AN ECONOMETRIC MODEL OF THE IRAQI ECONOMY,

1960-78

By

MOHAMMED SHIHAB ABDULJABBAR

Bachelor University of Baghdad Baghdad, Iraq 1972

> Master of Arts Ohio University Athens, Ohio 1977

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 1982

Thesis 1982D A 136e Cop.2

: :

AN ECONOMETRIC MODEL OF THE IRAQI ECONOMY,

1960-78

Thesis Approved:

michael R. Elgn Thesis Adviber KarwOlson

Lende m fage

the Graduate College

Dean of

ACKNOWLEDGMENTS

I am deeply indebted to the members of my advisory committee, Dr. Michael R. Edgmand, Dr. Gerald M. Lage, Dr. Kent W. Olson, and Dr. Daryll E. Ray, for their valuable assistance. Special gratitude goes to Dr. Michael R. Edgmand, chairman of the committee, for his invaluable suggestions and guidance throughout this study.

I owe a special word of gratitude to Dr. Vahan Zanoyan of Wharton Econometric Forecasting Associates for the constructive criticisms and suggestions he so generously offered.

Thanks are due to all faculty members of the Department of Economics at Oklahoma State University for their invaluable instructions and guidance throughout my graduate study.

I dedicate this work to my wife Alia and our two children Omar and Ali. Their patience, understanding, and encouragement during all these years of graduate study were extremely helpful.

iii

TABLE OF CONTENTS

Chapter	r Pa	ige
Ι.	INTRODUCTION	1
	Purpose and Nature of the Study	3 4
II.	THE IRAQI ECONOMY	6
	GNP and Price Level	7 9 13 19 20 23 26
III.	SPECIFICATION OF THE MODEL	31
	The Model	$\begin{array}{c} 37\\ 37\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 46\\ 46\\ 48\\ 50\\ 51\\ 57\\ 59\\ 60\\ 62\\ \end{array}$
IV.	MODEL SIMULATION ANALYSIS	66
	Validation of the Model	66

Chapter	age
Multiplier Analysis	76 84
V. SUMMARY AND CONCLUSIONS	94
Summary	94
Further Research	95
Conclusions	96
BIBLIOGRAPHY	97
APPENDIX A - TSLS ESTIMATES OF THE BEHAVIORAL EQUATIONS	102
APPENDIX B - DYNAMIC SIMULATION	109

-

.

LIST OF TABLES

Table		Pa	age
Ι.	Iraqi Real Gross National Product and the Consumer Price Index, 1960-1978	•	8
II.	Gross Domestic Product by Sectors at Current Prices	•	10
III.	Crude Petroleum Production and Exports, 1960-1978	•	12
IV.	Proportion of Oil Exports in Total Merchandise Exports, 1960-1978	•	14
۷.	Oil Revenues as a Percentage of Total Government Revenues, 1960-1978	•	15
VI.	Revenues of Economic Development Programs and Plans, 1951-1974	•	16
VII.	Sectoral Distribution of Total Gainful Employment in Iraq in 1973	•	17
VIII.	Iraq's Consumption and Investment Expenditures in Constant Prices, 1960-1978	•	21
IX.	Private and Government Consumption and Investment Expenditures, 1960-78		24
х.	The Composition of Imports in Selected Years	•	25
XI.	Alphabetical Listing of the Variables	•	33
XII.	Results of Dynamic Simulation	•	72
XIII.	Root Mean Square Percentage Errors (RMSPE) of the Historical Simulation of Selected Variables of the Iraqi Model, the Greek Model, the Libyan Model, and the Iranian Model	•	77
XIV.	Percentage Changes in Selected Variables for an Increase in the Volume of Oil Exports by 20 Percent		80
Χ۷.	Percentage Changes in Selected Variables for an Increase in the Price of Oil by 20 Percent		81

Table

XVI.	Percentage Changes in Selected Variables for a Twenty Percent Decrease in the Total Imports of Oil by OECD Countries
XVII.	Percentage Changes in Selected Variables for Adopting the Policy of Denominating the Price of a Barrel of Oil in Terms of SDR 85
XVIII.	Values of Oil Production, Exports, and Prices Used During the Forecast Period, 1979-85
XIX.	Forecast Results for Major Economic Indicators, 1979-85

Page

CHAPTER I

INTRODUCTION

Construction of macroeconometric models has become an increasingly popular endeavor in recent decades.¹ Today, macroeconometric modelbuilding is commonplace in mature economies where there is ample data and substantial agreement on the techniques appropriate for building such models. The state of the art in modeling developing economies is not so well defined and modeling of such economies is still in the pioneering stage. There are arguments in support of using basically the same models for mature and developing economies.² There may be some benefits from such an approach, but one must also be aware of the difference in behavioral characteristics and institutional elements of mature and developing economies.

In this study, a macroeconometric model is developed for the Iraqi economy. This model has its origin in and follows the basic framework of models developed for advanced economies. Efforts are made, however, to introduce modifications to accommodate the special features of the Iraqi economy.

The most recent and most sophisticated macroeconometric study of Iraq was done by A. Kader in 1974.³ Kader's model is based on the Keynesian theory of effective demand and income determination with fifteen equations (eleven behavioral equations and four identities). The behavioral equations are estimated over the period 1953-1969 with merely

one independent variable in each equation. Kader's study has some shortcomings:

a. It takes into consideration only aggregate demand and its main components. Nothing is said about the economy's capacity to meet the desired level of aggregate demand.

b. It is estimated using data expressed in current prices. The use of current prices may introduce spurious correlation resulting from common price trends in the variables of the model. This generally leads to spuriously high R²s and low standard errors of the estimates.⁴ The presence of the common price trends also introduces multicol-linearity which usually results in imprecise parameter estimates.⁵

c. Total imports are estimated as a function of GNP without any distinction between consumer, capital, and intermediate goods. For a developing economy like Iraq, there are advantages to disaggregating imports. In the first place, it facilitates an analysis of the trend and growth of these types of imports, and it also allows an investigation of their interaction with different domestic demand components. Secondly, it delineates between those goods imported to raise the level of material well-being and those imported to further industrial growth.

d. Finally, Kader's study ignores the important question of model stability and provides no discussion of system-wide dynamic multipliers.

Furthermore, because of the government's continuous revision to the official data, we might expect that the estimated coefficients of Kader's model are no longer valid. Therefore, a more complete and upto-date macroeconometric model of Iraq is greatly needed.

Purpose and Nature of the Study

The main objective of this study is to develop a macroeconometric model for the Iraqi economy. Due to the vital importance of the oil sector in the Iraqi economy, the primary emphasis in this model will be given to the investigation of the effects of the oil sector on the structure and recent performance of the economy. In addition, simulation analysis will be utilized to derive policy implications and trace the effects of different shocks in oil variables on the Iraqi economy. The model will also be used to forecast the Iraqi economy for the years 1979 to 1985, using the Whatron Middle East Economic Service projections for the Iraqi oil variables as our assumptions for these variables during the forecast period.

This study is undertaken to satisfy the desperate need of the country for a well-formulated and empirically tested econometric model which could further assist the concerned planning authorities in evaluating the past, present, and future performance of the Iraqi economy.

The model to be developed in this research project is a non-linear simultaneous equation system. It contains fifty-three equations of which twenty-seven are behavioral and the remainder are non-behavioral or identities. The model is based on annual data from 1960 to 1978.

This study differs from Kader's model of Iraq in several ways. It is non-linear and employs simulation analysis to evaluate performance. It describes the economy in more detail. In particular, it includes equations for the price levels, the components of aggregate supply, the wage rate, and employment. It uses constant prices and covers a longer period of time. Finally, there is a sharp contrast between the

behavioral relationships formulated in the present study and those that appear in Kader's model.

Organization of the Study

The study is organized into five chapters. Chapter II describes the Iraqi economy. Sectoral performance and the role of oil sector are examined in this chapter. The specification and estimation of the model are discussed in Chapter III. Chapter IV is concerned with the model simulation analysis. Simulation error measures and dynamic properties of the model are examined in this chapter. Specifically, different simulation experiments are performed in this chapter to examine the effects on the economy of an increase in the volume of oil exports, a decrease in the total imports of oil by OECD countries, an increase in the export price of oil, and the effects of linking oil prices to currencies other than the U.S. dollar. In addition, the forecast of Iraqi economy for the years 1979 to 1985 is also included. The last chapter summarizes the study and also contains a discussion of the study's limitations and suggestions for further research.

FOOTNOTES

¹For a review of the state of the art in macroeconometric modelbuilding, see Paul A. Samuelson, "The Art and Science of Macro-models Over 50 Years," in Gary Fromm and Lawrence R. Klein (eds.), <u>The</u> <u>Brookings Model: Perspective and Recent Developments</u> (Amsterdam, 1975), pp. 3-10.

²Lawrence R. Klein, "What Kind of Macroeconometric Model for Developing Economies?" in Arnold Zellner (ed.), <u>Readings in Economic</u> Statistics and Econometrics (Boston, 1968), pp. 559-570.

³Ahmed A. Kader, "The Role of the Oil Export Sector in the Economic Development of Iraq" (unpub. Ph.D. Dissertation, West Virginia University, 1974), pp. 129-167.

⁴M. W. Khouja and P. G. Sadler, <u>The Economy of Kuwait - Develop-</u> ment and Role in International Finance (London, 1979), p. 94.

⁵Ibid.

CHAPTER II

THE IRAQI ECONOMY

Iraq is an Arab country in Western Asia with an area of 169,317 square miles (the equivalent of 438,317 square kilometers) and a population of approximately 12.7 million.¹ She is bounded by Turkey on the north, Iran on the east, Kuwait on the south, Saudi Arabia and Jordan on the southwest and by Syria on the northwest. Called Mesopotamia by the classical world, the country became known as Iraq in the 7th century. Baghdad is the national capital.

The summers in Iraq are overwhelmingly hot with shade temperatures of over 110° F. Winters, however, are severe in the north, but mild in the south. Rainfall is scanty, except for the northeast where enough rain occurs to grow crops without irrigation. Elsewhere, agriculture is mostly dependent upon irrigation from the two rivers (Tigris and the Euphrates).

Iraq gained her legal independence in 1932 when she ceased to be British mandate. Iraq was not fully independent from Britain, however, until the 1958 revolution which proclaimed Iraq a republic after twentysix years as a monarchy.

Iraq is a major member of OPEC organization. In 1979, Iraq's oil production reached a level of 3.4 million barrels a day, making Iraq second only to Saudi Arabia as a major oil exporter.²

GNP and Price Level

Table I shows that during the 1960-1978 period real gross national product (GNP) increased at an average annual growth rate of 7.6 percent. Between 1960 and 1972 real GNP increased at an annual rate of 5.1 percent. But, from 1973 to 1978, it grew at a very rapid rate of 12.7 percent per year. Two important factors contributed to the rapid growth during the latter period. First, unlike the first period, the second was characterized by political stability which allowed more efforts to be devoted to economic development. Second, the successful nationalization in 1972 of foreign oil companies operating in Iraq and the subsequent increases in oil prices augmented government revenues thus increasing public development expenditures.

Over the period, the Iraqi population increased at a rate of 3.3 percent per annum. Because real GNP grew faster than population, real per capita income increased at an annual growth rate of 4.0 percent. Despite this increase, per capita income in Iraq is still lower than in many countries in the world. For example, in 1978, the per capita income in Iraq was \$1,860 as compared to \$6,910 in Libya, \$2,910 in Venezuela, \$3,470 in Spain, and \$5,030 in Britain.³

Table I also shows the trend of price level (consumer price index) and its rates of change per annum for the 1960-1978 period. During phase one (1960-1972), the consumer price index increased at an annual rate of only 2.7 percent. During phase two (1973-1978), it increased at an annual rate of 8.18 percent. Several factors have contributed to this jump in the inflation rate. First, the government's injection of the rapidly increasing oil revenues into the economy exceeded the economy's absorptive capacity. Second, beginning in 1973, import prices

TABLE I

IRAQI REAL GROSS NATIONAL PRODUCT AND THE CONSUMER PRICE INDEX 1960-1978

Year	Real GNP	Percentage Change	Consumer Price Index (1975 =100)	Percentage Change
1960	1439.7		58.7	
1961	1584.5	10.1	59.3	1.0
1962	1638.6	3.4	60.1	1.4
1963	1644.3	0.3	62.5	4.0
1964	1831.4	11.4	62.4	-0.2
1965	1973.6	7.8	62.1	-0.5
1966	2071.3	5.0	63.4	2.1
1967	1968.0	-5.0	65.4	3.2
1968	2262.2	14.9	66.9	2.3
1969	2359.8	4.3	70.7	5.7
1970	2431.2	3.0	73.8	4.4
1971	2529.3	4.0	76.4	3.5
1972	2577.1	1.9	80.4	5.2
1973	3194.7	24.0	84.7	5.3
1974	3116.5	-2.4	91.3	7.8
1975	3907.2	25.4	100.0	9.5
1976	4666.2	19.4	112.8	12.8
1977	4828.2	3.5	123.1	9.1
1978	5125.0	6.1	128.8	4.6
Sources:	In Millions 1. United N Analysis Force an	of Iraqi Dinars (ations, Office of , <u>DRPA Computer Ta</u> d Population, 1980	ID) - One ID = \$3. Development Resear pe of National Acco (New York 1981)	38 ch and Policy ounts, Labour

 IMF, International Financial Statistics (Washington, DC, 1980). have risen sharply as a result of world-wide inflation. Third, infrastructural bottlenecks, such as deficient ports facilities and communication networks, were a deterrent to smooth inflow of imports.

Despite this, inflation in Iraq is still less than in other OPEC countries. For example, during the 1970-1978 period, the consumer price index in Iraq increased at an annual growth rate of 7.2 percent, as compared to a 12.0 percent growth in Iran, a 14.7 percent growth in Saudi Arabia, and a 16.9 percent growth in Nigeria.⁴

This low rate of inflation in Iraq is due to the extensive system of government price controls and subsidies which cover essential consumer goods. Total government subsidies averaged around ID 76 million (one Iraqi Dinar (ID) = \$3.38) during the 1974-1978 period.

Composition of Gross Domestic Product

The major components of Iraq's gross domestic product are oil, agriculture, manufacturing, construction, transportation and communications, and services. These components (they can also be referred to as sectors) may be examined in terms of their importance and growth of the national economy.

0il Sector

The oil sector dominates the Iraqi economy. It accounted for more than one third of the country's gross domestic product (GDP) during the 1960-1973 period (Table II). Following the rise in oil prices, the share of the oil sector in Iraq's GDP rose sharply, reaching 54.2 percent in 1978.

ΤA	BL	E	ΙI	

GROSS	DOMES	STIC	PRO	DUCT	BΥ	SECTORS
	AT	CURR	ENT	PRIC	ES	

Sector & Percent	1960	1963	1966	1969	1973	1975	1978
Agriculture	97.9	109.3	140.0	161.4	188.2	297.3	473.0
Percent	17.3	16.3	15.4	15.0	12.1	7.5	7.3
Oil Extraction	208.0	242.5	298.5	335.9	563.4	2279.0	3529.2
Percent	36.8	36.2	32.8	31.3	36.4	57.4	54.2
Manufacturing	56.1	66.1	80.4	110.3	$\begin{array}{c} 168.5 \\ 10.9 \end{array}$	247.2	493.9
Percent	9.9	9.9	8.8	10.3		6.2	7.6
Construction	23.1	20.3	34.5	38.5	57.6	91.3	317.6
Percent	4.1	3.0	3.8	3.6	3.7	2.3	4.9
Transportation & Communication Percent	39.7 7.0	48.8 7.3	63.2 6.0	69.1 6.4	88.5 5.7	157.6 4.0	263.5 4.1
Services	136.9	178.4	285.4	348.1	467.6	880.4	1383.3
Percent	24.2	26.6	31.4	32.4	30.2	22.2	21.3
GDP at factor cost	565.2	670.6	909.7	1074.2	1549.8	3970.5	6506.0

Ource: United Nations, Office of Development Research and Policy Analysis, <u>DRF</u> <u>Computer Tape of National Accounts, Labour Force and Population, 1980</u> (New York, 1981).

The Iraqi oil industry up to 1972 was dominated by private foreign firms with whom the government, in 1952, signed a concession agreement providing for equal sharing of profits on crude oil production. In 1960, negotiations to revise the concession agreement between the Iraqi government and the companies broke down. By decree, the Iraqi government then reduced the concession area to a fraction of its previous size. The resulting struggle between the government and the companies impeded the development of the Iraqi oil industry during the 1960s, and eventually ended with the nationalization of foreign oil companies in 1972.⁵ The annual rate of growth of Iraqi crude production dropped from 21 percent during the 1950-1960 period to 4.8 percent during the 1960-1970 period.

Iraq exports most of its oil output. During the 1960-1978 period, oil exports accounted, on average, for about 95 percent of Iraqi oil output (Table III).

There is a general concensus among economists that a policy of industrialization normally lead to a drain of foreign exchange and balance of payments difficulties. However, Iraq's development experience, particularly during the post-nationalization era, has proved thus far to be an exception to this general rule. Revenues derived from oil exports provided foreign exchange for essential imports and strengthened Iraq's external account. The strengthening external position is indicated by the rise in gold and foreign exchange reserves held by the Central Bank of Iraq (CBI) from \$781 million at the end of 1972 to \$6990 million at the end of 1977.⁶ Oil exports during the 1960-1978 period constituted, on the average, about 82 percent of the country's total merchandise exports. Its contribution grew markedly from 68

TABLE III

CRUDE PETROLEUM PRODUCTION AND EXPORTS 1960-1978

Year	Production	Exports	Exports as Percent of Production
1960	0.355	0.331	93.2
1961	0.368	0.347	94.3
1962	0.368	0.346	94.0
1963	0.424	0.401	94.6
1964	0.458	0.438	95.6
1965	0.479	0.457	95.4
1966	0.508	0.482	94.9
1967	0.448	0.428	95.5
1968	0.549	0.522	95.1
1969	0.555	0.528	95.1
1970	0.565	0.546	96.6
1971	0.618	0.591	95.6
1972	0.535	0.524	97.9
1973	0.787	0.703	95.4
1974	0.719	0.675	93.9
1975	0.826	0.751	90.9
1976	0.882	0.818	92.7
1977	0.857	0.791	92.3
1978	0.935	0.870	93.0

percent in 1960 to 98.6 percent in 1978 (Table IV). There is no doubt that oil exports will dominate Iraq's foreign trade in the years to come.

Oil revenues are the major source of finance to the Ordinary Budget and Development Budget. The share of oil receipts in the combined revenues of the Ordinary and Development budgets amounted, on average, to about 74 percent during the 1960-1978 period. Its contribution grew markedly from 67.7 percent in 1960 to 92 percent in 1978 (Table V). Between 1951 and 1974, about 91 percent of Development Budget revenues came from oil revenues (Table VI).

The oil sector, in spite of its high share in GDP, is extremely capital intensive and employs only a small proportion of total employment in the country. In 1973, it employed less than 0.7 percent of the country's workforce (Table VII).

Agriculture

This sector includes farming, forestry, and fishing and, next to oil, it is the most important commodity-producing sector in the economy. Its importance stems from the following reasons: (a) it employs the highest percentage of the country's total labor force, (b) it is an important source of food and raw materials for domestic consumption, and (c) it accounts for the bulk of non-oil exports.

Employment in this sector, even though it has decreased in recent years, continued to be the highest. While the sector employed about 75 percent of total estimated labor in the 1960s, this percentage declined to about 54 percent in 1973. The sectoral distribution of gainfully employed labor in 1973 is shown in Table VII. The estimated number of

TABLE IV

ť

PROPORTION OF OIL EXPORTS IN TOTAL MERCHANDISE EXPORTS 1960-1978

Year	Total Merchandise Exports	0il Exports	Oil Exports as Percent of Total Merchandise Exports
1960	233.6	158.9	68.0
1961	236.3	178.2	75.4
1962	247.2	178.6	72.2
1963	278.9	206.8	74.1
1964	299.9	226.4	75.5
1965	315.0	235.7	74.8
1966	333.5	249.3	74.8
1967	297.4	217.9	73.3
1968	371.7	269.6	72.5
1969	372.1	271.8	73.0
1970	392.8	280.0	71.3
1971	500.0	375.2	75.0
1972	371.3	317.3	85.5
1973	588.1	555.3	94.4
1974	1949.9	1921.0	98.5
1975	2450.2	2414.8	98.6
1976	2737.9	2691.5	98.3
1977	2850.0	2807.5	98.5
1978	3250.9	3204.4	98.6
Sources:	In Mill 1. United Nation, <u>Y</u> <u>1979</u> (New York,	ion of Iraqi Dinar earbook of Interna 1979).	rs ational Trade Statistics

2. OPEC, <u>Annual Statistical Bulletin 1979</u> (Vienna, 1979).

TABLE V

OIL REVENUES AS A PERCENTAGE OF TOTAL GOVERNMENT REVENUES 1960-1978

Year	Total Revenues	0il Revenues	Oil Revenues as Percent of Total Revenues
1960	140.5	95.1	67.7
1961	142.6	94.8	66.5
1962	145.6	95.1	65.3
1963	158.0	110.0	69.6
1964	182.3	126.1	69.2
1965	192.4	131.4	68.3
1966	212.0	140.8	66.4
1967	207.6	130.1	62.7
1968	265.5	174.3	65.6
1969	274.5	171.1	62.3
1970	301.8	183.1	60.7
1971	424.1	296.8	70.0
1972	320.8	191.4	60.0
1973	694.7	557.4	80.2
1974	1815.9	1683.3	92.7
1975	2383.5	2214.9	92.9
1976	2812.5	2510.2	89.3
1977	3128.8	2844.2	90.9
1978	3275.9	3012.2	92.0
Sources: 1	In Milli 1. OPEC, Annual Sta	ions of Iraqi Dinars atistical Bulletin 19	979 (Vienna, 1979).

2.	Central Statistical Organization,	Annual	Abstracts of
	<u>Statistics 1970</u> (Iraq, 1971).		
3.	Central Statistical Organization,	Annual	Abstracts of
	$C_{+} + i_{+} + i_{+} = 1075 (I_{+} = 107C)$		

<u>Statistics 1975</u> (Iraq, 1976).
4. Central Statistical Organization, <u>Annual Abstracts of Statistics 1978</u> (Iraq, 1979).

TABLE VI

REVENUES OF ECONOMIC DEVELOPMENT PROGRAMS AND PLANS 1951-1974

Program/Plan	Total Revenues	0il Revenues	Oil Revenues as Percent of Total Revenues
Revised First General Program (1951-1954)	107.5	104.4	97.1
Revised Second General Program (1955-1959)	241.4	234.1	97.0
Provisional Economic Plan (1959-1961)	100.9	94.1	93.3
Detailed Economic Plan (1961-1964)	239.0	195.6	81.8
Five-Year Economic Plan (1965-1969)	407.0	372.3	91.5
National Development Plan (1970-1974)	1540.0	1389.7	90.2
Total	2635.8	2390.2	90.7
In Millio	ns of Iraqi	Dinars	

Source: Kadhim A. Al-Eyed, <u>Oil Revenues and Accelerated Growth:</u> <u>Absorptive Capacity in Iraq</u> (New York, 1979), p. 34,

TABLE VII

SECTORAL DISTRIBUTION OF TOTAL GAINFUL EMPLOYMENT IN IRAQ IN 1973

Sector	Number (in thousands)	Percent of Total
Agriculture	1540.4	54.0
Mining (Oil)	18.5	0.65
Manufacturing	170.0	6.00
Electricity, Gas and Water	14.3	0.50
Construction	73.0	2.55
Commerce	164.0	5.74
Transport	162.0	5.67
Services	330.0	11.56
. Other	_380.4	13.33
Total	2852.6	100.00

Source: Europa Publications, <u>The Middle East and North Africa 1978-1979</u> (London, 1978), p. 392. gainful employment in all sectors in 1973 stood at 2,852 thousands. Of this number, agriculture alone used 1,540 thousands, representing 54.0 percent of the country's total employment.

Exports other than oil are mainly of agricultural origin; agricultural products constitute more than half of non-oil exports. Major agricultural exports are dates, barley, wheat, and rice.⁷

Iraq's agricultural resources consist of about 12 million hectars of potentially cultivable land, equivalent to about one-fourth of the total area of the country.⁸ Less than two thirds of the cultivable land is cultivated, of which half is irrigated. Owing to the widespread practice of the fallow system, however, only about 50 percent of the cultivated land is under crops in any one year.

In contrast to the rising share of oil in GDP, agriculture's share has declined rather sharply since the early 1960s (Table II). Several factors have contributed to the poor performance of this sector. Chief among these is the decision of the Iraqi planners to neglect agriculture in the development plans of 1951-1974. During this period, less than 50 percent of planned allocations to agriculture was implemented.⁹ Moreover, most of the allocations went to flood-control schemes and dams rather than to drainage canals, land reclamation, development of animal wealth, and other activities that directly contribute to increasing agricultural output. Estimates of the damage due to failure to undertake drainage indicates that 20-30 percent of the irrigation area has been deserted after its salination surpassed the limit.¹⁰

The growing awareness and concern with the problems of the agriculture sector was reflected in the country's latest development plan (1976-1980). In the first three years of the plan agriculture received 17 percent of the total development expenditures.¹¹ The aim is to increase agricultural output by reclaiming lands and solving the salinity problem which affects irrigated land.

Manufacturing

The manufacturing sector is the third largest commodity-producing sector after oil and agriculture. It accounted for approximately 11 percent of GDP and about 6 percent of the country's total employment in 1973 (Table II and Table VII). Its value added increased from ID 56.1 million in 1960 to ID 493.9 million in 1978, an annual growth rate of 12.8 percent.

All heavy industries are state-owned and the government has sizable shares in many private firms. The public sector concentrates on large scale and capital-intensive industries, leaving small-scale industries in the areas of consumer goods and services to the private sector.¹²

The major industries in Iraq are foodstuffs and beverages, textile and clothing, construction materials, and petroleum refining. Other important industrial projects completed in the past two years were a petro-chemical complex, an iron and steel complex, and a chemical fertilizer plant.

The manufacturing sector experienced a comparatively high rate of growth (almost 9 percent annually) during the 1960-1973. The rate accelerated during the 1973-1978 period to about 24 percent annually. The reason for the good performance of this sector is that during the last 18 years the Iraqi planners have given top priority to this sector. In the first three years of the development plan (1976-1980), manufacturing received 32.5 percent of the total development expenditures.¹³

Other Sectors

The services sector which includes domestic trade, banking, ownership of dwellings, and public administration and defense is the largest non-commodity producing sector of the economy. Its value added increased from ID 136.9 million in 1960 to ID 1383.3 million in 1978, an annual growth rate of 13.7 percent. In spite of the remarkably high growth rate of services, however, its share in GDP has decreased from 24.2 percent in 1960 to 21.3 percent in 1978 (Table II). This is largely due to an even greater growth of the contribution of the oil sector.

As for the construction sector, the trend continued to be upward during the period under study. Its value added increased from ID 23.1 million in 1960 to ID 317.6 million in 1978, an annual growth rate of 15.7 percent. Despite technical problems associated with scarcity of engineers, shortages in input materials and skilled labor, its share in GDP increased from about 4 percent to 5 percent (Table II).

The value added in transportation and communication sector increased from ID 39.7 million in 1960 to ID 263.5 million in 1978, an annual growth rate of 11.1 percent. In spite of this big increase, the transport system in Iraq is still inadequate for its ambitious development programs. The services provided by this sector are vital for the speedy execution of these programs and the proper operation of newly established projects.

Gross Domestic Expenditures

Table VIII combines the relevant information on aggregate consumption and investment expenditures and their respective shares in GNP for

TABLE VIII

Year	Consumption Expenditures	Consumption as Percent of GNP	Investment Expenditures	Investment as Percent of GNP
1960	656.2	45.6	234.7	16.3
1961	749.6	47.3	262.6	16.6
1962	793.9	48.4	224.4	13.7
1963	710.9	43.2	211.9	12.9
1964	880.1	48.1	251.4	13.7
1965	1034.6	52.4	251.6	12.7
1966	1061.4	51.2	283.9	13.7
1967	961.2	48.8	269.9	13.7
1968	1161.8	51.4	272.4	12.0
1969	1149.9	48.7	289.1	12.3
1970	1131.9	46.6	317.9	13.1
1971	1246.9	49.3	326.5	12.9
1972	1300.2	50.5	338.8	13.1
1973	1270.4	39.8	428.1	13.4
1974	1695.9	54.4	617.1	19.8
1975	2059.9	52.7	971.1	31.2
1976	1968.9	42.2	1417.0	36.3
1977	2266.7	46.9	1621.8	34.8
1978	2434.3	47.5	1838.7	35.9

IRAQ'S CONSUMPTION AND INVESTMENT EXPENDITURES IN CONSTANT PRICES, 1960-1978

In Million of Iraqi Dinars

Source: United Nation, Office of Development Research and Policy Analysis, <u>DRPA Computer Tape of National Accounts, Labour</u> Force and Population, 1980 (New York, 1981). the 1960-1978 period. Aggregate consumption expenditures measured in terms of millions of 1975 dinars increased at an annual growth rate of 7.5 percent, from 656.2 in 1960 to 2434.3 in 1978. Because the growth rates of GNP and consumption were almost identical, the proportion of consumption expenditures out of GNP remained almost stable at about 50 percent over the entire period except for 1973 and 1976. The above figures also suggest a two-fold increase in aggregate real per capita consumption expenditures from 1960 to 1978. Taking the latter as a crude yardstick for the standard of living, this indicates a substantial improvement in the overall well-being of the population over this period.

The same table shows that real domestic investment increased from ID 234.7 million in 1960 to ID 1838.7 million in 1978, an increase of 738 percent. Most of this increase, however, occurred during the 1973-1978 period. It grew at an annual rate of 3.1 percent during the 1960-1972 period, whereas its annual growth rate jumped to 32.6 percent during the 1973-1978 period. Political instability and fluctuations in foreign exchange receipts due to the strained relations between the Iraqi government and foreign oil companies were mainly responsible for the relative stagnation of investment in fixed capital formation during the 1960-1972 period.

Unlike aggregate consumption expenditures, there was an increase in the share of real domestic investment in GNP, rising from 16.3 percent in 1960 to about 36 percent in 1978. This reflects improvement in the country's ability to invest. As can be ascertained from Table VIII, real domestic investment amounted, on average, to 13.6 percent of real GNP during the 1960-1972 period; the ratio increased to 28.6 percent

during the following six-year period. This explains the high rates of economic growth during the 1973-1978 period and the relatively low rates of growth during the 1960-1972 period.

The figures for private and government consumption expenditures are given in Table IX. Real private consumption expenditures increased from ID 472.9 million in 1960 to ID 1635.5 million in 1978, an annual growth rate of 7.1 percent. At the same time, its government counterpart grew at an annual growth of 8.5 percent. The difference between these growth rates gradually narrowed the gap between government and private consumption expenditures from about 39 percent to around 49 percent over the span of 19 years 1960-1978 (Table IX).

The figures for private and government investment are also given in Table IX. Although real private investment expenditures increased in both magnitude and rate of change, they were outweighed on both accounts by their government counterpart. The former grew at about 4.5 percent per year, whereas the latter grew at about 16 percent annually. In 1960, the ratio of government to private investment expenditures was 75.9 percent. The same ratio was 111.9 percent in 1972 and by 1978 it increased to 524.9 percent in favor of the government (Table IX). The government's predominent role in investment expenditures, coupled with its increasingly larger share in aggregate consumption expenditures, could be interpreted as the prime force behind the rapid growth of the 1960-1978 period.

The Structure of Imports

Table X summarizes the import performance of the foreign trade sector during the 1960-1978 period. At that stage of Iraqi development,

TABLE IX

PRIVATE AND GOVERNMENT CONSUMPTION AND INVESTMENT EXPENDITURES, 1960-78

Year	Private Consumption Expenditures	Government Consumption Expenditures	Ratio of Government Consumption to Private Consumption (Percent)	Private Investment Expenditures	Government Investment Expenditures	Ratio of Government Investment to Private Investment (Percent)
1960	472.9	183.3	38.8	133.4	101.3	75.9
1961	546.4	203.3	37.2	148.5	114.1	76.8
1962	571.5	222.4	38.9	113.9	110.5	97.0
1963	486.6	224.3	46.1	99.8	112.0	112.2
1964	613.9	266.2	43.4	107.6	143.8	133.6
1965	739.1	295.5	40.0	113.6	137.9	121.4
1966	747.2	314.1	42.0	139.3	144.6	133.6
1967	648.8	312.4	48.2	120.2	149.7	124.5
1968	758.9	357.9	47.2	127.9	144.4	112.9
1969	766.3	383.6	50.1	121.0	168.1	138.9
1970	743.9	387.9	52.1	144.3	173.6	120.3
1971	838.2	408.7	48.8	150.4	176.1	117.1
1972	874.7	425.5	48.6	159.9	178.9	111.9
1973	854.4	415.9	48.8	103.4	324.7	314.0
1974	1140.5	555.2	48.7	99.7	517.4	520.5
1975	1384.6	675.4	48.8	181.1	790.0	436.2
1976	1323.6	645.3	48.8	237.6	1179.4	496.4
1977	1521.6	744.9	49.0	251.9	1369.9	543.8
1978	1635.5	798.8	48.8	294.2	1544.5	524.9

In Millions of 1975 Iraqi Dinars

Source: United Nations, Office of Development Research and Policy Analysis, <u>DRPA Computer Tape</u> of National Accounts, Labour Force and Population, 1980 (New York, 1981).

.

imports assumed a dual role in the economy. Imports of capital, intermediate and consumer goods were to provide the essential ingredient for industrial development and secure a balance between aggregate demand and aggregate supply, thus subduing inflationary pressures. As Table X shows, total merchandise imports increased from ID 138.9 million in 1960 to ID 1244.1 million in 1978, an annual growth rate of about 13 percent. This high rate of growth is due to a growing need for capital and intermediate goods, the need to meet shortages in consumer goods, and rising foreign exchange receipts.

TABLE X

Year	C (P	consumer Goods ercent)	(P	Other Goods ercent)		Capital and Intermediate Goods (Percent)	۹ ۲)	Total Merchandise Imports in Mill. of Dinars)
1960		26.9		13.5		59.4		138.9
1965		26.1		16.5		57.3		162.6
1970		21.8		14.9		63.2		181./
1975		14.3		8.4 9.3		76.6		1244.7 1244.1
Sources:	1.	United	Nations,	Yearbook	of	International	Trade	Statistics
		<u>1966</u> (N	lew York,	1968).	_		_	
	2.	United	Nations,	Yearbook	of	International	Trade	Statistics
	3.	United	Nations,	Yearbook	of	International	Trade	Statistics
	4.	1975 (N United	New York, Nations,	1976). Yearbook	of	International	Trade	Statistics
		1979 (N	New York,	1980).				

THE COMPOSITION OF IMPORTS IN SELECTED YEARS

The major components of Iraq's imports include consumer goods-food and live animals, beverages, crude materials excluding fuels, animal and vegetable oil, and fat; intermediate goods-basic manufactures such as iron, construction materials, and rubber; capital goods-machines and transport equipment; and other goods which includes chemicals and miscellaneous manufactured goods.

The figures in Table X reflect Iraqi import policy during the 1960-1978 period. Imports of consumer goods amounted to ID 37.4 million in 1960, whereas by 1978 they were in excess of ID 177 million. Despite this increase, their share in total merchandise imports steadily declined from 26.4 percent in 1960 to around 14 percent in 1978. The share of other goods in total merchandise imports also declined from 13.5 percent in 1960 to about 9 percent in 1978. These movements in imports of these two categories mirror the policy of protectionism and the working of import substitution mechanism.

The largest component of total merchandise imports, imports of capital and intermediate goods, were encouraged to foster the establishment of import substitution industries. The share of these imports in total imports rose from 59.4 percent in 1960 to about 77 percent in 1978 (Table X). Moreover, imports of capital and intermediate goods grew faster (almost 15 percent annually) than total imports, increasing from ID 82.6 million in 1960 to ID 952.7 million in 1978 (Table X).

Money and Banking

The banking system in Iraq comprises three categories: commercial banks, specialized banks, and the Central Bank. In 1964 commercial banks were amalgamated into one state-owned-the Rafidian Bank. Although

the activities of this bank have grown substantially with the planned development of the Iraqi economy, it remains essentially an urban institution. Its facilities are heavily concentrated in Baghdad and, to a lesser extent, in two other large cities, Basrah and Mousl; residents of smaller cities do not have access to its services.

The specialized banks are also state-owned, and include the Agricultural Bank (founded in 1936), the Industrial Bank (founded in 1947), and the Real State Bank (founded in 1948). These banks specialize in financing private investment in agriculture, industry, and housing, respectively. Their main source of lending power is their own capital, the Central Bank of Iraq, time and demand deposits, and the issue of bonds. These banks do not resort to issuing bonds due to the absence of an organized capital market in Iraq. The interest rate charged by these banks cannot exceed the legally fixed rate of 7 percent per annum.¹⁴ This rate is lower than the rate charged in the unorganized money market.

