# AN ECONOMETRIC MODEL OF THE IRAQI ECONOMY, 

 1960-78By

```
MOHAMMED SHIHAB ABDULJABBAR
            Bachelor
University of Baghdad
            Baghdad, Iraq
                1972
    Master of Arts
    Ohio University
        A.thens, Ohio
            1977
```

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
May, 1982

Thesis
1982D
Al36e
Cop. 2


AN ECONOMETRIC MODEL OF THE IRAQI ECONOMY, 1960-78

Thesis Approved:


## ACKNOWLEDGMENTS

I am deeply indebted to the members of my advisory committee, Dr. Michael R. Edgmand, Dr. Gerald M. Lage, Dr. Kent W. 01 son, and Dr. Daryll E. Ray, for their valuable assistance. Special gratitude goes to Dr. Michael R. Edgmand, chairman of the committee, for his invaluable suggestions and guidance throughout this study.

I owe a special word of gratitude to Dr. Vahan Zanoyan of Wharton Econometric Forecasting Associates for the constructive criticisms and suggestions he so generously offered.

Thanks are due to all faculty members of the Department of Economics at Oklahoma State University for their invaluable instructions and guidance throughout my graduate study.

I dedicate this work to my wife Alia and our two children Omar and Ali. Their patience, understanding, and encouragement during all these years of graduate study were extremely helpful.

## TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION ..... 1
Purpose and Nature of the Study ..... 3
Organization of the Study ..... 4
II. THE IRAQI ECONOMY ..... 6
GNP and Price Level ..... 7
Composition of Gross Domestic Product ..... 9
Oil Sector ..... 9
Agriculture ..... 13
Manufacturing ..... 19
Other Sectors ..... 20
Gross Domestic Expenditures ..... 20
The Structure of Imports ..... 23
Money and Banking ..... 26
III. SPECIFICATION OF THE MODEL ..... 31
The Model ..... 37
Domestic Demand ..... 37
Imports ..... 39
Non-0il Output ..... 40
Oil Sector ..... 41
Wages and Employment ..... 42
Prices ..... 43
Other Definitions and Identities ..... 44
Discussion of the Model ..... 46
Domestic Demand ..... 46
Real Private Consumption ..... 46
Nominal Government Consumption ..... 48
Real Private Investment ..... 48
Nominal Government Investment ..... 50
Imports ..... 51
Non-Oil Output ..... 54
$0 i 1$ Sector ..... 57
Wages and Employment ..... 59
Prices ..... 60
Other Definitions and Identities ..... 62
IV. MODEL SIMULATION ANALYSIS ..... 66
Validation of the Model ..... 66
Chapter Page
Multiplier Analysis ..... 76
Forecast for 1979-1985 ..... 84
V. SUMMARY AND CONCLUSIONS ..... 94
Summary ..... 94
Limitations and Suggestions for Further Research ..... 95
Conclusions ..... 96
BIBLIOGRAPHY ..... 97
APPENDIX A - TSLS ESTIMATES OF THE BEHAVIORAL EQUATIONS ..... 102
APPENDIX B - DYNAMIC SIMULATION ..... 109

## LIST OF TABLES

Table Page
I. Iraqi Real Gross National Product and the Consumer Price Index, 1960-1978 ..... 8
II. Gross Domestic Product by Sectors at Current Prices ..... 10
III. Crude Petroleum Production and Exports, 1960-1978 ..... 12
IV. Proportion of Oil Exports in Total Merchandise Exports, 1960-1978 ..... 14
V. Oil Revenues as a Percentage of Total Government Revenues, 1960-1978 ..... 15
VI. Revenues of Economic Development Programs and Plans, 1951-1974 ..... 16
VII. Sectoral Distribution of Total Gainful Employment in Iraq in 1973 ..... 17
VIII. Iraq's Consumption and Investment Expenditures in Constant Prices, 1960-1978 ..... 21
IX. Private and Government Consumption and Investment Expenditures, 1960-78 ..... 24
X. The Composition of Imports in Selected Years ..... 25
XI. Alphabetical Listing of the Variables ..... 33
XII. Results of Dynamic Simulation ..... 72
XIII. Root Mean Square Percentage Errors (RMSPE) of the Historical Simulation of Selected Variables of the Iraqi Model, the Greek Model, the Libyan Model, and the Iranian Model ..... 77
XIV. Percentage Changes in Selected Variables for an Increase in the Volume of Oil Exports by 20 Percent ..... 80
XV. Percentage Changes in Selected Variables for an Increase in the Price of 0il by 20 Percent ..... 81
Table Page
XVI. Percentage Changes in Selected Variables for aTwenty Percent Decrease in the Total Importsof Oil by OECD Countries . . . . . . . . . . . . . . 83
XVII. Percentage Changes in Selected Variables forAdopting the Policy of Denominating thePrice of a Barrel of 0 il in Terms of SDR . . . . . . . . . 85
XVIII. Values of Oil Production, Exports, and PricesUsed During the Forecast Period, 1979-85 . . . . . . . . . 87
XIX. Forecast Results for Major Economic Indicators, 1979-85 . . . . . . . . . . . . . . . . . . . . . . 88

## CHAPTER I

## INTRODUCTION

Construction of macroeconometric models has become an increasingly popular endeavor in recent decades. 1 Today, macroeconometric modelbuilding is commonplace in mature economies where there is ample data and substantial agreement on the techniques appropriate for building such models. The state of the art in modeling developing economies is not so well defined and modeling of such economies is still in the pioneering stage. There are arguments in support of using basically the same models for mature and developing economies. ${ }^{2}$ There may be some benefits from such an approach, but one must also be aware of the difference in behavioral characteristics and institutional elements of mature and developing economies.

In this study, a macroeconometric model is developed for the Iraqi economy. This model has its origin in and follows the basic framework of models developed for advanced economies. Efforts are made, however, to introduce modifications to accommodate the special features of the Iraqi economy.

The most recent and most sophisticated macroeconometric study of Iraq was done by A. Kader in $1974 .{ }^{3}$ Kader's model is based on the Keynesian theory of effective demand and income determination with fifteen equations (eleven behavioral equations and four identities). The behavioral equations are estimated over the period 1953-1969 with merely
one independent variable in each equation. Kader's study has some shortcomings:
a. It takes into consideration only aggregate demand and its main components. Nothing is said about the economy's capacity to meet the desired level of aggregate demand.
b. It is estimated using data expressed in current prices. The use of current prices may introduce spurious correlation resulting from common price trends in the variables of the model. This generally leads to spuriously high $R^{2} s$ and low standard errors of the estimates. 4 The presence of the common price trends also introduces multicollinearity which usually results in imprecise parameter estimates. 5
c. Total imports are estimated as a function of GNP without any distinction between consumer, capital, and intermediate goods. For a developing economy like Iraq, there are advantages to disaggregating imports. In the first place, it facilitates an analysis of the trend and growth of these types of imports, and it also allows an investigation of their interaction with different domestic demand components. Secondly, it delineates between those goods imported to raise the level of material well-being and those imported to further industrial growth.
d. Finally, Kader's study ignores the important question of model stability and provides no discussion of system-wide dynamic multipliers.

Furthermore, because of the government's continuous revision to the official data, we might expect that the estimated coefficients of Kader's model are no longer valid. Therefore, a more complete and up-to-date macroeconometric model of Iraq is greatly needed.

## Purpose and Nature of the Study

The main objective of this study is to develop a macroeconometric model for the Iraqi economy. Due to the vital importance of the oil sector in the Iraqi economy, the primary emphasis in this model will be given to the investigation of the effects of the oil sector on the structure and recent performance of the economy. In addition, simulation analysis will be utilized to derive policy implications and trace the effects of different shocks in oil variables on the Iraqi economy. The model will al so be used to forecast the Iraqi economy for the years 1979 to 1985, using the Whatron Middle East Economic Service projections for the Iraqi oil variables as our assumptions for these variables during the forecast period.

This study is undertaken to satisfy the desperate need of the country for a well-formulated and empirically tested econometric model which could further assist the concerned planning authorities in evaluating the past, present, and future performance of the Iraqi economy.

The model to be developed in this research project is a non-linear simultaneous equation system. It contains fifty-three equations of which twenty-seven are behavioral and the remainder are non-behavioral or identities. The model is based on annual data from 1960 to 1978.

This study differs from Kader's model of Iraq in several ways. It is non-linear and employs simulation analysis to evaluate performance. It describes the economy in more detail. In particular, it includes equations for the price levels, the components of aggregate supply, the wage rate, and employment. It uses constant prices and covers a longer period of time. Finally, there is a sharp contrast between the
behavioral relationships formulated in the present study and those that appear in Kader's model.

Organization of the Study

The study is organized into five chapters. Chapter II describes the Iraqi economy. Sectoral performance and the role of oil sector are examined in this chapter. The specification and estimation of the model are discussed in Chapter III. Chapter IV is concerned with the model simulation analysis. Simulation error measures and dynamic properties of the model are examined in this chapter. Specifically, different simulation experiments are performed in this chapter to examine the effects on the economy of an increase in the volume of oil exports, a decrease in the total imports of oil by OECD countries, an increase in the export price of oil, and the effects of linking oil prices to currencies other than the U.S. dollar. In addition, the forecast of Iraqi economy for the years 1979 to 1985 is also included. The last chapter summarizes the study and also contains a discussion of the study's limitations and suggestions for further research.

## FOOTNOTES

$1_{\text {For }}$ a review of the state of the art in macroeconometric modelbuilding, see Paul A. Samuelson, "The Art and Science of Macro-models Over 50 Years," in Gary Fromm and Lawrence R. Klein (eds.), The Brookings Model: Perspective and Recent Developments (Amsterdam, 1975), pp. 3-10.

2Lawrence R. Klein, "What Kind of Macroeconometric Model for Developing Economies?" in Arnold Zellner (ed.), Readings in Economic Statistics and Econometrics (Boston, 1968), pp. 559-570.
${ }^{3}$ Ahmed A. Kader, "The Role of the $0 i 1$ Export Sector in the Economic Development of Iraq" (unpub. Ph.D. Dissertation, West Virginia University, 1974), pp. 129-167.

4M. W. Khouja and P. G. Sadler, The Economy of Kuwait - Development and Role in International Finance (London, 1979), p. 94.
${ }^{5}$ Ibid.

## CHAPTER II

## THE IRAQI ECONOMY

Iraq is an Arab country in Western Asia with an area of 169,317 square miles (the equivalent of 438,317 square kilometers) and a population of approximately 12.7 million. 1 She is bounded by Turkey on the north, Iran on the east, Kuwait on the south, Saudi Arabia and Jordan on the southwest and by Syria on the northwest. Called Mesopotamia by the classical world, the country became known as Iraq in the 7 th century. Baghdad is the national capital.

The summers in Iraq are overwhelmingly hot with shade temperatures of over $110^{\circ} \mathrm{F}$. Winters, however, are severe in the north, but mild in the south. Rainfall is scanty, except for the northeast where enough rain occurs to grow crops without irrigation. Elsewhere, agriculture is mostly dependent upon irrigation from the two rivers (Tigris and the Euphrates).

Iraq gained her legal independence in 1932 when she ceased to be British mandate. Iraq was not fully independent from Britain, however, until the 1958 revolution which proclaimed Iraq a republic after twentysix years as a monarchy.

Iraq is a major member of OPEC organization. In 1979, Iraq's oil production reached a level of 3.4 million barrels a day, making Iraq second only to Saudi Arabia as a major oil exporter. ${ }^{2}$

## GNP and Price Level

Table I shows that during the $1960-1978$ period real gross national product (GNP) increased at an average annual growth rate of 7.6 percent. Between 1960 and 1972 real GNP increased at an annual rate of 5.1 percent. But, from 1973 to 1978 , it grew at a very rapid rate of 12.7 percent per year. Two important factors contributed to the rapid growth during the latter period. First, unlike the first period, the second was characterized by political stability which allowed more efforts to be devoted to economic development. Second, the successful nationalization in 1972 of foreign oil companies operating in Iraq and the subsequent increases in oil prices augmented government revenues thus increasing public development expenditures.

