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CHAPTER I 

INTRODUCTION 

Everyone is constantly faced with the problem of choosing one out 

of several alternatives. The choice is a decision about which alterna

tive is the "best" (in some well-defined sense). Ranking and selection 

procedures are statistical techniques suitable for comparing k popula

tions. We assume at the outset that the populations are not all the 

same and can be ordered in some meaningful way, from worst to best. 

These selection procedures are designed specifically to identify the 

best single population, or the best subset of populations, or some sub

set of populations that includes the best population, or the like. 

In the framework of testing of hypotheses, the classical procedure 

attempts to determine whether all the k parameters 81, ..• , ek have a 

common value. Each parameter represents the same type of description, 

attribute, or response for all populations, but the populations may dif

fer. The classical procedure permits us to decide about the following 

null hypothesis, sometimes called the "homogeneity hypothesis". 

The alternative hypothesis, which may be implicit or explicit is that 

the parameters do not all have the same 8 values. 

If a test of homogeneity is the primary and final goal of an inves

tigation or experiment, alternative methods of statistical analysis are 

1 
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not needed. However, there are many practical situations where other 

kinds of information or other goals are of interest. For example, sup

pose that the null hypothesis of homogeneity is rejected. The investi

gator is seldom satisfied with terminating with this decision. In 

particular, he may want (a) to determine which populations differ from 

which others, and in what direction, (b) to see which populations can be 

considered best in some well-defined sense of the term "best". In case 

(a), techniques of multiple comparisons or simultaneous inferences are 

frequently appropriate. The method of multiple comparisons may also pro

vide information that is relevant for case (b). But, there is no expli

cit guarantee that the probability that "the alternative selected is the 

best alternative" is suitably large. Ranking and selection procedures 

are designed to accomplish this goal. 

When the goal is to select the one best population out of k popula

tions, a test of homogeneity of all k populations is really inadequate. 

The test of homogeneity can only tell us whether or not the parameters 

are equivalent; this test is not set up to resolve the problem of choos

ing the single best. Although some modifications and extensions of the 

test of homogeneity have been formulated to provide further information, 

no modification can be appropriate if we assume at the outset that for 

any two different treatments, differences in parameters must surely 

exist. Moreover, if we must make a choice among the k populations, the 

conclusion corresponding to the null hypothesis Ho• namely that all k 

populations have the same parameter value, is neither realistic nor use

ful. The ranking and selection procedures have been designed specifi

cally to resolve such practical problems. 

Procedures for selection and ranking started to develop through the 
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pioneering work of R. E. Bechhofer (1954) (assuming normality and known 

variances). During the next 28 years such procedures have been devel-

oped for more complex and more realistic settings. These studies can be 

grouped into one of the two fundamental approaches, namely, (1) Indiffer-

ence Zone Approach of Bechhofer (1954), (2) Subset Selection Approach of 

Gupta (1956). These areas are both vast and rich for pursuing research 

work. Four published books authored by Bechhofer et al. (1968), Gibbons 

et al. (1977), Gupta and Panchapakesan (1979), Gupta and Huang (1981) 

will undoubtedly prove our claim. The recently published categorized 

bibliography by Dudewicz and Koo (1981) will be immensely useful. There 

are very useful discussions in Dudewicz (1976, 1980), Dudewicz and Dalal 

(1975), Mukhopadhyay (1979, 1980a, 198la, 198lb). 

The area of the usual analysis of variance is very much dependent 

on the assumption of normality of the parent populations. We will fol-

low this same old path, and assume that we wish to select the "best" 

population from a set of k (~2) normal populations. The "best" popula-

tion is defined to be as the one having (i) the smallest variance or 

(ii) the largest mean. More specifically, in this study we discuss two 

separate problems: one involving the selection of the smallest normal 

variance, the other involving the selection of the largest normal 

mean. In general, the "best" population can, however, be defined in any 

reasonable way pertinent to the problem. One is referred to Bechhofer 

et al. (1968) for discussions on these aspects. For the two problems 

mentioned earlier, we adopt the indifference zone approach with a target 

* value P of the probability of correct selection (CS). We show that the 

proposed sequential procedures for both the problems result in a sub-

stantial "saving" in the average sample sizes compared with the 
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corresponding well-known fixed sample size procedures (see Gibbons et al. 

(1977)). We present simulation results in detail for the cases of two 

populations as well as of three populations for both the problems. We 

also study various asymptotic behavior (as P*+l) of stopping times in

volved in our statistical methods in both the problems. 

The organization of this thesis is as follows: The relevant liter

ature is reviewed in Chapter II. Chapter III deals with the selection 

of the smallest normal variance with procedures developed through com

parisons of ratios of likelihoods. Chapter IV deals with the selection 

of the largest mean through procedures developed along the lines of 

Hall's (1962, 1980) sequential tests and Mukhopadhyay's (1979) modified 

rules. Chapter V contains a brief sunnnary of the thesis. To make the 

thesis easy to read, we put some important useful theorems in Appendix 

A, and the tedius proofs of the main theorems (3.1, 4.1, 4.3 and 4.4) 

have been deferred to Appendix B. 



CHAPTER II 

REVIEW OF LITERATURE 

There is a considerable amotm.t of literature on the subject of sel

ecting the "best" treatment. For a complete bibliography, one is .re

ferred to Dudewicz and Koo (1981). As pointed out in Chapter I, the 

selection procedures could primarily be classified under one of the two 

formulations, namely: (1) Indifference Zone Approach and (2) Subset 

Selection Approach. 

2.1. Indifference Zone Approach 

Theoretical statistics concerned itself too little with problems in 

which the basic observations come from several sources or populations 

until the 1950's. Bechhofer (1954, 1958), Bechhofer and Sobel (1954), 

and Bechhofer et al. (1954) brought a change in thinking through 

their pioneering work in ranking and selection. Bechhofer brought this 

subject to full light of day with a context other than the type des

cribed by saying (as in classical ANOVA), "We have k populations, but 

would like to test the hypothesis that we really only have one." The 

essential formulation of Bechhofer given in 1954 is as follows: 

There exist populations (sources of observations ) rr 1, 

(k.:::_2) with respective unknown means µ1 , ••• , µk for their observations, 

and a common known variance o2 ; a goal of selecting the population asso-

ciated with µ(k) = max (µ 1, • , µk), having a probability requirement 

5 
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that Prob (CS) ~ p*, (l/k < p* < 1) if µ (k) - µ (k-l) ~ o* (6 *> O); and a 

procedure of selecting the population yielding X = max(x1, ... , Xk)' max 

where xi is the sample mean from the population rri, i=l, ••• , k. 

Since it does not explicitly seek to control the Prob (CS) at para-

meter points satisfying ll(k) - µ(k-l) < o*, this has thus obtained the 

name of a "zone" where one is "indifferent" to select the best popula-

tion. Srivastava (1966) applied Chow and Robbins' (1965) sequential 

theory to various selection and slippage problems and gave a class of 

"asymptotically efficient" sequential procedures for such problems. 

Robbins et al. (1968) proposed a sequential procedure for selecting the 

largest of k normal means with common llllknown variance. They had estab-

lished that the sequential procedure was "asymptotically consistent" 

and "efficient" (in the sense of Chow and Robbins (1965)) and that the 

cost of ignorance of cr2 was of little importance when the sequential 

procedure was used, for all 0 < a2 < cc and s* > O. Sobel (1977) gave 

new results on selecting the best population where "consistency" is 

measured by smallness of the inter (a, 6)-range. Bishop and Gibbons 

(revision of Bishop (1978)) showed how to apply complete ranking theory 

(to six New England states), and indicated how the results would be of 

considerable interest in the insurance industry. Ranking in terms of 

variability is also covered. Mukhopadhyay (1980) developed a sequential 

procedure through likelihoods, rather than just deciding through the 

largest sample mean alone and the procedure was shown to have substan-

tial asymptotic saving in the average sample sizes compared to the known 

procedures now being used in practice (see Gibbons et al. (1977), sec-

tion 2.3). 
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2.2. Subset Selection Approach 

The area of subset selection procedures (which is equivalent to the 

idea of elimination) originated from the basic ideas of Gupta (1956, 

1965). No indifference zone is usually brought to bear and the orienta

tion is toward working with data already collected, rather than toward 

determining a sample size for designing the experiment. Since the meth

ods have different goals, different input, and so on, it is very diffi

cult to make any meaningful comparisons. In Paulson's (1964) paper, 

sequential procedures are given for selecting the normal population with 

the largest mean when (a) the k populations have a common known variance 

or (b) the k populations have a common but unknown variance, so that in 

each case the probability of making the correct selection exceeds a spec

ified value when the largest mean exceeds all other means by at least a 

specified amount. Desu and Sobel (1968) had obtained some theorems and 

tables for the problem of selecting a fixed-size subset of normal popu

lations with a common known variance. Sobel (1969) considered the pro

blem of selecting s populations and asserting that they contain at least 

one of the t best populations. The original problem of Gupta (1956) has 

been abstracted and generalized by Deverman and Gupta (1969), and Gupta 

and Panchapakesan (1972). A procedure that controls the probability of 

eliminating those populations which are distinctly inferior is treated 

by Desu (1970), and a similar type of result is also available in Carroll 

et al. (1975). Two stage procedures for the subset selection problem in 

the case of normal distributions with unknown (not necessarily equal) 

variances were given in Dudewicz and Dalal (1975). Lee, in the revised 

version of Lee (1977), gives a very clear elaboration of the approaches 

discussed in McDonald (1979) and Gupta and Hsu (1977) for subset 



8 

selection as well as indifference zone. By modifying the Dudewicz and 

Dalal's (1975) procedure for problems of selecting the population having 

the largest mean from k normal populations with tmknown variances, Rinott 

(1978) derived some inequalities and used them to obtain a lower-bound 

of the probability of correct selection. Those bounds were applied for 

the determination of the second-stage sample size which was required in 

order to achieve a prescribed probability of correct selection. 

Mukhopadhyay (1979) had shown that the procedures of Rinott (1978) was 

"asymptotically inefficient" in the sense of Chow and Robbins (1965) for 

all k>2. Some two-stage procedures having all the properties of Rinott's 

procedures, together with the highly desirable property of "asymptotic 

efficiency" were also proposed in Mukhopadhyay (1979). 

It turns out that these two fundamental formulations dominated the 

whole area of selection and ranking theory. As we pointed out earlier, 

we will follow Bechhofer's (1954) formulation through the "indifference 

zone" approach. 



CHAPTER III 

SELECTING THE SMALLEST NORMAL VARIANCE 

3.1. Defining the Problem 

Suppose there are (k.:::_2) independent normal populations rr 1 , . ' 
rrk where rri is assumed to have the mean µi and unknown variance oi2 with 

0 < oi2< oo, i=l, ••• , k. We follow the usual notation of ordering 

and write the ordered variances as o (1) 2 ~· .. 

select the population having the variance oc 1), that is 

Our goal is to 

variance. We will refer to such a population as the "best" population. 

For practical applications where one faces this type of selection pro-

blems, one is referred to Chapter 5 of Gibbons et al. (1977) and sections 

6.5 and 6.6 of Gupta and Panchapakesan (1979). Once we develop our pro-

cedures in the following sections, just by looking at our decision rules 

it will be clear that these are different from the ones discussed in 

Hoel (1971) for this particular problem except for R1(2). 

We will restrict our attention to the "indifference zone approach" 

only and follow the formulation originated in Bechhofer (1954). Follow-

ing the standard notation, we assume that we are given two numbers ~5'* 

and P*, 0 < 8 * < 1 and k- 1 < P* < 1. 2 
• ' ' Ok ' µ 1 • 

) • 1'*-1 2 2 l • , µk . u 0 (1) 2- 0 ( 2) J. Naturally, we are assuming µ1, • • • , µk 

to be unknown. If any of the µ's are known, we will drop them from the 

parameter vector in ~(o*). We wish to propose sequential procedures for 

selection of the smallest variance o(l)2 such that P(CS) > P* if (0 12, 

9 
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.,crk2 , µ1, .•. , µk)E:\1(0*), where "CS" stands for the correct selec-

= cr(k) 2 is referred 

to as the least favorable configuration (LFC) or a slippage configura-

tion in this context. 

We plan to develop sequential procedures to select the "best" popu-

lation through likelihoods under the LFC, as developed in Mukhopadhyay 

(1980a) for a different problem. We also present detail comparisons of 

our procedure with the existing fixed-sample procedures as discussed in 

Gibbons et al. (1977) for some values of k. For numerical comparisons 

we also consider cr2-values in Q( 0*) but not in the LFC. 

We always take one sample at a time from each population and thus 

take the same number of samples from each population. We denote {Xil' 

.,Xin} as iid random variables from the population ni, i=l, ... , k 

and n >2. Having recorded n observations from each population, we let 

Xin = n- 1 .~ XiJ. and Sin2 =(n-1)- 1 .~ (XiJ' - Xin) 2 , i=l, .•. , k. Unless 
J=l J=l 

otherwise specified we will use this notations throughout and assume 

all the means µ1, ..• , l.lk to be completely unknown. The cases where 

some or all the µ's are known will be addressed separately and the nota-

tion will be modified accordingly. 

3.2. Likelihood Procedures 

As mentioned earlier we will propose sequential procedures in the 

case of LFC to select the "best" population with P(CS) .::_ P*. This pro-

blem can be viewed as a multiple hypothesis testing problem of deciding 

among the k hypotheses, namely, Hi:cri2 = cr(l) 2 , i=l, . , k. This kind 

of an approach was also adopted in Mukhopadhyay (1980). Let us define a 

statistic T 
-n (Tln' ... , Tk-ln) where Ti-ln = Sin2/sln2' i=2, ... , 
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k. . . . ' 
k-1. This choice of T seems natural to us because we wish to have ratios 

-n 

of variances, namely, e1, ... , ek-l• as the distance measures. Using 

the results of Hall et al. (1965), Tin can be easily seen to be invari-

antly sufficient for ei, i=l, ... , k-1, with respect to the group of 

(non-zero) scale transformations. It is easy to see that H1, . . . , Hk 

can be equivalently rephrased in terms of 8-values (under the LFC) in 

the following way: 

H1:(8i = 8* for all i=l, .•• , k-1), 

H.:(e. 1 = o*-1 and ei· = 1 for all i # j-1) 
J J-

where j=2, 3, ... ,k. Using the multivariate F-distribution (see page 

240 of Johnson and Kotz (1972), we obtain the probability density func-

tion (pdf) of T as -n 

k-1 
= C(n,k) II 

i=l 

(1 + k~le.T· )!zk(n-1) 
i=l i in 

• • . (3. 1) 

where C(n,k) = { r!z(n-1)} -k{r12k(n-1)}. We will follow the convention 

that f(InJe) is of a specified form whenever T. > 0 for in all i=l,. . . , 
k-1, while f(T Je) is zero otherwise. We will maintain this throughout 

-n 

with the understanding that the likelihood ratios are computed when Tln' 

., Tk-ln are all positive. Writing f. as the likelihood of !nun
Jn 

der Hj, we obtain from (3.1) the following expression for fj n for j•l, 

• , k: 
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f. 
Jn 

l ( ) ( k-1 k-1 l 
= C(n k)·--*-~ k-1 n-1) TI T. 12Cn-3) I (1 + o* Z T. )~k(n-1) for j=l 

' o i=l in i=l in ' 

~l ~l l 

= C(n,k)5*-1i(n-l)~--TI1 T 12(n-3); (1 +. !.. T + o*-lT )>ik(n-1) for 
... in i=l,~J-1 ln j-ln 

j = 2' . ' k. Letting the constants C = 1 if p-q C = o* if pq - ' pq 

p :/: q, for p, q = 1, . . . ' k. It is easy to see that f. /f. = 
Jn in 

y .. 12k (n-1) where Y .. = (Cj 1 + cj2Tln + + cjkTk-ln) 
. 

iJn iJn 

(Cu + ci2Tln + . + cikTk-ln )-1 for all i, j = 1, . . .k. 

Being motivated by Khan's (1973) results, we choose a doubly indexed 

sequence of constants a .. = (k-1)(1-P*)- 1 for all i :/: j = 1, ••. , k. 
iJ 

Following the sequential rules of Mukhopadhyay (1980a), we now define 

the stopping rule in the present context as follows: 

Rl(k): N = inf{n 2:_ 2: j~i(aijfjn/fin) < 

= 00 if no such n. 

1 for some . 1 
i;, 

When N stops with i, we decide for the hypothesis Hi, that is, we declare 

that IT. has the smallest variance, i=l, •.. , k. 
i 

One major valid question is whether Rl(k) is a bonafide stopping 

rule, that is whether P(N < oo!H.) = 1 for all i = 1, 
i 

.. , k. From 

equation (4.2) of Khan (1973) it is obvious that P(N < oolH.) = 1 if 
I i 

for all i = 1, ... , k. Now P{~i~ inf J~~ (fjn/fin) = O[Hi} 

= P{lim inf(n-l)su~in(Y .. ) = -ooiH ' 
n-+«> jri iJn . i'' 

. (3. 3) 

. ( 3. 4) 

Using the strong law of large nuinbers, as n-+«>, J~~ in(Yijn) con

verges almost surely (a.s.) to v.n{ko*(ko* + (1 - 5*) 2)-1} under Hi, i = 1, 

... ,k. Notice that this limiting value is negative and thus the pro-

bability in (3.4) turns out to be one. This verifies the sufficient con-

dition (3.3). So, indeed the stopping variable N of the rule Rl(k) is 
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finite with probability one under any of the hypothesis Hi, i=l, ••• , 

k. 

Remark 3.1. Suppose we are also interested in examining the ter-

. . . h 2 2 mination property in t e case cr(l) < cr(Z) . To be specific, without 

any loss of generality, let us assume that cr(i) 2 = cri2, i=l, .•• , k. 

It can be easily verified that for 

1 im £n (Y . . ) = £n { x (x + (1 -n+co 1Jn · 

x=l+ o~Ccr2 2 + cr-32 + . 

o*) (cr 2 cr - 2 - l)] -1} 
2 1 . . • (3. 5) 

almost surely. Since the limit in (3.5) is negative, the sufficient con-

dition (3.3) still holds. 

Following Khan (1973), it is straight-forward to see that P(CSjH.) 
1 

> P* for i=l, • • . , k, since E a .. - 1 = 1 - P* for every j=l, • • . ' k. 
i:t=j 1J 

We may stress that this is an exact result. 

Although N is finite with probability one tmder any H., i=l, • 
1 

. . ' 
k, it may be necessary to truncate the rule Rl(k) at some stage for prac-

tical purposes. We propose the following truncated version: 

Rl*(k): We take one sample at a time from each population (after we start 

with two samples from each) and continue checking with the rule Rl(k) if 

we can stop. When we reach the stage n=m we terminate sampling regard-

less of Rl(k). We decide for the population rr2 as being the "bestn, 

where sup{ai.fJ.m/f2 } =min sup{a .. f. /f. }. 
j~£ J m i }Fi iJ JIB im 

This seems to be the natural way of truncation of Rl(k) along the 

lines of Wald's (1947) procedures. 

Remark 3.2: When the rule Rl(k) tells to stop, the rule indeed 

selects that population which has the smallest sample variance at the 

stopping stage. To justify this remark, suppose i=l, and we have for 
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j=2 , a12f2n/f1n alz(CCu + C12T1n + ... + ClkT(k-l)n)(C21 + C22Tln + 

... + C2kT(k-l)n)-l]~k(n-l), 

a13l(C11 + C12T1n + • · · + C1kT(k-l)n)~C31 + C3zT1n+ 

... + C3kT (k-l)n)-lJ~k(n-1), 

a1k[Cc11 + C12T1n + • · · + C1kT(k-l)n)(Ck1 + Ck2T1n+ 

+ CkkT (k-l)n)-lJ~k(n-1). 

Suppose we accept H1 and thus let a 12 t 2n/fln be the j#1(aijfjn/f1n). 

Then (k-1) (1-p*)-lf2nfln-l < 1 and 0 < P* < 1 imply 

l + &*Tln + ... + O*T(k-l)n < o* + Tln + o*T2n + •.•. + o*T(k-l)n, 

Which further implies (1 - o*) < (1 - o*)Tln" Since 0 < ~* < 1, we then 

obtain T 1 > 1. n -

By the property of supremum, namely, a 12 f 2n/fln• we have 

Tjn ~ Tln' j=3, ... , k, which implies that 

S 2 is the smallest variance. ln 

The other cases (i.e., i=2, 3, ... , k) can be verified similarly.V 

Remark 3.3. In the case when all the µ's are known, we will rede-

2 _ -1 n ( ) 2 ·-1 2/ fine Sin - n j~l Xij - µi , 1- , ••• , k, and take Ti-l n =Sin 

S 2 ·-2 k 
ln ' l- ' · • ·' • 

Then, the likelihood ratio in (3.2) will have the 

same form with exponent -kn/2. The rules Rl(k) and Rl*(k) will change 

very little, while all their properties will carry over in this situa-

tion. 
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3.3. The Special Case of Two Populations 

In this special case, the rule Rl(k) takes the following form: 

Rl (2): N inf{n>2:{( 0*+ T1 )/(1 + O*T 1 )}-n+l i I(P*)}, ... (3.6) 
- n n 

= oo if no such n, 

where I(P*) is the interval (Cl-P*), (l-P*)- 1). At stage N, we accept H1 

or H2 according as the lower or the upper boundary is crossed. 

Notice that the form in (3.6) can also be stated equivalently as 

. • • ( 3. 7) 

Now,we have the following theorem summarizing the asymptotic properties 

of the rule in (3.7). The numbers C and Dare defined as follows: 

C :....{.e,n(l-P*)}/.e,n{(l + o*2 )/25*}, ..• (3.8) 

... (3.9) 

Theorem 3.1. For fixed µ1, µz in (-00 , 00 ) and 01, 02 in (0, 00), for 

either hypothesis H1 or H2 we have for the rule in(3.6): 

(i) N is a non-decreasing function of P*, N+00 a.s. as P*+l, 

N/C + 1 a.s. as P* + 1. ... (3.10) 

l 
(ii) (N - C)/D + N(O,l) as P* + 1. . . • (3. 11) 

Proof: see Appendix B (p. 90 ). 

