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SOME GENERALIZATIONS OF KUMMER'S THEOREM
(HIIBERT'S THEOREM 90)

CHAPTER I
INTRODUCTION

In the study of flelds, two subjects for study are
the relationships between a fleld and its extenslons and the
relatlionships between a field and its subfields. One topie
for investigation which is common to both is the group of
automorphisms of some field E which leave fixed the elements
of P, a subfleld of E, If a field F is extended to a fileld E,
one conslders the group G of all automorphisms of E which
leave fixed the elements of F. One may also start with a
field E and the group,gl of all automorphisms of E, then con-
sider the subfleld F of all elements of E left fixed by a
subgroup G of /Q .

In this paper "group" will always mean "finite group'.

The following definition is from [1] page 92.

Definition 1.1: G is the group of E/F (read E over

F) means that G is the group of all &utomorphisms of the
field E which leave fixed the elements of F, a subfield of E.
Notation: If G is the group of E/F, b€E, b £ 0, and
0eG, then, as in [1], by definition '
17 = per(p-l).
The following definition is from [1], page 128.

Definition 1,2: ILet G be the group of E/F,
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G ={a‘1,...,q’n}, and a EE, then the norm of a, N(a), is
defined by N(a) ='01(a)'--o;(a).

The following question arlses. Which elements x

of E satisfy N(x) = 1, the multiplicative identity of E?

In the followlng theorem, which 1s sometimes called
Hilbert's Theorem 90, Kummer answered this question for the
case in which G is eyclic [1)], page 129.

Theorem 1.1 (Kummer): If the group G of E/F is

cyclic with generator O, then the elements a in E with norm
1 are precisely those which can be wrltten in the form
a = bI-C, I the identity of G.

Kummer 's Theorem discloses a great deal about the
relationship between the structures of E and F., In fact,
Kummer 's Theorem 1s useful in proving the following struc-
ture theorem from [1], page 135.

Theorem 1.2: Let F be a field containing a primitive

n-th root of unity, then E is a fleld extenslon of F such
that the group G of E/F 1s cyclic of order n if and only if
E is the extension of F by means of a single adjunction.

On page 130 of [l] it 1s stated that 1t 1ls extremely
useful to know the set of elements a for which N(a) = 1
and that though many attempts have been made to generalize
Kummer's Theorem to arbitrary groups, no answer to the
problem has been provided.

The literature has been searched for generallzations

of Kummer's Theorem, and there seems to be nothing on the
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subject. As far as the author knows, all the concepts and
results in this paper are new with the exception of the
definitions, lemmas, and theorems which have references cited.

This paper wlll be concerned wilth a characterlization
of the elements of E of norm 1 for the case in which G 1s
commutative, and with other generalizations.

In Chapter II, with G arbitrary, there 1ls a character-
ization of the elements a of E for which a = bI'o: for some
bgE and CEG, and a characterization of the elements a of E
with norm 1, both in terms 6f subgroups of G.

In Chapter III, with G solvable, a necessary condition
for a €E to be of norm 1 will be proved. Since commutative
groups are solvable, this result will be applicable to com-
mutative groups. The concept of a pseudo-decomposable group
wlll be introduced. Then, the necessary condltion proven for
solvable groups will be shown to be sufficlent for some cases
wilth G pseudo-decomposable. In particular, the conditlon 1s
both necessary and sufficlent with G commutative. It 1s then
shown that Kummer's Theorem 1s a speclal case of Theorems 3.1
and 3.2,

In Chapter IV the concept of a factorable group will
be introduced. Wibh G factorable a necessary condltion for
a tE to be of norm 1 will be proved. ' This necessary con-
dition will"bé shown to be sufficlent for some cases with
G factorable. Then, the necessary condition will be

strengthened.



CHAPTER II
THE GROUP G OF E/F ARBITRARY .

Kummer's Theorem gives a necessary and sufficient con-
dition for a¢E to be of norm 1 for the case in which G is
eycliec. It is proved that N(a)=1 if and only 1if a=bI-% for
some b E and ¢ a generator of G. Theorem 2.1, a generall-
zation of Kummer's Theorem, deals with an arbitrary group G.
A necessary and sufficient condition 1is given to guarantee
that N(a)=1. It happens that a=b1"% for some b E€E and TEG

for special casés with G arbitrary.

Definition 2.1: If G is the group of E/F and H is a
subgroup of G, H = -[I, o’l,..., O’k} s then |
NH(x)zxo’l(x)---o’k(x), for X €E,
Lemma 2.1: If H 1s a subgroup of G and x,y €E, then
Ny(xy) = Ny(x) Ny(y).
Proof: Ny(xy)=xy a7(xy)*** I (xy)
=xy 07(x) o3(y) .- a (x) o (¥)
= [x oy (x) - O’k(X)] [yo’l(y) -wc’k(y))
=Ny (x) Ny(y).
Lemma 2.2: If H is a subgroup of G, 9€H, and x €E,

then Ny [O'(x)]:NH(x).

Proof: Since O0€H, HF =H. Then,
W [o(x)]z (0 o))+ -+ ¢ [o(x)]
= x07 (x)+ e+ 7. (x)
=Ny (x).
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Lemma 2.3: If H is a subgroup of G and x €E, x#0,

then NH[ )] [NH(X] -1
Proof: Ny(x~ )=~ X Gl(x_l)"'O'k(x-l)

1 [ey] e fogx)] -
= [x gy(x) .- o’k(x)} -1

= [NH(X)]'l .

The following lemma is known: as the Fundamental

Theorem of Galols Theory, and appears as Corollary 2 on
page 92 of [1] |

Lemma 2.4: If G 1s the group of E/F, then there is a
one-to-one correspondence between the subgroups of G and the
subfields of E which contain F; S is a subgroup of @ if and
only 1f there exists a subfleld F' of E such that FCF' CE
and S is the group of E/F'.

Theorem 2.1: Let G be the group of E/F. If a€E,

then N(a) = 1°if and only if there exists a subgroup H of G
such that NH(a) = 1. Also, there exist b €E and T €G such
that a = br~% 1f and only if there exists a eyclic subgroup
H of @G, generated by @ , such that NH(a) = 1.

