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CHAPTER I 

INTRODUCTION 

Statement of the Problem 

Drug abuse continues to be one of the major areas of concern to law 

enforcement officials. In 1980, there were approximately 7000 cases in-

valving drugs in Oklahoma alone. Samples related to drug abuse account 

for approximately half of the man hours allocated in the state crime 

laboratories. (l) Police administrators and crime laboratory managers 

are constantly seeking new methods that will hasten the analysis of sam-

ples without a significant loss i~ accuracy and without error in their 

identification. 

An investigation was undertaken to determine if circular dichroism 

(CD) spectropolarimetry could be utilized to prove positive identifica-

tion,of members of the opium alkaloid group and to determine if the spec-

tra gave results which were quantitative and reproducible. Circular 

dichroism has often been used as a method for the qualitative determina-

tion of the absolute configuration of a chiral molecule whose identity is 

known, or to establish the position of a particular substituent on a mole

cule. (2 •3) However, little has been done with CD in identification of 

anonymous molecules, either qualitatively or quantitatively. In retro-

spect, this is somewhat surprising, especially in cases where the sus-

pected molecule is known to be chiral, as is the case for many drugs of 

abuse. No references were found in the 1 iterature which provided molar 
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ellipticity values for any of the drugs of abuse in aqueous media. There-

fore, both qualitative and quantitative examinations were conducted in 

the present investigation. 

Previously, the qualitative identification by CD of derivatives of 

the morphine group of the opium alkaloids in mixtures with KBr in pel

lets(4) and in a cholesteric liquid crystal solvent(S) have been inves-

tigated. The former method has not been shown to be quantitative while 

the latter is quite tedious and is quantitative only with excellent tech-

nique. 

It has generally been thought that ultraviolet-visible spectrophoto-

metry has limited application as an analytical tool because absorption 

bands, with a few exceptions, are broad and unstructured. On the other 

hand, the technique is both simple and quantitative. In the past, changes 

of solvent and of the pH of the solution have been used to modify the 

spectra. (6) This variation makes it possible to identify the group to 

which the confiscated drug sample belongs, but does not allow for speci

fic identification of the drug. Siek et al.(?, 8 •9)' have accumulated an 

extensive collection of UV absorption spectra for drugs and toxic sub-

stances in aqueous acidic and basic media and in ethanol. 

In the experiments for this work, CD spectra have been obtained for 

several of the opium alkaloids dissolved in dilute acid, dilute base, 

and in a solution buffered to pH 8.6. Results are reported for morphine, 

nalorphine, 3-monoacetylmorphine (3 MAM), 6-monoacetylmorphine (6 MAM), 

3,6-diacetylmorphine (heroin), codeine, dihydrocodeine, ethyl morphine, 

thebaine, hydrocodone, naloxone, oxycodone, oxymorphone, and hydromor-

phone. Concentration studies have been performed for most of these de-

rivatives. The results from the experiments show that the spectra 
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obtained using CD are much more definitive than those obtained by conven

tional UV absorption spectroscopy. CD, therefore, should have more ana

lytical potential than UV absorption. 

Alternative Methods for Analysis 

Prior to World War I I, the primary methods of drug identification 

were titrimetry, microcrystal tests, color tests, and gravimetric meth

ods. The first three types of tests are empirical and somewhat non

specific while the latter method is only used to assay pharmaceutical 

samples of known origin. 

During the early sixties there was an emphasis on developing quicker 

and better methods of analysis, as the number of drug samples increased 

dramatically. This led to the development of instrumental methods for 

drug analysis such as IR and UV spectroscopy, gas and liquid chromato

graphy, and ultimately gas chromatography/mass spectrometry. 

Although some non-instrumental methods are still being used in most 

crime laboratories, they are gradually being replaced by instrumental 

methods. This is due in large measure to the demand for tests which 

give unique results for a drug. It is of paramount importance in the 

American jurisprudence system that a particular drug be distinguishable 

from others. Although many of the older tests give reactions which are 

obvious, their chemistry is not well understood. Even today the chemis

try and physics of the instrumental methods are better known than those 

of microcrystal and color tests. 

Physical Properties 

Some advantage can be made of the physical properties of the drug 
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groups. Properties, such as solubility in dilute acids and bases and 

organic solvents, aid in a preliminary classification of drugs into three 

categories: acid soluble, base soluble, and neutral drugs. 

The opium alkaloids possess the following structural and physical 

. ( 10) properties: 

1. A tertiary aliphatic amino group 

2. Several contain a phenolic hydroxyl group 

3, All are weak bases (pKa = 6.6 - 9.5) 

4. All are somewhat soluble in organic solvents. 

The phenolic substituted narcotics are soluble in strong aqueous 

alkali solutions, a consequence of the ionization to form the phenolate 

ion. This property can be useful in separating the members of the co-

deine group from th0se of the morphine group by extraction from a basic 

· medium into chloroform. The members of the codeine group are extractable 

into chloroform while those of the morphine group are not. 

( 11 12 13) Several authors ' ' have cited various extraction procedures 

which are used to concentrate the drug when it is known to be present in 

urine, blood or plasma,, and also to reduce interferences. 

A necessary preparation step which precedes identification by instru-

mental means is to separate the drug from diluents and binders. This is 

true regardless of whether the sample is a pharmaceutical preparation or 

is of clandestine origin. lypically, this is accomplished by an organic 

solvent extraction followed by a back extraction into an acidic aqueous 

medium. More receRtly other methods, both instrumental and noninstrumen-

tal, are being developed in order to replace aqueous extraction proce-

dures as the means of separation. 
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For example, the introduction of XAD-2 resin has added a new dimen

sion to drug extraction and concentration procedures. (l 2 •14-l 6) Large 

samples of urine can be extracted rapidly and therapeutic levels of nar-

cotics, barbiturates, or tranquillizers detected. In this procedure 

water soluble organic species are adsorbed onto the non-ionic copolymer 

structure and are subsequently eluted with an appropriate organic sol-

vent. The resin can be used either in the form of a co 1 umn or as a 

slurry. The method is often used in conjunction with thin layer chroma-

tography (TLC), which is useful in separating the drugs of interest. 

Alumina or Fluorosil can later be used to further "clean up" samples. 

However, loss of a portion of the drugs of interest might result. (l?) 

Cation exchange has also been used to isolate morphine from opium, 

illicit narcotic mixtures, pharmaceutical preparations, and toxicological 

. (23) 
extracts. Anion exchangers have also been used for the analysis of 

narcotics. In the process, the salts are converted into free bases, 

which are eluted with an organic solvent. 

Paper chromatography has also been used to a lesser extent. It does 

not possess the flexibility of some of the other methods. Nakamura( 24 ) 

was able to successfully separate morphine from 3- and 6-monoacetylmor-

phine, 3, 6-diacetylmorphine, and codeine. 

Thin Layer Chromatography 

Thin layer chromatography (TLC) is one of the most, if not the most, 

widely used non-instrumental analytical tools for the separation and 

'd "f' . f d d h. b 1· (11,12,16-20) s . 1 ent1 1cat1on o rugs an t e1r meta o 1tes eparat1on 

schemes are important for analysis of most of the drugs since each drug 

may have several metabolites or the drugs are present in combination. 
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Masoud( 2l) devised a separation scheme for most of the common illi-

cit drugs which combined Rf values obtained from the study of various 

solvent systems with chromogenic reactions with spray reagents for the 

purpose of identification of the drugs present. However, since Rf val

ues can change from day to day, it was necessary to run standards simul

taneously with the unknowns.( 22 ) Sometimes the material was spotted and 

d l d . d I . ( 20 ) f b h . . I ' . . b d eve ope 1n up 1cate or ot v1sua 1zat1on y spray reagents an 

quantitation by UV spectroscopy. Drug levels of O.l mg/ml were detec-

table by UV spectroscopic analysis of the solution. 

One approach for the separation of compounds with close Rf values 

is to expand TLC to two-dimensional chromatography, using two different 

solvent systems. The preparation of dansyl derivatives resulted in the 

b ·1· d . .. fd (l 2 ) a 1 1ty to etect p1cogram quant1t1es o rugs. 

Several of the drugs fluoresce under UV I ight, which aids in the 

location of the spots. Quinine, a common adulterant with morphine, can 

be successfully separated and quantitated by detecting its fluorescence 

at 254 nm. 

An alternate procedure is to separate the drugs on TLC plates whrch 

have been impregnated with a fluorescent binder. The drugs appear as 

dark spots on a bright background. 

Color Tests 

Color tests serve a vital role in the identification of drugs. They 

can be either in the form of spray reagents for preliminary identifica-

tion of drugs separated by TLC or in the form of spot tests for small 

quantities of the suspected drug. The number of spray reagents used for 

chromogenic detection are probably more numerous than the number of 
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solvent systems which have been tried for separations by TLC. For exam

ple, Taylor( 23 ) has listed 25 reagents commonly used in conjunction with 

TLC and their expected color reactions. It has been shown( 25• 26 ) that 

some spray reagents react only with specific functional groups, thus aid-

ing in a classification of the unknown drug with a specific drug group. 

A few examples of drug groups and spray reagents used to identify those 

groups are: Zwikker 1 s test for barbiturates; the cobalt thiocyanate re-

agent for cocaine; and the Duquenois-Levine reagent for THC and other 

cannabinoids. Spot tests are usually performed on 1-2 mg of the solid, 

although the drug can be extracted from urine, evaporated to dryness, 

and tested. 

The three most commonly used spot tests for members of the opium 

alkaloid groups are the Marquis, the Mecke, and the Frohde reagents. The 

Marquis test yields shades of purple for all opiates, whereas the other 

two yield various shades ranging from green to brown. (23) 

Although color tests and spot tests are quick and fairly easy to 

perform, Masoud( 2G) listed three problems inherent to them. These in-

eluded the occurrence of false positives or negatives, their lack of 

specificity, and the difficulty of interpreting some results. One 

author( 2 l) stated that multiple TLC analyses with chromogenic detection 

of the drug was equal to IR spectroscopy in relevancy, analytical power, 

and utility. However, most authors 1 isted spot tests only as screening 

tests. 

Overspraying the TLC plate with successive spray reagents is possi-

ble, although care must be observed as to the order in which they are 

used. Bastos et al._( 25 ) devised a separation scheme for drugs using TLC 
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in conjunction with successive spray reagents, whereby over 100 drugs 

were classified and tentatively identified. 

Microcrystal Tests 

In its simplest form a microcrystal test is performed by adding one 

drop of reagent to one drop of test solution on a microscope slide, stir-

ring and observing the crystal formation through a microscope. The vola-

tility of the test solution is sometimes a problem. This has been over

come, in part, by the hanging microdrop technique. <23 ) 

It is generally agreed that microcrystal tests, although more sensi-

tive and specific than color tests, are unsuitable as a primary means of 

identification of unknown compounds because they cannot be incorporated 

into a basis for an identification scheme. That is, a given class of 

compounds does not give a unique set of crystal formations. Also, some-

times crystal formations are not stable with time. Temperature, concen-

tration, and pH changes, as well as impurities, may cause variability in 

. (18 23) crystal formation. ' Several hundred reagents have been used for 

the precipitation of alkaloids in microcrystal tests. However, a small 

fraction of that number is all that is necessary to carry out meaningful 

drug analyses. Most microcrystal reagents are halides of heavy metals 

and organic acids or their salts. <23 ) These reagents have become much 

more expensive in the past few years. 

Most microcrystal tests are performed by comparing the results for 

a standard of the drug with the results obtained from the sample under 

approximately the same growing conditions. Microcrystal tests are often 

technique sensitive and thus require extensive training before an analyst 

can become proficient in their use. 



Gas Chromatography 

The most widely used instrumental method is probably gas chromato

graphy (GC). GC had been found by some to be impractical for screening 
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procedures for biological fluids, but has often been used for a confirma

tory test. (l 2) Usually, extraction and concentration steps are neces-

sary before placing the sample on to a GC column. Otherwise, the front 

of the column would soon be plugged with involatile salts and proteins. 

However, Dezan and Fasanello( 2S) have shown that, by using an inter-

nal standard,they could quantitate illicit samples of heroin by hydro-

chloride without prior extraction. Narcotics are usually separated on a 

nonpolar column, such as 1-2% SE 30. Care must be taken in choosing the 

proper column packing material. In many instances compounds separated 

with difficulty on SE-30 were readily separated on the more polar sta-

tionary phases. 

One commonly encountered example of this is morphine, which is dif-

ficult to elute in a reasonable amount of time at a nondestructive tem

perature. (29 •30 ) Opiates in biological fluids, especially after they 

have been metabolized to the glucuronide, are difficult to elute from 

most GC columns, due to the higher polarity of the molecule in this 

state. (3l) Acid or enzyme hydrolysis can be used to hydrolyze the sam-

ple, followed by a derivatization of the sample. 

Other problems associated with gas chromatography are the lack of 

identification capabilities and the necessity to recalibrate daily. The 

first problem can be alleviated somewhat by analyzing a duplicate sample 

at a different temperature or on a column with a slightly different 

polarity. (3l) Since there are often only small differences in retention 

times between similar drugs, it is also necessary to analyze standards 
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along with the samples. In order to compare results from one laboratory 

to the next, relative retention times are often used with codeine having 

an arbitrary RT of unity. (l 2 •13 •30 ) 

The discriminatory power of the GC is increased by preparing anhy-

dride derivatives. Relative retention times are increased for any nar

cotics which can be derivatized. ( 12 • 13 •32 ) Two fluorinated derivatives, 

heptafluorobutyric anhydride (HFBA) and pentafluoropropionic anhydride 

(PFPA) have been found to be useful in the improvement of sensitivity. 

These have been used in conjunction with an electron-capture detector to 

improve sensitivity to 40-200 pg. (l 2) 

Mass Spectrometry 

Mass spectrometry (MS), especially coupled to gas chromatography, 

has increased in popularity in applications to the field of drug-analy-

sis. The most common form of ionization is still electron impact (El), 

although chemical ionization (Cl) and chemical exchange ionization (CE) 

have proven to have greater potential for drug analysis. Complex spec-

tra caused by severe fragmentation is the greatest drawback to mass spec-

trometry using El as the ionization source. Clandestine samples are 

often composed of a mixture of drugs. Unfortunately, the spectra of 

these mixtures cannqt readily be separated to determine the various com-

ponents in the mixture~ Chemical ionization and chemical exchange tech-

niques, which impart a much lower ionization energy to the sample, cause 

less fragmentation of the sample when compared with El. In fact, the 

parent peak is usually the major peak, with perhaps a few other less in-

tense peaks. Usually the identities of the components of the mixture 

can be deduced from these spectra. (33 ) However, when soft ionization 
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mass spectrometry techniques are used, there is a loss of sensitivity. 

CE is only about·5% as sensitive and Cl only 25% as sensitive as El.(34) 

The sensitivity is often still enough to allow identification of most 

drugs found in illicit mixtures. 

Gas Chromatography/Mass Spectrometry 

Usually mass spectrometers are interfaced to gas chromatographs in 

crime laboratories. This accentuates the strong points of both methods, 

i.e., the separation powers of gas chromatography with the identification 

capabilities of mass spectrometry. First, any drugs of sufficient vola-

tility are separated by gas chromatography. Then, the substance giving 

rise to each peak is identified by El or Cl mass spectrometry. Smith(35) 

separated the components of opium samples by GC/MS. He was able to pro-

duce mass spectra which identified morphine, codeine, papaverine, and 

thebaine. However, thebaine eluted poorly and was thought to have under-

gone some type of thermal rearrangement. In contrast solid probe analy-

sis of material separated by TLC gave a mass spectrum which was very 

similar to that from a thebaine standard. Other investigators( 3G) were 

able to identify and quantitate 2 ug samples of street heroin. 

Finkle and Taylor(3?) compiled a reference data system in 1972 for 

phenethylamine derivatives, barbitur~tes, opiate and synthetic narcotics, 

and urine metabolites. All spectra were coded as to peak maxima and the 

information stored in a computer index system, alphabetically, by drug 

name, and by the base peak location. This index has been expanded and 

updated to include 450 drugs and metabolites. (3S) Experimentation has 

begun on the coupling of liquid chromatography to mass spectrometry. {39 ) 

The only drug reported, strychnine, is identifiable from the observed 
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mass spectrum. Many problems remain to be worked out before the tech-

nique can become an efficient method for drug analysis. 

High Pressure Liquid Chromatography 

One of the latest techniques applied to drug identification is high-

pressure liquid chromatography (HPLC). Liquid chromatography avoids the 

two problem areas encountered in the use of gas chromatography for drug 

analysis, that is, the low volatility and tendency of the drugs to under-

go thermal decomposition. Also with HPLC, the polarity of the mobile 

phase is easily changed, which changes the retention properties of the 

column. Wu and Siggia(4o) demonstrated that better resolution and short-

er retention times could be obtained for some opium alkaloids by the 

dynamic coating technique. Ziegler et al. (4l) indicated that no pre-

column was necessary in cases where alkaloids were first trapped on an 

amberlite XAD-2 resin and then eluted with methanol. They used both 

calibration curves and internal standards in an effort to obtain quanti-

tative results. Usually isocratic conditions were chosen rather than a 

gradient elution technique. (42 ) 

Often, it is advantageous to use a fluorimetric detector rather 

than a conventional UV detector. Fluorimetric detection of LSD and mor-

h . . h . . . 100 f ld (42 ) p 1 (43) p 1ne can improve t e sens1t1v1ty up to - o . eterson eta. 

have established that morphine, as well as other drugs, can be separated 

by HPLC and quantitated amperometrically if there is a 3-hydroxyl group 

present on the drug. Compounds such as codeine, which do not have the 

3-hydroxyl group present, give no signal. Thus, this technique is not 

only useful for quantitative information, but also aids in the identifi-

cation of the various substituents in the mixture. 
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Ultraviolet Spectroscopy 

UV spectroscopy is recognized as one of the most important methods 

for the preliminary identification of drugs of abuse. The spectra ob-

tained by this method have a fairly simple structure, which usually 

allows identification of the drug group to which the confiscated sample 

belongs. As previously mentioned, Siek and coworkers(?,S,9) have com-

piled a significant number of drugs into a reference index. These UV 

spectra, catalogued by the drug groups, show the siMilarities of spectra 

among drugs which belong to the same group. Clarke( 44 ) and Sunshine(G) 

have also made significant contributions in the compilation of UV spec-

tra. 