Remark 3.4. At this stage we could not prove (or disprove) that 

Nc-1 is uniformly integrable. So, although Nc- 1 + 1 a.s. and (N - C)/D 
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4 N(O, 1) as P* + 1, we are tmable to conclude that E(Nc-1) converges 

(or does not converge) to 1 as P* + 1. However, we conjecture that E(N) 

is finite for all fixed P* E(~, 1). 

Remark 3.5. Even if rr 1 and rr2 are not normal, theorem 3.1 still 

holds with D =4- 1 (S 4-1){-.£n(l-P*)}{2n((1+5*2 )/25ic)}- 3 , where s4~{o-2-4 • 

E(x21 - µ 2) 4 },and it is assumed that 1 <S 4 < 00 • This modification can 

easily be verified along the lines of Ghosh and Mukhopadhyay (1975). 

Such comments are also valid for theorem 3.2 in subsection 3.3.2. 

Remark 3.6. It is obvious that Heel's (1971) procedure when re

stricted to the case k = 2 coincides with our procedure Rl(2). However, 

Hoel's (1971) procedure and our procedure Rl(k) do not match fork> 3. 

One main reason is that Hoel (1971) developed his procedure through elim-

ination of "inferior" populations, while in our procedure Rl (k) we do 

not capitalize on "elimination" at all. Another difference is that we 

look at (Tln' ..• , Tk-ln) all together through f(~nJ~), while in Hoel 

(1971) the comparisons are made in pairs. It seems that our procedure 

Rl(k) together with some kind of improvised "elimination" as in Hoel 

(1971), would have considerably improved performances over Hoel' s (1971) 

procedure. This point is, however, presently i.mder further study. 

3. 3. 1. Moderate Sample Size Behavior of Rl (2) 

and Comparison With Fixed Sample Procedures 

We are going to use the rule Rl(2) and compare with the fixed sam-

ple rule (FSR) as given in Gibbons et al. (1977), Chapter 5. We look 

at Table G. l of the same book. For each t:.* and P*, we compute o * = t:.* 2 

(where 6* comes from the Table G. l) and generate two populations TI1 and 
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rr2 in an IBM 370/168 computer system for simulation purposes. 

We used Subroutine RANDU to generate uniform variates in (O, 1), 

e.g. look at p. 77 of the IBM application program (1970). We then used 

SLAM random sampling procedures discussed on pp. 565-566 of Pritsker and 

Pegden (1979) to obtain samples from a standard normal distribution. We 

generate rr 1 as N(O, 1) and rr2 as N(O, 8 *-1) so that the hypothesis H1 is 

deliberately made to be true. For each pair of values (~*. P*) we re-

peat the experiment using the rule Rl*(2), while truncation point mis 

taken to be n* = n* (~*. P*) which is the sample size needed by the FSR. 

Notice that n* = v + 1 where vis the quantity coming from Table G.l of 

Gibbons et al. (1977). 

For each entry of (~*. P*), we repeat the experiment 200 times 

using the rule Rl*(2). In Table I, under the "untruncated part" we com-

pute the average sample size N, its standard error S(N) and P, the pro-

portion of correctly deciding for H1 for all the repetitions (out of 200) 

which did not have to be truncated; under the heading "truncated" we re-

port T, the number of truncations and P', the proportion (out of T trun-

cations) of correctly deciding for H1; under the "over all" category we 

report N, S(N), and P" computed from all the 200 repetitions; under the 

1 
"asymptotic" category we provide with C and D(200)-'2 = D', say. 

We compute the "overall saving n" in the following way. n = (n*p" 

NP*) /n*P", where n* is the sample size needed by the FSR and N is the 

"over all" average sample size. We should stress that all the entries 

in columns four and beyond are estimated from simulated experiments. 

In Table II, all the notations remain the same as explained above. 

However, for each (~*. P*) we report two rows - the first row is the re-

sult when we use Rl*(2) with m = n*, and the second row is the same 



TABLE I 

SIMULATION RESULT FOR THE RULE R1(2), BOTH 
THE MEANS UNKNOWN AND TRUNCATION AT n* 

-----------~-

Untruncated part Truncated Over all Asymptottc ------------- ------
fl* ['I< n* N S(N) p T P' P" N S(N) I) c D' 

-~----·-- --- ·-· 

0.50 0.95 8 5.01 0.09 0.953 28 o. 786 0.930 5.43 0.11 0.31 3. 97 o. 13 

0.99 14 7.55 0.17 0.968 13 0.692 0.950 7.97 0.20 0.41 6.11 0.16 

0.60 0.95 13 7 .19 0.17 0.910 23 o. 739 0. 890 7.86 0.20 0.35 6.65 0.29 

0.99 24 11. 83 0.33 0.995 13 1.000 0.995 12 .62 0.37 0.48 10.23 0. 36 

0.70 0.95 24 12. 43 0.39 0.944 23 o. 783 0.925 13.76 0.113 0.41 12. 73 0. 76 

0.99 45 20.55 0.66 0.984 15 0.867 0.975 22.38 0.76 0.50 19.56 0.94 

0. 75 0. 9.~ 35 16.94 0.58 0.959 30 o. 733 0.925 19 .65 0.67 0.42 19.07 1. 39 

0.99 67 28.30 0.92 0.983 19 o. 789 0.965 31.98 1.16 0.51 29. 31 l. 72 

0.80 0.95 56 25.35 0.88 0.966 26 0.731 0.935 29. 34 l.06 0.47 31.06 2. 89 

0.99 110 45. 36 1.60 0.989 12 0.833 0.980 49.34 l. 85 0.55 47.75 3.58 

0. 85 0.9.5 104 48.31 l. 80 0.907 28 o. 750 0.885 56. 11 2.07 0.42 57.70 7. 32 

0.99 206 85.29 3.07 0.984 14 0.929 0.980 93. 74 3.59 0.54 88. 70 9.07 

0.90 0.95 245 107.46 4 .08 0.940 17 0.824 0.930 119.15 li .62 0.50 135. 93 26.45 

0.99 1189 190.67 6.87 1.000 7 0.571 0.985 201. 11 7 .68 0.58 208. 96 32.80 

0.95 0.95 1030 1133. 75 16.43 0.967 18 0.83'.l 0.955 487. 41 19. 23 o. 53 570.% 227. 35 

0.99 2058 797 .18 31. 67 0.979 t, 1. 000 0.980 822.40 33.46 0.60 876.78 281.88 
-------- ..... 

00 
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TABLE II 

SIMULATION RESULT .FOR THE RULE Rl (2), BOTH THE 
MEANS UNKNOWN AND TRUNCATION AT n* AND 2n* 

Uncruncated pare Truncated Over all Asymptotic 

~:fl: P* n" N s (!'I) p T p' P" ii S(N) n c D' 

0.50 0.75 3 2.99 0.01 o. 725 69 0.565 0.670 3.00 0.01 -0.12 1.84 0.09 
6 3.51 0.06 o. 771 8 0,625 o. 765 3.49 0.06 -0.14 

0.90 6 3.95 0.07 0.810 21 o. 762 0.805 4.17 0.08 0.22 3.06 0.12 
12 4.42 0.12 0.829 1 1.000 0.830 4.43 0.12 0.20 

0.60 o. 75 4 3.25 0.03 o. 710 38 0.526 0.675 3.40 0.04 0.06 3.08 0.20 
8 3.65 0.07 o. 713 5 0.800 o. 715 3.66 0.07 0.04 

0.90 9 5.49 0.12 0.890 37 0.649 0.845 6.14 0.14 0.27 5.11 0.25 
18 6.60 0.22 0.900 5 1.000 0.900 6.66 0.21 0.26 

o. 70 o. 75 6 4.24 0.09 0.787 64 0.531 o. 705 4.81 0.08 0.15 5.89 0.52 
12 5.46 0.17 o. 782 12 0.583 o. 770 5.49 0.16 0.11 

0.90 15 8. 76 0.23 0.903 46 o. 739 0.865 10.20 0.26 0.29 9. 78 0.66 
30 10.92 0.40 0.905 10 0.800 0.900 u.12 0.38 0.26 

o. 75 o. 75 B 5.40 0.12 o. 721 64 0.531 0.660 6.24 0.12 0.11 8.82 0.95 
16 7.05 0.23 0.741 15 0.533 o. 725 7.12 0.22 0.08 

0.90 22 11.56 0.36 0.906 40 o. 750 0.875 13.65 0.41 0.36 14.66 1.22 
44 14.96 0.62 0.913 3 0.800 0.910 15.14 0.61 0.30 

a.so o. 75 11 7.32 0.17 o. 798 76 0.539 0.700 8. n 0.16 0.15 14.37 1.97 
22 9.43 0.33 o. 796 33 0.515 o. 750 9.69 0.28 0.12 

0.90 35 17.33 0.58 0.910 34 0.647 0.865 20.34 0.67 0.40 23.88 2.53 
70 22.41 0.98 0.915 1 1.000 0.915 22.47 0.98 0.37 

0.85 0.75 18 10.98 0.33 o. 165 31 0.605 o. 700 13. 82 0.31 0.22 26. 70 4.98 
36 16. ll 0.63 o. 771 21 0.619 o. 755 16.31 0.56 0.15 

0.90 64 28.85 1.06 0.923 45 o. 778 0.890 36. 76 l.33 0.42 44.35 6.41 
128 39.99 l.33 0.923 4 0.500 0.915 40.47 1.31 0.38 

0.90 Q. 75 43 ZJ.88 0.91 o. 777 79 0.645 o. 725 31. 43 0.86 O.:.t4 62.90 17.99 
86 33.37 1.42 C.804 32 0.500 0.755 34.91 1.22 0.19 

0.90 1~ 9 71.05 2.89 0.938 39 o. 794 0.910 86.25 3.19 0.43 104. 48 23.19 
298 91. 44 4.29 0.943 8 o. 750 0.935 93. 74 4.20 0.39 

0.95 J. 75 174 97.06 3. 71 o. 754 74 0.662 o. 720 125 .53 3.52 0.25 263.94 154. 66 
348 146. 74 6.Z3 o. 790 14 0.857 0. 795 148.64 5.82 0.19 

0.90 626 259.84 ll.J3 0.898 34 0.617 0.850 322.08 13.55 0.46 438.39 199.32 
1252 354.66 18.58 0.889 2 0.500 0.385 357.38 18.50 0.42 
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thing with m = 2n*, where it is particularly important to note that the 

second row is obtained from all those sequences in the first row which 

did not terminate by itself within n* samples but had to go somewhere 

between n* + 1 and 2n* (including truncation) for stopping. Unless 

otherwise specified, for each (6*, P*) we repeat the experiment 200 

times. Table II is needed particularly because for P* = .75 or .90, the 

results do not look very impressive when we truncate at m = n*, while 

the performance improves considerably when we choose m ~ 2n*. 

In Table III, we present results for each (6*, P*) without trunca

tion, while the repetitions for each entry have been 1000. Thus, N, 

S(N) and P" are computed from all the repetitions for each entry of (6*, 

P*). 

In Table IV, we present results for the case when the rule Rl*(2) 

is used with m = n*, but actually cr1 2 , crz 2 are not in the LFC. We gen

erate rr 1 -N(O~l) and rr2 -N(O,r/o*) where r 1.1, 1.3, 1.5, 2.0, and 2.5; 

however, the rule Rl*(2) is used without any change at all. 

Remark 3.7. In Tables I and II we see that on the average the per

centage of saving increases when 6* or P* increases. For instance, when 

6* = .6, P* = .95, the saving n = .35, while for 6* = .6, P* = .99 sav-

ing n = .48; or for 6* = .75, P* = .95 the saving n .42. The proper-

tion of overall correct decision, namely P", on the average is lower 

than the proportion P of untruncated part - this is due to the low pro

portions of truncation (on the average) at m = n*. In Table II, one may 

note that when we increased m to 2n*, we get increments of P" at the 

expense of losing some saving. This feature can also be seen by compar

ing Tables I and II with Table III. 
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TABLE III 

SIMULATION RESULT FOR THE RULE Rl(2), BOTH 
THE MEANS UNKNOWN AND WITHOUT TRUNCATION 

WITH ONE THOUSAND REPETITIONS 

6.* P* n* N S(N) P" n c D' 

0.50 0.75 3 3.59 0.04 0.766 -0 .17 1. 84 0.04 
0.90 6 4.42 0.06 0.838 0. 21 3.06 0.05 
0.95 8 6.13 0.09 0.933 0.22 3.97 0.06 
0.99 14 8.37 0 .11 0 .985 0.40 6. i1 0.07 

0.60 0. 75 4 4 .30 0.07 o. 770 -0.05 3.08 0.09 
0.90 9 7.04 0. 13 0. 881 0.20 5 .11 0. 11 
0.95 13 8.65 0.14 0. 937 0.33 6.65 0.13 
0.99 24 13.07 0 .21 o. 984 0.45 10 .23 0. 16 

0.70 0. 75 6 6. 34 o. 13 0. 768 -0.03 5.89 0.23 
0.90 15 11.28 0.24 0. 891 0.24 9. 78 0.30 
0.95 24 14.66 0.28 0. 949 0.39 12. 73 0.34 
0.99 45 22. 90 0.40 0.990 0.49 19.56 0. 42 

0.75 0.75 8 8.40 0 .19 0. 777 -0 .01 8.82 0.42 
0.90 22 15. 83 0.35 0.904 0.28 14.66 0.54 
0.95 35 20.59 0.45 0.935 0.40 19. 07 0.62 
0.99 67 33.05 0. 61 0.979 0.50 29.31 o. 77 

0.80 0.75 11 12. 33 0. 27 0. 794 -0.06 14. 37 0.88 
0.90 35 23.49 0.50 0. 895 0.33 23. 88 1. 13 
0.95 56 32.07 0.67 0.943 0.42 31.06 1.29 
0.99 llO 53.00 1.10 0.986 0.52 47. 75 1.60 

o. 85 0. 75 18 20.34 0.48 0.781 -0 .03 26. 70 2.23 
0.90 64 43. 66 1. 05 0.900 0. 32 44. 35 2.87 
0.95 104 56.86 1. 24 0.950 0.45 57. 70 3.27 
0.99 206 91. 80 1. 88 0.990 0.55 88.70 4.06 

0.90 0. 75 43 43.22 1. 06 0.795 0.05 62.90 8.05 
0.90 149 93.04 2. 15 0.902 0.38 104. 48 10. 37 
0.95 245 129. 65 3.09 0. 936 0.46 139. 9 3 11. 83 
0.99 489 208. 71 4.23 0 .980 0. 57 208. 96 14.67 

0.95 0. 75 174 165.75 4.08 0.786 0.09 263.94 69.16 
0.90 626 363. 25 8.56 0.898 0.42 438.39 89.14 
0.95 1030 499.12 11. 49 0.948 0.51 5 70. 36 101. 6 7 
0.99 2058 902.08 18. 96 0.983 0.56 876.78 126. 06 



l:i.* P* 

o.so o. 7S 

0.90 

0.95 

0.99 

O.fO o. 7S 

0.90 

TABLE IV 

SHfULATION RESULT FOR THE RULE Rl (2) , BOTH THE MEANS UNKNOWN 
AND TRUNCATION AT n*: THE PARAMETERS BETTER THAN LFC 

Un truncated part Truncated Over all 

n* r N S(N} p T P' P" N S(N} 

3 1.1 3.00 0.00 o. 791 66 O.S30 o. 70S 3.00 o.oo 
l. 3 3.00 o.oo 0.800 60 O.S67 . o. 730 3.00 0.00 
l.S 3.00 0.00 0.817 S8 0.638 o. 76S 3.00 o.oo 
2.0 3.00 0.00 0.848 SS 0.673 0.800 3.00 o.oo 
2.S 3.00 0.00 . 0.878 S3 0.642 0.81S 3.00 0.00 

6 1.1 3. 7S 0.07 0.891 26 0.846 0.88S 4.04 0.08 
1.3 3. 72 0.07 0.920 24 0.792 0.90S 4.00 0.08 
l.S 3. 74 0.07 0.913 16 0.813 0.90S 3.92 0.08 
2.0 3. 72 0.06 0.938 6 . o.soo 0.925 3.79 0.07 
2.S 3.62 0.06 0.938 6 0.833 0.935 3. 70 0.06 

8 1.1 5.04 0.09 0.9SS 23 0.870 0.945 5.38 0.10 
1.3 S.04 0.09 0.9S7 16 0.813 0.945 5.28 0.10 
1.5 4.90 0.08 0.968 12 0.917 0.96S S.09 0.09 
2.0 4.78 0.07 0.98S 4 1.000 0.98S 4.85 0.08 
2.5 4.67 0.07 0.985 2 1.000 0.985 4. 71 0.07 

14 1.1 7.48 0.18 0.973 14 0.786 0.960 7.94 0.21 
1. 3 7.30 0.17 0.984 9 1.000 0.985 7.61 0.19 
l.S 7 .OS 0.15 0.995 5 1.000 0.995 7 .23 0 .17 
2.0 6.70 0.14 0.99S 1 1.000 0.995 6.74 0 .14 
2.S 6.27 0.11 0.99S 0 ----- 0.995 6.27 0.11 

4 1.1 3.27 0.04 o. 718 S8 0.6SS o. 700 3.48 0.04 
1. 3 3.31 0.04 o. 760 50 0.680 0.740 3.48 0.04 
l.S 3.31 0.04 o. 769 44 o. 773 o. 770 3.46 0.04 
2.0 3.32 0.04 0.811 31 0.677 0.790 3.43 0.04 
2.5 3.31 0.04 0.828 26 0.654 0.80S 3.40 0.04 

9 1.1 s.s6 0.12 0.921 35 0.629 o. 870 6.17 0.14 
1.3 S.49 0.12 0.932 23 0.478 0.880 s.90 0.13 
l.S 5.26 0.11 0.943 26 0.6S4 0.90S 5.7S 0.13 
2.0 S.09 0.10 0.9S7 13 0.923 0.9S5 S.34 0.11 
2.S 4.87 0.09 0.963 9 0.889 0.960 S.06 0.10 

n 

-0.06 
-0.03 
0.02 
0.06 
0.08 

o. 32 
0.34 
0.35 
0.39 
0.41 

o. 32 
0.34 
0.37 
0.42 
0.43 

0.42 
0.4S 
0.49 
o.s2 
0.55 

0.01 
0.12 
0.16 
0.19 
0.21 

0.29 
0.33 
0.37 
o. 44 

N 0.47 N 



TABLE IV (Continued) 

Untruncated part Truncated' Over all 

/j,fc P* n* r N S(N) p T p• P" R S(N) Tl 

0.95 13 1.1 7 .01 0.16 0.954 26 0.500 0.895 7.79 0.20 0.36 
1.3 6.53 0.1.5 0.955 24 0.792 0.935 7.31 0.20 0.43 
1.5 6. 70 0.15 0.962 15 0.867 0.955 7.18 0.18 0.45 
2.0 6.68 0.16 '0.974 6 0.833 0.970 6.87 0.17 0.48 
2.5 6.08 0.13 0.979 5 0.600 0. 970 6.25 0.15 0.53 

0.99 24 1.1 11.56 0.30 0.985 6 1.000 0.985 11.93 o. 32 0.50 
1. 3 10.42 0.25 0.990 6 0.833 0.985 10.82 0. 30 0.55 
1.5 9.98 0.23 0.990 2 1.000 0.990 10.12 0.25 0.58 
2.0 8.98 0.19 0.995 1 1.000 0.995 9.06 0.20 0.62 
2.5 8.41 0.17 1.000 0 ----- 1.000 8.41 0.17 0.65 

0.70 o. 75 6 1.1 4.34 0.08 0.806 61 0.656 o. 760 4.85 0.08 0.20 
1. 3 4.37 0.08 0. 841 55 0.709 0.805 4.82 0.08 0.25 
1.5 4.38 0.08 0.849 48 0.708 0.815 4. 77 0.08 0.27 
2.0 4.29 0.08 0.879 35 0. 771 0.860 4.59 0.08 0.33 
2.5 4.21 0.07 0.905 32 0.750 o. 880 4.50 0.08 0.36 

0.90 15 1.1 8.37' 0.22 0.904 23 0.783 0.890 9.14 0.25 0.38 
1.3 7.85 0.21 0.972 24 o. 750 0.945 8. 71 0.25 0.45 
1.5 7. 71 0.20 0.968 15 0.600 0.940 8.26 0.23 0.47 
2.0 7.22 0.16 0.984 8 1.000 0.985 7.54 0.19 0.54 
2.5 6. 77 0.14 0.990 4 1.000 0.990 6.94 0.16 0.58 

0.95 24 1.1 12 .10 0.35 0.956 17 0.941 0.955 13.12 0.40 0.46 
1.3 10 .91 0.33 0.978 14 0.857 0.970 11.83 o. 39 0.52 
1.5 10.86 0.31 0.995 5 0.400 0.980 11. 36 0.34 0.54 
2.0 9.42 0.24 1.000 2 0.500 0.995 9.57 0.26 0.62 
2.5 8.80 0.20 1.000 1 0.000 0.995 8.88 0.21 0.65 

0.99 45 1.1 18.56 0.51 0.979 7 1.000 0.980 19.49 0.60 0.56 
1.3 16.86 0.48 0.995 3 1.000 0.995 17.29 0.54 0.62 
1.5 14.59 0.38 1.000 3 1.000 1.000 15 .05 0.46 0.67 
2.0 12 .98 0. 30 1.000 1 1.000 1.000 13.14 0.34 o. 71 

N 
2.5 12.08 0.28 1.000 0 ----- 1.000 12.08 0.28 o. 74 w 



TABLE IV (Continued) 