Over the period, the Iraqi population increased at a rate of 3.3 percent per annum. Because real GNP grew faster than population, real per capita income increased at an annual growth rate of 4.0 percent. Despite this increase, per capita income in Iraq is still lower than in many countries in the world. For example, in 1978, the per capita income in Iraq was $\$ 1,860$ as compared to $\$ 6,910$ in Libya, $\$ 2,910$ in Venezuela, $\$ 3,470$ in Spain, and $\$ 5,030$ in Britain. ${ }^{3}$

Table I al so shows the trend of price level (consumer price index) and its rates of change per annum for the 1960-1978 period. During phase one (1960-1972), the consumer price index increased at an annual rate of only 2.7 percent. During phase two (1973-1978), it increased at an annual rate of 8.18 percent. Several factors have contributed to this jump in the inflation rate. First, the government's injection of the rapidly increasing oil revenues into the economy exceeded the economy's absorptive capacity. Second, beginning in 1973, import prices

TABLE I
IRAQI REAL GROSS NATIONAL PRODUCT
AND THE CONSUMER PRICE INDEX
1960-1978

| Year | Real GNP | Percentage Change | $\begin{gathered} \text { Consumer } \\ \text { Price } \\ \text { Index } \\ (1975=100) \end{gathered}$ | Percentage Change |
| :---: | :---: | :---: | :---: | :---: |
| 1960 | 1439.7 |  | 58.7 |  |
| 1961 | 1584.5 | 10.1 | 59.3 | 1.0 |
| 1962 | 1638.6 | 3.4 | 60.1 | 1.4 |
| 1963 | 1644.3 | 0.3 | 62.5 | 4.0 |
| 1964 | 1831.4 | 11.4 | 62.4 | -0.2 |
| 1965 | 1973.6 | 7.8 | 62.1 | -0.5 |
| 1966 | 2071.3 | 5.0 | 63.4 | 2.1 |
| 1967 | 1968.0 | -5.0 | 65.4 | 3.2 |
| 1968 | 2262.2 | 14.9 | 66.9 | 2.3 |
| 1969 | 2359.8 | 4.3 | 70.7 | 5.7 |
| 1970 | 2431.2 | 3.0 | 73.8 | 4.4 |
| 1971 | 2529.3 | 4.0 | 76.4 | 3.5 |
| 1972 | 2577.1 | 1.9 | 80.4 | 5.2 |
| 1973 | 3194.7 | 24.0 | 84.7 | 5.3 |
| 1974 | 3116.5 | -2.4 | 91.3 | 7.8 |
| 1975 | 3907.2 | 25.4 | 100.0 | 9.5 |
| 1976 | 4666.2 | 19.4 | 112.8 | 12.8 |
| 1977 | 4828.2 | 3.5 | 123.1 | 9.1 |
| 1978 | 5125.0 | 6.1 | 128.8 | 4.6 |

In Millions of Iraqi Dinars (ID) - One ID $=\$ 3.38$
Sources: 1. United Nations, Office of Development Research and Policy Anal ysis, DRPA Computer Tape of National Accounts, Labour Force and Population, 1980 (New York, 1981).
2. IMF, International Financial Statistics (Washington, $D C$, 1980).
have risen sharply as a result of world-wide inflation. Third, infrastructural bottlenecks, such as deficient ports facilities and communication networks, were a deterrent to smooth inflow of imports.

Despite this, inflation in Iraq is still less than in other OPEC countries. For example, during the 1970-1978 period, the consumer price index in Iraq increased at an annual growth rate of 7.2 percent, as compared to a 12.0 percent growth in Iran, a 14.7 percent growth in Saudi Arabia, and a 16.9 percent growth in Nigeria. 4

This low rate of inflation in Iraq is due to the extensive system of government price controls and subsidies which cover essential consumer goods. Total government subsidies averaged around ID 76 million (one Iraqi Dinar $(I D)=\$ 3.38$ ) during the 1974-1978 period.

## Composition of Gross Domestic Product

The major components of Iraq's gross domestic product are oil, agriculture, manufacturing, construction, transportation and communications, and services. These components (they can also be referred to as sectors) may be examined in terms of their importance and growth of the national economy.

## 0il Sector

The oil sector dominates the Iraqi economy. It accounted for more than one third of the country's gross domestic product (GDP) during the 1960-1973 period (Table II). Following the rise in oil prices, the share of the oil sector in Iraq's GDP rose sharply, reaching 54.2 percent in 1978.

TABLE II
GROSS DOMESTIC PRODUCT BY SECTORS
AT CURRENT PRICES

| Sector \& Percent | 1960 | 1963 | 1966 | 1969 | 1973 | 1975 | 1978 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Agriculture | 97.9 | 109.3 | 140.0 | 161.4 | 188.2 | 297.3 | 473.0 |
| Percent | 17.3 | 16.3 | 15.4 | 15.0 | 12.1 | 7.5 | 7.3 |
| 0 il Extraction | 208.0 | 242.5 | 298.5 | 335.9 | 563.4 | 2279.0 | 3529.2 |
| Percent | 36.8 | 36.2 | 32.8 | 31.3 | 36.4 | 57.4 | 54.2 |
| Manufacturing | 56.1 | 66.1 | 80.4 | 110.3 | 168.5 | 247.2 | 493.9 |
| Percent | 9.9 | 9.9 | 8.8 | 10.3 | 10.9 | 6.2 | 7.6 |
| Construction | 23.1 | 20.3 | 34.5 | 38.5 | 57.6 | 91.3 | 317.6 |
| Percent | 4.1 | 3.0 | 3.8 | 3.6 | 3.7 | 2.3 | 4.9 |
| Transportation |  |  |  |  |  |  |  |
| \& Communication | 39.7 | 48.8 | 63.2 | 69.1 | 88.5 | 157.6 | 263.5 |
| Percent | 7.0 | 7.3 | 6.0 | 6.4 | 5.7 | 4.0 | 4.1 |
| Services | 136.9 | 178.4 | 285.4 | 348.1 | 467.6 | 880.4 | 1383.3 |
| Percent | 24.2 | 26.6 | 31.4 | 32.4 | 30.2 | 22.2 | 21.3 |
| GDP at factor cost | 565.2 | 670.6 | 909.7 | 1074.2 | 1549.8 | 3970.5 | 6506.0 |

[^0]The Iraqi oil industry up to 1972 was dominated by private foreign firms with whom the government, in 1952, signed a concession agreement providing for equal sharing of profits on crude oil production. In 1960, negotiations to revise the concession agreement between the Iraqi government and the companies broke down. By decree, the Iraqi government then reduced the concession area to a fraction of its previous size. The resulting struggle between the government and the companies impeded the development of the Iraqi oil industry during the 1960 s , and eventually ended with the nationalization of foreign oil companies in 1972. 5 The annual rate of growth of Iraqi crude production dropped from 21 percent during the $1950-1960$ period to 4.8 percent during the $1960-$ 1970 period.

Iraq exports most of its oil output. During the 1960-1978 period, oil exports accounted, on average, for about 95 percent of Iraqi oil output (Table III).

There is a general concensus among economists that a policy of industrialization normally lead to a drain of foreign exchange and balance of payments difficulties. However, Iraq's development experience, particularly during the post-nationalization era, has proved thus far to be an exception to this general rule. Revenues derived from oil exports provided foreign exchange for essential imports and strengthened Iraq's external account. The strengthening external position is indicated by the rise in gold and foreign exchange reserves held by the Central Bank of Iraq (CBI) from $\$ 781$ million at the end of 1972 to $\$ 6990$ million at the end of 1977.6 0il exports during the 1960-1978 period constituted, on the average, about 82 percent of the country's total merchandise exports. Its contribution grew markedly from 68

TABLE III

## CRUDE PETROLEUM PRODUCTION <br> AND EXPORTS <br> 1960-1978

|  | Production | Exports | Exports as Percent <br> of Production |
| :--- | :--- | :--- | :--- |
| Year | 0.355 | 0.331 | 93.2 |
| 1960 | 0.368 | 0.347 | 94.3 |
| 1961 | 0.368 | 0.346 | 94.0 |
| 1962 | 0.424 | 0.401 | 94.6 |
| 1963 | 0.458 | 0.438 | 95.6 |
| 1964 | 0.479 | 0.457 | 95.4 |
| 1965 | 0.508 | 0.482 | 94.9 |
| 1966 | 0.448 | 0.428 | 95.5 |
| 1967 | 0.549 | 0.522 | 95.1 |
| 1969 | 0.555 | 0.528 | 95.1 |
| 1970 | 0.565 | 0.546 | 96.6 |
| 1971 | 0.618 | 0.591 | 95.6 |
| 1972 | 0.535 | 0.524 | 97.9 |
| 1973 | 0.787 | 0.703 | 95.4 |
| 1974 | 0.719 | 0.675 | 93.9 |
| 1975 | 0.826 | 0.751 | 90.9 |
| 1976 | 0.882 | 0.818 | 92.7 |
| 1977 | 0.857 | 0.935 | 0.870 |

Source: OPEC, Annual Statistical Bulletin 1979 (Vienna, 1979).
percent in 1960 to 98.6 percent in 1978 (Table IV). There is no doubt that oil exports will dominate Iraq's foreign trade in the years to come.

Oil revenues are the major source of finance to the Ordinary Budget and Development Budget. The share of oil receipts in the combined revenues of the Ordinary and Development budgets amounted, on average, to about 74 percent during the 1960-1978 period. Its contribution grew markedly from 67.7 percent in 1960 to 92 percent in 1978 (Table V). Between 1951 and 1974, about 91 percent of Development Budget revenues came from oil revenues (Table VI).

The oil sector, in spite of its high share in GDP, is extremely capital intensive and employs only a small proportion of total employment in the country. In 1973, it employed less than 0.7 percent of the country's workforce (Table VII).

## Agriculture

This sector includes farming, forestry, and fishing and, next to oil, it is the most important commodity-producing sector in the economy. Its importance stems from the following reasons: (a) it employs the highest percentage of the country's total labor force, (b) it is an important source of food and raw materials for domestic consumption, and (c) it accounts for the bulk of non-oil exports.

Employment in this sector, even though it has decreased in recent years, continued to be the highest. While the sector employed about 75 percent of total estimated labor in the 1960 s, this percentage declined to about 54 percent in 1973. The sectoral distribution of gainfully employed labor in 1973 is shown in Table VII. The estimated number of

## TABLE IV

## PROPORTION OF OIL EXPORTS IN TOTAL MERCHANDISE EXPORTS 1960-1978

|  | Total <br> Merchandise <br> Exports | 0il <br> Exports | Oil Exports as <br> Percent of Total <br> Merchandise Exports |
| :--- | :---: | :---: | :---: |
| 1960 | 233.6 | 158.9 | 68.0 |
| 1961 | 236.3 | 178.2 | 75.4 |
| 1962 | 247.2 | 178.6 | 72.2 |
| 1963 | 278.9 | 206.8 | 74.1 |
| 1964 | 299.9 | 226.4 | 75.5 |
| 1965 | 315.0 | 235.7 | 74.8 |
| 1966 | 333.5 | 249.3 | 74.8 |
| 1967 | 297.4 | 217.9 | 73.3 |
| 1968 | 371.7 | 269.6 | 72.5 |
| 1969 | 372.1 | 271.8 | 73.0 |
| 1970 | 392.8 | 280.0 | 71.3 |
| 1971 | 500.0 | 375.2 | 75.0 |
| 1972 | 371.3 | 317.3 | 85.5 |
| 1973 | 588.1 | 555.3 | 94.4 |
| 1974 | 1949.9 | 1921.0 | 98.5 |
| 1975 | 2450.2 | 2414.8 | 98.6 |
| 1976 | 2873.9 | 2891.5 | 98.3 |
| 1977 | 3250.9 | 3204.4 | 98.5 |
| 1978 |  |  | 98.6 |
|  |  |  |  |

In Million of Iraqi Dinars
Sources: 1. United Nation, Yearbook of International Trade Statistics 1979 (New York, 1979).
2. OPEC, Annual Statistical Bulletin 1979 (Vienna, 1979).

TABLE V
OIL REVENUES AS A PERCENTAGE OF
TOTAL GOVERNMENT REVENUES
1960-1978

|  | Total <br> Revenues | Oil <br> Revenues | Oil Revenues as <br> Percent of Total <br> Revenues |
| :--- | ---: | ---: | ---: |
| 1960 | 140.5 | 95.1 | 67.7 |
| 1961 | 142.6 | 94.8 | 66.5 |
| 1962 | 145.6 | 95.1 | 65.3 |
| 1963 | 158.0 | 110.0 | 69.6 |
| 1964 | 182.3 | 126.1 | 69.2 |
| 1965 | 192.4 | 131.4 | 68.3 |
| 1966 | 212.0 | 140.8 | 66.4 |
| 1967 | 207.6 | 130.1 | 62.7 |
| 1968 | 265.5 | 174.3 | 65.6 |
| 1969 | 274.5 | 171.1 | 62.3 |
| 1970 | 301.8 | 183.1 | 60.7 |
| 1971 | 424.1 | 296.8 | 70.0 |
| 1972 | 320.8 | 191.4 | 60.0 |
| 1973 | 694.7 | 557.4 | 80.2 |
| 1974 | 1815.9 | 1683.3 | 92.7 |
| 1975 | 2383.5 | 2214.9 | 92.9 |
| 1976 | 2812.5 | 2510.2 | 89.3 |
| 1977 | 3128.8 | 3275.9 |  |
| 1978 |  |  | 90.9 |
|  |  |  | 92.0 |

In Millions of Iraqi Dinars
Sources: 1. OPEC, Annual Statistical Bulletin 1979 (Vienna, 1979).
2. Central Statistical Organization, Annual Abstracts of Statistics 1970 (Iraq, 1971).
3. Central Statistical Organization, Annual Abstracts of Statistics 1975 (Iraq, 1976).
4. Central Statistical Organization, Annual Abstracts of Statistics 1978 (Iraq, 1979).