A quantitative assay of the drug can usually be obtained once the 

drug has been identified and separated from other substituents. The one 

prerequisite for UV spectroscopy is that the drug possess a chromophore 

which will absorb light in the UV region. Fortunately, most drugs, in-

eluding all of the opium alkaloids, contain such a chromophore. However, 

there is a great deal of similarity among their spectra, making positive 

identification of a particular drug almost impossible. Some degrees of 

deconvolution of spectral bands can be achieved by derivative spectro

scopy. (45, 4G) Second and even higher derivatives enhance the band reso-

lution and reveal hidden bands. Although it is useful to attempt to 

correlate band shape to molecular structure, the primary intent is to 

obtain new parameters for solute identification. Also, changes of sol-

vent and pH have been used to modify the electronic structure, often re-

s~lting in a change in the position of the wavelength at maximum absorp-

tion. These shifts have been catalogued for transitions associated with 

parti~ular chromophores in the molecule. (4?) This principle has been 
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especially useful in helping to identify the opium alkaloids by UV spec-

troscopy. Deconvolution of the absorption bands present in the UV region 

by CD, if possible, should make identification of individual opium alka-

1 o i d s ea s i er. 

Infrared Spectroscopy 

Infrared spectroscopy has been called the "fingerprint" technique 

for drug identification. Few methods have the specificity that this 

method affords. IR is often used as the final method for the identifica

tion of an unknown compound. (4S) 

The method has one inherent problem. In order to obtain reproduci-

ble spectra, the sample must be purified and be in the same state (free 

base, salt, amorphous) as the drug sample used to obtain the reference 

spectrum. Functional group characteristics can be assigned for the IR 

spectrum of the unknown, but major bands present must be compared to 

those in a reference spectrum of the drug before positive identification 

can be obtained. A fractional percentage of impurities can smear the 

bands and make identification difficult. Impurities at the five percent 

level can make identification of the sample impossible by IR spectra-

scopy. 

Clarke( 44) and Sunshine, (G) as well as others, have compiled infra-

red spectra with indices for drug-related compounds. The drugs are in

dexed by the major band positions and coded for comparison with other 

spectra obtained at a later date. 

Immunoassay Techniques 

Some of the newest methods for drug identification involve immuno-
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assay techniques. These include radio immunoassay (RIA), enzyme multi-

plied immunoassay (EMIT), free radical assay (FRAT), and hemagglutina

tion-inhibition (HI) techniques. Each of these methods incorporate the 

concept of a competition between labeled haptens (drugs) and free hap-

tens for complexation sites on the antibody. However, the method for 

detecting the bound drug varies from one method to the next. 

Some of the advantages of these techniques are as follows: (l 2) 

1. Detection of drugs directly in biofluids. 

2. High degree of sensitivity. 

3. Tests are easily and quickly performed. 

4. Procedures lend themselves toward automation. 

However, there are two particular (or principle) disadvantages: 

1. There is a lack of specificity for several of the tests (Cross 

reactions occur). 

2. The cost of the test per drug is rather expensive, since there 

must be individual test kits prepared for each drug or each class of 

drugs. 

Spector and Seider, <49 ) using a RIA technique, found that codeine 

was just as sensitive to the antibody as morphine. Other researchers(SO) 

employing the EMIT and FRAT techniques have also arrived at the same con-

clusion. It was also discovered that heroin and morphine glucuronide, 

as well as higher concentrations of nalorphine and meperidine, give reac-

tions similar to morphine. It is a fortunate result that the test is 

sensitive to morphine glucuronide, since this is the major metabolite 

for heroin. However, further tests must be performed to confirm the 

presence of a particular opiate. For all of these techniques it is 
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necessary to prepare standard calibration curves using known amounts of 

the pure druq in the same concentration range as that of the unknowns. 

It appears that these techniques are being used more and more by 

medical technologists and researchers while being shunned somewhat by 

crime laboratories. The preference reverts back to the lack of specifi

city, which necessitates the performance of a confirmatory test for the 

crime laboratory before positive identification of a particular drug is 

complete. 



CHAPTER II 

THEORY OF OPTICAL ACTIVITY 

The Discovery of Optical Activity 

Blot (1812) discovered that quartz crystals rotated a plane of 

linearly polarized light (51) and subsequently came to the conclusion 

that several other materials also were found to possess the same proper

ties. Fresnel (52) attributed this optical rotation, a, to the differ

ence in refractive indices for left, n1 and right, nr circularly polar

ized light. 

Pasteur, in 1848, separated a racemic mixture of double sodium 

ammonium paratartrate under an optical microscope and showed that the 

right hemihedral crystals rotated plane polarized light to the right, 

whereas the left hemi-hedral crystals rotated plane polarized light to 

the left to the same degree. He tecognized that a chiral crystal struc

ture arose from the chirality of the molecules themselves and that the 

resultant optical activity could have contributions both from the 

inherent molecular activity and the chirality of the crystals (53). 

Using crystals of amethyst quartz, Haidinger (54) showed that if 

n1 > nr for circularly polarized light at wave lengths where the opti

cally active medium is transparent, the absorption index, k, should be 

larger for left than for right circularly polarized light at absorption 

frequencies. Andre Cotton, in 1895 made similar observations regarding 

17 
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solutions of copper( I I) and chromium( I I I) (+)- tartrate (55). It was 

Cotton who demonstrated that the special shape of the optical rotation 

(ORD) curves of optically active solutions at absorption bands was due 

to the differential absorption of left and right circularly polarized 

light, that is, circular dichroism (CD). Both anomalous dispersion and 

circular dichroism have come to be known as "Cotton effects" (56). 

Theoretical Advances 

Fresnel, in 1825, developed the first phenomenological theory of 

optical activity. Soon afterward, Maxwell developed the fundamental 

equations for the electromagnetic theory of light on which al 1 classical 

arguments of optical phenomena rests. 
. . . 

Other important theoretical advances were Kuhn's (57) Coupled Oscil-

lator Theory.and Rosenfeld 1 s (58) development of the quantum origin of 

optical activity. Others, including Condon (59), Kirkwood (60), Moffitt 

and Moscowitz (61) and Schellman (62) made further adaptations of Rosen-

feld 1 s theories to better correlate molecular interaction with light based 

upon spectroscopic evidence. Tinaco (63) then extended the quantum 

theory of optical activity to cover both dynamic and static coupling and 

to give the quantum theory more general applicability. 

The semiclassical approximation usually gives fairly accurate re-

sults, as shown by some experimental results from a fairly recent paper 

by Moscowitz (64). For a more in-depth discussion of the history of 

optical spectroscopy, the reader is referred to the recent monograph by 

Charney (65) or the excellent discussion on optical rotatory power by 

Mason (66). 
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Correlation of Optical Activity 

Any beam of light has electric and magnetic fields at right angles 

to each other and perpendicular to the direction of propagation of the 

beam. The interaction of these fields with electromagnetic radiation 

produces various phenomena termed "spectroscopy". 

From a theoretical standpoint, there is a definite correlation be-

tween optical absorption, circular dichroism and optical rotatory dis-

persion. The first two are related by g, the 11anisotropy factor 11 (67), 

while the strength of ORD is related to the CD absorption spectrum by 

the Kronig-Kramers transforms, both of which will be discussed in greater 

detail in a later section. 

Rotatory Dispersion 

Unpolarized light may be described as an array of plane waves that 

are randomly oriented with respect to a plane perpendicular to the direc-

tion of propagation. The electric field of each plane wave in this array 

is represented by a vector whose amplitude is given by 

E = E cos 2w ( t - ~) 
0 c 

( 1) 

where E0 is the maximum amplitude of the wave, w is the angular velocity 

of the wave at time t, n is the refractive index in a transparent 

region, z is the pathlength of the medium in centimeters and c is the 

velocity of light in a vacuum. 

This plane wave is usually depicted as oscillating in a sinusoidal 

manner with a maximum amplitude of E0 and a periodicity of 2n. Such a 

wave is shown in Figure 1. 
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The wavelength is related to the frequency of the light by w = c/A, 

if A is measured in vacuum. 

Plane polarized light may be resolved into two circular components 

with equal amplitudes. At any given time, the envelope of the ampli-

tudes has the form of a right-hand helix about the direction of propaga-

tion for right circularly polarized light (Figure 2) and of a left-

handed helix for left circularly po 1 a r i zed 1 ight. 

A simple description of the two waves is given 

E = E ( i cos a. - j sina ) r 0 r r 

El = E ( i cosa 1 + j s i na 1) 
0 

and their vector sum can be shown to be 

where 

E = E 
0 

cos a 

a = 2nw[t - ~] 
c 

by 

and i is the unit vector in the direction of the x axis. 

At any given point in time, the vector amplitudes appear, to an 

observer looking toward the direction of propagation, to be rotating 

(2) 

(3) 

(4) 

( 5) 

clockwise for right and counter-clockwise for left circularly polarized 

light (Figure 3). Initially, the two circularly polarized 1 ight waves 

have the same angular velocity in opposite directions. After entering 

an isotropic medium (one having a single refractive index) both compon-

ents are decelerated to the same extent. Upon emerging from the medium, 
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they are still in phase and the vector summation of the two components 

results in a plane polarized light wave which has undergone no rotation. 

However, if the indices of refraction are different for the two beams, 

one of the components will lag behind the other, the lag being propor-

tional to the difference in the two indices of refraction and the 

length of the path through the material and inversely proportional to 

the wavelength of the light, as shown by Fresnel (52). Thus, it has 

been shown (66) that: 

= ~ (n -n ) 
;\ t r 

( 6) 

where a is the angle (in radians) by which the plane polarized wave has 

been rotated in transversing the optical medium of thickness z (measured 

with the same units as \) and ;\ is the wavelength of the incident 

light. 

To obtain the specific rotation [a], where [a] is in the more com-

mon experimental units of degrees per decimeter, TI radians is replaced 

by 180 degrees and z cm by l dm, resulting in 

[a] a 1800 = - • 
C TI 

(7) 

or, 

[a] (8) 

where C is the concentration in grams/cm3. The molecular rotation, ~. 

is defined as 

~ = [a] ·M 
100 (9) 
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where M is the molecular weight of the optically active substance. The 

molecular rotation is used for comparison of rotations of different 

substances on a mole-to-mole basis (79). 

Circular Dichroism 

After passing through an optically active medium, both the left and 

right polarized vectors not only exhibit circular birefringence due to 

the difference in indices of refraction, but are differentially absorbed 

as well. Thus, in the spectral region in which optically active absorp-

tion bands are present, the length of vector ER is no longer equal to EL' 

and the resultant vector, E, traces out an ellipse rather than a circle, 

as seen in Figure 4. 

However, the major axis, a, is the sum of the amplitudes of both 

circular components upon emerging from the optically active medium while 

the minor axis, b, is the difference of the two components. Thus, 

tani/I = ( 10) 

The right side of Equation 10 can be shown (65) to be equal to the hyper

bolic tangent, tanh TI (KL - KR)Z/A. The hyperbolic tangent of 1/1 is very 

nearly equal to 1/1 for values of 1/1 less than one. The measured elliptic-

ity is very rarely greater than one because the difference in the absorp

-6 tions indices, KL-KR, is rarely greater than 10 . Consequently, 

( 11 ) 

measured in radians. 
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The decadic molar extinction coefficient is related to the absorp-

tion index (65) by Equation 12. 

k = 2.303:\ CE (l 2) 
4 'Tr 

where C is the concentration in moles per liter. From Equations 11 and 

12. 

k = 
2.303 Cz 

(EL-ER) 4 'TT 
( 13) 

By definition, 

l:J.E = EL-ER ( 14) 

thus, 

lj; = 
2.303 Cz 

4 'TT 
l:J.E ( 15) " 

The generally preferred unit of measurement is degrees of ellipticity, 

e, which is obtained by multiplying by the number of degrees per radian: 

e = lj; 360 
2 'TT 

By substituting Equation 15 into Equation 16, 

e = 32.95 • Cz b.E 

( 16) 

( 17) 

(in degrees). The molar ellipticity, [e], is defined as the degrees of 

ellipticity divided by the molarity of the solution and the path length 

in centimeters. 
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[e] = 32.95 Cz l:it:. 
Cz 32.95 l:it:. ( 18) 

Correlation Between Molar Ellipticity and Molec-

ular Ellipticity 

Following the same convention as optical rotatory dispersion, the 

specific ellipticity (68) is defined by Equation 19. 

[ijJ] = _j_ 
I ·c ( 19) 

where ijJ is measured in degrees, I is the pathlength in decimeters, and 

c is the concentration in grams per cubic centimeter of solution. 

Similarly, the molecular ellipticity (20) is defined as 

= 
[ijJ] ·M 

l 00 (20) 

where the resulting molecular ellipticity is in units of degrees-centi-

meters squared per decimole. It is unfortunate that the notation [e] 

was chosen for the molecular ellipticity (64) since the brackets usually 

denote a measurement having a molar concentration. However, henceforth 

in this thesis, the notation [e] will be used to denote the molar 

ellipticity, as previously defined. 

The transformation from degrees-] iters per centimeter-mole to 

degrees-centimeter square per decimole can be easily made, resulting in 

Equation 21. 

= 100 6 
Cz = l oo[e] ( 21 ) 

Thus the value obtained for the molecular ellipticity, eM' is always one 



hundred times the value of the molar ellipticity. This fact is also 

easily verifiable from the usual equation given for the molecular 

ellipticity (64). 

= 3300 !::.t:' 
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(22) 

an answer one hundred times greater than that in Equation 18. Charney 

(70) reached the same conclusion, although there was no mathematical 

proof given. Since the equations to determine the molar ellipticity 

were derived from the basic equations of optical activity, they give an 

answer which has the proper order of magnitude. 

Molecular Origin of Optical Activity 

The perturbations involving the interaction of molecules with a 

light wave (absorption, dispersion, optical rotatory dispersion and cir

cular dichroism) have a common phenomenological origin (71, 72). Some 

of the more important equations regarding these interactions will be 

given, although the derivation of these equations is beyond the scope of 

this thesis. 

Stereochemical Requirements 

There are three basic stereochemical symmetry conditions that lead 

to optical activity (68). To have optical rotatory power the molecule 

should not possess a center of inversion, a plane of symmetry or an al

ternating rotating-reflexion axis of symmetry. For ORD, measurements 

of optical activity can be made and interpreted outside of absorption 

regions by means of Drucie's equation (73). However, circular dichroism 

measurements can only be made if there is a chromophore present in the 



30 

spectral region under investigation. Thus, ORD measurements can render 

information about absorption bands outside the range of the instrument. 

On the other hand, CD measurements are usually more easily interpreted, 

since there is less overlap of absorption bands and often additional 

absorption bands are apparent that are 11 hidden 11 in the absorption and 

ORD curves. 

There are three different types of optically active chromophores, 

the designation of which sometimes overlap (74). 

l. The inherently disymmetric chromophores, which include non-

planar aromatic substances and twisted conjugated systems, such as 

twisted biphenyls. 

2. The coupled oscillators formed by two non-conjugated chrome-

phores such as homo-conjugated dienes and S, Y-ketones. 

3. The perturbed symmetrical chromophores, such as a double bond, 

a saturated carbonyl or aromatic ring. 

The Interaction of Polarized Light With Matter 

Both absorption and circular dichroism.phenomena arise due to 

charge displacements induced by a perturbing light wave. Such movements 

of charge cause induced and electrical dipoles. The rotational strength, 

RK' is related to these induced electric and magnetic dipoles by Equa

tion 23. 

= = (23) 

where µ:and µ~are the electric and magnetic dipoles, respectively, in 

c.g.s. units, and Y is the angle betwe~n the vectors of these two com-

ponents. If a molecule possesses either a center of inversion or a 
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reflection plane of symmetry, the rotational strength will be equal to 

zero, and there will be no optical activity. Hence, the rotational 

strength is a direct reflection of the asymmetric bond strengths sur-

rounding a molecule. From an empirical viewpoint, the rotational 

strength may be obtained from the area under the corresponding CD absorp-

tion band (75): 

= (24) 

where RK is the rotational strength in c.g.s. units,~ is Planck's con

stant, c is the speed of light in a vacuum, N. is the number of absorb-
1 

ing molecules per cubic centimeter and ek(A) is the ellipticity at a 

given wavelength. 

Similarly, the dipole strength, Dk' is proportional to the area 

under the absorption band (76): 

(25) 

where the dipole strength is in c.g.s. units and KK is the absorption 

coefficient for the Kth transition at a given wavelength. 

The classical oscillator strength, f, giving the number of electrons 

promoted in the transition responsible for the absorption band {there-

fore, no units) i5 related to the dipole strength by the expression: 

30 0.476 x 10 v DK 

where v is the frequency of the Kth transition. 

(26) 

The ratio of the strength of the CD band to the absorption band is 
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called the anisotropy factor, g, which also includes shape factors for 

both bands. If both transit ions are approximated by Gaussian curves, 

then: 

g = = 

Where, 

s 

which yields 

g = 

b.E (by definition) 
E 

2 n +2 
-3-

RK 
4n-

DK 

if the refractive index, n, is approximately unity. The greater the 

(27) 

(28) 

(29) 

transition is magnetically allowed, relative to the dipole strength, the 

greater will be the anisotropy factor and the greater the difference in 

the wavelength of the CD maximum and the absorption maximum. 

Finally, the Kronig-Kramers transform is used to go from the absorp-

tive property, circular dichroism, to the dispersive property, optical 

rotation. The form of the transform is dependent upon the CD band 

shape (22). For Gaussian bands the Kronig-Kramers transform is (77): 

M = 
8 ,m 

where A is the wavelength of the CD maximum, b.m is the exponential m 

(30) 

half-width, X = (\-\ )/b.m and the other terms have the same meaning as 
m 
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when they were previously defined. 