The Central Bank of Iraq (CBI) was founded in 1947. It consists of two departments-the issue department and the banking department-and is managed by a nine-member board of directors. While the CBI possesses the three traditional tools of monetary control, (1) open market operations, (2) changes in the reserve requirements, (3) changes in the discount rate, their effectiveness is effectively hampered by the institutional setting on which it was superimposed.¹⁵ In particular, commercial banks have a very high liquidity ratio, amounting to 30.7 in 1976.

Sources of monetary base in Iraq include the CBI's net holdings of foreign assets, the CBI's net credit to the banking system, and the CBI's net claims on the government. Among these, the last two represent

the domestic components of monetary base, over which the monetary authorities have direct control. The third source of the monetary base, net foreign assets holdings of the CBI, is directly related to the external trade balance. Therefore, the CBI has only limited direct control of the money supply.¹⁶
FOOTNOTES

¹Iraqi Office Press, <u>Iraq Monthly</u> (September, 1981), p. 32.

²Basil al-Bustany, "Iraq: Economic Developments," <u>AEI Foreign</u> Policy and Defense Review, II (1980), pp. 38-40.

³The World Bank, <u>World Development Report, 1980</u> (Washington, D.C., 1980), p. 111.

⁴These inflation rates were calculated from the International Monetary Fund, <u>International Financial Statistics</u> (Washington, D.C., 1980).

⁵Farid Abolfathi, et al., <u>The OPEC Market to Nineteen Eighty-Five</u> (Massachusetts, 1977), p. 136.

⁶Europa Publications, <u>The Middle East and North Africa 1978-1979</u> (London, 1978), p. 391.

⁷United Nations, Studies on Selected Development Problems in <u>Various Countries, 1972</u> (New York, 1973), p. 13.

⁸Taghi T. Kermani, <u>Economic Development in Action: Theories</u>, <u>Problems, and Procedures as Applied in the Middle East</u> (Ohio, 1967), p. 4.

⁹Abolfathi, p. 140.

¹⁰Yusif A. Sayigh, <u>The Economies of the Arab World</u> (New York, 1978), p. 31.

¹¹Europa Publications, <u>The Middle East and North Africa 1979-1980</u> (London, 1979), p. 409.

¹²Kadhim A. Al-Eyed, <u>Oil Revenues and Accelerated Growth; Absorp</u>ive Capacity in Iraq (New York, 1979), p. 71.

13. Europa Publications, 1979, p. 409.

14 Abdul-Rasool F. Ali, "The Effect of the Pattern use of Oil Revenues on the Growth and Prices of Iraq" (unpub. Ph.D. dissertation, University of Massachusetts, 1970), p. 41. ¹⁵Abbas Alnasrawi <u>Financing Economic Development in Iraq</u> (New York, 1967), p. 147.

¹⁶Asim Salih, "The Role of the Central Bank of Iraq in Determining and Controlling the Money Supply," <u>The Economist</u> (November, 1978), pp. 31-56.

CHAPTER III

SPECIFICATION OF THE MODEL

The Iraqi macroeconometric model is formulated in terms of 53 equations of which 27 are stochastic and the remainder are non-behavioral equations or identities. These equations purport to simultaneously explain the 53 endogenous variables. The model also includes 36 predetermined variables. It is non-linear in variables but linear in parameters.

The equations and identities of the model can be categorized into six groups:

A. Domestic Demand

B. Imports

C. Non-Oil Output

D. 0il Sector

E. Wages and Employment

F. Prices

This particular way of grouping the model's equations singles out the more important sectors of the economy and facilitates the task of identifying the broad directions of causality among different components of the model. The model features demand functions for consumption, investment, and imports. The supply side is represented in the model by a set of equations for sectoral value added related to final demand components. The dominance of oil export revenues is evident in its strong

infiltration throughout the system; it influences aggregate income hence aggregate expenditures, which in turn, affect sectoral production and employment. The model also emphasizes the role of capital, intermediate and consumer goods in the import sector and the role of oil exports in the export sector.

The data used in the estimation process consists of 19 observations (1960-1978) and regression coefficients are estimated both by ordinary least square (OLS) and two-stage least square (TSLS) methods. As the number of the predetermined variables of the present model far exceeds the number of observations, there is insufficient degrees of freedom to estimate the first-stage reduced-form equations of the TSLS. To solve this problem, we estimated the reduced form equations using only those predetermined variables that are highly related to the endogenous variable in the equation, excluding from each reduced form equation those predetermined variables believed to be unimportant.¹ The estimates appearing in the specified model are the OLS estimates, whereas the TSLS estimates were very small, hence the reason for using the OLS estimates in the model.

Equations of the model are selected after many experiments with different variables and functional relationships both at (a) the estimation stage, and (b) the dynamic simulation of the overall model. The statistical results of the model are subject to those limitations imposed by a small sample and a relatively inaccurate data base.

To facilitate the subsequent discussion of the specification of the model, it is necessary to provide a glossary of variables (Table XI) and a statement of the model's equations. In all cases, the t-statistic,

TABLE XI

ALPHABETICAL LISTING OF THE VARIABLES^a

Label	Description							
CE	Private consumption							
CET	Total consumption							
DDA	Aggregate domestic demand							
DDAN	Aggregate domestic demand, in millions of current dinars							
GDP	Gross domestic product							
GDPN	Gross domestic product, in millions of current dinars							
GDPNP	Non-oil GDP							
GDPNPN	Non-oil GDP, in millions of current dinars							
GNPN	Gross national product, in millions of current dinars							
GVCEN	Government consumption, in millions of current dinars							
GVCEN/N	Per capita government consumption, in millions of current dinars							
*GVRNPTN	Government non-oil revenues, in millions of current dinars							
GVRPT\$	Government oil revenues, in millions of current dollars							
GVRPTBA\$	Goverment oil revenues base, in millions of current dollars							
GVRPTN	Government oil revenues, in millions of current dinars							
GVRTN	Total government revenues, in millions of current dinars							
GVRTN/N	Per capita government revenues, in millions of current dinars							
*GVRTXINET	Indirect taxes net of subsidies							
GXPCRB	Crude oil production, in billions of barrels							
*GXPRFB	Production of petroleum refined products, in billions of barrels							
IFGN	Government investment, in millions of current dinars							

TABLX XI (Continued)

IFP	Private investment
IFT	Total investment
NEMP	Employment level, in millions
*NFPAN	Net factor payments abroad, in millions of current dinars
*NP	Total population, in millions
*OETMB	Total imports of oil of OECD countries, in billions of barrels
PDCE	Consumer price index (1975 = 100)
PDDA	Aggregate domestic demand deflator (1975 = 100)
PDGDP	GDP deflator (1975 = 100)
PDGDPNP	Non-oil GDP deflator (1975 = 100)
PDGVCE	Price deflator of government consumption (1975 = 100)
PDIFT	Price deflator of gross investment (1975 = 100)
PDXPCR	Deflator of crude oil mining (1975 = 100)
PR	Gross disposable non-wage income, in millions of current dinars
*PTE331	Export price index for crude petroleum (1975 = 100)
*PTE331\$	Crude petroleum export price, \$/Bbl.
PTE332	Export price index of petroleum refined products (1975 = 100)
PTE332\$	Export price of petroleum refined products, \$/Bbl.
*PTM0.4-3	Unit value index of imports of SITC 0, 1, 2, and 4 (1975 = 100)
*PTM5+8.9	Unit value index of imports of SITC 5, 8, and 9 (1975 = 100)
*PTM6	Unit value index of imports of SITC 6 (1975 = 100)
*PTM7	Unit value index of imports of SITC 7 (1975 = 100)
*Q72	Dummy variable

TABLE XI (Continued)

* Q73	Dummy variable
*Q74	Dummy variable
*REX	Exchange rate, \$/ID
*SUBN	Government subsidies, in millions of current dinars
TBMN	Trade balance on merchandise, in millions of current dinars
TECMT	Total merchandise exports
TECMTN	Total merchandise exports, in millions of current dinars
*TECMNP	Non-petroleum exports
*TECMNPN	Non-petroleum exports, in millions of current dinars
*TESR	Exports of services
TET	Exports of goods and services
TE331B	Exports of crude oil, in billions of barrels
TE331N	Exports of crude oil, in millions of current dinars
*TE332B	Exports of petroleum refined products, in billions of barrels
*TIME	Time trend
TMCMT	Total merchandise imports
TMCMTN	Total merchandise imports, in millions of current dinars
TMCM0.4-3	Imports of SITC 0, 1, 2, and 4
*TMCM3	Imports of SITC 3
*TMCM3N	Imports of SITC 3, in millions of current dinars
TMCM5.8+9	Imports of SITC 5, 8, and 9
TMCM6	Imports of SITC 6
TMCM7	Imports of SITC 7
*TMSR	Imports of services
TMT	Total imports of goods and services

-

TABLE XI (Continued)

WRN	Average wage rate, in current dinars
W YN	Total wage bill, in millions of current dinars
XAG	Value added in agriculture
XC	Value added in construction
XMM	Value added in manufacturing
XPCR	Value added in crude oil mining
XPRF	Value added in petroleum refining
XS	Value added in services
XTC	Value added in transportation and communication
XUT	Value added in utilities
YPDN	Personal disposable income, in millions of current dinars

^aUnless otherwise indicated, all variables are measured in millions of 1975 Iraqi dinars. Exogenous variables are marked with an asterisk.

the adjusted coefficient of determination (\mathbb{R}^2) , DW statistic, and standard error of estimation (SEE) are provided below each estimated equation. The following are also listed below the relevant estimated equation: first-order autocorrelation coefficient (ρ) where a serial correlation correction is made and the h-statistic where a lagged dependent variable is present among the regressors in an equation. In addition, for testing whether or not an estimated coefficient is significant, a five percent significance level is used throughout the study.

The Model

Domestic Demand

Real Private Consumption

$$CE = -56.8787 + 0.4616 (\frac{YPDN * 100}{PDCE})$$
(1)
+ 0.4890 CE(-1)
(4.15)

 $\overline{R}^2 = 0.965$ SEE = 65.28 h = 0.78

Nominal Per Capita Government Consumption

$$GVCEN/N = 3.0793 + 0.0927 GVRTN/N$$

$$(3.68)$$

$$+ 0.7948 GVCEN/N(-1)$$

$$(6.08)$$

$$(2)$$

 $\overline{R}^2 = 0.973$ SEE = 3.78 h = -0.08

Real Total Consumption

$$CET = CE + \left(\frac{GVCEN * 100}{PDGVCE}\right)$$
(3)

Real Private Investment

$$IFP = 52.1612 + 0.0539 (PR(-1) * 100) (1.91) PDIFT (4)$$

$$+ 0.1146 IFT(-1) - 45.3124 Q73 (9.83) (-2.20) (4)$$

 $\overline{R}^2 = 0.888$ SEE = 18.83 h = 0.65

Nominal Government Investment

IFGN = -2.8259 + 0.1856 GVRPTN(5) + 0.1704 GVRPTN(-1) (5.14) + 0.1131 GVRPTN(-2) (3.18) + 0.1293 GVRPTN(-3) (5.83)

 $\overline{R}^2 = 0.999$ SEE = 16.11 $\rho = -0.59$ DW = 2.43

Real Total Investment

$$IFT = IFP + \left(\frac{IFGN * 100}{PDIFT}\right)$$
(6)

Real Aggregate Domestic Demand

$$DDA = CET + IFT$$
(7)

Real Imports of Consumer Goods (SITC 0, 1, 2, and 4) TMCM0.4-3 = 56.6050 + 0.1888 CE - 0.3150 XAG(8) (10.44) (-2.44) + 80.1233 074 (4.33) $\overline{R}^2 = 0.917$ SEE = 17.44 DW = 1.89 Real Imports of Other Goods (SITC 5, 8, and 9) TMCM5.8+9 = 26.0247 + 0.0635 CE (9) (3.95)- 0.2341 XMM + 0.0416 IFT (2.12) (2.24) $\overline{R}^2 = 0.887$ SEE = 7.66 DW = 1.86 Real Imports of Intermediate Goods (SITC 6) TMCM6 = 300.7712 + 0.5076 TMCM7 (10)(6.74)- 292.8625 (<u>PTM6(-1)</u>) (-1.63) PDIFT(-1) + 133.9945 074 (4.31) $\overline{R}^2 = 0.889$ SEE = 29.72 DW = 1.75 Real Imports of Capital Goods (SITC 7) TMCM7 = 280.6101 + 0.4534 IFT(11)(20.82)- 348.9075 (<u>PTM7(-1)</u>) (-3.10) PDIFT(-1)

 $\overline{R}^2 = 0.975$ SEE = 28.17 DW = 2.35 Real Imports of Goods TMCMT = TMCM0.4-3 + TMCM5.8+9 + TMCM6 + TMCM7 + TMCM3 (12) Non-Oil Output Real Value Added in Agriculture XAG = 138.2695 - 0.1158 TMT + 0.1750 CET (13) (-3.13) (4.30) $\overline{R}^2 = 0.613$ SEE = 26.58 DW = 1.99 Real Value Added in Manufacturing XMM = 0.1538 IFT + 0.1028 CET - 0.0648 TMT (14) (9.07) (13.33) (-3.71) $\overline{R}^2 = 0.979$ SEE = 13.88 DW = 1.17 Real Value Added in Construction XC = 0.2435 IFT - 0.0781 TMT + 0.0064 TET (15) (12.0) (-4.25) (1.52) $\overline{R}^2 = 0.966$ SEE = 16.42 DW = 1.81 Real Value Added in Transportation and Communications XTC = 19.6115 + 0.0555 CET + 0.0178 IFT (16) (6.25) (1.91) $R^2 = 0.964$ SEE = 7.39 DW = 1.83

Real Value Added in Services

XS = -67.1068 + 0.4438 CET(17) $\overline{R}^2 = 0.964 \qquad SEE = 46.04 \qquad DW = 1.39$ Real Value Added in Utilities XUT = -9.0024 + 0.0084 CET + 0.0097 IFT + 0.0035 TET (18)(3.16) -0.0044 TMT (-2.69)(17)

 $\overline{R}^2 = 0.989$ SEE = 0.92 DW = 2.17

0il Sector

Crude Oil Exports (Bill. Bbl.)

TE331B = 0.2450 + 0.0472 OETMB - 0.1048 Q72(19) (12.26) (-3.44) + 0.0001 (IFGN + GVCEN - GVRNPTN) (5.76)

 $\overline{R}^2 = 0.973$ SEE = 0.03 DW = 2.26

Real Value Added in Crude Oil Mining

XPCR = 2925.0095 GXPCRB (20) (25.85)

 $\overline{R}^2 = 0.987$ SEE = 72.46 DW = 1.24

Gross Output of Crude Oil (Bill. Bbl.)

GXPCRB = -0.0180 + 1.0943 TE331B (21) (54.68)

 $R^2 = 0.998$ SEE = 0.01 $\rho = 0.57$ DW = 1.96 Real Value Added in Petroleum Refining XPRF = 546.7097 GXPRFB(22) (37.75) $\overline{R}^2 = 0.95$ SEE = 2.16DW = 1.09Export Price of Refined Petroleum Products (\$/Bb1.) PTE332 = 1.0125 + 0.9574 PTE331\$ (23)(69.91) $\overline{R}^2 = 0.999$ SEE = 0.15 ρ = 0.57 DW = 1.52 Government Oil Revenues (Mill. US \$) GVRPT\$ = -234.159 + 0.9547 GVRPTBA\$ (24)(75.31) $\overline{R}^2 = 0.997$ SEE = 204.64 DW = 2.46 Government Oil Revenues (Mil. Dinars) GVRPTN = GVRPT / REX (25)Government Oil Revenues Base (Mill. US \$) GVRPTBA\$ = (GXPCRB * PTE331\$ + GXPRFB * PTE332\$) * 1000 (26) Wages and Employment

WRN = -265.9077 + 1.6720 PDCE(-1) + 0.6223 (GDPNP/NEMP) (27) (2.89) (4.36)

Average Wage Rate

 $\overline{R}^2 = 0.947$ SEE = 25.02 DW = 1.22 Employment (millions) NEMP = 1.5774 + 0.0001 GDPNP + 0.0586 TIME (28) (2.33)(13.08) $\overline{R}^2 = 0.998$ SEE = 0.02DW = 1.37Prices Consumer Price Index PDCE = 33.3540 + 0.0266 DDA(29) (16.51)- 161.8185 (<u>SUBN</u>) (-2.17) IFGN + GVCEN - SUBN $\overline{R}^2 = 0.957$ SEE = 5.46 $\rho = -0.46$ DW = 2.16 Deflator of Government Consumption PDGVCE = 32.5355 + 0.2383 WRN (30) (20.54) $\overline{R}^2 = 0.959$ SEE = 5.36 DW = 2.29Deflator of Gross Investment PDIFT = 21.6385 + 0.7345 (PTM6 * TMCM6 + PTM7 * TMCM7)/100 * 100 (15.43) TMCM6 + TMCM7 (31) $R^2 = 0.98$ SEE = 2.91 $\rho = 0.57$ DW = 1.69 Deflator of Aggregate Domestic Demand

PDDA = (DDAN / DDA) * 100(32)

Non-Oil GDP Deflator

$$PDGDPNP = 10.4457 + 0.9133 PDDA$$
(33)

$$\overline{R}^{2} = 0.955 SEE = 4.40 DW = 1.98 Deflator of Crude Oil Mining PDXPCR = 7.2247 + 0.9394 PTE331 (34) (32.06) R^{2} = 0.983 SEE = 4.89 DW = 1.87 GDP Deflator PDGDP = (GDPN / GDP) * 100 (35) Other Definitions and Identities Real Non-Oil GDP (3DPN = XAG + XMM + XTC + XC + XS + XUT + GVRTXINET (36) Real GDP GDPN = XAG + XPRF (37) Nominal GDP (37) (38) (3$$

Nominal Gross National Product

$$GNPN = GDPN - NFPAN$$
 (39)

Nominal Personal Disposable Income	
YPDN = GNPN - GVRTN	(40)
Nominal Aggregate Domestic Demand	
DDAN = GVCEN + IFGN + (CE * PDCE + IFP * PDIFT) / 100	(41)
Total Wage Bill	
WYN = WRN * NEMP	(42)
Gross Disposable Non-Wage Income	
PR = GDPN - GVRTN - WYN	(43)
Total Government Revenues	
GVRTN = GVRPTN + GVRNPTN	(44)
Nominal Government Consumption	
GVCEN = GVCEN/N * NP	(45)
Crude Oil Exports (Mill. Dinars)	
TE331N = (<u>TE331B * PTE331\$</u>)* 1000 REX	(46)
Petroleum Refined Products Exports (Mill. Dinars)	
$TE332N = (\frac{TE333B * PTE332$}{REX}) * 1000$	(47)

Nominal Merchandise Exports

$$TECMTN = TE331N + TE332N + TECMNPN$$
(48)

Real Merchandise Exports

$$TECMT = \left(\frac{TE331N}{PTE331} + \frac{TE332N}{PTE332}\right) * 100 + TECMNP$$
(49)

Real Exports of Goods and Services

$$TET = TECMTN + TESR$$
 (50)

Real Imports of Goods and Services

$$TMT = TMCMT + TMSR$$
(51)

Nominal Total Merchandise Imports

Trade Balance on Merchandise

$$TBMN = TECMTN - TMCMTN$$
(53)

Discussion of the Model

Domestic Demand

<u>Real Private Consumption</u>. A number of studies recognize the applicability of Friedman's permanent income hypothesis² in studying the behavior of consumption expenditures in developing countries.³ The permanent income hypothesis maintains that consumption expenditures do not depend on the current level of income which might include positive or negative transitory elements but rather on the consumer's perception of his or her permanent income purged of all transitory elements. Empirically, Friedman approximates permanent income by a weighted average of present and past incomes, with geometrically declining weights over time.

In equation (1) real private consumption expenditures are specified to be a function of real disposable income and private consumption expenditures in the previous year. Lagged private consumption expenditures enters as a transformed expression for the distributed lag in income since consumption expenditures depend on current and past levels of income. This form of consumption function allows both the short-run and the long-run marginal propensity to consume (mpc) to be estimated.⁴ The estimated consumption function indicates a relatively low mpc (0.46) which is in large part due to the fact that per capita income in the oil producing countries is relatively high and thus the share of consumption in income is low. The marginal propensities to consume for Kuwait⁵ and Saudi Arabia⁶ were estimated at 0.42 and 0.25 respectively. The low mpc is also partly due to the increasing role that the government plays in providing free social services such as education, medical care, and other services.

The long-run mpc is estimated at 0.9033 which implies a long-run marginal propensity to save of 0.0977. If personal disposable income were to increase by ID 1.0 million, private consumption expenditures would increase by ID 460,000 in the same year. Eventually, consumers would adjust their consumption behavior to their higher income level, so that in the long-run consumption would increase by ID 903,300.

<u>Nominal Government Consumption</u>. In macroeconometric studies, government consumption expenditures, are either (a) taken as autonomous,⁷ or (b) disaggregated according to the types of factors

purchased,⁸ or (c) taken as a simple function of taxes collected.⁹ Due to lack of data on the components of government consumption expenditures and the importance of government oil revenues in public expenditures, government consumption expenditures are specified in equation (2) to be a function of total government revenues, population, and government consumption in the previous year. The population variable is used to reflect the need for government services and is accounted for by estimating government consumption equation in per capita terms. The underlying theoretical justification for including government consumption in the previous year is the idea that its current level is subject to a previously established level of expenditures. One important distinction between government and private consumption equations is that the former is estimated in nominal terms. Government spending is usually planned and budgeted in nominal terms. In identity (3) real government consumption is calculated using government consumption deflator. The regression results of estimating equation (2) indicates that all the variables are significant and have the expected sign with $\overline{R}^2 = 0.97$.

<u>Real Private Investment</u>. The entrepreneur's decision on how much to invest may depend on a number of variables such as profit expectations, rate of interest, existing stock of capital, excess capacity, and the level of income. Theoretically, Keynes proposed that investment takes place so long as the marginal efficiency of investment is greater than the market rate of interest. This implies that, given the investor's expectations regarding the future, investment has an inverse relationship with the rate of interest.

It is doubtful, however, that investment theories designed for developed economies have much relevance for developing economies such as Iraq. In the words of Klein:

Factors making investment behavior different from that suggested (for developed economies) are the lack of an organized Western-type capital market and the presence of large government supported investment . . . We might argue that there are so many worthwhile ventures, all economically sound, that close calculation by systematic pattern is unnecessary.¹⁰

Thus, the rate of interest appears to be a less important factor in explaining investment behavior in developing economies. This is particularly true in the case of Iraq in view of the absence of a freely determined interest rate that reflects the real scarcity of loanable funds.

In Iraq, private investment expenditures are largely financed through retained earnings. This is so because of the family orientation of business and the virtual nonexistence of a well-developed money and capital market. Thus, in equation (4), real private investment depends on gross disposable non-wage income, a dummy variable to account for political instability, and total investment in the previous year. This specification emphasizes the role of private profits as a source of financing. Lagged total investment is used as a proxy variable for changes in absorptive capacity. It measures the extent of new investment opportunities created by previous private and public investment. A number of attempts were made to include a financial variable in the private investment function to reflect the credit conditions provided by the commercial and specialized banks, but those attempts proved to be unsuccessful. All regression coefficients are significant at the five percent level, except for non-wage income, which is significant at the ten percent level. The estimated coefficient of the dummy variable

indicates that the uncertainties created by political instability in 1973 caused real private investment expenditures to decline by ID 45.3 million in the same year.

<u>Nominal Government Investment</u>. Due to lack of data it was not possible to disaggregate government investment, which consists of government expenditures on social overhead capital investment and disbursements through the Development Board, by sector. This is one of the many cases where the structure of the model has to be designed to conform to available data. It would have been useful to adopt such a breakdown to analyze the effects of different policies in allocating government investment expenditures into different sectors of the economy.

The task of estimating government investment proved to be much easier than estimating private investment. Government decisions to invest are not subject to the same type of behavioral considerations as private investment decisions. More specifically, the basic determinants of government investment expenditures are the product of a special mix of social, political, and economic factors.

As discussed in the last chapter, the primary source of government investment is the oil revenues. Therefore, in equation (5) government investment is specified to depend on the current and lagged government oil revenues. In this specification we did not impose geometrically declining weights on the coefficients of past oil revenues. It is likely that current government investment expenditures depend more on past years' revenues rather than on current revenues because of the lag involved in planning and allocating such expenditures; the argument can be made that, based on this year's revenues, the government plans next

year's expenditures. Of course, projections for next year's revenues will also enter the picture, but it is not clear, a priori, whether the contemporaneous revenues' effect should be larger or smaller than the effect of lagged revenues. Therefore it was felt that it would be a more proper procedure to estimate government investment as a function of past and present oil revenues and let the regression results determine the pattern of weights of the distributed lag. All the coefficients of equation (5) are highly significant and the distribution of weights of the impact of lagged values of oil revenues is quite different than the pattern that we would have obtained by imposing geometrically declining weights.

Imports

Ordinarily import demand functions include some measure of income and import price relative to domestic prices.¹¹ In the model, merchandise imports are disaggregated into (a) consumer goods (SITC 0, 1, 2, and 4), (b) intermediate goods (SITC 6), (c) capital goods (SITC 7), (d) imports of mineral fuels (SITC 3), and (e) all other imports (SITC 5, 8, and 9).

Imports of mineral fuels, mostly petroleum products, are small enough relative to total imports to be treated as an exogenous variable. The remaining four categories of imports are behavioral variables and estimated in real terms. Import prices are assumed to be determined only by conditions abroad, and hence, they are treated as exogenous variables.

Imports of consumer goods, mostly food and live animals, are considered to be a function of private consumption, value added in

agriculture, and a dummy variable to account for the sudden jump in the value of imports of this category in 1974 (equation 8). In the absence of disaggregated data on private consumption, total private consumption should serve as a reasonably good indicator of demand of consumer goods. Value added in agriculture is taken to serve as an import substitution variable. The estimated regression coefficients of all variables are statistically significant and have the expected sign. The negative coefficient of value added in agriculture indicates the import substitution tution effect of agricultural production on the imports of consumer goods. The estimated coefficients also implies an elasticity of demand of consumer goods imports of 1.2 with respect to private consumption and -0.7 with respect to value added in agriculture.

Relevant relative prices of foreign to domestic goods were tried for this category of imports. Their estimated coefficients were not significantly different from zero and were omitted. This result is expected given that a large proportion of imports of consumer goods are foodstuffs financed mainly by the government.

All other imports category constitutes mostly chemicals, miscellaneous manufactured goods, and fixed investment related items. In equation (9) it is considered to depend on two demand factors, private consumption and total investment, and an import substitution variable, the level of value added in manufacturing. The coefficient of all variables are statistically significant and have the expected sign. The negative coefficient of the value added in manufacturing indicates the import substitution effect of manufacturing on imports of this category.

Imports of capital goods constitute mostly of machines and transportation equipment. The demand for capital goods imports, therefore,

is considered to depend on both a demand factor, total investment, and relative prices, the ratio of import price index of capital goods to the investment expenditures deflator (equation 11). Needless to say, imports of capital goods hardly have any domestically produced equivalent to be subject to import substitution effects. The coefficients of both variables are highly significant and have the expected sign, implying an elasticity of demand of capital goods imports of 1.13 with respect to investment and -1.54 with respect to relative prices.

The largest items of imports of intermediate goods are heavy industrial intermediate goods. Thus, imports of this category go hand in hand with imports of capital goods. Since Iraq does not have any significant domestic production of either category, importing one would not be very meaningful without importing the other. Therefore in equation (10) the demand for intermediate goods imports are considered to be a function of a demand factor, imports of capital goods, relative prices (the ratio of import price index of intermediate goods to the investment expenditures deflator) and a dummy variable to account for the liberal import policy the government adopted in 1974. The coefficient of all three variables are of the correct signs but only two are statistically significant. Though the t-ratio of the relative prices term is not highly significant it points in the expected direction.

Real total imports of goods and services are determined in the model through identity (51) as the sum of real merchandise imports and services. Imports of services, mostly travel and expenditures of embassies and military missions, are taken to be exogenous.

Non-Oil Output

In equations (13) to (18) value added in each sector appears to be expressed as a function of aggregate final demand components; the explanatory variables are the expenditure side components of GNP. These equations can be interpreted as transformations of input-output relationships. Let us write the relationship which is the cornerstone of the input-output analysis.

$$(I - A) X^{g} = F$$
 (V.1)

where A is the matrix of technological coefficients, X^{g} is a vector of gross output and F is a vector of final demand. We can invert this expression to obtain

$$x^{g} = (I - A)^{-1} F$$
 (V.2)

The value added is defined as the value of gross output minus all the material cost. Therefore, we can assume that value added in each sector is proportional to gross output of the corresponding sector. Thus

$$x_i = k_i x_i^g$$
 $i = 1, ..., n$ (V.3)

and we can write

 $X = K (I - A)^{-1} F$ (V.4)

where K is a diagonal matrix whose diagonal elements are k_i (i = 1, ..., n) and the off diagonals are zeros. We can rewrite (V.4) as:

$$X = DF$$
 (V.5)

where $D = K(I-A)^{-1}$. System (V.5) expresses each sector's value added as a linear function of final demand components.

In the model we distinguished among six non-oil productive sectors: agriculture, manufacturing, services, transportation and communication, construction, and utilities. The choice of these sectors was primarily based on the availability of the data. Thus X, according to the model, has six elements. On the final demand side the present model incorporates four components: total consumption, total investment, total exports, and total imports, hence, F has four elements. We can, therefore, write our six value added equations as:

r 7			1		
XAG		d ₁₁ d ₁₂ d ₁₃ d ₁₄			
ХММ		d21 d22 d23 d24		GET	
хтс		d31 d32 d33 d34		IFT	
хс	=	d41 d42 d43 d44	x	TET	(0.0)
XS		d51 d52 d53 d54		TMT	
XUT		d61 d62 d63 d64			
		L_		ł.	

which implies,

XAG	Ξ	d11	CET	+	d12	IFT	+	d13	TET	+	d14	TMT	(V.7)
XMM	=	d21	CET	+	d ₂₂	IFT	+	d23	TET	+	d24	TMT	(٧.8)
хтс	=	d31	CET	+	d32	IFT	+	d33	TET	+	d34	ТМТ	(V.9)
С	=	d41	CET	+	d42	IFT	+	d43	TET	+	d44	ТМТ	(V.10)
XS	=	d51	CET	+	d52	IFT	+	d53	TET	+	d54	TMT	(V.11)
XUT	×	d61	CET	÷	d62	IFT	+	d63	TET	+	d64	ТМТ	(V.12)

The coefficients in each row of system (V.6) represent the response of the sector's value added to changes in the various final demand

components. The coefficients in each column represent the relative impact (share) of changes in a specific final demand component on sectoral value added.

For Iraq, however, there is no input-output table, and hence, the coefficients (d_{ij}) of equations V.7 - 7.12 had to be estimated by regression method; in this case they had to be treated as stochastic rather than deterministic equations. In our search for good fit, we had to allow for a constant term in some of the equations and to delete some of the final demand components from some of the equations.

The use of this approach in specifying and estimating sectoral value added equations is not new, especially in models of developing countries, similar techniques have been used in studies of Brazil, 12 Mexico, 13 and Sudan. 14

Equations (13) to (18) in the model shows the regression results of estimating value added equations V.7 - V.12. In these equations imports tend to have a negative coefficient. This is to conform to the national accounts identity GNP = C + I + X - M. This also, in a sense, is the reverse of import substitution effect: the more that is imported the less that has to be produced domestically to satisfy demand. As expected, the coefficient of total exports in each equation where it is included is close to zero reflecting the fact that most of the exports are from the oil sector. Total consumption is a prime determinant of value added in manufacturing are highly responsive to investment (equations 15 and 14 respectively). In equation (13), it appears that total consumption is influential in determining value added in agriculture.

In terms of explanatory power, all of the estimation results of sectoral value added equations indicate that \overline{R}^2 ranges between 0.96 to 0.99 except for the equation (13) whose \overline{R}^2 is 0.61. All of the explanatory variables carry the expected signs, and all coefficients are significant at the five percent level, except for the total exports in equation (15) and the total investment in equation (16), which are significant at the 20 and 10 percent levels respectively.

0il Sector

Crude oil exports is the most crucial variable in the model in general and in the oil sector in particular. As mentioned in the last chapter, crude oil exports have a far reaching effect on the economy as a whole. In macroeconometric studies of oil producing countries, oil exports are either (a) treated as an exogenous variable,¹⁵ or (b) taken as a simple function of a supply variable,¹⁶ or (c) explained by a demand variable.¹⁷ It is realized here that treatment of oil exports as purely exogenous variables introduces not only too much arbitrariness in the model, but is also inappropriate for an oil based-economy like Iraq. It is also realized that oil exports have elements of and are influenced by, both demand-related and supply-related factors; more specifically, they can be viewed as the crude oil exports of the exporting country (the supply dimension) or, as part of the crude oil imports of the importing countries (the demand dimension).

The factors influencing these two dimensions of oil exports are different; if viewed as a demand function oil exports can be specified by international variables (industrial production index in OECD countries, imports of oil of OECD countries, and export price of crude

relative to OECD's average prices) which are exogenous to the Iraqi economy. Viewed as an export function, oil exports can be explained by revenue-need related factors. Thus, it would be unrealistic to specify a strictly supply or a strictly demand oriented equation. We should view oil exports as the market equilibrium quantities which are determined both by supply and demand conditions.

In view of the above, oil exports (in billions of barrels) are specified to be a function of total imports of oil of OECD countries, excess of government expenditures over non-oil government revenues, and a dummy variable to represent the impact of nationalization of foreign oil companies operating in Iraq (equation 19). The regression results of estimating this equation indicates that all variables are significant and have the expected sign. Export price of crude oil is taken as an exogenous (policy) variable since it is determined by OPEC organization of which Iraq is a major member.

The remaining equations of this sector are straightforward, so only a short note about each will be mentioned. Real value added in crude oil mining (equation 20) is made a function of volume of gross output of oil. This equation is estimated without a constant term, and as expected the coefficient of volume of oil output is very close to the price of a billion barrels of Iraqi oil in the base year of 1975.

In equation (21) volume of gross output of crude oil is specified to be a direct function of exports of oil. This specification assumes that Iraq produces what it can and/or is willing to export. This is a reasonable assumption given the fact that Iraq has been holding production below capacity and thought to have enormous undiscovered oil

reserves.¹⁸ This equation is estimated in billions of barrels terms with $\overline{R}^2 = 0.998$.

In petroleum refining, real value added is made a function of the volume of gross output of refined products (equation 22). This equation is estimated without a constant term with satisfactory results. Due to lack of adequate data on such variables as investment in petroleum refining and refining capacity, we were not able to estimate a reasonable equation for gross output of refined products, and hence, it was decided to take it as exogenous, at least for now, in the hope that when future refinements are made, further investigation will be made of this variable. In the petroleum refining sector, exports of petroleum products have been playing a minor role, and hence, it is treated as an exogenous variable.

In equation (23) export price of a barrel of petroleum refined products is specified to be a direct function of the export price of a barrel of crude oil. This equation is estimated in dollar terms with $\overline{R}^2 = 0.999$.

In equation (24) government oil revenues is specified to be a function of government oil revenues base which is computed as the sum of the values of crude and refined petroleum produced (identity 26). This equation is estimated in dollar terms with $\overline{R}^2 = 0.997$.

Wages and Employment

The standard model of wage determination is based on the Phillips curve, which says that the tighter the labor markets, the more rapidly wages rise.¹⁹ Recent studies have elaborated upon this formulation by allowing for, among other things, the impact of consumer prices, and

productivity.²⁰ In the model nominal average wage rate is considered to have a compensatory reaction to consumer prices and to average productivity in the non-oil sector (non-oil GDP divided by the level of employment). The oil-sector, in spite of its high share in GDP, is extremely capital intensive and employs a small proportion of the total labor force. We would thus get a misleading measure of average productivity if we measure it using total GDP (oil and non-oil).

Equation (27) shows the regression results of estimating the average wage rate equation. The coefficients of both variables are statistically significant, reflecting the dependence of the wage rate on both cost of living and productivity.

As far as employment is concerned, the present model includes only one simple employment level equation. Due to lack of data on foreign and local workers employed in different sectors, we were not able to develop a detailed employment sub-model. In equation (28) employment is assumed to depend on real non-oil GDP and time trend. The coefficients of both variables are statistically significant with $\overline{R}^2 = 0.998$.

Prices

The aggregate demand and supply functions examined thus far have been formulated largely in real terms. To obtain a complete picture of national income determination it is necessary to provide an endogenous explanation of the price level. In the model prices are explained by six equations; four behavioral and two identities.