## TABLE VI

REVENUES OF ECONOMIC DEVELOPMENT PROGRAMS AND PLANS 1951-1974

|  | Program/Plan | Total Revenues | $0 i 1$ <br> Revenues | $0 i 1$ Revenues as Percent of Total Revenues |
| :---: | :---: | :---: | :---: | :---: |
| Revised F | First General Program (1951-1954) | 107.5 | 104.4 | 97.1 |
| Revised S | Second General Program $(1955-1959)$ | 241.4 | 234.1 | 97.0 |
| Provision | $\begin{aligned} & \text { onal Economic Plan } \\ & (1959-1961) \end{aligned}$ | 100.9 | 94.1 | 93.3 |
| Detailed | Economic Plan (1961-1964) | 239.0 | 195.6 | 81.8 |
| Five-Year | $\begin{aligned} & \text { Economic Plan } \\ & (1965-1969) \end{aligned}$ | 407.0 | 372.3 | 91.5 |
| National | Development Plan $(1970-1974)$ | 1540.0 | 1389.7 | 90.2 |
| Total |  | 2635.8 | 2390.2 | 90.7 |

In Millions of Iraqi Dinars
Source: Kadhim A. Al-Eyed, 0il Revenues and Accelerated Growth: Absorptive Capacity in Iraq (New York, 1979), p. 34,

## TABLE VII

SECTORAL DISTRIBUTION OF TOTAL GAINFUL EMPLOYMENT IN IRAQ IN 1973

| Sector | Number <br> (in thousands) | Percent of <br> Total |
| :--- | :---: | :---: |
| Agriculture | 1540.4 | 54.0 |
| Mining (0i1) | 18.5 | 0.65 |
| Manufacturing | 170.0 | 6.00 |
| Electricity, Gas and Water | 14.3 | 0.50 |
| Construction | 73.0 | 2.55 |
| Commerce | 164.0 | 5.74 |
| Transport | 162.0 | 5.67 |
| Services | 330.0 | 11.56 |
| Other | 380.4 | 13.33 |
| Total | 2852.6 | 100.00 |

Source: Europa Publications, The Middle East and North Africa 1978-1979 (London, 1978), p. 392.
gainful employment in all sectors in 1973 stood at 2,852 thousands. Of this number, agriculture alone used 1,540 thousands, representing 54.0 percent of the country's total employment.

Exports other than oil are mainly of agricultural origin; agricultural products constitute more than half of non-oil exports. Major agricultural exports are dates, barley, wheat, and rice. 7

Iraq's agricultural resources consist of about 12 million hectars of potentially cultivable land, equivalent to about one-fourth of the total area of the country. 8 Less than two thirds of the cultivable land is cultivated, of which half is irrigated. Owing to the widespread practice of the fallow system, however, only about 50 percent of the cultivated land is under crops in any one year.

In contrast to the rising share of oil in GDP, agriculture's share has declined rather sharply since the early 1960s (Table II). Several factors have contributed to the poor performance of this sector. Chief among these is the decision of the Iraqi planners to neglect agriculture in the development plans of 1951-1974. During this period, less than 50 percent of planned allocations to agriculture was implemented. 9 Moreover, most of the allocations went to flood-control schemes and dams rather than to drainage canals, land reclamation, development of animal wealth, and other activities that directly contribute to increasing agricultural output. Estimates of the damage due to failure to undertake drainage indicates that $20-30$ percent of the irrigation area has been deserted after its salination surpassed the limit. 10

The growing awareness and concern with the problems of the agriculture sector was reflected in the country's latest development plan (1976-1980). In the first three years of the plan agriculture received

17 percent of the total development expenditures. 11 The aim is to increase agricultural output by reclaiming lands and solving the salinity problem which affects irrigated land.

## Manufacturing

The manufacturing sector is the third largest commodity-producing sector after oil and agriculture. It accounted for approximately 11 percent of GDP and about 6 percent of the country's total employment in 1973 (Table II and Table VII). Its value added increased from ID 56.1 million in 1960 to ID 493.9 million in 1978, an annual growth rate of 12.8 percent.

All heavy industries are state-owned and the government has sizable shares in many private firms. The public sector concentrates on large scale and capital-intensive industries, leaving small-scale industries in the areas of consumer goods and services to the private sector. ${ }^{12}$

The major industries in Iraq are foodstuffs and beverages, textile and clothing, construction materials, and petroleum refining. Other important industrial projects completed in the past two years were a petro-chemical complex, an iron and steel complex, and a chemical fertilizer plant.

The manufacturing sector experienced a comparatively high rate of growth (almost 9 percent annually) during the 1960-1973. The rate accelerated during the 1973-1978 period to about 24 percent annually. The reason for the good performance of this sector is that during the last 18 years the Iraqi planners have given top priority to this sector. In the first three years of the development plan (1976-1980), manufacturing received 32.5 percent of the total development expenditures. ${ }^{13}$

## Other Sectors

The services sector which includes domestic trade, banking, ownership of dwellings, and public administration and defense is the largest non-commodity producing sector of the economy. Its value added increased from ID 136.9 million in 1960 to ID 1383.3 million in 1978, an annual growth rate of 13.7 percent. In spite of the remarkably high growth rate of services, however, its share in GDP has decreased from 24.2 percent.in 1960 to 21.3 percent in 1978 (Table II). This is largely due to an even greater growth of the contribution of the oil sector.

As for the construction sector, the trend continued to be upward during the period under study. Its value added increased from ID 23.1 million in 1960 to ID 317.6 million in 1978, an annual growth rate of 15.7 percent. Despite technical problems associated with scarcity of engineers, shortages in input materials and skilled labor, its share in GDP increased from about 4 percent to 5 percent (Table II).

The value added in transportation and communication sector increased from ID 39.7 million in 1960 to ID 263.5 million in 1978, an annual growth rate of 11.1 percent. In spite of this big increase, the transport system in Iraq is still inadequate for its ambitious development programs. The services provided by this sector are vital for the speedy execution of these programs and the proper operation of newly established projects.

## Gross Domestic Expenditures

Table VIII combines the relevant information on aggregate consumption and investment expenditures and their respective shares in GNP for

TABLE VIII
IRAQ'S CONSUMPTION AND INVESTMENT EXPENDITURES
IN CONSTANT PRICES, 1960-1978

|  | Consumption |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Year | Consumption <br> as Percent <br> of GNP | Investment <br> Expenditures | Investment <br> as Percent <br> of GNP |  |
| 1960 | 656.2 | 45.6 | 234.7 | 16.3 |
| 1961 | 749.6 | 47.3 | 262.6 | 16.6 |
| 1962 | 793.9 | 48.4 | 224.4 | 13.7 |
| 1963 | 710.9 | 43.2 | 211.9 | 12.9 |
| 1964 | 880.1 | 48.1 | 251.4 | 13.7 |
| 1965 | 1034.6 | 52.4 | 251.6 | 12.7 |
| 1966 | 1061.4 | 51.2 | 283.9 | 13.7 |
| 1967 | 961.2 | 48.8 | 269.9 | 13.7 |
| 1968 | 1161.8 | 51.4 | 272.4 | 12.0 |
| 1969 | 1149.9 | 48.7 | 289.1 | 12.3 |
| 1970 | 1131.9 | 46.6 | 317.9 | 13.1 |
| 1971 | 1246.9 | 49.3 | 326.5 | 12.9 |
| 1972 | 1300.2 | 50.5 | 338.8 | 13.1 |
| 1973 | 1270.4 | 39.8 | 428.1 | 13.4 |
| 1974 | 1695.9 | 54.4 | 617.1 | 19.8 |
| 1975 | 2059.9 | 52.7 | 971.1 | 31.2 |
| 1976 | 1968.9 | 42.2 | 1417.0 | 36.3 |
| 1977 | 2266.7 | 46.9 | 1621.8 | 34.8 |
| 1978 | 2434.3 | 47.5 | 1838.7 | 35.9 |

In Million of Iraqi Dinars
Source: United Nation, Office of Development Research and Policy Analysis, DRPA Computer Tape of National Accounts, Labour Force and Population, 1980 (New York, 1981).
the 1960-1978 period. Aggregate consumption expenditures measured in terms of millions of 1975 dinars increased at an annual growth rate of 7.5 percent, from 656.2 in 1960 to 2434.3 in 1978. Because the growth rates of GNP and consumption were almost identical, the proportion of consumption expenditures out of GNP remained almost stable at about 50 percent over the entire period except for 1973 and 1976. The above figures al so suggest a two-fold increase in aggregate real per capita consumption expenditures from 1960 to 1978. Taking the latter as a crude yardstick for the standard of living, this indicates a substantial improvement in the overall well-being of the population over this period.

The same table shows that real domestic investment increased from ID 234.7 million in 1960 to ID 1838.7 million in 1978, an increase of 738 percent. Most of this increase, however, occurred during the 19731978 period. It grew at an annual rate of 3.1 percent during the 19601972 period, whereas its annual growth rate jumped to 32.6 percent during the 1973-1978 period. Political instability and fluctuations in foreign exchange receipts due to the strained relations between the Iraqi government and foreign oil companies were mainly responsible for the relative stagnation of investment in fixed capital formation during the 1960-1972 period.

Unlike aggregate consumption expenditures, there was an increase in the share of real domestic investment in GNP, rising from 16.3 percent in 1960 to about 36 percent in 1978. This reflects improvenent in the country's ability to invest. As can be ascertained from Table VIII, real domestic investment amounted, on average, to 13.6 percent of real GNP during the 1960-1972 period; the ratio increased to 28.6 percent
during the following six-year period. This explains the high rates of economic growth during the 1973-1978 period and the relatively low rates of growth during the 1960-1972 period.

The figures for private and government consumption expenditures are given in Table IX. Real private consumption expenditures increased from ID 472.9 million in 1960 to ID 1635.5 million in 1978 , an annual growth rate of 7.1 percent. At the same time, its governnent counterpart grew at an annual growth of 8.5 percent. The difference between these growth rates gradually narrowed the gap between government and private consumption expenditures from about 39 percent to around 49 percent over the span of 19 years 1960-1978 (Table IX).

The figures for private and government investment are also given in Table IX. Although real private investment expenditures increased in both magnitude and rate of change, they were outweighed on both accounts by their government counterpart. The former grew at about 4.5 percent per year, whereas the latter grew at about 16 percent annually. In 1960, the ratio of government to private investment expenditures was 75.9 percent. The same ratio was 111.9 percent in 1972 and by 1978 it increased to 524.9 percent in favor of the government (Table IX). The government's predominent role in investment expenditures, coupled with its increasingly larger share in aggregate consumption expenditures, could be interpreted as the prime force behind the rapid growth of the 1960-1978 period.