As a corollary to the Kronig-Kramers theorem, an equation has been 

proposed to relate the molecular amplitude, a, of a rotatory dispersion 

curve to the dichroic absorption, ~E, of a circular dichroism curve: 

a = 40.28 ~E (31) 

where a has been defined as the difference in the molecular rotation at 

the extremum of longer wavelength [~ 1 ], and the molecular rotation at 

the extremum of shorter wavelength, [~2 ], divided by 100, as shown in 

Equation 32. 

a = (32) 

In terms of the molar ellipticity, [e] 

a = l . 22 [e] (33) 

However, it should be remembered that these relationships in Equations 

31 and 32 should only be regarded as semi-quantitative, since they were 

obtained for the n~<+n transit ion of saturated carbonyl chromophores and 

should only be used with caution for other chromophores (74). 



CHAPTER II I 

EXPERIMENTAL 

Instrumental 

All of the spectral data were measured on a Varian Cary 61 Spectro

polarimeter. This instrument was modified for differential measurements 

by the addition of the Cary Model 6101 Difference Accessory, which 

allowed for the direct subtraction of the CD spectra of either solvent 

or solution background. The instrument has a wavelength range from 185 

to 800 nm and a sensitivity from 0.01 to 2.00 degrees full scale over a 

25.4 cm (10 in.) chart, which should allow for a deflection as small as 

2 x 10- 5 degree ellipticity to be observed. However, this degree of 

sensitivity was not obtained in actual experimental work due to instru

mental deterioration with age and to a drift in the baseline with time. 

Baseline potentiometers were reset daily in an effort to achieve a flat 

baseline. A calibration spectrum of ellipticity versus wavelength was 

made for the baseline and used to correct experimental data, if neces

sary. For most compounds, a full scale value of 0.1 or 0.2 degree 

ellipticity was sufficient for accurate measurements. 

The instrument was purged with nitrogen gas, boiled, from a liquid 

nitrogen Dewar. A nitrogen purge is required to prevent the accumula

tion of ozone in the instrument caused by the absorption of UV-radiation 

by atmospheric oxygen external to the 450 W high-pressure xenon arc 

lamp, which is the source of the incident radiation. Wavelength calibra-

34 
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tion was performed using a standard fluorescent lamp. The ellipticity 

scale was calibrated at two wavelengths using the CD maxima recommended 

for a O. 10% W/W solution of recrystallized D-10-camphorsulfonic acid in 

distilled water and a 0.05% by W/W solution of reagent grade D-pantoy

lactone in distilled water. The former solution has an electronic 

transition with a recommended ellipticity for calibration equal to +0.31 

degree at 290 nm for al cm path length cell, while the value for 

pantoylactone is -0.66 degree at 200 nm. 

A block diagram outlining the basic components of the instrument is 

given in Figure 5. A current-regulated power supply drives the 450 W 

xenon arc lamp. The propagating light beam passes through a slit 

assembly which is automatically programmed as a function of wavelength. 

A double monochromator on a single rotatable mounting disperses the 

radiation from the lamphouse into discrete wavelengths. The bandwidth 

of the radiation exiting the monochromator is determined by the exit 

slit-width which may either be set manually or is automatically con

trolled by the slit control program. 

After exiting the monochromator th·e light radiation is collected 

by an achromatic triplet lens. Following this lens, the monochromatic 

radiation passes through a Rochon polarizer fabricated from two 

ammonium dihydrogen phosphate prisms with a 60-degree angle of incidence 

on the refracting surface. The polarizer separates the incident beam 

into two linearly polarized components. The ordinary component, which 

is polarized in a horizontal direction, is transmitted with no deviation 

along the optical axis. The extraordinary component, vertically polar

ized, is deviated from the optical axis and blocked from the optical 

path by a mask, after passing through the electro-optic modulator. The 
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ordinary beam of radiation continues through the electro-optic modula

tor which is a specially designed Pockel cell made from potassium di

deuterium phosphate (KD2*PD4). The modulator is excited by a square

wave voltage supply of alternating current, which alternates the state 

of polarization of the beam between left circularly and right circu

larly polarized. 

The circularly polarized light enters the sample compartment where 

it passes through the sample cell. Standard one centimeter path length 

quartz cells, two centimeters in diameter, were used throughout the 

experiments. 

In the 11normal 11 mode, the light radiation enters the detector com

partment which contains a lens, photomultiplier, and preamplifier. The 

light impinging on the photomultiplier is converted to a de voltage 

signal. The magnitude of the output current is proportional to the 

intensity of the incident light source on the cathode and the gain of 

the photomultiplier stages. The gain is determined by the 11dynode 

voltage•• which is regulated to maintain the output anode current nearly 

constant. The signal from the photomultiplier is then amplified by the 

preamplifier and sent to the measurement system. 

In the 11differential 11 mode, the radiation emerging from the sample 

compartment is ref 1 ected by the mirror, passes through the r.eference 

cell, and is detected by a second photomultiplier tube and preamplifier 

system. After being reflected from the mirror, the circularly polarized 

radiation has the opposite ellipticity compared to the non-reflected 

light radiation. Therefore, if both the sample and reference cells con

tain the same solvent, their CD signals cancel and only the signal due 

to the solute is recorded. 



Sample Preparation 

A. Standard Materials 

Morphine, codeine, 3-monoacetylmorphine (3-MAM), 6-monoacetylmor

phine (6-MAM), nalorphine, and thebaine were obtained as pure forms of 

the free bases, with the exception of 3-monoacetylmorphine. Within six 

months after the research was initiated, it was determined that the 3-

monoacetylmorphine had a significant impurity present, probably 

morphine. This casts doubt as to the purity of the sample at the time 

spectra were obtained. 

Heroin (3,6-diacetylmorphine), nalorphine, naloxone, oxycodone and 

oxymorphone were obtained as pure forms of the hydrochloride salts 

(heroin was supplied as two batch samples). Dihydrocodeine and hydro

codone were made available as the bitartrate salts. Morphine was also 

available as a pure sulfate salt. 

Where standards of both free base and salt were available, both 

were used to prepare solutions. No differences were observed between 

the shape of the spectra for base and salt in each of the three media, 

providing that at pH 8.6 there was enough buffer capacity to prevent an 

excessive increase in acidity upon dissolving the salt. A correction 

for molecular weight resulted in the two forms having the same molar 

ellipticity values. 

Samples were weighed on a Cahn Electrobalance Model No. 2000 RG, 

which is capable of accurately weighing samples to a hundredth of a 

milligram. The usual sample size was 2 to 10 milligrams diluted to 50 ml 

for stock solutions. 

Decimolar HCl and NaOH were prepared by dilution of commercially 



39 

available secondary standard solutions supplied by Ricca Chemical Company 

and Harleco, Inc., respectively. The buffer solutions were prepared 

using pHydrion capsules, according to the recommended procedure of the 

manufacturer. 

-5 -4 Dilute solutions on the order of 5 x 10 to 5 x 10 M of each 

drug were prepared in decimolar HCl and the spectra recorded over an 

optimum concentration range consistent with maximum instrument 

sensitivity and solute absorptivity. Subsequently, sufficient base, 

usually NaOH, was added to make the solution approximately decimolar in 

base and the spectrum recorded. Other spectra were recorded for the 

drug at the same concentration in a pH 8.6 aqueous buffer solution. 

This buffer solution was chosen since it is the optimum pH for the 

extraction of morphine and other similar alkaloids into an organic sol-

vent. The acidic and basic spectra were recorded on five different 

samples, often·on different days, for each drug. The results were 

digitized, recorded and analyzed statistically to determine if analyti-

cal distinction is possible among drug samples. 

Dilutions were made of the stock solutions using calibrated pipets 

and volumetric flasks. A spectrum was obtained for each dilution for 

each compound. 

Rather than prepare all solutions by dilution of a stock, some 

solutions were prepared by weighing samples directly and dissolving them 

in decimolar acid or base or pH 8.6 buffer solution. The two methods 

gave comparable results. 

Graphs of concentration versus maximum ellipticity were prepared 

from the results of these experiments. The data showed a 1 inear depen-

dence over the concentration ranges previously mentioned. Solutions 
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whose maximum ellipticity values were less than 3 x 10-3 degree usually 

resulted in a poor signal-to-noise ratio. On the other hand, if the 

maximum CD signal exceeded 0.5 degree, the proportion of the radiation 

that was absorbed was too high relative to the CD signal, which result

ed in significant amplifier gain noise. These experimental 1 imits 

determine the dynamic range of the instrument which varies from com

pound to compound. 

B. Prepared Mixtures 

Dilute solutions of mixtures of CD active drugs were investigated 

to determine if their CD spectra are additive. These samples contained 

one to four milligrams each of two or three compounds. They were dis

solved in 25-50 ml of aqueous 0. 1 M HCl or aqueous 0.1 M NaOH.• The 

drug combinations and their ~mounts are listed in Table I. 

The dilute solutions of each drug were added together in equal 

amounts and mixed thoroughly. The concentrations shown are those 

existing before the solutions were mixed together. The initial stock 

solutions were split so that the concentrations of the dilute basic and 

acidic solutions were the same. CD spectra were then obtained in the 

conventional manner. The spectra obtained experimentally were compared 

to those obtained by adding the CD spectral response every five nm for 

each component in the mixture of both dilute acidic and basic solutions. 

C. Unknowns 

One important aspect of this investigation was to determine the 

accuracy and precision attainable for ana)yses of actual confiscated 

samples. Three types of unknowns were studied. These included in-house 
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TABLE I 

SYNTHETIC MIXTURES OF MORPHINE, CODEINE, QUININE AND THEBAINE 

Figure 
Mixture Drug Initial Concentration, M Solvent No. 

#1 Morphine 3.42 x l0- 4 Acid 23 
Codeine 3,35 x l0- 4 Base 24 

#2 Morphine l • 37 x 10-4 Acid 

Codeine l. 34 x l0- 4 

Quinine 3.25 x 10-5 Base 

#3 Morphine l. 72 x l0- 4 Acid 25 
Codeine 3. 58 x l o- 5 

Thebaine 3. 12 x 10- 5 Base 26 
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preparations, heroin confiscates, and pharmaceutical preparations. 

In-House Preparations 

Samples of heroin, morphine, codeine and thebaine diluted with 

lactose, which is CD inactive, were prepared in-house by other labora

tory personnel. Their identities and concentrations were unknown to 

the analyst. However, that of the heroin sample was of the same order 

of magnitude as would typically be found in street samples. The other 

three drugs were chosen for two reasons. First, they are the major 

constituents present in opium. It was hoped that opium samples could 

eventually be determined directly by CD spectroscopy. There was also a 

considerable data base for morphine and codeine from which to obtain 

exact molar ellipticity values. 

In all, four sets of unknowns were prepared, each of a different 

concentration or method of preparation, to determine their effects on 

the analytical results. The first two sets contained samples with 

either single components or two component mixtures. The concentration 

of the drug components in the first set was 1 .5 - 2.5% (W/W), while 

that of the second was 9 - 14%. Both of these samples were mixed 

stirring by hand. 

The analytical procedure was similar to that for obtaining the 

molar ellipticity values of the standards. Three to four milligram 

aliquots of the samples were dissolved in 25 ml of aqueous 0.1 M HCl 

and used in determinations. Another CD spectrum of each sample was 

taken after the addition of NaOH to each solution. Those with single 

drug components were easily identifiable in the mixture from their CD 

spectra. 
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The last two sets contained only a single drug component. For the 

third set of unknowns, the entire samples were dissolved in 0. 1 M HCl 

and the CD spectra recorded. The samples were then diluted in 0.1 M 

HCl or 0.2 M NaOH and additional CD spectra were obtained. For the 

last set of unknowns there was a greater effort to achieve homogeneity 

of samples. The sol id samples were mechanically mixed then transferred 

to plastic vials, and shaken in a Wig-L-Bug device. The effects of 

drug component, sample size, solvent and sampling method upon the accur

acy and precision attainable for samples of this type were estimated 

from these sets of data. 

The two samples containing different mixtures of two optically 

active drugs diluted with lactose, were prepared at the same time as 

those containing only one optically active drug. Solutions were pre

pared and spectra obtained in the same manner as mentioned before. The 

identification and quantitation of the components in these samples were 

naturally more difficult. The identities of the possible components 

were initially deduced from the CD spectra. Using the instrument in 

the differential mode, spectra were recorded in dilute aqueous acidic 

and basic solutions for various concentrations of one of the suspected 

components in the reference cell. This amounts to a spectral subtrac

tion procedure and the process was repeated until the identities of both 

components were confirmed. Quantitation was done by an iterative pro

cedure in which molar ellipticities for maxima for both components in 

both acidic and basic solutions, and wavelengths of the crossing points 

were successively compared, until the difference between the experimen

tal and calculated spectra was a minimum. 
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Heroin Unknowns 

Clandestine samples of heroin were examined to establish if they 

could be successfully analyzed by CD spectroscopy. Four samples of 

heroin were provided by the Oklahoma State Bureau of Investigation 

from their dead case file. Three of the samples were typical of what 

is known as 11brown 11 heroin; the fourth was a white specimen which 

proved to have a very high heroin content. The last specimen was the 

only one of the four which had been quantitated by the OSBI. 

The sample size used for identification and quantitation ranged 

from 3 to 20 mg, depending upon the composition by weight of drug in 

the sample. The samples were dissolved in either 25 ml of aqueous 0. l 

M HCl or aqueous buffer solution with a pH equal to 8.6. The aqueous 

solutions were centrifuged prior to analysis. if there was no extraction 

step involved in the analysis. The drug was positively identified from 

the CD spectra of the samples in acid. The CD spectra of the samples 

in pH 8.6 buffer solution were found to have more variability, both 

from a qualitative and quantitative standpoint. Five different experi

mental strategies were tried to determine the best method for the 

determination of heroin in the samples. Quantitative determinations 

were first made from the solutions of heroin in 0.1 M HCl or pH 8.6 

buffer solution and then as morphine upon the addition of a pellet of 

sodium hydroxide. An alternative method was to preferentially extract 

heroin from 20 ml of pH 8.6 buffer solution into 25 ml of chloroform 

and then to back-extract the drug into 25 ml of 0. l M HCl prior to 

analysis. Only a very small amount of morphine is extracted under these 

conditions, whereas the extraction efficiency for heroin is in excess of 

95%. The fifth method to quantify the sample was to add a pellet of 



sodium hydroxide to the acid extract and then to measure the heroin 

composition after complete hydrolysis to morphine. 

Gas Chromatographic Analysis 

Gas chromatography was chosen as a comparative method for heroin 

determinations. The method has been used extensively in the past for 

the analysis of confiscated drug samples. Experiments were done on a 

Hewlett-Packard 7620-A with a six foot silane-treated glass column. 
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The column material was SP-2100 on 80/100 Supercoport; the oven temper

ature was 260°C, the FID temperature 325°C and the injector port temper

ature 280°c. Helium was used as the carrier gas at a flow rate of 30 

ml per minute. Five to twenty milligrams of the confiscated drug 

samples were extracted with 20 ml of chloroform and filtered through 

calcium chloride prior to the gas chromatographic analysis. 

For consistency, the instrument was calibrated using a set of 

dilutions, ranging in concentration from 100 to 1000 µg/ml, of a stock 

heroin solution which had been subjected to the same extraction proce

dure as the samples. Aliquots of 1 .2 ± 0.05 microliters of the chloro

form solutions were injected onto the column using a 10 microliter 

syringe. Peak heights were measured as the difference between the 

baseline to peak maximum. Analyses were performed in duplicate. 

Pharmaceutical Preparations 

Three types of samples containing codeine or dihydrocodeine were 

analyzed to determine the efficiency of CD spectroscopy for the 

analysis of pharmaceutical preparations. These included in-house 

preparations of codeine and lactose, sol id dispensary items (tablets 
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and capsules) and two cough syrups. 

Two samples of codeine were diluted with lactose and given to the 

investigator for quantitation. Precise molar ellipticity values were 

established from two samples of codeine of known concentration. These 

-1 
two samples gave reproducible values of +438 and -73 degrees ·l · mol 

l l 
for the La and Lb transitions respectively. As Table VI indicates, 

values of +460 and -74 degrees ·l· mol-l were obtained as an average of 

several samples. 

Four commercial pharmaceutical preparations were quantitated by CD 

spectroscopy for their codeine content. All four of these preparations 

contained codeine phosphate in conjunction with one or more other drugs 

(Table II). Acetaminophen, aspirin and caffeine all absorb strongly in 

the UV region. This made the direct analysis of codeine in these 

samples virtually impossible, due to the loss of signal intensity and 

an increase in noise in the spectral region of interest. One of the 

tablets from each sample was weighed, crushed and mixed by hand. A 

50-80 milligram aliquot was weighed and easily dissolved in an aqueous 

0.1 M HCl solution. 

Attempts to quantitatively elute the codeine from an acidic 1 iquid 

chromatography column packed with alumina with chloroform failed. A 

similar procedure had worked in the past for pharmaceutical preparations 

containing codefne. A second sample, in aqueous 0.1 M HCl, was washed 

twice with 25 ml of ether to remove the acetaminophen. The solution was 

then made basic with sodium hydroxide, extracted into 25 ml of chloro-

form and back-extracted into 25 ml of 0.1 M HCl. The solution was quan-

titated and yielded low results. However, by performing the extraction 

first, and then washing once with ether, there was 95% recovery of the 



TABLE 11 

NOMINAL COMPOSITION OF PHARMACEUTICAL PREPARATIONS 

Preparation 

Phenaphena, Tylenol #3a 

a 
Tylenol #4 

Fiorinala #3 

a 
Synalg'ls DC 

a Phenergan VC 

FC 1 s Cough Syrup 

aRegistered trademark. 
b Per 5 m 1 . 

cPer 8.0 fluid oz. 