In equation (29) the consumer price index is expressed as a function of real aggregate domestic demand (the sum of total consumption and total investment), and the ratio of government subsidies to total

government expenditures (government consumption excluding subsidies, plus government investment expenditures). Aggregate domestic demand measures the extent of domestic demand pressures on consumer prices.

The ratio of government subsidies to total government expenditures emphasizes the importance of subsidies as a policy tool at government's disposal to alleviate the inflationary pressures which result from the increasing government expenditures.

In equation (30) the government consumption deflator is specified as a direct function of the nominal average wage rate; government consumption expenditures are mostly wages and salaries of government employees.

Since most of the material cost incurred in fixed investment is imported, the investment deflator is expressed as a direct function of a weighted average of the deflators of imports of capital and intermediate goods (equation 31).

Identity (32) expresses the aggregate domestic demand deflator as a weighted average of the deflators of private consumption, government consumption, and total investment. In the solution of the model, the aggregate domestic demand deflator will be influenced by the explanatory variables in equations 29-31, and hence, will have elements of demand-pull, cost-push and "imported" inflation.

In equation (33) the non-oil GDP deflator is expressed as a direct function of the aggregate domestic demand deflator.

In equation (34) the deflator of the value added in crude oil mining is specified to be a direct function of the crude oil price index.

Identity (35) expresses the GDP deflator as a weighted average of the deflators of oil and non-oil GDP. 21

In terms of explanatory power, all of the estimation results of price equations indicate that \overline{R}^2 ranges between 0.95 to 0.98. All of the explanatory variables carry the expected sign, and all coefficients are highly significant at the five percent level.

Other Definitions and Identities

These relationships require little explanation, since most of them simply redefine some given variable in a very straightforward manner. A few of the relationships, however, should be mentioned. Identity (36) defines non-oil GDP as the sum of value added in each sector. This variable is a more meaningful indicator of the state of the domestic economy han GDP, since the latter, which includes value-added in the petroleum sector, is highly and directly dependent on fluctuations in international oil markets, and thus gives a rather distorted picture of domestic economic activity.

In identity (37) real GDP is determined from the supply side (as the sum of oil and non-oil GDP) rather than from the expenditures (demand) side. It was realized that in Iraq economic activity is generally supply constrained and, therefore, GDP should be determined from the supply side. In an important paper on this subject Klein²² concluded that while substantial parts of the models used for mature economies might be carried over, more emphasis should be given to the supply side in the models for developing economies. In developed economies, the productive capacity is fairly large, the emphasis is on the expenditure side of the national accounts, the problem being to create the necessary effective demand. In developing economies such as Iraq it is not effective demand that is lacking, but rather aggregate supply. Furthermore, the supply-side GDP identity readily lends itself to disaggregating GDP into its oil and non-oil components.

Identity (42) defines wage income as the product of the wage rate and the level of employment. Identity (43) defines gross disposable non-wage income by substracting wage income and total government revenues from GDP.

FOOTNOTES

¹ Michael D. Intriligator, <u>Econometric Models</u>, <u>Techniques and</u> <u>Applications</u> (New Jersey, 1978), p. 391.

²Milton Friedman, <u>Theory of Consumption Function</u> (New Jersey, 1957), pp. 7-37.

³Donald W. Snyder, "Econometric Studies of Household Savings Behavior in Developing Countries: A Survey," <u>The Journal of Development</u> Studies, X (1974), pp. 139-153.

⁴A consumption function following the Koyck distributed lag model is

 $C_t = a + b y_t + c C_{t-1}$

In the long run, we assume that $C_t = C_{t-1}$ and thus the long-run mpc is estimated by b/(1-c).

⁵M. W. Khouja and P. G. Sadler, <u>The Economy of Kuwait-Development</u> and Role in International Finance (London, 1979), p. 96.

⁶Faisal Al-Bashir, <u>A Structural Econometric Model of the Saudi</u> Arabian Economy 1960-1970 (New York, 1977), p. 62.

⁷Adeeb K. Haddad, "An Econometric Monetary Model of the Jordanian Economy" (unpub. Ph.D. Dissertation, Oklahoma State University, 1979), p. 40; and Peter T. Chang, "A Macroeconometric Forecasting Model of Taiwan" (unpub. Ph.D. Dissertation, Oklahoma State University, 1977), p. 55.

⁸A. Ando, E. C. Brown, and E. W. Adams, "Government Revenues and Expenditures," in J. S. Duesenberry et al. (eds.), <u>The Brookings Quarterly Econometric Model of the United States</u> (Chicago, 1965), pp. 533-585.

⁹Erik Thorbeck and Apostolos Condos, "Macroeconometric Growth and Development Models of the Peruvian Economy," in Irma Adelamn and Erik Thorbeck (eds.), <u>The Theory and Design of Economic Development</u> (Baltimore, 1966), pp. 181-209.

¹⁰Lawrence R. Klein, "What Kind of Macroeconometric Model for Developing Economies," in Arnold Zellner (ed.), <u>Readings in Economic</u> <u>Statistics and Econometrics</u> (Boston, 1968), p. 564.

¹¹Michael K. Evans, <u>Macroeconomic Activity</u>: <u>Theory</u>, <u>Forecasting</u>, and Control (New York, 1969), p. 221.
¹²Jere Behrman and Lawrence R. Klein, "Econometric Grown Models for the Developing Economy," in W. A. Eltis et al. (eds.), <u>Induction, Growth</u> and <u>Trade</u>, Essays in Honour of Sir Ray Harrod (London, 1970), pp. 167-187.

¹³Abed B. Del Rio and Lawrence Klein, "Macroeconometric Model Building in Latin America: The Mexican Case," in N. D. Ruggles (ed.), <u>The Role of the Computer in Economic and Social Research in Latin</u> <u>America (New York, 1974), pp. 161-190.</u>

¹⁴M. S. Marzouk, "An Econometric Model of Sudan," <u>Journal of</u> Development Economics, I (1975), pp. 337-358.

¹⁵Ahmad Shahshahani and J. Malcolm Dowling, "An Econometric Model Forecast of Iran, 1975-1985," <u>The Journal of Energy and Development</u>, II (1976), pp. 148-162.

¹⁶UNCTAD Staff, "Models for Developing Countries," in R. J. Ball (eds.), The International Linkage of National Economic Models (Amsterdam, 1973), pp. 109-176.

¹⁷Al-Bashir, pp. 23-28.

¹⁸National Foreign Assessment Center, <u>The World Oil Market in the</u> Years Ahead: A Research Paper (August, 1979), p. 47.

¹⁹Richard G. Lipsey, "The Relation Between Unemployment and the Rate of Change of Money Wage Rates in the United Kingdom, 1862-1957: A Further Analysis," Economica, XXVII (1960), 1-31.

²⁰George L. Perry, <u>Unemployment</u>, <u>Money Wage Rates</u>, and <u>Inflation</u> (Cambridge, 1966), pp. 40-44; and E. Kuh, "A Productivity Theory of Wage Levels-An Alternative to the Phillips Curve," <u>Review of Economic</u> <u>Studies</u>, XXXIV (1967), pp. 333-360.

 21 A number of attempts were made to include in the model a simple monetary sector. These attempts, however, proved to be unsuccessful: the model turned out to be unstable.

 22 Klein. See also Behrman and Klein as well as Del Rio and Klein.

CHAPTER IV

MODEL SIMULATION ANALYSIS

In the previous chapter, the Iraqi macroeconometric model was specified and estimated. In this chapter, the model is evaluated using simulation analysis. Particular attention is given to the extent to which the model is able to replicate the actual data, the dynamic properties of the model, and finally the model's forecast of the Iraqi economy for the years 1979 to 1985.

Validation of the Model

The purpose of econometric model validation is "to increase one's confidence in the ability of the model to provide useful information."¹ A multiple-equation model cannot be evaluated by examining the statistical fit criteria of its individual equations only. It must also be evaluated in terms of its ability to reproduce the historical data. In a multiple-equation model, the individual relations may have a very good statistical fit, but the complete model may do a very bad job when it is simulated.²

Simulation analysis consists of solution of the model with actual historical or assumed values of the exogenous variables.³ In the case of an econometric model which is linear in variables, solution is easily achieved by finding the reduced form of the model. This approach can not be used if the system is nonlinear in variables as in the case of

two equations, two endogenous variables (the y's), and one exogenous variable (x).

$$y_{1t} = a_1 + a_2 y_{2t} + a_3 x_t$$
 (1)

$$y_{2t} = b_1 + b_2 y_{1t} + b_3 y_{2,t-1}$$
 (2)

To start the iterative process in period t, a starting value for $\hat{(0)}_{y_{1t}}$, say $\hat{y_{1t}}_{1t}$, has to be supplied (we shall denote the solution of y_{it} at the rth iteration by y_{it} . Then, using (2), compute:

$$\hat{y}_{2t}^{(1)} = b_1 + b_2 \hat{y}_{1t}^{(0)} + b_3 y_{2,t-1}$$
(3)

Using (3) solve for y_{1t} in (1):

$$\hat{y}_{1t}^{(1)} = a_1 + a_2 y_{2t}^{(1)} + a_3 x_t$$
 (4)

It is worth mentioning that $y_{2,t-1}$ and x_t are fixed and known for each time period, and do not change from iteration to iteration. The second $\hat{(1)}$ iteration begins by resolving y_{2t} using y_{1t} from (4) instead of y_{1t} :

$$\hat{y}_{2t}^{(2)} = b_1 + b_2 \hat{y}_{1t}^{(1)} + b_3 y_{2,t-1}$$
(5)

and repeat (4) with $y_{2t}^{(2)}$:

$$\hat{y}_{1t}^{(2)} = a_1 + a_2 \quad \hat{y}_{2t}^{(2)} + a_3 \quad x_t$$
 (6)

The process iterates in this fashion until the values of y_{1t} and y_{2t} do not change significantly from iteration to iteration. A convergence criterion commonly used is to stop iterating when the values do not change by more than 0.1 percent, i.e.,

if

$$\begin{pmatrix} \hat{y}_{1t} & \hat{y}_{1t} \end{pmatrix} \begin{pmatrix} \hat{y}_{1t} & \hat{y}_{1t} \end{pmatrix}$$
(7)

and if

stop iterating. Convergence in this algorithm is affected by the normalization procedure, i.e., the choice of the variable in each equation to be written on the left hand side with unit coefficient, and by the order in which the y_{it} are evaluated within each iteration.⁵ For the solution of the model presented in this study, the average number of iteration necessary for convergence has been eleven for each period.

Using this method, the present model is dynamically simulated within the sample period. This kind of simulation is a stringent test of the model because simulated values of endogenous variables in one period are used as input into the equation to predict the values of the endogenous variables in the following periods, and hence, problems of error accumulation may arise.⁶ A dynamic simulation is a "test that a model must pass before we would be willing to use it for forecasting purposes."⁷ "Of course, no model is expected to fit the data exactly: the question is whether the residual errors are sufficiently small to be tolerable and sufficiently unsystematic to be treated as random."⁸

There are many statistics which can be used to examine how closely each endogenous variable tracks its corresponding data series. The following statistics are often used:⁹ mean absolute error (MAE), mean absolute percentage error (MAPE), root mean squared error (RMSE), and root mean squared percentage error (RMSPE). These measures are defined below.

1. The Mean Absolute Error (MAE): The MAE measures the absolute value of deviation of the simulated variable (Y_t^s) from its actual time time path (Y_t^a) . It is defined as:

$$MAE = \frac{1}{N} \sum_{n=1}^{N} |Y_t^s - Y_t^a|$$
(9)

where N = the number of periods simulated. The MAE is not subject to the downward bias associated with the mean error - ME = $\frac{1}{N}\sum_{n=1}^{N} (Y_t^s - Y_t^a)$. 2. The Mean Absolute Percentage Error (MAPE): The MAPE expresses

MAE in percentage terms, and hence, it can be defined as:

MAPE =
$$\frac{1}{N} \sum_{n=1}^{N} \frac{|\frac{Y_t^s - Y_t^a}{Y_t^a}|}{Y_t^a}$$
(10)

3. <u>The Root Mean Squared Error (RMSE)</u>: The RMSE is a measure of the deviation of the simulated variable from its historical time path. The magnitude of this error must be evaluated relative to the mean value of the variable in question. This measure weights large errors more than the MAE. It can be defined as:

RMSE =
$$\frac{1}{N} \frac{\sum_{n=1}^{N} (Y_t^s - Y_t^a)^2}{(11)}$$

4. <u>The Root Mean Squared Percentage Error (RMSPE)</u>: This measure is the same as RMSE, but in percentage terms. It is defined as:

RMSPE =
$$\frac{1}{N} \sum_{n=1}^{N} \frac{(Y_{t}^{s} - Y_{t}^{a})^{2}}{Y_{t}^{a}}$$
(12)

Another important criterion for evaluating a model is how well actual turning points are simulated during the historical period. For a model to be superior to a simple time trend, it must simulate turning points.

The simulation error measures are presented in Table XII. In addition, the detailed results of dynamic simulation of the model are given in Appendix B. Before deriving some conclusions from the results of model simulation, the following analysis based on Table XII is in order.

A glance at the estimated and actual figures in Appendix B shows that aggregate domestic demand (DDA) and its components, total investment (IFT) and total consumption (CET) track their respective paths reasonably well. The RMSE for DDA is 3.35 which is approximately 2.42 percent of its value over the simulation period. A close analysis of the error statistics of the two components of DDA, i.e., CET and IFT, reveals that their errors tend to offset each other: while the sum of the RMSEs for CET and IFT is 72.34, the RMSE of their sum DDA is only 51.83.

The RMSE for private consumption (CE) is 33.02. This is approximately 3.3 percent of its mean value over the simulation period and is quite small. Its simulated series, however, missed two turning points out of four. Error measures relating to government consumption (GVCEN) are also satisfactory with RMSPE of 4.06 percent. In 1971 GVCEN underestimated its actual value by almost 12 percent, resulting in an overall MAPE of 2.36 percent.

Table XII indicates that the MAPEs for private investment (IFP) and government investment (IFGN) are only 4.22 and 3.71 percent respectively. The simulated series of IFP, however, missed two turning points out of four.

A glance at the estimated and actual figures in Appendix B shows that import components of consumer goods (TMCM0.4-3), intermediate goods (TMCM6), capital goods (TMCM7), and imports of other goods (TMCM5.8+9) do not track their respective paths very well, and hence, their error measures are generally higher than those for other variables in the model. This is mainly due to the errors associated with the construction and estimation of import price deflators which were used in deflating the nominal values of import components. In addition, a close analysis of the error statistics of the four components of total merchandise imports (TMCMT) reveals that their errors tend to cancel out; while the sum of RMSEs of TMCM0.4-3, TMCM5.8+9, TMCM6, and TMCM7 is 38.94, the RMSE of their sum TMCMT is only 21.6. The simulated series of TMCMT missed one turning point out of four.

As regards oil exports (TE331B) and oil revenues (GVRPTN), the results appear encouraging in that RMSPEs, are 4.55 percent for TE331B and 5.06 percent for GVRPTN. Their simulated series predicts the turning point of 1972 very well.

TABLE XII

RESULTS OF DYNAMIC SIMULATION

Variable	MAE	MAPE (Percent)	RMSE	Ratio of RMSE to Variable's Mean Value (Percent)	RMSPE (Percent)
CE	24.39	3.07	33.02	3.30	4.48
CET	36.64	2.95	45.47	3.07	3.98
DDA	38.06	2.35	51.83	2.42	3.35
DDAN	36.60	2.06	48.65	2.48	2.64
GDP	130.00	3.91	150.12	4.5	4.43
GDPN	84.11	2.75	135.24	5.41	3.23
GDPNP	23.32	1.65	29.11	2.06	2.02
GNPN	84.11	3.01	135.24	5.75	3.51
GVCEN	8.44	2.36	13.50	3.02	4.06
GVRPT\$	102.19	4.41	153.37	4.53	5.06
GVRPTBA\$	150.93	4.18	244.41	5.70	4.91
GVRPTN	31.15	4.41	45.54	4.47	5.06
GVRTN	31.15	3.14	45.54	3.90	3.50
GXPCRB	0.03	4.42	0.03	4.54	5.19
IFGN	6.32	3.71	8.42	1.86	6.06
IFP	5.70	4.22	7.12	4.44	5.49
IFT	19.73	3.37	26.87	4.06	4.06
NEMP	0.02	1.06	0.03	1.23	1.12
PDCE	3.22	3.96	4.04	4.69	5.23
PDDA	2.17	2.91	2.41	2.96	3.45
PDGDP	2.88	4.29	4.18	6.23	5.49

.

PDGDPNP	2.67	2.98	3.83	4.46	4.01
PDGVCE	4.26	4.81	5.46	6.49	5.67
PDIFT	1.94	2.64	2.46	3.43	3.23
PDXPCR	3.43	5.68	5.34	10.09	7.38
PR	96.67	10.63	149.55	19.34	15.51
PTE332\$	0.16	3.88	0.19	3.27	4.52
TBMN	38.22	5.39	61.83	9.21	6.44
TECMT	69.36	3.41	82.00	3.84	4.15
TECMTN	37.21	3.08	58.54	4.88	3.70
TET	69.36	3.47	82.00	3.81	4.25
TE331B	0.02	3.71	0.02	3.2	4.55
TE331N	37.25	3.71	58.57	5.18	4.55
ТМСМТ	17.65	3.99	21.60	3.24	5.45
TMCMTN	9.42	3.97	10.81	2.04	5.35
TMCM0.4-3	8.34	7.13	10.44	6.94	9.79
TMCM5.8+9	3.98	5.68	4.88	6.77	7.01
ТМСМ6	11.40	8.07	14.67	7.89	11.63
ТМСМ7	7.60	5.36	8.95	3.51	7.68
TMT	17.65	3.61	21.60	2.41	4.96
WRN	8.37	4.41	10.63	4.86	5.62
WYN	25.24	5.46	31.40	5.60	6.65
XAG	9.05	3.18	11.32	3.85	4.05
XC	3.89	5.87	4.93	4.71	8.78
ХММ	6.61	4.35	7.98	4.11	5.66
XPCR	131.25	7.15	148.59	7.93	8.08

XPRF	1.68	8.25	2.22	11.6	10.38
XS	16.14	2.78	20.43	3.43	3.44
XTC	3.79	3.37	4.37	3.82	3.88
XUT	0.51	4.14	0.69	5.15	5.20
YPDN	95.92	6.12	152.39	12.50	7.80

TABLE XII (Continued)

The RMSPEs for the sectoral value added are all far below 10 percent, except for the value added in petroleum refining which is 10.38 percent. Fortunately, value added in petroleum refining constitute a very small fraction of Iraq's GDP (0.01 percent in 1978), and the error associated with this equation should not affect the outcome of the model.

The RMSE for non-oil GDP is 29.11 which is 2.06 percent of its mean value over the simulation period and is quite small. Its simulated series captures the turning point of 1973 which is the only one in its data series. Therefore, the simulated values of GDP are off by only 3.91 percent from the actual (historical) values. It is interesting to observe that it predicts the turning point of 1972 very well.

The error statistics of price deflators are more or less on par with those of the other variables discussed earlier. In terms of RMSPE, aggregate domestic demand deflator (PDDA), and investment deflator (PDIFT) standout. It is 0.45 percent for PDDA and 3.23 percent for PDIFT. As regards employment level (NEMP) and wage rate (WRN), the results also appear encouraging in that RMSPEs are 1.12 for NEMP and 5.62 for WRN.

The simulated values of gross disposable non-wage income (PR), which is an identity (non-behavioral) variable, are off by 10.93 percent from the actual values. PR is defined as GDP minus the sum of total government revenues and total wage bill, and hence, it is relatively small. Therefore, the MAPE and RMSPE would appear relatively large.

The above analysis supports the following general conclusions regarding simulation of the model:

 The model replicates the time paths of most endogenous variables reasonably well and its overall performance in the sample period seems acceptable.

 There is a tendency of errors to offset among components of some of the aggregates. This feature is common in econometric studies, including econometric models of U.S. economy.¹⁰

3. Finally, it should be pointed out that our statement in this section regarding the error statistics being "large", "small", or "acceptable" are mostly subjective and are based on the present state of the art in econometric modeling of developing countries. An informal comparison of the performance of the present model with that of some other models of developing countries might shed light on this subject. This is undertaken in Table XIII which exhibits the RMSPEs of some strategic variables of the present and three other models. Only the RMSPE is reported since this is more relevant, if any, for such a comparison. Apart from columns 1 through 4 which give the RMSPEs in percent, a ranking of the results is provided in column 5. The results, though quite encouraging for the present model, are not fully conclusive. The present model ranks first in 2 out of 5 cases. It ranks second in GDP and IFT and third in PDCE. These results, which should be interpreted cautiously, are intended to give only rough measures of some of the available range of errors in models of developing countries, and hence the relative performance of the present model.

Multiplier Analysis

The examination of a macroeconometric model is not complete until multiplier analysis is explored.¹¹ The purpose of multiplier analysis

TABLE XIII

ROOT MEAN SQUARE PERCENTAGE ERRORS (RMSPE) OF THE HISTORICAL SIMULATION OF SELECTED VARIABLES OF THE IRAQI MODEL, THE GREEK MODEL, THE LIBYAN MODEL, AND THE IRANIAN MODEL

Variables	(1) Iraq (1960-78) %	(2) Greece (1950-66) %	(3) Libya (1962-75) %	(4) Iran (1958-72) %	(5) Rank of Iraqi Model
GDP	4.43	0.9	5.24	n.a.	2
CE	4.48	n.a.	9.15	4.91	1
IFT	4.06	1.81	4.98	11.79	2
PDCE	5.23	1.04	8.59	2.81	3
XPCR	8.08	n.a.	11.39	25.88	1

Sources:	Col.	2:	Nikos	Vernardakis	,	Econor	netric	Мо	dels	for	the	Devel	-
			oping	Economies:	Ā	Case	Study	of	Gree	ece	(New	York,	•
			1978).	•							• • • •		
	C - 1	. .	C - 1						- 11-		اللہ تنہ م		

Col. 3: Salem M. Moustafa, "An Econometric Model of the Libyan Economy, 1962-1975" (unpub. Ph.D. dissertation, Southern Methodist University, 1979).

 tion, Southern Methodist University, 1979).
 Col. 4: Ali M. Parhizgari, "Mathematical and Econometric Models of Development Planning: The Case of Iran" (unpub. Ph.D. dissertation, University of Maryland, 1976). is to examine the path that the system follows, when it is subjected to an exogenous shock, and see whether it corresponds to a priori information derived from economic theory.¹² Dynamic multipliers provide measures of both the magnitude and time response pattern of endogenous variables to changes in an exogenous variable. Dynamic multiplier analysis also provides a check on the stability of the model. The system is considered stable if the dynamic multipliers become smaller and smaller in absolute value and converge to zero over time, i.e., the sum of dynamic multipliers is finite.¹³

Multiplier simulations have been made for the following exogenous shocks:

- One-period shock in the volume of oil exports
- One-period shock in the price of oil
- One-period shock in the total imports of crude oil by OECD countries
- The impact of adopting the policy of denominating the price of a barrel of oil in terms of SDR (Special Drawing Rights) rather than in terms of dollar on the economy.

Each of the above changes in the exogenous variables is considered separately.

Since the exports of oil variable is endogenous in the system, we first exogenize it and then solve the model under this condition. This solution is considered to be the original solution. Then we assume an increase in the volume of oil exports in 1965 by 20 percent and solved the model to obtain the control solution. The choice of the year 1965 is arbitrary and has no significance. The increase in the volume of oil exports causes nearly every variable in the system to increase

(Table XIV). The 20 percent increase in oil exports resulted in about 14 percent increase in GDP in the first year. In the second year, the percentage increase in GDP declined sharply to about 0.7 percent and continued in this direction in the years after. These results are due to the fact that the 20 percent increase in the volume of oil exports in 1965 is a non-sustained one; it caused oil GDP to increase by about 22 percent in the same year and zero percent in the subsequent years. Consequently, the 14 percent increase in total GDP in the first year came mainly from the 22 percent increase in oil GDP; the small percentage increases in total GDP in the subsequent years came solely from non-oil GDP. The response of non-oil GDP to the increase in oil exports is very small; it increased by only 2.6 percent in the first year and by the third year the increase was only 1.16. Imports and prices increased because of the increase in domestic demand. These results indicate that the oil sector in general and oil exports in particular have little effect on domestic non-oil economic activities and the major part of the gain from these exports comes through their effect on domestic demand. The implication of this simulation experiment is that in order for Iraq to benefit from a sharp stimulus and enter an era of sustained growth, it must launch an attack on the limits that restrict its absorptive capacity and use its oil revenues more efficiently.

An increase of 20 percent in the price of oil in 1965 caused a minor decline in private consumption in the same year due to the fact that the resulting increase in the consumer price index outweighs the increase in personal disposable income (Table XV). Nevertheless, the increase in the export price of oil has an expansionary effect on the economy through its effect on government oil revenues.

		INCRE	20 PERCENT								
Variable	1	2	3	4	5	Year 6	7	8	9	10	
CE	3.81	2.63	1.85	1.32	.99	•76	.61	.33	.25	.08	
GVCEN	2.24	1.70	1.33	1.02	•78	•6	.45	.35	.25	.14	
IFGN	12.85	9.05	6.47	6.45	0.0	0.0	0.0	0.0	0.0	0.0	
IFP	0.0	3.84	1.94	1.19	1.21	.24	.15	.12	.14	.07	
GDP	13.97	.69	• 52	.22	.17	.13	.11	.07	.05	.03	
GDPN	19.68	1.87	1.39	1.01	.62	.47	.34	.28	.18	.07	
XPCR	22.05	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
GDPNP	2.6	1.68	1.16	.89	•53	•42	.33	.25	.18	.12	
YPDN	7.75	2.92	2.03	1.61	.97	.75	•62	.44	.33	.23	
тмсмт	4.39	4.33	2.99	2.81	•86	.35	.24	.19	.13	.05	

PDGDP

PDCE

PDDA

WRN

NEMP

PDGVCE

PDGDPNP

3.77

1.31

1.67

2.47

1.55

5.75

.12

1.17

1.06

1.47

2.38

1.25

4.69

.08

.87

•77

.99

1.75

.91

3.39

.05

.65

•59

.85

1.27

.70

2.39

•4

.36

.36

.86

.42

1.58

.3

.26

.26

.66

.30

1.02

.2

•2

•2

.26

.23

.76

.02

.2

.15

.15

.2

.18

• 58

.01

.11

.12

.13

.15

.13

.41

0.0

.02

.07

.08

.13

.08

.30

0.0

PERCENTAGE CHANGES IN SELECTED VARIABLES FOR AN

TABLE XIV

.04 .03 .02

TΑ	BL	E.	X۷	
IA	DL	. C.	ΛV	

PERCENTAGE CHANGES IN SELECTED VARIABLES FOR AN INCREASE IN THE PRICE OF OIL BY 20 PERCENT

Variable	1	2	3	4	5	Year 6	7	8	9	10
CE	-0.14	.17	.28	.31	•32	•32	.31	.26	.20	.06
GVCEN	2.14	1.66	1.29	1.0	.77	•59	•45	.35	.25	•14
IFGN	12.69	9.24	6.32	6.42	.15	.09	.05	.03	.02	0.0
IFP	0.0	1.24	1.4	.96	1.08	.17	.11	.09	.1	.07
GDP	.41	.37	.28	.27	.12	.11	.09	.08	.05	.02
GDPN	4.93	• 78	•64	.60	.32	.28	.23	.20	.14	•04
XPCR	0.23	0.19	0.13	0.13	0.03	0.02	0.02	0.01	0.01	0.01
GDPNP	.66	.62	.49	.47	.26	•24	.21	.17	.12	.03
YPDN	•56	1.16	.91	.90	.50	•44	•4	.30	.26	.11
TMCMT	2.80	2.80	2.18	2.31	.60	.18	.13	.11	.08	.01
PDGDP	4.5	.41	.35	.33	.20	.16	.13	.11	.09	.02
PDGDPNP	.39	.43	.37	•34	.19	.15	.13	.10	.10	.06
PDCE	.79	•78	.59	•6	.2	.15	.13	.11	.09	.03
PDGVCE	.69	.95	.80	.70	.49	.32	.27	.22	.16	•07
PDDA	.46	.51	.43	.39	.23	.17	.15	.12	.12	.07
WRN	1.47	1.90	1.56	1.32	.91	• 58	.48	.39	.28	.12
NEMP	0.03	.03	•02	.02	.01	.01	0.0	0.0	0.0	0.0

Comparing the effects of the 20 percent increase in the price of oil with the 20 percent increase in the volume of oil exports, we can say that both have expansionary and inflationary effects on the economy, but the effects are larger in the case of the increase in the volume of oil exports; even though the increases in both government consumption and government investment expenditures resulting from both shocks (the increase in oil exports and the increase in oil prices) are almost of the same magnitude, the increase in GDP which resulted from the former shock is much larger than that resulted from the latter shock. The reason is that oil exports affect GDP in two ways: first, through its effect on the oil revenues, which directly affect both government consumption and government investment; second, more exports of oil means more production of oil, which also means higher value added in the oil sector, and hence, higher GDP.

A 20 percent decrease in total imports of oil in 1965 by OECD countries causes nearly every variable in the system to decrease (Table XVI). It results in about seven percent decrease in oil exports in the first year. This leads to about eight percent decrease in oil GDP, and hence, almost five percent decrease in total GDP. This result supports our a priori conviction that economic activities in Iraq are extremely vulnerable to fluctuations in international oil markets.

These simulation experiments indicate that oil variables are a major source of fluctuation in GDP and other economic indicators. These findings have important implications for development planning policies which should emphasize the efforts to decrease the economy's dependence on the oil sector by diversifying investment and increasing production in the non-oil sectors.

TABLE XVI

PERCENTAGE CHANGES IN SELECTED VARIABLES FOR A TWENTY PERCENT DECREASE IN THE TOTAL IMPORTS OF OIL BY OECD COUNTRIES

Variable	1	2	3	4	5	Year 6	7	8	9	10
CE	-1.27	91	62	45	33	25	21	15	11	09
GVCEN	-0.73	56	44	34	26	20	15	12	09	05
IFGN	-4.31	-3.13	-2.15	-2.18	05	03	02	0.0	0.0	0.0
IFP	0.0	-1.25	65	39	41	09	06	04	05	02
GDP	-4.71	-0.28	19	15	08	06	05	04	03	02
GDPN	-3.22	-0.66	46	36	21	16	12	10	06	03
XPCR	-7.62	-0.07	-0.05	-0.04	-0.04	-0.01	-0.01	-0.01	0.0	0.0
GDPNP	-0.86	-0.57	39	30	18	14	11	08	07	04
YPDN	-2.56	-1.01	67	55	33	25	21	15	11	08
TE331B	-6.86	-0.06	-0.04	-0.04	-0.01	-0.01	-0.01	-0.01	0.0	0.0
TMCMT	-1.45	-1.46	-1.01	-0.95	31	13	10	07	06	01
PDGDP	-1.56	-0.39	27	0.21	13	10	07	06	03	01
PDGDPNP	-0.44	-0.37	26	20	12	09	07	05	02	03
PDCE	-1.28	-0.91	62	45	33	25	21	15	12	09
PDGVCE	-0.91	-0.80	58	43	29	19	14	11	09	06
PDDA	-0.52	-0.44	31	24	14	10	08	06	03	03
WRN	-1.92	-1.60	-1.13	81	 54	34	26	20	16	11
NEMP	-0.04	-0.03	0.02	0.01	01	01	01	01	0.0	0.0

To examine the impact of adopting the policy of denominating the price of a barrel of crude oil in terms of SDR, rather than in terms of dollar, the model is run intact up to 1971. Then the dollar prices of oil for the period 1972-1978 are adjusted using the dollar-SDR exchange rate. The choice of the year 1972 is dictated by the fact that prior to 1972 the dollar-SDR exchange rate is one.¹⁴ Table XVII indicates that if OPEC and hence Iraq had adopted SDR pricing of oil rather than dollar pricing of oil to safeguard the purchasing power of its oil revenues against inflation and dollar depreciation against other major currencies, oil revenues accruing to Iraq would have gone up substantially and the growth of economic activities in Iraq would have been faster. This result explains the reason behind of some OPEC countries' demand for linking oil prices to currencies other than the US dollar, e.g. to DMs or SDRs.

Forecast for 1979-1985

The complete system is dynamically simulated to forecast the Iraqi economy for the years 1979 to 1985. This forecast is predicated on the assumption that all the exogenous variables, other than oil variables, will continue to grow at their historical rates. It is further assumed that 1960-1978 estimates of the structural parameters will continue to be valid during the forecast period 1979-1985 which is a reasonable assumption since the forecast period is not long.

Before the war, oil production and exports in Iraq (like in Saudi Arabia, Kuwait, and the United Arab Emirates) were constrained by policy measures rather than resource considerations. Currently, however, oil production and exports is constrained neither by policy nor by resource

PERCENTAGE	CHANGES IN SELECTED VARIABLES FOR
ADOPTING	THE POLICY OF DENOMINATING THE
PRICE	OF A BARREL OF OIL IN TERMS
	OF SDR

				Year		· · · · · · · · · · · · · · · · · · ·	······································
Variable	1	2	3	4	5	6	7
CE	0.04	.12	.79	1.2	.8	1.2	1.69
GVCEN	0.85	3.59	10.91	13.11	14.12	16.69	21.13
IFGN	10.06	13.13	22.83	22.13	21.56	23.97	29.17
IFP	1.86	2.54	4.25	11.09	12.37	13.85	15.96
GDP	0.33	.79	3.08	3.94	4.37	5.66	7.50
GDPN	2.39	7.88	17.85	15.19	14.71	18.99	25.96
GDPNP	0.45	1.38	5.16	5.4	5.39	6.82	8.83
XPCR	0.25	0.44	1.88	2.93	3.58	4.79	6.50
YPDN	0.71	2.62	9.02	9.44	9.87	11.5	14.32
TMCMT	3.07	6.30	11.5	16.68	18.14	20.01	24.37
PDGDP	2.05	7.03	14.33	10.83	9.91	12.62	17.18
PDGDNPN	0.31	1.2	3.53	4.12	4.09	4.23	5.06
PDCE	0.77	2.36	7.62	7.97	9.33	9.93	12.11
PDGVCE	0.44	1.62	5.90	7.68	7.33	8.93	10.66
PDDA	0.35	1.39	4.03	4.61	4.53	4.64	5.52
WRN	0.79	2.84	10.47	11.79	10.17	12.07	14.05
NEMP	0.02	0.07	0.25	0.32	0.38	0.5	0.66

TABLE XVII

constraints, but rather by the war damage to oil facilities (the war between Iraq and Iran started in September 1980). Therefore, we had to exogenize the oil sector and simulate the model through 1985 using the Wharton Middle East Economic Service projections for the Iraqi oil variables (shown in Table XVIII) as our assumptions for these variables during the forecast period.

Wharton projections for the Iraqi oil variables are based on the following assumptions:¹⁵ (a) Renovation, and in some cases reconstruction, of the damaged oil facilities is expected to progress slowly, given the continued hostility from Iran; (b) Iraq's re-capturing of its pre-war market share will be a slow process. Iran is expected to start increasing its output at the same time as Iraq, and the current oil glut is not expected to disappear very fast. All these are expected to make it difficult for Iraq to have a quick recovery in its oil sector.

As far as oil prices are concerned, Iraq is expected to adopt a rather moderate stand in the short run, in order to re-capture its pre-war market.

Results of the forecast are shown in Table XIX. Some of the implications of this forecast might be summarized as follows:

1. Government oil revenues are estimated at \$11.7 billion in 1981. This represents a drastic decline compared with the revenues accrued to the government in 1980. This is mainly a consequence of the 60 percent drop in oil production. Based on our oil production and price assumptions described earlier, however, a very rapid recovery in oil revenues is projected over the forecast horizon.

2. Real non-oil GDP is projected to register a decline of around one percent in 1981. Combined with the close to 60 percent decline in

TABLE XVIII

VALUES OF OIL PRODUCTION, EXPORTS, AND PRICES USED DURING THE FORECAST PERIOD, 1979-85

	Oil Production (million bbl/d)	Oil Exports (million bbl/d)	Official Prices of Iraqi Oil (US \$/bb1)
1979*	3.48	3.28	18.50
1980*	2.51	2.31	30.3
1981	1.00	0.82	36.5
1982	1.85	1.65	37.0
1983	2.40	2.18	39.0
1984	3.30	3.05	44.20
1985	3.40	3.14	51.40

Source: Wharton Middle East Economic Service, <u>Gulf Economic Outlook</u>, (October, 1981), p. 159.

*Figures for these two years are actual, source: National Foreign Assessment Center, <u>International Energy Statistical</u> Review (August 25, 1981).

