that it has bulk velocities approaching the 

speed of light. These speeds are due to the corotation of the magneto-

sphere and also the large accelerating potentials which may produce 

. 12 27 
electron energies of the order of 10 eV. This relativistic aspect 

of the plasma has been used in diverse models to explain the bea.rning 

effect of the radiation from regions near the light cylinder and the 

production of curvature radiation from currents traveling along the mag-

netic field lines near the surface of the star. The relativistic aspect 

of the plasma offers a number of possible mechanisms to produce radia-

tion such as synchrotron radiation, Cerenkov radiation, and radiation 

due to the linear accelerat~on of charges. 

The characteristics given above are fairly well accepted and are 

incorporated in most models of pulsar magnetospheres. The development 

of more detailed models is usually done in conjunction with the study of 

a radiation mechanism. This connection will be discussed in a later 

section of this study. Here we will review the development of some of 

the model pulsar magnetospheres. 

Although the problem may be set up mathematically, its non-linear 

formulation is not currently solvable. This means that techniques of 

simplification and non-linearization have been employed to make any head-

way towards a solution. The first simplification was to assume inertia-

less particles in the magnetosphere so that they will distribute them-
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selves to give zero electric field parallel to the magnetic field, i.e. 

-+ -+ 
E • B = O. Then the equations are solved using an iterative technique 

to give a self-consistent solution. Solutions of this type show that 

28 
there would be corotation of the magnetosphere. If currents are in-

traduced along the open field lines it was shown that they would produce 

a toroidal field about the star and that points of zero field would be 

produced near the light cylinder. It is expected that charges might 

accumulate at these null points and possibly play a role in the radia-

. h . 29 tion mec anism. Works by Scharlemann, Henderson and Norton have shown 

that the acceleration of charges could take place by a centrifugal force 

sling action or a radiation pressure surfing type action in regions 

. h. d . h . h . . 30' 31 wit in an outside t e lig t cylinder respectively. Since large 

amounts of current flow along the open field lines escaping from the 

-+ -+ 
star, the E • B = 0 approximation is not thought to be very good. 

Works which attempt to take these parallel electric fields into 

account are forced by the complexity of the problem to deal with local-

ized regions of interest and make assumptions concerning the effects 

that other regions would have there. The region most often dealt with 

is that which is above the polar zone where the open field lines 

originate. 

The calculations of most interest consist of finding the electric 

field strength and the current density. Sturrock was first to attempt 

this by assuming that the potential available was equal to the potential 

32 
drop across the extremes of the polar zone on the surface of the star. 

This gave a potential drop of 1012 V which produced electrons with a 

7 
relativistic factor Y = 10 . He assumed that the electrons traveling 

along the magnetic field lines would emit curvature radiation due to 
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their acceleration. This radiation in turn would produce electron posi-

tron pairs. 
40 

According to Sturrock fluxes of 10 particles/sec would be 

produced through a cascade action and flow into the nebula surrounding 

the Crab Pulsar. This calculation is really an upper limit since it 

33 
unrealistically uses the full potential drop across the polar zone. 

Michel made the calculation taking into account a more reasonable 

potential drop across the polar zone and has shown that it would be 

equal to 5 x 109 V giving a relativistic factor of 104 . 34 

Rudermann and Sutherland treated the case where the ions would be 

b d . h . 35 oun too t1g tly to be emitted from the surface. According to their 

treatment charge flow would be cut off as the preferential flow of elec-

trons built up a positive charge on the surface of the star. In regions 

above the polar zone a vacuum gap would be formed in which large electric 

fields would exist. These gaps would grow until the potential across 

12 
them reached 10 V at which time sparking would occur due to the forma-

tion of electron-positron pairs. The electrons would be accelerated 

towards the surface of the star producing curvature radiation and the 

positrons would be accelerated outward producing cascades of particles 

in a manner similar to that suggested by Sturrock. The calculation 

showed that the relativistic factor for the escaping positrons would be 

Y = 10 3 and the density of the secondary particles would be given by 

n = 5 x 1013 x (~) 3 
r 

-3 
cm 

-3 
Here the stars radius is R and the density goes as r due to the form 

of the dipole field. 

Another region of the magnetosphere which has been of interest is 

that near the light cylinder. The relativistic characteristics of the 
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plasma in that region make it of particular interest in determining its 

radiation capabilities. Of importance is the determination of the rela-

tivistic factor of the plasma. Henriksen pointed out that the speed of 

the corotating plasma could not exceed the speed of propQgation of 

. . . 36 d' . electromagnetic disturbances, the Alfven velocity. For con itions 

which exist in the magnetosphere this gives a typical relativistic fac-

tor Y = /2 . This is an upper bound and an analysis by Hinata and Jack-

son shows a more realistic value to be only mildly relativistic with the 

37 
the velocity factor v/c = .05. This analysis puts restrictions on the 

corotating regions' ability to beam radiation relativistically, as has 

38 
been suggested. 

Although the models presented to date do not give an unambiguous 

account of the magnetosphere configuration they do suggest certain pro-

cesses which may be occurring there and set limits on the parameters of 

interest such as particle density and electric field intensity. It is 

these aspects of the theory which are of interest to us in formulating a 

radiation mechanism. 

Study Outline 

In this study we will attempt to contribute to the theory pertaining 

to pulsar radiation mechanisms. In the first part we will look at the 

observations which have been made of the radiation. Hints to the pro-

cesses contributing to the production of the radiation must be contained 

in the characteristics of the signals. As will be seen, the radiation 

is quite complicated and the various characteristics and their interrela-

tionships should help us to understand their origin. Next we will look 

at the simplest method of producing the radiation, that of linear accel-
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eration. Although this mechanism has been previously suggested little 

has been done with it due to a lack of knowledge of the spectrum it pro

duces. In this section we will calculate the spectrum and show that 

certain aspects of it are in agreement with observation. The fourth 

part of this work deals with the radiative transfer of the electromag

netic energy through the plasma. Since the problem is relativistic in 

nature we first review the non-relativistic theory as a starting point 

and a check for our results. We then calculate the dispersion relation 

for conditions expected in the region of emission and show that the low 

frequency cutoff observed in the spectra of some pulsars may be due to 

the plasma. In the last section we look at the manner in which shock 

waves travel through the plasma. This is important since localizations 

of charge whose dimensions are smaller than the wavelength of the radia

tion which is emitted are capable of producing coherent radiation. 
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CHAPTER II 

RADIATION CHARACTERISTICS 

In order to understand the manner in which the radiation is pro-

duced it is necessary to make a careful study of the characteristics of 

the pulsar's signal. In this section we will review the techniques used 

to observe the radiation, as well as their limitations, and look at the 

common traits among the pulsar emissions. These traits are of obvious 

importance to developing a theory of pulsar emission. On the other hand 

exceptions to these common traits must also be taken into account by the 

theory. 

Pulsars are difficult to detect. This is due mainly to the low in-

tensity of their signals; the strongest of which have flux densities of 

-26 -2 -1 
less than 1 Jansky (1 Jansky = 10 w-m -Hz ) . This signal strength 

is at the lower limit of pre-pulsar observational technique. Because of 

the weak signals only the largest radio telescopes are capable of making 

the searches. Out of 150 pulsars 110 were discovered by the large tele-

scopes at the observatories at Aricebo, Puerto Rico, Jodrell Bank, 

England, and Molonglo in Australia. Prior to the discovery of pulsars, 

weak sources were detected by integrating or taking time exposures of 

the signals. If the integration time was longer than the pulse period, 

this method would, of course, be useless for detecting pulsed sources. 

Since weak signal techniques meant long integration times, the receivers 

used in radio astronomy had long response times which were of the order 

17 
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of the pulse period or longer. This also tended to wash out any evi-

dence of pulsed emission. When Hewish's group set up their equipment to 

study the solar wind scintillations of quasar radiation, they needed 

very sensitive recei ver--ant.enna combinations with a time resolution of 

0.1 second. This was one of the first times this combination of appara-

tus was used in radio astronomy. With signals this weak the system 

noise becomes the limiting factor. The first source of thermal noise is 

the antenna structure which produces a signal strength of 

k T !Clv • 
A 

For typical values of antenna temperature TA = 290°K a bandwidth of 

6 -23 -1 
!Clv = 10 Hz and Boltzmanns constant being k = 1.38 x 10 J-K we have 

-25 
W = 4 x 10 W. For an antenna such as the 250 ft device at Jodrell 

NA 

Bank this would correspond to a signal of 25 Janskies. The receivers 

also have their own noise although they are operated at a much lower 

temperature to reduce this factor. 
0 

Typically they are operated at 100 K. 

A noise figure from such a system may be up to the order of 100 Janskies. 

Another limiting characteristic of the system is the sensitivity of the 

receiver. The sensitivity is proportional to the square root of the 

product of its bandwidth and the integration time. For signals with 

-2 
durations of 10 second and receivers with a bandwidth of 1 MHz this 

gives a sensitivity which is a factor of 100 better than the noise fig-

ure. This means that the system above could only detect the strongest 

pulsars. 

Two aspects of pulsar radiation work against the radio astronomer. 

First is that the integration time must be short enough to detect the 

pulsed aspect of the radiation. Second is that the dispersion of the 
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signal limits the usable bandwidth. A reduction of either of these de-

creases the sensitivity of the receiver. 

Signals through a tenuous plasma will have a frequency dependent 

group velocity i.e., they will be dispersed. If the pulsar is a dis-

tance L from the observer and the density of the plasma in the inter-

vening space is N then the travel time of the pulsars signal is 

t 

-2 
L 

N r CV L. 
0 

= 
v 21T 

g 

where r is the classical electron radius e 2/mc 2 and v is the frequency 
0 

f h . 1 1 o t e signa • The product N·L is referred to as the dispersion mea-

sure and is given the units of parsec/cm3 . It is a measure of the spread 

of the signal. This dispersion causes a smearing of the signal which 

reduces the intensity since all frequencies are not.received at the same 

time. Since the dispersion is proportional to the distance to the pul-

sar the effect will limit the distance out to which pulsars may be 

detected. It also provides a method for measuring the distance to pul-

sars if an average density of interstellar matter is assumed. 

In order to increase the sensitivity of a search procedure a process 

known as de-chirping is applied to the signal. The receivers bandwidth 

is divided into a number of channels. Each channel is then run through a 

delay line of increasing delay. The signal is then recombined by adding 

the signals. By running the channels of progressively higher frequencies 

through longer delays the process in effect acts to de-disperse the sig-

nal. Since there is no prior knowledge of the signal dispersion in a 

search situation, the delays must be programmed to sweep through a range 

so as to look at all possible dispersions. With the emergence of digital 
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techniques this process has become easier to implement. The first de-

h . 2 h . . 2 c irpers were 0 channel mec anical affairs. The procedure is also 

used when it is desirable to get better resolution so as to study the 

shape of the pulse and the spectrum. In the case of the pulsar in the 

Crab Nebula the dispersion causes the signal to smear over a bandwidth of 

100 KHz. 

The most successful procedure for identifying weak pulsars is to 

Fourier analyze the incoming signal and look for frequency components 

between .1 and 50 Hz. The signal is typically divided into 12,000 seg-

ments each .02 second in length and digitized. The data are then 

analyzed with a fast Fourier transform while the next data segment is 

being received. 

Once a pulsar is found a variety of measurements are made to deter-

mine its characteristics. These measurements are made in two time 

regimes. One method uses the repetitiveness of the signal to get a 

period average of the incoming signal. This technique stacks from 200 

to 500 pulse periods and adds them to give an integrated pulse profile 

while at the same time reducing the noise. The other method studies 

the individual pulses. This technique may only be used for the stronger 

pulsar signals. Zheleznyakov compares the two regimes to observing the 

climate and the weather of the radiating region. 3 

Integrated Pulse Observations 

The characteristics of the integrated pulse are the easiest to 

observe since by their nature the energy may be collected over hundreds 

of pulses. These signals are characterized by the integrated pulse 

profile or shape. The two classifications are simple pulses where the 
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pulse consist of only one peak and complex pulses where the profile has 

more than one peak. The integrated pulse profile is extremely stable. 

The one exception to this is the mode changing pulsar where there are 

two stable modes which switch back and forth with one of the modes being 

dominant. A subclassification for pulse profiles comes from the obser-

vation of individual pulses. In a number of cases the integrated profile 

is built up from individual pulses which drift across the profile in a 

regular manner. These pulsars are referred to as drifting (D). · Both 

the simple (S) and complex (C) pulses may have this attribute. The 

pulse profiles are usually between 3 and 5% of the pulse profile in 

width at half pulse energy although some may be as wide as 21%, e.g., 

4 
PSR 1911 + 03, P = 2.33s. A few pulsars display an interpulse sepa-

rated by approximately half a pulse period from the main pulse. The 

interpulse energy varies from 1 to 85 percent of the main pulse's energy. 