Composition 

Codeine Phosphate 

Acetaminophen 

Codeine Phosphate 

Acetaminophen 

Codeine Phosphate 

Aspirin 

Phenacetin 

Caffeine 

Bu ta 1bita1 

Dihydrocodeine Bitartrate 

Aspirin 

Phenacetin 

Caffeine 

Promethazine HCl 

Codeine Phosphate 

Promethazine HCl 

Phenylephrine 

Potassium Guaiacol Sul-
phonate 

Citric Ac id 

Sodium Citrate 

Codeine Phosphate 

Terpene Hydrate 

Phenylpropanolamine 

Chloropheniramine maleate 
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30 mg 

300 mg 

60 mg 

300 mg 

30 mg 

200 mg 

130 mg 

40 mg 

50 mg 

16 mg 

194 mg 

162 mg 

30 mg 

6.3 mg 

2.0 b mg 

6 b mg 

5 
b mg 

b 44 mg 

60 b mg 

197 
b mg 

476 
c mg 

333 
c mg 

36 
c mg 
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codeine, which was quantitated from a good CD spectrum. This procedure 

was then used for the analysis of all four pharmaceutical preparations. 

Later, a capsule containing Synalgos DC(© was also analyzed using the 

same procedure and good results were obtained. After the ether wash it 

is necessary to drive off any residual ether in the aqueous 0. 1 M HCl 

solution by gentle heating and reconstituting the solution to its origi-

nal volume. The residual ether had a strong UV absorption which contri-

buted to the loss of signal quality. 

Two preparations of cough syrup were analyzed for their codeine 

content. The conventional analysis of the codeine in these samples is 

hindered by several UV active drugs and dyes, some of which are listed 

in Table I I. The high viscosity hinders any extraction procedure. 

These two samples were analyzed two ways, either by dilution of one ml 

of cough syrup in 25 ml aqueous 0.1 M HCl or after extraction from 25 

ml basic solution into 25 ml chloroform and back extraction into 25 ml 

aqueous 0.1 M HCl. 



CHAPTER IV 

EXPERIMENTAL RESULTS 

The general formula for the morphine and codeine derivatives of the 

opium alkaloids is shown in Figure 6. There are five rings in the struc-

ture which, by convention, are designated A through E. The molecule is 

approximately T-shaped, (?9,So) such that the plane containing rings A 

and B is almost perpendicular to the plane of the rings C and D. 

The derivatives studied in these experiments are listed in Table 

I I I. The functional groups involved fall into five categories: 

l. -OH, -OCH 3, -OCH2cH 3, -OOCCH 3; substituents at C(3). 

2. -OH, -OCH 3, -OOCCH 3; substituents at C(6). 

3. -cH3, CH2CH=CH2 ; substituents on nitrogen. 

4. -H, -OH; substituents on C(l4). 

5. Saturation or unsaturation at C(7)-C(8) in ring C, except for 

theb~ine, which has a conjugated diene structure. 

Spectral Characterization 

A comparison of the UV absorption spectra of the alkaloids in dilute 

acid and base indicates that there is some modification of the molecular 

structure induced by the change in pH of the solvent medium. However, 

there is still a lack of analytical distinction among most of the drugs 

as shown in Table IV. (9) 
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Alkaloid 

Morphine 

Nalorphine 

3-MAM 

6-MAM 

Heroin 

Hydromorphone 

Oxymorphone 

Naloxone 

Codeine 

Dihydrocodeine 

Hyd rocodone 

Oxycodone 

Ethyl morphine 

Thebaine 

TABLE 111 

STRUCTURE OF ALKALOIDS STUDIED 

Rl R2 R3 

OH OH CH 3 

OH OH CH2CH=CH2 

CH 3coo OH CH 3 

OH CH 3coo CH 3 

CH 3coo CH 3coo CH 3 

OH 0 CH 3 

OH 0 CH 3 

OH 0 CH 2CH=CH 2 

CH 30 OH CH 3 

CH 30 OH CH 3 

CH 30 0 CH 3 

CH 30 0 CH 3 

CH 3CH20 OH CH 3 

CH 30 CH 30 CH 3 
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R4 C-Ring 

H c7-c8 

H C7-C8 

H c7-c8 

H c7-c8 

H C7-C8 

H Saturated 

OH Saturated 

OH Saturated 

H c7-c8 

H Saturated 

H Saturated 

OH Saturated 

H . c7-c8 

H C6-C7; C8-C14 
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TABLE IV 

UV ABSORPTION DATA FOR SEVERAL OPIUM ALKALOIDS( 9) 

Wavelength Max 
Alkaloid Aqueous Acid Aqueous Base 

Morphine 210, 240s, 280s, 284 251' 298 

Na lorph i ne 210, 240s, 280s, 284 251 ' 298 

3-Acetylmorphine 205, 274s, 278 251' 298 

6-Acetylmorphine 210, 240s, 285 251 ' 297 

3,6-Diacetylmorphine 204, 235s, 278.5, 274s 25ls, 298 

Hyd romorphone 207s, 235s, 282 235s, 290 

Oxymorphone 281 240s, 292 

Naloxone 230s, 280 239s, 292 

Codeine 211, 240s, 2 78s, 284 238s, 278s, 2B4 

Dihydrocodeine 230s, 278s, 284 277s, 283 

Hyd rocodone 204, 228s, 280 279 

Oxycodone 205, 22 7s, 280 280 

Ethylmorphine 2 11 ' 241 s' 279s, 284 279s, 284 

Thebaine 228s, 234 228s, 284 
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The characterization of these same alkaloids in ethanol by CD spec-

dd 1 • t 1 • h f . d . f. . (Bl) h . F. troscopy a s 1 t e 1n t e way o 1 ent1 1cat1on, ass own 1n 1gure 

7. Two distinct bands are observed for codeine, morphine, 6-monoacetyl-

morphine, dihydrocodeine, and heroin. Although there are three differ-

ent substituents on the aromatic chromophore, the spectra for all six 

compounds bear a strong resemblance to one another. Heroin and dihydro-

codeine are distinguishable from the other compounds but not from each 

other. Changes are noted in the spectra for hydrocodone and thebaine, 

which are related to additional chromophores present in the C ring. (9 ,ss,S7) 

Other morphine ketones (not shown) would probably have a spectrum similar 

to hydrocodone. 

In Figures 8 through 17 the normalized CD spectra are shown for each 

of the compounds in dilute acid, dilute base, and in solutions buffered 

to pH equal to 8.6. The printed spectr~ are representative of the aver-

age of three· to five independent experiments with two exceptions, ethyl-

morphine and 3-monoacetylmorphine. Only a very limited amount of the 

former drug was available and the latter deteriorated so rapidly that 

replication was not possible. 

The important parameters used to characterize the spectra are the 

wavelengths where there are positive (A+ ) and negative (A- ) ellipti-
max max 

city maxima (or minima) and also the wavelengths where the ellipticity 

values are zero (A 0 ) referred to as 11 cross-over points. 11 

The data for these parameters for all the alkaloids studied in all 

three media are collected together in Table V. Bands which have no cor-

responding maxima in the UV absorption spectra are designated by an 

asterisk (*). The data have been analyzed by standa(d statistical pro-

cedures. The results of this analysis are discussed in Chapter VI. 

• 
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TABLE v 

CD SPECTRAL PARAMETERS FOR THE OPIUM 
ALKALOIDS IN AQUEOUS MEDIA 

Solu- >. + 
'Max >." 

Dru2 ti on Max 

Morphine HCI 243 284 229, 263 
8.6 247. 301 285 237. 273. 295 
NaOH 253. 298''' 283"" 241 

Nalorphine HCI 245 285 230. 265 
8.6 247, 305'0' 285 236. 2 72. 299 
Na OH 254. 298 282 242 

3-Acetylmorphine HCl 244,·, 285 229. 263 
8.6 244, 303 284 2 32. 267, 294 
Na OH Hydrolysis to Morphine 

6-Acetylmorphine HCl 243 284 229, 263 
8.6 244," 302''' 282 2 32. 268. 294 
Na OH Hydrolysis to Morphine 

Heroin HCl 238 280 221. 260 
8.6 243 283 234, 270 
Na OH Hydrolysis to Morphine 

Hydromorphone HCl 239. 276''' 299'' 230. 284 
8.6 246, 276" 304,·, 2 31 • 286 
NaOH 246. 2 75''' 3W' 232. 299 

Oxymorphone HCl 239. ,., 277 299'' 232, 285 
8.6 247, 276 309 234. 290 
Na OH 246, 285'' 31 5,·, 233. 300 

Naloxone HCl 239. 277 299'' 233, 285 
8.6 249. 279 308'' 234. 289 
Na OH 247, 285 31 5,·, 235, 300 

Codeine HCl 244 285 231. 264 
8.6 244 284 231. 262 
Na OH 244 284 2 30. 263 

Dihydrocodeine HCl 240 281 231 ' 253 
3.6 241 281 230. 256 
NaOH 240 281 231. 255 

Ethylmorphine HC I 245 285 231. 265 
8.6 245 285 231. 263 
Na OH 245 285 231. 264 

Hydrocodone HCl 240. 276'' 297"' 2 32, 284 
8.6 2 37. 276''' 297"' 227, 284 
NaOH 239,* 276 297"' 229. 283 

Oxycodone HCl 240, 277 298''' 230. 285 
8.6 240. 276 298''' 231. 285 
NaOH 240,'' 277 300'' 232. 284 

Thebaine HC I 221. 245''' 285 211, 252 
8.6 221. 243"' 285 211, 247 
NaOH 221 ,., 235 236 

~·;;;':; 

Positive Minimum. 
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Molar Ellipticity Values 

Molar ellipticity values ([B]A) calculated from the slopes of the 

1 inear correlations of ellipticity maxima at wavelengths A with solution 

concentrations are listed in Table VI. Good linear correlations were ob-

tained for all alkaloids over the concentration range of interest, with 

slightly better results being obtained from dilute acidic and dilute 

basic media than from pH 8.6 buffer. The more intense 1Lb transition re

sulted in slightly better data reproducibility. 

Graphs of ellipticity maxima versus molar concentrations are includ-

ed for morphine, codeine, and thebaine as representative examples of the 

1 inear correlations that are obtainable in the three media (Figures 18 

through 22). More details of the correlation coefficients for all of the 

alkaloids are available in Chapter VI. 

Also included in Table VI are the ratios of molar ell ipticities ex-

pressed as the positive maximum divided by the negative maximum for each 

alkaloid. Where two posi.tive bands occur, the ratio has been shown for 

each. 

The 1E electronic transition, which is an 11allowed11 transition, has 

much greater intensity than the forbidden 1La and 1Lb electronic transi

tions. The 1E transition of morphine and codeine were investigated to 

determine if the added spectral parameters would facilitate their identi-

fication. S• h 1E . . . h h h 1L 1nce t e trans1t1on 1s muc stronger t an t e 
a 

transi-

ti on, the 1 imit of detection should be greatly improved. Representative 

spectra for both drugs in dilute acidic and basic media are shown in 

Figures 23 and 24. Although the limit of detection was improved by 

approximately a factor of two, this feature was offset by other liabili-

ti es. 



TABLE VI 

MOLAR ELLIPTICITIESa FOR THE OPIUM 
ALKALOIDS IN AQUEOUS MEDIA 

Sol u- [B)~ax [B)~ax b Dru2 t ion Ratio 

Morphine HCI 383 -67 s.a 
8.6 294' 16.S -33 8.9' a.so 
Na OH 493' 52 9.S 

Nalorphine HCl 364 -60 6. I 
8.6 297, 7.4 -42 7. I, a. 18 
Na OH 447' 4 7 9.5 

3-Acetylmorphine HCI 334 -63 5.3 
8.6 265 -44 6.0 
Na OH Hydrolysis to Morphine 

6-Acetylmorphine HCI 316 -55 S.7 
8.6 247, 8. 7 -38 6.s. 0.24 
Na OH Hydrolysis to Morphine 

Heroin HCI 70 -20 3,5 
8.6 102 -20 S. I 
NaOH Hydrolysis to Morphine 

Hydromorphone HCI 76, 120 -2s1 0.30, o.48 
8.6 99, 129 -188 O.S3, 0.69 
Na OH 181. 170 -203 o. 89' 0.84 

Oxymo rphone HCI 44' 129 -251 0.18, 0.51 
8.6 104, 140 -167 0.62, 0.84 
NaOH 168, 167 -203 0.83, 0.83 

Na loxone HCI 43' 128 -257 0.17' a.so 
8.6 81, 134 -188 0 .43' 0.71 
NaOH 150. 152 -210 0. 71. 0.72 

Codeine HCI 462 -74 6.2 
8.6 39S -73 5.4 
Na OH 3S9 -70 5.2 

Dihydrocodeine HCI 143 -87 1.6 
8.6 141 -82 1. 7 
Na OH 134 -83 1.6 

Ethyl morphine HCI 374 -59 6.3 
8.6 315 -61 5.2 
NaOH 299 -57 5.2 

Hyd rocodone HCI 127. 137 -273 o.47, a.so 
8.6 138, 117 -26S O.S2, 0.44 
NaOH 128, 107 -272 o.47, 0.39 

Oxycodone HCI 119. 139 -268 o.44, 0.52 
8.6 98, 123 -248 o.4o, a.so 
NaOH 69' 85 -216 0. 32. 0. 39 

Theba i ne HCI 645, 88 -469 1.4,0.18 
8.6 6S9' 20 -45S I .4, 0.04 
Na OH 700 -89' -423 7. 87' I. 7 

aDefined as the experimental value divided by the molar concentra-
t ion. 

bAosolute value of [8]+. [9] 
-

max divided oy , max. 
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l The data used to calculate the molar ellipticities from E transi-

tion were found to have more variability than those for the 1L transi
a 

tion. The problem may be that a partial loss of illumination at these 

wavelengths, due to the presence of oxygen, causes fluctuation in the 

CD signal. It was believed that the information obtained was not worth 

the additional effort. No attempt was made to study this transition for 

the other opiates. 

Synthetic Mixtures 

Three different mixtures of morphine, codeine, thebaine, and quinine 

were studied to determine if their spectra are additive. The first three 

drugs are the principle components of opium. Quinine is a typical adul-

terant found in clandestine heroin samples. Since CD is simply a modi-

fied form of absorption spectrophotometry, additivity of spectra should 

apply within the constraints normally associated with Beer 1 s Law and de-

viations from it. Theoretically, the principle components of a sample 

of opium could then be identified and quantitated. 

The results obtained by the addition of the drug components together 

for both acidic and basic media are shown, in Figures 25 through 28, for 

two of the mixtures. The agreement between theoretical and experimental 

results was good in all three cases. However, there sometimes appeared 

to be a wavelength discrepancy in the experimental maximum at 245 nm in 

relation to the;theoretical model. 

It is probable that instrumental pen lag would account for part of 

this problem. At a period setting of 10, there was as much as 2 nm dif-

ference in the measurement of the wavelength of maximum positive el lip-

ticity. This also resulted in a rounding of the peak and decrease in 
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ellipticity by as much as five percent. However, this problem was not 

detected until a later date. 
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These experiments with synthetic mixtures confirmed that CD absorp

tion bands are additive in nature. They did not show, however, to what 

extent CD spectra could be subtracted from one another and the level of 

accuracy to be expected in determinations. 

Unknowns 

In-House Preparations 

The in-house heroin sample of unknown concentration was analyzed to 

determine the best calculation method for accurate quantitation (Table 

VII). Since the molar ellipticities are so much greater for morphine 

than for heroin, the hydrolyzed sample gave results which had greater 

accuracy. Regarding heroin in 0. I M HCI, the accuracy obtained using 

data for the 245 nm maximum was better than that from data taken at the 

285 nm maximum. This may be due in part to baseline drift. Efforts to 

compensate for any changes in the base] ine from zero ellipticity could 

not always be completely accomplished. Any undetected change in base

line would cause a measurement error, which is magnified as the signal 

size decreases. 

The results from the analysis of the samples containing codeine, 

morphine, and thebaine, either individually or as mixtures, are shown in 

Tables VI II through XI. 

There are some general remarks which can be made in reference to 

these experiments. The most significant reasons for differences between 

sample results were the effects of sample size and sampling technique. 

The best results, by far, were for the most concentrated samples (Set 4, 
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TABLE VI I 

QUANTITATIVE DETERMINATION OF HEROIN SAMPLEa 

Wave- Amooot, Percent- Re 1. 
length, nm mg age Error, % 

243 4.61 31. 3 8.9 

283 4.43 30. 1 12.3 

254 4. 77b 32.4 5.6 

298 4. 77b 32.4 5.6 

a34.3% heroin. 

b Hydro 1 yzed to morphine. 



Sam-
ple 

#1 

#2 

#3 

#4 

#5 

Sample 
No. 