Untruncated part Truncated Over all 

Ii* P* n* r fl ~(N) p T P' P" N s (N) Tl 

o. 75 0.75 8 1.1 5.53 0.12 o. 784 61 0.672 o. 750 6.29 0.11 0.21 
1.3 5.45 0.11 o. 821 49 o. 735 0.800 6.08 0.11 0.29 
1.5 5.40 0.11 0.883 55 o. 782 o. 855 6 .12 0.11 0.33 
2.0 5.24 0.10 0.899 31 0.839 0.890 5.67 0.11 0.40 
2.5 5.26 0.10 0.931 25 0.840 0.920 5.60 0.11 0.43 

0.90 22 1.1 11.03 0. 35 0.929 45 0.822 0.905 13.51 0.43 0.39 
1.3 11.44 0.32 0.950 20 0.800 0.935 12.50 0.36 0.45 
1.5 10.42 0.29 0.959 7 1.000 0.960 10.83 0.32 0.54 
2.0 9.77 0.27 1.000 4 o. 750 0.995 10.02 0.29 0.59 
2.5 8. 77 0.21 1.000 2 1.000 1.000 8.90 0.23 0.64 

0.95 35 1.1 15.89 0.53 0.961 20 o. 750 0.940 17.81 0.63 0.49 
1.3 14.78 0.52 0.963 9 0.889 0.960 15 .69 0.58 0.55 
1.5 13.73 0.44 0.969 4 0.750 0.965 14.16 0.48 0.60 
2.0 11.86 0.32 0.995 l 1.000 0.995 11.98 0.34 0.67 
2.5 10. 72 0.26 0.995 1 1.000 0.995 10.85 0.29 o. 70 

0.99 67 1.1 26.30 0.89 1.000 6 1.000 1.000 27.52 0.99 0.59 
1.3 23.66 0.71 1.000 2 1.000 1.000 24.09 0.77 0.64 
1.5 20.58 0.59 1.000 0 ----- 1.000 20.58 0.59 o. 70 
2.0 17 .15 0.40 1.000 0 ----- 1.000 17.15 0.40 0.75 
2.5 15 .15 0.29 1.000 0 ----- 1.000 15.15 0.29 0.78 

0.80 0.75 11 1.1 7.39 0.19 0.813 60 0.600 0.749 8.48 0.18 0.23 
1.3 6.94 0.17 0.867 56 0.679 0.814 8.09 0.18 0.32 
1.5 6.80 0.14 0.898 42 0.786 0.874 7.69 0.17 0.40 
2.0 6.85 0.15 0.947 28 0.821 0.930 7.43 0.16 0.46 
2.5 6. 72 0.14 0.989 20 0.700 0.960 7.15 0.16 0.49 

0.90 35 1.1 17.71 0.60 0.905 32 o. 750 0.880 20.48 0.68 0.40 
1.3 16.32 0.54 0.952 14 0.857 0.945 17.63 0.60 0.52 
1.5 14.66 0.46 0.984 8 0.875 0.980 15.48 0.52 0.59 
2.0 12.97 0.985 1 1.000 0.985 13.08 0.39 0.66 
2.5 11. 29 0.29 1.000 0 ----- 1.000 11.29 0.29 0.71 N 

~ 



TABLE IV (Continued) 

Untruncated part Truncated Over all 

fl* P* n* r N s.(N) p T P' P" N S(N) n 

0.95 56 1. 1 24.85 0.92 0.935 15 0.600 0.910 27 .19 1.03 0.49 
1.3 21.94 o. 72 0.990 8 0.875 0.985 23.30 0.84 0.60 
1.5 20.04 0.64 0.990 2 1.000 0.990 20.40 0.69 0.65 
2.0 16.46 0.47 0.995 0 ----- 0.997 16.46 0.47 o. 72 
2.5 14 .08 0.34 1.000 0 ----- 1.000 14.08 0.34 0. 76 

0.99 110 1.1 41.84 1.43 0.990 1 1.000 0.990 42.18 1.47 0.62 
1. 3 34.41 1.10 1.000 0 ----- 1.000 34.41 1.10 0.69 
1.5 29.92 o. 79 1.000 0 ----- 1.000 29.92 o. 79 0.73 
2.0 23.29 0.55 1.000 0 ---- 1.000 23.29 0.55 o. 79 
2.5 20.09 0.37 1.000 0 ----- 1.000 20.09 0.37 0.82 

0.85 0.75 18 1.1 11.19 0.35 0.838 70 . 0.671 0.780 13.57 0.32 0.31 
1. 3 10.61 0.31 0.914 61 o. 705 0.850 12.87 o. 32 0.40 
1.5 10.49 0.29 0.968 42 0.643 0.900 12.07 0.31 0.47 
2.0 9.87 0.25 0.983 27 0.741 0.950 10.97 0.29 0.54 
2.5 9.42 o. 22 0.989 11 0.818 0.980 9.90 0.25 0.60 

0.90 64 1.1 27. 75 0.94 0.936 27 0.444 0.870 32.65 1.20 0.47 
1. 3 25.78 1.01 0.974 10 0.900 0.970 27.69 1.12 0.60 
1. 5 23.40 0.83 0.995 5 1.000 0.995 24.41 0.92 0.66 
2.0 18. 72 0.61 0.995 0 ----- 0.995 18. 72 0.61 0.74 
2.5 15.79 0.43 1.000 0 ----- 1.000 15.79 0.43 0.78 

0.95 104 1.1 40.76 1.48 0.990 5 0.800 0.985 42.34 1.60 0.61 
1. 3 33.29 l.21 1.000 2 1.000 l.000 34.00 l. 30 0.69 
1.5 28.61 0.91 1.000 1 1.000 1.000 28.99 0.98 o. 74 
2.0 22.54 0.67 1.000 0 ----- 1.000 22.54 0.67 0.79 
2.5 19.46 0.44 1.000 0 ----- 1.000 19.47 0.44 0.82 

0.99 206 1.1 70.36 2.51 0.995 3 1.000 0.995 72.39 2. 73 0.65 
1. 3 54.10 1.70 1.000 0 ----- l.000 54.10 1. 70 o. 74 
1. 5 45.54 1.29 1.000 0 ---- 1.000 45.54 l.29 0.78 
2.0 33.31 o. 71 l.000 0 ---- 1.000 33.31 o. 71 0.84 
2.5 28.97 0.52 1.000 0 ----- l.000 28.97 0.52 0.86 N 

VI 



TABLE IV (Continued) 

Untruncated part Truncated Over all 

fl* P* n* r N S(N) p T P' P" N S(N) n 

0.90 0.75 43 1.1 24. 36 0.83 0.888 66 0.636 0.805 30.51 0.83 o. 34 
1.3 22.99 0. 72 0.945 37 o. 757 0.910 26.70 0.80 0.49 
1.5 21.09 0.67 0.977 26 0.769 0.950 23.94 0.78 0.56 
2.0 17.96 0.54 0.995 5 1.000 0.995 18.59 0.60 0.67 
2.5 15.67 0.43 1.000 2 0.500 0.995 15.95 0.47 o. 72 

0.90 149 1.1 64.42 2.38 0.967 16 0.875 0.960 71.19 2.73 0.55 
1. 3 51.62 2.02 0.995 1 0.000 0.990 52.11 2.07 0.68 
1.5 39.48 l. 34 0.995 0 ---- 0.995 39.48 1.34 0.76 
2.0 29.42 o. 77 1.000 0 ----- 1.000 29.42 o. 71 0.82 
2.5 24.30 0.55 1.000 0 ---- 1.000 24.30 0.55 0.85 

0.95 245 1.1 93.48 3.79 0.990 5 0.600 0.980 97 .27 4.06 0.62 
1.3 67.56 2.21 0.995 1 1.000 0.995 68.45 2. 37 0.73 
1.5 51. 97 1.57 1.000 0 ----- 1.000 51.97 1.57 0.80 
2.0 36.58 0.77 1.000 0 ----- 1.000 36.58 0. 77 0.86 
2.5 31.18 0.60 1.000 0 ---- 1.000 31.18 0.60 0.88 

0.99 489 1.1 147.93 5.55 1.000 0 ----- 1.000 14 7. 93 5.55 0.70 
1.3 98.50 2. 71 1.000 0 ----- 1.000 98.50 ~- 71 0.80 
1.5 76.82 2.03 1.000 0 ----- 1.000 76.82 2.03 0.84 
2.0 53.55 1.00 1.000 0 ----- 1.000 53.55 1.000 0.89 
2.5 44.98 0.67 1.000 0 ---- 1.000 44.98 0.67 0.91 

0.95 0.75 17.4 1.1 89.17 3.36 0.948 47 0.766 0.905 109.11 3.62 0.48 
l. 3 71. 33 2.43 0.995 11 1.000 0.995 76.98 2.83 0.67 
1.5 57.45 1. 81 1.000 1 1.000 1.000 58.03 1.89 0.75 
2.0 38.45 1.01 1.000 0 ----- 1.000 38.45 1.01 0.83 
2.5 31. 77 0.70 1.000 0 ----- 1.000 31. 77 0.70 0.86 

0.90 626 1.1 217.63 8.79 0.984 7 0.714 0.975 231.93 10.01 0.66 
1. 3 134.56 4.95 1.000 0 ----- 1.000 134.56 4.95 0.81 
1.5 98.19 2.97 1.000 0 ----- 1.000 98.19 2.97 0.86 
2.0 64.37 1.34 1.000 0 ----- 1.000 64.37 1. 34 0.91 
2.5 51.99 0.91 1.000 0 ---- 1.000 51.99 0.91 0.93 N 

°' 



TABLE IV (Continued) 

Untruncated part Truncated 

6* P* n* r N S(N) p T P' 

0.95 1030 1.1 277.23 11.14 1.000 0 -----
1.3 151.60 4.57 1.000 0 ------
1.5 112.06 2.69 1.000 0 ------

.2.0 75.13 1. 31 1.000 0 ------
2.5 62.45 0.87 1.000 0 ------

0.99 2058 1.1 482.37 17.77 1.000 0 -----
1.3 260.78 6.51 1.000 0 ------
1.5 187.16 4.07 1.000 0 ------
2.0 125. 50 1.95 1.000 0 -----
2.5 100.08 1.24 1.000 0 ------

Over all 

P" N S(N) 

1.000 277.23 11.14 
1.000 151.60 4.57 
1.000 112.06 2.69 
1.000 75 .13 1. 31 
1.000 62.45 0.87 

1.000 482.37 17. 77 
1.000 260.78 6.51 
1.000 187.16 4.07 
1.000 125. 50 1.95 
1.000 100.08 1.24 

n 

0.74 
0.86 
0.90 
0.93 
0.94 

0.77 
0.87 
0.91 
0.94 
0.95 

N 
-.._J 
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Remark 3.8. In Table IV, that is,the cases not in the LFC, one may 

note that P" as well as the over all saving n increases quite consider-

ably as the value of r increases. 

Remark 3. 9. While computing "saving", there is an alternative way 

to define it. Using interpolations or extrapolations in Table G.l of 

Gibbons et al. (1977), we first compute n** = n('6.*, P"), the sample size 

required by the FSR to achieve minimum protection P" (i.mder the LFC). 

The "over all saving p" is now computed as (1 - N(n**)-1), where N is 

the "over all" average sample size. In Table V we present some values 

of p for the case of both the means being i.mknown and having truncation 

at n*. 

0.50 

0.60 

0.70 

o. 75 

0.80 

0. 85 

0.90 

0.99 

TABLE V 

SOME VALUES OF p FOR BOTH THE MEANS 
UNKNOWN AND TRUNCATION AT n* 

0. 75 0.90 0.95 

0.00 -0.04 0.22 

0.15 -0.02 0.13 

0.20 0.07 0 .24 

0 .11 0.20 0.27 

0.13 0.08 0.38 

o. 19 o. 32 -0.10 

0. 21 0.46 0.37 

0.20 -0.00 0.54 

0.99 

0.00 

0.64 

0.28 

0.20 

0.38 

0.3~ 

a.so 

0.45 
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3.3.Z. Use of Wald's Bol.mdaries and Moderate 

Sample Performance 

We are still going to decide for H1 or Hz where H1:cr12 = 0*crz 2 , and 

Hz:crz2 = o*cr12. We let type I and type II errors be equal, that is, 

a=$ = ~(1-P*). We now borrow some notations from the proof of theorem 

3.1 (p. 90-91), and let U , V , C, D mean the same things as there then 

Wald's (1947) sequential probability ratio test (SPRT) will look like this: 

RZ (Z): N' (P*) ::: N' = inf {n~Z :n-1 ~ Vn in ( (l+P*) / ( 1-P*)]}, 

= co if no such n. 

We accept H1 or Hz if Unn-l < (1-P*)/(l+P*) or Unn-1 > (l+P*)/(:-P*), 

respectively. 

The trl.mcated version of R2(Z), at stage m is defined as follows: 

R2*(Z): If the procedure R2(Z) reaches the mth stage, but would need 

more samples to stop, we truncate the sequence and decide for H1 or Hz 

m-1 m-1 
according as Um .::_ 1 or Um > 1, respectively 

It is very easy to check that, with probability one, the random sam-

ple size required for the rule Rl(Z) to stop is at most as large as that 

required by the rule R2(Z). 

We can prove the following theorem in the same way we proved our 

theorem 3.1 on pp. 90-91. The proof is omitted. 

Theorem 3.Z. For fixed µl' µz in (-oo, oo) and cr1, crz in (O, 00), for 

either hypothesis H1 or Hz we have for the rule R2(2): 

l (N - C*) /D* -+ N(O, 1), as P* -+ 1, where 
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The Table VI is much like Table I except that we now use the rule 

R2*(2) for simulation. All the entries are self explanatory as earlier. 

Under the heading "asymptotic" we provide the values of C* and D" = D* 

(200)-~. One may note that the performance of Rl*(2) is better than that 

of R2*(2). This is quite expected in view of our remarks made in the 

paragraph just before theorem 3.2. 

3.3.3. Only One Population Mean Known 

Without any loss of generality we may assume that µ1 is known while 

µ2 is unknown. The basic structure of notations will remain the same as 

in subsections 3.3.1 and 3.3.2; however, we redefine s 1n2 = n- 1j~ 1 (x 1 j -
n n 

µ1) 2 , s2n2 = (n-1)-1 .E (XzJ· - x2n) 2 , where x2n = n-1.E x2J.' for n>2 and 
J=l J=l 

let T = s 2/s 2 e = cr 2/cr 2. Then f(T le)= a(n)T ~(n-3)e ~(n-1) 
ln 2n ln ' 1 1 2 ln 1 ln 1 

I {n+(n-l)81T1n}~(2n-l), .•. (3.12) 

where a(n) = {r~(2n-l)}{r~r~(n-1)}-ln~(n-l)~(n-l). 

From (3.12) it follows that 

f /f = { ~+n-l(n-l)T }~(2n-l){l+n-l(n-1) o*T }~(-2n+l) o*-~. 
ln 2n ln ln (3.13) 

As in the rule Rl(2), we define the following rule: 

R3(2): N inf{n>Z such that f 1 /f? i I(P*)}, ... (3.14) 
n ~n 

oo if no such n. 

At stage N, we accept H1 or H2 according as the lower or upper boundary 

is crossed. 

The form in (3.14) can be equivalently stated as: 



TABLE VI 

SIMULATION RESULT FOR WALD'S RULE R2*(2), 
BOTH THE MEANS UNKNOWN 

UntrWlcated part TrWlcated Over all Asymptotic 

A* P* n* N S(N) p T P' P" N S(fl) I) c* D" 

0.50 0.75 3 3.00 o.oo 0.769 92 0.674 o. 725 3.00 0.00 -0.03 2.58 O. ll 
Q.90 6 4.54 0.06 0.914 49 0.816 0.890 4.90 0.06 0.17 3.91 0.13 
0.95 8 5.78 O. ll 0.954 47 0.851 0.930 6.30 0.11 0.20 4. 86 0.15 
0.99 14 8.29 0.17 0.989 14 0.929 0.985 8.69 0.19 0.38 7.02 0.17 

0.60 o. 75 4 3.64 0.05 0.733 llO o. 700 o. 715 3.84 0.03 -0.0l 4. 32 0.23 
0.90 9 6.32 0.12 0.935 61 0.656 0.850 7.14 0.12 0.16 6.54 0.28 
0.95 13 8.64 0.21 0.968 45 o. 778 0.925 9.62 0.21 0.24 8.14 0.32 
0.99 24 13.01 0.32 l.000 . 14 0. 786 0.985 13.78 0.36 0.42 11. 75 0.38 

0.10 o. 75 6 4.99 0.08 0.802 104 o. 702 0.750 5.52 0.05 0.08 8.27 0.61 
0.90 15 9.99 0.24 0.977 71 o. 789 0.910 11. 77 0.23 0.22 12 .51 0.75 
0.95 24 13.18 0.37 0.957 37 o. 757 0.920 15.19 0.42 0.35 15.56 0.84 
0.99 45 23.05 0.69 0.989 18 0.833 0.975 25.03 o. 77 0.44 22.49 1.01 

0.75 o. 75 8 6.52 O. ll 0.845 116 0.664 0.740 7. 38 0.08 0.07 12.39 1. 12 
0.90 22 13.59 0.39 0.911 65 0.738 0.855 16. 33 0.38 0.22 18.74 1.38 
0.95 35 17.95 0.49 0.955 44 0. 773 0.915 21. 70 0.63 o. 36 23.32 1.54 
0.99 67 . 32. 70 1.02 0.984 16 o. 750 0.965 35.44 l.15 0.46 33.69 l.85 

0.80 0. 75 11 8. 74 0.20 0.820 139 0. 727 0.755 10.31 0.10 0.07 20.18 2.33 
0.90 35 20.60 0.62 0.955 66 0.697 0.870 25.35 0.63 0.25 30.53 2.87 
0.95 56 31.24 0.96 0.968 45 0.867 0.945 36.81 l.04 0.34 37.99 3.20 
0.99 110 50.92 l. 74 0.994 21 0.905 0.985 57 .12 2.02 0.48 54.88 3.84 

0.85 o. 75 18 12. 73 0.38 0.884 131 0.649 0.730 16.18 0.22 0.13 37.48 5.90 
0.90 64 37.88 l.25 0.928 62 o. 758 0.875 45.98 l.22 0.26 56. 71 7.25 
0.95 104 53. 72 l. 76 0.975 39 0.846 0.950 63.53 2.00 0.39 70.56 8.09 
0.99 206 95.04 3.00 0.995 11 0.909 0.990 101.15 3. 35 0.51 101.95 9. 72 

0.90 o. 75 43 29.11 0.96 0.863 127 0.685 o. 750 37.93 0.59 0.12 88.29 21. 32 
0.90 149 84; 10 2.54 0.929 59 0.797 0.890 103.25 2.76 0.30 133.60 26.22 
0.95 245 115 .11 4.40 0.987 43 o. 791 0.945 143.04 5.12 0.41 166.23 29.25 
n.99 489 220.93 7.40 l.000 11 l.000 1.000 235. 68 8.22 0.52 240.18 35.16 

0.95 0.75 174 114.80 3. 73 0.850 120 0.650 o. 730 150. 32 2.54 0.11 370.48 183.23 
0.90 626 343;92 12.33 0.971 61 0.688 0.885 429.89 12. 57 0.30 560.59 225.39 
0.95 1030 507 .15 17.92 0.983 24 o. 750 0.955 569.89 19.84 0.45 697.51 251.41 
0.99 2058 902.33 33.74 0.994 22 0.636 0.955 1029.46 39.47 0.48 1007. 79 302.20 

VJ 
I-' 
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N = inf{n~2 such that n-~~-Wn2n(l-P*)}, where 

Remark 3. 10 . 
!.:: 

The asymptotic (as P*+l) distribution N2 (WN-a)/b and 

!.:: N2 (WN-1-a)/b are both standard normal, where a and b are the same as in 

the proof of theorem 3.1. The asymptotic distribution (as P*+l) of 

(N-C)/D is again N(O,l), where the numbers C and Dare defined in (3.8) 

and (3.9), respectively, N being given by (3.14). This can be justified 

along the lines of the proof of theorem 3.1 given on page 90 of Appendix 

B. The truncated version of R3(2), namely R3*(2), is exactly the same 

as Rl*(2) except that we use f 1n/fzn from (3.12) in the rule. The Tables 

VII and VIII should be read just like the Tables I and II. 

Remark 3. 11. One can see, however, that the average over-all sam-

ple sizes N in Tables VII and VIII are mostly smaller than the correspond-

ing entries in Tables I and II. This is naturally expected to happen 

because one known mean adds some additional information in some sense, 

which is reflected in our ability to decide for H1 or Hz somewhat earlier. 

But, there is no rigorous mathematical justification known to us at this 

stage for this to be so. 

3.~. The Special Case of Three Populations 

In the case of all the µ's being tmknown, we use the rules Rl(k) 

and Rl*(k). specialized fork= 3. In this situation, one can prove the 

following theorem without much difficulty. We omit its proof. 

Theorem 3.3: For fixed µi in (-00 , 00) and cri2 in (0, 00), for each 

hypothesis H., i=l, 2, 3, we have for the rule Rl(3): 
l 
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N is a non-decreasing function of P*, N-l-00 a.s. as P*+l, and N/C**+l ~ 

~ P*+l, where 

C** = {-2,Q,n 12(1-P*)}{3Q,n((l+ o* + o*2)/3 o*)}- 1 • 

In Table IX we present simulation results for the rule Rl(3) trun-

cated at m=n*=V+l where v comes from the Table G.1 of Gibbons et al. 

(1977) for each pair (!.'::.*, P*) and we let 5* = !:::.* 2 • We generate normal 

populations in the same way we explained at the beginning of subsection 

3.3.1. We generate rr 1 as N(O, 1) and both Il2 and rr 3 are generated as 

N(O, 5 *- 1), so that the hypothesis H1 is deliberately made to be true. 