There seems to be no correlation of the pulse width and the pulse 

period. The complex pulse profiles usually consist of two peaks although 

in some cases up to five peaks have been observed. The relative inten-

sity of the peaks is usually different. There seems to be no preference 

for the position of the dominant peak. Both the width of the simple 

pulses and the separation of the pulse components of the complex pulses 

seem to have a frequency dependence. This dependence is characterized 

by a power law 

where lie is the pulse separation and p is the separation index. For 

most pulsars pis typically -.2 at the low frequencies. 5 This has an 

effect of decreasing the pulse separations as the frequency increases. 
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Most pulsars show a change in the separation index at higher frequencies 

in which the index becomes more positive, sometimes becoming positive so 

as to give an increase in separation of the peaks with increasing fre-

quency. The width of the individual peaks is also frequency dependent 

with a negative power law. Typically the width at 4. 9 GHz is 15 90 nar-

6 
rower than the peak at 2.7 GHz. 

The observed energy in the integrated pulse varies both spectrally 

and temporally. As we will see, individual pulses vary from 0 to 1000 

percent of the mean pulse energy. Pulses integrated over 200 to 500 

periods have energies which are constant over a period of a few hours 

but may vary as much as a factor of two over the course of a day and by 

as much as an order of magnitude over the course of a month. Because of 

this great variation in magnitude, spectral measurements must be made 

simultaneously at all frequencies to have any validity. Since many fea-

tures of pulsar radiation are frequency dependent, for comparison pur-

poses most measurements are made at 400 MHz when possible. 

Spectral measurements of pulsars show them to be broadbanded from 

100 MHz to 10 GHz. Measurements show little structure and the spectra 

of pulsars is given by a power law 

a 
I = I V 

0 

where a is referred to as the spectral index and varies from -1 to -2. 7 

Spectral studies to date have poor resolution taking only four or five 

points from 100 to 10,000 MHz with more thorough studies taking 10 

points. Similar to the frequency dependence of the pulse separation, 

there seems to be a break frequency for the spectra of pulsars above 

which the spectral index changes to a more negative value causing the 
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spectrum to fall off faster. Although this is not observed in all pul

sars this may be due to the limitations of the measurement range. It 

has been noted that the spectral index is not the same for different 

pulse peaks in a complex pulse profile. They can vary by as much as a 

factor of two for the precursor pulse of the Crab Pulsar for the high 

frequency end of its spectrum. Most spectra show a low frequency cutoff 

frequency at about 100 MHz. This frequency is the low end of most spec

tral measurements and pulsars which do not display this cutoff may have 

one at a lower frequency. 

Another important characteristic displayed by pulsars is a high 

degree of polarization. The polarization observed is both linear and 

circular with the linear polarization dominating and sometimes reaching 

100% of the pulse intensity. The circular polarization is usually 20% 

or less. The polarization is really a feature of the individual pulses 

and integrating has a tendency of reducing the percentage of polariza

tion. The degree of polarization appears to be a function of frequency, 

decreasing in general with increasing frequency. The manner in which it 

falls off varies greatly from pulsar to pulsar. In some cases it re

mains fairly constant throughout the observed spectrum. In other cases 

it remains constant up until a break frequency after which it falls as 

some power law. The polarization angle sweeps through a range of posi

tions up to about 150° across the pulse profile. Type S pulsars usually 

display the least amount of angle change and type C pulsars display the 

greatest change in position angle. 8 The change in angle is the greatest 

in the center of the pulse profile and least in the wings. 
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Single Pulse Characteristics 

Since pulsar signals are such low intensity sources, it is more 

difficult to measure their characteristics than for integrated pulse 

profiles. For this reason the data for single pulses is not as exten-

sive as that for the integrated pulses. Even so measurements taken for 

a number of pulsars with low dispersions have identified a number of 

class characteristics of the individual pulses or subpulses. Due to 

their nature the subpulses appear to give information about the emission 

mechanism and the radiative transfer processes in the magnetosphere of 

the pulsar. 

The first notable feature is that the subpulse has a different shape 

than the integrated pulse profile, being roughly Gaussian. The subpulses 

usually have widths of between 1 and 4 percent of the pulse period and 

. 1 . d . h . d 1 ·1 9 occur at various ongitu es in t e integrate pu se profi e. The width 

of the subpulse in relation to the integrated pulse seems to be a func-

tion of pulse period with the longer period pulsars having subpulses much 

narrower than the integrated pulse profile. The width is roughly a 

function of the square root of the period. The width of the subpulses 

does not seem to depend on frequency or the location of the pulse in the 

integrated pulse profile. The spectrum of the subpulses in PSR 1919 +21 

is similar to the spectrum for its integrated pulse and this is probably 

10 
true of most pulsars. 

The intensity of individual pulses varies greatly from pulse to 

pulse~ Some pulses are missed completely in a process referred to as 

nulling. Most of the observed pulsars seem to exhibit this nulling fea-

ture in their pulse train. The nulling may take place anywhere from 10 

75 f h . 11 
to percent o t e time. Spectral studies have been made to deter-
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mine whether there is any regularity to the nulling pattern. In most 

pulsars especially the short period group, P ~ .75 sec., the distribution 

of the nulling patterns seems to be random. For other pulsars, however, 

there are sharp peaks in tte frequency of occurrence distribution of the 

11 . 12 
nu ing. The frequency of the nulling varies from one null every 50 

cycles to the Nyquist frequency of half the sampling rate of the pulsar's 

frequency. Type C pulsars occasionally have their subpulses vary in such 

a manner that some of the components vary regularly while others vary 

randomly. When this happens very often the regularly varying components 

will occur in pairs. In PSR 1237 + 25 the two outer components vary at 

. . . . 13 
the same rate while the inner components have random variations. 

The amount of variation or the modulation of the pulses is a func-

tion of the frequency with the fluctuations at the lower frequencies 

being more pronounced. The fluctuations also seem to vary with location 

within the integrated pulse profile, with the subpulses of some of the 

components having a greater range of modulation than those of another. 

Multiple peak profiles often have pairs of peaks which vary in the same 

manner while others vary in a different way. In type S pulsars the sub-

pulses at different locations in the integrated pulse profile often have 

different degrees of modulation. It is important to note that the null-

ing effect may be characterized by its random and its periodic nature. 

Drifting subpulses are one of the most interesting aspects of the 

1 d . . 14 
pu sar ra iation. This is a phenomenon where the subpulse train of 

certain pulsars is such that each subpulse is displaced by a certain 

amount in longitude, usually from the trailing edge to the leading edge 

of the pulse profile. When the pulse reaches the leading edge it re-

appears at the trailing edge·and repeats the motion. Sometimes more 
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than one subpulse will participate in the action and the subpulse will 

drift together across the integrated profile. For pulsars PSR 0031 - 07 

and PSR 0809 + 74 the spacing of the pulses varies with the frequency in 

15 
the same manner as the integrated pulse. Some pulsars show a less 

regular drift. Instead of drifting across the entire profile the sub-

pulse will only drift slightly about some mean position. This drift is 

usually detected by the use of a cross-correlation signal processing 

technique. The successive pulses are cross-correlated and any variation 

of the correlation peak from a time different from the pulse period is 

noted. As a rule type SD pulsars show these slight drifts of peaks from 

the trailing edge to the leading edge of the pulse profile and have small 

rates of change of pulsar spin, P. The type CD pulsars have their sub-

pulses drift from the leading edge to the trailing edge of the pulse 

profile and the rate of change of the pulsar spin P is large. The drift 

rate of the subpulses is usually not a constant throughout the pulse 

profile and the greatest drift occurs at the edges. 

The next refinement in time resolution of the subpulses gives them 

structure known as micropulses. 16 These may only be seen for pulsars 

with very low dispersions since otherwise the de-chirping signal process-

ing technique fails. At this resolution we can see structure down to the 

microsecond scale, which is about the limit of resolution for the tech-

nique. The width of the micropulses seems to be independent of fre-

17 
quency. The micropulses also seem to show some periodic structure. 

As noted previously, the integrated pulse shows a wide range of 

polarizations varying from 20 to 100 per cent. Since the integrated 

pulse is composed of a period average of the subpulses, the degree of 

polarization may be due to three causes. First the subpulses themselves 
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may or may not have a great degree of polarization. Second the sub-

pulses may be polarized but successive subpulses may have orthogonal 

polarizations. Third the subpulses may be polarized with random angles 

from pulse to pulse. All three of these characteristics are observed in 

pulsar radiation. 

Most subpulses have a high degree of linear polarization with some 

circular polarization. 18 The position angle of the polarization varies 

throughout the integrated pulse profile usually in a smooth manner by 30 

percent or less. The degree of polarization may differ from component to 

component during a pulse anywhere from 20 to 100 percent. In some pul-

sars the position angle is very stable with position in the integrated 

pulse profile but the degree of polarization will vary greatly from 

pulse to pulse. Both the degree of polarization and the position angle 

seem to be more stable at the lower frequencies. 

The polarization of the subpulses is probably a more significant 

feature of the pulsar radiation than the polarization of integrated 

pulse since one determines the other. Likewise the polarization of the 

micropulses is of greater importance than the polarization of the sub-

pulses. These, however, are very difficult to measure and only those 

pulsars with very low dispersion may be analyzed. The data are not very 

extensive but the micropulses seem to have a high degree of polarization 

as one would expect. There seems to be a variability of the polariza-

tion angle between adjacent micropulses which tends to reduce the 

polarization of the subpulse. In some cases the polarization angle will 

0 • 19 
make abrupt changes of up to 180 between two micropulses. 
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Summary 

As may be seen from the preceding discussion of pulsar observations 

the radiation from pulsars exhibit many strong characteristics. Without 

a structure to base an interpretation, they seem very niverse and con

fusing~ This confusion is due to the great variability of the radiation 

characteristics from pulse to pulse. In this work we assume that the 

variation has two sources. First is the variability in the conditions 

of the plasma in the region of emission. Here, the production of the 

radiation and the transfer of the radiation are highly dependent on the 

distribution of the plasma in this region. Since the plasma is thought 

to be flowing at a great speed, turbulence effects are possible which 

could lead to the resultant variability of the emission. The second 

cause of the variability may be thought to be due to changes in the 

orientation of the magnetic field of the star with ~espect to the ob

se:rver. Since the beam of radiation is tied to the orientation of the 

magnetic field, any changes in orientation due to rotation of the star 

or the generation of secondary magnetic fields by the current flow from 

the surface would produce changes in the observed radiation. With these 

assumptions we may first study a steady state problem and then add these 

aspects of the variability to produce the observed radiation. This is 

the plan of attack used in this study. 
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CHAPTER III 

RADIATION MECHANISM THEORIES AND A CALCULATION 

FOR THE SPECTRUM OF A LINEARLY 

ACCELERATED CHARGE 

At the present time there are about six viable theories to explain 

the source of the radiation from pulsars. 1- 6 That this many theories 

exist is due mainly to the inability of any one of them to give much 

more than a qualitative argument for its existence. The manner in which 

the theories are developed consists in first postulating a condition 

within the magnetosphere and showing that it is reasonable. This condi

tion is then shown to give rise to radiation, and the spectrum is com

pared to observations. The problem with these theories is that the 

equations involved are beyond present means of solution. This means that 

approximations must be made and this usually has a tendency of obscuring 

the results. The results then tend to be accurate to an order of magni

tude and they establish more the possibility than the probability. 

The purpose of this section of the study is to calculate the spec

trum of a linearly accelerated charge under the conditions thought to 

exist in the pulsar's magnetosphere. Although this would seem to be one 

of the simpler causes, it has previously been regarded as beyond the 

reach of mathematical techniques available. This view has changed, how

ever, with the introduction of fast Fourier transform techniques. Admit

tedly, even this calculation is dependent on simplifications which may 

31 
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modify the results in some manner. The calculation is, however, a step 

in the right direction. 

For this part of the study we will first look at some of the better 

accepted radiation mechanisms. We will then look at the development of 

the linear acceleration radiation mechanism. A calculation of the radi

ation spectrum will be presented using parameters assumed to exist in 

the magnetosphere of a neutron star. This spectrum will then be compared 

to observations. 

Radiation Mechanisms 

The radiation mechanisms may be divided into three categories: 

those which originate near the surface of the star, those that have 

their origin near the light cylinder and those sources outside the co

rotating zone. At the present time those theories which postulate 

sources near the surface of the star in the region of the open field 

lines seem to have the largest following. 

In the region outside the light cylinder we would enter the radia

tion zone (r < A) for the low frequency radiation of the pulsar. This 

low frequency radiation is caused by the star's rotating dipole field. 

This field is extremely intense and, since its frequency is much below 

the cutoff frequency for the surroudning plasma, its radiation pressure 

is thought to clear a cavity about the star. The boundary is determined 

by the point where the gas pressure of the surrounding interstellar 

matter is equal to the radiation pressure. Since the field strength of 

the radiation varies with the rotation of the star, the boundary of the 

cavity pulsates at the frequency of the pulsar. It is the pulsation of 

the boundary of the cavity which is thought to produce the radiation. 
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Since the charges have been accelerated to relativistic speeds by the 

pulsars electric field, the acceleration of these charges in the pulsa-

ting envelope will produce radiation. This theory has a number of prob-

lems. The most basic of which is the assumed density of the plasma at 

the boundary. 
7 

Calculations by Rees and Gunn show that the density of 

the plasma at the boundary would be much less than that proposed by 

8 
Lerche. Also the large distance from the star would mean that the mag-

netic field would have the configuration of a dipole. This would make 

asymmetries in the location of the interpulse very hard to explain. The 

great stability of the pulse profile would require a similar stability 

of the diffuse plasma in this region which is hard to realize physically. 

