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PREFACE 

A model for predicting liquid mixture viscosity over wide ranges 

of temperature and concentration was developed. The Ratcliff-Khan 

Group Solution Model for predicting mixture viscosities at 25°C served 

as the base ·for this work. The model is capable of handling binary 

and multicomponent mixtures of straight and branched components, polar 

and non-polar components and components with multiple groups. The 

model is the first of its kind in explicitly addressing temperature 

in predicting liquid mixture viscosity. 

Constants for eight active groups were generated. The model was 

tested on thirty-eight mixtures covering such groups. The model is 

promising and its extension to cover other groups is encouraged. 
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CHAPTER I 

INTRODUCTION 

Engineers, whether designing and operating industrial plants, 

discovering new materials or transporting old ones are often dealing 

with liquids whose properties constitute important variables. The 

availability of reliable data on these porpoerties and the availability 

of reliable techniques for predicting them are of great interest and 

concern for both industrialists and academicians. 

The liquid state is intermediate between the solid and gaseous 

states. Liquid theory, is in its primitive stages compared to both 

the gaseous and the solid theories. Thus, experimental data and reli­

able predictive techniques are not only welcomed, but a necessity in 

this field. 

Viscosity is an important property. It is a fluid resistance to 

flow. It is sensitive to changes in temperature and composition. Its 

influence is felt in many aspects of daily life, but is almost too 

commonplace to receive special notice. In the industrial world viscosity 

is important in many different fields. Oil, grease, printing inks, 

polymers and liquid foods are a few examples. Viscosity figures prom­

inently in the petroleum industry all the way from producing fields to 

the market place. 

1 
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In general, viscosity is essential in proper design of industrial 

plants. It is essential in proper design of the equipment for handling 

fluids. It is essential for proper functioning of hydraulic systems, 

automatic transmissions and other responsible systems for transportation. 

The purpose of this work is to develop a liquid mixture viscosity 

prediction method based on group contributions for predicting liquid 

mixture viscosity. The method should be capable of predicting liquid 

mixture viscosity over wide ranges of temperature and concentration and 

capable of handling multiple groups and components. Since the model is 

utilizing the functional and structural gruops of the mixture, i.e., 

CH3 , CH2 , ... , etc., certain parameters characterizing these groups will 

be generated and generalized using experimental viscosity data. These 

generalized constants will be used in predicting the viscosity of other 

mixtures consisting of the same groups for which data are either not 

readily available and expensive in time and money to get or not existing 

at all. 

The generated constants will be tested to see their applicability 

for branched and polar mixtures that have the same groups. They will 

be tested for their interpolation and extrapolation capabilities. Eight 

groups will be attempted. The groups are CH3 , CH2 , COOR, CO, OH, NH2 , 

NH and N. Thirty-eight mixtures covering these active groups will be 

utilized. 



CHAPTER II 

DEFINITIONS AND LITERATURE SURVEY 

Definitions 

Viscosity, an important property of fluids, is too commonplace to 

receive special attention. Although it is a cornerstone in many of the 

design calculations that involve transporting and processing fluids, 

the research involved and the interest generated are far below its 

level of importance. With increasing energy costs, a need to revise 

design procedures and design parameters has arisen. So more attention 

is paid, and will be paid, to getting accurate and precise viscosity 

data through experimental investigations and predictive techniques. 

Such accurate data will lead ultimately to more appropriate and 

economical designs. 

Throughout this work certain terms will be used and the following 

definitions to such terms apply: 

Viscosity: Is the fluid resistance to flow or the shearing stress 

per unit area divided by the velocity gradient. Its dimensions are 

(force)(time)/(length) 2 or mass/length time. For scientific work, 

viscosities are expressed in terms of poise (P), centipoise (cP), etc. 

1 poise (P) 1.00 
2 

x 10 cP 

1.00 
6 

x 10 µP 

gm/cm-sec 

3 



2 
dyne-sec/cm 

= 242 lbmass/ft-hr 

242 Poundal-hr/ft2 

0.0672 lbmass/ft-sec 

2 
0.0672 Poundal-sec/ft 

0.1 Newton-sec/m 
2 

Ideal mixture: A mixture that undergoes either no change of volume 

upon mixing or minimum changes, i.e., volume change upon mixing less 

than 0.1 percent. 

Non-ideal mixture: A mixture with a change of volume upon mixing 

larger than 0.1 percent. 

Miscible liquids: Liquids that dissolve in each other in all 

proportions. 

Immiscible liquids: Liquids that are slightly soluble in each 

other such as oil and water but for practical purposes considered in-

soluble. 

Partially miscible liquids: Liquids that mix with each other 

appreciably but in limited proportions. 

The concentration throughout this work is expressed in one of the 

following forms: 

where 

Weight fraction W 
1 

w1 the weight of component 1 

w2 the weight of component 2 

Mole fraction M 
1 

4 



where MW1 , MW2 are molecular weights of components 1, 2 respectively. 

where 

Volume fraction V 
1 

v1 the volume of component 1 

v2 the volume of component 2 

Notice that: 

wl + wz 1 

Ml+ M2 1 

vl + vz 1 

Fluidity cfl = l/µ 

cfl fluidity 

µ absolute viscosity 

Molar volume v = MW/p 

where 

MW molecular weight 

p density 

log logarithm to the base10 

ln logarithm to the base e 

Literature Survey 

The models for presenting and predicting the viscosity of liquid 

mixtures, which range form purely empirical to purely theoretical, will 

be classified and discussed. 

5 



Before discussing these models some points are worth stating: 

1. There is no intent to survey the theories of viscosity. The 

reader is referred to two references which address this subject by Brush 

(1) and Touloukian (2). 

2. Theories of mixtures also will not be discussed. For more 

details about such theories the following references are helpful: 

Scatchard (3) and Hildebrand (4) for regular solution theory; Barker 

(5) and Guggenheim (104, 105) for lattice theory; Rawlinson (6) and 

Leland and Chappelear (7) for corresponding states; Gibbons (8) for 

perturbation expansion; Lucassen-Reynder (9, 10, 11) for vacancy 

theory. 

3. Mixture rules will not be discussed. Valuable information on 

mixture rules is presented in Nielson (12). 

4. A survey of the equations for presenting and predicting the 

viscosity of mixtures will be stated following the Irving (21) way of 

classification. 

Equations for Viscosity Mixtures 

Most of the models stated here are applicable only to physical 

mixing of two homogeneous, completely miscible liquids unless other-

wise stated. Equations for salt solutions are given in Doolittle (13): 

I. First family: Additive equations - these can be classified into 

two types: 

A. Plain additive equations 

f ( µ) = L:x • f ( µ . ) 
l l 

where 

x. weight, mol or volume fraction of component i 
l 

6 



f(µ) is the viscosity function and generally is 

f(µ) =µ;or f(µ) = ln(µ), f(µI ¢ 

where 

µ absolute viscosity of the mixture 

¢ fluidity and defined as l/µ 

Examples of this type of equation: 

1. The Arrhenius Equation (14) 

ln µ = V 1 ln µ1 + V 2 ln µ2 

where 

vl volume fraction of 

v2 volume fraction of 

µl absolute viscosity 

component 1 

component 2 

of component 1 

µ2 = absolute viscosity of component 2 

2. The Findlay Equation (15) 

¢ = vl ¢1 + v2 ¢2 

where 

¢1 fluidity of component 1 

¢2 fluidity of component 2 

vl volume fraction of component 1 

v2 volume fraction of component 2 

3. The Bingham (16), and the Drucker and Kassel (17) Models. 

¢ = wl ¢1 + w2 ¢2 

where 

¢1 fluidity of component 1 

¢2 fluidity of component 2 

wl weight fraction of component 1 

w2 weight fraction of component 2 

7 



B. Additive equation with constants 

1. The Lee Equation (18) 

2. 

3. 

where 

The 

1/3 
µ 

m constant 

vl volume fraction of component 

v2 volume fraction of component 

4>1 fluidity of component 1 

4>2 fluidity of component 2 

Kendall and Monroe Equation (19) 

where 

M1 mole fraction of component 1 

M2 mole fraction of component 2 

1 

2 

µl = absolute viscosity of component 

µ2 = absolute viscosity of component 

The Lautie Equation (20) 

cpl/3 = 
Ml cpi/3 + M2 

cpl/3 
2 

where 

4>1 fluidity of component 1 

. cp 
2 

fluidity of component 2 

Ml mole fraction of component 1 

M2 mole fraction of component 2 

1. 

2 

As Irving (21) stated, none of the additive equations is satis-

factory. All of them fail whenever the viscosities of the pure compo-

nents are widely different. 

8 
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II. Second Family: Parabolic equations - the general form of this 

family has an interaction parameter added to the additive form: 

where f(µ) and the x's have the same definitions as in the First 

Family. C = the interaction parameter. 