Proof: 1If N(a) = 1, then G 1s a subgroup of G such
that Ny(a) = N(a) =

Suppose that there is a subgroup H = {I,O’ ,...,G'k.g of
G such that N (a) 1. Let Jq,...,J denote the left cosets
of H in G; then Jl,...,Jm 1s a partitlon of G. For every

1, 1€1€m, there is a‘t‘iGG such that

7y = {eme .ol



Now,

1= “ci(l) :’ti[NH(a)] = ‘t’i(a)-‘t‘iﬂ'l(a)' .o ‘t’io'k(a) , and
m
N(a) = Ijlvci[NH(a)} = 1.

Suppose - that there exists b€E and € G such that
as=s bI'°Z Let H be the cyclic subgroup of G generated by
v, then T &€H, and by the preceding lemmas,

Ny(a) = Ny[ot” <"]z1\1H]_'*m'(1:>'1)] = Ny(b) -[NH(b)] -1,

Suppose that there exlsts a cyelle subgroup H of G,
with generator ¢, such that NH(a) = 1. To H corresponds a
subfleld F' of E such that FCF'CE and H 1s the group of
E/F'. By Kummer's Theorem, Nﬁ(a) = 1 implies that there
exists b €E such that a = b1 Y,

Although Theorem 2.1 characterizes the elements of E of
norm 1, these characterizations may only be in terms of sub-
groups of G. It would be preferable to characterize the ele-
ments a €E of hérm 1 in terms of elemehts ¢f E so that ah
explicit relation.sgtisfied by a could be obtalned.

There appears to be a possibllity that a characteri-
zation of the elements of norm 1 in terms of elements of E
has been achleved. That 1s, 1f for each a€E of norm 1 there
1s a cyeclic subgroup H of G, generated by &, such that
NH(a) = 1, then all the elements of E of norm 1 would be of
the form bI'q’, for some b€E and O E€G., The following example
shows that this 1s not the case.

Let R be the rational numbers, and R(Y2,{3) be the
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field of rational numbers extended by ﬁ' and ﬁ, that 1s, the
set of real numbers of the form
a+bVZ +cf3 +adf6, a,b,c,d rational numbers. The group of
R(YZ, 3)/R is {1,01,0'2,0'3} where the v, are given by:
I 06 0 06 |

Eo|E F B -2

B3 B -B -1
The element 1 + V2 of R(VZ,{3) is of norm 1, but for no
eyclic subgroup H of G 1s Ny(1 + ¥2) = 1.




CHAPTER III
THE GROUP G OF E/F SOLVABLE

In this chapter the group G of E/F will be assumed
to be solvable. The reason for the assumption of solv-
ability will be fully understood following Lemma 3.1. With
G solvable the norm N can be expressed in terms of N, and
Né » norms with respect to cyclic groups H1 and H2, respec-
tively. After Lemma 3.1, it will be seen that with G
solvable, N(x) = Nl[Nz(x)-J for x €E. If a€E 1s of norm 1,
then N, [Nz(a)] = 1, and by Theorem 2.1, Ny(a) = bI~"1 for
some b1€iE and 01 a generator of Hl‘ The problem is then
to "remove" N, and obtain an expression for a. Since bI-qi_L
need not be 1, Theorem 2.1 does not apply. Followling
Theorem 3.1, it will be seen that a2 = b1 “lby 2, b, €E,
where ] is a generator of Hi’ and k2 is the order of H2.

Definition 3.1: A group G 1s solvable if and only

if there exlists a sequence of subgroups of G
G = G13G23 °0 DG, O Gn+1 = I such that Gi+1 is normal in
G,, and Gi/G1+1 is cyelic of order h;, 1£€1<n.

A solvable group G 1is sometimes defined as above
with the exception that Gi/G1+1 need only be commutative.
Also, a solvable group G 1s sometimes defined such that the
hi are prime. ‘As stated on page 15 of [2], if G is finlte,
then these definitlons are equivalent. It then follows
that Definition 3.1 1s equivalent to the usual definitions

8
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of solvability. After Theorem 3.1, it will be seen that it
is advantageous not to requlre that the h1 be prime.
If the group G of E/F is solvable with the sequence

of subgroups G = G1)G23- . )GnDG I, then there is

n+l =
a sequence of subflelds of E,
E = FlCF2C '--CF‘nCFn",1 = E, such that F1 i1s the sub-
field of E with the property that G, is the group ofvE/Fi.
Let Q; denote the group of Fi+1/F15 Q; consists of the
restrictlons of the elements of Gi to Fi+1' Also, as
proved on page 30 of [3], the group Q, of Fi-l-l/Fi is '1so-
morphic %o G1/61+1’ and, hence, is cyelic.

The following result is obtained from a more general
result appearing on page 66 of [3]

Let G be the group of E/F and Cr1 a normal subgroup
of G, then there 1is a subfield Fl such that FCFlCE
and G, 1s the group of E/Fl. Also, the group Q of Fl/F
is isomorphic to G/G;. Then, for a EE,
N(a) = NE/F(a) = NFl/F[NE/Fl(a)]’ where

NE/Fl(x) = TTo (x) for x€E, and

7; €Gy

Np_ /p(¥) = {Z‘G’zrii(y) for yeF,.

The following lemma 1s a generallzatlon of the above.
Lemma 3,1: If the group G of E/F 1is solvable with
the sequence of suvbgroups G = Glc G2C o 'CGnC Gn+1 = I,
and Fi 1s the subfield of E corresponding to Gi’ then
for a EE,
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Ma) = Ng/p(a) = N, /m) [NF3/F2{’ ' NFn/Fn--l(NE/Fn(a))}:] '

Notation: In the remaining work N will be
—=== Fi41/F4
denoted by N, , 1€1€n., Also, where there is no ambi-

guity, the parentheses, braces, and brackets will be
omitted.

Proof: Iet a €E; then NE/Fn_l(a)‘:Nn-l [Nn(a)] .
Suppose that for i, 1€1i€$n-1,

NE/F _1(a) =Ny -uNn(a)]. Then,

N (a) = N [N (a]
= Nn-i-l[Nn-i{"' Nn(a)}:]. The conclusion

follows by induction.

In the following two lemmas G, E, and F will again
be arbltrary. Lemma 3.2 is from page 128 of [l]

Lemma 3.2: If G is the group of E/F and a &€E,
then N(a) € 7.

In particular, with G solvable

NE/Fi(a) = Ni[Ni+l"'Nr1(a)] EF,.