1, Acid 

1, Base 

2,Acid 

2,Base 

3, Acid 

3,Base 

TABLE VIII 

QUANTITATIVE DETERMINATION OF DILUTE SAMPLES (SET l) 

Tria 1 l Trial 2 Trial 3 Aver- Ac tu- Di ff. 
Drug % % o, age, % al , ~~ % 'o 

Morphine l. 5 l.6 l. 7 l. 6 2.2 -o.6 

Thebaine 2.0 1 . 8 1 . 8 1.9 1. 5 +0.4 

Morphine 1.4 1. 6 l. 5 1. 5 2.6 - l. l 

Codeine 2.0 2.2 2. 1 l. 5 +0.6 

Thebaine 2.3 2.5 2.4 2.7 -0.3 

Codeine 1. 3 l. 7 -0.4 

Morphine l .4 1. 7 -0.3 

TABLE IX 

QUANTITATIVE DETERMINATION OF SAMPLES MIXED BY HAND 
(SET 2) 

Tri a 1 Tri al Tri al Average Ac tu- Di ff. 
Drug 1 ' % 2, 0/ 3, % % a 1 , % % 'O 

Codeine 10.0 20.7 17.9 16.2 ± 5.5 13.9 2.3 

Codeine 10.8 22.0 1 8. 8 17.2 ± 5.8 3.3 

Morphine 8.0 7.9 8.3 8.1±0.2 10.6 -2.5 

Morphine 8.4 8.7 8.4 8.5 ± 0.2 -2. 1 

Codeine 10.2 l l. 8 9.9 10.6±1.0 9.9 +0.7 

Morphine 6.7 7.8 6.5 7.0±0.7 8.7 -l. 7 

Codeine 10. 1 11.4 9.9 10.5±0.8 9,9 +0.6 

Morphine 6.7 7,5 6.5 6.9±0.5 8.7 -l. 8 
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Rel. 
Error, % 

-27 

+29 

-42 

+40 

- 11 

-15 

-11 

Rel. 
Error, % 

+15 

+16 

-24 

-20 

+10 

-24 

+10 

-21 



TABLE X 

QUANTITATIVE DETERMINATION OF SAMPLES MIXED BY SHAKER (SET 3) 

Sample Wave- Average Actual Di ff. Re 1. 
No. Drug length Trial 1 Trial 2 Trial 3 % % % Error, % 

Codeine 245 13.6 13.6 13.6 13.6±0.0 14.7 -1. 1 -7. 5 
285 15.8 19. 1 14.3 16. 11 ± 2. 5 14.7 +1. 7 +10.2 

2 Morphine 245 8.2 8.3 9.0 8.5 ±0.4 10. 3 -1. 8 -17.5 
285 10.3 8.3 8.9 9.2 ± 1.0 10.3 -1. 1 -10.7 

3 Thebaine 221 11 . 0 12.2 11. 8 11.7±0.6 14.0 -2.3 -16.4 
285 10.9 12.5 11. 4 11.6±0.8 14.0 -2.4 -1 7. 1 

TABLE XI 

QUANTITATIVE DETERMINATION OF MORE CONCENTRATED SAMPLES (SET 4) 

Sample Direct, Direct, Diluted, Average Actual Di ff. Re 1. 
No. Drug Acid, mg Base, mg Acid, mg mg mg mg Error, mg 

Codeine 4.55 ·4. 85 4.67 4.69 4.83 -0. 14 -2.9 

2 Morphine 2.20 2.35 2.23 2.26 2.29a -0.08 -2.7 

3 Thebaine 2.21 2.35 2.21 2.26 2.26 0.00 -0. 1 

aAs morphine sulfate; equal to 2.34 mg morphine base. -....i 
.i:-
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-4 
approximately 3X 10 M). These samples were two to four times more con-

centrated than those in Sets 2 or 3. Since the entire sample was dis-

solved in 0. 1 M HCl, there was also no doubt over whether the sample 

chosen was representative of the whole. There is a definite sampling 

problem for the samples mixed by hand. The codeine samples, in particu-

lar, showed a large variance among the three trials. For the other sam-

pies mixed by hand there is as great, or greater, variance between tri-

als than there is for results taken in different solvents. The variance 

factor between trials is improved for the samples mixed by shaking in 

the Wig-L-Bug. 

There was no obvious trend in these sets of experiments which indi-

cated that any one drug could be more accurately quantitated than an

other; that the 1L transition data gave significantly better results 
a 

than the 1Lb transition data; or that one solvent medium was better than 

another. There may be statistical significance in the data for these 

two parameters, but they are not easily discernible. It appears that 

the factors interact occasionally to increase or decrease the variance. 

One such example is the 285 nm versus 245 nm transition for codeine in 

0.1 M HCl. From Table X it appears that the 245 nm transition affords 

better accuracy and precision. Tendencies such as these will be discuss-

ed in greater depth, for a larger population, in Chapter VI. 

There was also no decrease in accuracy or precision for mixtures 

having two optically active species, as compared to those having a single 

optically active compound. Apparently, the error in the molar elliptici-

ties cause less variability in the answers obtained than do the other 

parameters discussed. 



76 

From the analysis of the very dilute solutions (1-3 X 10-S M), it 

is apparent that there is some loss of accuracy. However, all weight 

percentages, except one, were to within 0.6 percent of the actual value. 

Thus, mixtures of optically active compounds may be quantitated, al

though perhaps not to the desired degree. The accur~cy may be suffi

cient for some applications of this method, at these concentration levels. 

Heroin Confiscates 

Four samples of heroin seized by the OSBI were quantitated by CD 

spectroscopy. Gas chromatographic analyses were performed on all four 

samples as an alternate procedure for comparison among methods. First, 

four replicates of heroin sample No. 4 were examined by CD to determine 

their spectral reproducibility and quantitative accuracy. The drug 

present was identified as heroin from data for the samples dissolved in 

0.1 M HCl. The CD data resulted in higher quantitative values as com

pared to GC data for all four replicates, as shown in Table XI I. The 

replicates dissolved in the pH 8~6 buffer medium resulted in the poorest 

accuracy and precision. At times, the values were twice those obtained 

via the hydrolysis product. As would be predicted from previous heroin 

samples, the most accurate (as compared to GC data) and most reproducible 

results were obtained for the samples hydrolyzed in dilute NaOH. 

The data for the other three heroin confiscates dissolved in 0. 1 M 

HCl also resulted in higher values as compared to GC, as shown in Table 

XI I I. This is due to an enhanced experimental ellipticity presumably 

caused by the presence of either 6-monoacetylmorphine or morphine. 

Heroin is prepared by the acetylation of morphine. Samples of heroin 

wil°l usually contain small amounts of unreacted morphine and 6-MAM, as 
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TABLE X 11 

QUANTITATIVE DETERMINATION OF HEROIN CONFISCATE NO. 4a 

As Heroin As Heroin As Morphine 

0. l M HCl 8.6 Buffer Dilute NaOH 

l 04 ± l . 7%b (238 nm) 117% (24 3 nm) 81. 3 ± 2. 2%b (254 nm) 

110± 13.7%b (280 nm) 123% (283 nm) 84.4 ± o.4%b (298 nm) 

a Results presented as percent by weight of heroin free base. 

bStandard deviation for three samples. 

TABLE XIII 

QUA~T-ltATIVE DETERMINATION OF HEROIN CONFISCATESa BY CD 

As Heroinb As Moq~hinec As Heroin 
OSBI 

No. 

2 

3 
4 

Direct 

7. 7 
4.0 

99. 3 f 

Extracted 

7.3 

3.2 

79 .2 

Direct 

0.7, 2.6e 

5.6 

I. 5 

73.49 

Extracted GC 

o.6 0.8 

5. 1 4.9 

I. 4 l. I 

59.2 73.4 

aResults presented as percent by weight of heroin free base. 

b 0. I MHC l. 

cExcess NaOH. 

dOSBI is the Oklahoma State Bureau of Investigation. 

eQuantitated after CHC1 3 wash. 

fStandard deviation= 3.6 (N = 5). 

gStandard deviation 0.5 (N 5). 

OSBld 
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gas chromatography seemed to confirm. Since the molar ellipticity for 

the 245 nm band is approximately four to five times greater for 6-MAM 

and morphine than for heroin, even a small impurity will result in a 

high result for heroin determination. 

Better results were obtained from the data for the samples hydro

lyzed in dilute sodium hydroxide, as shown in column four. All of the 

acetylated morphine derivatives are hydrolyzed to morphine. Any acety

lated derivative present as an impurity would be included in the quanti

tation as morphine, but on a one-to-one basis. Therefore, the answers 

would still be high as compared to the GC analysis, as the data indicate. 

Sample No. 4 was determined by GC to have heroin as the main constituent, 

with a small amount (approximately 3%) of a CD active impurity, probably 

6-MAM. The direct analysis from the hydrolyzed sample should be in close 

agreement with the GC analysis. 

The results in column three indicate that the separation of heroin 

by chloroform extraction was incomplete, resulting in values which are 

still high as compared to GC determination. 

Ideally, the best results should be obtained by the hydrolysis of 

the extracted heroin samples. Any initially unreacted morphine would 

not be extracted and 6-MAM, only partially. The results from Sample Nos. 

1 through 3 would indicate that some, but not all, of the acetylation by

products have been removed. The results from the extract of Sample No. 

4 might be low due to incomplete extraction of the large sample size. 

The direct analysis of Sample No. I was nullified, and that of No. 

3 hampered by a significant quantity of a UV absorbing but CD transparent 

compound. Therefore, an aliquot of Sample No. 1 was dissolved in 0. 1 N 

sodium hydroxide solution and washed with chloroform. This improved the 
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signal-to-noise ratio significantly, which allowed the CD spectrum to be 

obtained. Still, the results from the hydrolyzed sample were high when 

compared to the GC analysis. 

GC analyses revealed that each sample had its own unique formula

tion containing both UV and CD absorbing components. The retention 

times and peak heights were both very reproducible. Table XIV gives the 

average retention time and peak height for each component in the chroma

togram. All four samples contained peaks with the same retention times 

(R.T.) as heroin and 6-MAM. Heroin has the greatest peak height at a 

retention time of 7,9 minutes. Since 6-MAM is a by-product of the pre

paration of heroin, it is highly probable that it is represented by the 

peak at 6.2 minutes. A small peak appeared at 11.5 minutes in all four 

samples. Considering the relatively long retention time, this peak 

might represent a small amount of unreacted morphine. The presence of 

both would cause the results for heroin, from CD, to be higher. Sample 

No. 3 contained a significant impurity with a R.T. of 4.3 minutes. If 

the compound represented by this peak is CD active, then it is under

standable why the direct analysis of this sample resulted in a much 

larger value than that of the hydrolyzed product. The compound with a 

R.T. of 2.4 minutes must be a major CD transparent, but UV absorbing com

pound. Otherwise it would probably dominate the CD spectrum. 

Chromatograms for the l µg/µ1 heroin standard, confiscates No. 2 

and No. 3, are shown in Figure 29. The heroin GC calibration curve is 

shown in Figure 30. The lower three calibration standards, plotted ver

sus peak height, were linear. 

A positive deviation from linearity was observed for the highest 

calibration standard. All of the unknowns were similar in concentration 



OSBI 
No. 

2 

3 

4 

TABLE XIV 

QUANTITATIVE DETERMINATION OF HEROINa 
CONFISCATES BY GC 

Retention Time, Minutes 
11. 5CI 2.4 4.3 6.25 7,9c 

Off sea I e 3.0 23 2.5 

9.0 163 1. 0 

Off scale 19 3.5 31 <l. 0 

<l 8.0 168 <1.0 

aResults presented as average peak heights, from the base-
1 ine, in millimeters; attenuation 20 for Nos. 1-3; attenuation 
40 for No. 4. 

b Prob ab 1 y 6-MAM. 

cHero in. 

dPossibly morphine. 
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to one of the calibration standards, which would improve the accuracy of 

the analysis. 

From these results one can easily conclude that heroin cannot be 

accurately quantitated directly in 0. 1 M HCl solutions. Also, acetylat

ed impurities are not easily detected by CD if their concentrations are 

not in excess of 10 percent by 1"ieight to that of the heroin present. 

After the samples are hydrolyzed to morphine it is impossible to state 

from which acetylated derivative they originated. These are the most 

serious drawbacks to the use of CD spectropolarimetry for the analysis 

of mixtures containing heroin. 

No attempt was made to identify the other components present in the 

solid confiscates. Unless they are CD active, they will not interfere 

in the determination of heroin. An exception to this is a strongly ab·

sorbing material in the UV region. Such a case in point is confiscate 

No. l. Part of the UV-absorbing material had to be removed by extrac

tion before a satisfactory CD spectrum could be obtained. The problem 

is entirely one of there not being enough radiative throughput to obtain 

a sufficiently noise-free signal. 

Compounds which are optically active but which do not absorb in the 

near-UV, such as the mono- and polysaccharides, present no problem in 

the qualitative identification of the CD active components. 

Sugars, starches, and dyes are common diluents encountered in heroin 

confiscates. Dyes, in particular, present problems in the analysis of 

these samples by conventional methods. In the samples under investiga

tion, three of the four confiscates had a coloration in the chloroform 

extract which would probably be UV absorbing, but which presented no 

problem in the analyses by CD spectroscopy. 
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Pharmaceutical Preparations 

The results obtained for the quantitative analyses of the codeine 

samples of unknown concentration, of the pharmaceutical preparations, 

and of the cough syrups were very encouraging. The results from dupli-

cate or triplicate analyses were more reproducible and more accurate 

than those for the heroin samples of unknown concentration. In the case 

of the cough syrups, the samples could be quantitated on simple dilution 

in aqueous 0. 1 M HCl. 

-1 
Using average values of +460 and -74 degrees ·l· mol for the two 

CD transitions resulted in precise quantitation of the two samples of 

codeine mixed with lactose. These values were five percent lower than 

-1 
those using the molar ell ipticities of +438 and -73 degrees •l• mol , 

obtained from the two codeine standards. The average values were used 

in all calculations for the codeine samples. The results are listed in 

Table XV. 

Fairly good precision was observed within the dupl icateor trip I icate 

analyses of each sample. There was evidence for greater variation among 

different formulations. The analyses were made on four separate occa-

sions, over a three-week period, in a fairly random manner. The results 

should therefore not be biased by instrumental performance. No data were 

found for the tolerance regarding the amount of codeine that should be 

present in each tablet. It is certainly possible that the Phenaphen® 

tablet analyzed contained an excess of codeine phosphate while that of 

the Fiori nal ® No. 3 was deficient. 

The dihydrocodeine present in Synalgos DC~ was also accurately 

quantitated using the same standard extraction procedure on a 53 mg al i-

quot of the capsule. Using data from both the 239 and 281 nm 



Sample 

Unknown No. 

Unknown No. 2 

Phenaphen 

Tylenol No. 3 

Tylenol No. 4 

Fiorinal No. 3 

TABLE XV 

QUANTITATIVE DETERMINATION OF 
CODEINE PREPARATIONsa 

Stated Expe r i men ta 1 , 
Amount, mg mg 

2.08b 2.09b 

o. 98b o.98b 

30.00 32. 50 c 

30.00 29. 10 ± 4. 30d 

60.00 56.3oc 

30.00 26. 30 ± 4. 30 d 

aAs codeine phosphate, except as noted. 

bCodeine base. 

cDupl icate analyses. 

dT . 1. 1 rip 1cate ana yses. 

Percent 
Difference 

0.0 

0.0 

+8.3 

-3.0 

-6.2 

-12.4 
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transitions, 15.5 mg were detected as compared to a nominal composition 

of 16. 0 mg. 

Even with an extraction procedure involved in the analysis, the 

separation process was much simpler than that for the quantitation by UV 

spectroscopy. The extraction process does not have to be 100 percent 

efficient if the other components are not CD active. The molar extinc

tion coefficients are high for aspirin and caffeine, which necessitates 

their complete removal before quantitation can be accomplished by UV ab

sorption spectroscopy. 

One of the reasons for the analyses of these samples was that con

sistently low results were obtained by other investigators using HPLC. 

It is not known if this problem was resolved, but it is encouraging that 

an alternate convenient method is available. 

two cough syrups containing codeine were analyzed, both directly in 

0.1 M HCl and after extraction. The results are shown in Table XVI. In 

the direct analysis of the Phenergan VC, the signals were very noisy. 

Data from 285 nm transition yielded a value of 2.07 mg/ml while that from 

the 245 nm transition data were 1.62 mg/ml. The discrepancy might be 

attributed to instrument limitations in signal amplification at two dif

ferent wavelengths. An accurate quantitative determination was effected 

in the direct analysis of the second sample using data from the 245 nm 

transition of codeine, although the signal was somewhat noisy. Data 

from the 285 nm transition resulted in low values. This was probably 

caused by another CD active drug which partially canceled the signal due 

to codeine at this wavelength. 



TABLE XVI 

QUANTITATIVE DETERMINATION OF CODEINE 
IN COUGH SYRUPSa 

Extracted, Nonextracted, 
Preparation mg/ml mg/ml 

Phenergan vc 2.00b ± .02 

FC's 1. 97c 

aAs codeine phosphate. 

bTriplicate analyses. 

cDuplicate analyses. 

1. 84c 

1. 97c 

Expected, 
mg/ml 

2.00 

2.00 
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After extraction very good CD spectra were obtained, and the codeine 

was accurately quantitated from either transition for both preparations, 

as shown in Table XVI I. 

Thus, cough syrups containing codeine phosphate can be accurately 

quantitated after a simple extraction procedure. This should be a much 

simpler method than that for HPLC and more qualitatively acceptable than 

GC. It should be reiterated that the method is no more difficult than 

UV absorption spectroscopy. Once the instrument has been calibrated and 

the molar ellipticity coefficients have been determined, there is no 

need for daily calibration. 

Limits of Detection 

There were no experiments designed to test the limits of detection 

of these compounds. Molar ellipticities were calculated from data for 

solutions with sufficient concentrations to reduce experimental error. 

These linear calibration curves were extrapolated to the limit of detec

tion, using the same definition as that by Kai~er. (7B) 

In the analyses of these compounds the limit of detection is affect-

ed both by baseline drift and noise. Drift in the baseline was measured 

by maintaining the instrument at a single wavelength and then measuring 

the change in ellipticity with time. From these measurements, an esti-

mate was made of the drift in the baseline at the average wavelengths of 

the ellipticity maxima. The average noise in the baseline was measured 

from several spectra to determine the analytical noise present at the 

average wavelengths of the ellipticity maxima. These values were then 

used in the following formula for the 1 imit of detection: 
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TABLE XV I I 

LIMITS OF DETECTIONa -x106M 

Drug Solvent 245 nm 285 nm 300 nm 

Morphine HCl 5.2 19.0 
Na OH 4. l 19.0 

Na lorph i ne HCl 5.5 22.0 
Na OH 4.5 2 l. 0 

3-Acetylmorphine HCl 6.0 2 l. 0 
8.6 7.6 30.0 

6-Acetylmorphine HCl 6.3 24.o 
8.6 8. 1 30.0 

Heroin HCl 29.0 65.0 
8.6 20.0 65.0 

Hydromorphine HCl 27.0 l l . 0 4.o 
Na OH 20.0 7.6 5.0 

Oxymorphone HCl 45.0 10.0 4.0 
Na OH 19.0 7.8 5.0 

Naloxone HCl 20.0 10.0 3.9 
Na OH 25.0 8.6 4.8 

Codeine HCl 4.3 18. 0 
Na OH 5.6 19.0 

Dihydrocodeine HCl 14.0 15.0 
Na OH 15.0 16.0 

Ethylmorphine HCl 5.3 22.0 
Na OH 6.7 23.0 

Hydrocodone HC l 16.0 9.5 3.7 
Na OH 16.0 12.0 3.7 

Oxycodone HCl l 7. 0 . 4.9 3.7 
NaOH 29.0 6.0 4.6 

Thebaine HCl 3. l 15.0 2. l 
Na OH 2.9 15.0 2.4 

au . sing criterion of Kaiser( 79 ): x = D xb l + 35 b l · 



where 

x0 A= measurement at the limit of detection (degree) at a 
' 

given wavelength; 

-
Xbl average value of the drift at a given wavelength; and 

Sbl =standard deviation of the noise at a given wavelength. 