Further calculations show that radiation produced in this manner would 

produce a continuous spectrum which is not observed in the case of the 

9 
Vela and Crab pulsars. 

The theories predicting the source to be located near the light 

cylinder are attractive because they make available the relativistic 

beaming process to explain the narrow pulse of radiation. As is de-

scribed in a number of texts, when an isotropic radiation source moves 

with a relativistic velocity the radiation becomes anisotropic in the 

direction of the velocity vector. 10 The angular width of the radiation 

2 2 -~ 
is a function of the relativistic factor Y = (1 - v /c ) • If the 

relativistic factor is large enough, it can significantly enhance the 

radiation intensity in this manner. For pulsars with complex pulse pro-

files the radiation could originate in two or more regions which would 

produce different peaks. In this model the radiating region corotates 

with the star. Each time the velocity vector of the radiating region 

points at the observer he will see a pulse. This beaming effect is 
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independent of the manner in which the radiation is produced. 

Zheleznyakov has shown that if the spectrum of the radiation mechanism 

is written as a power series, the form will be preserved by this beaming 

h . 10 
mec anism. This is shown by the expressions for the intensity S(v) 

S (V) 

s (v) 

a = Ev 

a-3 (1 e . ')a-3a.· EY - cos sinl. V 

Moving Frame 

Observer's Frame 

where a is the spectral index, i is the angle between the rotational 

axis and the observer's line of sight, 8 is the angle between the veloc-

ity vector of the rotating source and the observer's line of sight and Y 

is the relativistic factor. The two emission mechanisms which have been 

proposed to explain the radiation are cyclotron radiation by electron 

bunches and a maser mechanism which uses the energy .levels of the elec-

1 . b h . f' ld 12 ' 13 tron revo ving a out t e magnetic ie s. Both of these mechanisms 

produce highly polarized radiation and it has been shown that the radia-

tion observed from these sources would change its angle of polarization 

in a manner similar to that observed. The light cylinder models are 

also beset with a number of problems. Foremost of these is the calcula-

tion which sets severe restrictions on the distance out to which the 

magnetosphere may rotate. It has been shown that the magnetosphere will 

only corotate out to a point that its velocity is less than the Alfven 

14 
velocity, the velocity of plasma waves. This drastically reduces the 

relativistic factor with a v/c ratio of .71 as a maximum. If this is the 

case ·the beaming mechanism will no longer be available to the theory. 

The predicted dependence of the beam width with the spectral index has 

not been observed either. Another problem deals with' the lack of depend-
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ence of the spectral characteristics with pulse period. Since the pro

posed radiation mechanism is dependent on magnetic field strength and 

the magnetic field is dependent on the distance from the star, the char

acteristics of the pulsar radiation should be a function of the period, 

the extent of the magnetosphere and the distance to the light cylinder 

being a function of this period. Finally, the observed stability of the 

pulse profile is hard to justify with the radiation source near the 

light cylinder. The magnetic field at this point is much weaker and the 

magnetosphere would be expected to be quite turbulent in this region. 

The third region of interest for producing radiation lies above the 

surface of the star in the area where the open field lines originate. 

Open field lines are the magnetic field lines which extend past the 

light cylinder and originate at the magnetic poles. This region has 

been proposed for a number of reasons. First is the great stability of 

the region due to the strength of the magnetic field there. Next is the 

large electric field which is expected to exist there and which should 

be capable of accelerating charges to relativistic speeds. Any multi

pole moments of the magnetic field would be evident close to the surf ace 

of the star and could manifest themselves as pulse structure. Explain

ing the charge separation in this region is a direct consequence of 

Julian's and Goldreich's magnetosphere model. 15 

The various radiation mechanisms for this region depend on the 

charges being accelerated to relativistic speeds from the surface of the 

star while following the open field lines. Three devices have been pro

posed for producing the radiation along with some variations. First is 

curvature radiation. In which case the radiation is produced by the 

acceleration given to the electrons as they travel along the curved path 
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of the magnetic dipole field lines. For this theory to be successful, a 

mechanism to produce coherence in the radiation must be introduced. This 

is needed to explain the intensity of the observed radiation. The usual 

method employed is to postulate some mechanism which will bunch the radi-

ation into regions with thicknesses less than a wavelength of the radia-

tion observed. In this case the charges in the bunch would emit radia-

tion approximately in phase so that their fields, not their intensities, 

would add. 
2 

The intensity of the radiation would then go as N (not N) 

where N is the density of the plasma. 

The variations in the curvature radiation theory are due to differ-

ent proposals for'the manner in which the charge bunches are produced. 

Sturrock proposed that electron-positron pairs would be produced in the 

intense radiation fields near the surface of the star. These pairs 

would separate in the strong electric field and produce an opposing field 

of their own. This field would reach a point where it would cut off the 

flow from the surface until the electron-positron pairs separation pro-

duced a field strong enough to produce secondary electron-positron pairs. 

This process would produce a fluctuating charge flow which could produce 

16 
bunching of the charges. Goldreich and Keeley proposed that a mecha-

nism based on the instability of charges moving in a curved path could 

h . 17 
produce bunc ing. Rudermann and Sutherland proposed that a two-stream 

instability could be capable of producing density waves in the plasma. 

Using a mechanism similar to Sturrock's for producing electron-positron 

pairs, they proposed that the escaping positrons would produce these 

waves in the slower moving plasma surrounding the star. 18 This work will 

investigate the creation of bunches due to the growth of instabilities 

in a supersonic plasma. The basic argument against bunching mechanisms, 
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however, is that the bunches will dissipate in a very short time, typi-

-8 
cally 10 second if the plasma has even a minimal velocity distribution. 

Another radiation mechanism which has been proposed is magneto-

b hl d . . 19 
remstra ung ra iation. The magnetic field about the star is strong 

enough so that the orbits which the electrons make about the field 

direction will have radii of the order of the deBroglie wavelength of 

the electrons. This means that the electron orbits should be treated 

quantum mechanically. The energy levels of the electrons in these orbit 

orbits are quantized in what are familiar as Landau levels. Electrons 

which are emitted from the surface of the star at an angle to the mag-

netic field will fall in one of these levels and transitions between 

levels will produce radiation. In this model the electrons interact 

with ions in the plasma (this model is not charge separated) and a reac-

ti on 

e (n) + (Z,A) + e (n') + (Z,A) + Y 

will take place. This reaction is capable of producing a continuum 

spectrum for the radiation rather than the discrete lines expected from 

the quantized levels. To produce the desired energy flux a maser mech-

anism is proposed which uses an inverted population of the electrons in 

the Landau levels as a source of the stimulated radiation. 

A third radiation mechanism, and the one which we will be dealing 

with in this work, is due to the linear acceleration of charges from the 

surface of the star. This mechanism was first proposed by Kaplan and 

. 20 21 22 
Eidmann and later discussed by Cocke and Melrose. Whereas Kaplan's 

and Eidmann's paper presented linear acceleration radiation for compari-

son purposes with curvature radiation, Cocke and Melrose made calcula-
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tions to give values to the upper and lower bounds of the frequency and 

signal strength. Both Cocke and Melrose proposed a maser mechanism to 

explain the observed intensity of the radiation. Both treatments suffer 

from a lack of an exact treatment of the spectrum of the radiation. Also 

the exact mechanism by which the electrons change their energy levels 

under the stimulated emission is not clear. The next section will offer 

a solution for the approximate spectrum. 

The model which we use makes a number of assumptions to facilitate 

the calculation. We treat a situation in which electrons leave the sur-

face of the star under the influence of an electric field which may have 

12 
values up to 10 V/m but which is probably smaller than that. The mag-

netic field is treated as having very little curvature so that the tra-

jectory of the electron will be linear. The electric field is treated 

as being constant although this is most probably not the case. Since 

12 . 
the field strength is of the order of 10 V/m the motion of the electron 

will be relativistic. In the next section we derive the kinematic 

expressions needed to calculate the energy spectrum. 

Equation of Motion for Linearly 

Accelerated Charge 

The relativistic treatment of a charge moving under the influence 

of an electric field has been treated a number of times in the litera-

23 ;24 
ture. We wish to relate the kinematic expressions for position, 

velocity and acceleration· inthe observer's frame to the acceleration of 

a particle in its moving reference frame. We choose the charge's frame 

as that in which the charge is momentarily at rest. The charge's frame 

is moving parallel to both the accelerating electric field and the 
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magnetic field. The Lorentz transformation of these fields to the 

particle's frame leaves them unchanged. In that case we get an acceler-

ation of the charge in this frame of 

-+ 
-++ F 
a = 

m 

-+ 
e E 

m 

where e and m are the charge and mass on the electron. The theory of 

(:1) 

relativity may be formulated in a manner which introduces four component 

vectors representing position, displacement, velocity and acceleration 

in space-time. If transformations are made between inertial reference 

frames in such a manner so as to preserve the speed of light, we find 

that the kinematic quantities have scalar products which are invariant. 

i 
Thus for a change in the position vector x = (ct, x, y, z) the distance 

given by (our metric here is g~ 
l 

(1, -1, -1, -1)) 

must be the same in all inertial systems. The 4-vector velocity is 

(2) 

formed by taking the derivative of the position 4-vector with respect to 

the change in position of the particle in 4-space, i.e. ds. Noting that 

ds c dt (i dx2 dy2 - dz2 
c dt ~ - -- - -- = dt dt dt 

( 3) 

c 

we get the 4-velocity 

i dxi 

[ 
-+ 

l 
1 v 

u = ds 
v1 c v 1 

' 2 2 (v/c) - (v/c) 

(4) 

which.has the magnitude 
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u u. = 1, 

]_ 
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(5) 

for all inertial reference frames. Likewise we may find the 4-acceler-

ation defined as 

-+ 
-+ dv 

dui v . -
i dt 

a -- , 
ds 3 v2/c2}2 c (1 -

where the magnitude in 4-space is 

i 

-+ 2 -+ -+ 
dv v dv v -+ -- -- + 2v dt 2 dt 

c c 
2 2 2 2 

c (1 - v /c ) 

+2 
a 

a a. 
]_ 

= - --
4 

c 

-+ 
dv . -
dt 

(6) 

( 7) 

+ Here a is the acceleration in the reference frame where the particles 

instantaneous velocity is zero. We use the invariance of the accelera-

tion 4-vector to relate acceleration in the particles instantaneous 

inertial frame to the observer's frame. For our problem the velocity 

and acceleration are parallel so the acceleration is given by 

[ 
-+ 

+ l -+ dv dv 
v • -

i dt dt 
( 8) a 3 2 2 2 ' c 2 (1 21 2 2 

. 
c (1 - v /c } - v c 

The scalar product 
i 

gives a relation for the acceleration in a a. the 
]_ 

observer's frame to the acceleration in the charges instantaneous rest 

frame 

+ 
a = 

dv 
dt 

( 9) 

Noting that the expression on the right is an exact differential we have 

by integrating 



[l -

v 
2 1/2 
~] 

2 
c 
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= + a t, (10) 

where we assume the initial conditions t 0, v 0. Solving for veloc-

ity 

v 
dx 
dt 

[l + 

+ a t 
+ 2 1/2 

(a t) J 
c 

( 11) 

We then substitute this expression in the expression for the accelera-

tion of the particles rest frame, eq. 9, to give us an expression 

relating the acceleration of the particle in its rest frame to the ob-

served acceleration. 

a 
dv 
dt 

[l + 

+ a 
+ 2 3/2 

(a t) J 
c 

By integrating the expression for the relative velocity of the two 

(12) 

frames we may get the position of the particle in the observer's frame. 

x(t) 
2 

c 
+ 

a 
~l+ 

2 
c 
+ 

a 
(13) 

where we have the initial conditions x = O at t = O. With these kine-

matic expressions in the observer's frame we can calculate the spectrum 

using the Lienard-Wiechert theory. 
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Retarded Radiation Fields and Their 

Spectral Analysis . 

Finding the spectrum of the radiation from an accelerated charge 

consists of first finding the expression for the radiated or accelera-

tion field. Next, finding the energy of this field and then taking the 

Fourier transfonn of the energy. Care must be taken to account for the 

finite speed of propagation of this radiation. The expression for the 

radiated electric field due to accelerated charges is given by the 

25 
Lienard-Weichert theory as 

-+ 
E(x,t) = e 

c { 
~ x [n-sJ x 1 } 

~ + 3 
(1-n·S) R 

RET 

+ 
-+ • 

(14) 

where n is the unit vector in the direction of the observer, S and S are 

the velocity and acceleration divided by the speed of light, R is the 

+ • 
distance to the observer and RET means that the time at which S and S 

are evaluated is equal to the time of observation of the radiation minus 

·the time of propagation. 