## The Structure of Imports

Table $X$ summarizes the import performance of the foreign trade sector during the 1960-1978 period. At that stage of Iraqi development,

## TABLE IX

## PRIVATE AND GOVERNMENT CONSUMPTION AND INVESTMENT EXPENDITURES, 1960-78

| Year | Private <br> Consumption Expenditures | Government Consumption Expenditures | Ratio of Government Consumption to Private Consumption (Percent) | Private Investment Expenditures | Government Investment Expenditures | Ratio of Government Investment to Private Investment (Percent) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1960 | 472.9 | 183.3 | 38.8 | 133.4 | 101.3 | 75.9 |
| 1961 | 546.4 | 203.3 | 37.2 | 148.5 | 114.1 | 76.8 |
| 1962 | 571.5 | 222.4 | 38.9 | 113.9 | 110.5 | 97.0 |
| 1963 | 486.6 | 224.3 | 46.1 | 99.8 | 112.0 | 112.2 |
| 1964 | 613.9 | 266.2 | 43.4 | 107.6 | 143.8 | 133.6 |
| 1965 | 739.1 | 295.5 | 40.0 | 113.6 | 137.9 | 121.4 |
| 1966 | 747.2 | 314.1 | 42.0 | 139.3 | 144.6 | 133.6 |
| 1967 | 648.8 | 312.4 | 48.2 | 120.2 | 149.7 | 124.5 |
| 1968 | 758.9 | 357.9 | 47.2 | 127.9 | 144.4 | 112.9 |
| 1969 | 766.3 | 383.6 | 50.1 | 121.0 | 168.1 | 138.9 |
| 1970 | 743.9 | 387.9 | 52.1 | 144.3 | 173.6 | 120.3 |
| 1971 | 838.2 | 408.7 | 48.8 | 150.4 | 176.1 | 117.1 |
| 1972 | 874.7 | 425.5 | 48.6 | 159.9 | 178.9 | 111.9 |
| 1973 | 854.4 | 415.9 | 48.8 | 103.4 | 324.7 | 314.0 |
| 1974 | 1140.5 | 555.2 | 48.7 | 99.7 | 517.4 | 520.5 |
| 1975 | 1384.6 | 675.4 | 48.8 | 181.1 | 790.0 | 436.2 |
| 1976 | 1323.6 | 645.3 | 48.8 | 237.6 | 1179.4 | 496.4 |
| 1977 | 1521.6 | 744.9 | 49.0 | 251.9 | 1369.9 | 543.8 |
| 1978 | 1635.5 | 798.8 | 48.8 | 294.2 | 1544.5 | 524.9 |

## In Millions of 1975 Iraqi Dinars

Source: United Nations, Office of Development Research and Policy Analysis, DRPA Computer Tape of National Accounts, Labour Force and Population, 1980 (New York, 1981).
imports assumed a dual role in the economy. Imports of capital, intermediate and consumer goods were to provide the essential ingredient for industrial development and secure a balance between aggregate demand and aggregate supply, thus subduing inflationary pressures. As Table $X$ shows, total merchandise imports increased from ID 138.9 million in 1960 to ID 1244.1 million in 1978, an annual growth rate of about 13 percent. This high rate of growth is due to a growing need for capital and intermediate goods, the need to meet shortages in consumer goods, and rising foreign exchange receipts.

TABLE X
THE COMPOSITION OF IMPORTS IN SELECTED YEARS

| Year | Consumer <br> Goods <br> (Percent) | Other <br> Goods <br> (Percent) | Capital and <br> Intermediate <br> Goods <br> (Percent) | Total <br> Merchandise <br> Imports <br> (in Mill. of <br> Dinars) |
| :--- | :---: | :---: | :---: | :---: |
| 1960 | 26.9 | 13.5 | 59.4 | 138.9 |
| 1965 | 26.1 | 16.5 | 57.3 | 162.6 |
| 1970 | 21.8 | 14.9 | 63.2 | 181.7 |
| 1975 | 20.6 | 8.4 | 70.7 | 1244.7 |
| 1978 | 14.3 | 9.3 | 76.6 | 1244.1 |

Sources: 1. United Nations, Yearbook of International Trade Statistics 1966 (New York, 1968).
2. United Nations, Yearbook of International Trade Statistics 1970 (New York, 1973).
3. United Nations, Yearbook of International Trade Statistics 1975 (New York, 1976).
4. United Nations, Yearbook of International Trade Statistics 1979 (New York, 1980).

The major components of Iraq's imports include consumer goods-food and live animals, beverages, crude materials excluding fuels, animal and vegetable oil, and fat; intermediate goods-basic manufactures such as iron, construction materials, and rubber; capital goods-machines and transport equipment; and other goods which includes chemicals and miscellaneous manufactured goods.

The figures in Table $X$ reflect Iraqi import policy during the 19601978 period. Imports of consumer goods amounted to ID 37.4 million in 1960, whereas by 1978 they were in excess of ID 177 million. Despite this increase, their share in total merchandise imports steadily declined from 26.4 percent in 1960 to around 14 percent in 1978. The share of other goods in total merchandise imports also declined from 13.5 percent in 1960 to about 9 percent in 1978. These movements in imports of these two categories mirror the policy of protectionism and the working of import substitution mechanism.

The largest component of total merchandise imports, imports of capital and intermediate goods, were encouraged to foster the establishment of import substitution industries. The share of these imports in total imports rose from 59.4 percent in 1960 to about 77 percent in 1978 (Table X). Moreover, imports of capital and intemediate goods grew faster (almost 15 percent annually) than total imports, increasing from ID 82.6 million in 1960 to ID 952.7 million in 1978 (Table X).

Money and Banking

The banking system in Iraq comprises three categories: commercial banks, specialized banks, and the Central Bank. In 1964 commercial banks were amalgamated into one state-owned-the Rafidian Bank. Although
the activities of this bank have grown substantially with the planned development of the Iraqi economy, it remains essentially an urban institution. Its facilities are heavily concentrated in Baghdad and, to a lesser extent, in two other large cities, Basrah and Mousl; residents of smaller cities do not have access to its services.

The specialized banks are al so state-owned, and include the Agricultural Bank (founded in 1936), the Industrial Bank (founded in 1947), and the Real State Bank (founded in 1948). These banks specialize in financing private investment in agriculture, industry, and housing, respectively. Their main source of lending power is their own capital, the Central Bank of Iraq, time and demand deposits, and the issue of bonds. These banks do not resort to issuing bonds due to the absence of an organized capital market in Iraq. The interest rate charged by these banks cannot exceed the legally fixed rate of 7 percent per annum. 14 This rate is lower than the rate charged in the unorganized money market.

The Central Bank of Iraq (CBI) was founded in 1947. It consists of two departments-the issue department and the banking department-and is managed by a nine-member board of directors. While the CBI possesses the three traditional tools of monetary control, (1) open market operations, (2) changes in the reserve requirements, (3) changes in the discount rate, their effectiveness is effectively hampered by the institutional setting on which it was superimposed. 15 In particular, commercial banks have a very high liquidity ratio, amounting to 30.7 in 1976.

Sources of monetary base in Iraq include the CBI's net holdings of foreign assets, the CBI's net credit to the banking system, and the CBI's net claims on the government. Among these, the last two represent
the domestic components of monetary base, over which the monetary authorities have direct control. The third source of the monetary base, net foreign assets holdings of the CBI, is directly related to the external trade balance. Therefore, the CBI has only limited direct control of the money supply. 16

## FOOTNOTES

${ }^{1}$ Iraqi Office Press, Iraq Monthly (September, 1981), p. 32.
2Basil al-Bustany, "Iraq: Economic Developments," AEI Foreign Policy and Defense Review, II (1980), pp. 38-40.
${ }^{3}$ The World Bank, World Development Report, 1980 (Washington, D.C., 1980), p. 111.

4These inflation rates were calculated from the International Monetary Fund, International Financial Statistics (Washington, D.C., 1980).
${ }^{5}$ Farid Abolfathi, et al., The OPEC Market to Nineteen Eighty-Five (Massachusetts, 1977), p. 136.

6Europa Publications, The Middle East and North Africa 1978-1979 (London, 1978), p. 391.

7United Nations, Studies on Selected Development Problems in Various Countries, 1972 (New York, 1973), p. 13.
${ }^{8}$ Taghi T. Kermani, Economic Development in Action: Theories, Problems, and Procedures as Applied in the Middle East (Ohio, 1967), p. 4 .
${ }^{9}$ Abolfathi, p. 140.
10Yusif A. Sayigh, The Economies of the Arab World (New York, 1978), p. 31.
$11_{\text {Europa Publications, The Middle East and North Africa 1979-1980 }}$ (London, 1979), p. 409.

12 Kadhim A. Al-Eyed, 0 il Revenues and Accelerated Growth; Absorpive Capacity in Iraq (New York, 1979), p. 71.
13. Europa Publications, 1979, p. 409.

14 Abdul-Rasool F. Ali, "The Effect of the Pattern use of 0il Revenues on the Growth and Prices of Iraq" (unpub. Ph.D. dissertation, University of Massachusetts, 1970), p. 41.
${ }^{15}$ Abbas Alnasrawi Financing Economic Development in Iraq (New York, 1967), p. 147.
${ }^{16}$ Asim Salih, "The Role of the Central Bank of Iraq in Determining and Controlling the Money Supply," The Economist (November, 1978), pp. 31-56.

## CHAPTER III

## SPECIFICATION OF THE MODEL

The Iraqi macroeconometric model is formulated in terms of 53 equations of which 27 are stochastic and the remainder are non-behavioral equations or identities. These equations purport to simultaneously explain the 53 endogenous variables. The model also includes 36 predetermined variables. It is non-linear in variables but linear in parameters.

The equations and identities of the model can be categorized into six groups:
A. Domestic Demand
B. Imports
C. Non-0il Output
D. 0il Sector
E. Wages and Employment
F. Prices

This particular way of grouping the model's equations singles out the more important sectors of the economy and facilitates the task of identifying the broad directions of causality among different components of the model. The model features demand functions for consumption, investment, and imports. The supply side is represented in the model by a set of equations for sectoral value added related to final demand components. The dominance of oil export revenues is evident in its strong
infiltration throughout the system; it influences aggregate income hence aggregate expenditures, which in turn, affect sectoral production and employment. The model also emphasizes the role of capital, intermediate and consumer goods in the import sector and the role of oil exports in the export sector.

The data used in the estimation process consists of 19 observations (1960-1978) and regression coefficients are estimated both by ordinary least square (OLS) and two-stage least square (TSLS) methods. As the number of the predetermined variables of the present model far exceeds the number of observations, there is insufficient degrees of freedom to estimate the first-stage reduced-fom equations of the TSLS. To solve this problem, we estimated the reduced form equations using only those predetermined variables that are highly related to the endogenous variable in the equation, excluding from each reduced form equation those predetermined variables believed to be unimportant. 1 The estimates appearing in the specified model are the OLS estimates, whereas the TSLS estimates are given in Appendix A. The difference between OLS and TSLS estimates were very small, hence the reason for using the OLS estimates in the model.

Equations of the model are selected after many experiments with different variables and functional relationships both at (a) the estimation stage, and (b) the dynamic simulation of the overall mode1. The statistical results of the model are subject to those limitations imposed by a small sample and a relatively inaccurate data base.

To facilitate the subsequent discussion of the specification of the model, it is necessary to provide a glossary of variables (Table XI) and a statement of the model's equations. In all cases, the t-statistic,

TABLE XI
ALPHABETICAL LISTING OF THE VARIABLESa

| Label | Description |
| :---: | :---: |
| CE | Private consumption |
| CET | Total consumption |
| DDA | Aggregate domestic demand |
| DDAN | Aggregate domestic demand, in millions of current dinars |
| GDP | Gross domestic product |
| GDPN | Gross domestic product, in millions of current dinars |
| GDPNP | Non-oil GDP |
| GDPNPN | Non-oil GDP, in millions of current dinars |
| GNPN | Gross national product, in millions of current dinars |
| GVCEN | Government consumption, in millions of current dinars |
| GVCEN/N | Per capita government consumption, in millions of current dinars |
| *GVRNPTN | Government non-oil revenues, in millions of current dinars |
| GVRPT\$ | Government oil revenues, in millions of current dollars |
| GVRPTBA\$ | Goverment oil revenues base, in millions of current dollars |
| GVRPTN | Government oil revenues, in millions of current dinars |
| GVRTN | Total government revenues, in millions of current dinars |
| GVRTN/N | Per capita government revenues, in millions of current dinars |
| *GVRTXINET | Indirect taxes net of subsidies |
| GXPCRB | Crude oil production, in billions of barrels |
| *GXPRFB | Production of petroleum refined products, in billions of barrels |
| IFGN | Government investment, in millions of current dinars |

TABLX XI (Continued)

| IFP | Private investment |
| :---: | :---: |
| IFT | Total investment |
| NEMP | Employment level, in millions |
| *NFPAN | Net factor payments abroad, in millions of current dinars |
| *NP | Total population, in millions |
| *OETMB | Total imports of oil of OECD countries, in billions of barrels |
| PDCE | Consumer price index ( $1975=100$ ) |
| PDDA | Aggregate domestic demand deflator (1975 = 100) |
| PDGDP | GDP deflator ( $1975=100$ ) |
| PDGDPNP | Non-oil GDP deflator ( $1975=100$ ) |
| PDGVCE | Price deflator of government consumption (1975 = 100) |
| PDIFT | Price deflator of gross investment ( $1975=100$ ) |
| PDXPCR | Deflator of crude oil mining ( $1975=100$ ) |
| PR | Gross disposable non-wage income, in millions of current dinars |
| *PTE331 | Export price index for crude petroleum (1975 = 100) |
| *PTE331\$ | Crude petroleum export price, \$/Bbl. |
| PTE332 | Export price index of petroleum refined products $(1975=100)$ |
| PTE332\$ | Export price of petroleum refined products, \$/Bbl. |
| *PTMO.4-3 | Unit value index of imports of SITC $0,1,2$, and 4 $(1975=100)$ |
| *PTM5+8.9 | Unit value index of imports of SITC 5, 8, and 9 $(1975=100)$ |
| *PTM6 | Unit value index of imports of SITC 6 ( $1975=100)$ |
| *PTM7 | Unit value index of imports of SITC $7(1975=100)$ |
| *Q72 | Dummy variable |