Replacing x1 with (l-x2) ·and rearranging gives: 

collecting like terms: 

f (µ) 

this is of the form 

f(µ) = Ax; + Bx2 + C 

The following equations are examples of this family. 

A. The Van der Wyke Equation (22) 

where 

ln(µ 1) absolute viscosity of component 1 

ln(µ 2) absolute viscosity of component 2 

M mole fraction of component 1 
1 

ln(µl2) interaction coefficient 

B. The Mato-Hernandez-Dolezalek Equation (23, 24, 25) 

where 

v1 volume fraction of component 1 

v2 volume fraction of component 2 
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µ1 absolute viscosity of component 1 

µ2 absolute viscosity of component 2 

C constant 

This is the original form proposed by Dolezalek (23) and revived 

by Mato and Hernandez (24, 25) who show the applicability of this equa-

tion at equimolar concentrations. 

C. The Sachanov and Rjachowsky Equation (26) 

where 

µl absolute viscosity of component 1 

µ2 absolute viscosity of component 2 

Ml mole fraction of component 1 

M2 mole fraction of component 2 

The interaction coefficient here is C and defined as 

c = /µ1µ2 

D. The Grunberg and Nissan Equation (27) 

µ' s and M's have the same definitions as above; C is a 

characteristic constant of the system. It can be positive or 

negative which allows for the maximum and minimum viscosity 

that occurs for some mixtures. 

E. The Hind, McLaughlin and Ubbelohde Equation (28) 

where 

M1 mole fraction of component 1 

M2 mole fraction of component 2 
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µ 1 absolute viscosity of component 1 

µ2 absolute viscosity of component 2 

This is similar to the Sachanov and Rjachowsky equation. C 

is the interaction coefficient defined as µ12 and approximately 

According to Irving (21) the eouations of this family using ln (µ) 

(as the Van der Wyke and the Grunberg equations) are to be preferred. 

Although the Hind et al. and the Sachanov et al. equations have been 

theoretically derived by Bearman and Jones (29) from statistical mechan-

ical theory, they are not sufficiently accurate for prediction purposes. 

This supports the claim of the experimentalists that theoretical develop-

ments have to be modified to suit experimental results. 

III. Third Family: Equations of mixture density - this family of equa-

tions requires mixture density. It is subdivided into two kinds: 

A. Viscosity-Density Equation - such as: 

1. The Chakrabertty and Ganguly Equation (30) 

ln(µ) - 1/3 ln p = c1 + c 2 M2 

where 

cl and c2 are constants 

P density of the mixture 

M2 mole fraction of component 2 

This equation is intended for non-polar liquids. It 

is deduced from Andrade's equation (68) with allowance 

made to account for the change in volume upon mixing. 

2. The Spells Equation (31) 



where 

µ1 absolute viscosity of component 1 

µ2 absolute viscosity of component 2 

r = concentration by volume of liquid 2 in the 

mixture o~ ~omponents. 

Pl = density of component 1 

p2 = density of component 2 

S is a function of concentration for each binary mixture, 

12 

but Spells simplified it and considered it a constant that 

characterizes the mixture. It can be evaluated from 

experimental data on viscosity and density. By different-

iating Spells main equation the following expression for 

"S" is given: 

1 
ln(µ) - ln (µL) - 3 (ln PL - ln p) 

A single value of S is chosen so as to give best agree-

ment with observation over the whole range of concentra-

tion. 

This equation and the Macleod equation to be stated later 

are based on the assumption that a perfect mixture under-

going no volume change on mixing would give a linear law 

for viscosity - concentration. (The relation between the 

density and concentration expressed as volume of solute 
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per unit volume of mixture being a straight line.) There 

is no theoretical justification for this assumption. Plots 

of alkane-alkane and alcohol-alcohol mixtures in the next 

chapter do not agree with this assumption. 

3. The Srinivasan Equation (32) 

1/3 
].l 

where 

n 
p [ ( )1/3 (µ 2)1/3v2] (£.._) 

100 J.11 vl ·+ pc 

n = a constant 

100 v1 and v 2 are the volumes of pure 

components 1 and 2 in 100 grams of mixture. 

This equation was claimed to handle non-ideal binaries. The 

same author derived another equation from the Andrade equation (68) 

to account for the variation of viscosity with temperature at constant 

composition. 

4. The Bhagwat and Mandloi Equation (33) 

1/3 
p 

where 

p 

M = 
1 

M = 
2 

MWl 

MW2 

pl 

P2 

p 

is the density of the mixture 

mole fraction of component 1 

mole fraction of component 2 

molecular weight of component 

molecular weight of component 

density of component 1 

density of component 2 

1 

2 



µ 1 absolute viscosity of component 1 

µ 2 absolute viscosity of component 2 

This equation assumes that component rheochors follow a 

linear law. (Rheochor was proposed by Fried, et al. (34) 

and defined as R = (MWµ 113)/p. 

5. The Chacravarti Equation (35) 

1/8 
µ 

where all terms are the same as above for the Bhagwat and 

Madloi equation and: 

w1 weight fraction of component 1 

w2 weight fraction of compo~ent 2 

m constant 

14 

This equation is an extension of Bhagwat et al. work using 

weight fractions instead of mole fractions. It was pro-

posed to handle non-ideal mixtures. 

As is commented by Irving (21), the mixture density are of academic 

interest only rather than of practical interest. This can be easily 

seen since such equations require mixture density. Data on mixture 

density are not usually available and their measurement requires consid-

erable care if the small changes in volume on mixing are to be satisf ac-

torily detected. 

B. Free Volume Equations 

These equations also .require mixture density. They are 

based on, and derived from, the Bachinskii equation (36) which 

is restricted to pure liquids. 



µ 
c 

v - v 
0 
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where C is a constant, sometime referred to as the specific 

modulus of viscosity. (It is the contraction per unit volume 

deduced from the density of the mixture.) 

v the specific volume of the liquid = l/p 

v the limiting specific volume (a constant) 
0 

The Bachinskii equation simply says that the viscosity is 

inversely proportional to the free-volume. 

1. Meyer and Mylius Equation (37) 

where 

~ the fluidity = l/µ 

w = 
1 

weight fraction of component 1 

w = 
2 

weight fraction of component 2 

c = 
1 

viscosity modulus of component 1 

c = 
2 

viscosity modulus of component 2 

~ = 1 
fluidity of component 1 

~ = 2 
fluidity of component 2 

This equation is obtained by assuming that the free volume 

is additive and that there is no change of volume in mix-

ing. Meyer and Mylius also derived another equation for 

the limiting volume v . C, the viscosity modulus, depends 
0 

on composition. In this equation they did not show how 

the equation depends on composition. 



2. The Macleod Equation (38) 

where 

µ1 = absolute viscosity of component 1 

µ 2 absolute viscosity of component 2 

x1 free space of component 1 defined as c1~ 1 

x2 = free space of component 2 defined as c 2 ~ 2 

x = free space of the mixture defined as c~ 

(C's are constants and ~'s = l/µ) 

M1 mole fraction of pure component 1 

M2 mole fraction of pure component 2 

The Macleod equation can be expressed in terms of the 

Bachiniskii constants as follows: 

where 

l/µ the fluidity 

volume of fractions introduced by the 

Macleod definition of free volume of the 

mixture "X", defined as v1x1 + v2x2 + 6.V, 

a~d xl' x2 are free spaces of components 

1, 2. 

6.V the change of volume on mixing 

16 

As Irving (21) noted, the Macleod equation is equivalent to defining 

the Bachinskii "modulus of viscosity" as: 
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3. The Gugel Equation (39) 

This equation is exactly the same as the Meyer and Mylius 

equation with the addition of fJ.v, the change of volume on 

mixing. 

4. The Luchinskii Eqtiat:i,on (40) 

where the terms are as above in the Gugel Equation. The 

equation is for an ideal mixture where there is no change 

in volume upon mixing. "C" is assumed to follow the add-

itive rule and the limiting specific volume as well. 

(This assumption was rejected by Bachinskii himself later.) 

5. The Kottler Equation (41) 

Where .,...,._111 • d f . d M MW + M MW nw is e ine as 1 1 2 2 

M1 , M.2 are mole fractions of components 1 and 2 and MW1 , 

MW2 are molecular weights of componetns 1 and 2, and "C" 

the Bachinskii modulus of viscosity is defined as in 

This equation is similar to the previous equations except 

that the units are expressed in molar units. What is new 

here is the clarity of the assumptions of Kottler. He 

assumes that the limiting specific volumes "v's" are add-

itive and proposes that the logarithms of the Bachinskii 

moduli of viscosity are additive. 



Kottler states that in case of ideality both v and Mc12 

are zero. 

6. The Doolittle Equation (42) 

lnµ = y + a EXP ( S ) 
(M) 1/ 4 

or, as expressed by him later (43) 

ln(µ) = A EXP ( S ) 
v /v 

f 0 

where 

v = volume of free-space per gram of liquid at any 
f 

temperature 

v volume of 1 gram of liquid extrapolated to 
0 

absolute zero without change of phase. 

v volume of 1 gram of liquid at any temperature 

A and B are the same constants in both forms. 