The followlng lemma 1s obtalned by applylng a more
general result from page 66 of [3] to the fact that N(a) € F.
Lemma 3.3: If the group G of E/F is of order k

and a ¢, then N[N(a)] = [N(a)]¥.
The followlng theorem givés a necessary condltion

for a €E to be of norm 1 for the case in which G is solvable.
Theorem 3.1: Let the group G of E/F be solvable

with the sequence of subgroups
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G =G DG;D++3G,2G, . = I, Gy,q normal in Gy, 1Sisn,
Let Fi be the subfleld of E corresponding to Gi' If a €E

is of norm 1, then

ag/hl = T?Tbi' s Where nbl V EF 41y 1L4men, @ 1s a
generator of Q;, the group of Fi-l-l/Fi’ hy is the order of
Qi’ and g = h1 hy - "hn 1s the order of G.

Proof: The proof will be an induction on n.

For the case in whichn =1, g = hl’ and the ex-
ponent of a 1s 1. Also, Ql is G so that 0"1 is a gener-
ator of G. Hence, the theorem reduces to Kummer's Theorem.

Suppose that for n = k-1, 1<k-1,

NlonNk_l(a) = 1 implies that

hyeeeby 1/hy o T’Tb , where T’Tbi 1€F 1, 1€m&k-1,
i=1 1=1

by the induction hypothesils

k-1
Nk(a) By eeely /by = ]’Pbi"v , where T’Ybi o’ 1eFp4s
i=1 i=1
l1€smsk-1, let ze].i‘k.,_1 be such that
h h, /h kel 1-07
gbreee Iy qbye/hy _ g TTbi 1 . Then,
i=1
k-1
N, ees h -0
h /h]
=N (z) N, [Nk(a hy_1/Mm

=N(z) N(a) By /My gy



12
lemmas 3.2 and 3.3. This implies that N.(z) = 1, and since
the group Q, of Fk+l/Fk is cyclic, there is a b EF Y41 such

that z = bﬁ -0 s o’k a generator of Q’k Hence,

k k-1
2l * P2/l oy % rrbi

1=1 1 EFkCFkﬂ, and
=07,
= bl:i kﬁFk-l-ls so that ﬂbl -0 €F,,;. The conclusion

=1
follows by induction.

It should be noted that if n 1, then the exponent
of a is hzhn Since h1 does not appear, it is advan-
tageous to have hl as large as possible. Hence, the re-
quirement that the hi be prime was deleted.

If @ is eyelic, then G has a sequence of subgroups
G = 61362 = I, with G2 normal in Gl. Then, n = 1, and
Theorem 3.1 reduces to Kummer's Theorem.

Corollary 3.1: If m 1s the least positive integer
for which N(a) = 1 implies that a® = ﬂbi' , thenm
divides g/h,. | 1=l

Proof: Let g/h:L = h, and let r be the integer
such that h = sm+ r, 0€r<m, If N(a) = 1, then

= 1’l‘b 9 ang & Ec . Also,
Bl T’l‘(cis)l“q. Hence, af = aP~&M ='|£Nbi 13)1-0'3_
i=1 i=1

Since r<m, and r satisfles the same condition as m, then
r = 0. The conclusion follows,

The following corollary ls a partlal converse to
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Theorem 3.1.

Corollary 3.2: If a €E is such that ag/hl ﬂbi- i,
then Bl(a)]g/hl =1 and N[N(a)] =

Proof: Qi consists of the distinct restrictions to

Fy47 Of the elements of Gy. Since by EF, 44, o'i(bi) may be

considered as an element of G applied to an element of E.

The fact that N(bI ai) 1 then follows by appiying Lemmas

2.1, 2.2, and 2.3 with H = G. Then,
n

[N(a)]g/hl = N(ag/hl) = N[-rTbi' ] ‘l’l‘N(bI 1y =1,
i=1

Also, if zgP, then N(z) = 28 ., Since N(a) EF,
nn(a)] =[n(2)]® = [w(a) &/M1]P1 = b1 =g,
The following indicates the need for restrictions on

the hi in order to guarantee the converse of Theorem 3.1.
Let the group @ of E/F be such that G, 1s a normal
eyclic subgroup of G of order h2 for which G/G2 is cyelice of

order hl' Then, G 1s solvable with the sequence of sub-

groups @G = Glb G23G3 = I, Corresponding to this seqﬁenee
of groups 1s the sequence of fields F = Flc FECF3 =

If a€E 1s of norm 1, then, by Theorem 3.1,
h o, v

2 = b:{ 1 b2 % , where bg 1gF,, 0y 2 seni:atoro'of Qs
. the group of F,.,/F;. Suppose that a2 =b:1[ 1 bg' 2,

-0
b{ 1¢F,, then

Ny(a) P2z wy(aP2) = Ny(bI1) (b1 "%2)

Ng(a) =c b% 01 s wWhere ¢ €F2 and ch2 =1. Then,
N(a) = Nl[Ng(a)] = Nl(bl <lel) Ny(e) = Ny(e). If ceF, then

D1, In this case, N(a) = ¢P1. 1f h, does not

Hence,

= (b{“l)hE.

Nl(c) =c
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divide h then ¢ need not be 1. For this reason,

1
restrictions will be placed on the hi'

Since commutative groups are solvable, page 14 of E?],
Theorem 3.1 will apply to the case in which G is commutative.
Commutative groups satisfy more properties than solvability.
With some of these properties, soon to be enumerated, it will
be shown that not only is the converse o? Theorem 3,1 true,
but also, the exponent of a in Theorem 3.1 can be reduced
to a lowest value,

The following lemmas are from [2], pages 12 and 13.
In these lemmas and in all the following work, the notion
of a direct product 1s that which some authors refer to as
an internal direct product. Here, products of elements of
the group are 1nvolved.l In what 1s termed an external
direct product, one deals with m-~-tuples of elements of
the group. _

Lemma 3.4: Every commutative group G is the direc?t

product G]¥G2X-°’XGnlof subgroups G 1€¢ism, such that each

s
G1 is an indecomposable cyclic grou; of prime power order
pil, ay>o0.