The angular distribution of the radiated power is given by 

dP 
dQ == c [R E(x,t) ] 2 , 

41f 
(15) 

. -2 
where dQ = dA R solid angle into which the power is radiated. The 

differential energy is then 

de: 
dQ = c 

41f 
J ro IR E(x,t} 12 dt • 

_co 

If the Fourier transform of the field is given by 

(16) 



E(x,w) 
1 

& 

then Parseval's theorem gives us 

iwt 
dt E(x,t)e , 

dE 
dQ 4~ f _: IR E(x,w) \

2 
dw . 
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(1 7) 

( 18) 

This means that the integrand is the energy per unit angle per unit 

frequency, the quantity of interest. Substituting the expression for 

the retarded electric field, eq. 14 we get 

2 
d E 

dQdw 

2 
e 

2 
8TI C 

I CO [n-A~ A~-+ !}] ---~ _l__(_I_-i:- s). x µ 

-+ A 3 
j -co (1 - S•n) RET 

2 

iwt 
e dt (19) 

To evaluate the integral we must convert the observer's time to the re-

tarded time. To do this we suppose that the observer is very far away 

from the region in which the radiation is being emitted. In this case 

the angle of observation is constant in time and we may make the approxi-

mat ion 

t = 

Origin 
r (t I) 

-+ 
R' (t I) 

t' + 
c 

e 

-+ -+ A 

R - r(t') •n 
t' + 

c 
(20) 

Observer 
• 
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Here n is the unit vector to the observer, r(t') is the position of the 

charge R is the distance from the origin to the observer, R(t') is the 

distance from the charge to the observer, t is the observer's time and 

t I iS the Charge IS time• r_;:'he integral in terms Of the Charge IS time 

then becomes 

I 
2 

-+ A 

-+ R-n • r (t') 
2 2 " ...... -+ • iw(t' + ) 

d I c 
dt' 

nx{ (n-8) xi3} c (21) 
dQdw 2 -+ " 2 

e 
4'IT c (l-8• n) 

-+ -+ rl- • 
where r(t'), 8(t') and S(t') are the previously derived kinematic ex-

pressions, eqns. 11, 12, 13. 

-+ -+ • 
For the geometry of this problem we have r(t'), S(t') and 8(t') 

all parallel. In this case the expression in the numerator becomes, 

using the identity for the triple cross-product and the fact that 
-+ 

-+ • 
8 ( t' ) xS ( t' ) = O, 

-+ -+ -+ -+ 
-).-. "' -1'- • 
nx{n-8) x8} = nx (nxs) 

A -+ 0 

nx (SxS) = s (n cose - in (22) 

-+ . 
Note that this is a vector in the plane of n and S. Since for large 

distances the angle of propagation is nearly constant we may remove the 

vector factor from the integral and evaluate its absolute value giving 

-+ 

In cose - Bi 2 . 28 sin (23) 

and the integral where we have also removed the phase factor EXP(iw R) 
c 

2 
e 

2 
41T c 

. 2 
sin e 

. iw(t - n·r (t)) 
c 

dt 8 e 
2 

(1 - 8 cos6) 

2 

(24) 



45 

In order to find the spectrum we must evaluate this integral. This 

problem is intractable using normal methods. "However, with a change in 

variables it lends itself to solution by numerical methods. The develop-

ment of a fast Fourier transform algorithm allows us to evaluate this 

integral in a rather short period of time at a number of different 

angles of observation with a minicomputer. In order to do this calcula-

tion, however, we must change the argument in the exponential to the form 

i~T. Substituting the kinematic expression for position in the exponen-

tial we have 

cose 
c 

[c: ~ 1 + 
a 

+ 2 
(a t) 

c 

2 
c 
+ a 
} . (25) 

We first separate out the phase factor EXP(iw 
c 

cos8) and then make the 
+ 

substitutions 

cw 
I T' + a 

a 

= at and T = T' - cos 8 l 1 + T' 2 
c 

This will give us the exponential with an argument of iQT. 

The inverse transformation is 

at 
c = T' 

. 28 sin 

. 2 
sin e 

(26) 

(27) 

This gives us two roots to choose from. In order to choose the correct 

one we look at the transformation's behavior about the angle e = O. 

From the formula for the change in variables we see that the inverse 
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function should be 

T = T' - ri + T 12 , T' = (28) 

Taking the limit of the inverse transformation with the positive root we 

get a discontinuity at e = 0 but the limit of the transformation with 

the negative root gives the correct form. 

Using this inverse transformation we form the differential_dT' 

a dt 
c = dT' = (29) 

The expressions for the kinematic quantities in the transformed variable 

are 

f3 

. 
f3 = 

, / 2 2 
T - cos8 T + sin 8 

/ T 2 + sin2 e - T cos8 

+ a 
c 

. 6 
sin 8 

Substituting these in the integral we have 

2 
d I 
dstdw 

2 . 2 
e sin e 

2 
4TI C 

4 inT is-2cos8 
dT sin 8 e e 

/ 2 2 ;2 2 2 2 
T +sin 8 ( T +sin 8 (l+cos 8) - 2Tcos8) 

(30) 

( 31) 

2 

(32) 
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. 
where the limits of integration reflect the fact that S = O for all t<O. 

Letting u = T + cos8, du = dT and T = u - cos0. Which gives the inte-

gral 

= 
d . 4 ir2u 

u sin 8 e 
2 

J00

/;',2 _2ucos8+1 [/u2-24cos8+1 (l+cos 2 8)-2ucos8+2cos 2e] 2 
o~ 

( 33) 

The integral is now in a form which may be transformed using the FFT 

algorithm. The program is given in the Appendix with an explanation of 

its use. The program was run for every 5 degrees of angle and the re-

sults are given in the next section and compared with the experimental 

data. 

Results 

From the program we were able to bet both an angular and a frequency 

distribution of the radiated energy. The most obvious aspect of the data 

is that the shapes of the distributions are invariant to the accelerating 

·field, which enters the problem only as a scaling factor on the frequency 

axis. The log-log plot, Figure 1, of the energy spectrum shows that the 

energy falls off very slowly for low frequencies and then drops off as an 

increasing power of frequency until it falls off as a power of -2.5. 

There is no low frequency cutoff. 

The angular distribution, Figure 2, shows that the radiation pattern 

depends on the frequency in two ways. First, the angular width of the 

beam is an inverse function of the frequency being extremely broad for 

the low frequencies and very narrow for higher frequencies. Second, the 

direction of the maximum propagation is also a function of frequency. 
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As may be seen from the polar plot, the angle between the charges veloc-

ity vector and the radiation's wavevector is ?n increasing function of 

0 1 . 0 frequency. It ranges from 60 for ow frequencies to 90 for high fre-

quencies. There is negligible propagation in the forward direction as 

ld b d h . . . . 10 
wou e expecte from t e severe restriction imposed by the sin 8 fac-

tor in the expression. 

The first impression given by the results is that something is 

wrong. The literature on the angular distribution of radiation_ by a 

linearly accelerating charge indicates that for large relativistic fac-

tors B, the radiation pattern will be angled in the forward direction 

. 28 26 from the Larmor pattern which has a sin dependence. This is 

usually explained by looking at the integrand for the expression giving 

the energy radiated per unit area 

•2 2 a . e µ sin 
5 . 

[1 - B case] 

When the relativistic factor B approaches 1, the denominator of the ex-

pression becomes very small for small values of 8. The expression then 

becomes very large and this argument is used to show that the radiation 

is beamed in the forward direction. In our case, however, the acceler-

. 
ation and velocity factors are related with B going to zero faster than 

B goes to one. This means that the expression will go to zero for high 

velocities rather than become large. It is noted that nearly all the 

radiation takes place in the forward direction approaching 90° for the 

higher frequencies. For high frequencies the angular distribution of 

. 28 the radiation approaches the Larmor from which goes as sin • The 

explanation for this is found by looking at the shape of the radiated 
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pulse in time. We see that the pulse strength increases in a very short 

time to a maximum and then falls off at a much slower rate. At the be

ginning of the particles trajectory the velocity is non-relativistic and 

the acceleration is its maximum. This rapid increase in .field strength 

would be expected to give rise to a broad band of radiation and, since 

the particle's speed is relatively low, the angular distribution would be 

close to the Larmor form. After the particle reaches relativistic speeds 

the acceleration, and therefore the field intensity, falls off more 

gradually. It would be expected that this change in field strength 

would give rise to low frequency radiation but now the particle is rela

tivistic so we would expect a more forward type radiation pattern. This 

explanation would seem to account for the broad pattern for the low fre

quency signals and the Larmor-like pattern for the higher frequencies. 

This effect, however, is not what is observed in pulsar radiation. The 

width of the pulse seems to be a function of frequency with the higher 

frequency pulses being narrower than the lower frequency pulses. This 

is also shown by looking at the separation of the components of two pulse 

profiles. The separation of the pulses is an inverse power function of 

the frequency of observation. The separation index of a typical double 

peaked pulse is about -.25 where 

-.25 
v 

and 8cj> is the angular separation between the peaks and v is the fre

quency. This means that the separation of the components will decrease 

with frequency. If the double peak is thought to be due to the sweeping 

of a radiation cone across the line of sight of the observer, so that he 

sees both lobes of radiation, then observation tells us that the higher 
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frequency radiation must be emitted at smaller angles to the charges 

trajectory than the lower frequency signals. We also note that the 

angular width of the pattern is much too wide, being as large as 60° for 

the lower frequencies. Observed pulse widths are usually around 10° of 

the pulse period. Further, whereas observations never show double 

0 
pulse profiles having peaks separated by more than about 40 , the linear 

acceleration model has separation of lobes of 120°. 

The answer to these discrepancies is in the assumption of a constant 

electric field accelerating the charges. In reality we would expect the 

field to be a strong function of distance from the surface of the star. 

If linear acceleration is to be the mechanism to produce the radiation, 

the electric field will have to influence the charge in such a way so as 

to accelerate it at a relativistic velocity. In this manner we will get 

the observed forward beaming effect. On the other hand the angular radi-

ation pattern may be determined by the radiative transfer characteristics 

of the plasma in the magnetosphere. In the absence of a maser mechanism, 

which could modify the spectrum and the radiation pattern, linear accel-

eration due to a constant field does not agree too well with observations 

of the radiation pattern. 

The calculated spectrum of the accelerated charge is somewhat 

better however. The upper limit on the electric field due to the rota-

12 
tion of the stars magnetic field is 10 V/cm. The actual value is 

probably quite a bit less than this since this figure is for a vacuum 

surrounding the star. By fitting the calculated curve with typical 

spectral data we find similarities if we assume a field strength of 105 

V/cm. This field would produce a spectrum which has a spectral index 

which ranges from -1 to -2.5 from .1 GHz to 10 GHz. This field is quite 



reasonable and might be expected as the average field in the region of 

the magnetosphere where the radiation is produced. 
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The spectrum does not exhibit the low frequency cutoff which is 

often observed in the spectra of pulsars. It is thought that this cut

off must be due to the radiation mechanism since it is not exponential 

in form which would be the case if the absorption of radiation by the 

plasma was the cause. The low frequency cutoff could be caused by a 

field which produced a radiation field which increased at a slower rate 

than our constant field produces and decreased at a faster rate. 

In the next section we will take a look at the manner in which the 

plasma effects the radiation as it passes through the magnetosphere and 

how it will alter the form of the spectrum. 
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CHAPTER IV 

RADIATIVE TRANSFER 

Before the radiation from the emitting region of the pulsar can 

reach us, it must pass through the plasma surrounding the star. This 

plasma may have a frequency dependent effect on the transmission of the 

radiation, which would alter the shape of the spectrum and change the 

polarization pattern. The transmission properties might also be angle 

dependent, which could change the beaming pattern of the radiation. 

This part of our work will make a study of the transmission properties 

of the plasma and show where they could have an effect on the observed 

radiation characteristics. 

The manner in which the plasma filters the signal is highly depend-

ent on the orientation of the signal's fields with respect to the plasma 

fields and velocities. This is due to the angular dependence of the 

~ ~ 

velocity-dependent term in the Lorentz force, V x B, and the relativis-

tic effects which would be expected when the plasma travels at relativ-

istic velocities. For this reason the model of the magnetosphere which 

we use is very important in determining the transfer function for the 

radiation. The model which we have proposed is one in which the charge 

separated plasma streams along the very strong poloidal magnetic field 

of the star at highly relativistic velocities. The observed radiation 

is beamed along the magnetic field so that its wave vector is at a 

small angle to both the velocity of the plasma and the magnetic field. 

56 
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The interaction between particles is also expected to be angle de

pendent due to the magnetic field. For fields of the order of 1012 

Gauss and particle densities of 1012 cm- 3 we know that the Larmor radius 

for relativistic electrons is 

= mvc 
e B 

cm, ( 1) 

whereas the average particle separation is 10-4 cm. This means that the 

interaction between particles perpendicular to the magnetic field is 

negligible. The interaction between particles parallel to the magnetic 

field is probably much greater, allowing for shock waves which have been 

proposed. The particle separation and the relativistic velocity of the 

plasma as a whole suggest that we can ignore collisions in calculating 

the equation of motion for the electron gas as a first approximation. 