TABLE XIX

FORECAST RESULTS FOR MAJOR ECONOMIC INDICATORS, 1979-85

Variable	1979	1980	1981	1982	1983	1984	1985
CE	1784.3	1905.6	1816.1	1914.1	2059.6	2238.8	2415.7
% Change	9.1	6.8	-4.7	5.4	7.8	8.7	7.9
GVCEN	1456.9	1851.9	2440.2	3057.5	3730.4	4459.1	5387.8
% Change	22.8	27.1	31.7	25.2	22.0	19.5	20.8
IFGN	1978.6	2299.5	2531.0	2870.1	3401.1	4129.9	5273.0
% Change	20.5	16.2	10.0	13.4	18.5	21.4	27.6
IFP	324.2	347.7	351.4	354.0	365.7	389.2	430.6
% Change	10.2	7.2	1.1	0.7	3.2	6.4	10.6
IFT	1972.7	2051.5	2018.0	2047.3	2180.2	2382.1	2729.0
% Change	7.3	4.0	-1.8	1.5	6.5	9.3	14.6
GDP	6436.3	5516.5	3845.1	4853.7	5608.1	6783.6	7160.7
% Change	22.4	-14.3	-30.3	26.2	15.5	21.0	5.6
GDPNP	2535.0	2682.0	2657.1	2776.6	2956.3	3180.4	3460.9
% Change	10.3	5.8	-0.9	4.5	6.5	7.6	8.8
XAG	340.7	355.0	361.4	369.7	386.7	409.1	436.1
% Change	6.8	4.2	1.8	2.3	4.6	5.8	6.6
XC	415.6	463.4	469.2	473.9	487.1	511.0	574.9
% Change	19.9	11.4	1.3	1.0	2.8	4.9	12.5
XTC	192.0	201.0	206.8	215.9	228.3	247.7	273.3
% Change	9.3	4.7	2.9	4.4	5.8	8.5	10.3
XMM	458.0	480.5	460.9	466.6	492.7	539.1	600.4
% Change	11.2	4.9	-4.1	1.3	5.6	9.4	11.4

XS	988.7	1043.3	1022.5	1108.8	1213.2	1318.5	1415.6
% Change	7.2	5.5	-1.9	8.4	9.4	8.7	7.4
XUT	40.1	38.8	36.3	41.6	48.4	55.0	60.7
% Change	20.2	-3.2	-6.6	14.9	16.1	13.7	10.4
XPCR	3864.9	2897.1	1174.3	2063.5	2636.7	3586.8	3681.8
% Change	32.4	-27.4	-58.2	75.7	27.8	36.0	2.7
GVRPT\$	20000.5	24000.3	11000.7	21000.5	29000.4	45000.6	54000.7
% Change	101.4	18.5	-51.9	83.7	38.4	55.4	20.0
TECMTN	6576.2	7422.2	2765.1	6040.8	8546.1	13754.8	18406.5
% Change	102.3	12.9	-62.7	118.5	41.5	60.9	19.3
TMCMTN	1686.4	2727.7	3664.5	4855.2	6108.9	7986.3	10514.9
% Change	35.6	61.7	34.3	32.5	25.8	30.7	31.7
TBMN	4889.7	4694.4	-899.4	1185.6	2437.3	5768.5	5981.6
PDGDP	156.6	212.9	217.0	246.4	269.0	308.4	345.4
% Change	22.5	36.0	2.0	13.5	9.2	14.7	12.0
PDGDPNP	141.1	154.7	170.6	186.9	202.5	218.1	233.5
% Change	3.1	9.6	10.3	9.6	8.3	7.7	7.1
PDDA	142.5	157.5	174.9	192.9	210.0	227.1	244.1
% Change	9.2	10.5	11.1	10.3	8.9	8.2	7.5
PDCE	157.9	171.0	186.7	202.6	217.2	230.9	243.3
% Change	6.1	8.3	9.2	8.5	7.2	6.3	5.4

TABLE XIX (Continued)

the oil sector (resulting from the war damage to the oil facilities), this will lead to a total real GDP decline of over 30 percent in 1981. A slow but steady recovery is projected in the non-oil GDP for the next four years, with a much more rapid growth in the oil sector.

The most seriously affected sectors in the non-oil economy are expected to be manufacturing and services sectors. The former, which accounted for 17 percent of non-oil GDP in 1980, is projected to decline by over four percent in 1981, followed by a weak upturn of 1.3 percent in 1982. Services (including public utilities), which accounted for 40 percent of non-oil GDP in 1980, is projected to register a decline of around two percent in 1981.

The productive sectors, particularly agriculture, construction, and transportation and communication, while showing a significant slowdown, are not projected to undergo negative growth. It should perhaps be noted that despite the fact that the Gulf War did not start until mid-September of 1980, an overall deceleration is apparent in the 1980 annual average estimates. So that the trends of 1981 are the continuation of trends which started late 1980.

The fastest recovery is projected to occur in the services sector, with a significant upturn in utilities and other services to occur as early as 1982. This forecast is based on the assumption that the government, in its effort to minimize the effects of the war on the Iraqi people, will give top priority to basic public services. This trend will continue during 1983 and 1984, when an overall recovery is projected to be well underway.

3. Real private consumption expenditures and real fixed capital formation are projected to suffer a small negative growth rate in 1981.

The decline in the latter is partly due to the reluctance of foreign business in Iraq to undertake, or participate in, new investments, despite the government's assurances that there is no economic crisis resulting from the war and that Iraq has enough reserves to meet all foreign commitments in the long run. Fast recovery is projected for both of these variables, particularly for private consumption expenditures.

Unlike private consumption expenditures and capital formation, and mainly due to the new spending needs imposed by the war, government consumption expenditures were projected to increase significantly during 1979 and 1980. In fact our projection indicates that there was a marked acceleration in the growth rate of government consumption expenditures both in 1980 and in 1981. Compared with around 23 percent growth in 1979, nominal public consumption expenditures are projected to have grown by more than 27 percent in 1980, and by close to 32 percent in 1982. Although a steady deceleration is projected over the next three years, it is slow and gradual, and growth in nominal public consumption expenditures is projected to stabilize around the 20 percent per annum range toward the end of the forecast horizon.

L

4. Domestic inflation rates (excluding the effects of the oil sector) are not expected to be influenced significantly by the war. Most inflation rates are projected to be growing by eight to nine percent per year. This type of performance is partly due to the government's policies of controlling prices through subsidies.

5. Nominal merchandise imports are projected to grow by over 34 percent in 1981. Combined with the close to 63 percent decline in the export earnings, this will lead to Iraq's first negative merchandise

trade balance. After a more than ID 4600 million merchandise trade surplus in 1980, Iraq is projected to show a deficit of almost ID 900 million in 1981. As with other economic indicators, a rather quick improvement in merchandise trade balance is projected. Based on our oil production and price assumptions, a surplus of around ID 1180 million is projected for 1982 and this should grow very rapidly to more than ID 5890 million by 1985.

FOOTNOTES

¹William E. Kost, "Model Validation and the Net Trade Model," <u>Agricultural Economics Research</u>, XXXII (1980), pp. 1-17.

²Robert S. Pindyck and Daniel L. Rubinfeld, <u>Econometric Models</u> and <u>Economic Forecasts</u> (New York, 1976), p. 315.

³Lawrence R. Klein and Richard M. Young, <u>An Introduction to Econ-</u> <u>ometric Forecasting and Forecasting Models</u> (Lexington, 1980), p. 61.

⁴R. F. Wynn and K. Holden, <u>An Introduction to Applied Econometric</u> <u>Analysis</u> (New York, 1974), p. 179.

⁵Ibid. p. 184.

⁶Moshin S. Khan "Experiments with a Monetary Model for the Venezuelan Economy," IMF Staff Papers, XXI (1974), pp. 389-413.

⁷Klein and Young, p. 65.

⁸Charles C. Holt, "Validation and Application of Macroeconomic Models Using Computer Simulation," in J. S. Duesenberry, et al., eds., <u>The Brookings Quarterly Econometric Model of the United States</u> (Chicago, 1965), p. 639.

⁹Pindyck and Rubinfeld, pp. 316-317; Kost, pp. 3-6.

¹⁰Ta-Chung Liu and Erh-Cheng Hwa, "A Monthly Econometric Model of U.S. Economy," in Lawrence R. Klein and Edwin Burmeister, eds., <u>Econometric Model Performance Comparative Simulation Studies of the U.S.</u> Economy (Philadelphia, 1976), pp. 70-107.

¹¹Nikos Vernardakis, <u>Econometric Models for the Developing Econo</u>mies: A Case Study of Greece (New York, 1978), p. 111.

¹²Klein and Young, p. 64.

¹³Jan Kmenta, Elements of Econometrics (New York, 1971), p. 593.

¹⁴International Monetary Fund, <u>International Financial Statistics</u> (Washington, D.C., 1979), p. 427.

¹⁵Wharton Middle East Economic Service, <u>Gulf Economic Outlook</u> (Philadelphia, 1981), p. 164.

CHAPTER V

SUMMARY AND CONCLUSIONS

Summary

In the preceding chapters a macroeconometric model of Iraq was developed and evaluated. The model is based on annual data covering the period 1960-78. The basic behavioral and institutional characteristics of the economy, as well as the restrictions imposed by data were, in general, important considerations while designing and specifying the model. Availability of data have conditioned the level of disaggregation; behavioral and institutional characteristics of economic agents in Iraq have conditioned the specification of individual equations.

The model is a non-linear simultaneous equation system of fiftythree equations of which twenty-seven are stochastic and the remainder are non-behavioral or identities. It contains a private consumption function, a government consumption function, a private investment function, a government investment function, four import functions, an export function, eight value added functions, an output function, six price functions, a wage rate function, an employment level function, and a government income equation. It also contains some identities to close the system. The primary emphasis in this model was given to the investigation of the effects of the oil sector on the structure and recent performance of the Iraqi economy.

The model is examined with regard to its ability in reproducing the historical data. The results of the dynamic simulation indicates that the model replicates the time paths of most endogenous variables reasonably well and its overall performance in the sample period seems acceptable.

Dynamic multiplier analysis of the model showed the following:

1. The model is stable and exhibits damped oscillations in response to exogenous shocks.

2. The model's dynamic response to changes in exogenous variables are consistent with a priori information derived from economic theory.

3. An increase in oil exports is more expansionary and inflationary than a similar increase in the export price of oil.

4. Oil export earnings, and hence, economic activities in Iraq are extremely vulnerable to fluctuations in both international oil markets and developments in the international monetary system.

The model is also examined with regard to its ability of rendering reasonable ex ante forecasts of its endogenous variables. Considering our oil production and price assumptions during the forecast period (1979-85), the model seems capable of rendering a reasonable and meaningful short-run forecast of Iraqi economy.

> Limitations and Suggestions for Further Research

The macroeconometric model developed, tested, and applied in this study is subject to some limitations and shortcomings. First, the model is incapable of evaluating different policies in allocating government investment expenditures into different sectors of the economy. Considering the large size and importance of government investment projects in Iraq, this shortcoming is a serious one. Second, it does not include a detailed agricultural sector which reflects the structural characteristics of this section of the economy. Third, the model lacks a detailed manpower sector. These aforementioned channels for further improvement and expansion of the model are not explored here mainly because of data limitations. Hence, it would be fair to regard the present model as a prototype exercise, one that can be expanded and refined as more institutional information, more detailed and qualititatively better, longer time-series data, and more funds become available.

Conclusions

This study shows that data deficiencies while serious enough to prevent us from doing everything we would ideally want to do, are not serious enough to render meaningful and useful econometric modelling of Iraqi economy an impossibility. The model, in general, appears to be well specified considering the behavioral and institutional characteristics of the economy. Nevertheless, the fact that the present model deals with a dynamic economy, one which is experiencing a fairly rapid structural change, will limit the range of a meaningful forecast horizon for the model and will necessitate frequent re-estimation of the model parameters.

BIBLIOGRAPHY

- Abdul-Rasool, Ali F. "The Effect of the Pattern Use of Oil Revenues on the Growth and Prices of Iraq." (Unpub. Ph.D. dissertation, University of Massachusetts, 1970).
- Abolfathi, F., G. Kenyon, M. D. Hayes, L. A. Hazelwood, and R. Grain. <u>The OPEC Market to Nineteen Eighty-Five</u>. Massachusetts: Lexington Books, 1977.
- Al-bashir, Faisal. <u>A Structural Econometric Model of the Saudi Arabian</u> Economy 1960-1970. New York: John Wiley & Sons, 1977.
- Al-Eyed, Kadhim. <u>Oil Revenues and Accelerator Growth</u>: Absorptive Capacity in Iraq. New York: Praeger, 1979.
- Alnasrawi, Abbas. <u>Financing Economic Development in Iraq</u>. New York: Praeger, 1967.
- Ando, A., E. C. Brown and E. W. Adams. "Government Revenues and Expenditures." In J. S. Duesenberry et al., eds., <u>The Brookings Quarterly Econometric Model of the United States</u>. <u>Chicago: Rand</u> <u>McNally & Company, 1965, pp. 533-585</u>.
- Behrman, Jere and Lawrence R. Klein. "Econometric Growth Models for the Developing Economy." In W. A. Eltis, M. Scott and J. N. Wolfe, eds., Induction, Growth and Trade, Essays in Honour of Sir Roy Harrod. London: Clarendon Press, 1970, pp. 167-187.
- Central Statistical Organization. <u>Annual Abstract of Statistics 1970</u>. Iraq, 1971.

	Annual	Abstract	of	Statistics	1972.	Iraq,	1973.
-	Annua1	Abstract	of	Statistics	1975.	Iraq,	1976.
	Annual	Abstract	of	Statistics	1976.	Iraq,	1977.
•	Annual	Abstract	of	Statistics	1978.	Iraq,	1979.

Chang, Peter T. "A Macroeconometric Forecasting Model of Taiwan." (Unpub. Ph.D. dissertation, Oklahoma State University, 1977.)

Del Rio, Abed B. and Lawrence R. Klein. "Macroeonometric Model Building in Latin America: The Mexican Case." In N. D. Ruggles, ed., <u>The</u> <u>Role of the Computer in Economic and Social Research in Latin</u> <u>America. New York: Columbia University Press, 1974, pp. 161-190.</u> Europa Publications. The Middle East and North Africa 1978-79. London, 1978.

. The Middle East and North Africa 1979-80. London, 1979.

- Evans, Michael. Macroeconomic Activity: Theory, Forecasting and Control. New York: Harper & Row, 1969.
- Fekrat, M. A. "Growth of Opec-Type Economies: A Preliminary Theoretical Inquiry." Economia Internationzale, XXXII (1979), pp. 77-87.
- Friedman, Milton. Theory of Consumption Function. New Jersey: Princeton University Press, 1957.
- Haddad, Adeeb K. "An Econometric Monetary Model of the Jordanian Economy." (Unpub. Ph.D. dissertation, Oklahoma State University, 1978.)
- Holt, Charles C. "Validation and Application of Macroeconomic Models Using Computer Simulation." In J. S. Duesenberry et al., eds., <u>The Brookings Quarterly Econometric Model of the United States</u>. <u>Chicago: Rand McNally & Company</u>, 1965, pp. 637-650.
- Intriligator, Michael D. <u>Econometric Models, Techniques and Applica</u>tions. New York: Prentice-Hall, Inc., 1978.
- International Monetary Fund. International Financial Statistics. Various issues, Washington, D.C.

Iraqi Office Press. Iraq Monthly, London, (September 1981).

- Kader, Ahmed A. "The Role of the Oil Export Sector in the Economic Development of Iraq." (Unpub. Ph.D. dissertation, West Virginia University, 1974.)
- Kermani, Taghi T. Economic Development in Action: Theories, Problems, and Procedures as Applied in the Middle East. Ohio: World Publishing Company, 1967.
- Khan, Moshin S. "Experiments with a Monetary Model for the Venezuelan Economy." <u>IMF Staff Papers</u>, XXI (1974), pp. 389-413.
- Khouja, M. W. and P. G. Sadler. <u>The Economy of Kuwait Development and</u> <u>Role in International Finance</u>. London: The Macmillan Press Ltd., 1979.
- Klein, Lawrence R. "What Kind of Macroeconometric Model for Developing Economies?" In Arnold Zellner, ed., <u>Readings in Economic Statis-</u> tics and Econometrics. Boston: Little, Brown and Company, 1968, <u>pp. 559-570.</u>

. "The Treatment of Undersized Samples in Econometrics." In Alan A. Powell and Ross A. Williams, eds., Econometric Studies of Macro and Monetary Relations. Amsterdam: North-Holland Publishing Company, 1973.

- Klein, Lawrence R. and Richard M. Young. <u>An Introduction to Econometric</u> <u>Forecasting and Forecasting Models</u>. <u>Lexington: Lexington Books</u>, 1980.
- Kmenta, Jan. Elements of Econometrics. New York: Macmillan Publishing Co., Inc., 1971.
- Kost, William E. "Model Validation and the Net Trade Model." <u>Agricul</u>tural Economics Research, XXXII (1980), pp. 1-17.
- Lipsey, Richard G. "The Relation Between Unemployment and the Rate of Change of Money Wage Rates in the United Kingdom, 1862-1957: A Further Analysis." Economica, XXVII (1960), pp. 1-31.
- Liu, Ta-Chung and Erh-Cheng Hwa. "A Monthly Econometric Model of U.S. Economy." In Lawrence R. Klein and Edwin Burmeister, eds., Econometric Model Performance: Comparative Simulation Studies of the U. S. Economy. Philadelphia: University of Pennsylvania Press, Inc., 1976.
- Mallakh, Ragaei El, Mihssen Kadhim and Barry Poulson. <u>Capital Invest-</u> ment in the Middle East: The Use of Surplus Funds for Regional Development. New York: Praeger, 1977.
- Marzouk, M. S. "An Econometric Model of Sudan." Journal of Development Economics, I (1975), pp. 337-358.

. "A Note on Input-Output Analysis and Macroeconometric Models: A Comment." Journal of Development Economics, III (1976), pp. 385-387.

- Morgan, D. "Fiscal Policy in Oil Exporting Countries, 1972-1978." IMF Staff Papers, XXII (1979), pp. 55-86.
- Moustafa, Salem M. "An Econometric Model of the Libyan Economy, 1962-1975." (Unpub. Ph.D. dissertation, Southern Methodist University, 1979.)
- National Foreign Assessment Center. The World Oil Market in the Years Ahead: A Research Paper, Washington, D. C., (August 1979).

. International Energy Statistical Review, Washington, D. C., (August 1981).

- OPEC. Annual Statistical Bulletin 1979. Vienna, 1979.
- Parhizgari, Ali M. "Mathematical and Econometric Models of Development Planning: The Case of Iran." (Unpub. Ph.D. dissertation, University of Maryland, 1976.)

- Perry, George L. Unemployment, Money Wage Rates, and Inflation. Cambridge: M.I.T. Press, 1966.
- Pindyck, Robert S. and Daniel L. Rubinfeld. Econometric Models and Economic Forecasts. New York: McGraw-Hill Book Company, 1976.
- Salih, Asim. "The Role of the Central Bank of Iraq in Determining and Controlling the Money Supply." <u>The Economist</u>. (Iraqi Economists' Association), XIX (1978), pp. 31-56.
- Samuelson, Paul A. "The Art and Science of Macro-Models Over 50 Years." In Garry Fromm and Lawrence R. Klein, eds., <u>The Brookings Model:</u> <u>Perspective and Recent Developments</u>. Amsterdam: North-Holland <u>Publishing Company</u>, 1975, pp. 3-10.
- Sapir, Andre. "A Note on Input-Output Analysis and Macroeconometric Models." Journal of Development Economics, III (1976), pp. 377-383.
- Sayigh, Yusif A. The Economies of the Arab World. New York: St. Martin's Press, 1978.
- Shahshahani, Ahmad and J. M. Dowling. "An Econometric Model Forecast of Iran, 1975-1985." <u>The Journal of Energy and Development</u>, II (1976), pp. 148-162.
- Snyder, Donald W. "Econometric Studies of Household Savings Behavior in Developing Countries: A Survey." The Journal of Development Economics, X (1974), pp. 139-153.
- Thorbeck, Erik and Apostolos Condos. "Macroeconomic Growth and Development Models of the Peruvian Economy." in Irma Adelman and Erik Thorbeck, eds., <u>The Theory and Design of Economic Development</u>. Baltimore: John Hopkins Press, 1966, pp. 181-209.
- Todaro, Michael P. <u>Development Planning</u>: <u>Models and Methods</u>. Oxford: Oxford University Press, 1971.
- UNCTAD Staff. "Models for Developing Countries." In R. J. Ball, ed., <u>The International Linkage of National Economic Models</u>. Amsterdam: <u>North-Holland Publishing Company</u>, 1973.
- United Nations. Yearbook of International Trade Statistics 1966. New York, 1968.

. Yearbook of International Trade Statistics 1970. New York, 1973.

. Yearbook of International Trade Statistics 1975. New York, 1976.

. Yearbook of International Trade Statistics 1979. New York, 1980.
. <u>Studies on Selected Development Problems in Various</u> Countries, 1972. New York, 1973.

Vernardakis, Nikos. <u>Econometric Models for Developing Economies</u>: A Case Study of Greece. New York: Praeger, 1978.

Wharton Middle East Economic Service. <u>Gulf Economic Outlook</u>. (October 1981), Philadelphia.

Wynn, R. F. and K. Holden. <u>An Introduction to Applied Econometric</u> Analysis. New York: John Wiley & Sons, 1974.

•

APPENDIX A

TSLS ESTIMATES OF THE BEHAVIORAL EQUATIONS

$$CE = -57.7799 + 0.4684 (YPDN * 100) (1.1)+ 0.4805 CE(-1)(3.76) (1.1)$$

 $\overline{R}^2 = 0.965$ SEE = 65.30 h = 0.83

$$GVCEN/N = 3.6549 + 0.0913 GVRTN/N$$
(2.1)
+ 0.7765 GVCEN/N(-1)
(7.17)

$$\overline{R}^2 = 0.975$$
 SEE = 3.80 h = -0.45

$$IFP = 58.1702 + 0.0462 (\frac{PR(-1) * 100}{PDIFT})$$
(4.1)
+ 0.1158 IFT(-1) - 43.4304 Q73
(9.80) (-2.08)

 $\overline{R}^2 = 0.888$ SEE = 18.88 h = 0.55

IFGN = -2.8259 + 0.1856 GVRPTN(5.1) + 0.1704 GVRPTN(-1) (5.14) + 0.1131 GVRPTN(-2) (3.18) + 0.1293 GVRPTN(-3) (5.83)

 $\overline{R}^2 = 0.999$ SEE = 16.11 $\rho = -0.59$ DW = 2.43

$$TMCM0.4-3 = 98.4963 + 0.2039 CE - 0.5121 XAG (8.1) (7.17) - (-1.74) (8.1) + 80.4827 Q74 (3.90) R2 = 0.900 SEE = 19.41 DW = 1.67 TMCM5.8+9 = 27.7542 + 0.0646 CE (9.1) - 0.2690 XMM + 0.0477 IFT (-1.83) W = 1.84 R2 = 0.879 SEE = 7.87 DW = 1.84 TMCM6 = 320.7549 + 0.5205 TMCM7 (10.1) - 319.4102 ($\frac{PTM6(-1)}{PDIFT(-1)}$ + 134.6452 Q74 (10.1)
+ 134.6452 Q74 (4.32)
R² = 0.889 SEE = 29.75 DW = 1.77
TMCM7 = 294.7812 + 0.4590 IFT (20.89)
- 368.2734 ($\frac{PTM7(-1)}{PDIFT(-1)}$ (11.1)
- 368.2734 ($\frac{PTM7(-1)}{PDIFT(-1)}$ (11.1)
R² = 0.975 SEE = 28.23 DW = 2.52$$

$$XAG = 153.2066 - 0.0971 \text{ TMT} + 0.1534 \text{ CET}$$
(13.1)

$$\overline{R}^2 = 0.522 \qquad \text{SEE} = 27.03 \qquad \text{DW} = 2.01$$

$$XMM = 0.1525 \text{ IFT} + 0.1047 \text{ CET} - 0.0666 \text{ TMT}$$
(14.1)

$$\overline{R}^2 = 0.978 \qquad \text{SEE} = 14.29 \qquad \text{DW} = 1.18$$

$$XC = 0.2563 \text{ IFT} - 0.0902 \text{ TMT} + 0.0075 \text{ TET}$$
(15.1)

$$\overline{R}^2 = 0.964 \qquad \text{SEE} = 17.19 \qquad \text{DW} = 2.08$$

$$XTC = 19.3015 + 0.0564 \text{ CET} + 0.0167 \text{ IFT}$$
(16.1)

$$\overline{R}^2 = 0.962 \qquad \text{SEE} = 7.58 \qquad \text{DW} = 1.36$$

$$XS = -68.4866 + 0.4458 \text{ CET}$$
(17.1)

$$\overline{R}^2 = 0.961 \qquad \text{SEE} = 47.15 \qquad \text{DW} = 1.42$$

$$XUT = -9.1838 + 0.0060 CET + 0.0096 IFT + 0.0048 TET (18.1)$$

$$-0.0032 TMT (-2.13)$$

$$R^{2} = 0.989 SEE = 0.91 \rho = -0.55 DW = 2.17$$

$$TE331B = 0.2490 + 0.0468 0ETMB - 0.1053 Q72 (19.1)$$

$$+ 0.0001 (1FGN + GVCEN - GVRNPTN) (5.48)$$

$$R^{2} = 0.970 SEE = 0.03 DW = 2.32$$

$$XPCR = 2932.6245 GXPCRB (20.1)$$

$$R^{2} = 0.986 SEE = 74.65 DW = 1.35$$

$$GXPCRB = -0.0240 + 1.1024 TE331B (21.1)$$

$$R^{2} = 0.998 SEE = 0.01 \rho = 0.51 DW = 1.92$$

$$XPRF = 546.7097 GXPRFB (22.1)$$

$$R^{2} = 0.95 SEE = 2.16 DW = 1.09$$

$$PTE332S = 1.0125 + 0.9574 PTE331S$$
(23.1)

$$R^{2} = 0.999 SEE = 0.15 \qquad p = 0.57 \qquad DW = 1.52$$

$$GVRPTS = -230.1660+ 0.9444 GVRPTBAS (24.1)$$

$$R^{2} = 0.997 SEE = 208.71 \qquad DW = 2.45$$

$$WRN = -279.3418 + 1.1904 PDCE(-1) + 0.7130 (GDPNP/NEMP) (27.1)$$

$$R^{2} = 0.947 SEE = 25.09 \qquad DW = 1.33$$

$$NEMP = 1.5477 + 0.0001 GDPNP + 0.0587 TIME (28.1)$$

$$R^{2} = 0.998 SEE = 0.02 \qquad DW = 1.57$$

$$PDCE = 33.0621 + 0.0267 DDA (29.1) (14.64) \qquad (29.1) (15.76) (-162.9375 (\frac{SUBN}{1FGN + GVCEN - SUBN}) \qquad (29.1)$$

$$R^{2} = 0.955 SEE = 5.66 \qquad p = -0.45 \qquad DW = 2.17$$

PDGVCE = 31.6904 + 0.2416 WRN (30.1)

$$R^2 = 0.959$$
 SEE = 5.43 DW = 2.33
PDIFT = 22.1139 + 0.7305 (PTM6 * TMCM6 + PTM7 * TMCM7)/100 * 100
(14.87) TMCM6 + TMCM7 (31.1)
 $R^2 = 0.979$ SEE = 3.0 = 0.57 DW = 1.69
PDGDPNP = 10.3358 + 0.9214 PDDA (33.1)
 $R^2 = 0.954$ SEE = 4.51 DW = 2.01
PDXPCR = 7.2247 + 0.9394 PTE331 (34.1)
(34.1)

 $\overline{R}^2 = 0.983$ SEE = 4.89 DW = 1.87

APPENDIX B

DYNAMIC SIMULATION

(All variables are preceded by IQ which stands for Iraq.)

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTED	COLUMN:	DYNAMIC

VARIABLE GRAPHED : IGCE

PRIVATE CONSUMPTION EXPENDITURES

MILL. 1975 DINARUN DRPA NAT. ACT

DATE	ACTUAL	PREDICTED	DIFFERENCE (TIF = X)	* DIFFERENCE	Ξ	GRAPH	RANGE	UF	VAL.UFS:	648.768	TO	1635.481	
196501	7 39 . 186	657-105	81.980	11.992		*							•
966 11	747.222	793.938	44.184	5.913		+ +							
196701	648.768	715.921	-57.153	-8.849	• *	+							
96801	758-885	728.896	29.987	3.952		+ +							
196501	766 • 344	744.725	21.619	2.821		+ +							•
197001	743.963	766.972	-23.095	-3.092	•	* *							•
1971-11	838.218	833.649	4.569	7.545	•		x						•
1972-1	874.698	898.353	-23.656	-2.7 4	•		*	•					
1973+1	854.356	854.370	-0.014	-0.002	•		X						•
1974 11	1140.498	157.330	-16.833	-1.476	•					**			
197511	1384.599	382.648	1.951	9.141	•							X	•
1976 11	1323.576	1317.224	16.352	1.235	•						++		
1977-1	1521.560	1524.855	-3.286	-0.216								X	
1978 11	1635.481	1618.575	16.246	1.934	•								+ **

SUMMARY STATISTICS:

KEAN ABSOLUTE ERROR	24.3926	MEAN SQUARE ERRUR	(D)	0.0-37
MEAN ABSOLUTE & ERROR	3.0738			
ROOT MEAN SQUARED ERROR	33.0227	FIRST INEQUALITY COEFFICIENT	(U)	0.4758
POOT MEAN SQUARED % ERROR	4.4816	SECOND INEQUALITY COEFFICIENT	(0*)	n.5426
MEAN OF ACTUALS	998.3750	MEAN OF ACTUALS		0.9611
MEAN OF PREDICTEDS	991.689 ⁿ	MEAN OF PREDICTEDS		0.0693
MAXIMUM ABSOLUTE RESIDUAL	81.9805	STANDARD DEVIATION OF ACTUALS		2.1114
		STANDARD DEVIATION OF PREDICTEDS		9.1935
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	0.9433
MAXIMUM OF ACTUALS	1635.4812	BIAS PROPORTION	(UM)	n.0186
MAXIMUM OF PREDICTEDS	1618.5752	VARIANCE PROPORTION	(US)	r. 188 1
MINIMUM OF ACTUALS	648-7678	COVARIANCE PROPORTION	(UC)	0.8434
MINIMUM OF PREDICTEDS	657.1055	REGRESSION PROFORTION	(UR)	0.0001
		DISTURBANCE PROPORTION	(UD)	0.9813
		INTERCEPT	()	R. C-186
		SLOPE ESTIMATE	(8)	1.0459
		SLOFE ESTIMATE-WITHOUT INTERCEPT	(B*)	0.9610

DATE	ACTUAL	PREDICTED	DIFFERENCE (TIE = X)	* DIFFEREN	CE	GRAPH	RANGE OF VAL	UFS: 946.732	2 10	2466.553	
196501	1034.553	946.732	87.821	8.459	. +	*					•
1966 11	1061-354	996 . 9 14	64.451	6. 72	• •	*					
1967.1	961.161	1118.839	~57.679	-6.041		+					
196801	1116.831	1	62.264	5.575		+ +					
1969 11	1149.914	1/88.858	61. 155	5.314		+ *					•
197001	1131.967	1128.832	3.135	0.277		X					•
197191	1246.937	1217.924	27.114	2.327	•		++			•	•
1972 1	1303-184	1298-653	1.531	0.118	•		X				•
1973 11	1270-352	1253.391	16.962	1.335	•		++				•
1974°1	1695+6R6	1693.523	2.163	9.128	•			**			•
1975 1	2059.999	2053.650	6.349	0.314	•				· • •		•
1976 11	1968-923	2032.637	-49.685	-2.166	•				* +		•
1977 11	2266-565	2218.981	47.584	2. 199	•					+ +	•
1978 1	2434.256	2466.553	32.297	-1.327	•						* *•
					•••	• • • • • •	• • • • • • • • • • • • • • •		••••••	•••••	
SUMMAR	STATISTICS:	,			. 1	THEIL	STATISTICS (B)	ASED ON LOG-RELA	TIVE-CHA	NGES):	
MEAN AE	SOLUTE ERROR		3	6•6428 2•9594		MEAN	SQUARE ERROR		(D)	0.0128
ROOT ME	AN SQUARED ERROR		4	5.4714		FIRST	INEQUALITY	COEFFICIENT	(U)	0.4312
ROOT ME	TAN SQUARED X ERRO)R		3.9825		SECON	D INEQUALITY	COEFFICIENT	CU	•)	0.5119
MEAN OF	ACTUALS		147	8 • 4758	•	MEAN	OF ACTUALS				0.0058
MEAN OF	PREDICTEDS		146	0.4993		MEAN	OF PREDICTEDS				0.0737
MAXIMUN	N ABSOLUTE RESIDUA	NL .	8	7.821.		STAND	ARD DEVIATION	OF ACTUALS			0.1/29
						STAND	ARD DEVIATION	OF FREDICTEDS			n.0862
						CORRE	LATION BETWEEN	N ACTUALS AND PE	EDICTEDS		0.8628
MAXIMUN	OF ACTUALS		243	4.2561		BIAS	PROPORTION		(U	MD	0.0221
MAXIMUN	OF PREDICTEDS		246	6.5539		VARIA	NCE PROPORTIO	N	(U	S)	0.1.12
MINIMUN	OF ACTUALS		96	1.1682		COVAR	IANCE PROPORT	ION	(U	C)	9.8767
MINIMUM	OF PREDICTEDS		94	6.7324		REGRE	SSION PPOPORT	ICN	()	R)	0.0.25
						DISTU	RBANCE PROPORT	TION	()	0)	0.9754
						INTER	CFPT		(A }	-0.0101
						SLOPE	ESTIMATE		C	3)	1.6306
						SLOPE	ESTIMATE-WITH	TOUT INTERCEPT	(B	•)	0.9727

ACTUAL COLUMN: ZERO SECTOR FREDICTI'D COLUMN: DYNAMIC

VARIABLE GRAPHED : IQCET

TOTAL CONSUMPTION EXPENDITURES

MILL.1975 DIMARSTRANSFORMATION

.