-We estimate N, S(N) for the "untruncated part" and "overall" as in Table 

I. Under each of these headings, when we report "proportion" we sub-

divide it into three parts--a part is labeled as proportion of times we 

decided for Hi, i=l, 2, 3, with that particular category of heading. 

For each pair of (!.'::.*, P*) we estimate the quantities from 200 repeti-

tions in columns four and beyond. The amount of "saving n" is computed 

in the same way as in Table I. 

Remark 3.12: Comments like those in remark 3.7 are still valid for 

Table IX for the overall proportion of times we decide for H1• 

3.4.1. Only One Mean Known 

Without any loss of generality we assume that Jll is known, while JJ2' 
n 

]J 3 are both unknown. We let s 1n2 n-ljgl (Xlj - µ1)2, s2n2 and S3n2 

be the same as in section 3 .2 for n>2. We define, as earlier, 'I n 

tions of section 3.3, we get 
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n-l(n-l)T 8 }-~(3n-2) 
2n 2 ' 

where b(n) =· {n- 1 (n-1) }n-lr~(3n-2) j{r~{r'2(n-l) }2}. 

As written earlier f jn 

all i :f. j = 1, 2, 3. 

Now.the sequential procedure for this case will be just like Rl(k), 

with k=3, making sure that we work with this new fin/fjn· We also use 

the rule Rl*(k) with m=n*, n* coming from the appropriate Table in G.l 

of Gibbons et al. (1977), for a pair (6*, P*). In Table X we present 

results on simulating this procedure for several pairs of (6*, P*). 

These entries should be interpreted in the same way as in Table IX. 

3.4.2. Exactly Two Means Known 

Without any loss of generality we assume that µl and µ2 are known, 

while µ 3 is unknown. For n~2, we let s 1n2 and s 3n2 be 
n 

subsection 3.4.1, however, we define s 2 2 = n- 1 I (X . 
n j=l 2J 

Tin = S2n2/s1n2, T2n = S3n2/s1n2, we obtain 

the same as in 

f(!nl~) = d(n)(T1nTzn)~(n-3)(8182)~Cn-l)/{l+T1n81+n-l(n-l)T2n82}~(3n-l) 

where d(n) = {n- 1(n-l) }~(n-l){f~(3n-l){r~(n-l) (r~n) 2 ) }-1. 

As earlier, we write f. = f(T le) under H. and we can easily obtain f 1.n/ 
Jn n - J 

fjn for all i :f. j = 1, 2, 3. 

Again, the sequential procedure for this case will look just like 

Rl(k) with k~3, making sure that we substitute these new fin/fjn ratios 

in the rule. We can easily define a truncated version as in subsection 

3.4.2. We report some simulated results on these rules in Table XI, and 

the entries mean the same things as in Tables IX and X. 



l:i.• P* n* 

0.50 0.95 8 

0.99 14 

0.60 0.95 13 

0.99 24 

0.70 0.95 24 

0.99 45 

o. 75 0.95 35 

0.99 67 

0.80 0.95 56 

0.99 110 

0.85 0.95 104 

0.99 206 

0.90 0.95 245 

0.99 489 

0.95 0.95 1030 

0.99 2058 

TABLE VII 

SIMULATION RESULT FOR THE RULE R3(2), ONE OF THE 
TWO MEANS KNOWN AND TRUNCATION AT n* 

Untroocated part Troocate4 Over all 

R S(N) p T pt P" R S(R) 

4.56 0.10 0.933 22 0.682 0.905 4.94 0.12 

6.95 0.19 0.978 19 0.842 0.965 7.62 0~23 

6.57 0.20 0.919 39 0.564 0.850 7.83 0.24 

11.38 0.33 0.979 12 1.000 0.980 12.14 0.38 

12.01 0.38 0.944 23 0.913 0.940 13.39 0.43 

19. 76 0.59 0.979 9· 0.667 0.965 20.90 0.68 

15.73 0.56 0.927 22 o. 727 0.905 17.85 0.66 

27.56 0.96 0.984 10 0.800 0.975 29.54 1.09 

24.41 0.91 0.907 28 0.607 0.865 28.84 1.10 

46.65 1.73 0.990 9 1.000 0.990 49.51 1.90 

45.00 1.66 0.973 14 0.857 0.965 49.13 1.88 

79.78 2.76 0.995 11 0.636 0.975 86. 72 3.31 

106.96 4.05 0.950 20 0.850 0.940 120. 76 4.68 

193.07 7.08 1.000 7 0.857 0.995 203.43 7.84 

423.05 17.05 0.962 17 0.824 0.950 474.64 19.68 

772.23 30.10 0.995 8 0.875 0.990 823.56 33.97 

Asymptotic 

l'l c . D' 

0.35 3.97 0.13 

0.44 6.11 0.16 

0.33 6.65 0.29 

0.49 10.23 0.36 

0.44 12. 73 o. 76 

0.52 19.56 0.94 

0.46 19.07 1.39 

0.55 29.31 1. 72 

0.43 31.06 2.89 

0.55 47.75 3.58 

0.54 57.70 7.32 

0.57 88.70 9.07 

0.50 135.93 26.45 

0.59 208.96 32.80 

0.54 570. 36 227. 35 

0.60 876.78 281.88 
w 
V1 
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TABLE VIII 

SIMULATION RESULT FOR THE RULE R3(2), ONE OF 
THE TWO MEANS.KNOWN AND TRUNCATION 

AT n* AND 2n* 

Untruncated £art Truncated Ove~ all As):'.!!!£COtic 

I!.* P* n* N S(N) p . T P' P" ii S(N) n c D' 

0.50 o. 75 3 2.45 0.04 0.631 59 0.525 0.600 2.62 0.03 -0.09 1.84 0.09 
6 3.06 0.08 0.687 5 0.800 0.690 3.06 0.08 -0.11 

0.90 6 3.61 0.09 0.837 28 0.536 o. 795 3.94 0.10 0.26 3.06 0.12 
12 4.12 0.13 0.856 5 • 0.800 0.855 4.17 0.13 0.27 

0.60 0.75 4 2.97 0.06 0.677 45 0.622 0.665 3.20 0.06 0.10 3.08 0.20 
8 3.41 0.10 0.679 16 0.688 0.680 3.46 0.09 0.05 

0.90 9 4.93 0.13 0.872 36 0.639 0.830 5.66 0.16 0.32 5.11 0.25 
18 6.08 0.24 0.881 7 o. 714 0.875 6.18 0.23 0.29 

o. 70 0.75 6 4.07 0.10 o. 709 59 0.542 0.660 4.64 0.09 0.12 5.89 0.52 
12 5.32 0.19 o. 747 14 o. 786 o. 750 5.37 0.18 0.11 

0.90 15 7.90 0.23 0.864 23 0.696 0.845 8. 12 0.26 0.38 9.78 0.66 
30 9.20 0.35 0.864 2 1.000 0.865 9,26 0.35 0.36 

o. 75 o. 75 8 5.14 0.14 o. 735 68 0.588 0.685 6.11 0.13 0.16 8.82 0.95 
16 6.83 0.25 o. 756 20 0.550 0.735 6.95 0.22 0.11 

0.90 22 11.96 0.40 0.909 35 o. 771 0.885 13. 72 0.42 0.37 14.66 1.22 
44 14.72 0.59 0.913 5 1.000 0.915 14.91 0.58 0.33 

0.80 o. 75 11 6.88 0.19 0.780 68 0.559 o. 705 8.28 0.19 0.20 14.37 1.97 
22 8.94 0.31 o. 788 21 0.619 o. 770 9.16 0.28 0.19 

0.90 35 17.91 0.63 o. 839 32 0.781 0.830 20.65 o.69 0.36 23.88 2.53 
70 22.28 0.98 0.857 4 o. 750 0.855 22.54 0.97 0.32 

0.85 0.75 18 10.52 0.35 o. 746 10 0.571 0.685 13.14 0.34 0.24 26.70 4.98 
36 15;08 0.63 o. 757 19 0.632 0.745 i5.36 0.57 0.19 

0.90 64 30.64 1. 12 0.920 38 0.579 0.855 36.98 1.29 0.39 44.35. 6.41 
126 41.46 1.97 o.929 3 0.333 0.920 41.80 1. 95 0.36 

0.90 o. 75 43 24.37 0.84 0.779 69 o.609 o. 720 30.80 0.84 0.25 62.90 17.99 
86 33.30 1. JS' o. 778 24 0.542 o. 750 34.46 1.24 0.20 

0.90 149 68", 70 2.56 ·0.950 39 0.718 0.905 84.36 3.05 0.44 104.48 23.19 
298 91. 76 4.44 0.938 6 0.833 0.935 93.48 4.36 0.40 

0.95 o. 75 174 97 .69 3.73 o. 764 73 o. 712 o. 745 125.54 3.52 0.27 263. 94 154 .66 
348 147.25 6.32 0.805 15 0.600 o. 790 149.26 5.86 0.19 

0.90 626 273.47 11.43 0.894 30 0.600 0.850 326.35 13.19 0.45 438.39 199.32 
1252 363.59 18.67 0.890 0 0.890 363.59 18.67 0.41 



TABLE IX 

SUIULATION RESULT FOR THE RULE Rl (3), ALL THE THREE 
MEANS' UNKNOWN AND TRUNCATION AT n* 

---·--·-·-·-----·--------------------------------------------------·-----------------· 

6* I'* n* 

0.51) o. 75 5 

0.90 8 

0.95 10 

0.99 17 

0.60 0.75 6 

0.90 12 

0.95 17 

0.99 28 

o. 70 0. 75 11 

0.90 22 

0.95 32 

0.99 54 

0.75 0.75 15 

0.90 33 

0.95 !18 

0.99 82 

ti 

Untrw1cated part 

proportion 
S(N) 111 112 H3 

TrWlcated Over all 

proportion proportion 
T Hl H2 H3 . Hl H2 H3 

4.13 0.07 0.800 0.082 0.118 90 0.600 0.256 0.144 0.710 0.160 0.130 

5.80 0.12 0.911 0.022 0.067 66 0.697 0.091 0.212 0.840 0.045 0.115 

7.11 0.14 0.979 0.014 0.007 59 0.780 0.135 0.085 0.920 0.050 0.030 

10.06 0.22 0.983 0.017 0.000 25 0.800 0.120 0.080 0.960 0.030 0.010 

5.12 0.09 0.756 0.180 0.064 122 0.574 0.189 0.237 0.645 0.185 0.170 

8.68 0.18 0.962 0.038 0.000 67 0.776 0.119 0.105 0.900 0.065 0.035 

10.85 0.24 0.954 0.020 0.026 48 0.771 0.104 0.125 0.910 0.040 0.050 

16.91 0.38 1.000 o.ooo o.ooo 17 0.941 0.059 o.ooo 0.995 0.005 0.000 

8.38 0.18 0.839 0.097 0.064 107 0.636 0.178 0.186 0.730 0.140 0.130 

14.66 0.35 0.892 0.065 0.043 61 0.738 0.098 0.164 0.845 0.075 0.080 

19.09 0.52 0.956 0.025 0.019 40 0.675 0.125 0.200 0.900 0.045 0.055 

29.22 0.80 0.989 0.006 0.005 24 0.750 0.083 0.167 0.960 0.015 0.025 

10.99 0.24 0.770 0.110 0.120 100 0.650 0.210 0.140 0.710 0.160 0.130 

20.94 0.58 0.930 0.021 0.049 58 0.724 0.172 0.104 0.870 0.065 0.065 

28.14 0.72 0.982 o.ooo 0.018 33 0.727 0.121 0.152 0.940 0.020 0.040 

44.68 1.17 0.995 0.005 0.000 14 0.786 0.143 0.071 0.980 0.015 0.005 

N S(N) n C** 

4.52 0.05 0.05 3.48 

6.53 0.11 0.13 4.57 

7.96 0.14 0.18 5.40 

10.93 0.25 0.34 7.31 

5.66 0.05 -0.10 5.31 

9.79 0.17 0.18 7.21 

12.33 0.26 0.24 8.65 

17.86 0.41 0.37 11.99 

9.78 0.13 0.09 9.51 

16.90 0.34 0.18 13.26 

21.67 0.55 0.29 16.10 

32.19 0.90 0.39 22.68 

13.00 0.19 0.08 13.90 

24.44 0.57 0.23 19.59 

31.42 0.80 0.34 23.89 

47.29 1.28 0.42 33.88 w 
"-.I 



TABLE IX (Continued) 

---------~------ ··---------

6* P* n* N 

Un truncated part 
proportion 

s (l:l) 111 H2 

Truncated 
proportion 

H3 T 1!1 112 

Over all 
proportion 

H3 111 "2 113 fl S(N) fl C** 

0.80 0.75 211 16.40 0.44 0.857 0.044 0.099 109 0.670 0.147 0.183 0.755 0.100 0.145 20.54 0.33 0.15 22.22 

0. 90 5 3 32.86 0.87 0.910 0.055 0.034 55 0.782 0.145 0.073 0.875 0.080 0.045 38.40 0.90 0.26 31.58 

0.95 77 42.00 1.21 0.964 0.030 0.006 34 O.B23 0.059 O.llB 0.940 0.035 0.025 47.95 1.37 0.37 38.65 

0.99 134 69.74 2.00 0.989 0.011 0.000 19 0.842 0.158 0.000 0.975 0.025 0.000 75.85 2.25 0.43 55.08 

0.85 0.75 ~2 27.76 0.79 0.913 0.049 0.038 97 0.506 0.247 0.247 0.715 0.145 0.140 34.67 0.65 0.13 l10. 7l 

0.90 97 55.34 1.63 0.930 0.051 0.019 43 0.698 0.093 0.209 0.880 0.060 0.060 64.30 1.76 0.32 58 .21 

0.95 1!12 75.83 2.24 0.941 0.024 0.035 30 0.867 0.133 0.000 0.930 0.040 0.030 85.76 2.54 0.38 71.44 

0.99 251 124.41 3.35 0.995 0.000 0.005 10 1.000 0.000 0.000 0.995 o.ooo 0.005 130.74 3.73 0.48 102.18 

0.90 0.75 95 60.13 1.90 0.772 0.132 0.096 86 0.628 0.209 0.163 0.710 0.165 0.125 75.13 1.63 0.16 95.01 

0.90 227 127.31 4.02 0.892 0.054 0.054 51 0.627 0.157 0.216 0.825 0.080 0.095 152.73 4.29 0.27 136.44 

0.95 3311 173.34 5.72 0.958 0.012 0.030 34 0.912 0.029 0.059 0.950 0.015 0.035 200.66 6.39 0.40 167.77 

0.99 592 299.14 9.76 0.978 0.005 0.017 18 0.722 0.056 0.222 0.955 0.010 0.035 325.50 10.68 0.43 240.54 

0.95 0.75 391 243.86 8.31 0.864 0.100 0.036 90 0.633 0.245 0.122 0.760 0.165 0.075 310.97 6.96 0.22 396.59 

0.90 948 504.22 16.83 0.904 0.057 0.038 43 0.605 0.163 0.232 0.840 0.080 0.080 599.63 18.48 0.32 570.91 

0.95 1399 728.72 22.67 0.937 0.023 0.040 27 0.704 0.185 0.111 0.905 0.045 0.050 819.21 25.45 0.39 702.78 

0.99 2~90 1159.78 35.01 0.995 0.000 0.005 15 0.933 0.067 0.000 0.990 0.005 0.005 1259.55 40.80 0.49 1008.96 