These conditions hold for most polar cap models and .so would be applica-

ble to other models of radiation generation. 

We will first review the manner in which dispersion relations are 

calculated for a plasma. 

Dispersion Relations 

As a radiation field passes through a plasma the radiation fields 

will interact with the charged particles accelerating them. This 

acceleration will in turn produce fields which in turn modify the radia-

tion. The resultant radiation modes transferred by the plasma may be 

found from the dispersion relation for the plasma. This expression 

relates the frequency, w of the Fourier components of the signal to its 

wavevector, k. By finding an expression for the wave vector "k" as a 

function of frequency we can tell whether the signal will be transmit-
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ted, reflected or absorbed by the plasma. The wave vector "k" may be 

complex so k = kR + i k is substituted in the plane wave expression 
e Im 

E E 
0 

e 
i (k·x - wt) (2) 

This will give an exponential decay for the imaginary part of the wave-

vector. 

The study of this interaction between the fields and charged parti-

cles is an important part of plasma physics. Plasma physics takes the 

equations which deal with many-body systems and combines them with the 

equations which deal with the interactions between electromagnetic 

fields and charges. It then attempts to solve the equations simultan-

eously to give a description of the system. This problem is very com-

plicated due to its non-linear nature, i.e., the fields producing 

alterations in the position and velocity distributions of the charges 

which in turn alter the fields. The normal approach to this problem is 

to assume that the fields produce only a small disturbance to the 

equilibrium configuration and then linearize the equations, ignoring the 

second order interactions. 

The many-body theory used to describe the system- is usually hydro-

dynamics or statistical mechanisms. The hydrodynamical approach is 

actually a special case of the statistical mechanical approach which 

assumes the system is in thermodynamic equilibrium so that the distribu-

tion function is Maxwellian. The magnetohydrodynamical approach in the 

one used here. We take this approach because of the lack of interac-

tions perpendicular to the magnetic field and the expected low tempera-

ture. The theory treats the interactions of a number of species of 

charged particles, e.g. electrons and protons, with both static and time 



dependent electromagnetic fields. 

The equations describing the non-relativistic fluid approach are 

the equations of motion of the charged species i, i = 1,2, •.. , N, 

+ 
. avi + + + 

m. p . {-"' - + (v. • V) v. } 
J_ J_ 0€ l l 

+ 
e. p. {E. + 

l l l 

+ 
V, 

l 

c 
+ + 

x B} - Vp. 
J_ 

+ 
m,p,v.v.) 

l l J_ l 

the equation of continuity ignoring a sink term, which indicates the 

recombination of charges 

o, 

Maxwell's equations 

N + 
+ + 1 aB 

4'IT I e.p. VxE = , 
i l l c at 

41r N 
+ 

+ + + 1 aE 
0 VxB -I ep.v, + 

at 
, 

c i J_ l c 

and the equation of state for the different charged species 

P. 
l 

y, 
l 

C.m.p. 
l l l 

. .th . d where i refers to the i species, e. an m. refer to the charge and 
l J_ 

+ 
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( 3) 

(4) 

(5) 

(6) 

mass of the components of the plasma, v. is the velocity of the plasma, 
l 

p. and v. are the partial pressure and the collision rates for the ith 
J_ l 

-+ + 
species of the plasma, E and B are the electric and magnetic fields in 

the plasma and Y. is the ratio of specific heats at constant pressure 
J_ 

and constant volume for the species of the plasma. The expression on 

the left side of the equation of motion. is the convective derivative 
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which gives the time rate of change of the velocity of a volume element 

of the plasma at a fixed point in the plasma r,ather than the derivative 

of the velocity of a fluid element as it moves through the plasma. 

Simultaneous solution of these equations specifies the state of the 

plasma. 

As an example of the manner in which the dispersion relations are 

derived from these equations and as a non-relativistic limit for our 

calculation we will review the Hartree-Appleton theory for transmission 

of electromagnetic waves through a magnetoactive plasma. 

Hartree-Appleton Equation 

The propagation of radio signals in a plasma became of interest in 

the 1920s when it was noted that short wavelength radiation could be re-

fleeted from the ionosphere producing long distance communications links 

by a process which has come to be known as skip. This problem, which 

dealt with the propagation of electromagnetic waves through a neutral 

plasma with an embedded magnetic field due to the Earth's dipole field, 

1 2 
was addressed by Hartree and Appleton between 1925 and 1932. 

In our treatment we will deal with a neutral plasma with a dissipa-

tive component, where the wave vector of the incident radiation is at an 

angle e to the B field. The motion of the ions in the plasma will be 

ignored due to their large mass as compared to the electrons. We will 

also assume a diffuse plasma with a low temperature so that we may 

ignore the pressure gradient term in the equation of motion. Since we 

are dealing with a neutral plasma we have constant charge density so 

that the continuity equation is trivial. This leaves the Maxwell's 

equations and the equation of motion to define the fields and the 
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velocity of the electrons in the plasma. 

The method of solution of these equations is to first assume that 

the values of E, B, v and p are not changed very much from their equi-

librium values by the passage of the radiation fields. We, therefore, 

treat these variables as if they consist of a steady state part and a 

perturbation so 

-+ -+ -+ 
E = E + El p = Po + Pl 0 

(7) 
-+ -+ -+ - .... ... 
B B + B v = v + v1 0 0 0 

where the subscripts "O" and "l" refer to the steady state and the per-

turbed parts of the variables, respectively. For our problem there is 

no steady state field or velocity and the density is a constant so E , 
0 

v0 and p 1 are zero. Substituting these expressions into the equation of 

motion for the electron gives 

= e -+ 
-E 
m 1 

+ 

-+ -+ 
e vl -+ vl -+ -+ 
[~ x B + ~ x B ] - vv 

m c o c 1 1 
( 8) 

The next step is to linearize the equations by dropping terms which are 

second order in the perturbed quantities which gives 

-+ 

= 
eEl e -+ -+ -+ 

+ ~ v x B - vv 
m me 1 o 1 

(9) 

This gives an equation which relates the perturbed electric field and 

velocity of a volume element of the plasma. From Maxwell's equations we 

derive the wave equation in the usual manner to give another expression 

relating the field and velocity vectors of the plasma. Using the 

expression for current 
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-+ 
poevl, (10) 

we have the wave equation 

-+ 
-4Tr dVl 
--2 ep at 

c 

2-+ 
1 3 El 
---
c2 3t2 

( 11) 

These two vector equations relate the components of the perturbed elec-

tric fields and velocities in a fluid element of the plasma. The solu-

tion to these equations defines the state of the plasam. 

We first chose a convenient geometry to describe the system where 

the steady state magnetic field B lies along the z axis and the wave
o 

vector of the radiated field is at an angle e with respect to B field and 

lies in the x-z plane. 

x 

-+ 
k 

z 
B 

0 

To solve the differential equations we assume that the solutions may be 
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expressed as Fourier transforms in space and time. We have the trans-

forms 

F [E (~,t) J 
x,t 

-+ -+ 
E (k, w) 

-+ -+ 1 00 -+ co -i (k • x-wt) -! dx f dt E(x,t)e 
2TI -co -oo 

(12) 

-+ -+ 
1 00 -+ co -i (k•x-uJt) 

f dx f dt v(x,t)e 
2TI -oo -oo 

[ -+ 1 F v(x,t) _, 
x,t 

-+ -+ 
v (k, w) 

and the inverse transforms 

-+ 

Fk [E(k,w)] ,w 
-+ -+ 
E (x, t) 

co -+ 00 -+ i (k•x-wt) 
f dk f dw E(k,w)e 

-00 -CO 

(13) 

co -+ 00 -+ -+ i(k•x-wt) 
f dk f dw v(k,w)e . 

-00 -co 
Fk [v(k,w)] ,w 

·+ -+ 
v (x, t) 

The transform of a time derivative of the E field and velocity give the 

expressions 

-+ -+ 
-iwv (k ,w) , (14) 

and the transform of the vector operator acting on the E field gives 

2-+ [-+ -+ -+ -+ -+ -+ 
-k E(k,w); F V(V•E)] = -k(k•E) 

x,t 
(15) 

Taking the Fourier .transform of the equation of motion and the wave equa-

tion we get two algebraic equations in k and w relating the Fourier com-

ponents of the E field and the velocity of the plasma. The equation of 

motion is 

. -+ -+ -iwv + vv 
1 1 

and the wave equation becomes 

-+ 
eEl e -+ + 
--+-v xB, 

rn me 1 o 
(16) 
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-+- -+- -+ 2+ 
-k(k•E) + k E1 = 

2 
4Tiep -+ w + 

2 iwvi .+ 2 El (17) 
c c 

-+ + 
where E and v are functions of the wave vector and the angular frequency. 

The equation of motion may be decomposed into three vector component 

equations and solved for the velocity components giving the expressions 

v 
x 

v 
y 

v = z 

ieE 
(w+iv) x 

~~-'-~--'~~--~- -
[(w+iv) 2 - w~] m 

ieE WB eE (w+iv) v v 
~~-'-~---''--~-____.I._+~~~~~~~- --L. 

[ (w+l. v) 2 - w2] m [ (w+i· v) 2 - w2] m 
B B 

i 
(w+iv) 

eE 
z 

m 

where the cyclotron frequency wB is given by 

= eB 
me 

(18) 

(19) 

These equations relate the components of the electric field to the com-

ponents of the velocities of the electron fluid. 

By using the wave equation for the electric field in a charged 

medium we can write three more relations between the fields and the 

velocities giving a complete set. Normally the wave vector is perpen-

-+ -+ 
dicular to the electric field so that the k•E term is zero. In this 

case, however, the oscillatory motion of the electrons along the wave 

vector give rise to an electric field component parallel to the wave 

vector. The wave equation then gives us the three equations 



and 

22 .2 . ) 222 -c h (E sin e + E case sine + (c h -w )E = 
x z x 

2 2 2 
(-c k -w ) E 

y 
47repiwv , 

y 

2 2 
-c h (E sine case + E 

2 2 2 2 
cos e) + (c k -w )E 

z x z 

47repiwv 
x 

47repiwv • 
z 
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(20) 

By substituting the expressions for the velocity components in the wave 

equations we arrive at three equations relating the components of the 

electric field. Making the substitutions 

y = 

x 

u = 

WB 

w 

2 
w 
_E 

2 
w 

iv 
1 + w 

s 

T 

D 

and defining the index of refraction 

n 

we arrive at the matrix equation 

c 
v 

p 

= 

= 

1 

l 

c k 
w 

x u - 2 2 u - y 

x - -u (21) 

x y 
2 2 

u - y 

(22) 
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2 2 
iD 

2 . 
cos8 n cos e - s -n sine E 

x 

-iD h2 - s 0 E 0 . ( 23) 
y 

2 2 
sine -n cos 13 0 2 . 28 n sin - T E 

z 

For the fields to be non-zero the detenninant must be zero. This gives 

the equation 

2 2 .2 2 2 22 .2 22 
n (Tcos 8 + Ssin 8) + n [TS(l+cos 8) + (S -D )sin 8] + T(D -S ) 0 (24) 

2 2 
which is quadratic in n . Solving for n we get the expression 

2 
n 

x 1 - ~~~~~~~~---~~-~~~-~ 
2 . 28 4 . 4 

_Y_s_i_n __ +_ [Y sin 8 
u - ( ) 2 

2 U-X 4(U-X) 

2 2 11 
+ Y CO£ 8] 

as the dispersion relation for radiation traveling through a neutral 

(25) 

plasma whose magnetic field makes an angle 8 to the wave vector of the 

radiation. From this equation we see that we get the condition for 

reflection, n = 0, when 

2 2 2 
T (D - S ) Q I (26) 

or equivalently 

x 1, x 1 - Y, or X 1 + y I (27) 

giving us the cut off frequencies of 
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w = w ; 
0 p 

w = 
± w ± /w2 + 4w2 

B B p 
2 

(28) 

Note that the cut off frequency is indepenoent of the angle of propaga-

tion. The various cut off frequencies correspond to the modes of propa-

gation corresponding to ordinary and extraordinary waves and left and 

right polarization. 

The resonances in the plasma occur when the phase velocity of the 

wave goes to zero or, equivalently the index of refraction goes to 

infinity. In this case the coefficient of the fourth order term must be 

zero. From the determinant's characteristic equation we find the angle 

dependent expression for the resonance 

2 2 
2 T W WB p 

(29) tan e = = - 1 + s 4 2 2 2 2 
w - w w - WBW p 

From this we find the standard results for the propagation across the 

steady state magnetic field 

w = 
2 

w 
p 

the ordinary wave 

and propagation parallel to the B field 

w = the extraordinary wave. 