The collection of orders { plai,.p;‘?, ...,p;'m} con-
stitute the elementary divisors of G. They are uniquely
determined by G, 1.e. independent of the cholce or arrange-
ment of the G,. The prime p1 need not be disﬁinct as seen

i
in the followling lemma,

B ese X
Lemma 3.5: A direct product HIX Hr of cyeclic

groups Hi whose orders hi are powers of distinet primes
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1s cyelie. Conversely, any ceyclic group 1s so expres-
sible. |
As previously mentioned, the reduction of the
exponent of a depends on having the hilighest possible

factor appear with N The following lemma guarantees

1°
a decomposition of a commutative group G in such a way
that the highest possible factor wlll appear with Nl'
Also, with thls decomposition the converse of Theorem 3.1
will be shown to be true. This lemms appears on page 12
of [2] as Theorem 4.5. It should be noted that the ar-
rangement of the H, in Lemma 3.6 1s the reverse of the

1

arrangement of the Hi

Lemma 3.6: Every commutative group G is the direct

as they appear in Theorem 4.5,

product Hlx---XHhof cyclic subgroups H whose orders k

1 i
have the property that kiﬂdivides ki, for all i, l€¢i<n-1,
The k are sometimes called the invariants of G.

1
The following 1s an outline of the proof of

Theorem 4.5 in [2] It is reproduced here in order to
1l1lustrate the fact that there 1s novfactorization of G
in terms of c¢yelic subgroups, J&g'--XJS, such that the

order of J1 exceeds kl.

Start with the decomposition as in Lemma 3.4, For

each pi dividing the order of G, let p?i be the highest

power of pi which occurs among the elementary dlvisors of

G. Then, for each i, some one of the groups G has order

a =TI 3.5
pii s, say, the group Gmi. Set Hl 1 Gmi. By Lemma 3,5,
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H1 1s e¢yelic of order 7;Tp3?1 . Apply the same constrqg-
tion to the remaining Gnﬁ’ obtalining a cyclic factor H2 of
order ko, with kylk,. Contlnuing in this way, the decomposi-
tion of Lemma 3.6 is obtained. It then follows that k1 is
the least common multiple of the elementary divisors. Also,
k2 1s the least common multiple of the remaining elementary
divisors after the highest power of each prime 1s removed,
and so on. Hence, Hl has the highest possible order.

Let @ be a commutative group and HIX"'Xfﬂlthe
decomposition guaranteed by Lemma 3.6. This decomposition
glves rise to the followling sequence of subgroups,

G = HlX < -XHnDH2X~ *-XHnDH3X . 'XHnb . NDHnDHnd-l =1I
such that Hygq X --an is normal in Hix ---XHn and
(Hyx «+-xH )/(H

i, 1 €i1€n.

oL R -an) is eyclic of order k,, for all

Corresponding to this sequence of subgroups of G 1s
the following sequence of subfields of E,
F = F1<F2C oo 'CFnCFnﬂ = E, where the group Qi of
Fi4y /F; is isomorphic o (H,X «+«XH )/(H X --* XHn).
From the preceding work, it 1s apparsnt that
Theorem 3.1 will apply.

In Theorem 3,1 factors b%-oi

appear, where 01
is a generator of Qi’ The following lemma shows that
in using the decomposition of a commutative group, the
01 appearing in Theorem 3.1 are specific elements in G,

namely, generators of the Hi‘
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As a matter of fact, there are non-commutative groups
having essentlally this same property. These groups will be
1llustrated in the following definlition and the example
preceding Lemma 3.7. |

Definitlon 3.2: A solvable group G 1s sald to be

pseudo-decomposable if and only 1f there are cyclic sub-
groups Hi’ 1<is€n, of G such that every 9 €G is uniquely

expressible as a product 0'1'"0;‘1’ with 0‘1 EHi. This will

be denoted by G = H Hy~:+H . Further, for all i, 1<i<n,

1

H ‘e e e 9 - .
141 Hn 1s a normal subgroup of Hi Hn’ where Hn+l I

Hence, a pseudo-decomposable group G gives rise to

the following sequence of subgroups,

(1) ¢ =H +.--HD>H .++H> +++DH DH = I, where each
n n n n

1 2 +1
subgroup is normal in the preceding subgroup. Corresponding

to this sequence of subgroups 1s the sequence of subfields

of E,

(2) F =F,C -++CF <F_ E.

+1 7
Non-commutative pseudo-decomposable groups exist;
the following 1is an example.
Let H ={I,0",0'2,q'3,'t',‘t0‘,’60‘2,1:0'3}, H, = {I,'t:}, and
H2 = {I,O’,Vz,0'3}. Hence, H = H1 H2. The m;lxed products
are glven by the rulestq¢ = o-3fz, 1;02 = ozz, and 1:03 =0’7T.

These rules show that H i1s not commutative. But, H2 is a
normal subgroup of H, and so H glves rise to the sequence
of subgroups H.)H23 I, each subgroup normal in the pre-

ceding subgroup.
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Note: There is no loss in generality in assuming that

J#1

t sae0 o o @ -
assumption that HJ Hs-le+l Hn, s ,{ Js 1s a normal sub

H, oo Hrl is a normal subgroup of HJ- .-Hn, as opposed to the

up of H «+«H .,
group 3 n
If cos .
H;] Hs-le-l-l

then Hs HJ “os HS-lHS'l'l. o an HJ

if 1t can be shown that there are as many elements in

--Hn is a normal subgroup of H -o-Hn,

J
...Hn. Equality will be proved

HH.++H _H +«++H as in He+.+H . This is equivalent to the
s J s-1 s+l n J n

showing that the representations of the elements of
H H i 'H H « o9 .
s 3 S-1 841 Hn are unique. Suppose that

/ / /
O’Sq’co.alé_l %_"ll.oa’n‘:% Oj.n.%_l 054'10..0-;1 L] Where
’
o3 > O3 eHi' Then,
-l ’- Set o '. / ! (¥ XJ ’ _l
s 05‘(03 Og-10%41 0y bj w03 10547000, )
Since H,...H H .» ..Hn is a subgroup, the right side of the

3 s-1"g+1

t i L Y ) e @
equality 1is in HJ Hs-le-l-l

this contradicts the uniqueness of the representations in G,

. -1. /
Hn. But,o’s ofseHs, so that

unless o-;l-o-s"z I. In this case, q-;' = 03, and
’ / / 4 . .
T+ ++0571 Og41°*0n =05-+2 051 Og4q° ¢ O Hence,

/- /7 /- ! . .
07 = 03 00000y = 05y O34y S Ogey 2002 20 O =@ -

The conclusion follows by rearranging and renumbering the Hi'

Lemma 3.7: If G 1s pseudo-decomposable, giving rise, to
the sequences (1) and (2), then the group Q,i of Fi+l/F:L is

Hi’ 1 €1 €n.
Proof: It is known that Qi’ the group of Fi+l/Fi’ is

— e e . O

the restriction of Gi I-Ii Hn to F14-1 The elements of

Fi+1 are lnvarlant under the elements of Gi+l = Hi"'l' -'Hn.