-------------------·-----·- w 
00 



II* P* n* 

0.50 0.75 5 

0.90 8 

o. 9.5 10 

0.99 17 

0.60 0.75 6 

0.90 12 

0.95 17 

0.99 28 

0.70 0.75 11 

0.90 22 

0.95 ·12 

0.99 5li 

0.75 0.75 .15 

0.90 31 

0. 95 l18 

0.99 82 

TABLE X 

SIHlJLATION RESULT FOR THE RULE Rl(3), ONE OF THE THREE MEANS 
KNOWN, OTHER TWO UNKNOWN AND TRUNCATION AT n* 

ti 

Un t_runcated part 

proportion 

s <i-i> 111 112 

~~~~~~~~~~~~~~-~~---

Truncated 

proportion 

113 T H1 112 113 

Over all 

proportion 

"1 112 H3 

3.91 0.08 0.698 0.129 0.173 84 0.619 0.226 0.155 0.665 0.170 0.165 

5.50 0.12 0.903 0.035 0.063 56 0.714 0.089 0.197 0.850 0.050 0.100 

6.65 0.14 o.939 0.051, 0.001 52 0.901, 0.019 o.on o.930 0.045 0.025 

9.56 0.22 0.994 0.006 0.000 22 0.773 0.091 0.136 0.970 0.015 0.015 

4.83 0.10 0.699 0.194 0.108 107 0.608 0.168 0.224 0.650 0.180 0.170 

8.38 0.19 0.940 0.045 0.015 67 0.821 0.075 0.104 0.900 0.055 0.045 

10.40 0.25 0.955 0.013 0.032 46 0.783 0.109 0.109 0.915 0.035 0.050 

16.15 0.37 0.995 0.000 0.005 14 0.857 0.143 0.000 0.985 0.010 0.005 

7.88 0.21 0.809 0.085 0.106 106 0.642 0.123 0.236 0.720 0.105 0.175 

14.71 0.38 0.921 0.043 0.036 61 0.738 0.147 0.115 0.865 0.075 0.060 

18.34 0.53 0.957 0.031 0.012 37 0.622 0.189 0.189 0.895 0.060 0.045 

27.71 0.82 0.983 0.006 0.012 27 0.815 0.074 0.111 0.960 0.015 0.025 

10.46 0.27 0.804 0.120 0.076 108 0.667 0.185 b.148 0.730 0.155 0.115 

20.65 0.59 0.919 0.027 0.054 52 0.654 0.192 0.154 0.850 0.070 0.080 

26.88 0.75 0.970 0.012 0.018 32 0.875 0.063 0.062 0.955 0.020 0.025 

43.87 1.18 0.984 0.016 0.000 18 0.944 0.000 0.056 0.980 0.015 0.005 

N S(N) Tl 

4.37 0.06 0.02 

6.20 0.12 0.18 

7.52 0.15 0.23 

10.38 0.26 0.38 

5.46 0.06 -0.05 

9.60 0.18 0.20 

11.92 0.28 0.27 

16.98 0.41 0.39 

9.54 0.15 0.10 

16.94 0.36 0.20 

20.87 0.57 0.31 

31.26 0.95 0.40 

12.91 0.20 0.12 

23.86 0.58 0.23 

30.26 0.84 0.37 

47.31 1.33 0.42 

C** 

3.48 

4.57 

5 .!10 

7. 31 

5.31 

7.21 

8.65 

11. 99 

9.51 

13.26 

16 .10 

22.68 

13.90 

19.59 

23.89 

33.88 w 

'° 



* P* n''I: N 

llntruncated part 
proportion 

S(N) 111 Hz 113 

TABLE X (Continued) 

Truncated 
proportion 

T ll1 Hz 113 JI l 

Over all 
proportion ---~ 

Hz 113 N S(N) C** 
--·---------·-·-·------~--------------------------

0.80 0.75 211 16.40 0.48 0.872 0.053 0.075 106 0.717 0.132 0.151 0.790 0.095 0.115 Z0.113 0.35 0.%0 22.22 

0.90 53 32.61 0.91 0.912 0.054 0.034 53 0.660 O.Z27 0.113 0.845 0.100 0.055 38.02 0.92 0.24 31.58 

0.95 77 41.50 l.Z8 0.953 0.035 0.012 Z9 0.793 0.103 0.104 0.930 0.045 0.025 46.65 1.41 0.38 38.65 

0.99 134 68.04 2.00 0.984 0.005 0.011 16 0.813 0.125 0.06Z 0.970 0.015 0.015 73.31 2.24 0.44 55.08 

0.85 0.75 4Z 28.95 0.85 0.898 0.061 0.041 102 0.598 0.216 0.186 0.745 0.140 0.115 35.61 0.6Z 0.15 40.71 

0.90 97 54.69 1.64 0.937 0.044 0.019 42 0.595 0.143 O.Z6Z 0.865 0.065 0.070 63.58 1.78 0.32 58.Zl 

0.95 l/12 75.84 Z.30 0.964 0.024 0.012 34 0.794 0.118 0.088 0.935 0.030 O.OZ5 87.09 2.60 0.38 71.44 

0.99 251 122.38 3.33 0.995 0.000 0.005 lZ 1.000 0.000 0.000 0.995 0.000 0.005 130.10 3.81 0.48 102.18 

0.90 0.75 95 59.23 1.86 0.811 0.108 0.081 89 0.551 0.292 0.157 0.695 0.190 0.115 75.15 l.63 0.15 95 .01 

0.90 227 125.01 3.84 0.862 0.079 0.059 48 0.688 0.166 0.146 0.820 0.100 0.080 149.119 4.2'; 0.28 136.44 

0.95 334 170.15 5.54 0.959 O.OlZ 0.296 31 0.871 0.065 0.064 0.945 0.020 0.035 195.55 6.29 0.41 167.77 

0.99 592 294.09 9.89 0.978 0.006 0.016 19 0.842 0.053 0.105 0.965 0.010 0.025 322.39 10.88 0.44 240.54 

0.95 0.75 393 2M1.0l1 8.03 0.843 0.087 0.070 85 0.635 0.259 0.106 0.755 0.160 0.085 307.35 6.96 0.22 396.59 

0.90 948 478.59 17.41 0.902 0.065 0.033 47 0.681 0.149 0.170 0.850 0.085 0.065 588.90 19.40 0.34 570.91 

0.95 1399 702.511 23.Z6 0.935 0.030 0.035 30 0.700 0.267 0.033 0.900 0.06.5 0.035 807.01 26.49 0.39 702.78 

0.9Q 2490 1140.51 34.08 0.995 0.000 0.005 17 0.941 0.059 0.000 0.990 0.005 0.005 1255.22 41.03 0.50 1008.96 
+:-
0 



/I* P* n* 

0.50 0.75 5 

0.90 8 

0.95 to 

0.99 17 

0.60 0.75 6 

0.90 12 

0.95 17 

0.99 28 

0.70 0.75 11 

0.90 22 

0.95 32 

0.99 54 

o. 75 0.75 15 

0.90 33 

0.95 48 

0.99 32 

N 

TABLE XI 

SIMULATION RESULT FOR THE RULE R1(3), TWO OF THE THREE 
MEANS KNOWN, ONE UNKNOHN AND TRUNCATION AT n* 

Un trunca led part Trw1cated Over all 

___ p_r_oportlon proportion proportion 
S(N) H1 112 u3 . T H 1 Hz 113 111 H2 H 3 

3.33 0.10 0.928 0.007 0.065 62 0.742 0.065 0.193 0.870 0.025 0.105 

4.89 0.12 0.944 0.013 0.043 39 0.744 0.000 0.256 0.905 0.010 0.085 

5.78 0.16 0.988 0.006 0.005 30 0.833 0.033 0.134 0.965 0.010 0.025 

8.66 0.22 0.995 0.000 0.005 12 0.667 0.083 0.250 0.975 0.005 0.020 

4.25 0.11 0.948 0.009 0.043 85 0.671 0.129 0.200 0.830 0.060 0.110 

7.41 0.20 0.968 0.019 0.013 45 0.800 0.089 0.111 0.930 0.035 0.035 

9.35 0.26 0.988 0.000 0.012 36 0.667 0.111 0.222 0.930 0.020 0.050 

l/1.42 O.l10 0.989 0.005 0.006 10 0.800 0.200 0.000 0.980 0.015 0.005 

7.18 0.19 0.908 0.017 0.075 80 0.713 0.112 0.175 0.830 0.055 0.115 

12.93 0.39 0.949 0.013 0.038 44 0.705 0.132 0.113 0.895 0.050 0.055 

16.98 0.51 0.965 0.018 0.017 29 0.862 0.035 0.103 0.950 0.020 0.030 

26.79 0.81 0.989 0.006 0.005 19 0.684 0.105 0.211 0.960 0.015 0.025 

9.51 0.29 0.876 0.035 0.089 87 0.724 0.092 0.184 0.810 0.060 0.130 

19.14 0.57 0.918 0.027 0.055 54 0.759 0.111 0.130 0.875 0.050 0.075 

25.10 0.76 0.972 0.006 0.022 23 0.870 0.043 0.087 0.960 0.010 0.030 

41.61 1.20 0.995 0.005 0.000 12 0.833 o.ooo 0.167 0.985 0.005 0.010 

ii s <N> 11 

3.85 0.09 0.34 

5.50 0.13 0.32 

6.41 0.18 0.37 

9.16 0.25 0.45 

5.00 0.09 0.25 

8.44 0.21 0.32 

10.73 0.30 0.36 

15. IO 0.43 0.46 

8.71 0.17 0.28 

14.93 0.40 0.32 

19.16 0.57 0.40 

29.18 0.92 0.44 

11.90 0.25 0.27 

22.88 0.60 0.29 

27.73 0.85 0.43 

4 4 . 04 1. 32 0 . 46 

C** 

3.48 

4.57 

5.40 

7.31 

5. 31 

7 .21 

8.65 

11. 99 

9.51 

13.26 

16. IO 

22.68 

13.90 

19.59 

23.89 

33.88 +:-...... 



TABLE XI (Continued) 

-------------
Untruncated part Truncated Over all 

------
proportion proportion proportion 

/\* P* n* N S(N) II1 112 113 T II I 112 H3 - II l H2 113 Iii S(N) 11 C** 
- ------------- ·--- ----------

0.80 0.75 21, lli.65 0.47 0.894 0.027 0.080 87 0.747 0.080 0.172 0.830 0.050 0.120 18.72 0.42 0.30 22.22 

0.90 53 31.23 0.90 0.929 0.032 0.039 45 0.778 0.133 0.089 0.895 0.055 0.050 36.13 0.95 0.31 31.58 

0.95 77 40.99 1.30 0.966 0.017 0.017 23 0.913 o.ooo 0.087 0.960 0.015 0.025 45.14 1.41 0.42 38.65 

0.99 134 67.05 2.08 0.984 0.005 0.011 14 0.786 0.143 0.071 0.970 0.015 0.015 71.74 2.28 0.45 55.08 

0.85 0.75 42 25.61 0.83 0.917 0.033 0.050 80 0.550 0.213 0.237 0.770 0.105 0.125 32.17 0.75 0.25 40.71 

0.90 97 52.06 1.67 0.950 0.037 0.013 39 0.821 0.102 0.077 0.925 0.050 0.025 60.83 1.84 0.39 58.21 

0.95 1/12 72.65 2.30 0.959 0.030 0.012 31 0.839 0.032 0.129 0.940 0.030 0.030 83.40 2.64 0.41 71.44 

0.99 251 119.14 3.57 0.990 0.005 0.005 8 0.875 0.000 0.125 0.985 0.005 0.010 124.41 3.89 0.50 102.18 

0.90 0. 75 95 58.94 1.90 0.867 0.080 0.053 87 0.586 0.264 0.150 0.745 0.160 0.095 74.63 1.66 0.21 95.01 

0.90 227 121.57 4.16 0.918 O.OJl1 0.048 53 0.660 0.151 0.189 0.850 0.065 0.085 149.51 4.50 0.30 136.44 

0.95 334 166.37 5.69 0.982 0.006 0.012 33 0.879 0.030 0.091 0.965 0.010 0.025 194.03 6.48 0.43 167.77 

0.99 592 285.76 9.90 0.989 o.ooo 0.011 22 0.727 0.091 0.182 0.960 0.010 0.030 319.45 11.12 0.44 240.54 

0.95 0.75 393 232.40 7.69 0.866 0.109 0.025 81 0.617 0.222 0.161 0.765 0.155 0.080 297.44 7.22 0.26 396.59 

0.90 948 478.68 17.66 0.916 0.045 0.039 46 0.543 0.283 0.174 0.830 0.100 0.070 586.61 19.51 0.33 570.91 

0.95 1399 708.55 23.29 0.933 0.034 0.033 22 0.682 0.182 0.136 0.905 0.050 0.045 784.50 25.76 0.41 702.78 

0.99 2490 1148.83 34.72 0.995 0.005 0.000 15 1.000 0.000 0.000 0.995 0.005 0.000 1249.42 40.72 o.so 1008.96 

t; 



Remark 3.13: In Tables X and XI, one can see that on the average 

all average sample sizes N in Tables X and XI are mostly smaller than 

the corresponding entries in Table IX. 
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CHAPTER IV 

SELECTING THE LARGEST NORMAL MEAN 

4.1. Defining the Problem 

Suppose there are k(~2) independent normal populations n1, . . . ' 
Tik, where Tii is assumed to have the mean µi and common variance cr 2 (0 < 

cr 2 < co), i•l, 2, ••• , k, Let µ(l) 2_ ••• 2_ µ(k) be the ordered µ-

values. The problem is to select the population having the mean µ(k)' 

which is also referred to as the "best" population. For practical appli-

cations where one faces this type of selection problems, the reader is 

referred to Chapter 2 of Gibbons et al. (1977) and section 6.2 of Gupta 

and Panchapakesan (1979). 

We will restrict our attention to the "indifference zone approach" 

only and follow the formulation originated in Bechhofer (1954). Follow-

ing the standard notations, we assume that we are given two numbers o * 

and P*, 0 < o * < oo, k-1 < P* < 1. Let tjJ = ( µ 1, 

= {tjJ: ll(k) - µ(k-1) .:_a*}. We wish to propose sequential procedures 

for selecting the largest mean µ(k) such that P(CS) .:::._ P* if tjJEQ( o *). 

The configuration µ(l) = . • • = µ(k-l) = µ (k) - o * is referred to as 

the least favorable configuration (LFC) or a slippage configuration in 

this context. 

We plan to develop sequential procedures to select the "best" popu

lation under the LFC when cr2 is unknown, by appealing to the rules 
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developed in Mukhopadhyay ( 1980a) for known· cr2 • We compare our proce-

<lures in detail with existing fixed-sample procedures as discussed in 

Gibbons. et al. ( 1977) for some values of k. For numerical comparisons, 

we also present some modified rules along the lines of Baker (1950), 

Hall (1962), and Mukhopadhyay (1979, 1980b). 

4.2. The Common Variance is Known 
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In motivating our developments for unknown cr2 , we first refer 

briefly to the case when cr2 is known. This means that $ is now defined 

by$ = (µ1, ..• , µk) only. We wish to decide among the k hypotheses 

(k~2), Hi: µi = µ(k)' i=l, .•. , k. Having recorded {Xil• ••. , Xin} 

from Tii, i=l, ••• , k, and utilizing the maximal invariant (with re

spect to the group of location shifts by the same amount), we let the 

sequence Uj = (X2j - xlj' ••. , xkj - xlj)' = (Ulj' ..• , uk-1 j)' say, 

for j=l, . . • , n. Now, !:\, . 1!n, are iid Nk-l (§, cr2I), where ~ 

(µ2 - µ1' • • ., µk - µ1)' (81, ••. ,ek-1)' say, and I= (crij) where 

crii = 2, O"ij = 1 for all 1<i1: j .::_k-1. Then I-1 can be written as 

(crij) where crii = (k-1)/k, crij -1/k for all 1 < i j j < k-1. The pre-

vious k hypotheses can be equivalently stated as follows: 

H 1 : ( e i = - 8 * for all i = 1, •• ' k-1) 

Hj: (8j-l =8 *and ei = O for all i 1: j-1), where 

j=2, ., k. Mukhopadhyay (1980a) proposed the following stopping 

rule for deciding among H1, H2 , ... , Hk. 

Pl(k): N 

some i}, 

oo if no such n, . • . ( 4. 1) 
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and when N stops with i, we decide for the hypothesis Hi, that is,, we de-

clare that rri has the largest mean, i=l, ... , k. 

Although N is finite with probability one under Hi, i=l, ..• , k, 

it may be necessary in some practical situations to truncate the rule 

Pl(k) at some stage. The truncated version is proposed as follows: 

Pl*(k): We take one sample at a time from each population and con-

tinue checking with the rule Pl(k) to see if we can stop. When we reach 

the stage n=m, and Pl(k) does not stop by itself, but we wish to ter-

minate sampling, we decide for IT9, as being the "best" population, where 

min 
i 

4.3. The Common Variance Is Unknown 

In this section we propose several procedures dealing with the same 

selection problem nnder the assumption that cr2 is unknown. Mukhopadhyay's 

(1980a) procedure Pl(k) as discussed in section 4.2 serves as a fonnda-

tion for the following procedures. 

4.3.1. Procedure P2(k) 

Let 
k n 

S 2 = (kn-k)-1 2: [ 2: x .. 2 
n i=l j=l l.J 

n 
- n-1 ( . ~ 1x .. ) 2] , g .. £ = x. !l - x. !l • 

J - l.J l.J J l. 
- -1 n - n ~l~ij£' where i;lj=l, • . • , k. Being motivated by the 

dev.:lopments of Mukhopadhyay (1979, 1980a), we now propose the following 

stopping rule: 
_L 

P2(k): Suppose n* = max{[(-o *-2 £n{(l-P*)(k-l)- 1})l+Y]+, 2} where 

y>O, and [y]+ denotes the largest integer .::_ y. 

We define N = inf{n>n*: o*S - 2 f?1J.D n~L. < !ln[Cl-)*) (k-1)-1] for some i}, 
n Jrl. iJn -

oo if no such n. 
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When N stops with i, we decide for the hypothesis Hi' that is, we de-

clare that Ili has the largest mean, i=l, .•. , k. 

Remark 4.1: The particular choice of n* in the rule P2(k) is moti-

vated from the rule P2(2)' of section 4.4.2. In fact, the rule P2(k) 

can be proposed with any starting sample size (~2). Moreover, when N 

stops for the rule P2(k), we can prove that P2(k) indeed selects that 

population which has the largest sample mean at the stopping stage. 

n 
Proof: Consitiering -o *Sn2Q,~l(Xi,Q, - Xj,Q,), for i=l, and taking j=2, 

., k. We have respectively the expressions 

Suppose the decision is made in favor of H1 so that exp [- o *Sn2 t!l (Xu,

x2t)J is the j~~ exp (- o *Sn\~.~l (Xu, - xyJ] and o *Sn\~ 1 (X:li - Xu) < tn 
1 n n _ _ 

{(l-p*)(k-1)- } < O, which implies t~ 1x2 t < Q,~ 1x 1 £_• or x2n < X1n· 

For j=3, ... , k, we have 

n n 
which implies £~lxj£ < £~l x2£, or Xjn < x2n, j=3, ..• , k. Hence, X1n 

is the largest sample mean. 

Similarly, we can verify our connnent for i=2, ..• , k. 

4.3.2. Procedure P3(k) 

Let sm2 be computed as Sn2 for a fixed n=m, and let rn(Sm) = o* · 

o\~13ijt/sm2 , ~ = ~v(a-2h - 1) "'(-tna){l-(£na)/v}, where a.= (1-p*)/ 

(k-1), and v = k(m-1). Now, utilizing the test procedures of Baker 

(1950) and Hall (1962), we propose the following stopping rule. 
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P3(k): Observe {Xil, ... , Xim; i=l, •.. , k} and then 3ij (m+l), 

3ij(m+Z)'" •. , successively. For each n>m after observing ~ijn' we 

stop sampling and accept Hi., i=l, .•• , k, if sup r (S) <-am for some 
}Fi n m -

i, where m is taken to be the n* which is defined in our procedure P2{k) 

of section 4.3.2. 

4.3.3. Procedure P4(k) 

Let Sn2 , rn(Sn), and~ be the same as in the section 4.3.2 with 

m--n. We propose the following stopping rule. 

P4(k): Observe {Xil' xi2 , .; i=l, ... , k} and thus obtain 3ijl' 

For each n~2, after observing Zijn• we stop . . ' successively. 

sampling and accept Hi if ~~~ r (S ) < -a for some i. 
Jrl n n - n 

4.4. The Special Case of Two Populations 

We will discuss this special case separately under both the situa-

tions when the conunon variance is known or unknown. We will also inves-

tigate the moderate sample size behaviors of our proposed rules in 

separate subsections. 

4.4.l. The Conunon Variance Is Known 

In this case, the rule Pl(k) defined in (4.1) takes the following 

form: 

00 if no such n, 

where I(P*) is the interval ((1-P*), (l-P*)- 1J, 312i = Xzi - Xli• i=l, 

•.. , n. At stage N, we accept H1 or H2 according as the lower or the 
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upper boundary is crossed. 

Note that this stopping variable can also be stated equivalently as 

N(P*) = N = inf{n:::_l: I cS*a-2 i~ 1e 12 i! 2_ -£n(l=P*)}. ••• (4.2) 

The corresponding truncated rule is proposed as follows: 

Pl*(2): When we reach the stage n=m, but Pl(2) does not stop by itself, 

we may wish to terminate sampling and we accept H1(H2) if exp fo*cr- 2 .¥ 
" i=l 

For the rest of this subsection, let us write ni = ~l2i, i=l, 2, 

N 
From (4.2), we have cS *cr-2E j i~lg.i j .:::_ -£n(l-P*), which implies 

cS *cr-2Eif 1 j~ij .:::_ -£n(l-P*), and we then obtain E(N) .:::_ - cr2(£n(l-P*)]/ 

o *E Cj e 1 I). Since e i - N ( 8, 2cr2), applying truncated normal distribu

tion (see Johnson and Kotz (1970),p. 81), we have 

and under H1 or H2 , we obtain 

. . . ( 4. 3) 

Applying Jensen's :inequality and Wald's (1947) first equation (Appendix 

A.5 and A.10), we also have 

•.. (4.4) 

In proving (4.3) and (4.4) we tacitly assumed that E(N) is finite 

under H1 or H2 . However, this assumption can easily be relaxed by using 

the monotone convergence theorem and a truncation argument as in Chow 

and Robbins (1965). 
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Now, we have the following theorems sunnnarizing the asymptotic pro-

perties of the stopping rule Pl(2). The quantities C and Dare defined 

in (4.7). 

Theorem 4.1: For fixed known a in (0, 00 ) and µ1, µ2 in (-00 , oo), 

for either hypothesis H1 or H2 , for the rule Pl(2), we have the follow-

ing: 

(i) N is a non-decreasing function of P*, N..- a.s. as P*+l, 

and N/C-+1 a.s. as P*-+l. (4.5) 

(ii) (N - C)/D ~ N(O, 1) as P*+l ••. (4.6) 

where C = -a2 o *-2 Q,n (1-P*) and D = 2~o2 {-£n(l-P*) }~/ o *2 • • • • ( 4 • 7) 

Proof: See Appendix B (p. 91). 

Theorem 4.2: For the rule Pl(2), lim E(N/C) = 1. 
P*-+l 

Proof: From (4.4), we get E(N/C) < 1 + c- 1 , which implies lim sup E(N/C) 
P*+l 

< 1. 

Applying Fatou's Lemma (Appendix A.3), we see that 

E{lim inf(N/C)} < lim inf E(N/C). 
P*-+ 1 - P*-+ 1 

Since N/C-+l a.s. as P*-+l, E{lim inf (N/C)} = 1, and thus 
P*-+l 

p~~1 inf E(N/C) ~ 1. Combining these facts about the lim sup and lim inf, 