TABLE XI (Continued)

| *Q73 | Dummy variable |
| :---: | :---: |
| *Q74 | Dummy variable |
| *REX | Exchange rate, \$/ID |
| *SUBN | Government subsidies, in millions of current dinars |
| TBMN | Trade balance on merchandise, in millions of current dinars |
| TECMT | Total merchandise exports |
| TECMTN | Total merchandise exports, in millions of current dinars |
| *TECMNP | Non-petroleum exports |
| *TECMNPN | Non-petroleum exports, in millions of current dinars |
| *TESR | Exports of services |
| TET | Exports of goods and services |
| TE331B | Exports of crude oil, in billions of barrels |
| TE331N | Exports of crude oil, in millions of current dinars |
| *TE332B | Exports of petroleum refined products, in billions of barrels |
| *TIME | Time trend |
| TMCMT | Total merchandise imports |
| TMCMTN | Total merchandise imports, in millions of current dinars |
| TMCMO.4-3 | Imports of SITC 0, 1, 2, and 4 |
| *TMCM3 | Imports of SITC 3 |
| *TMCM3N | Imports of SITC 3, in millions of current dinars |
| TMCM5.8+9 | Imports of SITC 5, 8, and 9 |
| TMCM6 | Imports of SITC 6 |
| TMCM7 | Imports of SITC 7 |
| *TMSR | Imports of services |
| TMT | Total imports of goods and services |

TABLE XI (Continued)

| WRN | Average wage rate, in current dinars |
| :--- | :--- |
| WYN | Total wage bill, in millions of current dinars |
| XAG | Value added in agriculture |
| XC | Value added in construction |
| XMM | Value added in manufacturing |
| XPCR | Value added in crude oil mining |
| XPRF | Value added in petroleum refining |
| XS | Value added in services |
| XTC | Value added in transportation and communication |
| XUT | Value added in utilities |
| YPDN | Personal disposable income, in millions of current dinars |

aUnless otherwise indicated, all variables are measured in millions of 1975 Iraqi dinars. Exogenous variables are marked with an asterisk.
the adjusted coefficient of determination ( $\bar{R}^{2}$ ), DW statistic, and standard error of estimation (SEE) are provided below each estimated equation. The following are also listed below the relevant estimated equation: first-order autocorrelation coefficient ( $\rho$ ) where a serial correlation correction is made and the $h$-statistic where a lagged dependent variable is present among the regressors in an equation. In addition, for testing whether or not an estimated coefficient is significant, a five percent significance level is used throughout the study.

The Model

Domestic Demand

$$
\begin{align*}
& \text { Real Private Consumption } \\
& C E=-56.8787+\underset{(5.48)}{0.4616}\left(\frac{\text { YPDN * } 100}{\text { PDCE }}\right)  \tag{1}\\
& +0.4890 \text { CE (-1) } \\
& \text { (4.15) } \\
& \bar{R}^{2}=0.965 \quad \text { SEE }=65.28 \quad h=0.78 \\
& +0.7948 \text { GVCEN } / \mathrm{N}(-1)  \tag{6.08}\\
& \bar{R}^{2}=0.973 \quad \text { SEE }=3.78 \quad h=-0.08
\end{align*}
$$

Real Total Consumption

$$
\begin{equation*}
C E T=C E+\left(\frac{\text { GVCEN * } 100}{\text { PDGVCE }}\right) \tag{3}
\end{equation*}
$$

Real Private Investment

$$
\begin{align*}
\operatorname{IFP}= & 52.1612+\underset{(1.91)}{0.0539}\left(\frac{\operatorname{PR}(-1) * 100}{\operatorname{PDIFT}}\right)  \tag{4}\\
+ & \underset{(9.1146}{(9.83)} \operatorname{IFT}(-1)-\underset{(-2.20)}{45.3124} \mathrm{Q} 73
\end{align*}
$$

$$
\bar{R}^{2}=0.888 \quad \text { SEE }=18.83 \quad h=0.65
$$

$\bar{R}^{2}=0.999$

$$
\text { SEE }=16.11
$$

$$
\rho=-0.59
$$

$$
D W=2.43
$$

Real Total Investment

$$
\begin{equation*}
\mathrm{IFT}=\mathrm{IFP}+\left(\frac{\mathrm{IFGN} * 100}{\text { PDIFT }}\right) \tag{6}
\end{equation*}
$$

Real Aggregate Domestic Demand

$$
\begin{equation*}
D D A=C E T+I F T \tag{7}
\end{equation*}
$$

## Imports

Real Imports of Consumer Goods (SITC 0, 1, 2, and 4)

$$
\begin{equation*}
\text { TMCMO.4-3 }=56.6050+\underset{(10.44)}{0.1888} \mathrm{CE}-\underset{(-2.44)}{0.3150 \mathrm{XAG}} \tag{8}
\end{equation*}
$$

+80.1233 Q74
(4.33)
$\bar{R}^{2}=0.917 \quad$ SEE $=17.44 \quad D W=1.89$

Real Imports of Other Goods (SITC 5, 8, and 9)

TMCM5.8+9 $=26.0247+0.0635 C E$
-0.2341 XMM +0.0416 IFT
(2.12) (2.24)
$\bar{R}^{2}=0.887 \quad$ SEE $=7.66 \quad D W=1.86$

Real Imports of Intermediate Goods (SITC 6)

$$
\begin{aligned}
& \text { TMCM6 }=300.7712+0.5076 \text { TMCM7 } \\
& \text { (6.74) } \\
& -\frac{292.8625}{(-1.63)}\left(\frac{\operatorname{PTM6}(-1)}{\operatorname{PDIFT}(-1)}\right) \\
& +133.9945 \text { Q74 } \\
& \text { (4.31) } \\
& \bar{R}^{2}=0.889 \quad \text { SEE }=29.72 \quad D W=1.75
\end{aligned}
$$

Real Imports of Capital Goods (SITC 7)

$$
\begin{aligned}
& \text { TMCM7 }= 280.6101+\begin{array}{l}
0.4534 \mathrm{IFT} \\
\\
(20.82)
\end{array} \\
&-\left(348.9075\left(\frac{\operatorname{PTM7}(-1)}{(-3.10)} \frac{\operatorname{PUTFT}(-1)}{}\right)\right.
\end{aligned}
$$

$\vec{R}^{2}=0.975$
SEE $=28.17$
$O W=2.35$

Real Imports of Goods

$$
\begin{equation*}
\text { TMCMT }=\text { TMCMO. } 4-3+\text { TMCM5.8+9 }+ \text { TMCM6 }+ \text { TMCM7 }+ \text { TMCM3 } \tag{12}
\end{equation*}
$$

Non-0i1 Output

Real Value Added in Agriculture

$$
\begin{gather*}
\text { XAG }=138.2695-\underset{(-3.13)}{0.1158} \text { TMT }+\underset{(4.30)}{0.1750} \text { CET }  \tag{13}\\
\bar{R}^{2}=0.613 \quad \text { SEE }=26.58 \quad D W=1.99
\end{gather*}
$$

$\bar{R}^{2}=0.979 \quad$ SEE $=13.88 \quad D W=1.17$

Real Value Added in Construction

$$
\begin{equation*}
X C=\underset{(12.0)}{0.2435} \mathrm{IFT}-\underset{(-4.25)}{0.0781} \mathrm{TMT}+\underset{(1.52)}{0.0064} \mathrm{TET} \tag{15}
\end{equation*}
$$

$$
\bar{R}^{2}=0.966 \quad \text { SEE }=16.42 \quad D W=1.81
$$

Real Value Added in Transportation and Communications

$$
\begin{equation*}
\text { XTC }=19.6115+\underset{(6.25)}{0.0555} \mathrm{CET}+\underset{(1.91)}{0.0178} \mathrm{IFT} \tag{16}
\end{equation*}
$$

$\bar{R}^{2}=0.964 \quad$ SEE $=7.39 \quad O W=1.83$

Real Value Added in Services

$$
\begin{align*}
& X S  \tag{17}\\
&=-67.1068+ 0.4438 \text { CET } \\
&(22.04)
\end{align*}
$$

$\bar{R}^{2}=0.964 \quad$ SEE $=46.04 \quad D W=1.39$

Real Value Added in Utilities

$$
\begin{aligned}
\text { XUT }= & -9.0024+\underset{(3.16)}{0.0084} \text { CET }+\underset{(7.67)}{0.0097} \text { IFT }+\underset{(3.04)}{0.0035} \text { TET } \\
& -0.0044 \mathrm{TMT} \\
& (-2.69)
\end{aligned}
$$

$\bar{R}^{2}=0.989 \quad$ SEE $=0.92 \quad D W=2.17$

0 il Sector

Crude Oil Exports (Bill. Bbl.)

$$
\begin{align*}
& T E 331 B=0.2450+0.0472 \text { OETMB }-0.1048 \text { Q72 }  \tag{19}\\
& \text { (12.26) (-3.44) } \\
& +0.0001 \text { (IFGN + GVCEN - GVRNPTN) } \\
& \text { (5.76) } \\
& \bar{R}^{2}=0.973 \\
& \text { SEE }=0.03 \\
& D W=2.26 \\
& \text { Real Value Added in Crude } 0 \text { il Mining } \\
& \text { XPCR }=2925.0095 \text { GXPCRB }  \tag{20}\\
& \text { (25.85) } \\
& \bar{R}^{2}=0.987 \quad \text { SEE }=72.46 \quad D W=1.24 \\
& \text { Gross Output of Crude 0il (Bill. Bbl.) } \\
& G X P C R B=-0.0180+\underset{(54.68)}{1.0943 \mathrm{TE} 331 \mathrm{~B}} \tag{21}
\end{align*}
$$

$\bar{R}^{2}=0.998 \quad$ SEE $=0.01 \quad \rho=0.57 \quad D W=1.96$

Real Value Added in Petroleum Refining

$$
\begin{equation*}
\text { XPRF }=546.7097 \text { GXPRFB } \tag{37.75}
\end{equation*}
$$

$\bar{R}^{2}=0.95 \quad$ SEE $=2.16 \quad D W=1.09$

Export Price of Refined Petroleum Products (\$/Bbl.)

$$
\begin{equation*}
\text { PTE332\$ }=1.0125+\underset{(69.91)}{0.9574 \text { PTE331\$ }} \tag{23}
\end{equation*}
$$

$\bar{R}^{2}=0.999 \quad$ SEE $=0.15 \quad D=0.57 \quad D=1.52$

Government Oil Revenues (Mill. US \$)

$$
\begin{equation*}
\text { GVRPT\$ }=-234.159+0.9547 \text { GVRPTBA\$ } \tag{75.31}
\end{equation*}
$$

$\bar{R}^{2}=0.997 \quad$ SEE $=204.64 \quad D W=2.46$

Government Oil Revenues (Mil. Dinars)
GVRPTN = GVRPT\$ / REX

Government Oil Revenues Base (Mill. US \$)

$$
\begin{equation*}
\text { GVRPTBA\$ }=(\text { GXPCRB } * \text { PTE331 } \$+\text { GXPRFB } * \text { PTE } 332 \$) * 1000 \tag{26}
\end{equation*}
$$

Wages and Employment

Average Wage Rate

$$
\begin{equation*}
\text { WRN }=-265.9077+\underset{(2.89)}{1.6720} \operatorname{PDCE}(-1)+\underset{(4.36)}{0.6223} \text { (GDPNP/NEMP) } \tag{27}
\end{equation*}
$$

$$
\bar{R}^{2}=0.947
$$

$$
\text { SEE }=25.02
$$

$$
D W=1.22
$$

Employment (millions)

$$
\begin{gather*}
\text { NEMP }=1.5774+\underset{(2.33)}{0.0001} \operatorname{GDPNP}+\underset{(13.08)}{0.0586} \text { TIME }  \tag{28}\\
\bar{R}^{2}=0.998 \\
\text { SEE }=0.02 \quad \text { DW }=1.37
\end{gather*}
$$

Prices

## Consumer Price Index

$$
\begin{equation*}
\text { PDCE }=33.3540+0.0266 \text { DDA } \tag{29}
\end{equation*}
$$

$-\underset{(-2.17)}{161.8185}\left(\frac{\text { SUBN }}{\text { IFGN + GVCEN - SUBN }}\right)$

$$
(16.51)
$$

$$
(-2.17)
$$

$\bar{R}^{2}=0.957$
SEE $=5.46$ $\rho=-0.46$
$D W=2.16$

Deflator of Government Consumption

$$
\begin{equation*}
\text { PDGVCE }=32.5355+\underset{(20.54)}{0.2383} \text { WRN } \tag{30}
\end{equation*}
$$

$$
\bar{R}^{2}=0.959 \quad S E E=5.36 \quad D W=2.29
$$

Deflator of Gross Investment

PIIFT $=21.6385+\underset{(15.43)}{0.7345}\left(\frac{(\text { PTM6 }}{} *\right.$ TMCM6 + PTM7 $*$ TMCM7) $/ 100 * 100$
$\bar{R}^{2}=0.98 \quad$ SEE $=2.91 \quad \rho=0.57 \quad D W=1.69$