Let X£F1+1 and U‘sHiuoHn; then 0‘=’tl 't1+1°"‘l’»n ’



19
'rj E,HJ, 1 £j<n, and

T(x) = Ty %) = [Tt )] = .

Hence, to each¥U &Q 4 there corresponds a ¢ €Hi. Con-
versely, to each 't:iEHi, there corresponds a v’cQ, Sup-

pose for 7 i,'c‘ie.H » T (x) =7 (x), for all x&€F, _. Then,

141
’Vi fi(x) = x, for all chi+1 , and so,
1;;11-' 4y SHpp e H Bu’c,t;l T, eH,; hence,’tgl t; = I,
and ‘ci = T,’i. Thus, the distinect restrictions of
Gri = Hio ”Hn to Fi+1 are precisely the elements of Hi'

The following Iemma 3.8 will not be used, although
a portion of the proof’ will be used in the proof of Lemma 3.9.
Lemma 3.8 could well be called a theorem since it of
interest 1n its own right. 1In this paper 1t only serves
as a step toward the proof of a partlal converse of
Theorem 3.1; hence, it willl be called a lemma.

Lemma 3.8: If %, 4, and m are positive integers
such that t¢ = 1(mod m) and d|m, then
dltd'l + 6924 oot + 1,

Proof: If td = 1(mod m) and d|m, then
td = 1(mod d). Hence, dl(t-l)(td'l+ £9-24 .o+ + 1),
Let 4 = p}lcl...p Vv, where the p1 are distinet primes. If
(p,,t-1) =1, then pxi‘td -l 4 £d-24 +. 4t 4+ 1, since
X l(6-1)(690" 14 e oo+ 6 + 1),

Suppose that (pi,t-l) % 1; then pi\(t—l). Hence,
"t =1+ SP,» for some integer s. Then,
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1 =1
% =1 + (Sgi)
t2 =14 2(sp,) + (sp,)?

td—l =1+ '(d_l)(spi)‘{p e s 0 +(Spi)d-l.
The coefficient of (sp

s (5
is .
ken-1 \n-1
b+l b b
Using the identity = + s rewritten as

(1) =)

1)n-1 tn t0-14 . oot 4+ 1

o
[J I
? -~
(]
’\
i ~
[
P
" t
’ ~ e ~ kY Q
(o} 11 |
<+ |
o
> 3 3
Mg, 5 #
Il—' L
N CE |
~
S + Qs
{ [ i
1
I l—'___x
b~y Q. S
" ]
————
fa ~
o
I
/——\
] 1
=
\—/

Hence, the n-th term of td-l4..c4t + 1 expressed

d
as a polynomial in (spi) is ( )(spi)n‘l. Let the integer.
d-1 n
r =( . Then, then n-th term may be written as
n

-1
(dr)/n (spi)n"l, with (dr)/n integral.
If (pi,n) = 1, then p’{i

(dr)/n (spi)n‘l. If
(pi,n) %1, thenn= pf;g, where pikg.

To show that m £n-1, suppose to the contrary that
m >n-1. Then, m2n. Since pi>1; p?)m. Hence, p?)m >n,
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a contradiction. Thus, m£n-1, and
(dr)/n (sp 1) n-1 = (gr) /g Sn-]pr;-m-l, where p?‘m'l is
integral. Since pi* g, p’i‘1|(dr)/g sn‘]p?'m'_l. Hence, p?iij,
1€1€w, divides each term of t9-14.++ 4+t + 1 expressed
as a polynomial in (sp i). The conclusion follows,

The following lemma will be the key step in the proof
of the converse of Theorem 3.1 for the case in which G is
commutative. This lemma wlll apply to certain other cases
with G solvable but not commutative. According to
Theorem 2.1, if H 1s a subgroup of G and NH(a) = 1, then
N(a) = 1. If H is a Sylow subgroup of G, then H is of prime
order ps. It is known that if H is a group of prime power
order ps, then H is solvable with a sequence of subgroups
H= HlDHE_) . --DHSDHS

= I such that Hi/H is cyeclic

+1 i+l
of prime order p, 1<1<g, Hence, if a €£€E 1s of norm 1 such
that NH(a) = 1 where H is a Sylow subgroup, then the fol-

lowing lemma will apply. It will also apply to groups G of

prime power order.

Lemma 3.9: Let the group G of E/F be solvable with
th o] =GO DGDOG = I, each
e sequence of subgroups G G1 ﬁ') N4l s

ot ®

subgroup normal in the preceding subgroup. ILet F1 denote
the subfleld corresponding to Gi' Let Q’i’ the group of

<1<
Fi-l-l/Fi’ be of order hi’ 1<€1<n, such that h . If

"
:H'l‘ i
¢ is a h1+1'th root of 1 in Fi-'-l’ then Ni(c) = 1.

Proof: If ¢ =1, then Ni(c) = 1. Suppose that
c 1. Let c‘i be a generator of Qi’ and suppose that ¢ is
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a primitive m-th root of 1. Then, mlhi+1. Let a’i(c) = x3

then, x™ = c'i(cm) = o‘i(l) = 1. Hence, x is an m-th root
of 1, and gy(c) = c% Suppose that (t,m) = s £ 1; then,
there are positive integers u and v such that um = tv,
with v<m. Then, O‘j_(cv) =celV=eMU =1, and so cV= 1.
This contradicts the assumption that ¢ is a primitive m-th

root of 1. Hence, (t,m) = 1. Furthermore,

o
a—?(c) = ot ,...,o-i(c) = ct'j,..., andavg_‘i(c) =I(c) = c.

Iet d be the least positive integer for which

d
et =¢; then t9 = 1(mod m).