CHAPTER V 

DISCUSSION 

Characterization of Spectra 

General Parameters 

The CD spectra in aqueous solutions upon a change in pH show 

changes in wavelength maxima similar to those observed for UV absorp-

tion spectroscopy. There is the added benefit that broad bands are 

often resolved into two or more component bands with a significant im-

provement in resolution. This is due, at least in part, to there being 

both positive and negative CD bands. 

Since energy absorption is a prerequisite to CD activity, the 

bands observed in the CD spectra for the opiate drugs are assigned to 

the standard electronic transitions for the aromatic ring chromophore. 

The large positive Cotton effect in the wavelength range 238-255 nm is 

attributed to a n*+rr electronic transition of symmetry 1L and the 
a 

smaller negative Cotton effect around 275-290 nm is attributed to a . 
1 

second rr*+rr electronic transition designated by Lb. The third aro-

matic transition, the very intense 1s transition around 210-220, shows 

an even larger negative Cotton effect, with the exception of thebaine, 

where a moderately large positive value is observed. 

The ketone functional group chromophores in hydromorphone, oxy-

morphone, naloxone, hydrocodone and oxycodone are associated with the 
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negative Cotton bands which occur at 300-315 nm as an n*+ n transition. 

The N-vinyl group present in naloxone and nalorphine does not seem to 

affect the spectra significantly when compared to the corresponding 

N-methyl derivatives, except for a slight loss in intensity of the CD 

band. 

Both A values are invariant with pH for alkaloids which have 
max 

OCH 3 present at C(3). Alkaloids which have either OH or COOCH 3 in the 

3-position show a red shift for A on going from acidic to buffered max 

to basic media, and to differing degrees for the different transitions. 

The results are consistent with trends observed in UV absorption 

spectroscopy and are most likely attributable to the dissociation of 

the phenol proton, and acetate ester hydrolysis. 

Further modifications of the spectra were evident in alkaloids 

with a ketone functional group at C(6) and thebaine, which has a con-

jugated C-ring. These are summarized in Table V first for the morphine 

group, including those members with a ketone group at C(6) or an 

N-vinyl group, and second, the codeine group, which includes those 

members with a ketone functional group, and finally, thebaine. 

All of the acetyl derivatives are fairly stable at pH 8.6, but at 

higher pH rapid hydrolysis to morphine occurs in the form of the 

phenolate ion. Accordingly, the spectra for the acetylated alkaloids 

in solutions buffered to pH 8.6 must be obtained within a few hours to 

insure accurate quantitative results. 

Analytical Distinction by CD Spectral Parameters 

The improvement in CD spectral resolution, as compared to that of 

UV absorption spectra, affords a significant improvement in qualitative 
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distinction among the opiates. This improvement is enhanced by changes 

in the pH of the solvent medium. 

The greatest similarity in CD spectral parameters is observed in 

a strong acid solution, Figures 8-10 and Figure 17a. At acid concentra-

tions in excess of 0. 1 M HCl, there appear to be no significant spectral 

differences as the acidity is increased. 

Under these strongly acidic conditions, the phenolic group is un-

dissociated, the acetyl substituents are not hydrolyzed, and the ring 

nitrogen is protonated. As it was for the alkaloids dissolved in 

ethanol, some qualitative distinction is observed when the C-ring is 

modified; for example, thebaine (conjugated diene) and dihydrocodeine 

(saturated). Thebaine is uniquely identified in this study by its pos

itive band at 221 nm, heroin by its 1L band at 238 nm, and dihydro-
a 

codeine by its unique Ao at 253 nm.* All of the ketone derivatives have 

similar spectra, as do the members of the morphine and codeine groups 

with OH at C(6). These members could possibly be distinguished by the 

ratio of their molar ellipticity values, which, however, severely 

limits the ability for qualitative identification in the event that a 

mixture is under investigation. 

Qualitative analysis of the acetylated derivatives is not possible 

in base, since all acetylated derivatives are rapidly hydrolyzed to 

morphine. The members of the morphine group having a ketone group at 

C(6) can be readily distinguished from the corresponding members of the 

codeine group by the significant red shift in the A- of only the mormax 

phine ketones in base, but there is no distinction possible within each 

group. Again, thebaine and dihydrocodeine have unique spectra that 

separate them from the other drugs studied. The CD spectra in basic 
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media are shown in Figures 11-13 and Figure l7b. 

The most promising single condition for qualitative identification 

is the pH 8.6 buffer solution medium (Figure 14-16 and 17c). All mem

bers of the codeine group are now distinguishable by their A and Ao max 

values, with the exception of codeine and ethylmorphine. The only dif-

ference in structure between the two is an ether methoxy versus ethoxy 

functional group at C(3). Distinction between the two alkaloids may be 

accomplished by close inspection of the intensities of the respective 

A values at different pH values. Note that hydrocodone can be dis-max 

tinguished from oxycodone by small but significant differences in peak 

locations. The wavelength maxima and zero ellipticity values are 

slightly red-shifted for oxycodone in relation to hydrocodone. 

Members of the morphine group are now distinguishable by changes 

l 0 in the L band, by the separation of the A values, and by the emer
a 

gence of the positive band at 300 nm for morphine, nalorphine and 

6-acetylmorphine. The exceptions to this may be morphine versus nalor-

phine, and oxymorphone versus naloxone. In both cases an N-vinyl group 

is substituted for an N-methyl group. 

There is an overall decrease in molar ellipticity values within 

the morphine group in both dilute acid and pH 8.6 buffer media in the 

following progression: morphine> nalorphine > 3-monoacetylmorphine > 

6-monoacetylmorphine > 3,6-diacetylmorphine (heroin). This may be re-

lated to an increase in molecular weight. Relative intensities in CD 

bands are interpreted by empirical structural models such as the octant 

rule (87). A decrease in signal with increasing molecular weight might 

be interpreted as an increasing component in a negative octant. 

A feature associated with the ionization of the phenolic group is 
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the gradual emergence of a positive Cotton effect at approximately 300 

nm for morphine, nalorphine and 6-acetylmorphine. This band grows at 

the expense of the negative band around 285 nm as the pH is increased. 

I At high pH the usually negative band for the Lb transition no longer 

exists. Also, since the band at 300 nm for hydromorphone and oxymor-
... t... ..t.. 

phone is probably due to overlapping n"+1T and 1T"+n transitions, the 

15 nm red-shift may be solely due to the formation of the phenolate 

ion. Further evidence for this is the lack of a red-shift for the 

ketone-containing members of the codeine group. 

Ratio of Molar Ellipticity Values 

Ratios of the maximum ellipticities can often be a useful adjunct 

to the procedures for identifying an anonymous alkaloid. These ratios 

and how they change with pH, in conjunction with the absolute molar 

ellipticities measured, have the potential of providing a unique iden-

tification. 

Distinction is possible among the members of the morphine group by 

comparison of the band ratios, with the possible exception of morphine 

and nalorphine. The ellipticity ratio in acid is 6. I for nalorphine 

and 5.8 for morphine. However, in the absence of other CD active 

species, the distinction should be made statistically meaningful by per-

forming multiple scans. The small positive Cotton effect at 300 nm may 

have insufficient reproducibility for quantitative purposes. Distinc-

tion among the three keto-morphine derivatives can be made by virtue of 

the ratios of the 1L and 1L transitions in both dilute acid and pH 
a b 

8.6 buffer solutions. 

A decrease in molar ellipticity with increasing molecular weight 
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is again observed between codeine and ethylmorphine. The intermediate, 

dihydrocodeine, does not conform to the trend. This is perhaps due to 

a more dominant effect caused by a change in the basic codeine struc-

ture on saturating the C-ring. 

Dihydrocodeine and codeine are easily distinguishable from each 

other, while ethylmorphine is most easily recognizable by the ratio of 

the 1La to 1Lb transitions in pH 8.6 buffer. Hydrocodone and oxycodone 

can be distinguished from each other in the same manner. For hydroco-

l done the L band has the greater ellipticity while for oxycodone the 
a 

1Lb transition has the greater ellipticity. 

In the final analysis, it is possible to distinguish between all 

of the alkaloids in this study using both wavelength and intensity 

parameters. Only experience will tell if this continues to hold true 

·as more alkaloids are included in the data base. Any identification 

problems encountered must be between compounds that are fairly close in 

structure. It has been shown (81) that different drug groups have sig-

nificantly different CD spectra. Therefore, it would seem very un-

likely that some drug foreign to the group in question would give 

identical results. 

Molecular Origin of Spectral Changes 

By changing the substituent present on the ethanophenanthrene 

alkaloid structure, some insight can be gained into their effect on 

molecular structure. Similar studies have been performed for several 

steroids (68) and the phthalideisoquinoline alkaloids (82). The latter 

study showed that CD spectra can be deconvoluted into gaussian bands 

corresponding to discrete transitions. 



96 

Since the alkaloids are basically T-shaped, the substituents on 

C(6) and the rr-electrons of the unsaturated bands are actually much 

closer to the aromatic nucleus than is readily apparent from a conven

tional drawing of the molecules. Therefore, throughspace interactions 

may be invoked which are just as important as conjugation in interpre

ting changes in spectra. 

Effect of the Oxygen Bridge 

The morphine alkaloids have a fairly rigid structure with most of 

the flexibility in the C-ring. This rigidity increases the optical 

activity. For example, the aromatic amines and isoquinoline alkaloids 

have very small CD signals as compared to the morphine alkaloids. The 

same effect was noticed in a series of rigid yersus flexible indane 

derivatives (86). However, the authors noted that morphinan deriva

tives still had enough rigidity to produce optical activity on the 

order of one-third of that of the corresponding morphine alkaloids 

(86). In morphine (79) and codeine (83), steric restriction due to the 

oxygen bridge forces C(l2) out of the aromatic plane of symmetry as 

shown by x-ray crystallography. In contrast, for 3-methoxy-N-methyl

morphinan (84) and tetrahydrodesoxycodeine (85), where the oxygen 

bridge is missing, the aromatic ring is almost flat. There is also a 

slight distortion of the bond angles for the C-ring in morphine and 

codeine as compared to the morphinan compounds. In summary, the oxygen 

bridge introduces enough steric rigidity to produce unanticipated dis

tortions in the adjacent B- and C-rings. 
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Group Present at C(3) 

In acidic media the phenolic group at C(3) is protonated and the 

A-ring should have basically the same conformation as was described in 

the x-ray studies. In morphine (79) and codeine (83), the C-ring 

assumes a boat conformation while for (+)- 3-methoxy-N-methylmorphinan 

(84) the C-ring exists as the chair conformer. In the process of for-

mation of the phenolate ion, the delocalization of the oxygen negative 

charge might assume steric priority, causing the ring to flatten. This 

change will be transmitted by way of a conformational change in the di-

hydrofuran ring to the remainder of the molecule, where a change in 

conformation of the C-ring is expected to occur with C(5) and C(l3) as 

the pivot points. 

DeAnge 1 is and Wildman (87) have developed a sector rule to make 

empirical comparisons for aromatic molecules. Using their basic rules 

for illustration, the projections of tetrahydrodesoxycodeine, codeine, 

and morphine (in the phenolate form) are shown in Figure 31. Note that 

there is only a slight shift in quadrant locations of the atoms for the 

three compounds from this perspective. Weiss and RUll (85) have pointed 

out that compounds without the bridge oxygen have weaker negative 1L 
a 

and 1Lb transitions whereas compounds with the bridge oxygen, such as 

morphine and codeine, have a moderately large positive 1L transition 
a 

and a negative 1Lb transition. Although it is possible, it is difficult 

to conceive that such minimal conformational changes can produce such 

radical spectral changes. 

From this projection, the change in the conformation of the C-ring 

is not easily seen. If the projection is turned 90 degrees and viewed 

from above the aromatic ring (Figure 32), the orientation of the C(7)-
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Figure 31. Projection of Tetrahydrodesoxycodeine (Primed), 
Codeine, and Morphine as Viewed by DeAngelis 
and Wildman Method 
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Figure 32. Projection of Morphine .as Viewed From 
Above the Aromatic Ring 
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C(8) bond is observed to have changed considerably on inversion of the 

C-ring conformation. If the morphine molecule as the phenolate ion 

assumes the morphinan conformation, it is easily seen that orbital over-

lap between the diene n-electrons with then-electrons of the aromatic 

nucleus would change significantly from acidic to basic conditions. For 

the morphinans, one must also take into account that the C(7)-C(8) bond 

is saturated. Crabbe has pointed out (86, Table X) that there is a 

significant difference in the CD spectral properties of tetrahydro

desoxycodeine and dihydrodesoxycodeine D, its unsaturated analog. This 

adds additional evidence to the concept that there is orbital overlap 

between then-electrons of the unsaturated linkage and the aromatic 

nucleus, and that changing the conformation changes the overlap of the 

n-orbitals. 

Hydroxyl Versus Ketone on C(6) 

The substitution of a ketone group at C(6) in place of the hydroxyl 

group causes an increase in the rigidity of the molecule. Looking at 

the molecule from the perspective of a quadrant projection, the ketone 

group is shifted to a more positive position in the quadrant, which 

should result in an increase in the intensity of the CD signal. How-

ever, this is not the result observed; there is a change in sign of the 

1Lb band, which cannot be effectively explained by a quadrant rule. 

The Diene Structure 

Thebaine was the only alkaloid studied with a C-ring conjugated 

diene structure, which imparts the most rigidity of all the compounds 

studied. Again, a sector rule does not adequately describe the 
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observed Cotton effects. The 1L band should become more positive and 
a 

the 1L more negative. The compound does exhibit an intense negative 
b 

1L transition, but the 1L transition is fairly weak. The Cotton ef-
b a 

feet for it may be partially canceled by the much more intense 1E and 

1Lb Cotton effects. 

The conjugated diene structure is S to the aromatic nucleus, which 

should allow for effective orbital overlap, especially in a rigid 

structure such as thebaine. Interactions of this type have been ob-

served for several aromatic compounds (61, 86). It is also possible to 

have through space orbital interaction due to the geometry of the mole

cule. Thebaine was the only compound studied which has a positive 1E 

transition. The change to a diene structure may change the chirality 

of the conjugated system. Such changes have been observed in skewed 

styrenes (14). 

Vinyl Versus Methyl Group on N 

In all of the morphine and codeine alkaloids the N-methyl group is 

equatorial to the molecule. 

Other structural changes have little steric affect upon the nitro-

gen ring. There is no reason to believe that a conformational change 

occurs on N-substitution by a vinyl group. No substituents on the 

nitrogen ring appear to have a significant effect upon the aromatic 

chromophore. 



CHAPTER VI 

STATISTICAL ANALYSIS 

Statistical procedures were used to evaluate the data generated 

from the CD spectra. Two basic questions were examined: "What are the 

variances in the CD spectral parameters and molar ellipticities?" 

Secondly, "Are these parameters sufficiently different to allow unique 

identification of the compound in question?" 

Statistical Parameters 

Representative data for most of the compounds were analyzed by a 

standard statistical procedure for analysis of variance, both among 

samples and between compounds. The average wavelength values for posi

tive and negative ellipticity maxima are tabulated in Table V. The 

corresponding standard deviations, calculated from the replicate mean 

square, are listed in Table XVI I I. The standard deviations of the molar 

ellipticities are listed in Table XIX. No statistical data are included 

for the acetylated compounds in base due to their hydrolysis to morphine. 