Deflator of Aggregate Domestic Demand

$$
\begin{equation*}
\text { PDDA }=(D D A N / D D A) * 100 \tag{32}
\end{equation*}
$$

Non-0il GDP Deflator

$$
\begin{align*}
& \text { PDGDPNP }=10.4457+0.9183 \text { PDDA }  \tag{33}\\
& \text { (19.65) } \\
& \bar{R}^{2}=0.955 \quad \text { SEE }=4.40 \quad D W=1.98 \\
& \text { Deflator of Crude 0il Mining } \\
& \begin{aligned}
\mathrm{PDXPCR}= & 7.2247+\underset{(32.06)}{0.9394} \mathrm{PTE} 331
\end{aligned}  \tag{34}\\
& \bar{R}^{2}=0.983 \\
& \text { SEE }=4.89 \\
& D W=1.87 \\
& \text { GDP Deflator } \\
& \text { PDGDP }=(\text { GDPN } / G D P) * 100 \tag{35}
\end{align*}
$$

Other Definitions and Identities

Real Non-0il GDP

$$
\begin{equation*}
\text { GDPNP }=X A G+X M M+X T C+X C+X S+X U T+G V R T X I N E T \tag{36}
\end{equation*}
$$

Real GDP

$$
\begin{equation*}
G D P=G D P N P+X P C R+X P R F \tag{37}
\end{equation*}
$$

Nominal GDP

$$
\begin{align*}
G D P N= & (G D P N P * P D G D P N P+X P R F * P D G D P N P+X P C R \\
& * P D X P C R) / 100 \tag{38}
\end{align*}
$$

Nominal Gross National Product

$$
\begin{equation*}
\text { GNPN }=\text { GDPN }- \text { NFPAN } \tag{39}
\end{equation*}
$$

Nominal Personal Disposable Income

$$
\begin{equation*}
\text { YPDN }=\text { GNPN }- \text { GVRTN } \tag{40}
\end{equation*}
$$

Nominal Aggregate Domestic Demand

$$
\begin{equation*}
\text { DDAN }=\text { GVCEN + IFGN + (CE * PDCE + IFP * PDIFT }) / 100 \tag{41}
\end{equation*}
$$

Total Wage Bill

$$
\begin{equation*}
\text { WYN }=\text { WRN * NEMP } \tag{42}
\end{equation*}
$$

Gross Disposable Non-Wage Income

$$
\begin{equation*}
P R=G D P N-G V R T N-W Y N \tag{43}
\end{equation*}
$$

Total Government Revenues
GVRTN = GVRPTN + GVRNPTN

Nominal Government Consumption

$$
\begin{equation*}
\text { GVCEN }=\text { GVCEN } / N * N P \tag{45}
\end{equation*}
$$

Crude 0il Exports (Mill. Dinars)

$$
\begin{equation*}
\text { TE331N }=\left(\frac{\text { TE331B * PTE331\$ }}{\text { REX }}\right) * 1000 \tag{46}
\end{equation*}
$$

Petroleum Refined Products Exports (Mill. Dinars)

$$
\begin{equation*}
T E 332 N=\left(\frac{T E 333 B * P T E 332 \$}{R E X}\right) * 1000 \tag{47}
\end{equation*}
$$

Nominal Merchandise Exports

$$
\begin{equation*}
\text { TECMTN }=\text { TE331N }+ \text { TE332N }+ \text { TECMNPN } \tag{48}
\end{equation*}
$$

Real Merchandise Exports

$$
\begin{equation*}
\text { TECMT }=\left(\frac{T E 331 \mathrm{~N}}{\text { PTE331 }}+\frac{\text { TE332N }}{\text { PTE332 }}\right) * 100+\text { TECMNP } \tag{49}
\end{equation*}
$$

Real Exports of Goods and Services

$$
\begin{equation*}
T E T=T E C M T N+T E S R \tag{50}
\end{equation*}
$$

Real Imports of Goods and Services

$$
\begin{equation*}
\text { TMT }=\text { TMCMT }+ \text { TMSR } \tag{51}
\end{equation*}
$$

Nominal Total Merchandise Imports

$$
\begin{align*}
\text { TMCMTN }=\text { TMCM3N } & +(\text { TMCM0.4-3 * PTMO. } 4-3+\text { TMCM5.8+9 }  \tag{52}\\
& * \text { PTM5.8+9 + TMCM6 * PTM6 }+ \text { TMCM7 } \\
& * \text { PTM7 }) / 100
\end{align*}
$$

Trade Balance on Merchandise

$$
\begin{equation*}
\text { TBMN }=\text { TECMTN }- \text { TMCMTN } \tag{53}
\end{equation*}
$$

Discussion of the Model

Domestic Demand

Real Private Consumption. A number of studies recognize the applicability of Friedman's permanent income hypothesis ${ }^{2}$ in studying the behavior of consumption expenditures in developing countries. ${ }^{3}$ The permanent income hypothesis maintains that consumption expenditures do not depend on the current level of income which might include positive or negative transitory elements but rather on the consumer's perception of his or her permanent income purged of all transitory elements.

Empirically, Friedman approximates permanent income by a weighted average of present and past incomes, with geometrically declining weights over time.

In equation (1) real private consumption expenditures are specified to be a function of real disposable income and private consumption expenditures in the previous year. Lagged private consumption expenditures enters as a transformed expression for the distributed lag in income since consumption expenditures depend on current and past levels of income. This form of consumption function allows both the short-run and the long-run marginal propensity to consume (mpc) to be estimated. 4 The estimated consumption function indicates a relatively low mpc (0.46) which is in large part due to the fact that per capita income in the oil producing countries is relatively high and thus the share of consumption in income is low. The marginal propensities to consume for Kuwait ${ }^{5}$ and Saudi Arabia ${ }^{6}$ were estimated at 0.42 and 0.25 respectively. The low mpc is also partly due to the increasing role that the government plays in providing free social services such as education, medical care, and other services.

The long-run mpc is estimated at 0.9033 which implies a long-run marginal propensity to save of 0.0977 . If personal disposable income were to increase by ID 1.0 million, private consumption expenditures would increase by ID 460,000 in the same year. Eventually, consumers would adjust their consumption behavior to their higher income level, so that in the long-run consumption would increase by ID 903,300.

Nominal Government Consumption. In macroeconometric studies, government consumption expenditures, are either (a) taken as autonomous, ${ }^{7}$ or (b) disaggregated according to the types of factors
purchased, ${ }^{8}$ or (c) taken as a simple function of taxes collected. ${ }^{9}$ Due to lack of data on the components of government consumption expenditures and the importance of government oil revenues in public expenditures, government consumption expenditures are specified in equation (2) to be a function of total government revenues, population, and government consumption in the previous year. The population variable is used to reflect the need for government services and is accounted for by estimating government consumption equation in per capita terms. The underlying theoretical justification for including government consumption in the previous year is the idea that its current level is subject to a previously established level of expenditures. One important distinction between government and private consumption equations is that the former is estimated in nominal terms. Government spending is usually planned and budgeted in nominal terms. In identity (3) real government consumption is calculated using government consumption deflator. The regression results of estimating equation (2) indicates that all the variables are significant and have the expected sign with $\bar{R}^{2}=0.97$.

Real Private Investment. The entrepreneur's decision on how much to invest may depend on a number of variables such as profit expectations, rate of interest, existing stock of capital, excess capacity, and the level of income. Theoretically, Keynes proposed that investment takes place so long as the marginal efficiency of investment is greater than the market rate of interest. This implies that, given the investor's expectations regarding the future, investment has an inverse relationship with the rate of interest.

It is doubtful, however, that investment theories designed for developed economies have much relevance for developing economies such as Iraq. In the words of Klein:

Factors making investment behavior different from that suggested (for developed economies) are the lack of an organized Western-type capital market and the presence of large government supported investment . . . We might argue that there are so many worthwhile ventures, all economically sound, that close calculation by systematic pattern is unnecessary. 10

Thus, the rate of interest appears to be a less important factor in explaining investment behavior in developing economies. This is particularly true in the case of Iraq in view of the absence of a freely determined interest rate that reflects the real scarcity of loanable funds.

In Iraq, private investment expenditures are largely financed through retained earnings. This is so because of the family orientation of business and the virtual nonexistence of a well-developed money and capital market. Thus, in equation (4), real private investment depends on gross disposable non-wage income, a dummy variable to account for political instability, and total investment in the previous year. This specification emphasizes the role of private profits as a source of financing. Lagged total investment is used as a proxy. variable for changes in absorptive capacity. It measures the extent of new investment opportunities created by previous private and public investment. A number of attempts were made to include a financial variable in the private investment function to reflect the credit conditions provided by the commercial and specialized banks, but those attempts proved to be unsuccessful. All regression coefficients are significant at the five percent level, except for non-wage income, which is significant at the ten percent level. The estimated coefficient of the dummy variable
indicates that the uncertainties created by political instability in 1973 caused real private investment expenditures to decline by ID 45.3 million in the same year.

Nominal Government Investment. Due to lack of data it was not possible to disaggregate government investment, which consists of government expenditures on social overhead capital investment and disbursements through the Development Board, by sector. This is one of the many cases where the structure of the model has to be designed to conform to available data. It would have been useful to adopt such a breakdown to analyze the effects of different policies in allocating government investment expenditures into different sectors of the economy.

The task of estimating government investment proved to be much easier than estimating private investment. Government decisions to invest are not subject to the same type of behavioral considerations as private investment decisions. More specifically, the basic determinants of government investment expenditures are the product of a special mix of social, political, and economic factors.

As discussed in the last chapter, the primary source of government investment is the oil revenues. Therefore, in equation (5) government investment is specified to depend on the current and lagged government oil revenues. In this specification we did not impose geometrically declining weights on the coefficients of past oil revenues. It is likely that current government investment expenditures depend more on past years' revenues rather than on current revenues because of the lag involved in planning and allocating such expenditures; the argument can be made that, based on this year's revenues, the government plans next
year's expenditures. Of course, projections for next year's revenues will also enter the picture, but it is not clear, a priori, whether the contemporaneous revenues' effect should be larger or smaller than the effect of lagged revenues. Therefore it was felt that it would be a more proper procedure to estimate government investment as a function of past and present oil revenues and let the regression results determine the pattern of weights of the distributed lag. All the coefficients of equation (5) are highly significant and the distribution of weights of the impact of lagged values of oil revenues is quite different than the pattern that we would have obtained by imposing geometrically declining weights.

Imports

Ordinarily import demand functions include some measure of income and import price relative to domestic prices. 11 In the model, merchandise imports are disaggregated into (a) consumer goods (SITC 0, 1, 2, and 4), (b) intermediate goods (SITC 6), (c) capital goods (SITC 7), (d) imports of mineral fuels (SITC 3), and (e) all other imports (SITC 5, 8, and 9).

Imports of mineral fuels, mostly petroleum products, are small enough relative to total imports to be treated as an exogenous variable. The remaining four categories of imports are behavioral variables and estimated in real terms. Import prices are assumed to be determined only by conditions abroad, and hence, they are treated as exogenous variables.

Imports of consumer goods, mostly food and live animals, are considered to be a function of private consumption, value added in
agriculture, and a dummy variable to account for the sudden jump in the value of imports of this category in 1974 (equation 8). In the absence of disaggregated data on private consumption, total private consumption should serve as a reasonably good indicator of demand of consumer goods. Value added in agriculture is taken to serve as an import substitution variable. The estimated regression coefficients of all variables are statistically significant and have the expected sign. The negative coefficient of value added in agriculture indicates the import substitution effect of agricultural production on the imports of consumer goods. The estimated coefficients also implies an elasticity of demand of consumer goods imports of 1.2 with respect to private consumption and -0.7 with respect to value added in agriculture.

Relevant relative prices of foreign to domestic goods were tried for this category of imports. Their estimated coefficients were not significantly different from zero and were omitted. This result is expected given that a large proportion of imports of consumer goods are foodstuffs financed mainly by the government.

All other imports category constitutes mostly chemicals, miscellaneous manufactured goods, and fixed investment related items. In equation (9) it is considered to depend on two demand factors, private consumption and total investment, and an import substitution variable, the level of value added in manufacturing. The coefficient of all variables are statistically significant and have the expected sign. The negative coefficient of the value added in manufacturing indicates the import substitution effect of manufacturing on imports of this category.