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTED	COLUMN:	DYNAMIC

VARIABLE GRAFHED : IGDDA

AGGREGATE DOMESTIC DEMAND

MILL.1975 DINARSTRANSFORMATION

0.9924 0.9987 0.1:12 0.0281 0.9223

DATE	ACTUAL	FREDICTED	DIFFERENCE (TIF = X)	X DIFFERENC	E	GRAP	H RANGE	CF	VALUES:	1182.022 10	4272	•934
96511	1286-11	1182 - 1122	104-687	8.093								
966 1	1345.33	1266.756	78.574	5.843		*						
967-1	1231.156	1287.792	-56.637	-4.6.1		•						
1368 !!	1389-23	1345-588	43.612	3.139		X						
96911	1439-136	1385.696	53.341	3.727		++						
197001	1449.959	1437.558	12.351	0.852	•	**						
.971 1	1573-394	1547.271	26.124	1-660		•	*				•	
1972 11	1638.98	661.348	-22.36B	-1.365			**					
1973 1	1698.446	1699.215	-0.769	- 0. 945			X					
97411	2312.77A	2319.815	2.963	0.128			•		x			
1975 1	3:31.999	3033.887	-2.789	-0.092	•					X X		
197671	3385.961	3369.240	16.724	0.494							+ +	
97731	3888.394	3783.735	104.659	2.692								• •
1978 11	4272.934	4265.012	7.922	0.185								÷••
					•••	• • • • •	•••••	••••		•••••	•••••	•••••
SUMMARY	STATISTICS:					THE IL	STATIS	TICS	BASED 0	N LOG-RELATIN	E-CHANGES):
MEAN AB	SOLUTE ERROR			38.9657		MEAN	SQUARE	ERR	ROR		(D)	0.0016
MEAN AB	SOLUTE X ERROR			2.3495								
ROOT ME	AN SQUARED ERROR		Ę	61.8317		FIRS	T INEG	UALI	ITY COEFFI	CIENT	(U)	6.2918
ROOT ME.	AN SQUARED % ERR	OR		3.3516		SECO	ND INEG	UALI	ITY COEFFI	CIENT	(U))	0.3949

MEAN OF ACTUALS	2138.7646	MEAN OF ACTUALS
MEAN OF PREDICTEDS	2112.4944	MEAN OF PREDICTEDS
MAXIMUM ABSOLUTE RESIDUAL	104-6587	STANDARD DEVIATION OF ACTUALS
		STANDARD DEVIATION OF PREDICTEDS

MAXIMUM OF ACTUALS	4272.9336	BIAS PROPORTION	(UM)	P.0252
MAXIMUM OF PREDICTEDS	4265.117	VARIANCE PROPORTION	(US)	0.1 81
MINIMUM OF ACTUALS	1231.1555	COVARIANCE PROPORTION	(UC)	0.8667
MINIMUM OF PREDICTEDS	1182 • 7225	REGRESSION PROPORTION	(UR)	0.0174
		DISTURBANCE PROPORTION	(110.)	0.9573

INTERCEPT	(A)	0.1123
SLOPE ESTIMATE	(8)	1.0599
SLOPE ESTIMATE WITHOUT INTERCEPT	(8+)	6.9908

CORRELATION BETWEEN ACTUALS AND PREDICTEDS

VARIARLE	GRAPHED : IGD	DAN AG	GREGATE DOMESTI	DEMAND							MIL	LaCUR	R.DIHARSTRAN	SFORMATIO
DATE	CTUAL	PREDICTED	DIFFERENCE	DIFFERENC	:E	GRAPH	RANGE	CF VAI	LUES:	728	521	TO	5573.496	
1965.11	735-699	728-521	7.178	0.976	.x		•••••		•••••			•••••		
1966 1	807-199	797.379	9.811	1.214	x									
1967.1	812.899	820.862	-7.962	-9.979	•	X								
1968 11	878.698	870.098	8.501	8.968		X								
262 1	934.800	918.641	16.159	1.729		x								
970.1	1032.599	972.113	60.486	5.858		++								
971 1	1136.779	1989.426	56.374	4.959		X							•	
972 1	1173.199	1219.141	-46 . 742	-3.925		X								
973 11	1217.999	1211.383	6.616	0.543	•	X								•
974 11	1958.999	1943.2 13	15.796	9.8.6	•		,	X						•
.97511	3/31.099	3196.580	-75.480	-2.491						X				•
976 1	3764.279	3677.719	86.593	2.3"1	•						+ +			•
1977 11	4351.551	4335.586	15.965	9.367	•								**	•
.978.1)	5573.496	5474.047	99.449	1.784	•									+ *.
MEAN ABSO MEAN ABSO Rout Mean Rout Mean	DLUTE ERRƏR DLUTE % ERROR I SQUARED ERROI I SQUARED % ERI	R Ror	34	5+6945 2+1642 3+6512 2+6373		MEAN FIRST Secon	SQUARE Infqu D Inequ	ERROR JALITY JALITY	COEFF COEFF	ICIENT			(D) (U) (U*)	0•9413 0•1690 0•2488
MEAN OF A	CTUALS		195	. 7942		MFAN		2 1 41						A. 155A
MEAN OF F	REDICTEDS		1939	1.6917		MEAN	OF PRED	TCTEDS	S					0.1551
MAXIMUM A	BSOLUTE RESID	UAL	99	.4492		STAND	ARD DEV	IATIO	N OF A	CTUALS				0.1442
						STAND	ARD DEV	IATIO	NOFF	REDICTED	S			0.1480
						CORRE	LATION	BETWEE	EN ACT	UALS AND	PRI	EDICT	EDS	9.9702
MAXIMUM 0	F ACTUALS		5573	.4961		BIAS	PROPORT	LION					(UM)	0.0003
MAXIMUM C	F PREDICTEDS		5470	. 1469		VARIA	NCE PRO	PORTIC	ON				(US)	0.0115
MINIMUM C	F ACTUALS		735	.6992		COVAR	IANCE P	PROPORT	TION				(UC)	9.9881
MINIMUM C	F PREDICTEDS		729	.5215		REGRE	SSION P	ROPORT	TION				(UR)	9.0516
						DISTU	RBANCE	PROPOR	RTION				(UD)	0.9481
						INTER	CEPT						(4)	n.ar92
						SLOPE	ESTIMA	TE					(8)	0.9450
						SLOPE	ESTIMA	ATE WIT	THOUT	INTERCEF	T		(B*)	0.9759

PREDICTED COLUMN: ZERO SECTOR COLUMN: DYNAMIC

ti.

ACTUAL	COLUMN:	ZERO SECTOR
nerene		CLINE DUCTION
PREDICTED	COLUMN:	DYNAMIC

VARIABLE GRAPHED : IQGDP GROSS DOMESTIC PRODUCT

MILL.1975 DINARSTRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE	X DIFFERENC	E	GRA	РН	RANGE	0F	VALUES:	2166.629	TO	5757.875	
	(*)	(+)	(TIE = X)		••						*********			
96501	2239.546	2166+629	72.917	3.256	•+	*								•
1966 71	2359.027	2396 - 288	43.739	1.861		+ +								•
967 1	2212.507	2403.005	~190,499	-8.617	• *	+				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				
196891	2576+52	2566.738	9.782	0.381	•		x							
96991	2658.653	2713.145	-54.492	-2.05J	•			**						•
197001	2733.963	2870.641	-139.679	-5.115	•			* *						•
1971 11	2877.319	3015.979	-118.660	-4.096	•			*	+					
97211	2859.067	2958.639	-149.572	-5.325	• '			*	+					
1973-11	3324.197	3419.754	95.557	-2.875						*+				
974-11	3431.177	5626.429	-195.252	-5.691						*	•			
(975)1	4122.194	3946.440	75.754	1.883	•						+ *			
976 11	4784.176	4484.562	299.613	6.263	•								+ +	
.97711	4954.203	4761.617	193.586	3.9"8									+ +	
978 11	5257.875	5076.949	180.926	3.441	•								+	*.
					••									

SUMMARY STATISTICS:

MEAN ABSOLUTE ERROR	130.0919	MEAN SQUARE ERROR	(D)	0.0"22
HEAN ABSOLUTE & ERROR	3.9108	•		
ROOT MEAN SQUARED ERROR	150.1231	FIRST INEQUALITY COEFFICIENT	(U)	0.4835
ROOT MEAN SQUARED % ERROR	4.4268	SECOND INEQUALITY COEFFICIENT	(U*)	0.6514
MEAN OF ACTUALS	3373.4575	MEAN OF ACTUALS		2.9656
MEAN OF PPEDICTEDS	33 18 . 2710	MEAN OF PREDICTEDS		0.0655
MAXIMUM ABSOLUTE RESIDUAL	299.6133	STANDARD DEVIATION OF ACTUALS		0.0727
		STANDARD DEVIATION OF PREDICTEDS		0.0381
		CORRELATION BETWEEN ACTUALS AND PRI	EDICTEDS	8.8115
MAXIMUM OF ACTUALS	5257.8750	BIAS PROPORTION	(MU)	8.0: PC
MAXIMUM OF PREDICTEDS	5-76.9492	VARIANCE PROPORTION	(US)	0.5749
MINIMUM OF ACTUALS	2212.5066	COVARIANCE PROPORTION	(UC)	9.465
MINIMUM OF PPEDICTEDS	2166.6294	REGRESSION PROPORTION	(UR)	9.1954
		DISTURBANCE PROPORTION	(00)	9.8045
		INTERCEPT	(A)	0.0359
		SLOPE ESTIMATE	(8)	1.5500
		SLOPE ESTIMATE WITHOUT INTERCEPT	(8*)	1.1496

ACTUAL	COLUMN:	ĩ.	ERO	SECTOR
FREDICTED	COLUMN:	D	YNAP	110

VARIABLE GRAPHED : IGGDPH

GRUSS DOMESTIC FRODUCT AT MARKET PRICES

MILL.CURR.DINARSUN DRPA NAT. ACT

9.1839 0.2444

DATE	ACTUAL	PREDICTED	DIFFERENCE (TIE = X)	X DIFFERENCI	Ε.	GRAPH	RANGE	0F	VALUES:	885.99	8 TO	6623.125		
965-1	885.998	898.832	-12.834	1.449	• X			••••						
1966 11	961.599	968.325	-6.426	- 1.663	• X									
196711	969.623	1074-849	-35 . 141	-3.624		•								
968 11	110.699	1078.989	21.710	1.972		**								
96011	1150.398	1143.221	7.177	0.624	•	x								2
97001	1251.198	1212.925	38.273	3.959		x								
97111	1433.798	1360.139	73.668	5.138	•	++								
1972.11	1449.898	1474.205	-33.346	-2.311	•	**								
973:11	1626.399	1678-893	-44.494	-2.736	•	**	•							
.974:1	3377.997	3325.255	52.742	1.561					x					
1975-1	4922.195	4047.726	-25.531	-8.635						x				
1976 11	4533.797	4781.617	-246.820	-5.444	•						* *			
1977.1	5593.496	5380.836	212.660	3.802	•							* *		
97801	6623.125	6256.320	366.8*5	5.538									•	••
					•••	•••••	••••	•••	• • • • • • • • • • •		• • • • • •		••••	••
SUMMARY	STATISTICS:					THEIL S	STATIS	TICS	S (BASED ON	LOG-REL	ATIVE-	CHANGES):		
MEAN AB	SOLUTE ERROR			84 • 1135		MEAN S	QUARE	ERF	POP			(1)	0.0	19

TERM ADDEDIE ERROR	0401133	HEAN SWOARE CERVE (1)
MEAN ABSOLUTE % ERROR	2.7544	
ROUT MEAN SQUARED ERROR	135-2427	FIRST INEQUALITY COEFFICIENT (U)
ROOT MEAN SQUARED % ERROR	3.2309	SECOND INEQUALITY COEFFICIENT (U.)
MEAN OF ACTUALS	2497.9487	MEAN OF ACTUALS
MEAN OF PREDICTEDS	2471.6284	MEAN OF PREDICTEDS
MAXIMUM ABSOLUTE RESIDUAL	366.8947	STANDARD DEVIATION OF ACTUALS
		STANDARD DEVIATION OF PREDICTEDS
		CORRELATION BETWEEN ACTUALS AND FREDICTEDS

MEAN OF ACTUALS MEAN OF PREDICTEDS MAXIMUM ABSOLUTE RESIDUAL	2497 • 7487 2471 • 6284 366 • 8947	MEAN OF ACTUALS MEAN OF PREDICTEDS Standard deviation of actuals Standard deviation of predicted Correlation between actuals and	S FREDICTEDS	0.1547 0.1492 0.1766 7.1620 0.9717
NAXIMUM OF ACTUALS MAXIMUM OF PREDICTEDS MINIMUM OF ACTUALS MINIMUM OF PREDICTEDS	6623•1250 6256•3293 885•9976 898•8326	BIAS PROPORTION VARIANCE PROPORTION COVARIANCE PROPORTION REGRESSION PROPORTION DISTURBANCE PROPORTION	(UM) (US) (UC) (UM)	0.0162 0.1146 0.8692 0.0495 0.9342

INTERCEPT	(A)	9.0.34
SLOPE ESTIMATE	(5)	1.1593
SLOPE ESTIMATE WITHOUT INTERCEPT	(B•)	1.7497

ACTUAL	COLUMN	ZERO SECTOR
FREDICTED	COLUMN:	DYMAMIC

MILL.1975 DINARSTRANSFORMATION

VARIABLE GRAPHED : IOGOPNP NON OIL GDP

DATE	ACTUAL	PREDICTED	DIFFERENCE (TIF = X)	* DIFFERENCE		GRAPH R	ANGE	0F	VALUES:	918.	874	TO	2313.798	
965"1	922.877	918.874	4."03	0.434	• X									•
1966 11	969.599	974.483	-4.885	-6.544	•	x								
96701	989.612	998+093	-8.392	-8.848	•	**								•
968.11	1071.511	1049-526	21.985	2.052		+ +								
96911	1130.197	1083.960	46.237	4.191	•	+ *								•
1970 11	1159.813	1123.637	36.176	3.119	•	+	*							•
1971-11	1193.103	1178.992	14.111	1.183	•		x						•	•
197291	1323.792	1335.917	-12.115	-0.915	•				t i i i i i i i i i i i i i i i i i i i					
1973-11	1288 • 732	1278.777	9.955	9.772	•			¥						
197411	1452-898	1414.765	38.133	2.625	•				+ +					•
197501	1720.265	1677.368	42.897	2.494	•					++				•
1976.11	2173.154	2012.128	61.026	2.944	•								+ +	•
1977-1	2154.492	2143.364	11.128	0.516	•								++	•
978 11	2298.375	2313.798	15.423	-1.671	•									***

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

.

MEAN ABSOLUTE ERROR	23.3189	MEAN SQUARE ERROR	(D)	0.0003
POOT NEAN SCHAFFD FRROR	29.1122	FIRST INFOUNTITY COFFEICIENT	(11)	0.1258
ROOT MEAN SQUARED & FRRGR	2.206	SECOND INEQUALITY COFFFICIENT	(U+)	n.29n4
MEAN OF ACTUALS	1410.5999	MEAN OF ACTUALS		0.0702
NEAN OF PREDICTEDS	1393.1118	MEAN OF PREDICTEDS		0.0710
MAXIMUM ABSOLUTE RESIDUAL	61 . #261	STANDARD DEVIATION OF ACTUALS		0.0584
		STANDARD DEVIATION OF PREDICTEDS		0.0594
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	0.9584
MAXIMUM OF ACTUALS	2293 . 3755	BIAS PROPORTION	(UM)	0.0925
MAXIMUM OF PREDICTEDS	2313.7981	VARIANCE PROFORTION	(US)	0.0013
MINIMUM OF ACTUALS	922.8779	COVARIANCE PROPORTION	(UC)	1.9963
MINIMUM OF PREDICTEDS	918.8740	REGRESSION PROPORTION	(UR)	9.0320
		DISTURBANCE PROPORTION	(UD)	0.9655
		INTERCEPT	(A)	0.0.28
		SLOPE ESTIMATE	(8)	9.9486
		SLOPE ESTIMATE WITHOUT INTERCEPT	(B•)	0.9719

ACTUAL	COLUMN:	ZFPO SECTOR
PREDICTED	COLUMN:	DYHANIC

VARIABLE GRAPHED : IQANPN

GROSS NATIONAL PRODUCT

MILL.CURR.DINARSTRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE	A DIFFFRENCE		GR APF	RANGE	0F	VALUES:	756.597 10	6454.125	
	(*)	(+) (+)	(FIE = X)									
96501	756+597	769.441	-12.844	1.698	• X							•
1966 11	822.999	829.434	-6.435	-J.782	• X							
967 1	847.199	882.231	-35.132	-4.147	. * *							•
968 11	943-899	922.192	21.707	2.310	• X							
96991	995-698	988.513	7.185	0.722	•	X						
.976.11	1 185 . 198	1046.920	38 . 277	3.527	•	X						•
97101	1213-898	1145.234	73.664	6.944	•	X					• 1	
972 11	1304.398	1337.700	-33.312	-2.353	•	**						
973 1	1544.399	1588.890	-44.491	-2.881	•		X					•
197421	3135.997	3083.250	52.747	1.682	•				x			•
197511	3967-195	3932.732	-25-537	+0.654	•					X		
976 1	4413.797	4660.621	-246.824	-5.592	•					· · · · · · · ·		•
197701	5455.195	5242.531	212.664	3.898	•						* *	
197801	6454.125	6087.328	366 . 797	5.683	•							÷ *.

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

.

MEAN ABSOLUTE ERROR	84.1147	MEAN SQUARE ERROR	(D)	0.0(22
ROOT MEAN SQUARED ERPOR	135 . 2421	FIRST INEQUALITY COEFFICIENT	(1)	0.2008
ROOT MEAN SQUARED % FRRUK	3.5182	SECOND INEQUALITY COEFFICIENT	(U*)	0.2825
MEAN OF ACTUALS	2348.9629	MEAN OF ACTUALS		0.164 9
MEAN OF PREDICTEDS	2322.6431	MEAN OF PREDICTEDS		0.1591
MAXIMUM ABSOLUTE RESIDUAL	366 . 7969	STANDARD DEVIATION OF ACTUALS		0.1667
		STANDARD DEVIATION OF PREDICTEDS		0.1559
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	8.9612
MAXIMUN OF ACTUALS	6454.1250	BIAS PROPORTION	(UM)	9.0152
MAXIMUM OF PREDICTEDS	6 87.3281	VARIANCE PROPORTION	(US)	0.0522
MINIMUM OF ACTUALS	756.5974	COVARIANCE PROPORTION	(UC)	0.9327
MINIMUM OF PREDICTEDS	769.4414	REGRESSION PROPORTION	(UP)	C.P.77
		DISTURBANCE PROPORTION	(UD)	0.9772
		INTERCEPT	(4)	0.0116
		SLOPE ESTIMATE	(B)	1.0265
		SLOPE ESTIMATE-WITHOUT INTERCEPT	(B*)	1.0315

PCTUAL COLUMN: ZERO SECTOR PREDICTED COLUMN: DYNAMIC

VARIABLE GRAPHED : IGGVCEN GOVERNMENT CONSUMPTION EXPENDITUPES

MILL.CURR.DINARSUN DRPA NAT. ACT

(B*)

1. 0:40

DATE	ACTUAL	*)	PREDICTED	DIFFERENCE (TIE = X)	* DIFFERENCE		GRAPH	RANGE	OF	VALUFS:	178.243 TO	1J86.2ù0
1965 11		178.600	178.243	0.357	1.201	• X						•
1966:1		189.10%	190.928	-1.828	-0.967	• X						•
176711		291.856	213.243	-1.443	~3.715	• X	(•
1968.1		221.415	217.391	3.049	1.365	•	X					•
96931		242.561	232.435	10. "65	4.151	•	X					•
1970-1		268.899	248.343	29.056	7.459	•	+ +					•
97101		308.900	271-573	37.396	12.106	•	+ *					•
972 11		313.540	316.319	3.181	1.315	•	X					
973-1		364.700	3 15 .8 12	-1.1:3	-#.362		X					•
1974-1		467.899	46 9.281	7.619	1.628	• *			X			•
1975 11		675.495	672.462	2.938	0.435	•					* *	•
976 11		794.8.13	799-729	-4.929	-0.620	•					X	•
1977 11		885.5 20	886.675	-1.176	-9.133	•					x	•
1978 1	- 1	186.200	1163.198	23.092	1.947	:						+ *•

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

SLOPF ESTIMATE WITHOUT INTERCEPT

MEAN ABSOLUTE ERFOR	8.4422	MEAN SQUARF ERROR	(D)	0.0016
ROOT NEAN SQUARED ERPOR	13.5955	FIRST INEQUALITY COFFFICIENT	(1)	0.2041
ROUT MEAN SQUARED X ERROR	4 . 0617	SECOND INEQUALITY COFFFICIENT	(U•)	0.3056
MEAN OF ACTUALS	445.5858	MEAN OF ACTUALS		7.1456
MEAN OF FREDICTEDS	438,6396	MEAN OF PREDICTEDS		9.1443
MAXIMUM ABSOLUTE RESIDUAL	37.3965	STANDARD DEVIATION OF ACTUALS		2.1307
		STANDARD DEVIATION OF PREDICTEDS		0.1248
		CORRELATION BETWEEN ACTUALS AND PRI	DICTEDS	9.9522
MAXIMUM OF ACTUALS	1186 • 1997	BIAS PROPORTION	(UM)	0.0112
MAXIMUM OF PREDICTEDS	1163.1079	VARIANCE PROFORTION	(US)	0.9213
MINIMUM OF ACTUALS	178.6093	COVARIANCE PROPORTION	(UC)	0.9776
MINIMUM OF PREDICTEDS	178-2434	REGRESSION FROPORTION	(UH)	9.04.01
		DISTURBANCE PROPORTION	(UD)	6.9987
		INTERCEPT	(A)	0.0018
		SLOPE ESTIMATE	(R)	9.9967

ACTUAL	COLUMN:	ZERO	SE CTOR	
PREDICTED	COLUMN:	DYNAP	110	

VARIABLE GRAPHED : IQGVRPT\$

MILL.CURR.DOLLAROPEC ASB

(B*)

•

٠

1.0319

DATE ACTUAL PREDICTED DIFFERENCE % DIFFERENCE GRAPH RANGE OF VALUES: 351.943 TO 17281.664 (*) (+) (TIC = X)965 11 361.92: 351,943 15.977 4.343 .X 394.24 385.773 8.467 2•148 •X 96601 399.474 -35.104 ~9.634 .X 967 1 364.37: 96891 456.752 31.167 6.358 •X 487.920 104 .

GOVERNMENT OIL REVENUES

196911	4/9.043	499+032	-19.992	~4.173	• X				•
97001	512.640	550.172	-37.532	-7.321	a #+				•
971 1	842.910	783.346	56.654	6.745	• X				•
1972 11	575.066	695.179	-30.179	-5-249	• X				•
197311	1843.000	1836.664	6.336	4.344	•	X			•
1974 1	5760.000	5986.531	-286-531	-5.027	•		± +		•
1975-1	7500.010	7288.141	211.859	2.825	•		•	*	•
.97641	8540.600	8167.4 "2	332.598	3.913	•		,	+ +	•
197791	9631.000	9354.328	216.672	2.873	•			• r	* •
978 1	10207.0)0	1 281.664	-81.664	- 0.8.01	•				** .

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

SLOFE ESTIMATE WITHOUT INTERCEPT

MEAN ABSOLUTE ERROR	102.1953	MEAN SQUARE ERROR	(D)	0.0076
ROOT MEAN SQUARED ERROR	153.3720	FIRST INEQUALITY COEFFICIENT	(U)	0.1746
ROOT MEAN SQUARED % FRROR	5 - 9619	SECOND INEQUALITY COEFFICIENT	(U•)	0.2034
MEAN OF ACTUALS	3385.3662	MEAN OF ACTUALS		0.2556
MEAN OF PREDICTEDS	3353.3149	MEAN OF PREDICTEDS		0.2596
NAXIMUM ABSOLUTE RESIDUAL	332.5977	STANDARD DEVIATION OF ACTUALS		1.428 R
		STANDARD DEVIATION OF PREDICTEDS		0.3988
		CORRELATION BETWEEN ACTUALS AND PR	EDICTEDS	0.9803
MAXIMUM OF ACTUALS	1+200.0000	BIAS PROPORTION	(UM)	0.0021
MAXIMUM OF PREDICTEDS	1 281-6641	VARIANCE PROPORTION	(US)	0.1120
MINIMUM OF ACTUALS	364.3791	COVARIANCE PROPORTION	(UC)	0.8859
MINIMUM OF PREDICTEDS	351.9426	REGRESSION PPOPORTION	(UR)	0.0566
		DISTURBANCE PROPORTION	(UD)	0.9412
		INTERCEPT	(4)	0.0175
		SLOPE ESTIMATE	(8)	1.1519

ACTUAL	COLUMN:	ZERD SECTOR
PREDICTED	COLUMN:	DYHAMIC

VARIABLE GRAPHED : IOGVRPT\$BA

MILL.CURR.DINARSTRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE	X DIFFERENCE	E	GRAPH	RANGE	OF	VALUES:	685.052	10	12533.594	
	(+)	(+)	(TIE = X)										
296511	737.607	697.622	39.986	5.421	• X								
196691	765-508	737.894	47.614	6.462	• X								
196731	685.052	754-2-5	-69.153	-10-195	• X								
1968 1	845.879	822.392	23.487	2.777	• X								
96911	852.966	872 • 723	19.757	-2.316	• X								
.97031	874 • 096	933.6-2	-59.506	-6.818	. * *								
1971 1	1183.293	1211.182	-27.979	-2.365	•)	(
97231	1466-166	113.844	-37.676	-3-534		•							
973-11	2926.935	2019.393	7.542	0.372	•	x							
974 1	7317-849	7667.168	-349.359	-4.774	•					**			
975 11	9535.547	8954.758	580.789	6+191	•						+	*	
976 11	1 14 98 . 6 99	1 991.465	497.145	4.735	•							+ +	
97701	11076-496	11414.430	-337.934	-3+051	•					•		* *	
1978/11	12533.594	12518.371	15 . 22 3	0.121	•								+ *

GOVERNMENT OIL REVENUES BASE

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

MEAN ABSULUTE ERROR	150.9393	MEAN SQUARE ERROR	(5)	9.0°54
MEAN ABSTLUTE & ENRUR	904 A150	EIRST THEOHALITY COFFEELCIENT	(11)	0.1739
ROUT HEAN SQUARED ERRUR	4 9905	RECOND INFOUNTITY COFFEICIENT	(11)	0.2029
KUUT MEAN SQUARED & CRROK	7 • 7 780	SECOND INEGUALITY COEFFICIENT		4.5.5
HEAN OF ACTUALS	4287.1016	MEAN OF ACTUALS		0.2179
MEAN OF PREDICTEDS	4264 • 9297	MEAN OF PREDICTEDS		1.2221
MAXIMUM ABSOLUTE RESIDUAL	580.7891	STANDARD DEVIATION OF ACTUALS		0.3628
		STANDARD DEVIATION OF PREDICTEDS		0.3575
•		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	0.9793
NAXIMUM OF ACTUALS	12533.5937	BIAS PROPORTION	(UM)	0.0632
MAXIMUM OF FREDICTEDS	12518.3711	VARIANCE PROPORTION	(US)	0.0153
NTNIMUM OF ACTUALS	685 - 0522	COVARIANCE PROPORTION	(UC)	0.9915
MINIMUM OF PREDICTEDS	697.6216	REGRESSION FROPORTION	(UR)	0.0109
		DISTURBANCE PROPORTION	(UD)	0.9959
		INTERCEPT	(4)	1.0.0.28
		SLOPE ESTIMATE	(8)	.9939
		SLOPE ESTIMATE WITHOUT INTERCEPT	(B*)	0.9404

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTED	COLUMN:	DYNAMIC

MILL.CURR.DINARSTRANSFORMATION

VARIABLE GRAPHED : INGVRETN GOVERNMENT OIL REVENUES

DATE	ACTUAL		PREDI	CTED	DIFFERENCE	X	DIFFERENC	E	GRAPH	RANGE	0F	VALUES:	1	25+694	TO	3-3	6.316		
	(*)		+)	(T1E = X)														
@65#1		131.400		125.674	5.7.6		4.343	• X											•
96611		149.803		137.776	3.024		2.148	• X											
'967 1		130.132		142.669	-12.537		-9.634	• X											
968 1		174.257		163.126	11.131		6.388	• X											
969:1		171.086		178.226	-7.141		-4-173	. * +											
197001		163.986		196.491	-13.404		-7.321	• X											
97141		296.765		276.750	20.115		6.745		x							•			
197211		191.418		201.465	-19.847		-5-249	• X											
1973 11		557-426		555.489	1.916		3.344			x									
974 1		1683-288		1767.915	-84-616		-5.027							* *					
197511		2214 -853		2152.288	62.565		2.825	-								++			
1976 11		2516.167		2411.946	98.221		3.913									•	*		
197701		2844.156		2762.461	81.745		2.873										+	*	
197811		3112.21		3036.316	-24 . 116		-6.801	•										**	• •
																			••

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

MEAN ABSOLUTE ERROR	31.1532	MEAN SQUARE ERROR	(D)	0.0076
ROOT MEAN SQUARED ERROR	45.5424	FIRST INEQUALITY COFFFICIENT	(0)	8.1812
ROOT MEAN SQUARED & ERROR	5.0619	SECOND INEQUALITY COEFFICIENT	(U*)	0.2094
MEAN OF ACTUALS	1817.2153	MEAN OF ACTUALS		0.2409
MEAN OF PREDICTEDS	1 107.7566	MEAN OF PREDICTEDS		0.2450
HAXIMUM ABSOLUTE RESIDUAL	98.2207	STANDARD DEVIATION OF ACTUALS	· •	0.4156
		STANDARD DEVIATION OF PREDICTEDS		0.3854
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	C•9793
MAXIMUM OF ACTUALS	3 12.1997	BIAS PROPORTION	(UM)	0.0021
MAXIMUM OF PREDICTEDS	3"36.3162	VARIANCE PROPORTION	(US)	0.1207
MINIMUM OF ACTUALS	130.1322	COVARIANCE PROPORTION	(UC)	0.8771
MINIMUM OF PREDICIEDS	125.6938	REGRESSION PROPORTION	(UR)	0.0617
		DISTURBANCE PROPORTION	(UD)	0.9362
		INTERCEPT	(4)	0.0178
		SLOPE ESTIMATE	(8)	1.0561
	•	SLOPE ESTIMATE-WITHOUT INTERCEPT	(B*)	1.0352

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTED	COLUMN:	DYNAMIC

VARIAPLE GRAPHED : IOGVRTN

MILL.CURR.DINARSTRANSFORMATION

UNTE	ACTUAL	PREDICTED	PIFFERENCE	X DIFFERENC	E	GR AP	H RANGE	0F	VALUES:	186.694	10	3299.969	
	(*)	(+)	(TIF = X)		••						*****		
96591	192.404	186-694	5.706	2.966	• X								•
1965-1	212.311	208,976	3.924	1.426	• X								•
967.01	2.17.632	221: •169	.12.537	-6.938	• X								•
.968 11	265.457	254.326	11.131	4.193	•	x							•
969.1	274.486	281.626	-7.140	-2.611		X							•
97091	301-786	315.120	-13.404	-4.442	•	X							•
97111	424.165	474.350	20."15	4.723	•	х						· · ·	•
972.11	320.818	334.865	-10.047	-3.132	•	x							•
197301	694.795	692.789	1.916	0.276	•		X						•
1974 11	1815.988	1930-684	-84.616	-4.660	•					* *			•
1975 1	2383.453	2329.889	62,565	2.625	•						+ *		•
97611	2812.466	2714.246	98.221	3.492								+ +	•
1977 11	3128.766	3347.761	81.705	2.611	•							++	•
107601	3275.853	3299.969	-24.115	-3.736	•								**.
						T		TTO	C ADACED (H 100-001 A	TINE	UANCEENT	

TOTAL GOVERNMENT REVENUES

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

SLOPE ESTIMATE WITHOUT INTERCEPT (8")

MEAN ABSOLUTE ERROR	31.1532	MEAN SQUARE ERROR	(0)	0.0035
POOT MEAN SOMARED ERROR	45.5424	FIRST INFOUNLITY COFFFICIENT	(8)	0.1545
ROOT MEAN SQUARED & ERROR	3.5019	SECOND INEQUALITY COEFFICIENT	(U*)	0.1979
MEAN OF ACTUALS	1164.9905	KEAN OF ACTUALS		0.2181
MEAN OF PREDICTEDS	1155.5315	MEAN OF PREDICTEDS		0.2249
MAXIMUM ABSOLUTE RESIDUAL	98.2207	STANDARD DEVIATION OF ACTUALS		0.3151
		STANDARD DEVIATION OF PREDICTEDS		0.3007
		CORRELATION BETWEEN ACTUALS AND PRE	EDICTEDS	0.9 827
MAX14UM OF ACTUALS	3275.8525	BIAS PROPORTION	(UM)	0.0424
MAXIMUM OF PREDICTEDS	3299.9691	VARIANCE PROFORTION	(US)	0.0596
MINIMUM OF ACTUALS	192.4010	COVARIANCE PROPORTION	(UC)	0.9384
MINIMUM OF PREDICTEDS	186.6938	REGRESSION PROPORTION	(UP)	r. (23 a
		DISTURBANCE PROPORTION	(00)	0.9746
		INTERCEPT	(A)	0.0095
		SLOPE ESTIMATE	(8)	1.0299

1.148

VARIABL	E GRAPHED	: IQGXP	CRB CR	UDE OIL PRCDUG	TION						BI	LL. B	ARRELS	TRANS	SFORMATIC
DATE	ACTUAL	,	PREDICTED	DIFFERENCE (TIE = X)	X DIFFERENC	E	GRAPH	RANGE	0F	VALUES:	0.44	8 TO		935	
196501		0.473	0.450	9.029	6.071	.+	*								•
1966 11		0.508	1.474	0.034	6.719	•	+ +								•
1967:11		1.448	0.496	-0.047	-10.553	• *	•								•
1968.01		0.549	1.534	0.018	3.363	•		+ *							
1969 /1		0.555	0.566	-0.011	-1.900			*	+						•
1976-11		C . 565	0.603	-0.038	-6.681	•			*	•					•
1971-11		7.618	1.632	-0.114	-2.226	•				* *					•
1972 91		0.535	0.556	-0.021	-3.978			* *							•
197301		C . 737	0.733	0.084	0.520						x				
97411		u.719	8.754	-0.935	-4.862	•					*	+			
1975 11		0.825	0.771	0.055	6.606							+	+		•
197601		J.882	¥.838	0.043	4.895	•							•	*	•
97741		a.857	0.887	-0.*29	-3.438	•								* *	•
197801		0.935	0.935	0.000	0.033										+ * •
MEAN AB MEAN AB ROOT ME	SOLUTE ER Solute X AN SQUARE	ROR Error D Error			0.9270 4.4167 0.7313		MEAN	SQUARE	ERI UAL	ROR 1TY COEFFIC	IENT		(D) (U)		0.0/62 0.5998
ROOT ME	AN SQUARE	D % ERRO	R		5.1884		SECON	D INEQ	UAL	ITY COEFFIC	IENT		(0•)		0.6519
MEAN UF	ACTUALS				0.6581		MEAN	OF ACT	UALS	s					0.0514
MEAN OF	PREDICTE	DS			r.6589		MEAN	OF PRE	DIC	TEDS					0.0562
MAXIMUM	ABSOLUTE	RESIDUA	L		0.0545		STAND	ARD DE	VIA	TION OF ACT	UALS				0.1208
							STAND	ARD DE	VIA	TION OF PRE	DICTEDS				0.0810
							CORRE	LATION	BE	TWEEN ACTU	LS AND PI	REDIC	TEDS		0.7652
MAXIMUM	OF ACTUA	LS			4.9351		BIAS	PROPOR	T 1 0 I	N			(UM)		0.0:37
MAXIMUM	OF PREDI	CTEDS			1.9348		VARIA	NCE PR	DPO	RTION			(US)		0.2557
MINIMUM	OF ACTUA	LS			0.4483		COVAR	IANCE	PRO	PORTION			(UC)		0.74 16
MINIMUM	OF PREDI	CTEDS			0.4500		REGRE	SSICN	PRO	PORTION			(UR)		0.6212
							DISTU	RBANCE	PRI	DPORTION			(UD)		0.9751
							INTER	CEFT					(A)		R. 0128
							SLOPE	ESTIM	ATE				(8)		1.1416
							SLOPE	ESTIM	ATE	II TUOHTIN-	ITERCEPT		(B*)		1.0678

ACTUAL PREDICTED COLUMN: ZERO SECTOR Column: Dynamic

NC

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTED	COLUNN:	DYNAMIC

VARIABLE GRAPHED : IQIFGN

TOTAL GROSS FIXED PUBLIC INVESTMENT

MILL.CURR.DINARSIRAG AAS

DATE	ACTUAL	PREDICTED	DIFFERENCE (TIC = X)	* DIFFERENCE		GRAPH	RANGE	CF	VALUES	6	0.085	TO	1646.872	
1965 11	71.200	64.185	11.115	15.611	• X							•••••		•
1966 al	76.20%	76.592	-0.362	-0.561	• X									•
196711	79.700	75.311	4.399	5.517	• X									
1968.1	75.8 14	84.977	.9.177	-12.197	• X									
196991	91.4)	91.163	n.237	1.259	• X									
97001	101.100	101.388	-9.288	-0.285	• X									•
197131	105.065	196.964	-1.964	-1.871	• X									
3972 1	114.6 9 1	124.657	14.057	-8.776	.)	K								
973 1	218.945	214.662	4 • 238	1.936		x								•
974 1	446.040	441.576	4.424	0.992	•			X						
197511	798.000	808.620	-18.620	-2.357	•					X				•
197641	1112.480	1110.240	2.159	0.194	•							X		•
1977 11	1392.953	1376.718	15.335	1.1.2	•								+ *	•
1978-11	1642.83%	646.872	-6.72	-9+370	•									**•

SUMMARY STATISTICS:

MEAN ABSOLUTE ERROR	6.3192	MEAN SQUARE ERROR	(1))	8.8073
ROOT MEAN SQUARED ERROR	9.4235	ETPST INFORM ITY COFFEICIENT		0.2505
ROOT MEAN SOUAPED & EDROP	6.0554	SCOUD THEOHALITY COEFFICIENT	(0)	0 3647
ROOT HEAN SUDARED & ERROR	6+0004	SECOND INE BOALING COEFFICIENT	(0.7	V • 0 0 4 1
MEAN OF ACTUALS	451.1820	MEAN OF ACTUALS		0.2413
MEAN OF PREDICTEDS	451.4146	MEAN OF PREDICTEDS		0.2547
MAXIMUM ABSOLUTE RESIDUAL	18.6204	STANDARD DEVIATION OF ACTUALS		9.2497
		STANDARD DEVIATION OF PREDICTEDS		0.2208
		CORPELATION BETWEEN ACTUALS AND PREC	ICTEDS	0.9368
HAXIMUM OF ACTUALS	1640.8060	EIAS PROPORTION	(UM)	9.1244
MAXIMUM OF PREDICTEDS	1646.8723	VARIANCE PROPORTION	(US)	0.0543
MINIMUM OF ACTUALS	71.2007	COVARIANCE PROPORTION	(UC)	2.9213
MINIMUM OF PPEDICTEDS	69.3847	REGRESSION PROPORTION	(UR)	0.0135
		DISTURBANCE PROPORTION	(UD)	0.9726
		INTERCEPT	(A)	0.0187
		SLOPF ESTIMATE	(B)	1.0212
		SLOPE ESTIMATE WITHOUT INTERCEPT	(B+)	0.9792