There were insufficient data for the statistical analyses of ethylmor

phine and morphine sulfate in base and of ethylmorphine, morphine sul

fate and thebaine in pH 8.6 buffer. For those samples where only dupli

cate analyses were performed, the average wavelength values are listed 

in Table V and the average molar ellipticities in Table VI, but no sta

tistical data are listed in Tables XVII I and XIX. 
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Drug 

Morphine 

Nalorphine 

3-MAM 

6-MAM 

Heroin 

Hydro-Morphone 

Oxymorphone 

Morphine Sulfate 

TABLE XVI 11 

STANDARD DEVIATIONS OF CD SPECTRAL PARAMETERS 

Solvent 

Acid 
Base 
8.6 Buffer 

Acid 
Base 
8.6 Buffer 

Acid 
8 .6 Buffer 

Acid 
8. 6 Buffer 

Ac id 
8.6 Buffer 

Acid 
Base 
8.6 Buffer 

Acid 
Base 
8.6-Buffer 

Acid 
8.6 Buffer 

A Max, 245 
Y2 

.4 

.4 

.2 

.3 

.4 

. l 

. 7 

. 3 
1.2 

.3 

.7 

.2 

.3 

.7 

.2 

.3 
1. 5 

.6 

A. Max, 285 
Y3 

.6 

.3 

. 5 

.2 

.2 

.0 

. l 

.6 
1. 0 

.0 

.5 

• 1 
.o 
.7 

• 1 
• 1 
.2 

. 5 

A. Max, 300 
Y4 

.7 

.0 

. l 
l . 0 

1.4 

.2 

.2 

.7 

. l 

. 2 
l .0 

"-~30 
vs 

.3 

.4 

. 5 

.0 

. l 

.3 

.8 

.2 
l. 0 

l.3 

. l 

.4 

.4 

.2 

.4 

.2 

.7 

;x.~50 
Y6 

,3 

1. 2 

.o 

.4 

1. 7 

.7 
1.4 

1.0 
. 5 

.3 

"~so 
Y7 

.6 

l • 0 

• 1 

• 1 
. 2 
.4 

.2 
,5 
.9 

0 
w 



TABLE XVIII (Contin1;1ed) 

;\ A ;\ 
0 0 0 

Max, 245 Max, 285 Max, 300 >-230 ;\250 ;\280 
Drug Solvent Y2 Y3 Y4 vs Y6 Y7 

Naloxone Acid .3 .2 .2 .2 .2 
Base .7 .7 .4 .4 .3 
8.6 Buffer .8 .5 . 6 .3 .4 

Codeine Acid .7 .7 .6 .6 
Base .7 l.O .9 .4 
8.6 Buffer . 5 .4 .4 l.9 

Di hydro-Codeine Acid .6 l. 0 .4 1.3 
Base .4 .3 ,7 1. 5 
8.6 Buffer .3 .3 .7 l. 5 

Ethyl-Morphine Acid . 3 .3 .4 .9 
Base 
8.6 Buffer 

Hydrocodone Acid .3 .4 . 7 .2 . 1 
Base .9 .6 .3 .6 .4 
8. 6 Buff er .9 . 5 .4 l. 1 .2 

Oxycodone Acid .3 . 1 • 1 .2 .0 
Base .5 .3 .4 .2 .2 
8. 6 Buffer .7 .7 .6 .3 .2 

Thebaine Acid .s .5 .4 . 5 . 5 
Base ,5 .4 .5 . 5 

-0 
J:-
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TABLE XIX 

STANDARD DEVIATIONS OF MOLAR ELLIPTICITIES 

Drug Solvent [ 8 ]245 [ 8] 285 [ 8]300 

Morphine Acid 2.0 (0.5) 0.9 ( 1 . 3) 0.4 (l .3) 
Base 3.4 ( 0. 7) o.4 (0.7) 
8.6 Buffer 20.0 ( 6. 8) 3.6 (10.9) 

Morphine Sulfate Acid 2.6 ( 0. 7) 1 . 6 (2. 4) 
8.6 Buffer 12.4 (3.9) 4.6 (6.9) 

Nalorphine Acid 5.9 ( l . 6) 2.3 ( 3. 9) 
Base l 6. 8 (3. 8) 2.3 ( 4. 9) 
8.6 Buffer 5.0 ( 1 . 7) 1.4 (3. 4) l.2 (16.0) 

3-MAM Acid 
8.6 Buffer 

6-MAM Acid 2.6 (0.8) l. 5 (2. 7) 
8 .6 Buffer 13.2 (5.3) 0.7 ( l . 9) 4. 7 ( 54. 0) 

Heroin Acid 2.3 (3 .3) 0.7 (3. 5) 
8.6 Buffer ( 6. 9) " 0.6 (3. 0) 7.0 

Hyd romorphone ·Acid 3.0 ( 3. 9) 3.4 (2.7) 5.7 (2.3) 
Base 2.8 ( l. 5) 3.7 (2.2) 6.3 (3.1) 
8.6 Buffer 3. 1 ( 3. 3) 8.5 (6.6) 4.5 (2.4) 

Oxymorphone Acid l.9 (4. 2) 0.9 (0. 7) 2.3 ( 0. 9) 
Base 1.8 ( 1 . 1 ) 1 .0 ( 0. 6) 2. 1 ( 1. 0) 
8.6 Buffer 1.4 ( 1 . 4) 2.4 ( 1. 7) 2.7 ( 1 . 7) 

Naloxone Acid 2.2 ( 5. 1 ) 2.2 ( 1. 7) 1. 6 ( 0. 6) 
Base 8.0 (5.3) 8.8 (5.8) 4.0 ( l. 9) 
8.6 Buffer 5.2 (6.5) 4.0 (3. 0) 6.7 (3. 6) 

Codeine Acid 15.0 (3. 2) 2.2 (3. 0) 
Base 14.3 (3. 8) 1.0 ( l . 4) 
8.6 Buffer 32.0 ( 8. 1 ) 5.0 (7. 0) 

Dihydrocodeine Acid 5.8 1.0 ( 1. l) 
Base 9.0 (6. 7) 4. 1 ( 4. 8) 
8. 6 Buffer 3.2 (2.3) 2.8 ( 3. 5) 

Ethylmorphine Acid 
Base 7.2 (2.4) 0.3 (0.6) 
8. 6 Buffer 
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TABLE XIX (Continued) 

Drug Solvent f 9]245 f 9]285 [9]300 

Hydrocodone Acid 4.9 (J .9) 8.6 (6.3) 9.9 (3. 6) 
Base 5.7 (4.5) 3.8 (3. 6) 3.0 ( 1. 0) 
8. 6 Buffer l l. 6 (8.4) 5.9 ( 5. 0) 2.7 ( 1. 0) 

Oxycodone Acid 1.9 ( 1. 6) 1. 5 ( l. 1) 1.2 (0.4) 
Base 3.2 (4.7) 2.2 ( 2. 5) 2.2 ( 1. 0) 
8. 6 Buffer l.9 ( 1.9) 3.3 (2. 6) 2. 1 ( 0. 8) 

Theba i ne>'< Acid 12.8 (2. 0) 5.5 (6.3) l l. 4 (2. 4) 
Base 20.2 (2. 9) l l. l (12.7) 13.5 ( 3. 2) 

·'· 221, 245 and 285 nm. "Maxima are at 
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For comparison between drugs, the variance is divided (partitioned) 

into variances for drugs, replicates and, if available, duplicates. The 

replicate mean square is probably the best indicator of variations in 

wavelength maxima and molar ell ipticities on a day-to-day basis. For 

samples where duplicates have been analyzed, the mean square values for 

drugs will not be the same as the mean square values for rep] icates. 

For most samples analyzed in duplicate, especially those in pH 8.6 buf

fer, a large part of the variability in the data was partitioned into 

the variance of the duplicates. This resulted in the variance of the 

replicates being lowered for these samples. 

The standard deviations of CD parameters for naloxone in pH 8.6 

buffer are extreme examples of this trend. The variance for duplicate 

samples (in a statistical sense) was thirty times as great as that for 

replicates. Thus, the analysis of variance (ANOVA) for replicates 

indicated that all analyses were of a common drug, whereas for dupl i

cates it indicated that they were not of a common drug. 

For most of the compounds, either five or ten replicates were 

analyzed on the same date. This gives an estimate of the experimental 

error in the analytical procedure, since each replicate is an indepen

dent analysis. For the compounds replicated ten times (Table XX), only 

codeine showed any significant differences in molar ellipticities or 

wavelength maxima as compared to the overall averages listed in Table 

VI. However, one explanation for the lack of difference for thebaine 

was the small number of examinations performed, except for the replicate 

study. 

For the compounds replicated five times (Table XXI), the members of 

the ketone group showed a significant improvement in variance. Small 
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TABLE XX 

MOLAR ELLIPTICITIES FOR TEN REPLICATES 

Drug Solutions [e]~ax [e]~ax 

Morphine HCl 383 ± 3. 1 (0.8%)a -66.8 ± l. 0 ( 1 . 5%) 
493 ± 4.2 (0.9%) 
52.3 ± 0.7 ( 1 . 3%) . 

Codeine HCl 478 ± 3.0 (0.6%) -78.0 ± 0.9 (1.1%) 
Na OH 359 ± 12 (3.9%) -69. 0 ± 1. 0 ( 1 . 4%) 

Theba i ne HCl 650 ± l l ( 1. 7%) -472 ± 4.4 (0.9%) 
Na OH 87. 6 ± 4.8 (5. 5%) -93.3 ± 5.7 (6.1%) 

700 ± 27 (3. 8%) -423 ± 13 (3.1%) 

aRelative standard deviation for all values. 
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TABLE XXI 

MOLAR ELLIPTICITIES FOR FIVE REPLICATES 

Drug Solvent Max Mo 1 a r E 1 1 i pt i c i ty 

Morphine 0. 1 M HC 1 245 382 ± 4.0 ( 1. 1 %) 
285 -67.0 ± 1.0 ( 1. 4%) 

Base 253 492 ± 5.2 ( 1. 1 %) 
300 52.3 ± 0.7 ( 1. 2%) 

Nalorphine 0. 1 M HCl 244 364 ± 5.2 (14.%) 
285 -59.5 ± 2.1 (3.5%) 

Base 254 447 ± 15 (3.4%) 
298 47.4 ± 2.0 (4.3%) 

pH 8.6 247 297 ± 4. 7 ( 1 . 6%) 
285 -41 . 6 ± 1 .4 (3.4%) 
303 7.4 ± 1. 1 (14%) 

Hydromorphone Acid 238 75.8 ± 4.0 (5.3%) 
276 120 ± 7.0 (6. 1%) 
298 -251 ± 8.2 (3'. 3%) 

Base 238 1 81 ± 2 . 5 ( 1 . 4%) 
275 170 ± 3. 3 ( 1. 9%) 
313 -203 ± 6.3 (3.1%) 

Oxymorphone .014 M HCl 238 44.4 ± 0.2 (0.3%) 
277 129 ± 0.8 ( 0. 6%) 
297 -251 ± 2.3 (0.9%) 

Base 246 168 ± I . 6 ( 1. 0%) 
287 I 67 ± 0.8 (0.5%) 
315 -203 ± 1. 9 (0.9%) 

pH 8.6 247 112 ± 0.7 (0.6%) 
277 155 ± 1.0 (0.6%) 
309 -184 ± 1.5 (0.8%) 

Naloxone . 1 M HC 1 240 44.5 ± 1.6 (3.5%) 
277 126 ± 1 . 0 ( 0. 8%) 
300 -253 ± 3. 8 ( 1. 5%) 

Base 247 144 ± 1. 7 ( 1. 2%) 
287 145 ± 3.4 (2.4%) 
315 -210 ± 4.5 (2.2%) 
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TABLE XXI (Continued) 

Drug So 1 vent Max Molar Ellipticity 

pH 8.6 248 77. 7 ± 4.6 (5.9%) 
277 132 ± 1.0 (0.7%) 
308 -195 ± 4.7 (2.4%) 

Dihydrocodeine 0. 1 M HCI 241 297 ± 5.0 ( 1 . 7%) 
281 -179 ± 2.0 (1.1%) 

pH 8.6 241 139 ± 1.2 (0.9%) 
282 -85.6 ± 1.4 ( 1. 6%) 

Base 241 125 ± 2. 1 ( 1. 7%) 
281 -81.5± 0.9 ( 1. 1 %) 

Hydrocodone 0. 1 M HC 1 240 124 ± 2. l (1.7%) 
276 142 ± 2.7 ( 1 . 9%) 
298 -278 ± 2.7 ( 1 . 0%) 

Base 238 129 ± 3.7 (2. 9%) 
276 107 ± 2.4 ( 1. 9%) 
297 -273 ± 0.9 (0.3%) 

pH 8.6 239 126 ± 2. 1 ( 1. 7%) 
276 109 ± 0.7 (0.7%) 
298 -264 ± 1.6 ( 0. 6%) 

Oxycodone .02 M HCl 241 120 ± 0.8 (0.7%) 
277 139 ± 1.4 ( 1 . 0%) 
298 -268 ± 1.2 (0.4%) 

Base 240 69.2 ±.2.6 (3.8%) 
277 86. 1 ± 3. 1 ( 3. 6%) 
300 -218 ± 3.2 ( 1. 5%) 

pH 8.6 240 105 ± 1.5 (I. 4%) 
277 131 ± 1.2 (0.9%) 
298 -271 . 8± 2.3 (0.9%) 
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differences in pH from one solution to the next may affect spectral 

parameters. By performing these examinations in a consistent and expe-

ditious manner, the variance was reduced in the replicated experiments. 

The lack of variability in the other data is an indication that, for 

most of the compounds, the variance between day-to-day experiments is 

less than the experimental error. 

The instrumental error was very low for duplicate samples analyzed 

on the same day. Samples of dihydrocodeine and oxycodone were analyzed 

five times in succession. The average deviation ranged from (0.4 -

-4 1 .9) x 10 degree of ellipticity. 

Statistical data for morphine and nalorphine in 0. 1 M HCl, both 

individually and compared to each other, are given in the Appendix as 

examples. 

CD Spectral Parameters 

The variance of the CD spectral parameters are important in the 

qualitative analyses of samples, since these parameters are the primary 

means of sample identification. Changes in molar ellipticities upon a 

change in pH are of secondary importance in this respect. 

In most cases the variance between drugs was much larger than that 

for replicates or duplicates. This is an indicator that, indeed, the 

different drugs have unique spectra. 

Overall, the acidic solutions resulted in spectral parameters with 

the lowest standard deviations. The analysis of the drugs in basic 

solutions produced results which were better than those analyzed in pH 

8.6 buffer. For the majority of samples, the standard deviations of the 

CD spectral parameters was less than one nanometer. There were two 
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notable exceptions to this generality. There were some compounds in pH 

8.6 buffer whose spectral parameters exceeded one nanometer, especially 

the two positive transitions in the ketone-bearing compounds. 

The second exception involves those drugs with CD spectra which 

have slowly decreasing values at the cross-over points, such as the 250 

nm and 255 nm cross-over points for heroin and dihydrocodeine, respec

tively. Any uncertainty in the baseline is translated into a large 

deviation for the location of A0 . For samples whose CD spectrum 

approach the baseline at a steep angle, such as morphine in dilute acid, 

this uncertainty is not a serious problem. 

Significant differences were found among the CD spectral parameters 

for all the drugs in at least one of the media, with one exception. The 

parameters for codeine and ethylmorphine were found to be almost identi

cal. The available ethylmorphine spectral data were insufficient to· 

generate an adequate statistical analysis. Even naloxone and oxymorphone 

could be distinguished from each other by careful inspection of CD spec

tral parameters in base and pH 8.6 buffer. 

Molar Ellipticities 

There was much more variabi 1 ity in the molar ell ipticities between 

drugs than in any other CD spectral parameters. This usually led to 

even greater statistical differences between drugs. The relative aver

age deviations in the molar ellipticities ranged in value from 0.5 to 

54.0%, with an average value of 3.5%. This average deviation is compar

able to that found for UV spectroscopy. 

These parameters are of little value in the identification of a 

compound. However, as previously mentioned, the ratios of ell ipticities 
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for different transitions and for changes in solvent can be of impor-

tance as a means of identification. Thus, the ratios listed in Table I II 

can reliably be used as an additional means of identification in most 

instances. 

From the standard deviations listed in Table XVI I I, it is apparent 

that some transitions have much better CD spectral reproducibility than 

others. In the absence of mixtures, these transitions should be used 

for quantitative analysis of samples. Also, dilute aqueous HCl is the 

preferred solvent for most quantitative analyses. Overall, the rela

tive average deviation for compounds dissolved in 0. l M HCl averaged 

2.5%. Measurement error is further reduced by the judicious choice of 

the transition from which the sample is quantitated. This degree of 

accuracy is certainly adequate for most drug analyses. 

Correlation Coefficients 

Correlation coefficients were calculated for all compounds where 

there were sufficient data for each compound, over a concentration 

range from (0.30 - 3.5) x l0-4 M (Table XXll). These coefficients 

indicate the degree of I inearity of ellipticity versus concentration. 

The closer the value is to ±1.0, the better the correlation of the data 

to a linear regression model. For most peak maxima having molar 

ellipticities greater than ±30, the correlation coefficients exceeded 

0.9900; in fact, they often approached ±1 .0. The transitions with 

molar ellipticities whose absolute value was greater than 200 resulted 

in a slightly better linear fit of data than those whose ellipticities 

were less. 

The transitions of the ketone-bearing compounds with positive molar 
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TABLE XX 11 

CORRELATION COEFFICIENTS FOR MOLAR ELLIPTICITIES 

Drug Solvent 245 285 300 

Morphine HCl 0.9997 -0.9991 
Na OH 0.9998 0.9970 

Nalorphine HCl 0.9987 -0. 9991 
8.6 0.9997 -0.9964 
Na OH 0.9999 0.9915 

6-Acetyl Morphine HCl 0.9999 -0.9999 
8.6 0.9970 -0.9893 0.9043 

Heroin 8.6 0.9996 -0.9993 

Hydromorphone 8.6 0.9718 0.9849 -0.9986 

Oxymorphone 8.6 0.9759 0.9946 -0.9979 

Naloxone 8.6 0.9899 0.9974 -o. 9877 

Codeine HCl 0.9996 -0.9982 
8.6 0.9999 -0.9998 
Na OH 0.9910 -0.9971 

Di hyd rocode i ne HCl 0.9960 -0.9997 
8.6 0.9997 -0.9989 
Na OH 0.9930 -0.9998 

Hydrocodone HCl 0.9935 0.9874 -0.9934 
8. 6" 0.9910 0.9956 -0.9998 
Na OH 0.8984 0.9987 -0.9999 

Oxycodone 8.6 0.9899 0.9974 -0.9877 
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ellipticities had less correlation than similar transitions for other 

compounds. This is probably a result of greater standard deviations in 

the molar ellipticities of these compounds. 



CHAPTER V 11 

CONCLUSIONS 

Analytical Applications of CD 

In this study the analytical value of CD spectropolarimetry to the 

identification of compounds in aqueous solutions of varying pH has been 

confirmed. All compounds studied were uniquely identified by CD spec

tral parameters or molar ellipticity values. Although analytical dis

tinction is the best in pH 8.6 buffer, accurate quantitation is best 

achieved in 0. 1 M HCl. In this medium, quantitative analysis can result 

in less than 2.5% error. Separation or derivatization are usually not 

required unless there is a strongly UV absorbing compound present. The 

instrument does not need to be calibrated daily. All checks of the in

strument calibration showed very little change in ellipticity over a 

period of a year. 