MW is the weighted average molecular weight and 
a 

defined as: 

MW 
a 

where "a" lies between 0 and 1 and depends upon the 

difference between the molecular weights of the compo-

nents. The larger the difference, the closer "a11 is to 

18 

1.0, and the smaller the difference the closer "a" is to 

0.0. 

Shas to be found from a previous knowledge of the 

'individual components. Its value need not be precise. 
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For "y" and "a" a trial and error procedure is required. 

Different values for "a" are assumed and a plot of ln µ 

- 1/4 vs EXP(-S/(MW ) is constructed to produce a straight a 

line. "a'' is the slope of the line and "y" is the y 

intercept. 

The best equation of this family is the Doolittle 

equation which was obtained empirically and ·later derived 

semi-theoretically by Turnbull, et al. (44). 

ln µ 

where v0 is the limiting specific volume, vf is the free­

volume equal to the difference between the specific volume 

and the limiting specific volume. A and B are the same 

as "y" and "a". 

The drawbacks of the equations of this family are three: 

a. They can be applied only when the specific volume 

of mixture is known. 

b. They require knowledge of the Bachinskii constants 

for the pure components. They must be obtained 

from viscosity and density data over a range of 

temperature. 

c. Bachinskii's Law holds only at temperatures away 

from the freezing point. 

Most of the equations of this family are similar in con-

sidering the limiting specific volume of the mixture to 

be linear with composition. They are different in their 

definition of the viscosity modulus C. The assumption 
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that the Bachinskii constant "C" follows a simple additive 

law was not justified by experimental evidence and was 

rejected by Bachinskii himself (45). 

IV. Fourth Family: Kinematic Viscosity Equations - Viscosity usually 

is reported as absolute or dynamic viscosity. This family of equa-

tions predicts kinematic viscosity. To convert the kinematic to 

absolute (dynamic) viscosity, the corresponding density is required: 

(Kinematic viscosity v = µ/p) 

A. The Wilson Equation (46) 

This equation is intended for mineral oil blends. It uses 

volume fraction and a constant which varies according to the 

paraffinic or naphthenic content of the components. 

where 

the kinematic viscosities of pure components 

1 and 2 

v1 and v2 = volume fractions of pure components 1 and 2 

w = a constant which varies according to the paraffinic 

or napthenic content of the pure components 1 and 2. 

B. The American Society for Testing and Materials 

Equation (ASTM D341-443, 1932) 

This equation is the basis of the ASTM chart for predicting 

kinematic viscosity. 

W log [log(v + 0.6)] 

W valog [log(v1 + 0.6)] +vb log [log(v 2 + 0.6)) 



where 

va and vb are functions of volume fractions v 1 and 

v2 of components 1 and 2 

vb = 11.68 log (1 + 0.28 v2) 

The parameter W is calculated from the above equation. Using 

this calculated parameter the viscosity of the mixture is 

found from the chart. The new modified kinematic viscosity 

ASTM is the Wright equation (47): 

log (log Z) = A - B log T 

where 

T absolute temperature K 

Z v + 0.7 - C - D + E - F + G - H 

v = kinematic viscosity centistokes 

c Exp(-1.14883 - 2.65868 v) 

D Exp(-0.0038138 - 12.5645 v) 

E Exp(5.4649 - 37.6289 v) 

F Exp (13. 0458 74.6851 v) 

G Exp (3 7. 5619 192.643 v) 

H Exp(80.4945 400.468 v) 

C. The Nederbragt Equation (48) 

log (log v) = v1 log (log v1) + v 2 log (log v 2 ) 

where 

v = kinematic viscosity in centistokes 

The equation is as effective as the ASTM viscosity equation 

and also can be used for mineral oil blends. 

21 



D. The Reed and Taylor Equation (49) 

where 

kinematic viscosities of pure components 1, 2 

molecular weights of pure components 1, 2 

weight fractionf? of pure components 1, 2 

This equation was derived from the rate process theory of 

Eyrning e.t al.(50). 

5. The McAllister Equation (51) 

ln v = Mf ln v 1 + 3MiM2ln v12 

3 MW2 
+ M ln (-) 

2 MW1 

M's and MW's are mole fractions and molecular weights 

22 

respectively. This equation has shown to give good results 

when the component molecules are of great difference in 

size such as water - ethylene glycol systems. It was 

recommended by Reid and Sherwood (52) for mixtures of 

such components-provided that v12 , v 21 are available. 



v12 and v21 are parameters that must be evaluated from 

experimental viscosity data for the mixture. 

6. The Katti and Chaudri Equation (S3) 

where MW 

c 
w. vise 

RT 

R is the gas constant and T absolute temperature. 

W . is a parameter calculated for an equimolar mixture 
vise 

from experimental data. 

This equation was reported to predict the viscosity of 

alcohol mixtures satisfactorily. This equation also 

can be classified under the Fifth family of equations, 

"Equations with Constant(s)". 

7. The Cronauer, Rothfus and Kermode Equation (S4) 

This is an additive type using kinematic viscosity and 

mole fractions. 

8. The Auslander Equation (SS) 

where k for each component is defined at the temperature 

of the mixture as: 

k 
1 

/dv/dT 

k1 , k2 are found from the viscosity-temperature behavior 

of pure components. Irving (21) suggested that the 
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results of this equation can be improved by using log 

instead of v and d (log v/dT) instead of dv/dT. 

The equation is applicable to oil mixtures and hydro-

carbon mixtures where pure component viscosities are 

not widely different. It will not show a maximum or 

minimum on the viscosity curve. 

9. The Heric and Brewer Equations (56, 57) 

They have two equations; the first one uses the mole 

fractions of the pure components. The·second one uses 

the absolute viscosities of pure components instead of 

kinematic viscosity. 

where C is a power series. 

c = c 
0 

where 

mole fractions of components 1 and 2 
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molecular weights of components 1 and 2 

Irving (21) reported that three constants in the 

power series expansion are sufficient to provide 

a fit to better than 0.5 per cent. This equation is 

similar to the Katti et al. equation but differs 

from it by expressing the constant C as a power series. 



b. µ = Mlµl + M2µ2 + MlM2C 

where 

absolute viscosities of pure components 

1 and 2 

C = a power series as above. 

Irving (21) reported that this equation is entirely 

empirical and much simpler than the kinematic form. 

Also, he reported that it gives better fit than the 

kinematic one. 

These two equations are considered as part of the coming 

family, equations with constants, but are stated here for 

the sake of continuity. 

By using the congruence concept they are also a pioneer 
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work in the direction of a good group contribution method. 

The congruence concept was introduced by Bronsted et al. 

(80). It stays that a mixture of components k1 , k2, ... n, 

containing Cl.., c2 , ... n, carbon atoms per molecule, respec­

tively, and present in the mixture in mole fractions x1 , x 2, 

may be characterized by an index C given by: 

Mixtures with same index are designated as congruent. 

10. The Krishnan and Laddha Equation (58) 

This is another kinematic equation having the same terms as 

the Heric equation but differing in the constant. 



The authors stated that A and B are constants that 

are predicted from vapor liquid equilibrium data. 

Of this Family, Irving (21), has recommended the Heric and Brewer 

equations for predicting mixture viscosities. 

V. Fifth Family: Equations with constants. 

A. The Flory Equation (78) 

logµ= A + B IZ 

The Flory equation is intended for mixtures of polymers with 

widely different molecular weights. 

A and B are constants and Z is the weight average chain length 

of the two components defined as 

where 

weight fraction of components 1 and 2 

number of atoms in the chain skeletan of compo-

nents 1 and 2. 

Irving (21), stated that the Flory equation is effective in pre-

dieting the viscosity of a blend of two polymers. 

B. The Saraiya and Winnick Equation (59) 

* v E o 
ln µ = ln A + - + Cl -

RT vf 

This equation has combined the free-volume principle (v0 /vf) 

and the energy principle (E*/RT). 

It was proposed by Litovitz et al. (60) for pure liquids and 

was applied to liquids ranging from fused silica to liquid 
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argon. Saraiya and Winnick applied it to mixtures and assumed -



that ln A and E* (the energy vaporization) are additive with 

respect to mole fractions. Free volume is determined by Gold-

hammer's rule (61). 

I 

C. The Samu and Lima Equation (62) 

log (log µ) 

where I 1 , I 2 are the Souders constants for components 1 and 2 

defined as: 

I= m MW 

where MW is the molecular weight and lit is defined as 

log(log µ) + 2.9 
p 

This is an empirical equation developed by Souders (63) who 

listed"I"values for over 100 organic polar liquids. He 

avoided the strongly polar liquids because his model did not 

work for them. Souders work is one of the very early works 

which considered group effects. 