If t =1, then oj(c) = c and c£F,. Since mlh

i° i1+1

h
and hy.lhy, Ni(c) =cl1l=1,

Suppose that t £ 1; then t belongs to the exponent

k

d modulo m. If t° = 1(mod m), then d\k. Hence, d\hi'

- .b b
i1~ Pa s

distinet primes; then ay > bi’ 1£i<£s, Since d\hi,

s, where the p, are

1"‘p J

let hi=pi‘l...p:‘S, and h

d =P}1{1-..pgs, Oéxiéai, 1€1<s, Since m\h

m = p'::{

141’
l...pYs, 0%y ,£by, 141 s, Now,

2 d-1
N, (e) ':[c:-ct-cta--ct ]hi/d

S
24 atd-1ITV 2y -x
=[cl+t+t +or okt ]mp 17%3
Since t9-1 = 0(mod m), pBJ’J‘(t-l)(td-l-c-.n +t + 1),
for all j, 1€ Jj<s.

The conclusion, Ni(c) = 1, will follow if 1t can be
shown that
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pj‘J,(td'l+n-+t + 1) I’Tpai-xi for all J, 1<j4s.
1=1

If (pJ ,5-1) = 1, then pr,(td le.. 4t +1). Suppose then
that p '(t 1l). From the proof of Lemma 3.8,

xJ ’(td ly oo+t +1). Hence, for all j, l<jgs,

3‘3 ’(td levvesrt +1) ]‘ETpai'xi . Since aJéyJ, the

121 1
concluslion follows.

The followlng theorem 1is a partial converse of
Theorem 3.1. |

Theorem 3.2: Iet the group G of E/F be solv¥able with
the sequence of subgroups G = Glb o °3Gn3 Gn+l = I, each sub-
group normal in the preceding subgroup. Let Fi be the sub-
field of E corresponding to Gi’ and let Qi s the group of
i+1/F1’ be of order h, such that VY |
If a /hl-ﬂbI G’, where ‘1’PbI o-izF 4l? 1%m<n, gy is a
generatori;% Q,, and g 1s the order of @, then N(a) = 1.

_PM: The proof wlll be an induction on n.

For the case in which n =1, g = hl’ and the ex-
ponent of a is 1. Also, Ql is G so that o"1 is a gener-
ator of G. Hence, the theorem reduces to Kummer's Theorem.
Suppose that for n = k-1, 1<€k-1,
alll seshye_1/hy l‘:j%bl' , where ‘)"bI GieF
implies that Nl-..Nkﬂ(a) =1.

Let aP'l®=*Bk- e/ - T’TbI ﬁ, where ﬂbI -03 €F 417
i=]1 i=1

m+1° lém<ksl,

1<m<£k. Then,

Nk(a)hl‘ ey /by Nk(‘l"l‘bl °'1> (mx-o‘ )hk
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k-1
Thus, Nk(a)hl...hk-l/hl :(‘l’Tb i"o’i)c, where ¢ is a k-th
1=1

root of 1 in F,. By Lemma 3.9, Nk-l ¢) = 1; hence,

= qL1-%-1
c = dk-—l for somﬁ_dk-lst' Then,

1 m
h- e - /h. - 1I-G3 II—G.
N (a)"1** Tk-17" _rmrdi 1, where 1r=,1|d.1 1€F v

1€m<€k-1. By the induction hypothesis, Nl-nNk_lNk(a) =1,
The coneclusion follows by induction. |

The following 1s an example of a non-commutative
solvable group for which Theorem 3.2 applies. '

Let G be the quaternlion group; then there are fields
E and F such that G 1s the group of E/F. G 1s generated
by 0" and T°, which are subject to the relations 0"" =1,
02 =77 andvo =03t Let 6,= {1,02 }. Then, ¢ gives
rise to the sequence of subgroups G = G13 G2:>G3 =1, each

subgroup normal in the preceding subgroup. Ilet E, be the

i
subfield of E corresponding to G,. Q’l , the group of F2/‘F1,
is of order 4. Q, , the group of F3/F2, is of order 27'

If atE 1s of norm 1, then Theorem 3.1 guarantees that

al= b{'ci bg"oé, b{‘oi E.Fz, and o‘:L a generator of Qi‘

Since hzlhl’ Theorem 3.2 guarantees that every atE
satisfying the above form is of norm 1.

With G commutative and a €E of norm 1, a case 1in
which the exponent of a is 1 may arise. The following
corollary examines thls case and shows preclsely when it
wlll occur.

Corollary 3.3: If G 1s commubtative, then the ex-

ponent of a guaranteed by Theorem 3.1 1s equal to 1 if and
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only if G 1s cyecllic.

Proof: The exponent of a guaranteed by Theorem 3.1
is g/hl. This exponent 1is equal to 1 if and only if g = h;.
Thls 1s the case 1f and only 1f G = Hl’ Since Hl 1s e¢yeclie,
the conclusion follows,

The following questlion arises. For the case 1ln
which G 1s commutative but not cyclic, is a = TETc:{'cri ?
The following example shows that in general thiglis not
the case.

In the example on page 6 of Chapter II, 1t was
mentioned that N(1 + {Z) = 1. Since G ={1,0‘1'§ X {I,O"e‘,
Theorem 3.1 implies that (1 + Yé')2 = bi'o-i b2f°'2. It ecan
be shown that (1 +VZ2) #0:1[-01 cg"’é, for all nonzero
cl,ceeR(‘@,ﬁ). This can be shown by assuming to the con-
trary that for some nonzero c¢q,Cop eR(ré, ﬁ),

(1 +V2) =:c§_°1 c%‘qi, Let N; denote the norm with re-
spect to the subgroup {1,013. Then, . .

-1 = N(1 +V2) = Nl(cé-o-é). Let co = a + b2 + c(3 +4l6,
with a,b,c,d €R. Compyte Nl(cgncé) in terms of a, b, c,

and d. By equating thls to -1, the equation

a2 + 302 - 2b2 - 6d2 = 0 1s obtalned. It can be shown that
this equation has only the solution a =b =c¢ =d = 0, But,
thls 1s a contradiction slnce c%nqé 1s not defined.