Relativistic Treatment of Dispersion Relations 

Note that the previous treatment did not deal with the magnetic 

radiation field, B1 . This wqs due to the fact that the particle 

(30) 

(31) 



velocity in the unperturbed plasma was zero or very low and the second 

order terms were dropped. For the case of plasmas which move at rela
v 
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0 tivistic speeds the ~ x B1 term in the equation of motion becomes sig-

nificant and the radiation field B1 must be included in the treatment. 

This section of the study will look at the way in which relativistic 

effects are treated. 

In passing it should be noted that a number of recent treatments of 

h . bl . . 3,4 t is pro em are inconsistent. The line of attack used in these 

works was to solve the problem in the rest frame of the plasma and then 

transform to a system at rest. This will have the effect of Doppler 

shifting the frequency of the radiation, increasing the density of the 

plasma due to Lorentz contraction, and increasing the mass of the elec-

trons. The usual treatment then was just to substitute the Lorentz 

transformed expressions in for these parameters in the non-relativistic 

expression. This approach, however, ignores the fact that the fields 

in the original derivation are also transformed since they have compon-

ents which are transverse to the direction of motion. 

The manner in which we approach the problem looks at it from the 

laboratory frame of reference. In this case the equation of motion for 

a charge moving at relativistic speeds is 

d~ [-;:l'l=m +=v =2 =2] 
vJ v /c 

.. 
... v 

e(E + 
c 

.... 
x B) (32) 

where we ignore the pressure and collisional terms from the :1on-rela.tiv-

istic expression. This means that we are ignoring particle interactions. 

For the hydrodynamical approach we wish to observe the interaction 

of a volume element of the plasma rather than following a volume element 
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through the plasma. For this reason we use the convective fo:nn for the 

derivative of momentum 

where 

d + 
mo dt(Yv) 

y 

= 
a + + + + 

()t(Yv) + v•IJ(Yv) 

1 

Expanding this expression we get the equation of motion as 

+ 
+ aY av + + + + + + 
v ~ + Y ~ + v(v•IJY) + Y(v•V)v at at = 

e 
m 

0 

+ 
+ v + 

(E + - x B) • 
c 

( 33) 

(34) 

Again we treat the variables of the problem as if they are only slightly 

disturbed from equilibrium so that they are expanded in a large steady 

state component and a small perturbed contribution, eq. 7. Substituting 

these expressions in for the variables v, E and B we have the expression 

e 
m 

0 

+ + 
The relativistic factor Y is also a function of the velocities v 0 +v1 

y = 
i{_ 

1 

(v +v ) 2 
0 1 

= 
I 

V1 -

1 

v 2 + 2:t ·~ 
0. 0 1 

Since v is a constant in time the derivative of Y is 
0 

+ v2 
1 

(35) 

(36) 



3Y 
3t 

+ + 
(v +v ) 

0 l 
2 

c 

and the space derivative term of Y is 

-+ + + 
(v +v )•VY 

0 l 

+ 
3v 
_l_ 
at 

+ 
The full expanded version of the convective derivative of Yv is 

+ 
v 

0 -v • 
2 0 

c 

+ av 
+ y __ l + y3 

at 

+ 
v 

+ 
3vl v3 
--+' at 

+ 
v 

0 + -v • 
2 l 

c 

+ 
v 

+ [ 0 v -
0 2 

+ ->- + 3 + 
• V(v •v )] + Y v 

0 1 0 
c 

+ 
v 

+ 
vl + 
-v . 

2 0 
c 

-+ 
v 

[--2. • 
2 

c 

+ 
v 

+ 
vl + 
-v. 

2 1 
c 
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(37) 

( 38) 

+ y3 + [ 1 v -
0 2 

c 

+ [ 1 v -
0 2 

c 

++ +] .3+[0 
• (V v ) • v • Y v -

1 1 l 2 
+ + + ] • V(v ·v) 

0 1 

+ 
+ Yv 

0 

+ 
v 

+ [ 0 v - • 
1 2 

c 

++ • v v + 
1 

c 

(39) 

By Fourier transforming the expression for the convective derivative 

we get an algebraic expression in terms of the wave vector and angular 

frequency. By dropping the second order terms in the perturbed quanti-

ties we get the expression for the linearized equation of motion 

+ v v 
-iwr3 0 ct .t > - iwYt + iY 3 0 ct ·k) ct -~1 > + iY(t ·hl~ 

2 ol 1 2 o o o l 
c c 
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= 
e-+ e-+-+ e-+-+ 

- E + -- v x B + -- v x B1 m 1 m c 1 o m c o 
(40) 

0 0 0 

Note that we have set the steady state part of the electric field to 

zero. We db this since we are dealing with the transfer of the radia-

tion outside of the acceleration zone, where the large electric fields 

accelerate the charges. 

We choose the geometry of the problem so that the wave vector lies 

in the x-z plane and makes an angle of 8 with the steady state cornpon-

ents of the velocity and the magnetic field. 

-+ 
Let B 

0 

x 

y 

= B k and ~ 
0 0 

= v k where 
0 

-+ 
k 

k = k sinei + k cosej 

A A A 

i, j, and k are the unit vectors in the 

x,.y, and z directions. We now have the algebraic form for the equa-

tion of motion 

- iw Y3 

-+ 
v 

0 
2 vovlz 
c 

-+ 
v 

0 
-v v 

2 .o lz 
c 



-+ -+ 
v 1 x B 

.o 

,., 
v B i 

y 0 

= e-+ e-+ -+ e-+ -+ 
- E + -- v x B + -- v x Bl 
m 1 m c 1 o m c o 

0 0 

,., 
-v B i + v 

0 y 0 
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(41) 

(42) 

The equation of motion gives us a relationship between the components of 

the velocity, the electric and the magnetic fields. If we solve the 

three component equations for the velocity components we get the expres-

sions 

where 

v 
x 

v 
y 

v 
z 

y = 

= 

= 

-ie 
Ym 

2 
(1-Y ) (v kcos8-w) 

0 

-ie 
Ym 

2 .• 
(1-Y ) (v kcos0-w) 

0 

-ie E 
z 

Y3m (v kcos8-w) 
0 

w 
B 

(v kcos0-w) ' 
0 

s 

(E -SB - iYE -iYSB ) I 

x y y x 

(E +iYE + SB -iYSB ) I 
y x x y 

v 
0 -, 

c 
and 

eB 
0 

Ymc 

( 43) 

(44) 

The form of the wave equations relating the electromagnetic fields 

and the velocities of the charge elements is Lorentz invariant.. In the 

lab frame the wave equations for the electric and magnetic fields have 

the Fourier transforms 



+ + + 2-+ 
-k(k•E) + k E = 

2 41Tep . + w + 
--2- iwv + 2 E 

c c 

2 
+ -+ + · 2-+ 41Tep i' +k + w -+ 

-k(k•B) + k B = 2 x v + 2 B 
c c 

where the current density has been written in terms of the velocity 

+ -+ 
J = epv 
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(45) 

(46) 

Expanding the wave equations in their vector components we get six equa-

tions which, together with the three velocity component equations, give 

us a system of nine equations and nine unknowns which may be solved in 

the usual manner. The wave equations give us the six expressions 

2 2 2 2 
(c k cos 8-w )E 

x 
2 2 2 

(c k -w )E = 41Tepiwv 
y y 

2 2 8 . 8 < 2 2 . 2 2> - c k cos sin + c k sin 8-w E 
z 

= 41Tepiwv 
z 

2 3 2 2 
(c k cos e-w ) 

x B 
x 

2 2 . e . e - c k sin sin B 
z 

= -41tepcikcosev . y 
2 2 2 

(c k -w )B 
y 

41Tepick(cos8v 
y 

·e> 22 e·e sin v - c k cos sin B 
z x 

2 2 . 2 2 
+ (c k sin 8-w )B 

z 
= 41Te1Ticksin8v 

y 

By substituting in the expressions for the velocity components we 

can eliminate them from the system of equations giving us six equations 

dealing with the electric and magnetic fields. These are: 

From E Equation: 
x 

2 2 
(n cos e-1-S)E + iDE 

x y 

+ SSB = 0 I y 

2 
- n sin8cose E 

z 
+ iDSB x 

(48) 



From the E Equation: 
y 

2 
-iDE + [n -1-S]E - SSB + iSDB 

x y x 

From the E 
z 

Equation: 

2 . 
-n cos8sin8E 

x 

From the B Equation: 
x 

( 2 . 2 ) + n sin 8-1-T E 
z 

0 , 
y 

0 , 

iD cos8E + S cos8E 
2 2 

+ (n cos e-ss cos8)B 
n x n y n x 

-iSD cose B -n2sin8cos8 B = 0 I 

From the B Equation: 
y 

n y z 
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(49) 

(50) 

(51) 

2· 
-S cos8E + iD cos8E + T sin8E + iDS cos8B + (n -l+SS cos8)B 0 , 

n x n y n z n x n y 

From the B Equation: 
z 

-iD sin8E - S sin8E - (n2sin8cos8 + SS sin8)B 
n x n y n x 

+ iDS sin8B + (n2sin28-l)B 
n y z 

0 , 

where 

x XY 
s = , D = 

2 2 
(1-Y ) CS cos8-l) ( 1-Y ) CS cos8-l) 

n n 

2 2 
x x ~ 4ne p 

T = = w = 
2 2 

, 
p ym 

y ( S cos8-l) w 
n 

(52) 

(53) 

, 

(54) 



and n is the index of refraction given by 

n = c k 
w 
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(55) 

This system of six equations may be solved simultaneously by evalu-

ating the determinant of the coefficients of the fields. The matrix 

equation is displayed in Figure 3. This six by six determinant was 

5 
evaluated using the algebraic manipulative computer program REDUCE. 

The result is an eighth order polynomial in the index of refraction 

given by 

8 2 2 7 .2 22 2 
n {Ssin 8 + Tcos 8 + 1) = n 8(sin 8cos8(S -D ) + STcos8(1 + cos 8) 

6 . 2 2 2) ( 2 ) ( . 28 2 + 2Scos8) + n (-4 + sin 8(D -S - T 3cos 8 + 1 - S 3sin + 

2 2 22 2 5 2 
+ST{cos 8 + 1) + 8cos 8(8(S -D ) - 8D T +ST) + 2n Scos8(-S T) 

2 2 2 2 2 .2 
+ 3T(cos 8 + 1) - TD + 3S(sin 8 + 2) + 2ST(cos 8 + 2) + S (2sin 8 + 1) 

2 2 22 3 22 2 .2 
+ s T + 2 cos ( 1 + T) (D -s ) ) + n t3 cos8 ( 4T ( s -D ) + s (sin 8 + 4) 

2 2 2 2 . 2 2 
- T{cos 8 + 2) + 2TD - S(sin 8 + 6) - ST(cos 8 + 5) - 2S - S sin 8 

2 22 2 2 2 . 22 
- 2S T + 8 (S cos 8(1 + T) - D cos 8)1 + T))) + 2n8cos8)l+T) (S -D +S) 

2 2 
+ S (1 + T) + 2S(l + T) - D (1 + T) + (1 + T) = 0 • (56) 



2 2 
in cos 8-1-S iD -n2sin8cos8 iBD SS 

-iD 
2 

-SS iBD n -1-S 0 

-n2cos8sin8 0 2 . 28 1 n sin - -s 0 0 

iDncos8 Sncos8 
2 2 

i(3Dncos 0 n cos 8-1 + Sncos8 

-Sncos8 iDncos8 Tnsin8 i(3Dncos8· 
2 

n -1 Sncos8 

-iDnsine -Snsin8 0 -n2sin8cos8 i(3Dnsin8 

-SSnsin8 

Figure 3. Determinant for Calculating the Dispersion Relation 

0 

0 

0 

-n2sin8cos8 

0 

2 . 28 n sin -1 

-.J 
CJ\ 
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As a first check on the validity of the above expression we look at the 

non-relativistic limit. We first note that the odd orders of n all have 

a multiplicative factor of S which goes to zero in the non-relativistic 

limit. Next we see that for the cut-off condition of n O we have the 

equation 

(1 + T) (S 2 + 2S + 1 - o2) 0 . 

For the non-relativistic limit the parameters S, D, T and Y become 

s = -x 
D 

-XY 
2 I 

(1-Y ) 
T - X, y 

-w 
B 

w 

(57) 

(58) 

Substituting these back into the expression and solving for the frequency 

we get 

w = w ; 
p 

w = 
± wB ± i/'w~ + 4w;· 

2 

which are the same as the non-relativistic expressions. 

(59) 

The resonant frequencies may be found by investigating the polyno-

mial's behavior for very large n. In this case the leading term becomes 

important and its coefficient must go to zero for equality to hold. From 

this requirement we get the equation 

2 
tan e = 

1 + T 
1 - s 

Substituting the parameters S and T, the angular dependent resonance 

expression is 

(60) 
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2 
tan e == 

2 2 2 2 
( w -w ) ( w -w ) 

p B 
( 70) 

2 2 2 
(w - (w + w ) ) 

B p 

We give two cases as the principal resonanc::es according to the angle of 

propagation. We take the case of parallel and perpendicular radiation 

with respect to the magnetic field which gives us the two resonant fre-

quencies 

e 0 e 7T 
== 2 

AND (71) 

( w2 2 
w == WB w + w 

B p 

which are in agreement with the expressions derived in the non-relativ-

istic treatment. 