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTED	COLUMN:	DY JAMIC

VARIABLE GRAPHED : INIFP

GROSS FIXED PRIVATE INVESTMENT

MILL.CURR.DINARSTRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE	X DIFFERENCE	GRAPH	RANGE	0F	VALUES:	99.658	TO	294.162	
	(*)	(+)	(TIE = X)				• • • •				• • • • • • • • • • • • • • • • • • • •	••
1965)1	113-569	122.378	-8.869	~7•757								
1966 ?1	139.330	126.490	12.840	9.216	•	• •						
96701	120.248	139.576	~10.258	-8.531	• *	+						•
.96801	127.994	132.746	-4.752	~3.713	•	* *						
96901	121.023	134.486	-13.466	-11.127	• •	+						•
197001	1.44 • 285	135.136	9.150	6-341	•	+ *						
:971)1	153.401	149,861	0.541	0.360	•		X					•
1972-1	159.874	157.827	2.047	1.280	•		-	F#				•
1973-11	103.389	106.320	-2.931	-2.835	* +							
197401	99.658	192.441	-2.783	-2.793	• X							
197501	181-100	182.775	-1.675	-0.925	•			**				
197671	237.605	243.177	-6.172	-2.598	•					* *		
1977-1	251.927	259.835	1.092	0.433	•						+ •	
1978:1	294.162	299.828	3.334	1.133	•						+	*•
											• • • • • • • • • • • • • • • •	••

SUMMARY STATISTICS:

MEAN ABSOLUTE ERROR	5.7.36	MEAN SQUARF ERROR	(7)	6.0088
MEAN ABSOLUTE X ERROR	4.2172			,.
ROOT MEAN SQUARED ERROR	7.1182	FIRST INEQUALITY COEFFICIENT	(U)	6.3717
ROOT MEAN SQUARED % ERROR	5.4926	SECOND INEQUALITY COEFFICIENT	(U+)	0.3001
MEAN OF ACTUALS	160.3259	MEAN OF ACTUALS		P.0732
REAN OF PREDICTEDS	161.8860	MEAN OF PREDICTEDS		0.0656
MAXIMUM ABSOLUTE RESIDUAL	13.4664	STANDARD DEVIATION OF ACTUALS		0.2298
		STANDARD DEVIATION OF PREDICTEDS		0.2 69
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	0.9215
MAXIMUM OF ACTUALS	294.1621	PIAS PROPORTION	(UM)	9.0155
MAXIMUM OF PREDICTEDS	291.8284	VARIANCE PROPORTION	(US)	9.0652
MINIMUM OF ACTUALS	99+6582	COVARIANCE PROPORTION	(UC)	0.9293
MINIMUM OF PREDICTEDS	102.4414	REGRESSION FROPORTION	(UR)	0.0127
		DISTURBANCE PROPORTION	(00)	0.9916
		INTERCEPT	(A)	0.0451
		SLOPE ESTIMATE	(B)	1. 234
		SLOPE ESTIMATE WITHOUT INTERCEPT	(B*)	1.0305

1965.01	251.556	235.290	16.266	6.466	• X					•
1966 11	283.976	269.852	14.123	4.973	• X					•
1967 01	269.995	268.953	1.642	0.386	• X					•
196801	272.369	291.021	-18.652	-6.848	. **					•
96311	289.123	296.838	-7.715	-2.668	. **					•
97011	317.942	348.726	9.216	2.893	. +*					•
197101	326.457	329.347	-2.390	-1.885	• X					•
1972 1	338.796	362.695	-23.899	-7.754		•				•
97301	428.094	445.825	-17.731	-4-142	•	x				•
974 11	617.092	616.292	0.804	9.136	•		X			•
/97501	971.100	989.237	-9.137	-0.941	•			X		•
197611	1417.341	359.632	57.419	4.051	•				* *	•
(977)1	1621.829	1564 .754	57.075	3.519	•				•	· .
978)1	1338.678	798.459	40.219	2.187	•					+ +.
						• • • • • •	•••••	**********	• • • • • • • • • • • • • • • • • • • •	
SUMMARY S	TATISTICS:				TH	TL ST	ATISTICS (E	ASED ON LOG-REL	ATIVE-CHANGES):	
MEAN ABSOLUTE ERROR		19	9.7268	м	EAN SQ	UARE ERROR		(D)	0.0017	
MEAN ABSO	LUTE % ERROR			3.3679						
ROOT MEAN	SQUARED ERROR		20	5.8679	F	IRST	INEQUALITY	COEFFICIENT	(0)	9.1932
ROOT MEAN	SQUARED X ERROR			• 9646	S	ECOND	INEQUALITY	COEFFICIENT	(0*)	0.2745
MEAN OF A	CTUALS		661	.2886	M	EAN OF	ACTUALS			0.1530
MEAN OF P	PEDICTEDS		65	1.9937	M	EAN OF	PREDICTEDS	3		0.1565
MAXIMUM A	BSOLUTE RESIDUAL		5	7.4987	S	TANDAR	D DEVIATION	OF ACTUALS		0.1515
					S	TANDAR	D DEVIATION	OF PREDICTEDS		0.1334
					C	DRRELA	TION BETWEE	N ACTUALS AND P	REDICTEDS	0.9656
	EACTIMES		1030	2.6784	P		OPORTION		(11M)	0.0960
NAXIMUM OF	F FREDICIENS		179	A. A. G. Q. G	v	ARTANCI	C PROPORTIC	NH.	(115)	0.1994
MINIMUM OF	F ACTUALS		25	1.5564		AVAPTA:	NCE CROPORT	TON	(110)	0.0026
MINIMUM G	F PREDICIEDS		234	5.2991	E E	FGRESS	TON PROPORT	TON	(IIP)	0.1971
			2.0.		n .	ISTURE	ANCE PROPOR	TION	(IIII)	0.8962
					U				(0.77	
					1	NTERCE	PT		(A)	-0.0186
					S	OPF F	STIMATE		(B)	1.1971

DIFFERENCE X DIFFERENCE CRAPH RANGE OF VALUES:

SLOPE ESTIMATE WITHOUT INTERCEPT

ACTUAL PREPICTED COLUMN: ZERO SECTOR COLUMN: DYNAMIC

DATE ACTUAL

AL PREDICTED

VARIABLE GRAPHED : INIFT INFLICIT DEFLATOR OF GROSS FIXED INVESTMENT

(TIE = X)

MILL.1975 DINARSTRANSFORMATION

1838-678

(B*)

1. "281

235-290 TO

VARIABLE GRA	PHED : IONEM	P E #P	LOYMENT LEVEL	•		MILL	IONS	TRANSFO	DRMATION
DATE ACTU	AL (*)	PREDICTED	DIFFERENCE (TIE = X)	* DIFFERENC	:е ••	GRAPH RANGE OF VALUFS: 1.982	10	2.937	
965.11	1.982	1.997	-0.(15	-1.760	• X				•
966 31	2.041	2.164	-9.024	-1.176	•	* *			
196701	2.099	2.127	-0,028	-1.311	•	**			
1968.01	2.161	2.193	-0.932	-1.459		• • •			•
196911	2.225	2.257	-0.132	-1.424	٠	**			•
97001	2.289	2.321	-0.031	-1.369	•	**			•
1971 11	2.355	2.386	-0.031	-1.314		**			•
972 11	2.422	2.461	-0,038	-1.588	•	* *			
1973 11	2 491	2.515	~0+^24	-6.971		*+			•
1974 11	2.616	2.588	0.028	1.084		•	*		•
975-11	2.692	2.672	0.019	0.714	•		**		•
97671	2.774	2.764	9.496	0.223				X	•
1977 01	2.852	2.836	0.016	9.555	•			* ,*	•
1978 11	2.937	2.912	0.056	9.873	•				· ·.
						•••••••••••••••••	•••••	• • • • • • • • • •	
SUMMARY STAT	ISTICS:					THEIL STATISTICS (BASED DN LOG-RELAT	IVE -CHANG	ES):	
MEAN ABSOLUT MEAN ABSOLUT	E ERROR E % ERROR			0.0250 1.0580		MEAN SQUARE ERROR	(1)	. 1	0.0600
ROCT MEAN SQ	UARED ERROR			0.0263		FIRST INEQUALITY COEFFICIENT	(U)	(.2112
ROOT MEAN SQ	UARED X ERROI	R		1.1238		SECOND INEQUALITY COEFFICIENT	(U•)		1.1952
MEAN OF ACTU	ALS			2.4237		MEAN OF ACTUALS		1	0.0303
MEAN OF PRED	ICTEDS			2.4351		MEAN OF PREDICTEDS		j.	.1293
MAXIMUM ABSO	LUTE RESIDUAL	L		0.385		STANDARD DEVIATION OF ACTUALS		t	1.0154
						STANDARD DEVIATION OF PREDICTEDS		1	0.0132
						CORRELATION BETWEEN ACTUALS AND PRE	PICTEDS	()•033r
MAXIMUM OF A	CTUALS			2.9372		BIAS PROPORTION	(UM)		.0374

1AS PROPORTION MAXIMUM OF PREDICTEDS VARIANCE PROPORTION 2.9116 MINIMUM OF ACTUALS 1.9817 COVARIANCE PROPORTION MINIMUM OF PREDICTEDS 1.9968 REGRESSION PROPORTION

COLUMN: ZERO SECTOR

COLUMN: DYNAMIC

ACTUAL PREDICTED

> (UR) 9.2634 DISTURBANCE PROPORTION (UD) 0.6992 INTERCEPT (4) 0.0319 SLOPE ESTIMATE (B) 0.0569 SLOPE ESTIMATE WITHOUT INTERCEPT 1.1395 (B•)

(US)

(00)

127

9.1233

0.8393

ACTUAL	ED COLUMN	: ZERO SECTOR : DYNAMIC								
VARIABL	E GRAPHED : IOPD	CE	SUMFR PRICE I	NDEX				INDE	X: 1975=100 1	TRANSFORMATION
DATE	ACTUAL	PREDICTED	DIFFERENCE	X DIFFERENC	Ē	GRAPH PANGE	OF VALUES:	57.815	тс 148-е	325
0(5.1)	(*) E7 61E		(IIE - () .6 076	11 000			•••••		•••••••	
1962 11	57.694	65 760	-3-060	-4-983	• *	* *				
126011	72-044	66.769	5.275	7.322	:					
1968 1	67-884	68-111	-0.222	-8-327		x				
969 1	69-825	69.761	0.464	1, 192		x				
37041	77.772	71.772	6.980	8.975		+ +				•
1971-11	75.541	73.498	2.051	2.715		+*				•
1972.1	73.465	76.599	-3.134	-4.266	•	* *				•
1973 11	73-119	73.001	0.119	0.162		Х				•
197411	84.154	82.372	1.732	2.859	•		+ +			•
197501	104.490	174.160	-4 - 16 0	-4.160	•			* *		•
1976 11	123.378	116.673	6.704	5.434	•				+ · · +	•
97791	119.482	118.659	0.823	0.689	•				x	•
197811	148.825	144.966	3.859	2.593	•					+ +.
					•••		• • • • • • • • • • • •		•••••	• • • • • • • • • • • •
SUMMARY	STATISTICS:					THEIL STATIS	TICS (BASED	ON LOG-RELAT	IVE -CHANGES)	
MEAN AB	SOLUTE ERROR			3.2185		MEAN SQUARE	ERROR		(0)	0.048
MEAN AB	SOLUTE X FRROR			3.9691						
ROOT NE	AN SQUARED ERROR	-		4.0363		FIRST THEO	UALITY COEFI	FICIENT	(U)	0.5769
ROOT NE	AN SQUARED % FRR	OR		5.2328		SECOND INFO	UNLITY CHEFT	ICIENT	(0•)	V. /25%
MEAN OF	ACTUALS			86 • 1397		MEAD OF ACT	UALS			9.0727
MEAN DE	PREDICTEDS			85.4143		MEAN OF PRE	DICTEDS			0.0621
MAXIMUM	ADSOLUTE RESIDU	AL		6.9801		STANDARD DE	VIATION OF	ACTUALS		C.0951
						STANDARD DE	VIATION OF I	PREDICTEDS		0.0784
						CORRELATION	BETWEEN AC	TUALS AND PRF	DICTEDS	0.7:75
MAXTMUM	OF ACTUALS			48-8246		BIAS PROPOR	TION		(UM)	0.0239
MAXIMUM	OF PREDICTEDS		ī	44.9659		VARIANCE PR	OPORTION		(US)	0.0587
MINIMUM	OF ACTUALS			57.8146		COVARIANCE	PROPORTION		(UC)	0.9174
MINIMUM	OF PREDICTEDS			64 . 6884		REGRESSION	PROPORTION		(UR)	0. "26"
						DISTURBANCE	PROPORTION		(UD)	9.9511
						INTERCEPT			(A)	0.0195
						SLOPE ESTIM	ATE		(B)	0.8582
						SLOPE ESTIM	ATE-WITHOUT	INTERCEPT	(8*)	0.9791

ACTUAL	COLUMNI	ZERU SECTOR
PREDICTED	COLUMN:	DYNAMIC

VARIABLE GRAPHED : IQPDDA

IMPLICIT DEFLATOR OF AGGREGATE DOMESTIC DEMAND

INDEX: 1975=100 TRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE	X DIFFERENCE		GRAPH	RANGE	0F	VALUES:	57+233 TO 13P-437	
	(+)	(+)	(TIE = X)								
1965.1	57-213	61.633	-4.430	-7.744	.*	•					•
196601	60.000	62.948	-2.948	-4.913	•	* +					•
1967-1	66 . 127	63.742	2.286	3.462	•	+ +					•
1968+1	63.245	64.663	-1.418	-2.242	•	* * *					•
969.1	64.960	66.295	-1.334	-2.054	•	**					•
197(11	71.218	67.623	3.596	5.949	•		• •				•
197111	72.251	69.828	2.424	3.354	•		+ +			•	•
1972 1	71.575	73.383	-1.808	-2.526	•		* 1	•			•
197301	71.713	71.291	0.422	9.588			X				
197411	84 • 7 53	84.128	9.575	0.679					**		•
1975 01	100.000	192.396	-2.396	-2.396	•					* +	
1976 11	111.174	109.155	2.118	1.816	•					+ +	•
1977 11	111.911	114.585	-2.674	-2.389	•					. • •	
1978 1	13:1.437	128.348	2.090	1.6.2	•						+ ×.

SUMMARY STATISTICS:

MEAN ABSOLUTE ERROR	2.1727	MEAN SQUARE ERROR	(D)	n.0121
MEAN ABSOLUTE % ERROR	2.9153			
ROOT MEAN SQUARED ERROR	2 • 4 0 8 9	FIRST INEQUALITY COFFFICIENT	(U)	0.4886
ROOT MEAN SQUARED % ERROR	3.4495	SECOND INEQUALITY COEFFICIENT	(U.)	0.6678
MEAN OF ACTUALS	81.1727	NEAN OF ACTUALS		0.0634
MEAN OF PREDICTEDS	81.4296	MEAN OF PREDICTEDS		0.0564
MAXIMUM ABSOLUTE RESIDUAL	4.4300	STANDARD DEVIATION OF ACTUALS		0.0682
		STANDARD DEVIATION OF PREDICTEDS		0.9621
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	0.7658
MAXIMUM OF ACTUALS	130.4372	BIAS PROPORTION	(UM)	0.1235
MAXIMUM OF PREDICTEDS	128.3477	VARIANCE PROPORTION	(US)	0.0182
MINIMUM OF ACTUALS	57.2934	COVARIANCE PROPORTION	(1)()	0.9582
MINIMUM OF PREDICTEDS	61.6335	REGRESSION PROPORTION	(UR)	0.0467
		DISTURBANCE PROFORTION	(UD)	0.9298
		INTERCEPT	(A)	9.0159
		SLOPE ESTIMATE	(8)	C.8416
		SLOPF ESTIMATE-WITHOUT INTERCEPT	(B*)	0.9692

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTED	COLUMN:	DYNAMIC

VAPIABLE CRAFHED : INFUGDP IMPLICIT DEFLATOR OF GOP

INDEX: 1975=110 TRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE (TIE = X)	* DIFFERENCE	E ••••	GRAPH	RANGE	0F	VALUES:	39.561	TO	125.966	
965 1	39.561	41.485	1.924	-4.8E3	. * *								
1966-1	40.919	41.973	-1.055	-2.577									
967 11	43.828	41.816	2.012	4.591	. ++	•							
968 11	42.72	42.937	9.683	1.599	. +1								
96901	43.270	42.136	1.134	2.620	. ++	ł.							
197001	45.815	42.253	3.563	7.776	. +	*							
971"1	49.487	45.097	4.390	8.870	•	+ +							•
97211	51-295	49.827	1.467	2.861	•	+	*						•
1973 1	48.926	48.860	0.066	0.135	•	X							
97411	98.45	91.695	6.755	6.861	•					•	*		
1575 1	100.000	102.566	-2.566	-2.566	•						* +		
97691	94.767	1 46 . 6 12	-11.835	12.489								•	
97791	112.904	113.928	-0.124	-*.110	•							x	
978:1	125.966	123.230	2.736	2.172	•								+ *.
					••••	• • • • • •	• • • • • •	• • • •				• • • • • • • • • • • •	
SUMMARY	STATISTICS:				1	HEIL	STATIS	TICS	S (BASED OF	LOG-RELAT	IVE-CHA	NGES):	

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

MEAN ABSOLUTE ERROR MEAN ABSOLUTE & ERROR	2.8792	MEAN SQUARE ERROR	(D)	0.0040
ROOT MEAN SQUARED ERROR	4.1792	FIRST INEQUALITY COFFFICIENT	(11)	0.3950
ROOT MEAN SQUARED % ERROR	5.4935	SECOND INEQUALITY COEFFICIENT	(0.)	0.3381
MEAN OF ACTUALS	66 • 9933	MEAN OF ACTUALS		0.0891
MEAN OF PREDICTEDS	66.6147	MEAN OF PREDICTEDS		0.0837
MAXIMUM ABSOLUTE RESIDUAL	11.8351	STANDARD DEVIATION OF ACTUALS		0.1862
		STANDARD DEVIATION OF PREDICTEDS		0.1629
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	0.9441
MAXIMUM OF ACTUALS	125.9658	BIAS PROPORTION	(UM)	0.1.72
MAXIMUM OF PREDICTEDS	123.2299	VARIANCE PROPORTION	(US)	9.1379
MINIMUM OF ACTUALS	39.5615	COVARIANCE PROPORTION	(UC)	0.8549
MINIMUM OF PREDICTEDS	41.4853	REGRESSION PROPORTION	(UR)	9.9425
		DISTURBANCE PROPORTION	(UD)	0.9503
		INTERCEPT	(A)	0.0013
		SLOPE ESTIMATE	(B)	1.0797
		SLOPF ESTIMATE ~WITHOUT INTERCEPT	(B*)	1.0764

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTED	COLUMN:	DYNAMIC

VARIABLE GRAPHED : IQPDGDPNP

IMPLICIT DEFLATOR OF NON-OIL GDP

INDEX: 1975=100 TRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE	X DIFFERENCE		GRAFH	RANGE	0F	VALUES:	64	.769	10		133.3	312	
	(*)	(+)	(TIE = X)													
.965.11	64 . 769	67.946	-2.277	-3.515	. * *	•										
966 11	67.594	68.253	-0+659	-0.975	•	x										•
1967#1	70.394	68.992	1.412	2.006	•	++										•
1968 1	78.67.	69.828	0.842	1.192	•	* *										•
1969 11	71.229	71.326	-0.1.16	-0.149	•	x										•
1970 11	75.686	72.546	3.140	4.149	•	+	*									•
971 1	76.69	74.571	2.119	2.763	•		• •						• •			•
197291	77.647	79.316	-1.668	-2.149	•		*+									
197311	81.348	79.214	2.134	2.623	•		+ -	•								•
974 11	92.096	93.714	-1.608	-1.746	•				**							
1975	109.900	164.487	-4.486	-4.481	•					*	+					•
1976 1	99.413	117.637	-11.284	11.352	•					*		+				•
1977 11	120.708	115.673	5 • 135	4.171	•								+	*		
1978 1	132.67	133.312	~0.641	-9.483	•											**•

SUMMARY STATISTICS:

MEAN ABSOLUTE ERROR	2.6718	MEAN SQUARE ERROR	(0)	0.0/31
MEAN ABSOLUTE X ERROR	2.9824			
ROOT MEAN SQUARED ERROR	3.8338	FIRST INEQUALITY COEFFICIENT	(U)	0.7142
ROOT MEAN SQUARED % ERROR	4.0066	SECOND INEQUALITY COEFFICIENT	(U*)	1.0133
MEAN OF ACTUALS	85.7782	MEAN OF ACTUALS		0.0552
MCAN OF PREDICTEDS	86 . 3526	MEAN OF PREDICTEDS		0.0529
MAXIMUM APSOLUTE RESIDUAL	11.2843	STANDARD DEVIATION OF ACTUALS		0.0548
		STANDARD DEVIATION OF PREDICTEDS		0.0519
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	0.4574
MAXIMUM OF ACTUALS	132.6705	BIAS PROPORTION	(UM)	9.0017
MAXIMUM OF PREDICTEDS	133.3119	VARIANCE PROPORTION	(US)	0.0127
MINIMUM OF ACTUALS	64 . 769"	COVARIANCE PROPORTION	(UC)	0.9956
MINIMUM OF PREDICTEDS	67 . #459	REGRESSION PROPORTION	(UR)	0.2307
		DISTURBANCE PROPORTION	(UD)	9.7676
		INTERCEPT	(A)	0.0295
		SLOPE ESTIMATE	(B)	0.4861
		SLOPE ESTIMATE WITHOUT INTERCEPT	(B*)	0.7698

ACTUAL	COLUMA:	ZERO SECTOR
PREDICTED	COLUMN:	DY AMIC

IMPLICIT DEFLATOR OF GOVERNMENT CONSUMPTION EXPENDITURES INDEX: 1975=100 TRANSFORMATION

VARIABLE GRAPHED : IQPDGVCE

DATE	ACTUAL	PREDICTED	DIFFERENCE	X DIFFERENCE	E	GRAPI	RANGE	OF	VALUES:	60.198 TO	148.502	
10/1	64 8 67	() E 4 0		.1 0.17				••••				•••••
96001	644/	61.542	.T•030	-1.813	• *							•
196611	64.198	64.971	-4.773	~7.930	• *	•						•
967 1	64.593	64.951	-9.353	-8.546	•	*+						
968 1	61.574	66.751	-5.178	-8.4/9		•						
169 1	63.222	67.542	-4.320	-6.833		* *						
970-1	69-304	68.768	0.536	9.773	•	++						
971 1	75.577	70.653	4.924	6.515		•	*				· ·	
972 11	73.680	77.522	-3.842	-5.214	•		* *					
197301	73.246	76.639	-3.393	-4.632	•		* *					
197411	84 . 278	85.842	-1.565	-1.A56	•			**	•			
197521	160.401	108.218	-0.218	-0.218	•				х			
1976:1	123.158	113.859	9.299	7.550	•					+ 4	•	
1977:1	118.86	127.739	·8.880	-7.471	•					•	+	
1978 1	148.502	137.162	11.340	7.636	•						•	٠.

SUMMARY STATISTICS:

1

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

MEAN ABSOLUTE ERROR	4.2653	MEAN SQUARE ERROR	(D)	0.0070
ROOT MEAN SOUARED FRROR	5-4563	FIRST INFOMALITY COFFETCIENT	(11)	0.7341
ROOT MEAN SQUARED & ERROR	5 . 6796	SECOND INEQUALITY COEFFICIENT	(0+)	0.9252
MEAN OF ACTUALS	84 . 1459	MEAN OF ACTUALS		0.9691
MEAN OF PREDICTEDS	84.5828	MEAN OF PREDICTEDS		0.0616
MAXIMUM ABSOLUTE RESIDUAL	11.3399	STANDARD DEVIATION OF ACTUALS		0.0901
		STANDARD DEVIATION OF PREDICTEDS		0.0524
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	9.4203
MAXIMUM OF ACTUALS	148.5023	BIAS PROPORTION	(14)	0.081
MAXIMUM OF PREDICTEDS	137.1624	VARIANCE PROPORTION	(US)	0.2053
MINIMUM OF ACTUALS	60.1976	COVARIANCE FROPORTION	(UC)	9.7866
MINIMUM OF PREDICTEDS	61.5422	REGRESSION PROPORTION	(UR)	9.0301
		DISTURBANCE PROPORTION	(UD)	0.9619
		INTERCEPT	(A)	0.0245
		SLOPF ESTIMATE	(B)	0.7237
		SLOPE ESTIMATE-WITHOUT INTERCEPT	(B*)	A.9549

ACTUAL	COLUMN:	ZERO	SECTOR
FREDICTED	COLUMN:	DYNAM	IC

VARIABLE GRAPHED : IQPDIFT

IMPLICIT DEFLATOR OF GROSS FIXED INVESTMENT

INDEX: 1975=110 TRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE	* DIFFERENCE		GRAPH	RANGE	0F	VALUES:	51.599	10	1 99 .236	
	· (*)	(+)	(TIE = X)		•••								
1965/1	51.599	53.214	~1.615	-3.134	. * +								
1966-1	52.681	53.418	-0.738	-1.4 03	• X								
1967 11	53.223	54.399	-1.167	-2.192		+							•
1968 11	52.5#2	53.696	-1.187	-2.261	• *	+							
196911	54.371	56-152	-1.780	-3.275	•	* *							
197601	58.218	58.407	-0.189	-0.324	•	X							•
197141	59.64 ⁽¹⁾	59+595	0.046	0.077	•		X					•	
1972 11	64.056	5°.848	3.203	5.000	•		+ +						
197301	67.415	63.228	4.187	6.211	•		+	*					
1974 J1	86.195	85.935	0.260	0.362	•					X			
197511	109.000	111.399	-1.399	-1.399	•							**	
1976 11	94.316	99.497	-5.181	-5.493	•						*	•	
1977 1	1 . 1.617	104.779	-3.163	-3.112	•							* +	
197841	106.234	109.236	-3.002	-2.826	•							*	+.

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

MEAN ABSOLUTE ERROR	1.9368	MEAN SQUARE ERROR	(D)	0.0008
HEAN ABSOLUTE % ERROR	2.6430			
ROOT MEAN SQUARED ERROR	2.4611	FIRST INEQUALITY COEFFICIENT	(1)	0.3158
ROOT MEAN SQUARED % FRROR	3.2291	SECOND INEQUALITY COEFFICIENT	(U•)	N.3854
MEAN OF ACTUALS	71.5757	MEAN OF ACTUALS		J. (555
MEAN OF PREDICTEDS	72.41.31	MEAN OF PREDICTEDS		0.0553
MAXIMUM ABSOLUTE RESIDUAL	5.1805	STANDARD DEVIATION OF ACTUALS		0.0724
		STANDARD DEVIATION OF PREDICTEDS		0.0845
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	0.9483
HAXIMUM OF ACTUALS	106.2339	BIAS PROPORTION	(UM)	6.0001
MAXIMUM OF PREDICTEDS	109.2358	VARIANCE PROFORTION	(US)	0.1877
MINIMUM OF ACTUALS	51.5988	COVARIANCE PROPORTION	(UC)	0.8122
MINIMUM OF PREDICTEDS	53.2136	REGRESSION PROPORTION	(UR)	0.3221
		DISTURBANCE PROPORTION	(00)	0-6789
		INTERCEPT	(A)	8.0106
		SLOPF ESTIMATE	(B)	0.8126
		SLOPE ESTIMATE WITHOUT INTERCEPT	(B•)	0.8700

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTED	COLUMN:	DYNAMIC

VARIABLE GRAPHED : IQPDXPCR

IMPLICIT DEFLATOR OF VALUE ADDED IN CPUDE PETROLEUM INDEX: 1975=106 TRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE	X DIFFERENCE	GRA	PH RANGE	OF VALUES:	21.532 10	120.922
	(*)	(+)	(TIE = X)						
1965 11	21.532	22.293	-0.761	-3.534	• ¥				•
196691	21.8.06	22.356	-9.551	-2.525	• X				• •
967:1	21.875	22.11r	-9.236	-1.979	• X				· •
968:11	22.397	22.336	9.961	2.274	• X .				•
96931	22.158	22.285	-0.127	-8.574	• X				•
1971 11	23.268	22.217	1.051	4.515	.++				•
1971 11	31.159	25.787	4.272	14.215					
1972 11	27 • 2 2 6	24.918	2.308	8.478	. +*				•
197311	27.918	30.319	-2.400	-8.598	+ +				•
197411	103.272	90.437	12.835	12.428	•			•	•
1975 1	100.986	101.166	-1.166	-1.166	•				** *
976 1	91.203	103.414	-12.206	~13.383	•			*	• •
1977 11	106.969	111.973	-4.113	-3.752	•				* * •
1978-1	120.922	114.863	6.059	5.011	•				

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

MEAN ABSOLUTE ERROR	3.4319	MEAN SQUARE ERROR	(0)	0.0111
MEAN ABSOLUTE % ERROR	5.6806			
ROUT MEAN SQUARED ERRCR	5.3406	FIRST INEQUALITY COEFFICIENT	(U)	A.2797
ROOT MEAN SQUARED & ERROR	7.3811	SECOND INEQUALITY COFFFICIENT	(U*)	0.2989
MEAN OF ACTUALS	52.9001	MEAN OF ACTUALS		0.1327
MEAN OF PREDICTEDS	52.5340	MEAN OF PREDICTEDS		0.1261
MAXIMUM ABSOLUTE RESIDUAL	12.8351	STANDARD DEVIATION OF ACTUALS		0.3521
		STANDARD DEVIATION OF PREDICTEDS		0.2068
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	0.9665
MAXIMUM OF ACTUALS	120.9223	BIAS PROPORTION	(UM)	9.0.040
MAXIMUM OF PREDICTEDS	114.8534	VARIANCE PROPORTION	(US)	0.3856
MINIMUM OF ACTUALS	21.5320	COVARIANCE PROPORTION	(UC)	9.6110
MINIMUM OF PREDICTEDS	22.1115	REGRESSION PROPORTION	(UR)	0.2584
		DISTURBANCE PROPORTION	(UD)	P.7376
		INTERCEPT	(A)	.0.0169
		SLOPE ESTIMATE	(8)	1.1866
		SLOPE ESTIMATE WITHOUT INTERCEPT	(B*)	1.1648

ACTUAL	COLUMN:	ZERD SECTOR
PREDICTED	CULUMN:	DYNAMIC

VARIABLE GRAPHED : IQPR PRIVATE NON-WAGE INCOME (INCLUDING DEPRE)

MILL.CURR.DINARSTRANSFORMATIION

DATE	ACTUAL	FREDICTED	DIFFERENCE	X DIFFERENCE	GRA	PH RANGE	0F	VALUES:	459.097 TO	2733.073	
	(*)	(+)	(TIE = X)		* • • • • • •						
1965.11	459.097	469.116	-10.019	-2.182	• X						•
1966 11	487+999	478.198	9+801	2.068	•+*						•
1967 1	491.266	495.371	-4.115	-1.836	• X .						•
96811	541.342	519.859	31.183	5.763	• • * [·]						
969 1	555.312	530.144	25.168	4.532							•
97011	6 25 . 4 12	544.931	60.491	9.943							
1971 1	646.233	574.472	71.762	11.105	• •	*					•
1972 11	721.381	678.815	42.566	5.911	•	++					•
.97321	491.193	512.681	-21.487	-4.375							•
974 1	897.109	817.853	89.256	9.949	•	•	*				•
975 1	799.842	945.462	-145-620	-18.206	•	*		•			•
1976	764.531	1123.189	-358.658	46.912	•	*		+			•
977.1	1329-23	1200.905	128.325	9.654	•				+ <u>+</u>		
1978:1	2033.073	1678.176	354.896	17.456	•					+	۰.

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

MEAN ABSOLUTE ERROR	96.6662	MEAN SQUARE ERROR	(D)	P.0317
MEAN ABSOLUTE & ERROR	10.6335			
ROOT MEAN SQUARED ERROR	149.5532	FIRST INEQUALITY COEFFICIENT	(U)	0.6269
ROOT MEAN SQUARED X ERROR	15.5137	SECOND INEQUALITY COEFFICIENT	(0*)	0.6847
MEAN OF ACTUALS	773.0543	MEAN OF ACTUALS		0.1145
MEAN OF PREDICTEDS	753-5112	MEAN OF PREDICTEDS		0.0985
MAXIMUM ABSOLUTE RESIDUAL	358.6582	STANDARD DEVIATION OF ACTUALS		0.2601
		STANDARD DEVIATION OF PREDICTEDS		9.1680
		CORRELATION BETWEEN ACTUALS AND PRI	EDICTEDS	0.7371
NAXINUM OF ACTUALS	2-33725	BIAS PROPORTION	(UM)	0.0485
MAXIMUM OF PREDICTEDS	1678.1763	VARIANCE PROPORTION	(US)	0.2674
MINIMUM OF ACTUALS	459. 1974	COVARIANCE PROPORTION	(UC)	0.7241
MINIMUM OF PREDICTEDS	469.1165	REGRESSION PROPORTION	(UR)	0.0177
		DISTURBANCE PROPORTION	(UD)	A.9738
		INTERCEPT	(A)	C.0.26

ACTUAL	COLUMN:	ZERO SECTOR
FREDICTED	COLUMN:	DYNAMIC

VARIABLE GRAPHED : 10PTE 332\$

REFINED PETROLFUM PRODUCTS EXPORT PRICE

US 1/BBL

TRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE	A DIFFERENCE	GR	APH RAN	GE NF	VALUES:	2.241 TO	13.119	
	(+)	(+)	(TIE = X)								
196541	2.291	2.399	.0.099	-4.511	. * +						•
1966-1	2.313	2.397	-9.^84	-3.653	. * *						•
1967 1	2.291	2.376	-0.085	-3.717	• X						
1968.01	2.257	2.397	-1.140	-6.217	.**						
1969.1	2.241	2.393	-0.192	-8.725	. * *			5			•
1971:11	2.2.11	2.387	0.186	-8.453							
1971-1	2.615	2.733	-0.118	-4.514	• X						
1972 1	2.783	2.753	9.030	1.877	*						
197301	3-431	3.513	~0.0B2	-2.394	•	*+					•
1974 1	9.923	10.240	~0.317	-3.198	•				•	•	•
1975-1	11.175	11.430	• 3 • 255	-2.284	•					**	•
1976 1	11.968	11.679	0.289	2.411	•					++	•
1977:1	12.784	12.518	0.266	2.083	•					•	
1978.1	13-119	12.949	0.170	1.295	•						٠٠.