CHAPTER IV
THE GROUP G OF E/F FACTORABLE

In Chapter III with G solvable 1t was shown that 1if
N(a) = 1, then some power of a is expressible as a product
of elements of E. 'The purpose of this chapier is to obtain
a possible reduction in this exponent. This exponent might
be reducible 1if G has another sequence of subgroups
G = G:’LD . °°DG;DG£*1 = I, each subgroup normgl in the pre-
ceding subgroup with G;/G{+lcyclic of order 849 lglgn,
Ir g;1> h,, then by applying Theorem 3.1 to G using this
sequence of subgroups the exponent of a is reduced. Butb,
one could as well assume that the sequence of subgroups of
G used in Theorem 3.1 is such that the order hy of Gl/'G2
is the largest possible. Por this reason, one is lead to
examine the case in which G is pseudo-decomposable., . As seen
In Theorem 3.1, the order of first subgroup does not appear
In the exponent of a in this case. Bubt, one could as well
assume that the pseudo-decomposition of ¢ is such that the
order of the flrst subgroup is the largest possible. This
1s the case with G commutative; as mentlioned, the decom-
position of G guaranteed by Lemma 3.5 is such that the ex-
ponent of a in Theorem 3,1 can not be reduced by any other
decomposition of G. Hence, one is lead to consider a fixed
pseudowdecompdsition of G and to attempt to reduce the ex-

ponent of a by working only with this pseudo-decomposition.

26
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IfG = Hl- "Hn and for some permutation P of n symbols,
G = HP(l)' "HP(n)’ then possibly a reduction of the ex-
ponent of a may be obtalned by applying Theorem 3.1 to
HP(l)' . 'HP(n)‘ A problem may arise. The pseudo-decom-
position Hl---Hn gives rise to the sequence of subgroups
G = Hl~--Hn3H2-- -Hn:). ..'_)HnD H ., = I.- It may be that
even though G = HP(l)"'HP(n)’ HP(Q)“'HP(n) 1s not a sub-
group of G. If this is the case, then Theorem 3.1 will
not apply. For this reason Theorem 4.1 will be proved
without the use of solvablllity. This first requires that
the restriction in Definition 3.2 pertalining to the

sequence of subgroups be removed.

Definition 4.1: A group G is factorable 1f and only

if there are cyclic subgroups Hi’ l€i<£n, of G such that
every O €G 1s uniquely expressible as a product
oi-..o'r'l, Uif'Hi' This willl be denoted by G = Hl"’Hn’

Lemma 4.1: Let G be the group of E/F. If
G = Hl- . -Hn, then
N(x) = NH1[NH2{' -'NHn__l(NHn(x))}] s, for every x €E,

Notation: 1In all the following work, NH:L will be

denoted by Ni’ l1<£1<n, and, where there 1is no ambiguity, the

parentheses, braces, and brackets will be omitted.

Proof: Let x ¢E; then

= = Po;eqa .
N(x) = TP (x) O'I/S;Iil " (x)
l€ien
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But, this 1s equal to

T It [‘\’[‘1‘1 [ (T’;T'r (x))}] . The conclusion follows.

’rlenl To€H,

In all the following work F1 wlll denote the sub-
field of E corresponding to Hi’

Lemma 4.2: If a€E, then N,.-.N (a)€F,.

Proof: N1+1'~-Nn(a) € E and H, 1s the group of E/Fig
hence, by Lemma 3.2, Ni---Nn(a)EFi.

Theorem 4.1: Let G be the group of E/F and a€E

have norm 1, If G = Hl"'Hn’ then

a8/M = ﬁ'gb %1, where 'ﬁl‘b 1e.Fm+1, l€m<£n, F 1 = E,
01 is a generator of Hi’ h1 is the order of Hi’ and

g = hl"'hn 1s the order of G.

Proof: The proof of Theorem 3.2, page 10, makes use
of Kummer's Theorem. This proof will apply to the proof of
Theorem 4.1 if Kummer's Theorem 1s replaced by Theorem 2.1,
page 5. |

The following example illustrates the use of
Theorem 4.1,

Let G be the dihedral group. G 1s generated by ¢
and ¥, subject to the relations ru ='t,2 = Iand¥r= 0'31’.
Now, et H, ={1,0%}, 1, = {1,%}, and 8 = {19}

G = HP(l)HP(e)HP(3) for every permutation P of three symbols,
but nelther H2H3 nor H3H2 is a subgroup of G. Hence,

neither H1H2H3 nor H1H3H2 is a pseudo-decomposition of G.
Therefore, Theorem 3.1 does not apply. Theorem 4.1

applies in both of the above cases.
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While 1t might appear that Theorem 3.1 is a special
case of Theorem 4.1, such is not the case. The quaternion
group 1s an example of a group to which Theorem 3.1 applies
but Theorem 4.1 does not apply.

A necessary condlition for elements to have norm 1
has been obtained for the case in which G is factorable.
It 1s worthwhile to digress from the course of this chapter
in the interest of obtalning a partlal converse of
Theorem 4.1,

Lemma 4.3: Let G = Hy.-+H , where H, is of order
hy, such that hy . |h;, 1€1€n-1, If ¢ 1s an hy ,~th root
of 1 in E, then Ni(c) = 1.

Proof': The proof of Lemma 3.9 on page 21 will apply.

The following is a partial converse of Theorem 4.1.

Theorem 4.2: Let G = H,--+H_ be the group of E/F,
where Hy 1s of order hy such that by s1)Pys 181€n-1, If

S/hl ~nb1 r, where qbi 0121" m412 LEMEN, Fooq=

0, a generator of H,, and g = hy-++h the order of G,
then N(a) = 1.

Proof: The proof of Theorem 3.2 on page 23 will
apply.
Corollary 4.,1: If G = Hy-++H, and a 1s of norm 1,
then alP(2)°**PBP(n) = T'rci % for every permutation P
i= 1
for which HP(l)'°°HP(n) S Hyeeel.

Notation: In this corollary and in all the fol-

lowing work the exponent of a guaranteed by Theorem 4.1
willl be written as h2"°hn' If n = 1, the exponent of a
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in Theorem 4.1 is already 1. Hence, there is no need in
attempting a reduction in the exponent of a,.
Proof: In applying ‘I‘heor'em 4,1 o G = HP(l)' '°HP(n)
the result 1is ap(2)" **Pe(n) "“T’Icp(ﬁ(i) Since P is a
permutation of n symbols,

rl P(.ﬁ(i) = %chq. The conclusion follows.
If néh, then there exists a2t least one non-identity
permutation P of n symbols for which
Hy--H, = HP(l)' ++Hp(p). The mapping x—-—)x“l, X€QG, gives
& one-to-one correspondence from G to G. Since
...q}l)‘“l “... '1, G =.HH i --H.