Next we look at the relativistic expressions for the cutoff and 

resonant frequencies. We again have the cutoff condition n-+O which 

leaves only the zeroth order term in the polynomial. This must be zero 

for equality to hold and from this condition we get the equation 

or 

This gives the cutoff frequencies as 

w == 

w 
-12. 
y 

w = 

2 2 x y ---2 
1-Y 

== 0 . 

± w8 ± V w~ + 4w! 

2 

(72) 

( 73} 
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where w 
p = 

e B 
ymc 

The resonant frequencies may be found 

by setting the coefficient of the highest order term in the polynomial 
\ 

equal to zero. Here we must remember that the parameters S, D, T, and Y 

are also functions of n. As before the resonant frequencies are depen-

dent on the angle of propagation. The parameters S, D, T, and Y become 

in the limit of very large n 

e 0 

x s -
Sn 

T 
x 
2 

AND 
y Bn 

XY 
D = 

S2n2 

The highest order term is 

for e = 0 we get 

( __'.!'.____ + 1) n 8 
2 

y nS 
= 

e 

s 

T 

D 

8 
n 

= 

= 

= 

'IT -
2 

-x 
2 

w 
1 -

B 
2 

w (74) 

-x 
2 

y 

-XY 

1 -
2 2 

wB/w 

(75) 

(76) . 

The coefficient of the n8 term is one and the equation cannot be satis-

fied for the resonant condition n ~ 00 For 8 
TI = 2 we have 

(77) 
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The coefficient goes to zero if 

w = /w2 2 
p + WB (78) 

2 ~ 
where w = {4ne p) and w 

p y m B 
e B 

.yroc Thie. is just the relativistic ver-

sion of the resonant condition for the ordinary wave in the non-relativ-

istic treatment. 

The parameters describing the pulsar magnetosphere have yet to be 

fixed with any certainty. In particular the density and the relativis-

tic factor have been given a wide range of values in various articles. A 

density of 1012 cm is most often cited in the literature as being the 

expected value due to the redistribution of the electric charges under 

the action of the electric field. The relativistic factor is given 

values of between 10 and 1000 for the various polar cap radiation mech-

anisms. 
8 

A value of 10 V/m for the electric field would give a value of 

10 for the relativistic factor. This would correspond to an accelera-

tion of the electron over a distance corresponding to the radius of the 

polar cap, i.e. 100 m. Given these parameters we get values for the 

plasma and cyclotron frequencies of 

w = 
p 

2 x 1016 RAD/SEC = 2 x 1018 RAD/SEC 

substituting these in our expressions for the cutoff frequencies we get 

f 300 MHz, f = 
11 

3 x 10 MHz, f 200 Hz 

for the three modes of propagation. The cutoff at 300 MHz seems to be 

a reasonable match for the observed cutoff frequency. 
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The region where the charges produce the radiation is also an un~ 

known factor. For the polar cap model which we are using it must be 

within the light cylinder. This region extends from the surface of the 

star to a distance of 105 m to 107 m depending on the period of rotation 

of the star. If the radiation takes place in the upper atmosphere, 

significantly far away from the star, the magnetic field strength will 

decrease as the inverse cube of the distance. This could mean that the 

6 
field strength of the magnetic field would be as small as 10 G~uss in 

the region through which the radiation passed. A reduction of the 

cyclotron frequency would produce a reduction in the cutoff frequency 

of the circular mode of radiation. Substitution of a value of 106 in 

the expression for the cyclotron frequency gives a cutoff frequency for 

the left-handed circularly polarized radiation of the order of 100 MHz. 

Summ&y 

The impetus for this section of the work was the prevalent belief 

that the cutoff frequency would not be due to the radiation transfer 

·through the plasma. Because of this belief those researchers developing 

a radiation mechanism were charged with the responsibility of producing 

a spectrum which had a low frequency cutoff. Although theories postu-

lating absorption by plasma bunches have been advanced the state of 

these theories is not much beyond the qualitative stage. Showing that 

the cutoff may indeed be due to a low cutoff frequency of the plasma 

takes this burden off the radiation mechanism theories. By using the 

observed cutoff frequencies and the expressions given by the relativis-

tic theory, we may be able to fix the value of the density, the rela-

tivistic factor, which is reiated to the electric field, and perhaps the 
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magnetic field stre_ngth in the region through which the radiation 

passes, which is related to the distance from the star. These values of 

the parameters describing the pulsar may be used in the radiation mecha

nism theories to produce a more self-consistent model for pulsars. 
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CHAPTER V 

RADIATION COHERENCE AND PLASMA SHOCKS 

As has been mentioned previously the radiation emitted by pulsars 

must be coherent in order to explain its intensity. The two mechanisms -

used to explain this coherence are localization of the emission region 

by bunching of the radiating charge and amplification of the signal by a 

maser action. The mechanism studied here is the shock wave or bunching 

model. 

Sturrock was first to suggest coherence by bunching when he noted 

that the flow of plasma from the surface of the star would not be ex-

1 
pected to be steady. This suggestion was followed a year later by his 

charge sheet model in which cascades of electron-positron pairs produced 

localizations of charges flowing along the magnetic field lines. Gold-

·reich and Keeley noted the similarity between the trajectories of the 

charges traveling along the curved magnetic field lines of the star and 

the path that electrons take in a synchrotron. 2 The electrons in a 

synchrotron are unstable to bunching due to the radiation reaction of 

the synchrotron radiation they produce. Using this same mechanism bunch-

ing of the charges following the magnetic field lines was postulated. 

Rude:nnann and Sutherland used Sturrock's model which produced electron-

positron pairs with vastly different velocities to suggest a two-stream 

. h 3 h" instability was the source of the bunching for the c arges. In t is 

section of the work we are interested in the effect that the supersonic 

84 



85 

flow of the plasma could have on the stability of the currents along the 

magnetic field lines of a neutron star. 

Theory of Shocks 

In fluid mechanics the study of shock waves originated with the 

analysis of waves of finite amplitude propagating in a medium where the 

fluid velocity is supersonic, i.e;, exceeding the speed of an acoustic 

wave in it. The existence of a shock essentially means discontinuities -

in pressure, density and velocity on either side of the front and these 

must satisfy the "jump" relations first established by Rankine and 

Hugoniot. The fundamental physical principles on which these relations 

are based are conservation of mass flow, conservation of momentum and 

conservation of energy and these in turn can be derived from the contin

uity equation, the equation of motion and the energy equation. 4 Taking 

the x axis of a rectangular coordinate system parallel to the direction 

of a one-dimensional viscous flow the steady state equations of continu-

ity, motion and energy are respectively 

0 

av 
pv

ax = Clp + i -1._(µ av} 
ax 3 Cly ax 

d l 2 4 av 
ax {pv(:z v + h) - 3 µv ax 

A ClT} 
ax 0 

Here p is the density of the fluid, v its velocity, pv = µ the coeffic-

ient of viscosity, A the coefficient of thermal conductivity and h the 

enthalpy. By integrating these through the shock front, a procedure 

somewhat akin to derivi.ng matching conditions across boundaries in 
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electromagnet theory, one obtains the equations 

plvl = p2v2 

2 2 
plvl + pl p2v2 + p2 

1 2 
+ hl 

1 2 
+ h2 2 vl 2 v2 

where the number subscripts refer to the side of the shock as ~hown below 

1 2 

fluid flow 
------;;;. 

FRONT BACK 

Thennodynamic considerations require that the entropy increases across 

the shock as also the pressure. The above relations were derived on the 

basis that outside the shock layer and far from it the motion is steady 

and uniform. 

Hoffmann and Teller were the first to investigate magneto-hydro-

dynamic shocks where the fluid is a conducting plasm~ in an external 

magnetic field. 5 They discussed parallel and perpendicular shocks, i.e. 

shocks where the direction of propagation is parallel or perpendicular 

to the magnetic lines of force, a distinction that does not exist in 

hydrodynamics. Here we have a charged conducting fluid, an elastic con-

tinuum, interacting with a given external electromagnetic field governed 

by Maxwell's equations. The general motion is then described in tenns 

of the stress-energy tensor of the fluid and the energy-momentum tensor 

of the electromagnetic fields, especially because one is dealing with 
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general energy momentum conservation laws. It is well known in the 

mechanics of elastic continua as well as the Maxwell's theory of the 

electromagnetic field that the kinematical characteristics and the equa-

tions of motion are built in the symmetry and divergence properties of 

these tensors. Furthermore the tensor formulation has the advantage of 

relativistic generalization because the transformation properties of 

these tensors with respect to Lorentz transformations are very straight-

forward. The. four·-dimensional stress energy tensor of the elastic con-

tinuum e and the energy momentum tensor of the electromagnetic field 
j.JV 

S are given in Figure 4. 
µv 

An elegant point in the Teller derivation is to choose a coordinate 

system in which the shock front is at rest thus making the system time-

independent and then Lorentz transform the usual flow quantities to this 

rest system. Another simplification in their derivation is that the 

electric field is taken to be zero, in other words the conductivity is 

taken to be very high in this case. The stress-energy tensor of the 

continuum reduces to a simple pressure tensor with diagonal components 

·only in the case of a conducting fluid. The basic Lorentz transforma-

tion and tensor transformations are given below as also in Figure 5 in 

their matrix form. Hoffmann and Teller were able to deduce the relativ-

istic Rankine-Hugoniot relations, in the case of parallel shocks, by 

simply using the requirement that the four-dimensional divergence of the 

total stress energy equation T vanishes 
j.JV 

T = 8 + S · µv µv µv' 

d T 
µv 

0 

and also that Maxwell's equations are to be satisfied in any frame of 
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reference. These relations are given by 

where 

= 

n = 

2 1 2 2 2 2 
yl (1\v1 +pl) = y2(n; v2 

2 1 vl 1 2 1 
Y1 <nlvl + 2 p2) = y2(n2v2 

c 

1 
I 2 2 relativistic factor 

vl - v ./c 
l. i = 1,2 

+ p2) 

v2 
+ -p') 

2 2 
c 

n 2 
2 (me + E) 2 

Excess energy density over rest energy me 
c 

and n is the particle density. Here the primes refer to the frame of 

reference in which the observer is at rest with respect to the plasma 

90 

and the unprimed quantities refer to their values in the frame of refer-

ence where the observer is at rest with respect to the shock front. The 

numbers as before refer to the front and the back of the shock. An 

interesting piont in the derivation is that in the case of parallel 

shocks, even in the case of a charged fluid, an external magnetic field 

does not affect the jump relations across the shock front. 

The fundamental Hoffmann-Teller treatment is the most suited to 

study the possibility of shock wave propagation in the streaming electron 

fluid along a pulsar's magnetic field lines. It is necessary to adapt 

this formalism to a moving shock front since in their formulation the 

jump relations are for a stationary shock front. 
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Jump Conditions for a Moving Shock 

In this section we find the jump conditions for a shock wave moving 

at relativistic velocities in a relativistically streaming plasma. As 

before the magnetic field will be parallel to the shock wave and so will 

have no effect on the jump conditions since the velocity vector is 

parallel to the field vector. The velocities will be in the x direction 

and v 1 and v 2 will be the velocities of the plasma in front and in back 

of t the shock as before. In this treatment v will be the velocity of 

the shock front. To obtain the jump conditions we set up T the total 
µv 

stress energy tensor in the laboratory medium and then Lorentz transform 

this to the shock front medium exactly as was done by Hoffmann and 

Teller. This has to be done separately for region 1 and 2 because the 

front moves with velocities v + v 1 and v - v 2 in regions 1 and 2 with 

respect to the stationary lab frame. The lab frame T is just the one 
µv 

used in the stationary shock wave calculation. By a procedure similar 

to that of Teller we obtain the following jump conditions 

(v 1 +v) 

nic(vl+v) + c p~ 

2 
(v+v 1 ) 

1 - 2 
c· 

= 

= 

n2(v-v2)2 + p; 
2 

(v-v 2 ) 
1 -

2 
c 

(v-v 2 ) 
ri' c (v-v ) + · · p' 

2· .· 2 2 2 

l -

c 
2 

(v-v 2 ) 