SUMMARY STATISTICS:

MEAN ABSOLUTE ERPOR Mean Absolute & Error	n.1653 3.2896	MEAN SQUARE ERROR	(D)	3.0407
ROOT MEAN SQUARED ERROR	0.1863	FIRST INEQUALITY COFFFICIENT	(8)	9.0863
RUOT MEAN SQUARED X ERROR	4.5237	SECOND INEQUALITY COEFFICIENT	(0+)	0.0959
MEAN OF ACTUALS	5.8109	MEAN OF ACTUALS		8.1342
MEAN OF PREDICTEDS	5.8683	MEAN OF PREDICTEDS		0.1300
MAXIMUM AESOLUTE RESIDUAL	3.3174	STANDARD DEVIATION OF ACTUALS		0.2768
		STANDARD DEVIATION OF PREDICTEDS		0.2893
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	P.9957
MAXIMUM OF ACTUALS	13.1190	BIAS PROPORTION	(UM)	0.0256
MAXIMUM OF PREDICTEDS	12.9492	VARIANCE PROPORTION	(US)	0.0176
MINIMUM OF ACTUALS	2.2010	COVARIANCE PROPORTION	(UC)	0.9565
MINIMUM OF PREDICTEDS	2.3762	REGRESSION PROPORTION	(UR)	0.0317
		DISTURBANCE PROPORTION	(UD)	0.9425
		INTERCEPT	(A)	P. 1164
		SLOPE ESTIMATE	(8)	9.9831
		SLOPE ESTIMATE WITHOUT INTERCEPT	(B*)	9.9919

136
ACTUAL	COLUMN:	2FRO SECTOR
FREDICTED	COLUMN:	DYNAMIC

MINIMUM OF ACTUALS

MINIMUM OF PREDICTEDS

VARIABLE GRAFHED : IQTUMN TRADE BALANCE UN GOUDS

MILL.CURR.DIMARSTRANSFORMATION

0.2069 P.2247 0.1983 0.1981 0.4676 0.4969 0.9779 0.8600

DATE	ACTUAL		PREDICTED	DIFFERENCE	# DIFFERENCE	E	GRAPH	RANGE	0F	VALUES:	128.24	59	T O	2 106 • 931	
ACE 11	- <u>-</u>	160 24	150 700	-8 20.0	0.43	•••	•••••	• • • • • •	•••			••	••••	•••••	
1950 1		102+34/	136.723	-9.38	-11-243	• 7									•
1966.1		157-42+	156+673	0.747	0.474	• X									•
967:1		146.164	162.293	-16.133	-11.338										•
968 1		227.55	206+586	20.974	9.217	•	+ +								•
1 969 <u>1</u>		214.95	210.456	14.894	6.929	•	X								
97001		211.159	215.659	-4.5*9	-2.136		X								
971-1		252.16	263.961	-10.991	-4.323	•	**								
972 1		136.634	128.269	8.361	6.119	• X									
973 11		317.76	37.569	10.211	3.213		X								
1974-1		1249.84	1340.525	-90.685	-7.256	•						•	+		•
1975+1		1205.442	1118.536	86.974	7.219	•					+ +				
976 1		1587.00.	1452.711	134.289	8.462	•							+	*	•
977 111		1526.847	1662.789	-135.942	8.9:3	•								* *	•
978 1		21.26+81-0	2006.931	-0.131	-0.007	•									**.
						•••	• • • • • • •	• • • • • •	• • •	• • • • • • • • • • • •	••••••	•••	• • • • •	•••••	••••
SUMMARY	STATIS	TICS:					THEIL	STATIS	TIC	S (BASED ON	LOG-REL	. A 1	1 T VE -	CHANGES):	
MEAN AB	SOLUTE	ERROR			38.2185		MEAN	SQUARE	ERI	OR				(0)	0.011"

I AL ADSSEUTE LARON	2002103	NEAN SUDARE ERRUR. (U)
MEAN ABSOLUTE # ERROR	5.3954	
ROOT MEAN SQUARED ERROR	61.8327	FIRST INEQUALITY COEFFICIENT (U)
ROCT MEAN SQUARED % ERROR	6.4454	SECOND INEQUALITY COFFFICIENT (U*)
HEAN OF ACTUALS	670.8618	MEAN OF ACTUALS
HEAN OF PREDICTEDS	669.5979	MEAN OF PREDICTEDS
MAXIMUM ABSOLUTE RESIDUAL	135.9424	STANDARD DEVIATION OF ACTUALS
		STANDARD DEVIATION OF PREDICTEDS
		CORRELATION BETWEEN ACTUALS AND PREDICTEDS
HAXIMUM OF ACTUALS	2 16 . 7998	BIAS PROPORTION (UM)
HAXIMUM OF PREDICTEDS	2406.9307	VARIANCE PROPORTION (US)

136.63#1

128.2693

0.0731 COVARIANCE PROPORTION (UC) 9269 REGRESSION PROPORTION (UP) 0.1358 DISTURBANCE PROPORTION (UD) 9.8642 INTERCEPT (A) 0.4157 SLOPE ESTIMATE (8) 0.9219 SLOPE ESTIMATE-WITHOUT INTERCEPT (B•) 0.9328

100100											
DATE	ACTUAL PI	REDICTED	OIFFERENCE (TIE = X)	* DIFFERENC	се ••	GRAPH RAM	IGE OF VALU	ES: 1563-601	TO 29	37.111	
96541	1657.645	1557.394	91.251	5.445	.+	*					•
966 11	1748.525	1648.628	99.897	5-713		+ . +					
1967 1	1563.601	1698+469	-134.867	-8.625	•*	+					•
1968 1	1939.906	1844-377	65.529	3.431	•		+ *				•
196991	1918.646	1938.937	~19.391	-1-011			**				•
1970)1	2005-21	2074.535	-69.325	-3.457	•		*	♦ 1			•
1971-11	2180.996	2191.171	-10.265	-9-471	•			* +			•
197201	1796.528	1798.182	-1.654	-0.192	•	x					
197341	2323+491	2266.256	54.236	2.337	٠			+ +			•
1974 1	22 81.448	23 30 .287	-98.839	-4•49n				* . *			•
197501	2459.199	2352.127	98.072	4.113	•			•	* *		•
1976 /1	2679-148	2556+384	113.764	4.261	•				+	*	•
1:7771	2574.217	2688.116	~113.899	-4.425	•					÷ +	
1978 1	2836 • 928	2837.111	-1. 183	-0.438	•						**•
MEAN AE MEAN AE Root Me Root Me	STATISTICS: SOLUTE ERROR SOLUTE & ERROR AN SQUARED ERROR AN SQUAREL & EKROR		6 8	9.3622 3.4141 2.0634 4.1493		THEIL STAT MEAN SQUA FIRST IN SECOND IN	ISTICS (BA RE ERROR EQUALITY C EQUALITY C	SED ON LOG-RELA DEFFICIENT OFFFICIENT	(U) (U) (U)	ies):	0.8745 0.5438 8.5768
MEAN OF	ALIUALS		215	0.9024		MEAN OF A	LIUALS				0.0413
MAYTHUS	ADSOLUTE DESTOUAL		616	0 0 0 0 0 0 0			NEDICIEUS	CE ACTUALS			0.1100
HANING	ACSOLUTE RESIDUAL		1.5	4.0012		STANDARD	DEVIATION	OF PREDICTEDS			0.0075
						CORRELATI	ON BETWEEN	ACTUALS AND PR	FDICTEDS		0.8212
MAXIMU	OF ACTUALS		283	6.0281		BIAS PROP	ORTION		(UM)	,	6.0041
MAXIMUN	I OF PREDICTEDS		283	7.1111		VARIANCE	PROPORTION		(US)	<i>)</i>	0.1936
MINIMUM	OF ACTUALS		156	3.6913		COVARIANC	E PROPUBTI	011	(00))	C+8-55
MINIMUN	OF PREDICTEDS		156	7.3938		REGRESSIC	N PROPORTI	ON	(UR)	1	0.1169
						DISTURBAN	CE PROPORT	ION	(UD)	·	0.979
						INTERCEPT			(A)	1	0.0089
						SLOPE EST	IMATE		(B)	1	1.1:95
						SLOPE EST	IMATE-WITH	OUT INTERCEPT	(8*)	(1.0585

COLUMN: ZERO SECTOR Column: Dynamic ACTUAL PREDICTED

VARIABLE GRAPHED : IGTECMT TUTAL MERCHANDISE EXPORTS

MILL.1975 DIMARSUN VITS

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTED	COLUMN:	DYMAMIC

MILL.CURR.DINARSUM VITS

VARIABLE GRAPHED : INTECNTN TOTAL MERCHANDISE EXPORTS

DATE	ACTUAL	PREDICTED	DIFFERENCE	% DIFFERENCE	Ë,	GRAPH	RANGE	0F	VALUES:	297-49	6 TO	3251.577	
	(*)	(+)	(TIE = X)										••
965.1	314.95	360.485	14.465	4.593	• *								
196601	333.51	317.430	16.080	4.821	•¥								•
967 1	297.41	318.783	21.393	.7.190	٠X								
968 1	371.72	361.183	10.537	2.835	• X								
969 1	372.12	375.355	-3.235	-0.869	• X								
197851	392.891	403.943	-11.143	-2.837		+							
971 1	500.034	522.116	-2.086	-1.417	•	X						•	
972 1	371.31	371.624	-0.314	-0.185	• X								
973 11	588.104	574.842	13.258	2.254		x							
974 1	1949.930	2938.235	-88.305	-4.529	•					**			
1975 1	2459.201	2353.191	97.009	3.959	•							+ +	
976 11	2737.903	2620.227	117.673	4.298								÷ •	
977.1	2855.000	2974 .8 4	-124.8"4	-4.379								* *	
197801	3255.900	3251.577	-0.677	···. ···21	•							*	٠.
								• • •					••

SUMMARY STATISTICS:

MEAN ABSOLUTE ERROR	37.2120	MEAN SQUARE ERROR	(ŋ)	9.0037
ROOT MEAN SQUARED FRRCR	58.5436	FIRST INFRUMITTY COFFETCIENT	(1)	0.1565
ROOT MEAN SQUARED & ERROR	3.7039	SECOND INEQUALITY COEFFICIENT	(U*)	P.1767
MEAN OF ACTUALS	1198.6331	MEAN OF ACTUALS		9.1796
MEAN OF PREDICTEDS	1197.4131	HEAN OF PREDICTEDS		0.1832
MAXIMUM ABSOLUTE RESIDUAL	124.8040	STANDARD DEVIATION OF ACTUALS		0.3429
		STANDARD DEVIATION OF PREDICTEDS		0.3482
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	0.9848
MAYIMUM OF ACTUALS	3250.8999	BIAS PROPORTION	(UM)	0.0936
MAYIMUM OF PREDICTEDS	3251.5767	VARIANCE PROPORTION	(US)	0.0175
MINIMUM OF ACTUALS	297.3999	COVARIANCE PROPORTION	(UC)	0.9888
MINIMUM OF PREDICTEDS	319.4854	REGRESSION PROPORTION	(UR)	0.1299
		DISTURBANCE PROPORTION	(UD)	7.9664
		INTEPCEPT	(4)	0.1.19
		SLOPE ESTIMATE	(8)	0.9699
		SLOPF ESTIMATE WITHOUT INTERCEPT	(8+)	9.9721

ACTUAL	COLUMN:	ZERO	SECTOR
PREDICTED	COLUMN:	DYNAM	IC .

VARIABLE GRAPHED : IQTET

EXPORTS OF GOODS AND SERVICES

MILL.1975 DINARSUN DRPA NAT. ACT

DATE	ACTUAL	PREDICTED	DIFFERENCE	% DIFFERENC	Ľ	GR	APH	RANG	E OF	VA	LUFS	:	15 77	•744	10	2986.827		
	(*)	(+)	(TIE = X)				• • • •			• • •								••
96501	1597.995	151.7.744	90.251	5.648	• *	•												•
96611	1697.174	1599.277	99.897	5.879	•	+	*		-									•
967 1	1513.524	1648.391	-134-867	-9.911	• *		+											
1968:1	1869.047	1843.519	65.529	3.5.6	•			+	*									•
196911	1913.603	1932.994	-19.391	-1.013	•				X									•
197001	2030-565	2079.890	-69.325	-3-414	•						* *							•
197111	2231.068	2241.333	-10-265	-1.467	•							*	+					•
972:1	1946.091	1947.745	-1.654	-0.085	•					X								•
973.1	2584.560	2526.324	54.236	2.112	•										+	*		•
974.1	2243-610	2342,439	-98.839	-4.4.5	•								*	+				
197511	2328.999	2232.927	98. "72	4.211	•							+	*					
197611	2289.085	2175.322	113.764	4.979	•							+	*					
1977 11	2853-929	2967.828	-113.899	-3.991	•												* *	•
(978.)]	2985.744	2986+827	-1.(83	~0.36	•												*	۰.

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

MEAN ABSOLUTE ERROR	69.3622	MEAN SQUARE ERROR	(1)	0.047
MEAN ABSOLUTE % ERROR	5•4/5/ 82-0030	FIRST INFOUNTITY COFFFICIENT	(11)	1.4993
ROOT MEAN SQUARED & ERROR	4.2531	SECOND INEQUALITY COEFFICIENT	(U+)	A.5337
MEAD OF ACTUALS	2148.7827	MEAN OF ACTUALS		0.0481
MEAN OF FREDICTEDS	2143.6096	MEAN OF PREDICTEDS		0.0526
MAXIMUM ABSOLUTE RESIDUAL	134.8672	STANDARD DEVIATION OF ACTUALS		9.1285
		STANDARD DEVIATION OF PREDICTEDS		0.1193
		CORRELATION BETWEEN ACTUALS AND P	REDICTEDS	0.8500
NAXIMUM OF ACTUALS	2985 • 7437	BIAS PROPORTION	(UH)	0.043
MAXIMUM OF PREDICTEDS	2986 .8267	VARIANCE PROPORTION	(US)	0.0181
MINIMUM OF ACTUALS	1513-5239	COVARIANCE PROPORTION	(UC)	9.9776
MINIMUM OF PREDICTEDS	1507.7439	REGRESSION FROPORTION	(UR)	0.0215
		DISTURBANCE PROPORTION	(110.)	6.9742

INTERCEPT	(A)	-0.0001
SLOPE ESTIMATE	(B)	0.9157
SLOPE ESTIMATE WITHOUT INTERCEPT	(B•)	0.9155

.

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTED	COLUMN:	DYNAMIC

VARIABLE GRAPHED : IQTE3318

EXPORTS OF CRUDE PETROLEUM

BILL. BARRELS TRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE	X DIFFERENCE	E.	GRAPH RANGE OF	VALUES:	0.428 TO 0.871	
	(±)	(+)	(TIE = X)				*********		
965 1	1.457	^.429	0.+28	6.143	• •	▲ ¹			•
11 966	0.482	0.451	0.031	6.453	•	+ *			•
1967 1	7.428	9.477	-0. 142	-9.812		+			
968-1	9.522	°.541	0.020	3.948	•				•
196901	0.528	0.534	-0.606	-1.145	•	**			•
197011	1.546	"•568	-0.122	-3-953	•		+		•
197131	0.591	3.594	-0.103	-0.542			**		•
1972.1	0.524	0.525	-0.001	-3.1.9	•	X			•
1973 11	3.7.13	6.686	0.017	2.4 2.4	•			+ *	•
1974:1	9.675	4.7.16	-0.031	~4.559	•			* +	•
197511	0.751	9.721	0.031	4.760	•			• •	
1976-11	4.818	0.783	2.F35	4.327	•			+ +	•
1977.11	0.791	0.827	-1.035	-4.482	•			* *	•
1978-11	6.870	0.871	~0.000	-0.040	•				** *

SUMMARY STATISTICS:

MEAN ABSOLUTE ERROR MEAN ABSOLUTE & ERROR	0.9216	MEAN SQUARF ERROR	(D)	P. 0/54
ROOT MEAN SQUARED ERROR	9.0255	FIRST INEQUALITY COEFFICIENT	(U)	0.5(16
ROOT MEAN SQUARED & ERROR	4.5510	SECOND INEQUALITY COEFFICIENT	(U•)	0.6578
MEAN OF ACTUALS	0.6204	MEAN OF ACTUALS		0.2495
MEAN OF PREDICTEDS	1.6188	MEAN OF PREDICTEDS		0.0544
MAXIMUM ARSOLUTE RESIDUAL	0.0420	STANDARD DEVIATION OF ACTUALS		0.1119
		STANDARD DEVIATION OF PREDICTEDS		9.078A
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	P.7563
MAXIMUM OF ACTUALS	0.8793	BIAS PROPORTION	(UM)	0.0144
MAXIMUM OF PPEDICTEDS	0.8747	VARIANCE PROPORTION	(US)	0.2.29
MINIMUM OF ACTUALS	0.4278	COVARIANCE PROPORTION	(UC)	0.7927
MINIMUM OF PREDICTEDS	0.4292	REGRESSION PROPORTION	(UR)	0.0164
		DISTURBANCE PROPORTION	(UD)	0.9852
		INTERCEPT	(4)	0.1190
		SLOPE ESTIMATE	(B)	1.747
		SLOPE ESTIMATE-WITHOUT INTERCEPT	(B*)	1.1214

ACTUAL	COLUMN:	ZERO SECTOR	
PREDICTED	COLUNN:	DYHAMIC	

MILL.CURR.DINARSTRANSFORM/TION

VARIABLE GRAPHED : IUTE33IN EXPORTS OF CRUDE PETROLEUM

DATE	ACTUAL	PREDICTED	DIFFERENCE	X DIFFERENC	E	GRAPH	RANGE	0F	VALUES:	217+857	1 n	3205.732	
	(*)	(+)	(TIF = X)					• • •				• • • • • • • • • • • • • • • •	
1965-1	235.714	221.241	14.473	6.149	• X								•
1966 01	249-286	233.198	16.088	6.454	• X								•
967 1	217.857	239-233	-21.375	-9.812	• X								•
1968 1	269-643	259.1/6	19.537	3.918									•
969 1	271.786	274.898	-3.112	-1-145	• X								•
.971 11	284.033	291.068	-11.968	-3.953	• X								•
1971-1	375.196	377.229	-2.033	-0.542		X						·	•
972-1	317.254	317.579	-0.315	-0-103	• X								•
973.11	555.258	541.963	13.325	2.400	•	X			. •				•
974-11	1921.016	2018.592	-87.577	-4.559	•					* *			•
197511	2414.781	2316.748	98.141	4.060	•						.+	*	•
976 1	2591.489	2575-039	116.450	4.327	•							+ *	•
1977 11	28 17 .5 47	2933.376	-125-829	-4.482								+ +	•
1978 11	3214.449	3205.732	-1.283	-1.040	•								** .

SUMMARY STATISTICS:

MEAN ABSOLUTE ERROR	37.2545	MEAN SQUARE ERFOR	(1)	0.6:54
ROOT NEAN SQUARED ERROR	58.5775	FIRST INEQUALITY COEFFICIENT	(U)	0.1824
ROOT HEAN SQUARED & ERRUR	4.5510	SECOND INEQUALITY COEFFICIENT	(U*)	0.2102
MEAN OF ACTUALS	1129.3782	MEAN OF ACTUALS		0.2197
MEAN OF PREDICTEDS	1128.2122	MEAN OF PREDICTEDS		0.2056
MAXIMUM ARSOLUTE RESIDUAL	125.8289	STANDARD DEVIATION OF ACTUALS		0.3502
		STANDARD DEVIATION OF PREDICTEDS		C.3532
		CORRELATION BETWEEN ACTUALS AND PREE	ICTEDS	9.9782
MAXIMUM OF ACTUALS	3294-4499	BIAS PROPORTION	(UM)	0.0:44
MAXIMUM OF PREDICTEDS	3205.7317	VARIANCE PROFORTION	(US)	0.0016
MINIMUM OF ACTUALS	217.8572	COVARIANCE PROPORTION	(UC)	0.9939
MINIMUM OF PREDICTEDS	221.24 99	REGRESSION PROPORTION	(U?)	0.1207
		DISTURBANCE PROFORTION	(UD)	P.9748
		INTERCEPT	(A)	0.0013
		SLOPE ESTIMATE	(8)	P.9700
		SLOPE ESTIMATE WITHOUT INTERCEPT	(B*)	9.9716

ACTUAL COLUMN: ZFRD SECTOR PREDICTED COLUMN: DYNAMIC

MILL.1975 DINARSTRANSFORMATION

VARIABLE GRAPHED : IGTMENT TOTAL MERCHANDISE IMPORTS

DATE	ACTUAL	PREPICTED	DIFFERENCE	X DIFFERENC	E.	GR	APH	RANGE	0F	VALUES:	347.951 10	1244 .	759
	(+)	(+)	(TIE = X)								• • • • • • • • • • • • • • •		
1965 11	399.592	352.951	37.641	9.637	•+	*							•
966 1	421-283	385+169	36.115	8.572		+ *							•
1967 1	359.009	373.739	-14.738	-4.1.3	. *	+							•
1968 1	361.277	382.382	-21.1*4	-5.842	*	+							
1969 1	347.951	391.250	-43.299	-12.444	. *	+							
197011	386.832	4 02 . 474	-15-671	-4.351	•	*+							•
1971 1	517-574	511.654	15.923	3.176				+ +					
1972-11	443.431	459.788	16 . 357	-3-689	•		*+						
1973-1	472.847	468.335	4.511	P.954			++						
197491	895.592	891.107	4.484	9.501	• •						+ *		•
1975 1	1244.759	1234+655	10.104	2.812									+ * •
1976 "1	1154.851	1170.805	-15.954	-1.381	•								** •
1977 1	1226-628	1216.042	10.587	0.863									х.
1978 :1	1484.649	1084.036	0.573	9 . 153								х	

SUMMARY STATISTICS:

MEAN ABSOLUTE ERROR MEAN ABSOLUTE % ERROR	17.6464	MEAN SQUARE ERROR	(9)	0.0#31
ROOT HEAN SQUARED ERROR	21.6041	FIRST INEQUALITY COEFFICIENT	(1)	0.2386
ROOT MEAN SQUARED % ERROR	5.4519	SECOND INEQUALITY COEFFICIENT	(0+)	0.2536
MEAN OF ACTUALS	664+7993	MEAN OF ACTUALS		0. 0786
MEAN OF PREDICTEDS	665.3127	MEAN OF PREDICTEDS		0.0863
NAXIMUM ABSOLUTE RESIDUAL	43.2991	STANDARD DEVIATION OF ACTUALS		0.2179
		STANDARD DEVIATION OF FREDICTEDS		2.1976
		CORRELATION BETWEEN ACTUALS AND PRE	DICTEDS	0.9740
MAXIMUM OF ACTUALS	1244.7585	BIAS PROPORTION	(UM)	0.0197
NAXINUM OF PREDICTEDS	1234.6550	VARIANCE PROPORTION	(US)	9.1351
MINIMUM OF ACTUALS	347.9514	COVARIANCE PROPORTION	(00)	0.8452
MINIMUM OF PREDICTEDS	352.95:4	REGRESSION PPOPOPTION	(118.)	9.0622
		DISTURBANCE PROPORTION	(UD)	0.9182
		INTERCEPT	(4)	0-6138
		SLOPE ESTIMATE	(8)	1-0697
		SLOPE ESTIMATE WITHOUT INTERCEPT	(B*)	1.0442

ACTUAL	COLUMNI:	ZERO SECTOR
PREDICTED	COLUMN:	DA.IVWIC

VARIABLE GRAPHED : IGTMCMTN

MILL.CURR.DIMARSUN YITS

(B*)

1.0273

DATE ACTUAL PREDICTED DIFFERENCE X DIFFERENCE GRAPH RANGE OF VALUES: 144.160 TO 1323-153 (+) (TIE = X)(+) 965.1 162.61 4 147.766 14.844 9+129 • X 15.333 1966 /1* 176.094 169.757 8.7.8 . * * -5.250 ~3.471 196701 151.243 156.493 • X . X 1966 1 154.596 -10.436 -7-239 144.161 1969 11 157-17 175.299 -18.129 -11.535 . * * 197001 181.65" 188.284 -6.634 -3.652 . ** 1971 11 247.87 239.255 9.815 3.556 ٠ 243.355 -8.675 -3.696 1972 1 234.68. ٠ x 3.147 1973-1 277.32 267.273 1.127 X • 2.380 6.340 X 1974 11 700.090 697.710 1975-1 1244.76 234 .654 10.106 0.812 1976 11 1155.901 167.516 -16.616 -1.444 . . 1977 11 1323.153 3312.915 11.138 4.842 1978 1 1244.15 1244.646 -0.546 -9.1144 X

..

TCTAL MERCHANDISE IMPORTS

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

SLOP" ESTIBATE WITHOUT INTERCEPT

MEAN ABSOLUTE ERROR	9.4249 3.9710	MEAN SQUARE ERROR	(D)	0.0129
ROOT MEAN SQUARED ERROR	10.8971	FIRST INEQUALITY COFFFICIENT	(8)	0.1617
ROOT MEAN SQUARED & ERROR	5.3529	SECOND INEQUALITY COEFFICIENT	(U*)	0.1831
MEAN OF ACTUALS	527.7795	MFAN OF ACTUALS		0.1565
MEAN OF PREDICTEDS	527.8149	MEAN OF PREDICTEDS		0.1639
MAXIMUM ARSOLUTE RESIDUAL	18.1289	STANDARD DEVIATION OF ACTUALS		0.2945
		STANDARD DEVIATION OF PREDICTEDS		0.2790
		CORRELATION BETWEEN ACTUALS AND PR	EDICTEDS	0.9841
MAXIMUM OF ACTUALS	1323.1531	BIAS PROPORTION	(UM)	0.0188
MAXIMUM OF PREDICTEDS	1312.0146	VARIANCE PROPORTION	(US)	0.083
MINIMUM OF ACTUALS	144.1604	COVARIANCE PROPORTION	(UC)	0.8982
MINIMUM OF PREDICTEDS	147.7657	REGRESSION PROPOPTION	(UR)	0.0405
		DISTURBANCE PROPORTION	(UD)	0.9497
		INTERCEPT	(4)	0.138
		SLOPE ESTIMATE	(8)	1.0389

DATE	ACTUAL	PREDICTED	DIFFERENCE	# DIFFEREN	CE	GR APH	RANGE OF	VALUES:	88.594	TO 261	.874
	(+)	(+)	(TIE = X)		••	•••••	•••••		•••••	********	
196501	120.554	99.116	21.418	11.109	•	•					•
1966 11	109.85	100+/34		-4.863	•	**					•
196701	97.207	107 7/1	~6.NJJ	-7J	•	•••					•
1968.11	113.957	147.361	6.795	3+/88	•	•	•				•
969 1	88.594	119.693	-21 + 199	23.01.5	• *						•
197001	91.359	111.797	-14-438	14.829	•	* *					•
1971 11	145.285	157+368	-12-385	~8.317	•			* *			•
1972-1	174.753	147.023	-2.272	-2.159	•	**					•
197311	125.001	132.218	-/.12/	-5.698	•		* *				•
3974 -1	256 • 913	261.874	-4.955	~1.929	•						* *•
1975 11	256 .893	261.929		-1-569	•						** •
1976	212.464	211.145	1.319	7.621	•					••	•
2977 1	217.312	214.591	2.121	1.252	•					+ •	•
1978 1	168.016	161.529	6.986	4 • 146	•			-	*		•
					••	•••••	• • • • • • • • • •		••••••	•••••	
SUMMARY	STATISTICS:					THEIL	STATISTIC	S (BASED	ON LOG-RELAT	IVE-CHANGES):
HEAN AE	SOLUTE ERROR			8.3417		MEAN	SQUARE EF	POR		(1)	0.0128
MEAN A	BSOLUTE & ERROR			7.1283							
ROOT ME	AN SQUARED ERROR			10.4448		FIRST	INEQUAL	ITY COEFF	ICIENT	(0)	0.3989
ROOT ME	EAN SQUARED * ERR) R		9.7873		SECON	D INEGUAL	ITY COEFF	ICIENT	(0*)	0.4 05
MEAN DE	FACTUALS		•	150.4975		ME AN	OF ACTUAL	s			0.9258
MEAN OF	FPREDICTEDS			153.1720		MEAN	OF PREDIC	TEDS			0.0376
MAXIMU	ABSOLUTE RESIDU	AL		21.4180		STAND	ARD DEVIA	TICH OF A	CTUALS		0.2829
						STAND	ARD DEVIA	TION OF P	REDICTEDS		0.2618
						CORRE	LATION BE	TWEEN ACT	UALS AND PRE	DICTEDS	0.9173
MAXIMU	OF ACTUALS			256.9185		BIAS	PROPORTIC	N		(UM)	0.0108
MAXIMUM	OF PREDICTEDS			261.6735		VARIA	NCE PROPO	RTION		(US)	0.1346
HINTHUN	OF ACTUALS			88.5947		COVAR	TANCE PRO	PORTION		(UC)	0.9546
MINIMUM	OF PREDICTEDS			99.1158		REGRE	SSION PRO	PORTION		(UR)	0.0004
						DISTU	RBANCE PR	OPORTION		(UD)	0.9887
						INTER	CEPT			(^)	0.0115
						SLOPE	ESTIMATE			(B)	0.9911
						SLOPE	ESTIMATE	-WITHOUT	INTERCEPT	(B*)	6.9849

.

COLUMN: DYNAMIC IMPORTS OF SITC 4, 1, 2, AND 4 VARIABLE GRAPHED : IGTMCM0.4-3

COLUMN: ZERG SECTOP

ACTUAL PREDICTED

MILL.1975 DIMARSTRANSFORMATION

ACTUAL	COLUMN:	ZERO SECTOR	
PREDICTED	COLUMN:	DYNAMIC	

VARIABLE GRAPHED : IGTMCM5+P.4 INPORTS OF SITC 5,8,AND 9

MILL.1975 DINARSTRANSFORMATION

(B) (B*)

DATE	ACTUAL	PREDICTED	DIFFERENCL	X DIFFERENCE	G	RAPH RA	NGE C	DF 1	VALUES	5:	45.512	TO	11.9	•674		
965-1	50.14	52 314	6.926	11 711							••••••		• • • • • • • •		* * * * *	••
2000.1	37014	J	0.720	1.4.6.7.1.1	•	•	-									•
1 66 1	64.949	54.416	10.533	16.218	•	+		· *								
1967#1	51.671	53.638	-1.967	-5.817	•	* *										
1968 11	56.4 2	54.758	1.645	2.916	•	+ +										
1969 1	55.167	55.484	-0.417	-1.757		*+										
1970-1	59.913	56.947	3.867	6.454	•	+	*									
197101	75.070	76.458	4.613	6+145	•				+	÷ ·			·			
1972.11	53.421	57.513	-4.192	-7.560	•	* *										
1972 11	45.512	46.673	-1.161	~2.55t												
97411	71.101	75.388	-4.287	-6.930	•				•	+						•
975 1	114.331	114.458	-6.127	~5.872	•									*	+	•
.976-1	98.716	98.664	0.052	0.053	•								X			•
1977:1	117.674	103.847	6 • 828	6+169	•									+		*.
1978-11	102.932	106.158	-3.226	-3-134	•									* *		
																••

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

SLOPE ESTIMATE WITHOUT INTERCEPT

MEAN ABSOLUTE ERROR	3+9815	MEAN SQUARE ERROR	(D)	0.0076
ROOT MEAN SQUARED ERROR	4.9766	FIRST INEQUALITY COEFFICIENT	(U)	0.3937
ROOT MEAN SQUARED % ERROR	7.8954	SECOND INEQUALITY COFFFICIENT	(U))	0.4012
MEAN OF ACTUALS	72.0644	MEAN OF ACTUALS		0.0426
MEAN OF PREDICTEDS	71,1225	MEAN OF PREDICTEDS		0.1546
NAVIMUM ABSOLUTE RESIDUAL	14.5333	STANDARD DEVIATION OF ACTUALS		9.2171
		STANDARD DEVIATION OF PREDICTEDS		9.1947
		CORRELATION BETWEEN ACTUALS AND PRE	DICTEDS	9.9179
MAXIMUM OF ACTUALS	113.6743	BIAS PROPORTION	(UM)	0.0188
NAXIMUM OF PREDICTEDS	110.4581	VARIANCE PROPORTION	(US)	0.0661
MINIMUM OF ACTUALS	45.5123	COVARIANCE PROPORTION	(UC)	0.9151
MINIMUM OF PREDICTEDS	46.6731	REGRESSION PROPORTION	(UR)	0.0127
		DISTURBANCE PROPURTION	(UD)	0.9784
		INTERCEPT	(A)	.0.0132
		SLOPE ESTIMATE	(8)	1.0234

146

1.0234

VARIABL	E GRAPHED : IGTH	ICM6 IMP	ORTS OF SITC	6			MILL.197	5 DINARSTRAN	SFORMATION
DATE	ACTUAL	PREDICTED	DIFFERENCE (TIE = X)	X DIFFERENC	E GRAPH	RANGE OF VALUES:	141.174 TO	369.598	
965 01	123.623	166.654	-3.936	-2.924					•
1966 91	137.958	113.670	24.288	17.615					
1967.11	112.137	124.425	-12.285	17.956					•
1968 11	111.345	123.910	-12.565	11.285	• + + ·				•
969 1	11.1.174	132.691	-31-517	-31.152					•
197011	122.226	120.823	1.453	1.148	• X				•
97111	144.855	124.014	20.842	14.398	• •	*		•	•
97241	123.463	131.437	-1.573	.1.215	• X				•
1973 11	133.722	120.383	13.339	9.975					
974 11	343.069	286.814	16.255	5.363	•		+	*	•
1975 1	369.590	355.510	14.080	3.810	•				+ *.
197611	315.725	306.616	-0.831	-0.272	•			*+	•
197701	266.308	268.961	-2.654		•		x		•
1278 11	259.725	254.844	4.881	1.879	•		++		•
MEAN AB MEAN AB Root Me Root Me	STATISTICS: Solute Error Solute X Error An Squared Error An Squared X Err	OR		11.396J 8.9692 14.6678 11.6296	THEIL ST MEAN SO FIRST SECOND	TATISTICS (BASED QUARE FRROR INEQUALITY COEFF INEQUALITY COEFF	GN LOG-RELATIVE- Icient Icifnt	(U) (U) (U*)	0.6241 0.5659 0.5857
MEAN OF	ACTUALS		1	85.7845	MEAN OF	FACTUALS			0.0707
NEAN OF	PREDICTEDS		1	83.5965	MEAN OF	F PREDICTEDS			0.9678
MUPIXAM	ABSOLUTE RESIDU	AL		31.5173	STANDA	RD DEVIATION OF A	CTUALS		0.2648
					STANDA	RD DEVIATION OF P	REDICTEDS		0.2512
					CORREL	ATION BETWEEN ACT	UALS AND PREDICT	EDS	0.8206
MAXIMUM	OF ACTUALS		5	69.5898	BIAS PE	ROPORTION		(UM)	0.0006
MAXIMUM	OF PREDICTEDS		3	55.5495	VARIANO	CF PROFORTION		(US)	0.078
MINIMUM	OF ACTUALS		1	01.1736	COVARIA	ANCE PROPORTION		(UC)	0.9916
MINIMUM	OF PREDICTEDS		1 1	6.6535	REGRESS	SION PROPORTION		(UR)	0.1475
					DISTURE	BANCE PROPORTION		(UD)	r.9519
					INTERCE	EPT		(A)	0.0127
					SLOPE F	ESTIMATE		(8)	0.8654
					SLOPF P	ESTIMATE-WITHOUT	INTERCEPT	(B*)	0.8785

COLUMN: ZERO SECTOR COLUMN: DYNAMIC

ACTUAL PREDICTED

ACTUAL	COLUNN	ZERO SECTOR	
PREDICTED	COLUMN:	DYNAMIC	

VARIABLE GRAPHED : IOTMCM7 IMPORTS OF SITC 7

MILL.1975 DINARSTRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE	X DIFFERENCE		GRAP	H RAN	GE OF	VALUES:	79.57	3 T O	629.2	?65	
	(±)	(+)	(TIE = X)		• • •									
965:1	1 96 - 271	93.943	12.328	11.6 .4	. +	e a l								•
96671	116.387	110.190	6 • 197	5.324	•	X								
967 1	97.991	91.634	6.357	6.488	• X	(
96801	79 • 5 7 3	96.353	·16 • 78 n	-21.187	.*+	•								•
96911	102-000	92.266	9.734	9.543	. +	÷ 🔹 👘								•
97071	1(6.492	112+996	-6.514	-6+107	•	*+								
197111	148.559	146.019	2.548	1.715	•		X							•
1972.1	151.419	159.839	-8.428	-5.560	•		**							
973 1	165-283	165.748	-1.539	-0.326	•		X							
974 11	262.251	264.779	-2.528	-0.964	•				x					
975.1	511.51	564.329	6.181	1.211	•							* *		
1976-11	536.412	552.947	-16.494	-3.175	•							* 4	•	•
97791	629.265	625.574	3.692	6.587	•									++.
197801	550.693	558 • 762	-8.069	-1.465	•								++	•
					• • •	• • • • •	••••	• • • • •	•••••	• • • • • • • • • • •	• • • • • • • •	•••••		••••

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

MEAN ABSOLUTE ERROR	7.5978	MEAN SQUAPE ERROR	(D)	C.9154
MEAN ABSOLUTE % ERROR	5.3609			
ROOT MEAN SQUARED ERROR	8.9541	FIRST INEGUALITY COEFFICIENT	(U)	0.4546
ROUT MEAN SQUARED X ERROR	7 • 68 27	SECOND INEQUALITY COEFFICIENT	(0+)	0.5133
MEAN OF ACTUALS	254.5922	MEAN OF ACTUALS		0.1266
MEAN OF PREDICTEDS	255.3806	MEAN OF PREDICTEDS		0.1372
MAXIMUM ABSOLUTE RESIDUAL	16.7796	STANDARD DEVIATION OF ACTUALS		0.2415
		STANDARD DEVIATION OF PREDICTEDS		9.2160
		CORRELATION BETWEEN ACTUALS AND PREI	DICTEDS	0.8600
MAXIMUM OF ACTUALS	629.2654	BIAS PROPORTION	(UM)	0.0073
NAXIMUM OF PREDICTEDS	625.5737	VARIANCE PPOPORTION	(US)	0.0423
MINIMUM OF ACTUALS	79.5733	COVARIANCE PROPORTION	(UC)	0.9594
MININUM OF PREDICTEDS	91.6342	REGRESSION FROPORTION	(UR)	0.0345
		DISTURBANCE PROPORTION	(UD)	0.9882
		INTERCEPT	(4)	
		SLOPE ESTIMATE	(B)	9.9615
		SLOPE ESTIMATE WITHOUT INTERCEPT	(B*)	0.9514

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTLD	COLUMN:	DYNAMIC

VARIABLE GRAPPED : IGTMT

TOTAL IMPORTS OF GOODS AND SERVICES

MILL.1975 DINARSUN DRPA NAT. ACT.