The exponent of a might be reduced by some obther
arrangement of the Hi as in Corollary 4.1. Even more can
be done. The next lemma will be useful in showing that a
with exponent the greabtest common divisor of the exponents
obtained from Corollary 4.1 is also of the form
T’Tc , ¢y €E. .

Lemma 4.4: If %, = 7%, 1€5¢m, by €E,
and ss.j are Integers, then there are biSE such that

m noo_
ﬁxj.ﬁ = nbi O‘i.

L PALE, (3 10 )s
Proof: J'I =l|‘xJJ = JTzll‘ _i=1b15 i] J
T’Tn 'ﬂm I-0; \ s
= i=1y 1(b15 i) !

] u
i
A
—
Y.
gn 3
|-
O‘UJ
&e
H
o
—

e
L
[}

-~

Ca
"
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Corollary 4.2: If G is factorable and a€E if of norm

I e

1, then ad = T’Pbi“ 1, where 4 1s the greatest common
i=1

divisor of the positive integers in

{hP(E)' . 'hP(n) , P a permutation of n symbols such that

Hl' “Hn . HP(l)' "HP(n)S'

Proof: Apply Iemma 4.4 to Corollary 4.1 with
XJ = ahPJ(E)"'hPJ(n), 1€ j<m, m the number of distinct
PJ satisfylng le;l--Hn:: HPJ(l)”‘HPJ(n)’ and Sj’ 1€sjsm,
satisfying d = Jzz'_'lsj-.hpj(g). -+hpy(n).

Corollary 4.ﬁ3: If m 1s the least positive integer for
which N(a) = 1 implies that a" = f’{l‘bf’q, then mld.

Proof: The proof of Corollary 3.1, page 12, will apply.

Corollary 4.4: If ad = 'E}bf_o-i, bi €E, then
[v(2)]® = 1 ana w[w(a)] = T
Proof: The proof of Corollary 3.2, page 13, will apply.
Of course, 1f G 1s such that 4 = 1, then this corol-
lary serves as the converse of Theorem 4.1,
As seen by Corollary 3.3, page 24, for the case in which
G 1s commutative, the exponent of a is 1 if and only if G
1s cyclle. The following example shows that this 1s not the
case with G factorable but non-commutative.
Let G = {1,0’,0-2,’15,0"50'2':}, where the mixed products
vare given by 0-3 = "(;2 = I,o~’¥=’z‘o~'2, and vo'= 0‘2’t. Hence,
G 1s not cyelic. But, G = HiHp = HoH;, where
H) = {1,0,0°} and B = {I,7}. For fields E and F for which
G is the group of E/F and a € E of norm 1, Corollary 4.2
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guarantees that a = b:lt o b:2[ T", bi £EE.

The following work demonstrates that if G satisfles
the hypothesis of Theorem 3.2 and is pseudo-decomposable,
then Corollary 4.2 does not reduce the exponent of a.

If G is such that hy,,[h,, 1£1€n-1, then b |n,, for
all 1, 1<i<n. Theorem 3.1 guarantees that a of norm 1
satisfies al2* by = T’TbI -0 1, by EE. Corollary 4.2
asserts that this same a satisfies al _..T’Tc1 G', cy €E,

i=1
where d 1s the greatest common divisor of the positive

integers of S = {hP(Q)‘ "hP(n) Hl- H.n = HP(l)' "HP(n)}‘
Since hyt++hy €8, d|hys+hy. Tet hp(pye++hp(n)€ S
Either hP(2)"°hP(n) = hye-+h,, or

hp(g)+e+Bp(p) = By*+hy_jhyye++hy. In the former,

By« iy [bp(pye <+hpp). In the latter, all the factors of
h2- hn and hP(z)"'hP(n) are the same wlth the exception
of hi in the first and hl in the second. But, hi‘hl’ and
S0 h‘a"'hn‘hP(e)"'hP(n)’ Hence, hgb.n\d, and

d = 1'1.2 th. Thus, Corollary 4.2 does not reduce the ex-
ponent of a.

As a matter of fact, in the case in which G is com-
mutative, the decomposition of G, G = G1X°--XGn, in
Iemma 3.3 could have been used in Theorem 4.1, Moreover,
GP(l)x'"xGP(n) = Glx"'XGn for all P. In applying
Corollary 4.2, d turns out to be nothing more than h,-«<h,,
the exponent obtalned by the use of the decomposition
of G in Lemma 3.6.
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Examples have been gilven to indicate differences in
applications of Theorems 3.1 and 4.1. But, for G pseudo-
decomposable both of these theorems may be applied. It
might appear that the results would be ldentical. Also,
with G pseudo-decomposable it might appear that applica-
tions of both Theorems 3.2 and 4.2 would lead to the same
results. With G pseudo-decomposable and n>1, the follow-

ing dilagrams 1llustrate the differences in the above pairs

of theorems.

G = (l}l = Hl"' H -——9?‘ =P PSEUDO-DECOMPOSABLE GROUPS
G = H »++H —-»F
|12 2 |2 T’Tb Fo4s 14mén, if
G3 =H_-'H ——-)F3
. . ) and only if ﬂbi’q‘ 1s
G =H ——3F i=1
|? n |2 invariant under every
Gn+1 =1 ——-——)an1 = E element of Hyuq-°Hy.
FACTORABLE QROUPS
// \Hl.anJ /}T\
~7 NN

T’Tbl'cr ler 412 1L€m€n, 1f and only 1if 'I’TbI -03 is

invarlant under every element of Hm-l-l'
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As a flnal note, it should be observed thait the
generallty of the precedlng results may be extended
somewhat. In gll of the preceding work, conditions were
placed on the group G. In some cases these condlitions may
be removed from ¢ and placed on a proper suzgroup of G, In
the light of Theorem 2,1, with a of norm 1, there may be
a proper subgroup H of G for which NH(a) =1, If 4 satis-
fles the conditions assumed of G Iln the preceding work, |

then the appropriate theorems will apply to a and H.
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