Other equations of this family are the Doolittle equation which 

was discussed earlier under the Free Space Family equations and the 
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Ishikawa equation (64). According to Irving (21), the Ishikawa equation 

is not recommended. The Flory equation is limited to polymers and 

the Sariaya and Winnick equation is difficult to use. 

VI. Sixth Family: Unclassified Equations - Equations that do not 

fit under any of the above families. 

A. The Cragoe Equations (65) 

Cragoe has two equations: 



B. 

1. 
1 1 

+ 
1 

= 
vl (ln 20µ1) v 2 (ln 20µ2) ln 20µ 

2. 
1 1 + 1 + v1v 2c ln 20µ v1 (ln 20µ 1) v 2 (ln 20µ2) 

where 

µl absolute viscosity of component 1 

µ2 absolute vtscosity of component 2 

c is a constant 

vl mole fraction of component 1 

v2 = mole fraction of component 2 

The last term in equation 2 is to account for the maximum 

or minimum that occurs in some mixtures. Equation 2 is 

applicable to mineral oils. 

The Lederer Equation (66) 

ln 1J = 

where 

Ml M2s 
M1 + M2S 

ln µ1 +M 
1 

+ M2S ln µ2 

µ1 = absolute viscosity of component 1 

µ2 absolute viscosity of component 2 

M mole fraction 

S is a constant defined as the degree of association 

between the component molecules and is very similar 

to the interaction coefficient in other equations. 

It is calculated from the following relationship: 

s 
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Blok (67) has critized the theoretical assumptions that led 

to this expression. 

C. The Ganguly and Chakrabertty Equation (30) 

where 

µ 1 absolute viscos~ty of component 1 

M2 mole fraction of component 2 

cl and c2 are constants 

This equation is deduced from the Andrade Equation (68) and 

later was extended by the same authors (30) to have a density 

form (Family 3A eq. 1). 

D. The Glasstone, Laidler and Eyring Equation (50) 

hN L'IF:j: 
µ = V exp RT 

where 

h Plank's constant 

N Avogadro's number 

R the gas constant 

V the molar volume 

L'IFt the standard free energy activation per mole, often 

replaced by L'IG*, the excess Gibbs molar free energy 

of activation. 

This equation is derived by statistical mechanics from the 

·.reaction rate. When it is applied to mixtures it becomes: 

µ 
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where 

v12 = the average molar volume 

the energies of activation of the components 

are found from plotting ln µ as a function of 

l/T or by using the following relationship using 

the latent heat of vaporization: 

E 
~ 
2.45 
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More than six theoretical or semi-theoretical mixture equations 

are based on Erying's fundamental reaction law. 

E. The Tuomikoski Equation (69) 

µ 

where µ. is the ideal viscosity, defined as: 
1 

µi (µl)v1(µ2)v2 

v1 volume fraction of component 1 

v2 volume fraction of component 2 

p is a constant 

According to Irving (21) this equation can not be used for asso-

ciated or partly associated liquids. 

F. The Roegiers and Roegiers Equation (70) 

• 



where 

where 

-
x1 1 - x2 and can be either weight, mole or volume 

fraction 

a = is a constant. It is a blending factor (the 

equation was originally used with data on lubri-

eating oil mixtures). 

If the logrithms of this equation are taken, it is similar 

to the Lederer equation (66). 

G. The Tamura and Kurata Equation (71) 

where 

c is a constant 

µl, µ2 absolute viscosities of components 1 and 2 

Ml, M2 mole fraction of components 1 and 2 

vl, v2 = volume fraction of component 1 and 2 

This equation is semi-empirical and was recommended for 

mixtures where the difference in pure component viscosities 

is not large. 

H. The Fried, Hala and Pick Equation (72) 

where 

w1 weight fraction of component 1 

w2 weight fraction of component 2 
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C = is a constant 

The constants here are the coefficients of the power series 

expansion of (W1 - w2). 

I. The Roelands Equation (73) 

The original form of the Roeland's equation is: 

where 

v1 , v2 = volume fraction for components 1 and 2 

µ 1 , µ 2 = absolute viscosities for components 1 and 2 

In deriving this form Roelands used Souders formula and 

assumed that Souders''I"obeys the additive law using the 

mole fractions. Also, he assumed that there is negligible 

volume change upon mixing. Later the same author developed 

another form of this equation. 

log(logµ + 1.2) = v1 log(log µ1 + 1.2) + V2(1og w2 + 1.2) 

where the terms are as above. 

The constant C is evaluated by substituting values at 50% by 

volume, or by a fit over the whole range of concentration and 

optimizing C. 

J. The Cullinan Equation (74) 

ln µ 

where 

M1 = mole fraction of component 1 

M2 = mole fraction of component 2 
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µ 1 absolute viscosity of component 1 

µ 2 absolute viscosity of component 2 

VA is the arithmetic mean molar volume, defined 

as: 

VG is the geometri~ mean molar volume, defined 

as: 

v1 and v 2 are the molar volumes of pure components 1 and 2 

defined as: 

This equation is based on statistical mechanics. Irving (21) 

reported that this equation is good for mixtures with no volume 

changes and no inflection points on the viscosity curve. 

K. The Cokelet, Hollander and Smith Equation (75) 

where 

absolute viscosity of component 1 

mole fraction of component 1 

a,' b constants to be evaluated from experimental data 

L. The Mikhail and Kimel Equation (76) 



where 

µ 2 absolute viscosity for component 2 

W weight fraction 

a = constant of the power series 

Mikhail and Kimel reported that using weight fraction for 

alcohol water mixtures produc~d a better fit to the experi-

mental data than mole fractions. 

Irving (21) commented the following on this family: 

The Glasstone, Laidler and Erying equation is the most sig­
nificant one among the equations of this family, because it 
served as the parent equation of many others. The Roelands 
equation is applicable to mineral oil mixtures. The Tamura 
and Kurata equation has general applications and is more 
reliable than other equations of its type (p 27 ). 

VII. Seventh Family: Group Contribution equations - This type of 
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equation will be discussed in Chapter III. Examples of this family 

are the Ratcliff and Khan equation (83) and this work which is 

based on the Ratcliff et al. work. 

As seen from this quick survey, there is no general equation that 

can predict the viscosities of different mixtures. This author believes 

that the last family of equations, namely Group Contribution Family, 

has the potential for general applicability to predict mixture viscosity. 

It is not limited to binaries as is the case for most of the previous 

equations. It is capable of handling multiple and multicomponent sys-

tems as well. It is capable of handling different kinds of components 

such as straight chains, branched chains, polar mixtures, non-polar 

mixtures, ••. ,etc. So this family of equations has the potential for 

general applicability if the temperature·· effect on mixture viscosity is 

incorporated. Experimental data covering wide ranges of temperature 

and concentration are needed to generate the group constants. 



1. 

Once the group constants are generated, they are used to predict the 

viscosity of other mixtures consisting of the same groups for which 

data are either, not readily available or not existing at all. 
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CHAPTER III 

MODEL DEVELOPMENT 

Theoretical Background 

Any solution is made up of components. These components are made 

up of chemical groups such as CH3 , CH2 , CO, COOR, OH, NH, etc. Accord­

ing to the theory of group contributions, these groups are the major 

contributors to the physical, thermophysical and thermodynamic proper­

ties of pure components and mixtures. 

The number of pure components which now exists is very large. 

The number of mixtures which are combinations of these pure components 

is still larger. However, the number of groups that constitutes these 

compounds is relatively small. If the different properties of the 

components in the mixtures are related to group behavior or contributions, 

then a relatively small number of parameters need be generated. These 

parameters may be used to predict the properties correlated covering 

large numbers of mixtures containing the same groups. 

The concept of correlating and then predicting the properties 

of mixtures from group contributions is not new. It goes back to 

Langmuir (77) in the aarly 1920's. He stated that in a liquid solution 

of polymeric molecules, it is not the interactions of molecules, but 

the interactions of functional groups comprising the molecules which are 
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important. Significant progress.in this direction has been made since the 

two independent publications of both Flory and Huggins (78, 79) in 1940. 

They used quasi-lattice theory to derive an expression for the entropy 

of mixing in a thermal solution. They discovered a size effect contri­

bution to the excess free energy of mixing. Rec~nt work has showed 

the residual free energy can nearly be correlated in terms of group 

contribution. Bronsted et al. (80) in 1946 formulated the principle of 

congruence which states that, at constant temperature and pressure, the 

properties of a mixture of hydrocarbon chain molecules from a given 

homologous series depend only on the average chain length of the mixture. 

Lima (62) in 1951 (his equationwas discussed earlier) used the 

Souders viscosity constant I which was calculated from the atomic and 

structural contributions for pure components to predict mixture visco­

sities. Griest et al. (81) in 1958 concluded from their study that 

viscosity is an additive function of the constituent groups, indepen­

dent of whether these parts are combined in the same or different mole­

cules as long as the basic molecular symmetry is unchanged. Dixon (82) 

also concluded in 1959 that the difference in viscosities, densities 

and refractive indices could be attributed to a fundamental difference 

in the behavior of molecules having rotational barriers at the bonds 

between adjacent branched carbon atoms. 