we obtain theorem 4.2. 

4.4.2. The Common Variance Is Unknown 

In this subsection, we will discuss several procedures as in section 

4.3 for k=2. We still prefer to write e12i = ei, i=l, 2, . 
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Procedure PZ (Z) 

Let Sn 2 be the same as in the rule PZ(k) with k=Z, while ei is the 

same as in subsection 4.4.1. The rule PZ(Z) takes the following form: 

PZ(Z): 
n 

N = inf{n~Z such that exp ( cS *S - 2 L: e.) i I (P*) }, 
n i=l i 

= oo if no such n, 

where I(P*) is as in rule Pl(Z). At stage N, we accept H1 or Hz accord-

ing as the lower or upper boundary is crossed. 

This stopping variable can equivalently be stated as 

N(P*) :: N . • • ( 4. 8) 

= oo if no such n. 

By using Helmert's orthogonal transformation, we can write S 2 as: 
n 

s 2 
n 

Z (n-1) = (Zn-z)-1 L: Y.2 
i=l 1 

where Yi 's are iid N(O, cr2 ), i=l, ••. , Z(n-1). 

• ( 4. 9) 

Following the lines of theorem 4.1, it will be easy to prove the 

following theorem. Its proof is deferred to Appendix B (p. 93). 

Theorem 4.3: For fixed µ 1,µz in (-00 , 00 ) and cr in (0, 00) for either 

hypothesis H1 or Hz, for the rule PZ(Z), we have the following: 

(i) N is a non-decreasing function of P*, N.+oo a.s. as P*+l, 

N/G+l a.s. as P*-+l, • (4.10) 

(ii) (N-C) /D 4. N(O, 1) as P*-+1, where C = -cr2 cS *-2 Q,n(l-P*), and 

.(4.11) 
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Theorem 4.4: For the rule P2(2), we have lim E(N/C) = 1. 
P*+l 

proof: see Appendix B (p. 94). 

Being motivated by the results of Mukhopadhyay (1980b), a higher 

proportion of correct selection is achieved by proposing the following 

modification of the rule P2(2), name1y P2(2) '. 
, 1 + 

P2(2)': Let n* = max([{..:o*- 2 9-n(l-P*)fi~+, 2}, where y > O, and [Y] is 

the largest integer _2. y. 

= oo if no such n. 

This choice of n* is quite natural, because at the stopping stage, 

we have 

8 *N > -9,n(l-P*) [sN2 1~1-1 + ( o*NY)-lj 

~ -( 8 *NY)-l £n(l-P*), 

1 

which implies N ~ {- 8 *-2 £n(l-P*) }T-FY. 

It is easy to see that P2(2)' has the same asymptotic properties 

(as P*+l) as those of P2(2), namely, theorems 4.3 and 4.4. We will pre-

sent numerical results about the rules P2(2) and P2(2)' in subsection 

4.4.3. The property obtained in theorem 4.2 and theorem 4.4 is referred 

as "asymptotic efficiency". 

Procedure P3(2) 

Let Sm2 ' am, gijm' and rn(Sm) be defined as in subsection 4.3.2, 

and let bm = -12v(B-z/v_l) "'(X.n8 )(1 -(m S)/v), with a= S = 1-P*, 

and m=n* as in procedure P2(k) of subsection 4.3.1. The stopping rule 

is proposed as follows: 



P3(2): Observe {Xil' •.• , Xim; i=l, 2} and then ~ij(m+l)' 

;;ij(m+2), . 
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successively. For n.::..m, after observing ;;ijn' we stop sampling and accept 

Procedure P4(2) 

Let Sn 2 ' an' bn, gijn' and rn(Sn) be defined as in the procedure 

P3(2) with m=n. The stopping rule in this case is proposed as follows: 

P4(2): Observe. {~1 , Xi2• ••. ; i=l, 2} and thus obtain eij l' eij2• 

. successively. For each n.::_2, after observing ;;ijn' we stop sampl

ing and accept H1 if rn(Sn) _::. bn, accept Hz if rn(Sn) .::.. an, and we con-

We will present some numerical results regarding the rules P3(2) 

and P4(2) in the following subsection 4.4.3. 

4.4.3. Moderate Sample Size Behavior of Our 

Rules and Comparisons With Fixed Sample Size 

Procedures 

We are going to use our proposed rules (with k=2), compare them one 

by one with the fixed sample rule (FSR) (as given in Gibbons et al. 

(1977), Chapter 2). We look at Table A.1 from the same book. For each 

-k 
n' and P*, we compute o * = st cr (n') 2 (where t;;t comes from Table A. 1), 

and we generate two populations rr1 and rr2 in an IBM 370/168 Computer 

for simulation purposes. 

We used subroutine RANDU to generate Uniform (0, 1) variates and 

subroutine GAUSS to obtain samples from normal variates (see p. 77 of 
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IBM application program, 1970). We generate rr 1 as N ( 8 *, 1) and rr2 as 

N(O, 1) so that the hypothesis H1 is deliberately made to be true. For 

each pair of values of ( 8 *, P*) , we repeat the experiment 200 times 

using rules P1*(2), P2(2), P2(2) ', P3(2), and P4(2) for Tables XII, XIII, 

XIV, XV, and XVI, respectively. When we use P2(2), sometimes we fall 

short of P*. To remedy this, we suggest taking some extra samples of 

fixed size, say R, once the rule P2(2) stops by itself. The Table XVII 

suggests that on the average this (fixed) extra sample size is possibly 

five. Our Table XVII presents results for R=3, 5, and 10. In Table XII, 

under the "un truncated part", we estimate the average sample size N., its 

standard error S(N) and P, the relative frequency of correct decision 

(in favor of H1) for all the repetitions (out of 200) which did not have 

to be truncated; under the heading "truncated", we report T, the number 

of truncations and P', the relative frequency of correct decision (in 

favor of H1) out of T truncations; under the "over all" category we re

port N, S(N), and P" computed from all the 200 repetitions; under the 

1 
"asymptotic" category we provide with values of C and D(200)-"2 = D' in 

Tables XII, XIII, XIV, XV, XVI, and XVII, where C and D are given in 

4 .• 7. We estimate the "overall saving n" {Mukhopadhyay and Chou (1981)) 

in the same way as on page 17, namely n ::: (n 'p" - NP*) /n 'P", where n' is 

the sample size needed by the FSR, N is the "over all" average sample 

size. We should stress that all the entries in colunms four and beyond 

are estimated from simulated data. In Tables XIV and XV, n* is the 

starting sample size, y is taken to be 1/2, 1/3, and 1/4. In Table XVII, 

R is the number of extra samples taken, after the rule P2(2) stops by 

itself. 

Remark 4.2: From Table XII, we notice that, on the average, the 



TABLE XII 

SIMULATION RESULT FOR THE RULE Pl* (2), VARIANCE KNOWN 

Untrtmcated part Truncated Over all Asymptotic 

n' P* 6"' N S(N) p T P' P" N S(N) r1 c D' 

2 0.90 1.282 1.485 0.043 0.940 66 o. 864 o. 915 1.655 0.034 0.186 1.402 0.092 

0.95 1.645 1.430 0.039 0.988 35 0.943 0.980 1.530 0.035 0.258 1.107 0.064 

4 0.90 0.906 2 .390 0.086 0.966 54 0.815 0;925 2 .825 0.080 0.313 2.804 0.185 

0.95 1.163 2.425 0.078 0.976 33 0.848 0.955 2.685 0.078 0.332 2.214 0.128 

6 0.90 o. 740 3.221 0.112 0.961 46 o. 739 0.910 3.860 0.119 0.364 4.206 0.277 

o. 95 0.950 3.226 0.109 0.981 41 0.829 0.950 3.795 0.117 0.368 3. 322 0.192 

10 0.90 0.573 5.317 0.183 0.957 39 o. 795 0.925 6.230 0.198 0.394 7.010 0.462 

0.95 0.736 4 .911 0.169 0.994 31 0.839 0.970 5.700 0.193 0.1!42 5.536 0.320 

16 0.90 0.453 7.969 0.284 0.938 38 0.658 0.885 9.495 0.321 o. 397 11. 216 0.739 

0.95 0.582 7.476 0.293 0.965 30 0.833 0.945 8.755 o. 329 0.450 8.858 o .. 512 

30 0.90 0.331 14. 987 0.554 0.956 42 o. 786 0.920 18.140 0.616 0.408 21.029 1. 386 

0.95 0.425 12 .640 0.491 0.966 22 0.864 0.955 14.550 0.582 0.518 16. 604 0.960 

60 0.90 0.234 28.238 1.060 0.919 28 o. 714 0.890 32. 685 1.201 0.449 42.059 2. 772 

0.95 0.300 26.788 0.977 0.962 16 0.750 0.945 29.445 1.102 0.507 33.217 1.919 

120 0.90 0.165 60 .13 7 2.195 0.926 25 o. 720 0.90.0 67.620 2.378 0.437 84 .118 5.544 

0.95 0.212 48. 732 1.976 0.978 21 0.857 0.965 56.215 2.350 0.539 66.434 3.838 

lJ1 
lJ1 



n' P* 

2 0.90 

0.95 

4 0.90 

o. 95 

6 0.90 

0.95 

10 0.90 

0.95 

16 0.90 

0.95 

30 0.90 

0.95 

60 0.90 

0.95 

120 0.90 

0.95 

TABLE XIII 

SIMULATION RESULT FOR THE RULE P2(2), 
VARIANCE UNKNOWN 

8 * :N S(N) p n 

1.282 2.575 0.086 0.945 -0.226 

1.645 2.295 0.045 0.990 -0. 101 

0.906 3.380 o. 155 0. 915 0.169 

1.163 3.120 0.117 0.950 0.220 

0.740 4.395 0.232 0. 915 . 0 .280 

0.950 4.040 0.190 0.925 0.380 

0.573 5.905 o. 355 0.885 0.399 

0. 736 4.930 0.289 0.940 0.502 

o. 453 8.480 0.568 0.880 0. 458 

0.582 6.630 0.440 0.900 0.563 

0.331 15.875 1.135 0.865 0.449 

0.425 12.050 0.768 0.900 0.576 

0 .234 32.360 2.088 0 .885 0.452 

0.300 25. 635 1.619 0.925 0.561 

0.165 60.375 4 .191 o. 855 0.470 

0 .212 48. 715 3.036 0.910 0 .576 

56 

c D' 

1.402 0.092 

1.107 0.064 

2.804 0.185 

2.214 0 .128 

4.206 0 .277 

3.322 0.192 

7 .010 0.462 

5.536 0. 320 

11. 216 o. 739 

8.858 0.512 

21.029 1.386 

16.608 0.960 

42.059 2. 772 

33.217 1.919 

84 .118 5.544 

66.434 3.838 



y n' P* 

1/2 10 0.90 

0.95 

16 0.90 

0.95 

30 0.90 

0.95 

60 0.90 

0.95 

120 0.90 

0.95 

1/3 10 0.90 

0.95 

16 0.90 

0.95 

30 0 .90 

0.95 

60 0.90 

0.95 

120 0.90 

0.95 

TABLE XIV 

SIMULATION RESULT FOR THE RULE P2(2)', 
VARIANCE UNKNOWN 

0 * n* N S(N) p n 

0.573 4 9. 725 0.312 0.945 0.074 

0. 736 4 8.905 0.384 0.990 0 .145 

o. 453 6 15.595 0.605 0. 985 0.109 

0.582 5 12 .440 0.434 o. 980 0.246 

0.331 8 26.655 1.072 0 .970 0. 176 

0 .425 7 21. 140 0. 715 0.975 0.313 

0.234 13 47.520 1.696 0.950 0.250 

0.300 11 39.390 1. 460 0.980 0. 364 

0.165 20 96.220 4.376 0.950 0.240 

0.212 17 74 .245 3.036 0.985 0.403 

0.573 5 10. 970 0. 340 0.970 -0.018 

0. 736 4 9. 630 0.352 0.985 0.071 

0.453 7 17.025 0.574 0.985 0.028 

0 .582 6 13.450 0. 422 0. 985 0.189 

0.331 10 30 .105 1.070 0.970 0.069 

o. 425 9 24. 895 0.886 0.995 0.208 

0.234 17 54.905 1. 783 0.970 0.151 

o. 300 14 44.015 1.365 0.975 0.285 

0 .165 28 111.215 4 .611 0. 960 0 .131 

0.212 24 83.515 3.062 0.980 0.325 
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c D' 

7. 010 0.462 

5.536 0.320 

11.216 0.739 

8.858 0.512 

21.029 1.386 

16.608 0.960 

42.059 2. 772 

33.217 1. 919 

84.118 5.544 

66.434 3.838 

7 .010 0.462 

5 .536 o. 320 

11. 216 0.739 

8.858 o. 512 

21.029 1.386 

16. 608 0.960 

42.059 2. 772 

33.217 1.919 

84 .118 5.544 

66. 4 34 3.838 
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TABLE XIV (Continued) 

y n' P* 0 * n* scm p n c D' 

1/4 10 0.90 0.573 5 11. 945 0.368 0 .985 -0.091 7 .010 o. 462 

o. 95 0. 736 4 10.180 0.354 0.985 0.018 5 .536 0.320 

16 0.90 0.453 7 18.130 0.574 0.985 -0 .035 11.216 0.739 

0.95 0.582 6 14.665 0.440 0.990 0 .120 8.858 0 .512 

30 0.90 0.331 12 33.055 1.193 0.985 -0.007 21.029 1.386 

0.95 0.425 10 26.510 0.873 0.990 0.152 16. 608 0.960 

60 0.90 0.234 20 59. 775 1.736 0.980 0.085 42.059 2. 772 

0.95 0.300 17 48.920 1.503 0.985 0.214 33.217 1.919 

120 0.90 0.165 35 123.055 4.497 0.965 0.044 84.118 5.544 

0.95 0.212 29 92 .070 3.008 0.985 0.260 66.434 3.838 



y n' P* 

1/2 10 0.90 

0.95 

16 0.90 

0.95 

30 0.90 

0.95 

60 0.90 

0.95 

120 0.90 

0.95 

1/3 10 0.90 

0.95 

16 0.90 

0.95 

30 0.90 

0.95 

60 0.90 

0.95 

120 0.90 

0. 95 

TABLE XV 

SIMULATION RESULT FOR THE RULE P3(2), 
VARIANCE UNKNOWN 

0 * n* N S(N) p n 

0.573 4 9.505 0.478 0.940 0.090 

o. 736 4 9.910 0.538 0.980 0.039 

0.453 6 14. 790 0.819 0.960 0.133 

0.582 5 12 .345 0.600 0.965 0.240 

0.331 8 23.865 1. 319 0.960 0.254 

0.425 7 20.910 1.159 0.980 0.324 

0.234 13 41.510 2.229 0.940 0.338 

0.300 11 37.880 1.824 0.970 0.382 

0.165 20 81.855 4.146 0.940 0.347 

0.212 17 68.530 3.436 0.965 0.438 

0.573 5 9. 715 0.463 0.945 0.075 

o. 736 4 9.910 0.538 0.980 0.039 

0.453 7 14.395 o. 715 o. 960 0.157 

0.582 6 12 .210 0.515 0.960 0.245 

0.331 10 24.695 1.303 0.970 0.236 

0.425 9 20.800 1. 014 0.980 0.328 

0.234 17 42. 170 2 .010 0.930 0.320 

0.300 14 37. 770 1.808 0.985 0.393 

0 .165 28 79.075 4.140 0.935 0.366 

0.212 24 67.845 3.435 0.980 0.452 

59 

c D' 

7 .010 0.462 

5 .536 0.320 

11.216 0.739 

8.858 0. 512 

21.029 1.386 

16.608 0.960 

42.059 2. 772 

33.217 1. 919 

84 .118 5.544 

66.434 3.338 

7.010 0.462 

5.536 0.320 

11. 216 0.739 

8.858 0 .512 

21.029 1.386 

16.608 0.960 

42 .059 2. 772 

32.217 1.919 

84 .118 5.544 

66.434 3.838 
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TABLE XV (Continued) 

y n' P* 0 * n* N S(N) p n c D' 

1/4 10 0.90 0.573 5 9. 715 0.463 0.945 0.075 7.010 0.462 

0.95 0.736 4 9.910 0.538 0.980 0.039 5.536 0.320 

16 0.90 0.453 7 14.395 o. 715 0.960 0.157 11. 216 0.739 

0.95 0.582 6 12 .210 0.515 0.960 0.245 8.858 0.512 

30 0.90 0.331 12 25 .155 1.285 0.950 0.206 21. 029 1.386 

0.95 0.425 10 21.610 1.051 0.990 0.309 16.608 0.960 

60 0.90 0.234 20 43. 730 1.901 0.945 0.306 42.059 2. 772 

0.95 0.300 17 36.940 1.576 0.970 0.397 33.217 1. 919 

120 0.90 0.165 35 80. 775 3.986 0.940 0.356 84 .118 5.544 

0.95 0.212 29 67.750 3.210 0.970 0.447 66.434 3.838 
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TABLE XVI 

SIMULATION RESULT FOR THE RULE P4(2), 
VARIANCE UNKNOWN 

n' P* 0 * N S(N) p n c D' 

2 0.90 1.282 3.200 0.180 0.975 -0.477 1.402 0.092 

0.95 1.645 2. 770 0.064 0.995 -0.322 1.107 0.064 

4 0.90 0.906 4.060 0 .172 o. 915 0.002 2.804 0.185 

0.95 1.163 3.955 0.143 0.965 0.027 2.214 0.128 

6 0.90 o. 740 5.535 0.272 0.940 0.117 4.206 0.277 

0.95 0.950 5.025 0.214 0.930 0 .144 3.322 0.192 

10 0.90 0.573 7.150 0.362 0.935 0.312 7 .010 0.462 

0.95 0. 736 6.320 0.321 0.930 0.354 5.536 0.320 

16 0.90 0.453 10 .465 0.597 0.900 0.346 11.216 o. 739 

0.95 0.582 9.360 0.518 0.925 0.399 8.858 0.512 

30 0.90 0.331 19.530 1.207 0.945 0.380 21.029 1.386. 

0.95 0.425 16.025 0.864 0.950 0.466 16 .608 0.960 

60 0.90 0.234 36. 355 1.971 0.940 0.420 42.059 2. 772 

0.95 0.300 29.980 1.541 0.945 0.498 33 .217 1.919 

120 0.90 0.165 69. 715 4 .131 0.915 0.429 84 .118 5 .544 

0.95 0.212 56.370 3.012 0.950 0.530 66.434 3.838 



R n' 

3 6 

10 

16 

30 

60 

120 

5 6 

10 

16 

TABLE XVII 

SIMULATION RESULT FOR THE RULE P2(2) WITH R MORE 
ADDITIONAL SAMPLES WHEN THE SAMPLING 

TERMINATES, VARIANCE UNKNOWN 

P* 8 * N S(N) p "' c 'I 

0.90 0.740 7 .010 0.188 0. 935 -0 .125 4.206 

0.95 0.950 6.600 0.170 0.940 -0 .112 3.322 

0.90 0.573 8.295 0.319 0.890 0 .161 7.010 

0.95 0.736 8.390 0.334 0.955 0 .165 5. 536 

0.90 o. 453 10. 810 0.546 0.885 0.313 11. 216 

0.95 0.582 9.695 0.397 0.900 0.360 8.858 

0. 90 0.331 18.685 1.110 0 .910 0.384 21.029 

0.95 0. 425 16. llO 0. 843 0.925 0.448 16. 608 

0.90 0.234 32. 880 1.902 0.890 0.446 42.059 

0.95 0.300 28.890 1.482 0 .930 0.508 33.217 

0.90 0.165 60.420 3.6 75 0.855 0.470 84.118 

0.95 0.212 51.555 3.340 0. 895 0.544 66.434 

0.90 0. 740 8.970 0.209 0 .965 -0.394 4.206 

0.95 0.950 8.650 0.179 0.965 -0.419 3.322 

0.90 0 .5 73 10. 385 0.337 0. 935 0.000 7 .010 

0.95 0. 736 10 .290 0. 335 0.950 -0. 029 5.536 

0. 90 0.453 13.365 o. 533 0.905 0.169 11.216 

0.95 0. 582 12.095 0.452 0.945 0.240 8. 858 
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D' 

0.2 77 

0.192 

0.462 

0.320 

0.739 

0.512 

1.386 

0.960 

2. 772 

1. 919 

5.544 

3.838 

0.277 

0 .192 

0.462 

0.320 

0. 739 

0.512 
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TABLE XVII (CONTINUED) 

R n' P* 0 * N S(N) p n c D' 

30 0.90 0.331 20.400 1.187 0.910 0.327 21.029 1.386 

0.95 0.425 18. 625 0.887 0.955 0.382 16.608 0. 960 

60 0.90 0.234 35 .635 1. 914 0.905 0.409 42.059 2. 772 

0.95 o. 300 30.025 1.476 0.920 0.483 33.217 1. 919 

120 0.90 0.165 67.025 4.183 0.890 0.435 84 .118 5.544 

0.95 0.212 55.895 2.907 0.935 0.527 66.434 3.838 

10 6 0.90 0. 740 13.865 0.187 0.970 -1.144 4.206 0.277 

0.95 0.950 13.805 0.185 0.995 -1.197 3.322 0 .192 

10 0.90 0.573 15. 480 0.313 0.975 -0. 429 7.010 0.462 

0.95 0.736 15. 315 0.311 0.970 -0.500 5.536 0.320 

16 0.90 o. 453 18.745 0 .574 0.940 -0.122 11.216 0.739 

0.95 0.582 17. 035 0.428 0.960 -0.054 8.858 0.512 

30 0.90 0.331 24.950 1.024 0.935 0 .199 21.029 1.386 

0.95 0.425 24. 010 0.882 0.935 0.187 16.608 0.960 

60 0.90 0.234 40.025 1.862 0.920 0.347 42.059 2. 772 

0.95 0.300 32. 495 1.488 0. 895 0.425 33.217 1.919 

120 0.90 0 .165 71. 910 4.084 0.875 0.384 84 .118 5.544 

0.95 0.212 63.310 3.271 0.950 0.472 66.434 3.838 
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percentage of saving increases when n' (or P*) increases. For instance, 

when n' = 10, P* = 0.90, we have n = 0.394, while for n' = 10, P* = 0.95, 

we have n = 0.442; or for n' = 60, P* = 0.90, we have n = 0.449. The 

over all relative frequency of correct decision in favor of H1, namely 

P", on the average, is lower than P for the nntruncated part. We be

lieve that this is due to having relatively low frequencies of correct 

decision nnder truncation (on the average) at m=n'. 

Remark 4.3: Comparing Tables XIII and XIV, we notice that the over

all relative frequencies of correct selection in Table XIII are not too 

impressive, in general. By sacrificing some saving, that is, taking 

some more samples in Table XIV we obtain considerably increased amount 

of overall relative frequencies of correct selection. Also P increases 

while y and n decrease. 

Remark 4.4: Table XV presents the numerical results for the proce

dure P3(2) with the starting sample size n* as defined in procedure P2(k). 

It shows an impressive amount of saving with respect to FSR, and our re

sults for the relative frequencies of correct selection are also very 

encouraging. 

Remark 4.5: In Table XVI, we notice that, by sacrificing some sav

ing, we obtain considerably increased amounts of :overall relative fre

quencies of correct selection for moderate values of n'. In general, we 

have quite an impressive amount of saving with respect to FSR. 

Remark 4.6: One alternative way to increase the relative frequen

cies of correct selection for the rule P2(2) is to take some more extra 