Compared to alternative methods for CD analysis such as in a KBr 

pellet matrix or in a cholesteric liquid crystalline solvent, the present 

method is straightforward and quantitative. The analytical technique is 

the same as that used in analyses by UV absorption spectroscopy. How

ever, the technique is usually limited to chiral compounds, which absorb 

radiation unless a solvent is used which can induce chirality, such as a 

cyclic long-chain sugar. An anisotropic cholesteric liquid crystalline 

solvent has the advantage of being applicable to both the study of 

achiral molecules and racemic mixtures. 

116 
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The lack of CD signal for achiral molecules can be an advantage or 

a disadvantage, depending upon the circumstances. In the event that an 

analysis is being made for heroin in the presence of methapyrilene, the 

analysis is facilitated by CD. If, however, the analyst desires to know 

the identity of all components in the mixture, additional analytical 

methods must be employed. 

In the event that the compound under investigation is not CD-active, 

another method of identification must be devised. Drugs which are achir

al because of inherent molecular symmetry, e.g., PCP, or because they 

occur as a racemic mixture, e.g., di-methadone, cannot be directly deter

mined by CD in an isotropic solvent. They can be determined by associa

tion with a chiral co-solute if the equilibrium constant for the molecul

ar association is known. 

The anafyses of heroin samples showed that the determination becomes 

much more complicated if there is an indication of drug mixtures being 

present, where both ~re CD-active. If one component has considerably 

less CD signal intensity in one of the aqueous media, at a given wave

length, the problem is easily resolved. The identification and quantita

tion of codeine and morphine in combination by deconvolution of the com

bined spectra in a basic medium is one example of the use of this tech

nique. 

If the spectra are fairly complex or indistinct, an additional 

analytical method, such as gas or liquid chromatography, should be used 

for quantitative analysis. 

Pharmaceutical preparations containing codeine and dihydrocodeine 

were readily quantitated, _either directly by dilution or after a basic 
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extraction procedure. Even with an extraction step, the analysis time 

is a half hour or less. 

To date, only a limited number of drug groups have been examined. 

There are probably several drug groups containing compounds which have 

1 ittle or no CD activity. Again, this is an advantage if the compound 

is not one being sought, but negates the method somewhat if this compo

nent is to be quantitated. 

The following flowchart (Figure 33) is given as a review and as a 

guideline for the analysis of an unknown sample by CD spectroscopy. It 

does not include many alternative methods which might be useful for the 

analysis of drug components. 

Further Areas of Research 

It is certain that other drug groups should be investigated to 

determine if CD spectropolarimetry is a viable method for their analy

ses. All drug groups examined to date have little similarity in the~r 

spectral characteristics. If this trend continues, perhaps unique iden

tification of other drug compounds is also possible. 

It would probably be beneficial to vary the pH and record changes 

in molar ellipticities as well as CD spectral parameters. Perhaps then 

structural features could be better correlated with spectral response. 

With the use of modern CD instruments, it should be possible to de

tect CD active drugs at much lower concentrations. Perhaps trace concen

trations of drugs in blood and urine can be detected by CD within the 

next few years. Preconcentration efforts may be of value in this effort. 

Research in this vital area of clinical analysis has already begun. 



CD-Active 

Sample Submitted 

Sample Preparation 
(crushing, mixing, drying) 

Dissolve in 0.1 N HCl 

Obtain First CD Spectrum J 
CD-Inactive 

Alter pH of Solution Add Chiral Co-Solute 
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noisy (cyclic sugar, cholesteric 
liquid crystalline solute) 

CD-Active 

1. 

1. Extract to Remove UV
Absorbing Species 

2. Dilute Sample 

Obtain Second CD Spectrum CD-Inactive 

Use Other Methods of 
Identification 

Compare CD-Spectral Parameters 
With Those in the Data Base 

2. Compare CD Spectra for Possi
ble Matches with Those in the 

...._ __ __..A 

Data Base 

Figure 33. Identification Scheme for the Analysis 
of Drugs by CD Spectroscopy 
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~ 
" 

Identification Confirmed I No Drug Found l.Ji th CD 
Parameters of Unknown 

" 
Quantitate Sample by Solve CD Spectral 

E 11 i pt i cities of Parameters for 
Major Peaks Drug Mixtures 

Possible Solutions No Solution 

Additional Separa- 1 
~ tion Methods Identification by (GC, HPLC, Solvent 

Other Instrumental Extraction) 
Methods 

l 
I Detect Drug Mixture I 

l I Quantitate Drug Mixture I 
Figure 33. (Continued) 
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Concluding Remarks 

In reality, research has only begun to determine the applications 

of CD spectropolarimetry to the analysJs of drug components, whether in 

dispensary form or in biological fluids. Many more comprehensive re

search efforts need to be performed before an accurate assessment of the 

analytical capabilities of this technique can be made. 
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DEPENDENT VARIABLE: Y2 

Source 

Model 

Error 

Corrected Total 

Source 

Rep 
Dup(Rep) 

DRUG=MOR SOLV=ACID 

ANALYSIS OF VARIANCE PROCEDURE 

DF Sum of Squares Mean Square F Value 

9 1 .44400000 o. 16044444 99999,99 

0 

9 

DF 

9 
0 

0.00000000 0.00000000 

1.44400000 

Anova SS F Value PR > F 

1.44400000 
0.00000000 

Tests of Hypotheses Using the Anova MS for Dup(Rep) as an Error Term 

Source DF Anova SS F Value PR > F 

Rep 9 1 .44400000 

PR > F R-Square_ 

0.0000 1. 000000 

STD DEV 

0.00000000 

311 

c.v. 

0.0000 

Y2 Mean 

243. 16000000 

N 
00 



DEPENDENT VARIABLE: THETA245 

Source DF 

Model 9 

Error 0 

Corrected Total 9 

Source DF 

Rep 9 
Dup(Rep) 0 

DRUG=MOR SOLV=ACID 

ANALYSIS OF VARIANCE PROCEDURE 

Sum of Squares Mean Square F Value 

96.90000000 10.76666667 99999,99 

0.00000000 0.00000000 

96.90000000 

Anova SS F Value PR > F 

96,90000000 
0.00000000 

315 
20:23 WEDNESDAY, OCTOBER 13, 1982 

PR > F R-Square c.v. 

0.0000 I .000000 0.0000 

STD Dev Theta245 Mean 

0.00000000 383.10000000 

Tests of Hypotheses Using the Anova MS for Dup(Rep) as an Error Term 

Source DF Anova SS F Value PR> F 

Rep 9 96.90000000 

N 
l..O 



DEPENDENT VARIABLE: Y3 

Source DF 

Model 9 

Error 0 

Corrected Total 9 

Source DF 

Rep 9 
Dup(Rep) 0 

DRUG=MOR SOLV=ACID 

ANALYSIS OF VARIANCE PROCEDURE 

Sum of Squares Mean Square F Value 

2.80500000 0.31166Q67 99999.99 

0.00000000 0.00000000 

2.80500000 

Anova SS F Value PR > F 

2.80500000 
0.00000000 

312 
20:23 WEDNESDAY, OCTOBER 13, 1982 

PR > F R-Square c.v. 

0.0000 I. 000000 0.0000 

Std Dev VJ Mean 

0.00000000 284.00000000 

Tests of Hypotheses Using the Anova MS for Dup(Rep) as an Error Term 

Source DF Anova SS F Value PR > F 

Rep 9 2. 80500000 . . 

\JJ 
0 



DEPENDENT VARIABLE: THETA275 

Source DF 

Model 9 

Error 0 

Corrected Total 9 

Source Df 

Rep 9 
Dup(Rep) 0 

DRUG=MOR SOLV=ACID 

ANALYSIS OF VARIANCE PROCEDURE 

Sum OT Squares Mean Square F Value 

10.68400000 l . l 871 1111 99999.99 

0.00000000 0.00000000 

10.68400000 

Anova SS F Value PR > F 

10.68400000 
0.00000000 

316 
20:23 WEDNESDAY~ OCTOBER 13, 1982 

PR > F R-Square c.v. 

0.0000 1.000000 0.0000 

Std Dev Theta275 Mean 

0.00000000 -66.76000000 

Tests of Hypotheses Using the Anova MS for Dup(Rep) as an Error Term 

Source Df Anova SS F Value PR> F 

Rep 9 10.68400000 

w 



DEPENDENT VARIABLE: Y2 

Source 

Model 

Error 

Corrected Total 

Source 

Rep 
Dup(Rep) 

DRUG=NAL SOLV=ACID 

ANALYSIS OF VARIANCE PROCEDURE 

DF Sum of Squares Mean Square F Value 

4 0.32800000 0.08200000 99999,99 

0 

4 

DF 

4 
0 

0.00000000 0.00000000 

0.32800000 

Anova SS F Value PR > F 

0.32800000 
0.00000000 

401 
20:23 WEDNESDAY, OCTOBER 13, 1982 

PR > F R-Square c.v. 

0.0000 1.000000 0.0000 

Std Dev Y2 Mean 

0.00000000 244.52000000 

Tests of Hypotheses Using the Anova MS for Dup(Rep) as an Error Term 

Source DF Anova SS F Value PR > F 

Rep 4 0.32800000 

w 
N 



DRUG=NAL SOLV=ACID 

ANALYSIS OF VARIANCE PROCEDURE 

DEPENDENT VARIABLE: THETA245 

Source DF Sum of Squares Mean Square F Value 

Model 4 137.00000000 34.30000000 99999.99 

Error 0 0.00000000 0.00000000 

Corrected Total 4 137.20000000 

Source DF Anova SS F Va 1 ue PR > F 

Rep 4 137.20000000 
Dup(Rep) 0 0.00000000 

Tests of Hypotheses Using the Anova MS for Dup(Rep) as an Error Term 

Source OF Anova SS F Value PR > F 

Rep 4 137.20000000 

405 
20:23 WEDNESDAY, OCTOBER 13, 1982 

PR > F R-Square c.v. 

0.0000 l .000000 0.0000 

Std Dev Theta245 Mean 

0.00000000 364.00000000 

w 
w 



DRUG=NAL SOLV=ACID 

ANALYSIS OF VARIANCE PROCEDURE 

DEPENDENT VARIABLE: Y3 

Source DF Sum of Squares Mean Square F Value 

Model 4 0.20000000 0.05000000 99999.99 

Error 0 0.00000000 0.00000000 

Corrected Total 4 0.20000000 

Source DF ·Anova SS F Value PR > F 

Rep 4 0.20000000 
Dup(Rep) 0 0.00000000 

Tests of Hypotheses Using the Anova MS for Dup(Rep) as an Error Term 

Source DF Anova SS F Value PR > F 

Rep 4 0.20000000 

402 
20:23 WEDNESDAY, OCTOBER 13, 1982 

PR > F R-Square c.v. 

0.0000 1. 000000 0.0000 

Std Dev Y3 Mean 

0.00000000 284.90000000 

w 
~ 



I) 

DRUG=NAL SOLV=ACID 

ANALYSIS OF VARIANCE PROCEDURE 

DEPENDENT VARIABLE: THETA275 

Source DF Sum of Squares Mean Square F Value 

Model 4 21.58000000 5.39500000 99999.99 

Error 0 0.00000000 0.00000000 

Corrected Total 4 21 .58000000 

Source DF Anova SS F Value PR > F 

Rep 4 21 .58000000 
Dup(Rep) 0 0.00000000 

Tests of Hypotheses Using the Anova MS for Dup(Rep) as an Error Term 

Source DF Anova SS F Value PR > F 

Rep 4 21.58000000 

406 
20:23 WEDNESDAY, OCTOBER 13, 1982 

PR > F R-Square c.v. 

0.0000 l. 000000 0.0000 

Std Dev Theta275 Mean 

0.00000000 -59.50000000 

\JJ 
\11 



DEPENDENT VARIABLE: Y2 

Source DF 

Model 1 4 

Error 0 

Corrected Total 14 

Source DF 

Drug 1 
Rep(Drug} 13 
Dup (Drug,~Rep) 0 

SOLV=ACID 

ANALYSIS OF VARIANCE PROCEDURE 

Sum of Squares Mean Square F Value 

7.93733333 0.56695238 99999.99 

0.00000000 0.00000000 

7.93733333 

Anova SS F Value PR > F 

6. 16533333 
1. 77200000 
0.00000000 

711 
20:23 WEDNESDAY, OCTOBER 13, 1982 

PR > F R-Square c.v. 

0.0000 1. 000000 0.0000 

Std Dev Y2 Mean 

0.00000000 243. 61333333 

Tests of Hypotheses Using the Anova MS for Rep(Drug) as an Error Term 

Source DF Anova SS. F Value PR > F 

Drug 6. 16533333 45.23 0.0001 

w 
(1'\ 



SOLV=ACID 

ANALYSIS OF VARIANCE PROCEDURE 

717 
20:23 WEDNESDAY, OCTOBER 13, 1982 

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE Y2 

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT 

ALPHA LEVEL = .05 

GROUPING 

A 

B 

DF=O MS=O 

MEAN 

244.520000 

243.160000 

N DRUG 

5 NAL 

10 MOR 

VJ 
"--1 



DEPENDENT VARIABLE: THETA245 

Source OF 

Model 14 

Error 0 

Corrected Total 14 

Source OF 

Drug I 
Rep(Drug) 13 
Dup (Drug,·~Rep) 0 

SOLV=ACID 

ANALYSIS OF VARIANCE PROCEDURE 

Sum of Squares Mean Square F Value 

1399.73333333 99.98095238 99999.99 

0.00000000 0.00000000 

1399.73333333 

Anova SS F Value PR > F 

1165.63333333 
234.10000000 

0.00000000 

715 
20:23 WEDNESDAY, OCTOBER 13, 1982 

PR > F R-Square c.v. 

0.0000 1 .000000 0.0000 

Std Dev Theta245 Mean 

0.00000000 376.86666667 

Tests of Hypotheses Using the Anova MS for Rep(Drug) as an Error Term 

Source OF Anova SS F Value PR > F 

Drug 1165. 63333333 64.73 0.0001 

w 
00 



DEPENDENT VARIABLE: Y3 

Source· 

Model 

Error 

Corrected Total 

Source 

Drug 
Rep(Drug) 
Dup (Drug,·~Rep) 

DF 

14 

0 

14 

DF 

1 
13 
0 

SOLV=ACID 

ANALYSIS OF VARIANCE PROCEDURE 

Sum of Squares 

4.41333333 

0.00000000 

4. 4'1333333 

Anova SS 

l .40833333 
3.00500000 
0.00000000 

Mean Square F Value 

0.31523810 99999.99 

0.00000000 

F Value PR > F 

712 
20:23 WEDNESDAY, OCTOBER 13, 1982 

PR > F R-Square c.v. 
0.0000 1 .000000 0.0000 

Std Dev Y3 Mean 

0.00000000 284.46666667 

Tests of Hypotheses Using the Anova MS for Rep(Drug) as an Error Term 

Source DF Anova SS F Value PR > F 

·Drug l . 40833333 6.09 0.0282 

w 
\.0 



SOLV=ACID 

ANALYSIS OF VARIANCE PROCEDURE 

718 
20:23 WEDNESDAY, OCTOBER 13, 1982 

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE Y3 

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT 

ALPHA LEVEL=.05 DF=O MS=O 

GROUPING MEAN N DRUG 

A 284.000000 5 NAL 

B 284.250000 l 0 MOR 

.i::-
0 



DEPENDENT VARIABLE: THETA275 

Source DF 

Model 14 

Error 0 

Corrected Total 14 

Source DF 

Drug 1 
Rep(Drug) 13 
Dup (Drug;•,Rep) 0 

SOLV=ACID 

ANALYSIS OF VARIANCE PROCEDURE 

Sum of Squares Mean Square F Value 

207.95600000 14.85400000 99999,99 

0.00000000 0.00000000 

207.95600000 

Anova SS F value PR > F 

175.69200000 
32.26400000 

0.00000000 

716 
20:23 WEDNESDAY, OCTOBER 13, 1982 

PR > F R-Square c.v. 

0.0000 I. 000000 0.0000 

Std Dev THETA275 Mean 

0.00000000 -64. 3400"0000 

Tests of Hypotheses Using the Anova MS for Rep(Drug) as an Error Term 

Source DF Anova SS F Value PR > F 

Drug 175.69200000 70.79 0.0001 

.i::-



Rep Drug N Y2 

l MOR l 243.800000 
2 MOR l 243.500000 
3 MOR l 243.000000 
4 MOR l 243.700000 
5 MOR l 243. 100000 
6 MOR l 243.300000 
7 MOR l 243.000000 
8 MOR l 242.700000 
9 MOR l 242.700000 
10 MOR l 242.800000 
l NAL l 244.300000 
2 NAL l 244.300000 
3 NAL l 244.500000 
4 NAL l 244.500000 
5 NAL l 245.000000 

723 
20:23 WEDNESDAY, OCTOBER 13, 1982 

SOLV=ACID 

ANALYSIS OF VARIANCE PROCEDURE 

MEANS 

Y3 Y5 Y6 THETA245 THETA275 

283.800000 228.700000 262.500000 382.000000 -67.7000000 
283.500000 229.000000 262.300000 376.000000 -65.8000000 
284.100000 228.800000 262.500000 387.000000 -68.5000000 
285.000000 228.800000 262.700000 386.000000 -66.3000000 
284.300000 229.200000 263.000000 380.000000 -66.9000000 
285.000000 229.200000 263.200000 384.000000 -66.6000000 
283.800000 228.500000 263.000000 384.000000 -68.3000000 
284.000000 228.500000 263.000000 382.000000 -65.2000000 
284.000000 228.300000 263.000000 386.000000 -66.0000000 
285.000000 228.400000 262.700000 384.000000 -66.3000000 
2 8 5 . 000000' 230.000000 265.000000 357.000000 -56.2000000 
285.000000 230.000000 265.000000 364.000000 -59.0000000 
285.000000 230.000000 265.000000 361.000000 -59.9000000 
284.500000 230.000000 265.000000 372 .000000 -59.7000000 
285.000000 230.000000 265.000000 368.000000 -62.7000000 

.i::
N 
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