DATE	ACTUAL	PREDICTED	DIFFERENCE	X DIFFERENCE		GRAPH	RANGE	0F	VALUES:	365.355	10	1954 .874	
	(+)	(+)	(TIE = X)					• • •					
.965 /1	426.4.9	388.768	37.641	8.828	•+	*							
966 21	444.377	4 18.263	36 • 115	8.127	. +	*							•
1967.01	365.355	380.085	-14 - 73 0	-4-132	• ¥								•
1968 1	385.462	416.167	-21.164	-5-481	. * +								•
969 1	396.655	439.954	-43.299	-10.916		÷ i							
97011	427.182	442.853	-15.671	-3-668	•	x							
197101	538.083	522.163	15.920	2.959	•	+ +							•
197201	500.021	516.377	-16.757	-3.271	•	*+							
1973 11	6 94 . 546	6 10 . 034	4.511	0.746	•		Χ.						•
1974-1	1396.118	1391.634	4.484	1.321	•						x		•
1975 1	1792.000	1781.896	10.104	0.564	•							X	
1976:1	1465-286	1481.240	-15.354	-1.689	•						**		
197791	1954-874	1944.286	10.587	1.542	•								**.
1978 '1	1847.256	1846.683	8.573	0.031	•							++	•

SUMMARY STATISTICS:

MEAN ABSOLUTE ERROR	17.6465	MEAN SQUARE ERROR	(0)	0.0026
MEAN ABSOLUTE X ERROR	3.6124			
ROOT HEAN SQUARED ERROR	21.6941	FIRST INEQUALITY COEFFICIENT	(U)	0.1792
ROOT MEAN SQUARED % ERROR	4.9627	SECOND INEQUALITY COFFFICIENT	(U*)	0.1955
MEAN OF ACTUALS	895.9436	MEAN OF ACTUALS		0.1128
MEAN OF PREDICTEDS	876 • 4565	MEAN OF PREDICTEDS		n.1199
MAXIMUM ABSOLUTE RESIDUAL	43.2991	STANDARD DEVIATION OF ACTUALS		0.2584
		STANDARD DEVIATION OF PREDICTEDS		0.2419
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	0.9822
MAXIMUM OF ACTUALS	1954-8735	BIAS PROPORTION	(UM)	0.0197
MAXIMUM OF PREDICTEDS	1944 . 2864	VARIANCE PROPORTION	(US)	0.1.64
MINIMUM OF ACTUALS	365.3555	COVARIANCE PROPORTION	(00)	C-8739
MINIMUM OF PREDICTEDS	380 - 852	REGRESSION PPOPORTION	(UR)	0.0552
		DISTURBANCE PROPORTION	(UD)	0.9251
		INTERCEPT	(^)	0.0139
		SLOPE ESTIMATE	(8)	1.0491
		SLOPE ESTIMATE-WITHOUT INTERCEPT	(B*)	1. (277

ACTUAL PREDICT	ED COLUM	ERD SECTOR								· ·
VARIABL	E GRAPHED : IGWE	IN AVE	RAGE WAGE RAT	E				DINARS		TRANSF ORMATION
DATE	ACTUAL	PREDICTED	DIFFERENCE	* DIFFERENC	E GRAP	H RANGE	OF VALUES:	118.333 10	447	•433
0/5/1	(*)		(110 = x)	.0 057		•••••	••••••	********	*******	
196341	120 057	170 195	-3.3/6	-6 111	•^ •					•
1766 1	120.207	136.011	-7. 328	-5.449						•
1961 1	136.125	103-564	-7.439	-5-465						•
196601	144 897	146-882	-2.785	-1.933						•
1970 1	15),251	152.029	~1.777	-1.183						
197101	154.349	159.937	-5-588	-3-621		+				
1972 11	164.582	188.757	-24-175	-14-689		* *				
973:11	176.844	185.052	-8-238	-4-641		**				
1974 11	254.157	238.354	15.803	6.213			+ +			
1975 1	311-662	292.377	19.284	6.188	•			* *		
1976.01	345.378	341.225	4.153	1.202	•			++	r	•
:977:11	398.169	399.464	-1.294	-0.325	•					x .
1978.11	447.453	439.081	8.432	1.885	•					+ +.
SUMMARY	STATISTICS:			9 1700	THEIL	STATIS	TICS (BASED ON	LOG-RELATIVE	-CHANGES):
MEAN AB	SOLUTE % ERROR			4.4115	FIL AN	SUUARE	ERROR		(0)	0.0.58
ROOT ME	AN SQUARED ERROF	<u>k</u>		10.6340	FIRS	T INEQ	UALITY COEFFIC	IENT	(U)	0.3906
ROOT ME	AN SQUARED % ERF	OR		5 .6229	SECO	ND INEG	UALITY COEFFIC	IENT	(0+)	0.5905
AFAN OF	ACTUALS		2	18.4727	MEAN	OF ACT	1141 S			0.1/23
MEAN OF	PREDICTEDS		2	20.0324	MEAN	OF PRF	DICTEDS			0.0987
MAXIMUM	ABSOLUTE RESIDU	141		24 . 1754	STAN	DARD DF	VIATION OF ACT	UALS		0.0902
					STAN	DARD DE	VIATION OF PRE	DICTEDS		6.0805
					CORR	EL ATION	BETWEEN ACTUA	LS AND PREDIC	TEDS	9.8123
MAXIMUM	OF ACTUALS		4	47.4329	BIAS	PROPOR	TION		(UM)	8.0146
MAXIMUM	OF PREDICTEDS		4	39.0910	VARI	ANCE PR	OPORTION		(US)	0.0331
MINIMUM	OF ACTUALS		1	18.3328	COVA	RIANCE	PROPORTION		(00)	0.9622
MINIMUM	OF PPEDICTEDS		1	21.7084	REGR	ESSION	PROPORTION		(UR)	C. P186
					DIST	URBANCE	PROPORTION		(UD)	n.9768
					INTE	RCEPT			(A)	0.9125
					SL OP	E ESTIM	ATE		(8)	0.9438
					SLOP	FESTIM	ATE WITHOUT IN	TERCEPT	(8+)	9.9861

ACTUAL	COLUMN:	ZFRO SECTOR
PREDICTED	COLUMNI	DYNAMIC

VARIABLE GRAPHED : IGNYN TOTAL WAGE BILL

MILL.CURR.DINARSTRAG AAS

(B*)

1.031

DATE	ACTUAL	PREDICTED	DIFFERENCE	X DIFFERENCE	GRAPH RANGE OF VALUES: 234.500 TO 1314.200	
	(+)	(+)	(T[E = X))			••
96511	234.50	243.722	-8.522	-3.634	X	•
96601	261.640	280.851	-19.251	-7.359	**	•
967 11	270.600	239.299	-18.479	-6.831	**	
768 11	2 94 • 2 1	314.8:14	-20.6+4	-7.393	**	•
969 31	323.651	331.451	-19-851	-3.384	**	•
97081	344 • # to b	352.894	-8.8(4	-2.559	••	•
971-1	363.5	381.649	-18.109	-4.382	**	٠
97201	398.764	464.525	-65.825	-16.513	* *	
973)1	44: .5	465.423	-24.923	··5.658	**	
97491	664.918	616.798	48.102	7.235	 ♦ ♦ 	•
1975-1	838.933	781.376	57.523	6.857	★ ★	
976.1	956.8 20	943.183	13.617	1.423	**	
97701	1135.54	1132-870	2.630	.232	×	
97811	1314.293	1278.175	36.025	2.741	•	۰.
						••

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

SLOPE ESTIMATE WITHOUT INTERCEPT

MEAN ABSOLUTE ERROR	25 . 2346	MEAN SQUARE ERROR	(D)	0.0134
MEAN ABSOLUTE % ERROR	5.4577			
ROOT MEAN SQUARED ERROR	31.3963	FIRST INEQUALITY COEFFICIENT	(U)	0.3587
ROOT MEAN SQUARED X FRROR	6.6517	SECOND INEQUALITY COEFFICIENT	(U•)	0.6165
MEAN OF ACTUALS	559.9067	MEAN OF ACTUALS		0.1326
MEAN OF PREDICTEDS	562.5842	MEAN OF PREDICTEDS		0.1277
MAYTMUM ARSULUTE RESTOLIAL	65 8254	STANDARD DEVIATION OF ACTUALS		0.1948
HEATHON ADOULOT, RECTORE	0.0000	STANDARD DEVIATION OF PREDICTEDS		0.0819
		CORRELATION BETWEEN ACTUALS AND PR	EDICTEDS	6.7922
MAXIMUM OF ACTUALS	1314-2000	BIAS PROPORTION	(UM)	0.0070
MAXIMUM OF PREDICTEDS	1278 . 1750	VARIANCE PROPORTION	(US)	0.0491
MINIMUM OF ACTUALS	234-5300	COVARIANCE PROPORTION	(IIC)	0.9439
MINIMUM OF EPEDICTEDS	243, 1217	REGRESSION PROPORTION	(IIP)	0.0133
THING OF PREDICTEDS		DISTURBANCE PROPORTION	(UD)	0.9797
		INTERCEPT	(A)	0.0154
		SLOPE ESTIMATE	(B)	0.9176

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTED	COLUMN:	DYNAMIC

VARIABLE GRAPHED : IQXAG

VALUE ADDED IN AGRICULTURE

MILL.1975 DINARSUN DRPA NAT. ACT.

DATE	ACTUAL	PREDICTED	DIFFERENCE (TIE = X)	* DIFFERENCE		GRAPH	RANGE	0F	VALU	FS:	244.215	TO	365.651	
196511	246.687	258.865	-12.177	4.936	•	* *								•
196611	244.215	265.384	-21-169	-8.668	. *		+							
967 11	273.099	272.486	0.614	0.225	•		+	*						
968:1	292.486	275.715	16.771	5.734	•			+		٠				
96901	293.266	277.800	15.466	5.274	•			+		*				
976-1	287.862	284.458	3.344	1.162					+ +					
1971-1	273.043	271.857	-12.813	-4-6:8				*		•				
97211	363-135	365.651	-2.516	-9.693										* +.
197301	273.620	272.341	1.579	1.577				*						
974 1	3(1.984	295.341	5.643	1.869	•									
197531	297.31	291.136	6.164	2. 73						+ 1	•			
1976 11	337.485	318.269	19.226	5.697							+		 Image: A second s	
1977:11	298.936	301-249	-2.313	-0.774				•			**			
1978.11	318.938	325.868	-6.930	-2.173	•						*	+		
					••									

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

SLOPE ESTIMATE-WITHOUT INTERCEPT

MEAN ABSOLUTE ERROR	9.1517	MEAN SQUARE ERROR	(0)	0.0019
MEAN ABSOLUTE % ERROR	3.1759			
ROOT MEAN SQUARED ERROR	11.3239	FIRST INEQUALITY COEFFICIENT	(U)	0.3381
ROOT MEAN SQUARED % ERROR	4.0462	SECOND INEQUALITY COFFFICIENT	(U•)	0.3421
MEAN OF ACTUALS	293.3564	MEAN OF ACTUALS		0.0198
MEAN OF PREDICTEDS	292.5789	MEAN OF PREDICTEDS		9.0177
MAXIMUM ABSOLUTE RESIDUAL	21.1687	STANDARD DEVIATION OF ACTUALS		0.1271
		STANDARD DEVIATION OF PREDICTEDS		0.1120
		CORRELATION BETWEEN ACTUALS AND PREM	DICTEDS	0.9418
MAXIMUM OF ACTUALS	363.1348	PIAS PROPORTION	(UM)	0.0/22
MAXIMUM OF PREDICTEDS	365.6506	VARIANCE PROPORTION	(US)	0.1211
MINIMUM OF ACTUALS	244.2151	COVARIANCE PROPORTION	(UC)	9.8767
MINIMUM OF PREDICTEDS	258 . 8645	REGRESSION PROPORTION	(UR)	9.0316
		DISTURBANCE PROPORTION	(00)	0.9662
		INTERCEPT	(A)	0.0208
		SLOPE ESTIMATE	(8)	1.0699
		SLOPF ESTIMATE-WITHOUT INTERCEPT	(8*)	1. 0702

AKIABLE	SMAPHED : 1980	VAL	UL AUULU IN C	UNSTRUCTION			111111197	O DIMAKSUN D	RPA NAT
DATE	ACTUAL P	REDICTED	DIFFERENCE	* DIFFERENC	E GRAPH RAN	GE OF VALUES:	36.643 TO	346.570	
	(*)	(+)	(TIE = X)			• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • •	• • • • • • • • • • • • •	•••••
965 - 1	47.158	36.643	10,515	22.297	•+ *				•
966)1	51.183	44.126	7•∂54	13.782					•
967 1	46.555	46.424	9.131	0.282	• X				•
968.11	59.577	5759	-0.1R2	-0.361	• X				•
969 11	50.778	59.371	0.407	0.892	• X				•
97001	51.784	54.114	-2.330	-4.590	• **				•
97111	52.789	44.853	7.936	15.34	• • •			•	•
172 11	55.815	58.535	-2.730	-4.891	• • •				•
973 11	67.369	73.970	-6.611	-9.798	• • •				•
374 11	69 • 48#	71.485	-2.504	-2.885	• X				•
975 11	91.3=3	93.916	-2-616	-2.865	• X				•
976.1	196.87	201.417	~4.548	-2-310	•		**		•
977)1	284.206	281.311	3.895	1.371	•			+ +	•
78/1	346.570	342.962	3+698	1.141	•				+*•
AN ABS	OLUTE ERROR OLUTE % ERROR			3.8969 5.8727	MEAN SQUA	RE ERROR		(D)	0.010
DOT MEA	N SQUARED ERROR			4 • 9259	FIRST IN	EQUALITY COEFFI	CIENT	(U)	0.379
DOT MEA	N SQUARED & ERROR			8.7790	SECOND IN	EQUALITY COEFFI	CILNT	(U*)	0.466
AN OF	ACTUALS		1	14.4586	MEAN OF A	CTUALS			°.153
AN OF	PREDICTEDS		1	13.5632	MEAN OF P	REDICTEDS			0.172
AXIMUM	ABSOLUTE RESIDUAL			10.5148	STANDARD	DEVIATION OF AC	TUALS		0.234
					STANDARD	DEVIATION OF PR	DICTEDS		0.220
					CORRELATI	ON BETWEEN ACTU	ALS AND PREDICT	EDS	0.898
XIMUM	OF ACTUALS		3	46.5698	BIAS PROP	ORTION		(UM)	0.034
XIMUM	OF PREDICTEDS		3	42.9617	VARIANCE	PROPORTION		(US)	0.044
NIMUM	OF ACTUALS			46.5549	COVARIANC	EFROPORTION		(UC)	0.960
NIMUM	OF PREDICTEDS			36 • 64 34	REGRESSIO	N PROPORTION		(UP)	2.081
					DISTURBAN	CE PROPORTION		(UD)	P-884
					INTERCEPT			(A)	0.943
					SLOPE EST	IMATE		(B)	P.871
					SLOPE EST	IMATE-WITHOUT IN	TERCEPT	(8*)	0.878

COLUMN: ZERO SECTOR COLUMN: DYNAMIC

ACTUAL

•

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTED	COLUMN:	DYNANIC

VARIABLE GRAPHED : IQXMM

VALUE ADDED IN NON-OIL MINING + MANUFACTURING

MILL.1975 DIMARSTRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE (TIF = X)	X DIFFERENCE		GRAPH	RANGE	0F	VALUES:	104-612	T1)	411.756	
1965v1	104-612	198.342	-3.730	-3.565	•X								
196611	198.691	117.552	-8.951	-8.242	.*	+							
967.1	1 88.742	121.496	12.754	11.729	.*	+							• •
966-11	114.926	126.873	-11.946	.10.395		* *							•
969 1	131.688	129.1 14	2.584	1.962	•	+ +							•
97001	134.094	134.855	-0.760	-0.567		x							•
971 11	152.227	142.047	10.180	6.687		+	*						•
,972.11	166.384	173.852	-7.472	-4.491	•		+ +						
973:11	183.264	184.556	-1.292	-0.705	•			y ·					•
974 1	194.412	178.723	11.692	6.140	•			• •					
975.11	224 . 27	227.419	-3.149	-1.4.44					**				•
976 11	311.978	307.713	4.265	1.367							X		•
1977-1	372.331	359.770	12+561	3.373	•							+ +	•
1978-1	411.756	410.491	1.265	0.307									+ * •
					••								

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RFLATIVE-CHANGES):

MEAN ABSOLUTE ERROR	6 • 6144	MEAN SQUARE ERROR	(D)	0.0.39
MEAN ABSOLUTE X ERROR	4.3525			
ROOT MEAN SQUARED ERROR	7.9820	FIRST INEQUALITY COFFFICIENT	(U)	0.4643
ROOT MEAN SQUARED & ERROR	5.6621	SECOND INEQUALITY COEFFICIENT	(0+)	0.7471
MEAN OF ACTUALS	193.9486	MEAN OF ACTUALS		0.1054
MEAN OF FREDICTEDS	194.4849	MEAN OF PREDICTEDS		0.1:25
MAXIMUM ABSOLUTE RESIDUAL	12.7542	STANDARD DEVIATION OF ACTUALS		0.9836
		STANDARD DEVIATION OF PREDICTEDS		0.0949
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	9.7591
MAXIMUM OF ACTUALS	411.7563	BIAS PROPORTION	(UM)	0.0/22
MAXIMUM OF PREDICTEDS	410.4912	VARIANCE PROPORTION	(US)	0.0275
MINIMUM OF ACTUALS	1 14 . 6122	COVARIANCE PROPORTION	(UC)	0.9702
MINIMUM OF PREDICTEDS	198.3418	REGRESSION PROPORTION .	(UR)	0.2386
		DISTURBANCE PROPORTION	(UD)	0.7592
		INTERCEPT	(4)	0.0362
		SLOPE ESTIMATE	(8)	0.6754
		SLOPF ESTIMATE WITHOUT INTERCEPT	(8*)	0.8672

ACTUAL	COLUMN:	ZERO SECTOR	
PREPICTED	COLUMN:	DYNANIC	

VARIABLE GRAPHED : INXPCR

VALUE ADDED IN CRUDE PETROLEUM

MILL.1975 DINARSTRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE	X DIFFERENCL	:	GRAPH	RANGE	OF V	ALUES	1212.321 TO	2718.568	
:06571	1305.497	1236 . 740	68.756	5-267	14	*						
1966.91	1368-939	1324-211	48.698	3.557		+ *						
1967-11	1212.321	1394.047	-181.726	14.998		•	•					
968-1	1493.958	1534-681	-10.722	.0.718			**					
969 11	1515.945	1616.254	-100.310	-6.617	•		* *					•
971:01	1558.371	1731.500	-173.128	-11.119	•		*	+				•
97111	1689.329	1821.961	-132-631	-7.851	•			٠	+			•
97221	1469.157	1604.334	-135.177	-9.201	•		• •					•
197311	2018.027	2124-574	-106-547	-5.280	•					* *		•
974-1	1958.6 16	2199.451	-231.846	-11.837	•					• •		•
1975 1	2279.000	2242.333	36.966	1.622	•					++		•
197611	2681.575	2441.568	240.007	8.952	•						• •	•
197711	2763.179	2584 . 052	179.119	6.482	•						+ *	•
1978 11	2918-568	2726.717	191.852	6+573	•						+	*•

SUMMARY STATISTICS:

MEAN ABSOLUTE ERROR	131.2490	MEAN SQUARE ERROP	(0)	0.0*64
ROOT MEAN SQUARED ERROR	148-5892	FIRST INEQUALITY COEFFICIENT	(0)	0.5847
ROOT MEAN SQUARED & ERRUP	8.0847	SECOND INEQUALITY COEFFICIENT	(U,*)	0.6559
MEAN OF ACTUALS	1873.7437	MEAN OF ACTUALS		0.4619
MEAN OF PREDICTEDS	1895.6499	MEAN OF PREDICTEDS		0.0608
MAXIMUM ABSOLUTE RESIDUAL	240. 1073	STANDARD DEVIATION OF ACTUALS		0.1218
		STANDARD DEVIATION OF PREDICTEDS		C+0820
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	0.7599
MAXIMUM OF ACTUALS	2918.5684	BIAS PROPORTION	CUMD	0.002
MAXIMUM OF PREDICTEDS	2726.7166	VARIANCE PROPORTION	(US)	0.2485
MINIMUM OF ACTUALS	1212.3206	COVARIANCE PROPORTION	(UC)	0.7514
MINIMUM OF PREDICTEDS	1236.7415	REGRESSION PROPORTION	(UP)	P.0175
		DISTURBANCE PROPORTION	(UD)	0.9823
		INTERCEPT	(A)	-A.C.68
		SLOPF ESTIMATE	(B)	1.1290
		SLOPF ESTIMATE WITHOUT INTERCEPT	(B*)	1.0894

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTED	COLUMN:	DYJAMIC

VARIABLE GRAPHED : IQXPRF

VALUE ADDED IN PETROLEUM REFINING

MILL.1975 DINARSTRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE	% DIFFERENCE		GRAPH	RANGF	0F	VALUES:	10.575	To	41,934	
	(*)	(+)	(TIE = X)		•••							• • • • • • • • • • •	* * * * * * *
96501	11.173	11.015	0.158	1.4.11	• + +								•
1966.1	11.519	11.594	·0.475	-11.649	• Х								•
96731	14.575	10.955	-0.381	-3.6 20	• X -								•
1968-11	11.051	12.532	-1.481	13.358	• *	+							•
969/1	12.511	12.931	-0.420	-3.354	•	**							•
97091	12.779	15.5.5	-2.726	21.334	•	+	+						•
971-11	14.885	15.926	-0.140	-0.941	•	3	X						•
:97291	16.119	18.398	-2.280	-14.142	•		*	+					•
:973 11	17.438	16.403	1.(35	5.935	•		+ *						•
1974 1	19+673	21.212	-1.539	-7.821	•				* *				•
197501	22.93)	27.139	-4.109	-17.919	•				*	+			•
976 1	29.449	31.870	-1.421	~4.826	•					*	+		•
1977 11	36.543	33.215	3.338	9.135	•						+	*	•
1978.1	40.934	36 • 4 3 8	4.496	10.984	•							+	*•

SUMMARY STATISTICS:

HEAN ABSOLUTE ERROR	1.6855	MEAN SQUARE ERROR	(0)	0.0147
PLAN ADJULUH, A LEKUK Dont Mean Conaded Erdor	2.2183	EIRST INFOUNTITY COFFEICIENT	(11)	0.9289
ROOT MEAN SQUARED & ERROR	10.3751	SECOND INEQUALITY COEFFICIENT	(0+)	1.4408
NEAN OF ACTUALS	19.1128	MEAN OF ACTUALS		0.8999
MEAN OF PREDICTEDS	19.5087	MEAN OF PREDICTEDS		0.0920
MAXIMUM ABSOLUTE RESIDUAL	4 • 4961	STANDARD DEVIATION OF ACTUALS		9.0842
		STANDARD DEVIATION OF FREDICTEDS		0.1107
		CORRELATION BETWEEN ACTUALS AND PREC	ICTFDS	0.2514
MAXIMUM OF ACTUALS	47.9337	BIAS PROPORTION	(UH)	0.0=42
MAXIMUM OF PREDICTEDS	36 . 4376	VARIANCE PROPORTION	(US)	0.0477
MINIMUM OF ACTUALS	19-5746	COVARIANCE PROPORTION	(UC)	0.9481
MINIMUM OF PREDICTEDS	10.9552	REGRESSION PROPORTION	(UP)	0.5446
		DISTURBANCE PROPORTION	(UD)	8.4512
		INTERCEPT	(A)	A.º823
		SLOPE ESTIMATE	(8)	0.1913
		SLOPE ESTIMATE-WITHOUT INTERCEPT	(B+)	0.5565

ACTUAL	COLUMN:	ZFRO SECTOR
PREDICTED	COLUMN:	DYNAMIC

VARIABLE GRAPHED : IGXS VALUE ADDED IN STRVICES

MILL.1975 DINARSTRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE	* DIFFERENCE	Ξ	GR AF H	RANGE	0F	VALUES:	353-081 TO	932 .623	
	(*)	· · · · · · · · · · · · · · · · · · ·	(TIE = X)		•••							
965 1	356.342	353.081	3.26 9	°•915	• X							•
1966 11	387.371	375.349	12.022	3.193	•	+ +						•
196711	389.503	385.084	4.418	1.134	•	X						•
968 11	415.372	411.942	14.431	3.474	•	+ +						•
96901	444.38	416.161	24.219	5.540	•	•	*					•
97001	467.885	433.932	33.983	7.263	•		+ +					•
197181	479.137	473.444	5.693	1.188	•		X					•
197221	510.505	5 19 .274	1.231	0.241	•			++				•
1973 1	550.392	532.185	18.257	3.308	•				+ +			•
1974 1	721.335	694.529	26.806	3.716	•					. + +		•
197501	861.399	844.365	36.134	4.093	•						+ * '	•
1976:1	919.847	884.817	35.030	3.808	•						+ +	× •
197731	882.549	882.743	-1.195	·r.022	•						x	•
1978"1	922.257	932.623	~10.366	-1.124	•						•	* +*

SUMMARY STATISTICS:

MEAN ABSOLUTE ERROR	16.1354	MEAN SQUARE ERROR	(0)	6.6697
MEAN ABSOLUTE & ERROR	2.7779			
ROOT MEAN SQUARED ERROR	20.4264	FIRST INEQUALITY COEFFICIENT	(U)	0.2483
ROOT MEAN SQUARED % ERROR	3.4389	SECOND INEQUALITY COEFFICIENT	(U*)	1.3423
MEAN OF ACTUALS	594.5186	MEAN OF ACTUALS		9.0731
MEAN OF PREDICTEDS	579.8921	MEAN OF PREDICTEDS		0.0747
MANTMUM ABSOLUTE RESIDUAL	36 . 1:342	STANDARD DEVIATION OF ACTUALS		0.0771
ANALHON ANADLOTE REGIDENE		STANDARD DEVIATION OF PREDICTEDS		0.0711
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	0.9400
MAXIMUM OF ACTUALS	922.2571	BIAS PROPORTION	(UM)	0.0+35
MAXIMUM OF PREDICTEDS	932-6233	VARIANCE PROPORTION	(US)	0.(523
ATATION OF ACTUALS	356.3418	COVARIANCE PROPORTION	(UC)	9.9442
MINIMUM OF DREDICTEDS	353.0813	REGRESSION PROPORTION	(UR)	0.0/29
	0000 010	DISTURBANCE PROPORTION	(UD)	9.9936
	•			
		INTERCEPT	(A)	0.0.31
		SLOPE ESTIMATE	(8)	1.9198
		SLOPF ESTIMATE-WITHOUT INTERCEPT	(B*)	0.9984

ACTUAL	COLUMUI	ZERO SECTOR
PREDICTED	COLUMN:	DYNAMIC

VARIABLE GRAPHED : IGXTC

VALUE ADDED IN TRANSPORTATION AND COMMUNICATION

MILL.1975 DINARSIRAG AAS

DATE	ACTUAL	PREDICTED	DIFFERENCE (TIF = X)	X DIFFERENCE	:	GRAPH	RANGE	0F	VALUES:	ĩ	6.359	то	189.	525	
1965 01	82.201	76.359	5.841	7.116		*									
966.01	85.999	79.759	6.141	7.149											
967-11	80.001	89.961	-0.961	-1.2/1		X									
968-1	85.600	83.337	2.263	2.644	•	+ +									
.96901	83.6	85.344	3.256	3.675		**									
97101	89.204	87.775	1.225	1.376	•	+*									
971 1	97.211	93.088	4.112	4.230			+ +						•		
97211	97.20	98.163	-8-963	-0.991			**								
1973-11	95.20	97.128	-1.928	-2. 25			**								
974 11	119.930	124.575	-4.695	-3.916	•				*	+					
1975/1	157.683	151.058	6.542	4.151	•								• • • •		
1976:1	175.21	167.355	7.845	4.478	•									+ +	
197701	168.103	17 0.625	-2.525	-1.5:2	•									* +	
1978/1	175.700	186.525	-4.825	-2.746											* *.
					•••		• • • • • •	• • • •			• • • • •	••••	• • • • • • • • •	• • • • • • •	••••
SUMMARY	STATISTICS:					THEIL S	STATIS	TICS	6 (BASED	UN LOG	-RELA	T1VE-	CHANGES	:	
MEAN AB	SOLUTE ERROR			3 • 7943		MEAN S	SQUARE	ERF	ROR				(D)	0	0.0019

MEAN ABSOLUTE % ERROR	3,3786		
ROOT MEAN SQUARED ERROR	4.3716	FIRST INEQUALITY COEFFICIENT (U)	0.3834
ROUT MEAN SQUARED & ERROR	3.8804	SECOND INEQUALITY COEFFICIENT (U')	0.4491
MEAN OF ACTUALS	114.1999	MEAN OF ACTUALS	0.0584
MEAN OF PREDICTEDS	112.5766	MEAN OF PREDICTEDS	0.0662
MAXIMUM ABSOLUTE RESIDUAL	7.8459	STANDARD DEVIATION OF ACTUALS	A.0959
		STANDARD DEVIATION OF PREDICTEDS	0.0717
		CORRELATION BETWEEN ACTUALS AND PREDICTEDS	0.9113

MAXIMUM OF ACTUALS	175.700	BIAS PROPORTION	(UM)	0.0325
HAXIMUM OF PREDICTEDS	180.524	8 VARIANCE PROPORTION	(US)	0.3136
MINIMUM OF ACTUALS	S. 89. 89.	COVARIANCE PROPORTION	(UC)	0.6539
MINIMUM OF PREDICTEDS	76.359	2 REGRESSION PPOPORTION	(UR)	C.1324
		DISTURBANCE PROPORTION	(UD)	0.8351

INTERCEPT	(A)	0.6222
SLOPE ESTIMATE	(8)	1.2183
SLOPE ESTIMATE WITHOUT INTERCEPT	(B*)	1.0641

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTED	COLUMN:	DYHAMIC

VARIABLE GRAPPED : IQXUT VALUE ADDED IN UTILITIES

MILL.1975 DIMARSUN DRPA NAT, ACT

DATI	ACTUAL	PREDICTED	DIFFERENCE (TIF = X)	* DIFFERENCE		GRAPH R	ANGE	OF	VALUES:		822	TO	33.358		
965.1	5-116	4.822	0.294	5.741	• X										
1966 31	5-932	5-814	0.018	0.358		x									
96711	6-446	6.285	0.160	2.489	- E	x									
968.11	7.87%	7.229	0.649	8.242		· · ·									
96911	8.185	7.879	0.306	3.735		x									
97611	3-617	8.973	2.715	7.433											
97131	9.003	10.000	-3.997	11.72		* ·	•								
97211	10.334	9,999	9.334	3.237		· · ·	+ +								
973.1	12.073	12.183	-0.010	-1.085				**							
974 1	14.017	13.326	0.691	4.930				•	• •						
975 11	17.70)	17.778	-9.078	-3.439						Χ.					
97621	21.4 16	22.199	-0.792	-3.752							* +				•
97791	26.399	26.694	-9.296	-1.120	•								**		•
978.1	33.35A	31.533	1.825	5.471	•									+ +	•
															•

SUMMARY STATISTICS:

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

MEAN ABSULUTE ERPOR	0.5118	MEAN SQUARE ERROR	(D)	0.0059
MFAN ABSOLUTE X ERROR	4.1429			
ROOT MEAN SQUARED ERROR	8.6956	FIRST INEQUALITY COEFFICIENT	(U)	0.4645
ROOT MEAN SQUARED X ERROR	5.2017	SECOND INEQUALITY COEFFICIENT	(0.4.)	0.9559
MEAN OF ACTUALS	13.3831	MEAN OF ACTUALS		0.1442
MEAN OF PREDICTEDS	13.1817	MEAN OF PREDICTEDS		0.1444
MAXIMUM ABSOLUTE RESIDUAL	1-8251	STANDARD DEVIATION OF ACTUALS		0.0802
		STANDARD DEVIATION OF PREDICTEDS		0.0706
		CORRELATION BETWEEN ACTUALS AND PRED	ICTEDS	0.4893
MAXIMUM OF ACTUALS	33.3577	ETAS PROPORTION	(UM)	0.0407
MAXIMUM OF PREDICTEDS	31.5327	VARIANCE PROPORTION	(88)	0.0156
STNIMUM OF ACTUALS	5.1156	COVARIANCE PROPORTION	(UC)	0.9844
MINIMUM OF PREDICTEDS	4.8219	REGRESSION PROPORTION	(UP)	0.1676
		DISTURBANCE PROPORTION	(UD)	0.8323
		INTERCEPT	(A)	6.0640
		SLOPE ESTIMATE	(B)	n.5555
		SLOPE ESTIMATE WITHOUT INTERCEPT	(B*)	0.9131

ACTUAL	COLUMN:	ZERO SECTOR
PREDICTED	COLUMN:	DYNAMIC

VARIABLE GRAPHED : INYPDN

PERSONAL DISPOSABLE INCOME

MILL.CURR.DINARSTRANSFORMATION

DATE	ACTUAL	PREDICTED	DIFFERENCE (TIE = X)	X DIFFERENCE	GRAPH R	ANGE OF	VALUES:	565.598 TO	3274.097	
1965 11	565.598	584.148	18.550	~3.280	•X					
196611	612.399	621.857	-9.459	-1.545	• Y					
1967 11	641.166	663.761	-22-595	-3.524	• **					
1968 11	681.142	669.566	10.575	1.555	• X					
1969 1	722.113	717.788	14.325	1.984	• X					
197001	785.013	733.331	51.682	6.584						
197111	797.133	743.484	53.649	6.730						
1972 1	985.981	1099.236	-23.255	-2.359	• X					
1973:1	867.393	913-801	-46.407	-5.353						
1974 1	1377.714	1244.347	137.364	9.970		+	•			
1975 1	1594.445	1682.547	-88 - 162	-5.526			* *			
197611	1733.931	2078.075	-345.145	19.910	•		*	•		
197711	2423.629	2292.670	130.959	5.4113	•			+ +		
1978-11	3274 . 097	2883.184	390.213	11.940	•				+	**
									. 	

SUMMARY STATISTICS:

MEAN ABSOLUTE ERROR	95.9200	MEAN SQUARE ERROR	(0)	0.0110
MEAN ABSOLUTE X ERROR	6-1185			
RUDI MEAN SUUARED ERROR	152+3986	FIRST INEQUALITY COEFFICIENT	(U)	8.5189
ROOT MEAN SQUARED % ERROR	7.8049	SECOND INEQUALITY COEFFICIENT	(U+)	0.6982
MEAN OF ACTUALS	1218.5593	MEAN OF ACTUALS		0.1351
MEAN OF PREDICTEDS	1201-6985	MEAN OF PREDICTEDS		1.1228
MAXIMUM ABSOLUTE RESIDUAL	396.9133	STANDARD DEVIATION OF ACTUALS		0.1500
		STANDARD DEVIATION OF PREDICTEDS		0.1280
	CORRFLATION BETWEEN ACTUALS AND PREDICTEDS			
MAXIMUM OF ACTUALS	3274 . 1974	BIAS PROPORTION	(111)	P.0137
MAXIMUM OF PREDICTEDS	2883.1941	VARIANCE PROPORTION	(115)	0.1440
MINIMUM OF ACTUALS	565-5981	COVARIANCE FROPORTION	(110)	0.9423
MINIMUM OF PREDICTEDS	584 . 1484	REGRESSION PROPORTION	(119.)	0.0308
		DISTURBANCE PROPORTION	(UD)	0.9555
		INTERCEPT	(^)	ñ. 1299
		SLOPE ESTIMATE	(8)	0.8564
	•	SLOPE ESTIMATE WITHOUT INTERCEPT	(B*)	0.9730

h

Mohammed Shihab Abduljabbar

Candidate for the Degree of

Doctor of Philosophy

Thesis: AN ECONOMETRIC MODEL OF THE IRAQI ECONOMY, 1960-78

Major Field: Economics

Biographical:

Personal Data: Born in Baghdad, Iraq, January 21, 1952, the son of Mr. and Mrs. S. Abduljabbar.

- Education: Received Bachelor degree in Applied Statistics from the University of Baghdad in 1972; received Master of Arts degree in Economics from Ohio University in 1977; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in May, 1982.
- Professional Experience: Research Assistant, Ministry of Planning, Iraq, 1973-1974; Trainee, United States Bureau of Census, August 1974-July 1975; Visiting Economist, Wharton Econometric Forecasting Associates, May-November, 1981.