samples of fixed size, say R, when the original rule P2(2) stops. In 

Table XVII, we see that R=S seems to be a good guess for this extra fixed 

sample size. 
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4.5. The Special Case of Three Populations 

We will discuss this problem under the situations when the common 

variance is known or unknown in separate subsections. 

4.5.1. The Common Variance Is Known 

In this case, the rule Pl(k) takes the following form. 

Pl(3): N = inf{n>l: o*cr-2sup{ L: (Xjo-X1·n)} _< Q.n{!z(l-P*)} for some i}, 
- j#i .Q,=1 x, x, 

= 00 if no such n. 

At stage N, if we stop with i, we accept the hypothesis Hi, 

P1*(3): When we reach the stage n=m, and Pl(3) does not stop by itself, 

we may wish to terminate sampling. In this case, we accept H2 when 

o *o-2~p}'::> r El (X 'h - XJ1,h)] = min SUJ? o *o-2 [ ~ (X 'h - X1.h)] . 
]T;t "'h= J i j;(L h=l J 

One can prove the following theorem without much difficulty. We 

omit its proof. 

Theorem 4.5: For fixed cr in (0, 00 ) and µi in (-00 , 00), for each 

hypothesis Hi, i=l, 2, 3, we have the following for the rule Pl(3): 

N is a non-decreasing function of P*, N""""' a.s. as P*-+l, and N/C'-+1 a.s. 

as P*-+l, where C' = -cr 2 cS *-2 .Q,n [!zO-P*) J . 
In Table XVIII we present numerical results for the rule Pl*(3) 

truncated at m=n'. Given P* and n', we obtain r;;t from table A. 1 of 

k< 
Gibbons et al. ( 1977), and then compute cS * = r;;to(n') - 2 as in section 

4.4.3. Using the same program routines explained in section 4.4.3, we 

generate rr 1 as N(o *, 1), and both rr2 , n3 as N(O, 1), so that the hypo

thesis Hi is deliberately made to be true. We estimate N, S (N) for the 

"untruncated part" and "over all" part as in Table XII. Under each of 

these headings, when we report "proportion", we subdivide it into three 

parts--a part is labelled as proportion of frequencies we decided in 
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favor of Hi, i=l, 2, 3, with that particular category of heading. For 

each pair of (n', P*) (or (P*, o *)), we estimate the quantities from 

200 repetitions in colUlillls four and beyond. The amotmt of "saving n" is 

computed in the same way as in Table XII. 

Remark 4.7: Connnents like those in remark 4.2 are still valid for 

Table XVIII for the overall relative frequencies of correct selection 

in favor of H1• 

4.5.2. The Common Variance Is Unknown 

In this subsection, we will discuss several procedures as in Sec-

tion 4.3 for k=3. 

Procedure P2(3) 

Let Sn2, tij£• gijn and n* as defined in P2(k) with k=3. Then our 

rule takes the following form. 

P2(3): N inffo~n*, o *Sn -2~¥£ ngijn ,.::. in ~(1-P*) J for some i} ,_ 

oo if no such n, 

and when N stops with i, we decide for the hypothesis Hi, that is to 

declare that Tii has the largest mean, i=l, •.. , k. 

It is fairly simple to prove the following theorem. 

Theorem 4.6: For fixed unknown cr in (0, 00), and µi in (-00 , 00), for 

each hypothesis Hi' i=l, 2, 3, we have the following for the rule P2(3): 

N is a non-decreasing function of P*, N-rco a.s. as P*+l, and N/C'+l a.s. 

~P*+l, whereo *2C' = -cr2 in[~C1-P*)]. 

In Table XIX, we present numerical results on simulating this pro

cedure for several pairs of (P*, o *). These entries should be inter

preted in the same way as explained in Table XVIII under the "over all" 
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category. 

Remark 4.8: In Table XIX, for P* = 0.75 most of the sample sizes 

were overly estimated, consequently we have considerably more in terms 

of extra proportion of frequencies we decide for H1; while for P*>.90 

the sample sizes are tmder estimated, and consequently we lose in terms 

of having smaller proportion of correct decision. In general, we obtain 

considerably increased amounts of overall relative frequencies of cor-

rect selection in favor of H1• Also the relative frequency tmder Hi in

creases while y and n decrease. 

Procedure P3(3) 

Let Sm2 ' am, ~ijm' and rn(Sm) be as defined in procedure P3(k) with 

k=3. In this case, the stopping rule takes the following form. 

P3(3): Observe {~1 , ... , ~m; i=l, 2, 3} and then eij(m+l)' Zij(m+2)• 

• successively. For each ~m after observing eijn• we stop sampling 

and accept Hi, i=l, 2, 3, if j~~ rn(Sm) ~ -B.m_ for some i, where mis 

taken to be n* which is defined in procedure P2(k). 

In Table XX, we present results on simulating this procedure P3(3) 

for several pairs (P*, o *). These entries should be interpreted in the 

same way as in Table XIX. 

Remark 4.9: In Table XX we present the numerical results proce-

dure P3(3) with starting sample size n* as defined in procedure P2(k). 

We notice that by sacrificing some saving, we obtain considerably in-

creased amount of overall relative frequencies of correct selection, 

for small sample sizes rt'. In general, we have an impressive amount of 

saving with respect to FSR. 



TABLE XVIII 

SIMULATION RESULT FOR THE RULE Pl*(3), VARIANCE KNOWN 

----------------- -------
Untruncated part Truncated Over all 

------
proportion ·---~rtion __ _.PI_QPErt_i_o_n __ _ 

n' P* 0 * w s (N) H1 Hz H3 T H1 Hz H3 H1 Hz H3 N S(N) ll C' 

---------------
2 0.75 1.01 1.769 0.048 0.872 0.064 0.064 122 0.680 0.180 0.139 0.755 0.135 0.110 1.910 0.020 0.051 2.023 

0.90 1.58 1.607 0.045 1.000 0.000 o.ooo 83 0. 771 0.145 0.084 0.905 0.060 0.035 1. 770 0.030 0.120 1.201~ 

0.95 1.92 1.539 0.04Z 0.986 0.000 0.014 59 0.898 0.017 0.085 0.960 0.005 0.035 1.675 0.033 0.171 1.005 

0.99 2.56 1.461 0.037 1.000 o.ooo 0.000 20 0.900 0.100 0.000 0.990 0.010 0.000 1.515 0.035 0.243 0.810 

4 0.75 0.72 3.108 0.087 0.940 0.012 0.048 117 0.547 0.231 0.222 0.710 0.140 0.150 3.630 0.048 0.041 4.046 

0.90 1.12 2.710 0.070 0.980 0.007 0.013 40 0.771 0.167 0.063 0.930 0.045 0.025 3.035 0.066 0.266 2.409 

0.95 1.36 Z.688 0.075 0.981 0.006 0.013 40 0.750 o.zoo 0.050 0.935 0.045 0.020 2.950 0.071 O.Z51 Z.009 

0.99 1.81 Z.5Z8 0.066 1.000 o.ooo 0.000 zo 0.909 0.045 0.046 0.990 0.005 0.005 Z.690 0.067 0.3Z8 1.620 

6 0.75 0.59 4.Z08 0.148 0.945 O.OZ7 O.OZ8 128 0.672 0.195 0.133 0.770 0.135 0.095 5.355 0.081 0.131 6.069 

0.90 0.91 3.837 0.122 0.992 0.008 0.000 77 0.779 0.078 0.143 0.910 0.035 0.055 4.670 0.106 0.230 3.613 

0.95 1.11 3.736 0.108 0.982 0.018 0.000 37 0.838 0.054 0.108 0.955 0.025 o.ozo 4.155 0.108 0.311 3.014 

0.99 1.48 3.658 0.095 0.995 0.000 0.005 16 0.750 0.063 0.187 0.975 0.005 0.020 3.845 0.099 0.349 2.430 

10 0.75 0.45 6.517 0.234 0.885 0.057 0.058 113 0.681 0.14Z 0.177 0.770 0.105 0.125 8.485 0.159 0.174 10.115 

0.90 0.71 6.175 0.191 0.964 0.029 0.007 63 0.730 0.143 0.127 0.890 0.065 0.01,5 7.380 0.182 0.254 6.022 

0.95 0.86 5.929 0.160 0.981 0.019 0.000 44 0.886 0.091 0.023 0.960 0.035 0.005 6.825 0.173 0.325 5.023 

0.99 1.14 5.387 0.152 0.995 0.000 0.005 14 0.929 0.000 0.071 0.990 0.000 0.010 5.710 0.164 0.429 4.049 
°' ();) 



TABLE XVI,II (Continued) 

--~--~~-·---~----·~~~~~~~--~~~~~~~~~~~~~~~~~~~~~~~~~~--~~~~~~~~~~--~~~~~~~~~~~~~~~-

Untruncated part Truncated Over all 

proportion propor.tion propor.tion 

--------------------- 81 82 H3 T H 1 82 H3 11 1 11z 11 3 
n' P* 8 tr N S(N) N S(N) n C' 

16 0.75 0.36 10.929 0.348 0.828 0.071 0.101 101 0.713 0.139 0.149 0.770 0.105 0.125 13.490 0.249 0.179 16.184 

0.90 0.56 9.567 0.300 0.973 0.007 0.020 50 0.760 0.140 0.100 0.920 0.040 0.040 11.175 0.299 0.317 9.636 

0.95 0.68 8.719 0.284 0.963 0.025 0.012 40 0.750 0.125 0.125 0.920 0.045 0.035 10.175 0.307 0.343 8.036 

0.99 0.90 8.299 0.249 0.995 o.ooo 0.005 13 1.000 0.000 0.000 0.995 o.ooo 0.005 8.800 0.269 0.453 6.479 

30 0.75 0.26 18.6li8 0.643 0.857 0.067 0.076 95 0.674 0.200 0.126 0.770 0.130 0.100 24.040 0.524 0.219 30.345 

0.90 0.41 17.599 0.563 0.966 0.014 0.020 53 0.774 0.132 0.094 0.915 0.045 0.040 20.885 0.567 0.315 18.067 

0.95 0.49 16.812 0.510 0.952 0.042 0.006 35 0.686 0.200 0.114 0.905 0.070 0.025 19.120 0.551 0.331 15.068 

0.99 0.66 13.962 0.431 l.000 0.000 0.000 15 0.667 0.133 0.200 0.975 0.010 0.015 15.165 0.499 0.487 12.148 

60 0.75 0.19 37.510 1.354 0.854 0.063 0.083 104 0.702 0.173 0.125 0.775 0.120 0.105 49.205 1.027 0.206 60.691 

0.90 0.29 33.731 1.078 0.945 0.028 0.027 55 0.855 0.091 0.055 0.920 0.045 0.035 40.955 1.141 0.332 36.135 

0.95 0.35 32.048 1.009 0.958 0.024 0.018 33 0.818 0.182 0.000 0.935 0.050 0.015 36.660 1.118 0.379 30.135 

0.99 0.47 28.521 0.865 1.000 0.000 0.000 12 0.833 0.083 0.084 0.990 0.005 0.005 30.410 0.971 0.493 24.295 

120 0.75 0.13 72.971 2.690 0.794 0.118 0.088 98 0.602 0.153 0.245 0.700 0.135 0.165 96.015 2.157 0.143 121.381 

0.90 0.20 62.409 1.970 0.940 0.020 0.040 51 0.863 0.078 0.059 0.920 0.035 0.045 77.095 2.306 0.372 72.270 

0.95 0.25 65.440 2.124 0.958 0.024 0.018 34 0.824 0.088 0.088 0.935 0.035 0.030 74.715 2.284 0.367 60.271 

0.99 0.33 58. 746. 1. 747 0.995 0.000 0.005 11 0. 727 0.182 0.091 0.980 0.010 0.010 62. ll5 1.925 0.477 48.590 

°' \0 



y n' P* 

1/2 6 0.75 
0.90 
0.95 
0.99 

10 0.75 
0.90 
0.95 
0.99 

16 0.75 
0.90 
0.95 
0.99 

30 0.75 
0.90 
0.95 
0.99 

60 0.75 
0.90 
0.95 
0.99 

120 0.75 
0.90 
0.95 
0.99 

TABLE XIX 

SIMULATION RESULT FOR THE RULE P2 (3), 
VARIANCE UNKNOWN 

o* n* N S(N) H1 Hz 

0.59 4 9.300 0.278 0. 865 0.060 
0.91 3 6 .350 0.171 l). 925 0.050 
1.11 3 5 .300 0.132 0.960 0.015 
1.48 2 4.650 0.118 0.980 0.015 

0.45 5 13.065 0.340 0.865 0.060 
o. 71 4 9.240 0.254 0.905 0.065 
0.86 3 8.170 0.226 0.955 0.020 
1.14 3 6.820 0.160 0.960 0.000 

0 .36 7 20.250 0.610 0. 830 0.105 
0 .56 5 13. 680 0.398 0.890 0.045 
0.68 5 12.050 0.318 0.925 0.035 
0.90 4 10 .195 0.239 0.980 0.010 

0.26 10 33.545 1.076 0.845 0.080 
0.41 7 24.175 0.763 o. 915 0.050 
0.49 7 20.835 0.575 0.900 0.060 
0.66 6 17.375 0.439 0.965 0.015 

0.19 16 66.260 2.016 0.810 0.100 
0.29 11 44 .935 1. 461 0.875 0.060 
0.35 10 38.780 1. 140 0.910 0.050 
0.47 9 31.905 0.847 0.955 0.020 

0.13 25 121. 385 4.685 0.730 0.115 
0.20 18 80.430 2.432 0.890 0.060 
0.25 16 73.380 2 .196 0.905 0.035 
0.33 14 62 .430 1. 717 0.960 0.025 

70 

H3 n 

0.075 -0.344 
0.025 -0.030 
0.025 0.126 
0.005 0.217 

0.075 -0. 133 
0.030 0.081 
0.025 0 .187 
0.040 0.297 

0.065 -0. 144 
0.065 0.135 
0.040 0.227 
0.010 0.356 

0.075 0.008 
0.035 0.207 
0.040 0.267 
0.020 0.406 

0.090 -0.023 
0.065 0 .230 
0.040 0.325 
0.025 0.449 

0.155 -0 .039 
0.050 0.322 
0.060 o. 358 
0.015 0.463 
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TABLE XIX (Continued) 

y n' P* 5* n* N S(N) Hl Hz H3 n 

1/3 6 0. 75 0.59 4 10.300 0.256 0.900 0.055 0.045 -0.431 
0.90 0.91 3 6.910 0.169 o. 945 0.025 0.030 -0.097 
0.95 1.11 3 5.600 0.132 0.960 0.025 0.015 0.076 
0.99 1.48 2 4.890 0.111 0.980 0.005 0.015 0. 177 

10 0.75 0 .45 6 15.040 0.399 0.840 0.085 0.075 -0. 343 
0.90 0.71 4 10. 175 0.242 0.945 0.030 0.025 0.031 
0.95 o. 86 4 8.895 0.233 0 .970 0.020 0.010 0. 129 
0.99 1.14 3 7 .630 0.173 0.975 0.000 0.025 0.225 

16 o. 75 0. 36 9 22 .430 0.570 0.825 0.095 0.080 -0.274 
0.90 0.56 6 15. 035 0. 359 0.920 0.045 0.035 0.081 
0.95 0.68 5 13.535 0.343 0.950 0.025 0.025 0 .154 
0.99 0.90 5 11.165 0.238 0.990 0.005 0.005 0.302 

30 o. 75 0.26 13 38.810 1.042 0.825 0.085 0.090 -0' 176 
0.90 0.41 9 27' 110 0.822 0.935 0.020 0.045 0. 130 
0.95 0.49 8 23.120 0.537 0.900 0 .055 0 .045 0.187 
0.99 0.66 7 19.415 0.443 0.980 0.010 0.010 0.346 

60 0.75 0 .19 22 75.420 2.459 0. 770 0.100 0.130 -0.224 
0.90 0.29 15 51.210 1.489 0.890 0.060 0.050 0. 137 
0.95 0.35 13 43.315 1.112 0.925 0.045 0.030 0.259 
0.99 0.47 11 35.420 0.799 0.985 0.010 0.005 0. 407 

120 0.75 o. 13 37 140.495 4.387 0.785 0.095 0 .120 -0. 119 
0.90 0.20 25 92.625 2. 749 0.885 0.055 0.060 0.215 
0.95 0.25 22 86. 429 2.374 0.930 0.045 0.025 0.264 
0.99 0.33 19 70. 325 1. 673 0.965 0.020 0.015 0 ,399 
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TABLE XIX (Continued) 

y n' P* o* n* N S(N) H1 Hz H3 11 

1/4 6 0.75 0.59 5 10.585 0.262 0. 915 0.045 0.040 -0. 446 
0.90 0.91 3 7.235 0.185 0.980 0.010 0.010 -0. 107 
0.95 l. ll 3 5.870 0.132 0 .985 0.010 0.005 0.056 
0.99 l.48 3 5 .035 0.107 0.990 0.005 0.005 0 .161 

10 0.75 0.45 7 16.415 0.422 0.880 0.070 0.050 -0.399 
0.90 0.71 5 10. 855 0.245 o. 930 0.035 0.035 -0 .050 
0.95 0.86 4 9.295 0.209 0.945 0.020 0.035 0.066 
0.99 1. 14 4 7.850 0.168 0.975 0.000 0.025 0.203 

16 0. 75 0.36 10 24.685 0.612 0.845 0.090 0.065 -0. 369 
0.90 0.56 7 16. 340 0.395 0.940 0.030 0.030 0.022 
0.95 0.68 6 13.995 0.339 0.945 0.020 0.035 0. 121 
0.99 0.90 5 12.020 0.251 0.995 0.000 0.005 0.253 

30 0.75 0.26 16 42.550 1.072 0.835 0.090 0.075 -0 .2 74 
0.90 0.41 11 29. 935 0.896 0.940 0.030 0 .030 0.045 
0.95 0.49 9 24.945 0.546 0.930 0.035 0.035 0.151 
0.99 0.66 8 20.455 0.420 0.975 0.010 0.015 0 .308 

60 0. 75 0.19 27 82 .045 2.225 0.820 0.090 0.090 -0. 251 
0.90 0.29 18 55.600 1.456 0.885 0.060 0.055 0.058 
0.95 0.35 16 46.800 1.170 0.945 0 .035 0.020 0.216 
0.99 0.47 13 37.560 0.705 0.965 0.015 0.020 0.358 

120 0. 75 0.13 47 154.595 4 .589 0.810 0.080 0.110 -0. 193 
0.90 0.20 31 102.075 2.838 0.935 0.025 0.040 0. 181 
0.95 0.25 27 91. 615 2.268 0.945 0.020 0.035 0.233 
0.99 0.33 23 76.645 1. 770 0.970 0.025 0.005 0.348 



y n' P* 

1/2 6 o. 75 
0.90 
0.95 
0.99 

10 0.75 
0.90 
0.95 
0.99 

16 0.75 
0.90 
0.95 
0.99 

30 0.75 
0.90 
0.95 
0.99 

60 o. 75 
0.90 
0.95 
0.99 

120 o. 75 
0.90 
0.95 
0.99 

TABLE XX 

SIMULATION RESULT FOR THE RULE P3(3), 
VARIANCE UNKNOWN 

S* n* N' S(fl) Hl Hz 

0.59 4 10.950 0.537 0.935 0.035 
0.91 3 8.395 o. 353 0.970 0.015 
1. 11 3 6.955 0.2 70 0.970 0.020 
1.48 2 8.575 0.412 1.000 0.000 

0.45 5 14.620 0.808 0.900 0 .065 
o. 71 4 12.295 0.591 0.995 0.000 
0.86 3 10.450 0.512 0.975 0 .010 
1.14 3 10. 050 0.389 1.00 0.000 

0.36 7 23.050 1.222 0.890 0.050 
0.56 5 16.050 0.689 0.955 0.015 
0.68 5 14. 720 0.673 0.980 0.010 
0.90 4 13.655 0.528 1.000 0.000 

0.26 10 38.445 2.062 0.885 0.080 
0.41 7 28 .140 1.348 0.965 0.015 
0.49 7 25 .135 1.225 0.960 0.035 
0.66 6 21. 215 0. 827 1.000 0.000 

0.19 16 80. 795 3.981 0.875 0.060 
0.29 11 53. 755 2.549 0.955 0.015 
0 .35 10 45.120 1.945 0.960 0.015 
0.47 9 35. 155 1.330 0.995 0.000 

0.13 25 146.325 7 .683 0. 855 0.080 
0.20 18 95.820 4.435 0.940 0.030 
0.25 16 87.180 3.400 0.970 0.015 
0.33 14 72 .490 2.599 0.995 0.000 
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HJ 'l 

0.030 -0.464 
0.015 -0.298 
0.010 -0. 135 
0.000 -0.415 

0.035 -0.218 
0.005 -0. 112 
0.010 -0.018 
0.000 0.005 

0.060 -0.214 
0 .030 0.055 
0.010 0. 108 
0.000 0 .155 

0.035 -0.086 
0.020 0. 125 
0.005 o. 171 
0.000 0.300 

0.065 -0. 154 
0.030 0 .156 
0.025 0.256 
0.005 0.417 

0.065 -0.070 
0.030 0.235 
0.015 0.288 
0.005 0. 399 
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TABLE XX (Continued) 

y n' P* o* n* N S(N) H1 Hz H3 n 

l/ 3 6 0.75 0.59 4 10.950 0.537 0.935 0.035 0.030 -0.464 
0.90 0.91 3 8.395 o. 353 0.970 0.015 0.015 -0.298 
0.95 1.11 3 6.955 0.270 0.970 0.020 0.010 -0 .135 
0.99 1.48 2 8.575 0.412 1.000 0.000 0.000 -0.415 

10 0.75 0.45 6 14.690 0. 714 0.915 0.050 0.035 -0. 204 
0.90 0.71 4 12.295 0.591 0.995 0.000 0.005 -0. 112 
0.95 0. 86 4 9. 770 0.455 0.995 0.000 0.005 0.067 
0.99 1.14 3 10 .050 0.389 1.000 0.000 0.000 0.005 

16 0.75 0.36 9 25.295 1. 316 0.930 0.030 0.040 -0. 2 75 
0.90 0.56 6 16. 210 0.694 0.980 0.010 0.010 0.070 
0.95 0.68 5 14.720 0.673 0.980 0.010 0.010 0.108 
0.99 0.90 5 12.605 0.456 0.995 0.005 0.000 0 .216 

30 0.75 0.26 13 40.635 1.981 0.905 0.050 0.045 -0.123 
0.90 0.41 9 26.185 1.223 0.945 0.030 0.025 0 .169 
0.95 0.49 8 24. 865 1.128 0.965 0.020 0.015 0.184 
0.99 0.66 7 20. 755 0. 792 1.000 0.000 0.000 0.315 

60 o. 75 0 .19 22 79.755 3. 913 0. 880 0.060 0.060 -0. 133 
o. 90 0.29 15 52 .810 2.401 0.970 0 .010 0.020 0.183 
0.95 0.35 13 42 .920 1. 841 0.960 0.020 0.020 0.292 
0.99 0.47 11 35.300 1.276 1.000 0.000 0.000 0.418 

120 o. 75 0.13 37 146.325 7.473 0.860 0.080 0.060 -0.063 
0.90 0.20 25 9 4. 110 4.418 0.940 0.025 0.035 0.249 
0. 95 0.25 22 85. 745 3.211 0.955 0.020 0.025 0.289 
0.99 0.33 19 70.495 2.718 1.000 0.000 o.ooo 0.418 
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TABLE XX {Continued) 

y n' P* 5* n* N S(N) H1 Hz H3 Tl 

1/4 6 0. 75 0.59 5 10.605 0.448 0.920 0.055 0.025 -0. 441 
0.90 0.91 3 8.395 0. 353 0.970 0.015 0.015 -0.298 
0.95 ·1.11 3 6.955 0.270 0.970 0.020 0.010 -0 .135 
0.99 1.48 3 6.905 0.267 0.995 0.000 0.005 -0. 145 

10 0.75 0.45 7 15.555 0.759 o. 935 0.040 0.025 -0.247 
0.90 o. 71 5 11.130 0.490 0.985 0.005 0.010 -0.017 
0.95 0.86 4 9. 770 0.455 0.995 0.000 0.005 0.067 
0.99 1.14 4 9.120 0.325 1.000 0.000 0.000 0.097 

16 0.75 0.36 10 23. 755 1.213 0.905 0.040 0.055 -0.230 
0.90 0.56 7 16 .210 0.636 0.970 0.010 0.020 0.060 
0.95 0.68 6 14.535 0.609 0.995 0.005 0.000 0. 133 
0.99 0.90 5 12.605 0.456 0.995 0.005 0.000 0.216 

30 0.75 0.26 16 38.200 1. 745 0.900 0.060 0.040 -0.061 
0.90 0.41 11 27 .385 1.255 0.975 0.010 0.015 0. 15 7 
0.95 0.49 9 24. 365 1.043 0.965 0.030 0.005 0.200 
0.99 0.66 8 20.195 0. 763 1.000 0.000 0.000 0.334 

60 0.75 0.19 27 80.580 4.067 0,875 0.05S 0.070 -0. 151 
0.90 0.29 18 53.15S 2. 3S4 0.960 0.020 0.020 0 .169 
0.95 0.35 16 44. 330 1. 748 0.970 O.OlS 0.015 0.276 
0.99 0.47 13 34 .185 1.202 0.995 0.000 0.005 0.433 

120 0.75 0.13 47 142. SSS 7.087 0.8S5 0.080 0.06S -0.042 
0.90 0.20 31 95.855 4.646 0.9S5 0.015 0.030 0.247 
0.95 0.25 27 87 .13S 3.220 0.960 0.025 0.015 0.281 