All of these authors either showed or hinted that viscosity is 

a function of structural groups. Their observations and hints fell 

short of proposing a law to state how the groups contribute to vis­

cosity. 



Heric and Coursey (103) used the congruence concept and extended 

it to the viscosity of n-hexadecane and 1-n-chloralkane mixtures. To 

account for the presence of the chloride group the authors resolved 

the excess Gibbs free energy into contributions related to chain length 

and contributions related to chlorine concentration. To evaluate the 

effect of chlorine concentration, they compared mixtures of n-hexade­

cane and n-alkanes to mixtures of n-hexadecane and other halides at 

indentical n-hexadecane molar concentrations. As seen from the work 

of Ratcliff et al. (83), the principle of congruence is a method 

available when dealing with mixtures of homologous series. When 

different types of molecules are mixed, the method becomes complicated. 

Ratcliff and Khan (83) explicitly proposed a group solution model to 

predict the excess viscosity. This model was used by Wedlake (84, 85) 

and extended to cover multigroup binaries. 

Ratcliff - Khan - Wedla.ke Model 

3g 

Their group solution model considers the liquid state to be a 

mixture of structural groups rather than molecules. Interactions between 

these basic units are hten assumed to contribute to the overall proper­

ties of the mixture. The model defined an ideal viscosity equation and 

then accounted for the excess viscosity due to non-ideality. The model 

does not differentiate between intermolecular and intramolecular inter­

actions. It attributes the effects to the manner in which the groups 

are joined together to form molecules. In the original version, Ratcliff 

and Khan (83) restricted their work to n-alcohol/n~alkane and n-alcohol/ 

water mixtures where interactions between parts of like and unlike 

molecules are nearly identical. The original version of the .. madel was 
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for constant temperature. Wedlake (84) expanded it to cover a range of 

temperatures between 10-40°C. He also differentiated between CH3 and 

CH2 groups which was not done before, and generalized it to cover multi­

groups in binary systems. The details of the formulation of the model 

are discussed below. 

The Group• S·olution Model 

The viscosity of any mixture is defined as the ideal mixture 

viscosity plus some excess viscosity due to non-ideality. Ratcliff 

et al. (83) defined an ideal mixture as one where the interactions 

between the different groups of the mixture are alike. The viscosity 

of an ideal mixture is defined as: 

(ln µ) . d 1 = Ex. ln µ. 
1 ea 1 1 

For a real mixture the viscosity is defined as: 

(ln µ) . = (ln µ) . d 1 + B mixture 1 ea 

B is the excess viscosity. It is the correction for nonideality which 

depends on the groups present, their concentrations, and their sizes. 

It can be split into two parts: 

where BS the structural contribution 

the group contribution 

Ratcliff et al. (83, 85) defined the structural contribution as 

where 

BS S 
Ex.B. 

1 1 

B~ 
1 

A 2 
--... (N. - N) 
MW i 



s 
or S 

A 2 
- I.:x. (N. - N) 
-- 1 1 MW · 

where A = a constant 

The 

and 

MW = average molecular weight of the mixture =I: x .MW. 
1 1 

N = I.:x.N. 
1 1 

N. = total number 
1 

group contribution 

SG = G 
LX. S. 

1 1 

of groups in molecular species i 

SG is defined as: 

where 

Nki number of groups of type k in molecular species i 

Bk the individual gropus making molecular species i and 

* Bki = is the standard state value of Bk at a group composition 

corresponding to pure i: 
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Wedlake and Ratcliff (85) assumed that at a given temperature and pres-

sure, the B's depend only on the group composition and not on how the 

groups are joined into molecules. Later Wedlake (84) stated that Bk's 

depend on the group composition xk and on individual group contributions 

arise out of binary group interactions. 

The group fraction Xk of grbup type k is defined in the same 

way as a mole fraction, i.e .. , 



where x. 
l 

I 
. x.Nk. 
l l . l ------
IL:.x.Nk. 
k l l l 

mole fraction of component i 

Nki number of active groups of type k in component i 
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Wedlake's contribution to the model was his differentiation between 

CH3 and CH2 . He also extended the·model to the prediction of multigroup 

binary mixture viscosities. He differed from Ratcliff and Khan (83) 

by presenting the structural contribution as follows: 

where 

MW 

a = constant for fixed temperature and pressure 
0 

MW average molecular weight 

xl mole fraction of component 1 

x2 mole fraction of component 2 

JJ 1 absolute viscosity of component 1 

JJ 2 absolute viscosity of component 2 

He defines Bk as: 

where akL = constant assumed to be independent of group composition 

but dependent on temperature and pressure arisesout of 

binary group interaction. It is defined as: 

i 

a kL' a" 
kL 

a' 
kL 

at I 

+. kL 
T 

constants 

T absolute temperature 



k active group of type k 

L active group for type L 

His term for the group contribution becomes: 

f3G = * x~i) E xi E Nki E akL(xk XL - xki 
i k 

where x. mole fraction of component i 
l 

Nki number of active groups of type k in component i 

xk group fraction of active group type k 

XL group fraction of active group type L 

i component i 

k active group of type k 

-/<: -;'<: 

xki and x1 i represent the standard state value of Bk at a group compo·-

sition corresponding to pure molecular i. 

Summary of This Work 

The structural contribution was expressed as in the original 

modification of Ratcliff and Wedlake (85) and did not follow Wedlake 

modification (84), i.e.: 

13 8 =.!:._Ex. (N. - N) 2 
MW i 1 

where A 

MW 

structural constant 

average molecular weight defined as: 

MW = Z x. MW. 
l l 

MW. molecular weight of component i 
l 

xi = mole fraction of component i 

Ni total number of groups in component i 

N average number of groups defined as: 
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"A" the structural constant need not be precise, so it was gen-

erated once from alkane-alkane mixtures and was used for all the mix-

tures. Generating different A's for different systems was not 

justified. Goswamy (86) stated that contributions are not affected 

significantly by structure. Table IX shows that the structural 

contribution has far less weight than the group contribution in the 

predicted viscosity. 

The group contribution BG was defined as follows: 

where x. 
1 

mole fraction of component i 

number of groups of type k in component i. 

Bk the individual groups that make up component i, defined 

as: 

* 

L: x. Nk. 
. 1 1 

1 
L:bki LJ ·--N­

k i xi ki 

Bki the value of Bk at a group composition corresponding to 

pure molecular i 

txiNki 
constants of the expanded power series of and 

L:L:x. Nk. 
1 1 

respectively 
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To account for temperature effects, the coefficients of the expanded 

power series of Bk and B: were related to the absolute temperature. The 

final form of the liquid mixture viscosity equation is as follows: 

µ 

or 

µ 

where 

S G 
exp[~ xi lnµi + S + S ] 

exp[L . +A - z x. lnµ. L x. (N. - N) + L: x. 
ii MW ii ii 

x.Bk. 
l l 

L:L:x. Nk. 
ki l 1 

and all the terms are defined as above. 



CHAPTER IV 

RESULTS AND DISCUSSION 

The functional relationship between the coefficients of the 

structural contribution, or the group contribution, and temperature 

was established by the following procedure. The experimental vis­

cosity data were regressed at constant mole fraction and at different 

temperatures using a nonlinear least-square fitting subroutine, MARQ, 

written by Chandler (102) to find the optimal constants. By plotting 

the generated constants as function of temperature, a functional 

behavior was established. 

Temperature was included in the viscosity function by substitut-

ing the structural and the group coefficients by the functional relation­

ship. Regressing the experimental data again with the mentioned 

substitution generated constants for the structural contribution and 

constants for each active group. To generate constants for new active 

groups, the experimental data of the new groups were regressed while 

the structural constants and the previously determined active group 

constants were held constant. For example, experimental viscosities 

of some alkane-alkane mixtures were regressed and two structural con­

stants were generated. Constants for CH3 and constants for CH2 groups 

were generated also. When alcohol-water mixtures were introduced, 

their experimental viscosities were regressed while the structural 
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constants and the CH3 , CH2 constants were held constant and the con­

stants for the OH group were generated. 

The same procedure was followed in generating the other active 

groups constants. Once the constants were generated, they were used 

in a computer program for predicting viscosity of mixtures consisting 
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of the same type of groups. The input data needed for the predictive 

program besides the constants are pure components viscosities, components 

mole fractions, components molecular weights, number of active groups 

and temperature. 

The model was applied to thirty-eight mixtures covering eight 

groups. The mixtures were alkane-alkane, alkane-alcohol, alchol­

alcohol, alcohol-water, ethanol...;.amine-water, carboxylic acids, ketones 

and some other miscellaneous mixtures as ethylene glycol-water, for­

mamide-water and formamide-diethyl formamide. The groups covered were 

CH3 , CH2 , CO, COOR, OH, NH2 , NH and N. 