Imports of capital goods constitute mostly of machines and transportation equipment. The demand for capital goods imports, therefore,
is considered to depend on both a demand factor, total investment, and relative prices, the ratio of import price index of capital goods to the investment expenditures deflator (equation 11). Needless to say, imports of capital goods hardly have any domestically produced equivalent to be subject to import substitution effects. The coefficients of both variables are highly significant and have the expected sign, implying an elasticity of demand of capital goods imports of 1.13 with respect to investment and -1.54 with respect to relative prices.

The largest items of imports of intermediate goods are heavy industrial intermediate goods. Thus, imports of this category go hand in hand with imports of capital goods. Since Iraq does not have any significant domestic production of either category, importing one would not be very meaningful without importing the other. Therefore in equation (10) the demand for intermediate goods imports are considered to be a function of a demand factor, imports of capital goods, relative prices (the ratio of import price index of intermediate goods to the investment expenditures deflator) and a dummy variable to account for the liberal import policy the government adopted in 1974. The coefficient of all three variables are of the correct signs but only two are statistically significant. Though the t-ratio of the relative prices term is not highly significant it points in the expected direction.

Real total imports of goods and services are determined in the model through identity (51) as the sum of real merchandise imports and services. Imports of services, mostly travel and expenditures of embassies and military missions, are taken to be exogenous.

## Non-Oil Output

In equations (13) to (18) value added in each sector appears to be expressed as a function of aggregate final demand components; the explanatory variables are the expenditure side components of GNP. These equations can be interpreted as transformations of input-output relationships. Let us write the relationship which is the cornerstone of the input-output analysis.

$$
\begin{equation*}
(I-A) x^{g}=F \tag{V.1}
\end{equation*}
$$

where $A$ is the matrix of technological coefficients, $X^{9}$ is a vector of gross output and F is a vector of final demand. We can invert this expression to obtain

$$
\begin{equation*}
X^{g}=(I-A)^{-1} F \tag{V.2}
\end{equation*}
$$

The value added is defined as the value of gross output minus all the material cost. Therefore, we can assume that value added in each sector is proportional to gross output of the corresponding sector. Thus

$$
\begin{equation*}
x_{i}=k_{i} x_{i} g \quad i=1, \ldots, n \tag{V.3}
\end{equation*}
$$

and we can write

$$
\begin{equation*}
X=K(I-A)^{-1} F \tag{V.4}
\end{equation*}
$$

where K is a diagonal matrix whose diagonal elements are $\mathrm{k}_{\mathrm{i}}(\mathrm{i}=1, \ldots$, $n$ ) and the off diagonals are zeros. We can rewrite (V.4) as:

$$
\begin{equation*}
X=D F \tag{V.5}
\end{equation*}
$$

where $D=K(I-A)^{-1}$. System (V.5) expresses each sector's value added as a linear function of final demand components.

In the model we distinguished among six non-oil productive sectors: agriculture, manufacturing, services, transportation and communication, construction, and utilities. The choice of these sectors was primarily based on the availability of the data. Thus $X$, according to the model, has six elements. On the final demand side the present model incorporates four components: total consumption, total investment, total exports, and total imports, hence, $F$ has four elements. We can, therefore, write our six value added equations as:

$$
\left[\begin{array}{l}
X A G  \tag{V.6}\\
X M M \\
X T C \\
X C \\
X S \\
X U T
\end{array}\right]=\left[\begin{array}{llll}
d_{11} & d_{12} & d_{13} & d_{14} \\
d_{21} & d_{22} & d_{23} & d_{24} \\
d_{31} & d_{32} & d_{33} & d_{34} \\
d_{41} & d_{42} & d_{43} & d_{44} \\
d_{51} & d_{52} & d_{53} & d_{54} \\
d_{61} & d_{62} & d_{63} & d_{64}
\end{array}\right] \times\left[\begin{array}{r} 
\\
\text { GET } \\
\text { IFT } \\
T E T \\
T M T
\end{array}\right]
$$

which implies,

$$
\begin{align*}
& \text { XAG }=d_{11} \text { CET }+d_{12} \text { IFT }+d_{13} \text { TET }+d_{14} \text { TMT }  \tag{V.7}\\
& \text { XMM }=d_{21} \text { CET }+d_{22} \text { IFT }+d_{23} \text { TET }+d_{24} \text { TMT }  \tag{V.8}\\
& \text { XTC }=d_{31} \text { CET }+d_{32} \text { IFT }+d_{33} \text { TET }+d_{34} \text { TMT }  \tag{V.9}\\
& C=d_{41} \text { CET }+d_{42} \text { IFT }+d_{43} \text { TET }+d_{44} \text { TMT }  \tag{V.10}\\
& X S=d_{51} \text { CET }+d_{52} \text { IFT }+d_{53} \text { TET }+d_{54} \text { TMT }  \tag{V.11}\\
& \text { XUT }=d_{61} \text { CET }+d_{62} \text { IFT }+d_{63} \text { TET }+d_{64} \text { TMT } \tag{V.12}
\end{align*}
$$

The coefficients in each row of system (V.6) represent the response of the sector's value added to changes in the various final demand
components. The coefficients in each column represent the relative impact (share) of changes in a specific final demand component on sectoral value added.

For Iraq, however, there is no input-output table, and hence, the coefficients ( $\mathrm{d}_{\mathrm{ij}}$ ) of equations V.7-7.12 had to be estimated by regression method; in this case they had to be treated as stochastic rather than deterministic equations. In our search for good fit, we had to allow for a constant term in some of the equations and to delete some of the final demand components from some of the equations.

The use of this approach in specifying and estimating sectoral value added equations is not new, especially in models of developing countries, similar techniques have been used in studies of Brazil, 12 Mexico, 13 and Sudan. 14

Equations (13) to (18) in the model shows the regression results of estimating value added equations V.7-V.12. In these equations imports tend to have a negative coefficient. This is to conform to the national accounts identity GNP $=C+I+X-M$. This also, in a sense, is the reverse of import substitution effect: the more that is imported the less that has to be produced domestically to satisfy demand. As expected, the coefficient of total exports in each equation where it is included is close to zero reflecting the fact that most of the exports are from the oil sector. Total consumption is a prime determinant of value added in services (equation 17). Value added in construction and value added in manufacturing are highly responsive to investment (equations 15 and 14 respectively). In equation (13), it appears that total consumption is influential in determining value added in agriculture.

In terms of explanatory power, all of the estimation results of sectoral value added equations indicate that $\bar{R}^{2}$ ranges between 0.96 to 0.99 except for the equation (13) whose $\bar{R}^{2}$ is 0.61 . All of the explanatory variables carry the expected signs, and all coefficients are significant at the five percent level, except for the total exports in equation (15) and the total investment in equation (16), which are significant at the 20 and 10 percent levels respectively.

## $0 i 1$ Sector

Crude oil exports is the most crucial variable in the model in general and in the oil sector in particular. As mentioned in the last chapter, crude oil exports have a far reaching effect on the economy as a whole. In macroeconometric studies of oil producing countries, oil exports are either (a) treated as an exogenous variable, 15 or (b) taken as a simple function of a supply variable, 16 or ( $c$ ) explained by a demand variable. 17 It is realized here that treatment of oil exports as purely exogenous variables introduces not only too much arbitrariness in the model, but is also inappropriate for an oil based-economy like Iraq. It is also realized that oil exports have elements of and are influenced by, both demand-related and supply-related factors; more specifically, they can be viewed as the crude oil exports of the exporting country (the supply dimension) or, as part of the crude oil imports of the importing countries (the demand dimension).

The factors influencing these two dimensions of oil exports are different; if viewed as a demand function oil exports can be specified by international variables (industrial production index in OECD countries, imports of oil of OECD countries, and export price of crude
relative to OECD's average prices) which are exogenous to the Iraqi economy. Viewed as an export function, oil exports can be explained by revenue-need related factors. Thus, it would be unrealistic to specify a strictly supply or a strictly demand oriented equation. We should view oil exports as the market equilibrium quantities which are determined both by supply and demand conditions.

In view of the above, oil exports (in billions of barrels) are specified to be a function of total imports of oil of OECD countries, excess of government expenditures over non-oil government revenues, and a dummy variable to represent the impact of nationalization of foreign oil companies operating in Iraq (equation 19). The regression results of estimating this equation indicates that all variables are significant and have the expected sign. Export price of crude oil is taken as an exogenous (policy) variable since it is determined by OPEC organization of which Iraq is a major member.

The remaining equations of this sector are straightforward, so only a short note about each will be mentioned. Real value added in crude $0 i 1$ mining (equation 20) is made a function of volume of gross output of oil. This equation is estimated without a constant term, and as expected the coefficient of volume of oil output is very close to the price of a billion barrels of Iraqi oil in the base year of 1975.

In equation (21) volume of gross output of crude oil is specified to be a direct function of exports of oil. This specification assumes that Iraq produces what it can and/or is willing to export. This is a reasonable assumption given the fact that Iraq has been holding production below capacity and thought to have enormous undiscovered oil
reserves. 18 This equation is estimated in billions of barrels terms with $\bar{R}^{2}=0.998$.

In petroleum refining, real value added is made a function of the volume of gross output of refined products (equation 22 ). This equation is estimated without a constant term with satisfactory results. Due to lack of adequate data on such variables as investment in petroleum refining and refining capacity, we were not able to estimate a reasonable equation for gross output of refined products, and hence, it was decided to take it as exogenous, at least for now, in the hope that when future refinements are made, further investigation will be made of this variable. In the petroleum refining sector, exports of petroleum products have been playing a minor role, and hence, it is treated as an exogenous variable.

In equation (23) export price of a barrel of petroleum refined products is specified to be a direct function of the export price of a barrel of crude oil. This equation is estimated in dollar terms with $\bar{R}^{2}=0.999$.

In equation (24) government oil revenues is specified to be a function of government oil revenues base which is computed as the sum of the values of crude and refined petroleum produced (identity 26 ). This equation is estimated in dollar terms with $\overline{\mathrm{R}}^{2}=0.997$.

## Wages and Employment

The standard model of wage determination is based on the Phillips curve, which says that the tighter the labor markets, the more rapidly wages rise. 19 Recent studies have elaborated upon this formulation by allowing for, among other things, the impact of consumer prices, and
productivity. 20 In the model nominal average wage rate is considered to have a compensatory reaction to consumer prices and to average productivity in the non-oil sector (non-oil GDP divided by the level of employment). The oil-sector, in spite of its high share in GDP, is extremely capital intensive and employs a small proportion of the total labor force. We would thus get a misleading measure of average productivity if we measure it using total GDP (oil and non-oil).

Equation (27) shows the regression results of estimating the average wage rate equation. The coefficients of both variables are statistically significant, reflecting the dependence of the wage rate on both cost of living and productivity.

As far as employment is concerned, the present model includes only one simple employment level equation. Due to lack of data on foreign and local workers employed in different sectors, we were not able to develop a detailed employment sub-model. In equation (28) employment is assumed to depend on real non-oil GDP and time trend. The coefficients of both variables are statistically significant with $\bar{R}^{2}=0.998$.

## Prices

The aggregate demand and supply functions examined thus far have been formulated largely in real terms. To obtain a complete picture of national income determination it is necessary to provide an endogenous explanation of the price level. In the model prices are explained by six equations; four behavioral and two identities.

In equation (29) the consumer price index is expressed as a function of real aggregate domestic demand (the sum of total consumption and total investment), and the ratio of government subsidies to total
government expenditures (government consumption excluding subsidies, plus government investment expenditures). Aggregate domestic demand measures the extent of domestic demand pressures on consumer prices.

The ratio of government subsidies to total government expenditures emphasizes the importance of subsidies as a policy tool at government's disposal to alleviate the inflationary pressures which result from the increasing government expenditures.

In equation (30) the government consumption deflator is specified as a direct function of the nominal average wage rate; government consumption expenditures are mostly wages and salaries of government employees.

Since most of the material cost incurred in fixed investment is imported, the investment deflator is expressed as a direct function of a weighted average of the deflators of imports of capital and intermediate goods (equation 31 ).

Identity (32) expresses the aggregate domestic demand deflator as a weighted average of the deflators of private consumption, government consumption, and total investment. In the solution of the model, the aggregate domestic demand deflator will be influenced by the explanatory variables in equations 29-31, and hence, will have elements of demandpull, cost-push and "imported" inflation.

In equation (33) the non-oil GDP deflator is expressed as a direct function of the aggregate domestic demand deflator.

In equation (34) the deflator of the value added in crude oil mining is specified to be a direct function of the crude oil price index.