2 
c 



= 
n; C.v-v 2> 

/ (v-v2 ) 2 

/1 -
2 

c 

These relations demonstrate that shock waves can be formed even if the 

fluid velocity is very large. The third equation is very interesting. 
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If we assume that the electrons are streaming at high velocities, v1 , v 2 

then it is obvious n; must be considerably larger than ni because 

v-v v+v1 2 
<< 

j_ (v-v2)2 j_ (v+vl)2 

2 2 
c c 

thus causing bunching of electrons due to the shock wave. This tendency 

towards bunching given a discontinuity could be the source of the shocks 

in the streaming plasma. The parameter of interest here is the thick-

ness of the shock. For the case where it is less than the wavelength of 

the observed radiation it can produce coherent radiation at all wave-

lengths longer than this. There have been several treatments of the 

dimensions of. shock fronts. Mott-Smith analyzed the case of a non-

ionized gas and found that the thickness was of the order of a few mean 

6 
free paths of the molecules. Tidmann did a calculation where he 

treated an ionized gas and found the dimension of the shock front to 

be given by 

t = 
2 4 m v 

690 e 4 n A 

where m and e are the mass and charge of the electron and A is the 



Coulornbic logarithm which is a parameter whose value is close to 40. 7 

Substituting values of density 1012 cm- 3 and velocity 3 x 108 cm/s we 

find that the thickness is of the order of 1 cm. Thickness of this 
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order would be sufficient to explain the coherence of the pulsar radia-

tion. We believe this process can compete effectively with the maser 

actoon proposed by Cocke and Melrose. In our derivation the viscosity 

effects have been ignored although the conductivity has not. It cannot 

be denied, however, that the acoustic speed in the medium itself can be 

large because the magnetic energy density in free space (B 2/2u) is 
0 

34 12 
about 10 MeV per cubic meter for a B field of 10 G, whereas the rest 

12 -3 18 
energy of the electrons (n = 10 cm ) is approximately 10 MeV per 

unit volume. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

This work started with a short description of the discovery of pul

sars and their identification with neutron stars. A survey of the 

different models for the magnetosphere and the currently subscribed to 

radiation mechanisms was given. We then made a study of three aspects 

of the radiation process. The mechanism of radiation by linear acceler

ation was chosen for its simplicity and its agreement with most magneto

sphere models. The spectral and angular distribution of the radiation 

was calculated numerically using the Lienard-Weichert theory and a fast 

Fourier transform algorithm. The spectral results compare favorably with 

observation but the angular distribution appears to be too wide for the 

currently accepted "forward cone of radiation" models. Lack of agreement 

is attributed to the unrealistic constant electric field used for accel

erating the electrons. The radiative transfer of the signal passing 

through the magnetosphere was then analyzed. A model was chosen where 

the plasma in the magnetosphere travels parallel to the star's magnetic 

field at relativistic velocities and the radiation passes through it 

making an angle 8 with the velocity vector of the plasma. An eighth 

order polynomial in the index of refraction of the plasma was derived. 

The cutoff and resonant frequencies of the plasma were calculated and, 

when the currently accepted values for the particle density, relativis

tic factor and magnetic field were used, agreed with the observed value. 
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The contribution of shock waves to the coherence of the radiation was 

then studied. Following the formalism of deHoffman and Teller the for

mation of shock fronts due to discontinuities in the supersonic plasma 

was shown to be possible. Using Tidmann's theory for shock fronts in 

ionized gases, we found that shocks with thicknesses on the order of the 

shortest wavelengths observed were possible. 

The three main contributions of this work are the calculation of 

the spectrum of a linearly accelerated charge, the calculation of the 

plasma cutoff frequency and the relativistic treatment of the dispersion 

relation, and the calculation of the relativistic shock equations and 

the thickness of the shock. This work is also the starting point for a 

number of future works. More realistic accelerating fields may be sub

stituted for the constant electric field in the spectrum calculation in 

an attempt to get radiation patterns which agree with observation. The 

expression for the dispersion relation may be solved numerically using 

currently accepted values for the magnetic field, relativistic factor 

and charge density. The treatment of plasma waves may be done in the 

relativistic manner. By studying the transmission of the polarized 

radiation the value of the magnetic field may be found. This could be 

related to the height of the plasma through which the radiation traveled. 

Further work on the formation of shocks in the supersonic plasma flowing 

along the magnetic field lines is needed. Finally in writing the sec

tion on observations the author of this work has noted that a possible 

explanation for the drifting subpulses is a precession of the neutron 

star. Neutron stars have long been suspected of being oblate due to 

their high rotational velocities. If the symmetry axis and rotational 

axis were not aligned, a precession would occur. This precession could 
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mean that the times when the radiation from the pulsar swept across our 

line of sight would shift in a periodic manner. If this is so, it would 

be important in determining the forces which allow the stars matter to 

shift in an oblate shape. It would also be of interest to those inter

ested in calculating the gravitational radiation produced by an off-axis 

rotator and the feasibility of detection of a periodic radiation source. 
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APPENDIX 

FUNCTION GENERATION AND THE FAST FOURIER 

TRANSFORM PROGRAM 

The program used to evaluate the transform consists of two_sections. 

The main program reads the parameters: the angle of observation, the 

limit of integration, and the number of points of the function to be 

evaluated. It then computes the function between zero and the upper 

limit of integration, umax, and displays the function if desired. The 

program then calls a subprogram which computes the Fourier transform of 

the function. The main program converts the real and imaginary parts to 

the magnitude and phase and displays the magnitude. Since the integrand 

is not symmetric the transform will be, with the second half a reflec

tion of the first half of the transform. For this reason only the first 

half of the transform is displayed. 

The use of the fast Fourier transform algorithm calls for some 

care. The first point deals with discontinuities caused by the trunca

tion of the function to be transformed. Since we must evaluate the 

function on a finite domain it is necessary to choose a value where the 

function essentially goes to zero. A sharp discontinuity will add fre

quency components reflecting it. For this reason the function is 

displayed so that the user insures that the limit of integration is 

large enough. It is also important when using the FFT algorithm that 

the sampling rate is larger than twice the largest frequency of the 
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signal. This is referred to as the Nyquist criterion. By displaying 

the function it is evident that our sampling rate is adequate since 

there is only one peak and the function falls off smoothly. The Nyquist 

criterion insures us that we miss no structure in the function when 

sampling it. 

The results of the program give us the transform of the function at 

frequencies which are related to the limit of integration, umax and the 

number of samples, N. We have the frequency given by the relat~on 

n = n 
um ax 

n = 1, N (A-1) 

This means that the longer the integration time the smaller the fre-

quency increments and the larger the number of samples used the larger 

the range of frequencies given by the transform. Since the frequency 

used here is a transformed frequency we must convert back to the actual 

frequency using the change in variables given by 

w = = e E n 1 
m c umax 

586 E 
1 

umax 
(A-2) 

Although the form of the spectrum does not change with electric field 

strength the frequency range does with the more energetic particles 

emitting higher frequencies as would be expected. 

The program was run once for every 5° from 5° to 180° with the 

upper limit of integration being adjusted so as to insure that the cut-

off value was at least three orders of magnitude lower than the peak 

value of the function. The running time was about eight minutes for 

each a.ngle using a 1024 point transform on a 28K PDP 11 microprocessor. 

The program is given of the next three pages. 
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TH! S FRDGRA/"1. CD~~PUTES UF' TO 2048 SAMPLES OF THE 
FUi~C.T10:·~ f(U) 

C WHERE CSIN = COS<THETA) 
C SIN4 = SINCTHETA)**4 
C CS1N2 = COS<THETA>**2 
C A = SQRT< U**2 - 2*U*CSIN + 1 ) 
c 
c 
,-. 
l, 

c 
,.. . ._. 

c 
(: 

c 

FROM 0 TD SOME SPEC I FI ED LIMAX •. IT THEN CALLS A FFT 
ROL!Ti~~E AND COMPUTES THE FOUR I ER TRANSFORM OF THE 
DATA. THE PfWGF:Ar1 Wl LL PRINT THE FUi-KTI ON i F REQUIRED 
Ar·~D THE FIRST HALF OF THE CALCULATED FFT. Oi°"L"Y THE -.. ,. 
AMPLITUDE OF THE TRA~~SFORM IS PRINTED ALTHOUGH. BOTH 
A~1PUTUDE AND PHASE ARE CALCULATED. 
COMMON F 
DIMENSION X<2,2048) 
COMPLEX F(2048) 
EQUIVALENCE <F,X) 
[lATA N0/2HNO./ 
CALL ASSIGN<2,'KB:') 
CALL ASf;I GN( 3' ,·rr:,) 

999 WRITE(3 1 1) 
FORMAT.: 44H ENTER M, 12, ~mERE 2**M = NUMBER OF SAMPLES) 

READ\3,2) M 
2 FORMAT (12) 

N=2**M 
WF:1TE(2,100G.l N 

1000 FORf"'iAT< 20~ NU~mER OF SAMPLES =,I 4) 
N1=N/E: 
LJRITE<3, 10) 
READ (3,20) THETA 

10 FORMAT(41H ENTER ANGLE OF OBSERVATION, FORMAT Fl0.5) 
20 FOF:MAT ( F10.5) 

WRITEC2,2000) THETA 
2000 FORf"~AT(21H OBSERVATION ANGLE= ,FlO .5) 

t1JRITE < 3,30 > 
EEAD ( 3, 40 ) Ut-'iAX 

30 FDR~·,iAT ( :;9H ENTER MA::<IMUM VALUE OF U, FORMAT F 10. 5) 
40 FDF:MAT <FlG.5) 

3000 FDRMAT<2!1'H RANGE OF INTEGRATION UMAX = ,FlO .5) 
SCALE == Urt~X/FLOAT<N) 
DELTU=UMAX/N 
RADIAN= 2*3.14159*THETA/360. 
S1NE2 = (SIN( F:AD IAN)) H2 
SINE4 = SINE2H2 
CSIN = COS<RAD1AN> 
CSIN2 = CS1NH2 
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[;[1 7C: :i=1 iN 
Rl = (1-1) 

U = RJ *DEL TU 

102 

A= SQRTCl - 2.0 * U * CSIN + U*U) 
F(J)=CMPLX<S1NE4/CA*<A*Cl+CSIN2)-2.*U*CS1N+2.*CSIN2>**2),0.0> 

70 cm~TINUE 

F<i) = .5 * F<l) 
L~RlTEC3, 7l) 

71 FORMATC44H DO YOU L~Ar-..lT THE FUNCTION DlSPLAYED, YES/NO?) 
READ C3,72J JANS 

72 FORMAT<A2) 

73 
74 

75 

IF (JANS .EG. NO) GO TO 74 
MA)<=O 
DO 73 I=1 ,t~1 
MJN=MAX-+l. 
MAX=l.*8 
WR1TE<2,85) CXC1,L), L=MIN,MAX> 
I Sl.J = 0 
CALL FFT<F,M,ISW) 
DO 75 1=1 ,N 
SAVEl = SCALE * X<l ,I) 
SAiJE2 = SCALE * X (2, I ) 
X<l ,1) = S1NE2*SQRTCSA1.JE1H2 + SAtJE2H2) 
XC2,1) = ATAN2CSAVE2,SAVE1> 
l.JR1TEC2,750) 

750 FORMATClH ) 

90 

100 

MAX = 0 
LL = N1/2 
DO 90 J=1 ,LL 
MIN = MAX+1 
MAX = J. * 8 
iJRITEC2,85) <X<l ,U, L=MIN,MA::o 
CONTINUE 
REi,ojIND 2 
WRITEC3, 100) 
FORMAT ( 32H f...JOUL[> YOU LI KE TO TRY AGAIN ? 
READ (3, 72) IANS 
IF(IANS .NE. NO> GO TO 999 

85 FOF:MAT< 1P8E15. 5) 
CALL CLOSEC2) 
CALL CLDSEC3) 
END 

) 



JC SUBROUT:NE TO CALCULATE THE FAST FOURIER TRANSFORM 
C FROM OPFE;~HEIMEF: AND SCHAFER·· S. BOOf< ,, DIGITAL SI G:~AL 
c PROCEssiNG', PAGE 332 FIG. P6.5. 
c )(IS A c:o:1PLE:< ARRrlt,;,'QF DH·E-..:s:or·~ 2048, M JS THE 
C POWER OF 2 WHICH IS EQUAL TO THE NUMBER OF POINTS 
C TO BE TRANSFORMED. JSW IS THE SWITCH FOR THE 
c TF:AN~;F[lRj·; .· 0 / OR THE iN1JERSE TRANSFOF:M I 1 I. 

SUBROUTINE FFTCF,M,ISW) 
ONE=1. 
IF(JSW.EQ.1; ONE=-1 
COMPLEX FC2048), U, W, T 

P1=3.14159265358979 
DO 20 L=l .M 
LE=2H UH 1-U 
l..El=LE/2 
U=C1.0,0.0) 

\. 

W=CMPU< <CDS< P 1/FLOAT (LE 1)) , -ONE *SW( PI/FLOAT< LE 1))) 
DO 20 J=l,LE1 . 
DO 10 I=J,N,LE 
IP=I+LE1 
T=F< D+FOP) 
FCIP)=(F(Il-FCIP>>*U 

10 F< D=T 

NV2=N./2 
NMl=N-1 
\..T=1 
DO 30 1=1 ,NMl 
IF Cl.GE.J> GO TO 25 
T=F\J) 
F(J)=FU) 
F< D=T 

25 l<=N',,.12 
26 IF<K.GE.J) GO TO 30 

J=J-K 
K=K/2 
GO TO 26 

30 J=J+f< 

IF CGNE.GT.O.Ol GO TG 40 
DO 35 I=1 ,N 

35 F(l)=F(l)./REALN 
40 RETURN 

END 
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