Generating structural constants for each family of mixtures was 

not justified and structural constants generated from alkane-alkane 

mixtures were used for all the families. Table I shows the active 

groups and their constants. 

The number of data points, temperature range, absolute average 

deviation, maximum positive and negative deviations, and overall 

absolute deviation for each family are summarized in Tables II to 

VII. Mixtures with asterisks were predicted by using the generated 

constants. 

The percent deviation was defined as: 

PDEV = [(EXP - Calc)/EXP] x 100 



Structural 
Constants 

-0.9411 

TABLE I 

ACTIVE GROUPS AND THEIR CONSTANTS 

CH3 CH2 co COOR OH NH2 NH N 

-4. 2411 0.5646 5.7590 5.2427 5.8572 15.1062 -16.3025 65.8619 

10.5310 -1.0889 5.4169 -8.0309 -4.0657 1.7834 -111.3089 -45.4972 

-11.1663 -0.4917 -20.9713 -1.5901 -0.7103 -42.3575 -19.9408-1211~9800 

~ 
-....J 



where 

PDEV point percent deviation 

EXP experimental viscosity in cp 

Cale calculated viscosity in cp 

The maximum positive deviation percent was defined as the percent 

deviation whose value was the largest positive deviation among the 

total number of points regressed or predicted. The maximum negative 

deviation percent was defined as the percent deviation whose value 

was the largest negative deviation among the total number of points 

regressed or predicted. The absolute average deviation was defined 

as: 

AADEV 

where 

AADEV absolute average deviation 

PDEV point percent deviation 

NPTS total number of data points 

The overall absolute average deviation for the regressed systems was 

defined as: 

OAADEV 

where 

OAADEV 

AADEV 

NS 

L:AADEV 
NS 

overal absolute average deviation 

absolute average deviation 

total number of systems regressed simultaneously 
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Table II shows alkane-alkane mixtures with temperature ranging 

between 50.0°F (10°C) and 131°F (55°C). The absolute average deviation 

is as low as 0.98% for n-pentadecane-n-hexane and as high as 3.04 for 

n-hexane-n-dodecane. The maximum deviation for any data points is 14.05% 

for the n-hexane-n-dodecane system. It occurs at 131°F (55°C) and at 

0.935 mole fraction of n-hexane (0.065 mole fraction of n-dodecane). 

The overall absolute average deviation is 2.16 for all alkane-alkane data 

sets. 

Table III shows the comparison of alkane-alcohol mixtures. Mixtures 

shown without asterisks are the mixtures used for generating the group 

constants, while those with asterisks are the mixtures predicted. Temp~ 

erature for all the alkane-alcohol mixtures ranges between 50°F (10°C) 

and 104°F (40°C). The absolute average deviation runs between 1.17% 

for the predicted viscosity of ethanol:-n-hexane systems and 7.04% for 

the predicted n-octanol-n-nonane system. Maximum positive deviation is 

7.95% for n-dodecane-ethanol system. It occurs at 50°F (10°C) and 0.164 

mol fraction of n-dodecane. Maximum negative deviation is 18.76% for the 

predicted system n-octanol-n-nonane. It occurs at 50°F (10°C) and equi­

molar of n-octanol and n-none. 

Table IV shows the results for alcohol-water mixtures. The mix­

tures without asterisks are mixtures used in regression, while those 

with asterisks are those predicted. The temperature ranges between 

32°F (0.0°C) and 212°F (100°C). The absolute average deviation is as 

low as 2.23% for the methanol-water mixture and as high as 6.36% for 

the ethanol-water mixture. The overall absolute average deviation for 

all systems is 3.8%. The maximum negative deviation is 30.0% for the 



TABLE II 

ALKANE AND ALKANE MIXTURES 

Mixture No. of Temperature Abs. Max. + 
Points Range °K Av. Dev. Dev. 

% % 

N-Pentadecane + N-Hexane 24 283.14 - 313.15 0.98 3.36 

N-Hexane + N-Dodecane 33 298.15 - 328.15 3.04 14.05 

N-Pentadecane + N-Nonane 27 283.15 - 313.15 2.47 4.64 

Overall absolute average Deviation = 2.16 

Max. -

Dev. 
% 

-0.81 

-3.37 

0.00 

Ref. 

90 

90,99 

90 

V1 
0 



TABLE III 

ALKANE AND ALCOHOL MIXTURES 

Mixture No. of Temperature Abs. Max. + 
Points Range °K Av. Dev. Dev. 

% % 

Ethanol + N-Hexane* 21 283.15 - 313.15 1.170 2.65 

N-Dodecane + Ethanol 22 283.15 - 313.15 3.330 7.95 

N-Nonane + Ethanol 21 283.15 - 313.15 3.013 0.73 

N-Pentanol + N-Hexane 27 283.15 - 313.15 6.170 0.00 

N-Dodecane + N-Pentanol* 24 283.15 - 313.15 5.920 0.00 

N-Octanol + N-Hexane* 21 283.15 - 313.15 5.370 0.00 

N-Octanol + N-Nonane* 21 283.15 - 313.15 7.040 0.00 

N-Pentadecane + N-Octanol 21 283.15 - 313.15 5.640 0.00 

Overall absolute average deviation = 4.54 

Max. -
Dev. 

% 

-2.80 

-9.70 

-8.76 

-15.30 

-11. 77 

-14.74 

-18.76 

-12.39 

Ref. 

90 

90 

90 

90 

90 

90 

90 

90 

U1 
f-' 



TABLE IV 

ALCOHOL AND WATER MIXTURES 

Mixture No. of Temperature 
Abs. 

Av. Dev. 
Points Range °K 

% 

Methanol + Water 32 273.15 ..,. 373.15 2.23 

Ethanol + Water 39 273.15 - 373.15 6.36 

Water + N-Propanol 33 273.15 - 373.15 4.07 

Iso-Propanol + Water* 121 273.15 - 373.15 4.71 

Water + N-Butanol 30 273.15 - 373.15 2.56 

Iso-Butanol + Water* 20 273.15 - 373.15 2.84 

Overall absolute average deviation 3~8% 

Max.+ 
Dev. 

% 

13.25 

17 .05 

8.09 

15.65 

7.80 

13.05 

Max.-
Dev. 

% 

-2.22 

-18.93 

-16.70 

-30.78 

-9.12 

-3.85 

Ref. 

92,96,99 

93,96,99 

94 ,96 

94' 96 

95 ,96 

95, 96 

VT 
N 



predicted iso-propanol-water system. It occurs at 212°F (100°C) and 

0.1 mole fraction of iso-propanol. The maximum positive deviation is 

17.05%. It occurs in ethanol-water system at 77°F (25°C). 
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Table V shows results for ketone mixtures and carboxylic acid 

mixtures. The temperature ranges between 32°F (0.0°C) and 122°F (50°C). 

The absolute average deviation is as low as 7.47% for the n-butyric acid 

- acetone mixture and as high as 27.09% for the methyl propyl ketone -

acetone mixture. The overall absolute average deviation is 9.17% for 

carboxylic acid mixtures, while it is 18.3% for ketone mixtures. 

Maximum positive deviation is 36.85% for acetic acide-water system 

and it occurs at 0.73 mole fraction of acetic acid at almost all the 

temperatures. That raises the suspicion that the data for 0.73 mole 

fraction - may be in error. The maximum negative deviation is 47.9%. 

It occurs in the methyl propyl ketone - acetone system at 0.4 mole 

fraction of methyl 1 propyl ketone. 

Testing the experimental data for consistency shows that significant 

errors are in some of the systems such as acetic acid-water and methanol­

acetone. 

Table VI shows the results for ethanolamine-water mixtures. The 

temperature ranges between 100°F (37.78°C) and 450 °F (232.22°C). The 

absolute average deviation runs between 3.88% and 18.88% for the regres­

sed systems. The overall absolute average deviation for the regressed 

systems is 11.1%. The maximum positive deviations for the aqueous mono­

ethanolamine, diethanolamine and triethanolamine are 49.65%, 35.28% and 

16.98% respectively. The maximum negative deviations are 0.0% for both 

aqueous monoethanolamine and diethanolamine while it is 4.77% for aqueous 

triethanolamine. 



TABLE V 

KETONES AND CARBOXYLIC ACID MIXTURES 

No. of Temperature Abs. Max. + Max. -
Mixture Points Range °K Av. Dev. Dev. Dev. Ref. 