0.99 0.33 23 67. 63S 2.620 0.995 0.005 0.000 0.439 
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Procedure P4(3) 

Let Sn2 ' rn(Sn), and an be as defined in procedure P4(k) with k=3. 

In this case, the stopping rule takes the following form. 

P4(3): Observe. {~1• ~2• .; i=l, 2, 3} and thus obtain :;;ijl• :;;ij2• 

. . . ' successively. For each n~2, after observing z .. , we stop samp-
1Jn 

ling and accept H1., if sup rn(S ) <-a for some i. 
j;/=l n -- n 

In Table XXI, we present results on simulating this procedure for 

several pairs (P*, 8 *). These entries mean the same things as in Table 

XIX. 

Remark 4.10: CollDllents like those in remark 4.5 are still valid for 

Table XXI for overall relative frequencies of correct selection in favor 

of H1• 
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TABLE XXI 

SIMULATION RESULT FOR THE RULE P4(3), 
VARIANCE UNKNOWN 

n' P* a'< N S(N) H1 H2 H3 Tl 

2 0. 75 1.01 4.255 0 .157 0.940 0.035 0.025 -0.697 
0.90 1.58 3.335 0.091 1.000 0.000 0.000 -0.501 
0.95 1.92 2 .975 0.074 0.980 0.000 0.020 -0.442 
0.99 2.56 2. 715 0.056 1.000 0.000 0.000 -0.344 

4 0.75 0. 72 5. 770 0.242 0. 865 0.070 0.065 -0.251 
0.90 1.12 4 .530 0 .152 o. 975 0.010 0.015 -0.045 
0.95 1.36 4.200 0 .126 1.000 0.000 0.000 0.003 
0.99 1.81 3.800 0 .111 0.990 0.000 0.010 0.050 

6 0. 75 0.59 8.565 0 .411 0.890 0.055 0.055 -0.203 
0.90 0.91 6. 315 0.270 0.945 0.030 0.025 -0.002 
0.95 1.11 5.320 0.178 o. 980 0.015 0.005 0.140 
0.99 1.48 4.955 0. 156 0.990 0.000 0.010 0.174 

10 0.75 0.45 12.420 0.659 0.915 0.065 0.020 -0.018 
0.90 o. 71 9.450 0.426 0.970 0.010 0.020 0 .123 
0.95 0.86 7 .910 0.330 0.965 0.025 0.010 0 .221 
0.99 1.14 6.945 0 .232 0.995 0.000 0.005 0 .309 

16 0.75 0.36 19.155 1.138 0.865 0.055 0·.080 -0.038 
0.90 0.56 13.455 0 .581 0.950 0. 015 0. 035 0.203 
0.95 0.68 12.310 0.506 0 .980 0.015 0.005 0.254 
0.99 0.90 10.015 0.347 0.995 0.000 0.005 0 .377 

30 0. 75 0.26 32. 365 1.695 0. 855 0.080 0.065 0.054 
0.90 0.41 23 .515 1.178 0 .960 0.010 0.030 0.265 
0.95 0.49 21.130 0.949 0.945 0.035 0.020 0.292 
0.99 0.66 16. 700 0.671 0.995 0.000 0.005 0.446 

60 0. 75 0 .19 69.480 3.238 0.845 0.065 0.090 -0.028 
0.90 0.29 45 .580 2 .154 0.920 0.020 0.060 0.257 
0.95 0.35 38. 4 75 1. 721 0.940 0.030 0.030 0.352 
0.99 0.47 30.675 1. 122 0. 985 0.005 0.010 0.486 

120 0.75 0.13 135. 5 70 6.584 0. 845 0.090 0.065 -0.003 
0.90 0.20 83.230 3 .549 0.900 0.050 0.050 0.306 
0.95 0.25 78.120 3.067 0.940 0.035 0.025 0. 342 
0.99 0.33 64. 210 2.549 0.990 0.000 0.010 0.465 



CHAPTER V 

SUMMARY 

The objective of this thesis is to develop procedures to solve the 

following two problems: (a) the selection of the smallest normal vari

ance, (b) the selection of the largest normal mean. We adopt the indif

ference zone approach with a target value P* of the probability of 

correct selection. For the first problem, we develop sequential proce

dures through comparisons of likelihoods. For the second problem, by 

appealing to the rules developed in Mukhopadhyay ( 1980a) for the case of 

common variance being known, we develop some sequential procedures when 

the connnon variance is unknown. For numerical comparisons, we also pre-

sent some modified rules along the lines of Baker ( 1950), Hall (1962), 

and Muk.hopadhyay (1979, 1980b). 

The proposed sequential procedures for both the problems result in 

a substantial "saving" in the average sample sizes compared to the cor

responding well known (Chapter 2, Gibbons et al. (1977)) fixed sample 

size procedures. We suggest, however, two separate methods of the 

"saving" and work primarily with one of these notions. 

For the first problem, we consider some special cases for some or 

all of the population means being known. In the cases k=2 and k=3, we 

have presented extensive numerical results through simulations suggest

ing the merits (in almost all the simulations) of our proposed proce

dures. For the case k=2, we have studied various asymptotic behavior 
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(as P*+l) of the stopping time involved in our statistical methods, and 

these are sunnnarized in theorems 3.1 and 3.2. For the case k=3, we pre

sent some partial asymptotic results (as P*+l) in theorem 3.3. 

For the second problem, our major findings are in the case when the 

common variance is unknown. In the cases k=2 and k=3, we have also pre

sented extensive numerical results through simulations suggesting the 

merits (in almost all the simulations) of our proposed procedures. For 

the case k=2, we have also studied various asymptotic behavior (as P*+l) 

of the stopping time involved in our statistical methods, and these are 

summarized in theorems 4.1, 4.2, 4.3 and 4.4, we further obtain the pro

perty of "asymptotic efficiency". For the case k=3, we present some par

tial asymptotic results (as P*+l) swmnarized in our theorems 4.5 and 4.6. 

We have discussed the situations where there is only one population 

with the smallest variance for the first problem, and the situations 

where there is only one population with the largest mean. The situa

tions where there are more than one "best" population may be solved by 

modifying our present solutions. The solutions for these types of prac

tical problems are yet to be designed and studied along the lines of our 

suggestions in this dissertation. 
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APPENDIX A 

STATEMENTS OF SOME IMPORTANT RESULTS 

A.l. Anscombe's (1952) Results 

Let {Y }, n=l, 2, ••• , be an infinite sequence of random variables 
n 

(r.v.'s). Suppose there exists a real number e, a sequence of positive 

numbers' {wn}, and a distribution function F(X), such that the following 

conditions are satisfied: 

(Cl) Convergence of. {Yn}: For any X such that F(X) is continuous (a 

"continuity point" of F(X)), Prob (Yn - e 2_ Xwn) + F(X) as n~. 

(C2) Uniform continuity in probability of {Yn}: Given any small posi-

tive s and n, there is a large v and a small positive c such that, for 

every n>v, Prob{!Yn' - Ynl< swn simultaneously for all integers n' such 

that In' - nl < en} > 1-n. 

Let {Xu}, n=l, 2,. . . , denote an infinite sequence of r.v. 's, not 

necessarily independent. For each r, let Yn and gn be functions of x1 , 

.•. , Xn' Suppose that {Yn} satisfies conditions Cl and C2 above. Let 

.far},r=l, 2, .• , be a decreasing sequence of positive numbers converg-

ing to zero. Let {Nr} be a sequence of r.v.'s defined by the condition: 

Nr is the least positive integer n such that gn 2- ar; and let {nr} be 

the sequence of positive integers defined by the conditions: nr is the 

least n such that wn 2_ ar. 

(C3) Convergence of {wn}: {wn} is decreasing, and it tends to zero such 
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(C4) Convergence of {Nr}: Nr is a poroper r.v. for all r, and N/nr + 1 

in probability as r-+<». 

Theorem: 

(1) Under conditions Cl - C4, Prob{YNr - 8 :::_Xar} + F(X) as r+ro, 

at all continuity points X of F(X). 

. . ' are independently and identically distributed, 

-1 n Yn = n i~l~' Cl and C3 hold, and F(X) is proper and continuous which 

imply that condition C2 also holds. 

A.2. Dominated Ergodic Theorem (Wiener, 1939) 

Theorem: 

Let S be a measurable set of points of finite measure. Let T be a 

transformation of S into itself, which transforms every measurable sub-

set of S into a set of equal measure, and whose inverse has the same pro-

perty. Let f(P) be a function defined, over S and of Lebesque class L. 

Let f(P) ~ 0 on Sand let f*(P) =o~X~oo A1l ntof(TnP). Then if f(p) 

belongs to lP (p>l), so does f*(p); while if fsf(p) log f(p)dVp< 00 , then 

f*(p) belong to l. 

A.3. Fatou's Lemma 

Theorem: 

Let gn ~ f(integrable) be a sequence of integrable functions. Then 

lim inf gn is integrable and 
n+oo 

flim inf g dµ < lim inf f gndµ 
n+oo n - n-+oo 
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A.4. Ghosh and Mukhopadhyay's (1975) Result 

Let {Nv, v:::_l} be a sequence of positive integer valued r.v. 's de-

fined as follows: Nv is the smallest positive integer n(:::_n0) for which 

n :::_ $vTn, where n0 is the starting sample size,· {¢v} is a sequence of 

positive constants, -too as v-+<», and Tn(n:::_n0) are statistics such that 

Theorem: 

1 
For the sequence of stopping times defined above, if Nv~(TN - a)/ 

v 
l b + N (O, 1) as v-+<», and 

!.:: I 
Nv 2(TNv-l - a)/b ~ N(O, 1) as \H'<"', where a(>O) 

!.::( !.:: l constants, then a 2 Nv - a$v)/b¢v2 + N(O, 1) as v-+<». 

and b(>O) are 

A.5. Jensen's Inequality 

Theorem: 

Let u be a real valued convex function, and X and u(X) be integra-

ble r.v. 's, then for each Borel subfield g: 

u { E ( x I g) } .::.. E { v ( X) I g} • 

A.6. Mann and Wald's Theorem (Rao, 1973, p. 385) 

Theorem: 

Let {Tn}, n=l, 2, ... , be a sequence of statistics such that 

n~(Tn -8) ~ N{O,cr2 (8)}. Let g be a function of a single variable ad

mitting the first derivative g'. Then 

n~{g(Tn) - g(e)} ~ N(O, {g'(8)cr(8)}2). if g'(e) :f O. 
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Further let g' be continuous, then 

N{O, cr 2 (8)}, and if cr(8) is also con-

l l 
tinuous, then n~{g(Tn) - g(e)}/g'(Tn)cr(Tn) + N(O, 1). 

A.7. Monotone Convergence Theorem 

Theorem: 

Let gn be a sequence of non-negative, non-decreasing, artd measurable 

functions, and let lim ~ = g, a.e. (µ). Then g is measurable and 
n-+= '-'!l 

lim/~dµ = f gdµ. 
n-+= 

A.8. Starr and Woodroofe's (1968) Result 

Let x1, x2 , ••• , be a sequence of iid r.v. 's with finite expecta-

- In . tion EX1• Let~= n-.E X1., n.::_1, and let {Cn} be any sequence of con
i=l 

stants and m any positive integer. Suppose a stopping time based on the 

sequence xl, x2, ••• , is defined by 

N ~{smallest n>m such that Xu~ Cn}, 

00 if no such n exists. 

Assume that P(N<~) = 1, so that ~ is well-defined. 

Theorem: 

If E~ exists, then E~~ EX1. 

A.9. Strong Law of Large Numbers 

Theorem: 

Let x1, x2, •.. , be a sequence of iid r.v. 's. Then a necessary 



and sufficient condition that xn~µ a.s. is that E(X1) exists and is 

equal to µ. 

A.10. Wald's First Equation 

Theorem: 

Let x 1, x2 , .•• , be iid real-valued r.v.'s and N be a stopping 

time such that 

(i) E{ ix1 j} < oo, 

(ii) the event. {N .::_ j} depends only on Xl' x2 , . • • , Xj-l' 

(iii) E (N) < oo, 
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APPENDIX B 

PROOFS OF THEOREMS 

B.l. Theorem 3.1 

Let us work under the hypothesis H1 . Under H2 , a similar proof can 

easily be constructed. The first two parts of (3.10) are obvious. For 

the other part, we write the basic inequality: 

-VN tn(l-P*) < N < 1 - VN-l tn(l-P*) •.• (B. l) 

strong law of large numbers (Appendix A.9) and the fact that N-+= a.s. 

as P*+l, we conclude from (Bl) that N/C+l a.s. as P*+l, where 

c = -{tn(l-P*)}/tn{(l+o*2)/2o*}. • • • (B. 2) 

We now proceed for a proof of (3.11) under H1. Note that 

l !.: l 
n'2(Tln - o>~- 1 )/2 20*-l +N(O, 1) as n-+=, which implies 

n12{un - 20*(1+0>~2)-l}/2120*(1+0~:2)-l ~ N(O, 1) as n-+=, and this 

further implies 

• • • (B. 3) 

as n-+=, by using Mann and Wald's theorem (Appendix A.6). 

Using Mann and Wald's theorem all over again, we can write from 

(B. 3) that 

90 
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(B.4) 

as n-+oo. One may note that the same result will also hold for V 1. 
n-

Since the sampling is carried out from normal distributions, we can 

use Helmert's orthogonal transformation on the X-variables and write 
n 

S. 2 = (n-1)-l.I 2Y .. 2 where Y. 2 , 
in J= iJ i 

., Y. are iid N(O, cr1.2), i=l, 2. 
in 

Then, we can apply Anscombe's (1952) results (Appendix A.I) to write 

N~(T - 0*- 1)/2~8*-l i N(O, 1) as P*-+l. 
lN 

Now, retracing all the previous steps, we obtain from (B.4) that 

where a-l 

1 l 
N~(V - a)/b-+ N(O, 1), as P*-+l, 

N 

It may be remarked that the same result as in (B.5) also holds for VN_1. 

Then we can apply a theorem of Ghosh and Mukhopadhyay (1975) (Appen-

dix A.4) with ~v = -tn(l-P*). We obtain 

• • • (B • 6) 

l 
Now equation (B.6) can be rewritten as (N - C)/D-+ N(O, 1) as P*-+l, 

where C is given (B.2) and D is given by 

. • • (B. 7) 

This completes the proof of theorem 3.1. 

B.2. Theorem 4.1 

We are going to work under the hypothesis H2 , while a similar proof 

can easily be constructed under H1. The first two parts of (4.5) are 

obvious. For the other part, we write the basic inequality, 
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• • • (B. 8) 

where Vn-1 = l~nl· Using the strong law of large numbers (Appendix A.9) 

and the fact that N-+co a.s. as P*+l, we conclude from (B.8) that N/C+l 

a.s. as P*+l, where C = -cr2 0*-2Jl.n(l-P*). (B.9) 

We now proceed for a proof of (4.5) under H2• Note that for fixed values 

i..c- * i.. l of n, n 2 e - 8 ) /2 2cr + N(O, 1) as n-+co. 
n 

Using Mann and Wald's theorem (Appendix A.6), we obtain 

1 1 * l n~(V -I o*j- 1 )/2~crl 8 1-2 + N(O, 1) as n~. 
n 

• •. (B.10) 

One may note that the same result also holds for Vn-l" 

Since the sampling is carried out from normal distributions, 

gn = n- 1 L gi• where e1, ••• , tn are iid N8, 2cr2). Applying Anscombe's 

(1952) results (Appendix A.1), we have 

1 - l l 
N~(~ - o*)/2~cr + N(O, 1) as P*+l. • •• (B.11) 

Now, retracing all the previous steps we obtain from (B.10) that 

k l 
N2 (VN - a)/b + N(O, 1) as P*+l, • • • (B .12) 

where a = 3*-l and b = 2~ 3*-2. It may be remarked that the same result 

as in (B.12) also holds for VN-l" Utilizing a theorem of Ghosh and 

Mukhopadhyay (1975) (Appendix A.4) with o/v = -cr2Jl.n(l-P*)/ 8*, we obtain 

k k l 
a 2 (N - aiµ )/bij; 2 + N(O, 1) as P*+l. 

\) \) 
..• (B.13) 

Now, equation (B.13) can be written as 

l 
(N - C)/D + N(O, 1) as P*+l, where C is given in (B.9) 

k and D is given by D = b (1jJv/a) 2 , 



93 

•.• (B.14) 

This completes the proof of theorem 4.1. v 

B.3. Theorem 4.3 

Let us work under the hypothesis H2• Under H1, a similar proof can 

easily be constructed. The first two parts of (4.10) is obvious. For 

the other part of (4.10), we write the basic inequality: 

-V o*-ltn(l-P*) < N < 1 - V 10*-ltn(l-P*) N N- • • . (B. 15) 

Where Vn -- Sn2 j <inf- l . U . h 1 f 1 b (A d. a sing t e strong aw o arge num ers ppen ix 

A.9) and the fact that N-+ro a.s. as P*+l, we conclude from (B.15) that 

N/C+l a.s. as P*+l, where C = -cr2 0*-2in(l-P*). • . (B. 16) 

We now proceed for a proof of (4.11) i.mder H2. Note that for fixed 

!,, - * 1 l values of n, n 2(~n - 8 )/272cr + N(O, 1) as n-+=, which implies 

Using Mann and Wald's theorem (Appendix A.6), we have 

One may note that the same result also holds for V 1. 
n-

•.. (B.17) 

Since the sampling is carried out from normal distributions.we ca.~ 

use 

s 2 
n 

Helmert's orthogonal transformation on X-variables and write 
2 (n-1) 

= (2n-2)-l .I Y.2, where Yi's are iid N(O,a2), Then we can apply 
i=l i 

Anscombe's (1952) results (Appendix A.4) to write 

• • • (B • 18) 
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Retracing all the previous steps, we obtain from (B.17) 

1 l 
N~(V - a)/b + N(O, 1) as P*+l, 

N 
. • • (B.19) 

where a= cr2o*-l, and b = 2~cr3s*-2 . It may be remarked that the same 

result as in (B.19) also holds for VN-l" Then applying a theorem of 

Ghosh and Mukhopadhyay (1975) (Appendix A.4), with ljiv = - 0*-ltn(l-P*), 

we obtain a~(N- - aijJ) /bljiv ~ !+. N(O, 1) as P*+l. (B.20) 

l 
Equation (B.20) can be rewritten as (N - C)/D* + N(O, 1) as P*+l, where 

C is given in (B.16) and D* is given as 

This completes the proof of theorem 4.3. 

B.4. Theorem 4.4 

Let S 2 = ~(S 2 + S 2), where S. 2 n - 2 • 
= -(n-1)-l. I (X - XJ·n) , J=l ,2. n ln 2n Jn 

Let U = sup. {Sln}, V = sup {S2n}. 
n>Z n>Z 

Then u2 ::_-2 sup{.~ (X1 .-- µ 1) 2/n}, 
n>Z 1=1 1 

- n 
and.V2 ::_ 2 sup{.I (Xzi - µ2) 2/n}. 

n>Z 1=1 

1=1 ji 

(B .21) 

(B. 22) 

(B .23) 

Since the forth moment of X is finite, by Wiener's (1939) dominated 

ergodic theorem (see Appendix A.2), the right hand sides of (B.22) and 

(B.23) are integrable. Thus EU2 < oo and EV2 < oo. Notice that 

• • • (B .24) 

which implies that s2N-l is integrable, that is E(S2N-l) < 00 • 

N-1 
From (4.8), it follows that s2N-l ::_ - o*iiElgil/tn(l-P*). Utilizing the 

orthogonal transformation (as shown in (4.9)), we let Tn 

Given I= (T1, T2, .•. ), we write 
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c = -o*!T l/Q.n(l-P*). 
n n • •• (B.25) 

From (B.24), (B.25) and theorem 1 of Starr and Woodroof (1968), we ob-

E(S.2N-l) = E(E(S-2N_11 ;n) a2 

N-1 
By looking at stage N-1, we have 16* i£lgi/S 2N_11 < -,Q,n(l-P*), 

..• (B.26) 

N-1 
which implies li~lz;il .::_ -s 2N_1o*-l,Q,n(l-P*), and we conclude that 

IN-1 J. 2 
E .z z;.1 < -o~- 1 E(S. N l)Q.n(l-P*). 

1=1 1 - -

Now, applying Jensen's inequality (Appendix A.5) and Wald's (1947) 

first equation (Appendix A.10), we have 

From (B.26), under H1 or H2 , we thus obtain E(N-1) .:::._ -o*-2a2R.n(l-P*). 

Hence, E(N) .:::._ -o*-2a2,Q,n(l-P*) + 1, which implies 

E(N/C) < 1 + c-1 • 

Thus, lim sup E(N/C) < 1. 
P*-+l 

Applying Fatou's Lemma (Appendix A.3), we also have 

E(lim inf(N/C)) < lim inf E(N/C). 
P*-+1 - P*-+ 1 

Since N/C+l a.s. as P*+l, we obtain lim E(N/C) = 1. 
P*-+1 

This completes the proof of theorem 4.4. 
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