% % % 

N-Butyric Acid + Acetone 33 298.15 - 318.15 7.47 9.48 -17.780 99 

Acetic Acid + 33 298.15 - 318.15 10. 34 14.93 -12.580 99 
Methyl Ethyl Ketone 

Acetic Acid + 33 298.15 - 318.15 8.54 9.63 -22.804 99 
Methyl Propyl Ketone 

Acetic Acid + Acetone 44 298.15 - 323.15 4.60 9.93 -10.030 99 

Acetic Acid + Water 132 288.15 - 368.15 14.90 36.85 -43.910 100 

Overall absolute average deviation = 9.17% 

Methanol + Acetone 58 273.15 - 318.15 17.74 38.22 -23.010 99 

Acetone + Water 68 293.15 - 323.15 17.15 1. 88 -42.160 101 

Methyl Ethyl Ketone + 22 293.15 - 313.15 11. 23 0.00 -19.910 99 
Acetone 

Methyl Propyl Ketone + 22 293.15 - 313.15 27.09 0.00 -47.990 99 
Acetone 

Overall absolute averaage deviation = 18.3% 

Vl 
.i::-



TABLE VI 

ETHANOLAMINE AND WATER MIXTURES 

No. of Temperature Abs. Max.+ 
Mixture Av. Dev. Dev. 

Points Range °K 
% % 

Monoethanol Amine + Water 20 310.93 - 477.59 18.88 49.65 

Diethanol Amine + Water 20 338.71 - 505.37 10.43 35.28 

Triethanol Amine + Water 20 338.71 - 505.37 3.88 16.98 

Overall absolute average deviation = 11.1% 

Max.-
Dev. Ref. 

% 

0.0 98 

o.o 98 

0.0 98 

Lil 
Lil 



Testing the data for consistency shows that at high temperature 

extrapolation took place. This extrapolation is beyond the range of 

the experimental data. 
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Table VII shows miscellaneous mixtures. The temperature ranges 

between 50°F (10°C) and 104°F (40°C) for alcohol-alcohol mixtures and 

the overall absolute average deviation is 2.32%. For formamide-diethyl­

formamide the temperature range is 77°F (25°C) to 167°F (75°C) and the 

absolute average deviation is 3.02%. The maximum positive deviation 

is 6.64% and the maximum negative deviation is 9.97%. The absolute 

average deviation for aqueous formamide over a temperature range of 

77°F (25°C) and 104°F (40°C) is 17.71%. The maximum positive deviation 

is 27% and the maximum negative deviation is 52.9%. 

Testing for consistency shows that experimental data for aqueous 

formamide are not consistent. 

Table VIII shows the structural contribution (STCN) and the group 

contribution (GRCN) in predicted mixture viscosity of the ethylene 

glycol-water system. The table shows that the structural and the group 

contributions (the corrections for non-ideality) account for as high 

as 85% of the total predicted value. The table shows that the struc­

tural contribution by itself accounts for less than 5% of the total 

contribution. · This explains why generating the structural constants 

for each family of mixtures is not required. 

The model was tested for low temperature range, for high temper­

ature range and for branching. Table IX shows predicted viscosity 

results for the ethanol-n-heptane mixture with temperature ranging from 

-52°C (223.0°K) to 69.85°C (343°K). For branching Table X. shows the 



TABLE VII 

MISCELLANEOUS MIXTURES 

Mixtures No. of 
Abs. Temperature 

Av. Dev. 
Points Range °K 

% 

N-Propanol + Methanol 21 283.15 - 313.15 2.74 

N-Octanol + Ethanol 21 283.15 - 313.15 1. 90 

Overal absolute average deviation 2.32 

Formamide + Diethyl Formamide 48 298.15 - 348.15 3.02 

Formamide + Water 22 298.15 - 313.15 17.71 

Max. + 
Dev. 

% 

0.00 

·0.00 

6.64 

27.00 

Max. -
Dev. 

% 

-6.87 

-6.90 

-9.97 

-52.93 

Ref. 

90 

90 

100 

99 

Ul 
"-.I 



TABLE VIII 

STRUCTURAL CONTRIBUTION (STCN) AND GROUP CONTRIBUTION (GRCN) 
WEIGHT IN PREDICTED .MIXTURE VISCOSITY (VCALC) 

OF ETHYLENE GLYCOL AND WATER 

MFR A TEM K VCALC Sl CN GR CN 

o.72300 295.04 1I.631 34 -0 .04 0.39009 
0.40400 299.21 5.24221 -o. 06 o. 69411 
0 .22500 300.48 3·.o 2537 -o. 07 0.70565 
0.93400 301.ES 12i.~4241 -0 •. 02 o. 091 71 
0.22500 305.98 2;;54S19 -o. 07 o. 67398 
0 .111 00 309.48 l.48981 -0.04 0. 50226 
c .934 00 319.t:9 6•~1C67 -o. 02 0.07958 
0.11100 322.76 ··1.oes11 -c. 04 o. 45482 
0.40400 229. 4S ·2 i. l 1629 -o.os 0.54941 
0.22500 332.76 1. 2E376 -c. 06 0.55316 
0 .93400 339.49 3.76969 -0.02 0.06970 
C.40400 344.21 T •. 51258 -o.os 0.50014 
0.72300 345.SE 2a42C26 -o. 03 0.26840 
0.22500 356.82 o.ao969 -o.os 0.47873 
0.11100 360.54 o,;. 54871 -0.03 0.36038 
o.93400 364.77 2.14135 -0.01 o •. oc093 
0 .22 500 369.21 0 .66538 -o.os 0. 44922 
0.40400 371.93 0."91157 -o. 04. 0.43230 
0 .22500 376.98 0.5S505 .;_ 0. 05 0.43313 
0.72::00 396.48 0.98200 -0.02 0.21497 
o .22soo 399.76 . O.; 44141 -c. 04 0.39476 
0 .93400 402.73 1 .13449 -,0.01 0.05310 
0.40400 404.37 'O.;SS434 ,-Q.04 0.38140 
0.11100 417.87 0.28340 .,-0. 02 o. 28325 

0.22500 . 421 .93 0.35584 -o. 04 0.36734 
0.93400 433.89 0.7t569 -c.01 0.04978 
0 .22500 435 .93 0.3lil04 .,-c. 04 o. 35392 
o.72300 447.76 Oe54370 '.:""0.02 0. 19267 
0.40400 451.37 ·o.36806 -o. 03 0.34140 
0 .93400 462.41 o.s72as '.,...o. 01 · o. 04836 
0.22500- 4t3.32 0.254 70 -0.04 0.33442 
0.22500 470.93 o. 2 4209 .,-o. 03 o. 33031 
0 .111 00 473.54 0 "18807 -0.02 0.24667 
C. 4 Oo\ 00 474. Oa\ '0~31028 -c. 03 . 0.33143 
0 .7 2:300 500.54 o.35792 -0.02 0.18733 
0.93400. 502.0B 0.40834 -0.01 0.04814 
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VEXPR 

1 .73200 
3.75100 
6.40100 
6 .88500 
1.21100 
1 .69000 
3.23200 
3.68800 
o.7a100 
1.17400 
1.68900 
2 .15100 
0.55100 
0.50300 
1.01200 
1.29000 
0 .43000 
0.56t00 
0.69800 
1.86300 
0 .33700 
0 .41700 
o.soooo 
0.60600 
0.26800 
C.318CO 
0.37100 
0.44100 

TABLE IX 

PREDICTION OF ETHANOL AND N-HEPTANE MIXTURE 
YISCOSITY AT LOW TEMPERATURE 

VCALC ·MFR A TE IWI K PDEV 

2.59839 0.3!;210 223.00 -so. 02250 
3.55008 0.59170 223.00 5.35645 
4.3oc;e2 o. 7~~40 223.00 32. 66953 
5.5114-5 Oa89690 223.00 19.94984 
1.10131 0.35210 243. 00 9. 05759 
t.52052 0.59170 2'43.00 1 o. 02869 
2.13353 o.76540 243.00 33.98744 
2. 90~ 10 o.ast9o 243. 00 21.28262 
o.76913 o.3~210 263. 00 •.• 52033 
0.97911 0.5S170 263.00 16.60050 
l.34f4~ 0.7~540 2t.3. 00 20.28083 
le77923 o.89690 2t3.00 17. 2E.366 
o.s7252 o.3s210 283.00 -3.90578 
0.684915 o.sc;170 2f4.00 14. 69969 
0.92370 0.76540 2f:;:. 00 8. -12500 

1. 18!:f2 o. 8Sf90 2E3 • 00 8.09176 
0.44039 0.35210 303. 00 -2.41538 
Ce4S570 0.59170 303.00 12.42071 
0 .652.34 o.76540 303. 00 6. 54197 
0.80903 o.89690 303.00 56.57389 
c.34-971 o.3~210 323. 00 -3. 77290 
0 .37262 o.59170 32::.00 lo. 64249 
0.47674 o.76~0 323.00 4.65174 
o.57004 o. 8St90 323.CO 5.93396 
o.2as1a o.3e210 343.00 -6. 41153 
C.28896 0.59170 343.00 9.13184 
o .35e 11 o.7ts4o 343.00 3.31.375 
0.41293 o.89690 343.00 6.36532 

AVE. ABSCLUTE PE~CE~T DEVIATlO~= 12.33035 
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V EXP JC 

B. 317C0 
8. 53 3 0 c 
2. 65 0 00 
l. 7'5 2 5 0 
". 03 6 0 0 
3.8070C 
1. 32 4 0 0 
l. 00 150 
1. 62 6 00 
1. 517()0 
0. 65 9 0 c 
0. 5,." 1 c 
0.76700 
0. 76 5 0 0 
0. 40 6 c 0 
0. 35 0 s 0 
0. 52 9 cc 
0. 510c0 
0. 31 7 0 c 
0.28000 

TABLE X 

PREDICTION OF ISO-BUTANOL AND 
WATER MIXTURE VISCOSITY 

V(Al( MFR A lEM IC 

a. 31100 1.00000 273. lS 
8.62583 C.57900 273.15 
2.~526C o.01soo 273.15 
le7525C c.ooooc 273.15 
4.03600 1.00000 293.15 
3.660te 0.57900 293.15 
le359S9 o.01soo 293.lS 
1.001sc 0.00000 29 3. 15 
1.f260C 1.00000 323.15 
1.37"22 0.57900 323.15 
0.68731 0. 01500 323.15 
"0.54410 0.00000 323. 15 
0.78700 1.00000 353.15 
0.66525 0.57900 353.15 
0 • .-22.-~ 0.01500 353.15 
0.35090 0.00000 353.15 
0.52900 1.00000 373.15 
0.4549" C.57900 373.15 
0.32920 0.01500 373.15 
0.28000 0.00000 373.15 

AVE. AESOLUTE PE~CENT DEVIAlION= 
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P C:E V 

0.00000 
-1. c 8 7 90 

3.67565 
o.cooco 
o.coooo 
3. 85663 

-2.71791 
o.coooo 
0.00000 
9.111221 

-4.29f"6 
O.COO()O 
0. c 0 0 00 

13.C3981 
-4.0ll3l1 
-0.00000 

0. cc 0 0') 
10.7S706 
-3.f~953 

-0.00000 

2.83881 
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prediction of mixture viscosity for the iso-butanol-water system over 

a temperature range of 0°C (273.15 °K) to 100°C (373.15°K). 

(~There is no existing predictive technique that addresses itself 
l_ 

to liquid mixture viscosity over a wide range of temperature, so ex-

perimental viscosity data were used for comparison. Wedlake (84) covers 

a range of temperature between 10°C (283.15°K) to 40°C (313.15°K). I 

Table XI shows a comparison between this work and his in that range. 

{ 'Generating reliable constants in this study lies on one major 

factor, reliable and consistent experimental data. In choosing such 

data when different sets are available the author used consistency tests 

developed by Fluid Properties Research Inc. at Oklahoma State University 

and his judgement supported by private communications (87, 106). When 

no options were present the consistency tests were conducted and the 

data were used. Samples of the data are presented in Figures 1-12. 

Figure 1 shows predicted and experimental viscosities for the n-

decane-n-heptane mixture as a function of temperature over a wide range 

of concentration. Deviation in this set of mixtures i.e., alkane-alkane 

mixtures occurs at low temperatures. Alkane-alkane mixtures do not 

exhibit maximum or minimum when viscosity is plotted as a function of 

mole fracti~n and Figure 2 shows that. 

Figures 3 and 4 show predicted and experimental viscosities for 

the n-octanol-n-nonane mixture as a function of temperature and mole 

fraction. The maximum positive deviation occurs at low temperature' 

(50°F or 10°C) and at approximately 0.6 mol fraction of n-octanol 

(0.4 of the alkane). 



TABLE XI 

VISCOSITY OF ETHANOL AND N-HEXANE MIXTURE 
AS PREDICTED BY THIS WORK 

AND WEDLAKE'S WORK 

Mole Fraction Exp - Vis. 
Predicted vis Predicted vis 

"A" cp Using This Work Using Wed lake (85) 

cp % Dev cp % Dev 

0.1636 0.3664 0.3766 -2.780 0.3720 1.53 

0.3329 0.4333 0.4379 -1. 060 0.4297 0.16 

0.4988 0.5460 0.5316 2.640 0.5292 3.08 

0.6629 0.7094 0. 6914 2.530 0.6974 1.69 

0.8379 0.9794 0.9784 0.102 1.0055 -2.67 

0.1636 0.3103 0.3182 -2.540 0.3140 -1.20 

0.3329 0.3576 0.3625 -1. 360 0.3550 0.73 

0.4988 0.4380 0.4299 1.840 0.4262 2.69 

0.6629 0.5561 0.5441 2.600 0.5460 1.82 

0.8379 0.7517 0.7476 0.550 0.7639 -1.62 

0.1636 0.2656 0. 2725 -2.590 0.2680 -0.90 

0.3329 0.2992 0.3049 -1. 910 0.2971 0.70 

0.4988 0.3565 0.3541 0.670 0.3484 2.27 

0.6628 0.4426 0.4370 1. 270 0.4345 1.83 

0.8379 0.5860 0.5834 0.440 0.5912 -0.89 

Absolute average deviation 1.66 1.59 
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Figures 5 and 6 show the predicted and the experimental viscosities 

for the n-propanol-n-methanol mixture as a function of temperature and 

mole fraction. The maximum positive deviation occurs at low temperature 

(50°F or 10°C) and equimolar fraction of the two components. 

Figures 7 and 8 show the predicted and experimental viscosities 

for the iso-propanol-water mixture as a function of temperature and 

mole fraction. The maximum positive deviation at 32°F (0.0°C) and at 

equal mole fractions of the two components. This type of mixture 

exhibits a maximum at low temperatures then this maximum levels off at 

high temperatures. 

Figures 9 and 10 show the predicted and the experimental viscosities 

for the acetic acid-water mixture as a function of temperature and mole 

fraction. The viscosity goes through a maximum with composition. The 

maximum positive deviation occurs at 59°F (15°C) and approximately 0.2 

mol fraction acetic acid. The maximum negative deviation occurs at 59°F 

(16°C) and approximately 0.8 mol fraction of acetic acid. 

Testing the data for consistency shows that the 15°C data points 

are not good. 

Figures 11 and 12 show the predicted and the experimental viscosi­

ties for the triethanolamine-water mixture as a function of temperature 

and mole fraction. The curves show maximum and minimum. Again, as in 

the previous systems, the deviation is shown to occur at low temperature. 

Here it is shown to occur at approximately 340°F (66.85°C) and 0.22 

mole fraction of triethanolamine. 

In summary maximum positive or negative deviations occur at extreme 

conditions; either at low temperature and/or concentrations or at high 

temperature and/or concentrations. When polar components are involved 
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maximum positive or negative deviations occur at extreme temperatures 

and equimolar concentrations. 
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The absolute average and overall absolute average deviation for 

alkane-alkane, alkane-alcohol, alcohol-alcohol, alcohol-water, ethylene 

glyco-water, and triethanolamine-water were below 4%. Carboxylic acids, 

mono- and diethanolamine-water and ketone mixtures were higher. Some 

of them were as high as 18%. Consistency tests show that errors took 

place in carboxylic acid mixtures, aqueous mono- and diethanolamine 

and ketone-ketone mixtures data. The unavailability of other data 

options for choosing from in the last families of mixtures and incon­

sistency were the reasons for such high deviations. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

1. The Ratcliff-Khan Group Solution Model for predicting mixture 

viscosity at room temperature, which was modified by Goswamy, extended 

to cover temperatures to the critical. 

2. The new model is capable of handling multicomponent, multi­

group mixtures of straight and branched chains, polar and non-polar 

components over a wide range of concentration and temperature. 

3. The structural contribution and the group contribution coef­

ficients of each active group are related to the temperature by an 

exponential form. 

4. Constants of eight active groups were generated. These groups 

are CH3 , CH2 , COOR, CO, OH, NH2 , NH and N. 

5. The new model is capable of predicting mixture viscosity of all 

liquid mixtures consisting of the above mentioned active groups. Its 

interpolation and extrapolation predictive power is very satisfactory. 

6. The most noticable deviations in predicted viscosity for mix­

tures that do not form maxima or minima occur at extreme conditions of 

concentration and or temperature, i.e., at high or low concentration. 

While for mixtures that form maximas or minimas most deviations in pre­

dicted viscosity occur at equimolar quantities. 
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Reconnnendations 

For further investigation and improvement of the work the following 

recommendations are made: 

1. Consistent experimental data covering wid'e range of temperature 

are required for generating the constants. 

2. The liquid mixtures used for generating the constants need to 

be representative mixtures covering the branched as well as the straight 

chains, the polar as well as the non-polar and the large as well as 

the small components. 

3. Constants for cyclic, aromatic, sulfur containing and halogen 

containing groups following the same procedure are needed. 

4. The group contribution model is powerful. It should be utilized 

for the prediction of other physical and thermodynamic properties. 
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