Identity (35) expresses the GUP deflator as a weighted average of the deflators of oil and non-oil GDP. 21

In terms of explanatory power, all of the estimation results of price equations indicate that $\bar{R}^{2}$ ranges between 0.95 to 0.98 . All of the explanatory variables carry the expected sign, and all coefficients are highly significant at the five percent level.

## Other Definitions and Identities

These relationships require little explanation, since most of them simply redefine some given variable in a very straightforward manner. A few of the relationships, however, should be mentioned. Identity (36) defines non-oil GDP as the sum of value added in each sector. This variable is a more meaningful indicator of the state of the domestic economy han GDP, since the latter, which includes value-added in the petroleum sector, is highly and directly dependent on fluctuations in international oil markets, and thus gives a rather distorted picture of domestic economic activity.

In identity (37) real GDP is determined from the supply side (as the sum of oil and non-oil GDP) rather than from the expenditures (demand) side. It was realized that in Iraq economic activity is generally supply constrained and, therefore, GDP should be determined from the supply side. In an important paper on this subject Klein ${ }^{22}$ concluded that while substantial parts of the models used for mature economies might be carried over, more emphasis should be given to the supply side in the models for developing economies. In developed economies, the productive capacity is fairly large, the emphasis is on the expenditure side of the national accounts, the problem being to create the necessary effective demand. In developing economies such as Iraq it is not effective demand that is lacking, but rather aggregate supply.

Furthermore, the supply-side GDP identity readily lends itself to disaggregating GDP into its oil and non-oil components.

Identity (42) defines wage income as the product of the wage rate and the level of employment. Identity (43) defines gross disposable non-wage income by substracting wage income and total government revenues from GDP.

1 Michael D. Intriligator, Econometric Models, Techniques and Applications (New Jersey, 1978), p. 391.

2Milton Friedman, Theory of Consumption Function (New Jersey, 1957), pp. 7-37.
$3^{3}$ Donald W. Snyder, "Econometric Studies of Household Savings Behavior in Developing Countries: A Survey," The Journal of Development Studies, X (1974), pp. 139-153.
${ }^{4}$ A consumption function following the Koyck distributed lag model is

$$
c_{t}=a+b y_{t}+c C_{t-1}
$$

In the long run, we assume that $C_{t}=C_{t-1}$ and thus the long-run mpc is estimated by $b /(1-c)$.
$5^{5}$. W. Khouja and P. G. Sadler, The Economy of Kuwait-Development and Role in International Finance (London, 1979), p. 96.

6Faisal Al-Bashir, A Structural Econometric Model of the Saudi Arabian Economy 1960-1970 (New York, 1977), p. 62.
$7^{7}$ Adeeb K. Haddad, "An Econometric Monetary Model of the Jordanian Economy" (unpub. Ph.D. Dissertation, Oklahoma State University, 1979), p. 40; and Peter T. Chang, "A Macroeconometric Forecasting Model of Taiwan" (unpub. Ph.D. Dissertation, Oklahoma State University, 1977), p. 55.

8A. Ando, E. C. Brown, and E. W. Adams, "Government Revenues and Expenditures," in J. S. Duesenberry et al. (eds.), The Brookings Quarterly Econometric Model of the United States (Chicago, 1965), pp. 533585.
${ }^{9}$ Erik Thorbeck and Apostolos Condos, "Macroeconometric Growth and Development Models of the Peruvian Economy," in Irma Adelamn and Erik Thorbeck (eds.), The Theory and Design of Economic Development (Baltimore, 1966), pp. 181-209.

10Lawrence R. Klein, "What Kind of Macroeconometric Model for Developing Economies," in Arnold Zellner (ed.), Readings in Economic Statistics and Econometrics (Boston, 1968), p. 564.
$11_{\text {Michael }}$ K. Evans, Macroeconomic Activity: Theory, Forecasting, and Control (New York, 1969), p. 221.

12Jere Behrman and Lawrence R. Klein, "Econometric Grown Models for the Developing Economy," in W. A. Eltis et al. (eds.), Induction, Growth and Trade, Essays in Honour of Sir Ray Harrod (London, 1970), pp. 167187.

13 Abed B. Del Rio and Lawrence Klein, "Macroeconometric Model Building in Latin America: The Mexican Case," in N. D. Ruggles (ed.), The Role of the Computer in Economic and Social Research in Latin America (New York, 1974), pp. 161-190.

14M. S. Marzouk, "An Econometric Model of Sudan," Journal of Development Economics, I (1975), pp. 337-358.
${ }^{15}$ Ahmad Shahshahani and J. Malcolm Dowling, "An Econometric Model Forecast of Iran, 1975-1985," The Journal of Energy and Development, II (1976), pp. 148-162.

16UNCTAD Staff, "Models for Developing Countries," in R. J. Ball (eds.), The International Linkage of National Economic Models (Amsterdam, 1973), pp. 109-176.
${ }^{17}$ A1-Bashir, pp. 23-28.
18National Foreign Assessment Center, The World 0 il Market in the Years Ahead: A Research Paper (August, 1979), p. 47.

19Richard G. Lipsey, "The Relation Between Unemployment and the Rate of Change of Money Wage Rates in the United Kingdom, 1862-1957: A Further Analysis," Economica, XXVII (1960), 1-31.

20George L. Perry, Unemployment, Money Wage Rates, and Inflation (Cambridge, 1966), pp. 40-44; and E. Kuh, "A Productivity Theory of Wage Levels-An Alternative to the Phillips Curve," Review of Economic Studies, XXXIV (1967), pp. 333-360.
$21_{A}$ number of attempts were made to include in the model a simple monetary sector. These attempts, however, proved to be unsuccessful: the model turned out to be unstable.

22 Klein. See also Behrman and Klein as well as Del Rio and Klein.

## CHAPTER IV

MODEL SIMULATION ANALYSIS

In the previous chapter, the Iraqi macroeconometric model was specified and estimated. In this chapter, the model is evaluated using simulation analysis. Particular attention is given to the extent to which the model is able to replicate the actual data, the dynamic properties of the model, and finally the model's forecast of the Iraqi economy for the years 1979 to 1985.

## Validation of the Model

The purpose of econometric model validation is "to increase one's confidence in the ability of the model to provide useful information."1 A multiple-equation model cannot be evaluated by examining the statistical fit criteria of its individual equations only. It must al so be evaluated in terms of its ability to reproduce the historical data. In a multiple-equation model, the individual relations may have a very good statistical fit, but the complete model may do a very bad job when it is simulated. ${ }^{2}$

Simulation analysis consists of solution of the model with actual historical or assumed values of the exogenous variables. ${ }^{3}$ In the case of an econometric model which is linear in variables, solution is easily achieved by finding the reduced form of the model. This approach can not be used if the system is nonlinear in variables as in the case of
the model presented in this study. 4 Therefore the model was solved through the method of successive iterations (the Gauss Seidel method). To explain this procedure, we consider a model which consists of only two equations, two endogenous variables (the $y^{\prime} s$ ), and one exogenous variable (x).

$$
\begin{gather*}
y_{1 t}=a_{1}+a_{2} y_{2 t}+a_{3} x_{t}  \tag{1}\\
y_{2 t}=b_{1}+b_{2} y_{1 t}+b_{3} y_{2, t-1} \tag{2}
\end{gather*}
$$

To start the iterative process in period $t$, a starting value for ${ }^{\wedge}(0)$
$y_{1 t}$, say $y_{1 t}$, has to be supplied (we shall denote the solution of $y_{i t}$ at the rth iteration by $\hat{y}_{i t}^{(r)}$. Then, using (2), compute:

$$
\begin{equation*}
\hat{y}_{\hat{y}(1)}^{y_{2 t}}=b_{1}+b_{2} \hat{y_{1 t}(0)}+b_{3} y_{2, t-1} \tag{3}
\end{equation*}
$$

Using (3) solve for $y_{1 t}$ in (1):

$$
\begin{equation*}
\hat{y}_{1 t}^{(1)}=a_{1}+a_{2} \hat{y_{2 t}}(1)+a_{3} x_{t} \tag{4}
\end{equation*}
$$

It is worth mentioning that $y_{2, t-1}$ and $x_{t}$ are fixed and known for each time period, and do not change from iteration to iteration. The second iteration begins by resolving y2t using $\hat{y}_{1}(1)$ from (4) instead of $\hat{y_{1}}(0)$ :

$$
\begin{equation*}
\hat{y}_{2 t}^{(2)}=b_{1}+b_{2} \hat{y}_{1 t}^{(1)}+b_{3} y_{2, t-1} \tag{5}
\end{equation*}
$$

and repeat (4) with $\hat{y}(2)$ :

$$
\begin{equation*}
\hat{y}_{1 t}^{(2)}=a_{1}+a_{2} \hat{y}_{2 t}(2)+a_{3} x_{t} \tag{6}
\end{equation*}
$$

The process iterates in this fashion until the values of $\hat{y}_{1 t}$ and $\hat{y}_{2 t}$ do not change significantly from iteration to iteration. A convergence criterion commonly used is to stop iterating when the values do not change by more than 0.1 percent, i.e.,
if

$$
\begin{equation*}
\left.\hat{y}_{1 t}^{(r)}-\hat{y}_{1 t}^{(r-1)}\right) / \hat{y}_{1 t}^{(r-1)} \leq 0.001 \tag{7}
\end{equation*}
$$

and if

$$
\begin{equation*}
\left(\hat{y_{2} t}(r)-\hat{y_{2 t}}(r-1)\right) / \hat{y_{2 t}}(r-1) \leq 0.001 \tag{8}
\end{equation*}
$$

stop iterating. Convergence in this algorithm is affected by the normalization procedure, i.e., the choice of the variable in each equation to be written on the left hand side with unit coefficient, and by the order in which the $y_{i t}$ are evaluated within each iteration. 5 For the solution of the model presented in this study, the average number of iteration necessary for convergence has been eleven for each period.

Using this method, the present model is dynamically simulated within the sample period. This kind of simulation is a stringent test of the model because simulated values of endogenous variables in one period are used as input into the equation to predict the values of the endogenous variables in the following periods, and hence, problems of error accumulation may arise. 6 A dynamic simulation is a "test that a model must pass before we would be willing to use it for forecasting purposes."7 "Of course, no model is expected to fit the data exactly:
the question is whether the residual errors are sufficiently small to be tolerable and sufficiently unsystematic to be treated as random." 8

There are many statistics which can be used to examine how closely each endogenous variable tracks its corresponding data series. The following statistics are often used: 9 mean absolute error (MAE), mean absolute percentage error (MAPE), root mean squared error (RMSE), and root mean squared percentage error (RMSPE). These measures are defined below.

1. The Mean Absolute Error (MAE): The MAE measures the absolute value of deviation of the simulated variable $\left(Y_{t}^{S}\right)$ from its actual time time path $\left(Y_{t}^{a}\right)$. It is defined as:

$$
\begin{equation*}
\text { MAE }=\frac{1}{N} \sum_{n=1}^{N}\left|Y_{t}^{s}-Y_{t}^{a}\right| \tag{9}
\end{equation*}
$$

where $N=$ the number of periods simulated. The MAE is not subject to the downward bias associated with the mean error $-M E=\frac{1}{N} \sum_{n=1}^{N}\left(Y_{t}^{s}-Y_{t}^{a}\right)$.
2. The Mean Absolute Percentage Error (MAPE): The MAPE expresses MAE in percentage terms, and hence, it can be defined as:

$$
\begin{equation*}
\text { MAPE }=\frac{1}{N} \sum_{n=1}^{N} \frac{\left|Y_{t}^{s}-Y_{t}^{a}\right|}{Y_{t}^{a}} \tag{10}
\end{equation*}
$$

3. The Root Mean Squared Error (RMSE): The RMSE is a measure of the deviation of the simulated variable from its historical time path. The magnitude of this error must be evaluated relative to the mean value of the variable in question. This measure weights large errors more than the MAE. It can be defined as:

$$
\begin{equation*}
\text { RMSE }=\sqrt{\frac{1}{N} \sum_{n=1}^{N}\left(Y_{t}^{s}-Y_{t}^{a}\right)^{2}} \tag{11}
\end{equation*}
$$

4. The Root Mean Squared Percentage Error (RMSPE): This measure is the same as RMSE, but in percentage terms. It is defined as:

$$
\begin{equation*}
\text { RMSPE }=\sqrt{\frac{1}{N} \sum_{n=1}^{N} \frac{\left(\frac{Y_{t}^{s}-Y_{t}^{a}}{Y_{t}^{a}}\right)^{2}}{}} \tag{12}
\end{equation*}
$$

Another important criterion for evaluating a model is how well actual turning points are simulated during the historical period. For a model to be superior to a simple time trend, it must simulate turning points.

The simulation error measures are presented in Table XII. In addition, the detailed results of dynamic simulation of the model are given in Appendix B. Before deriving some conclusions from the results of model simulation, the following analysis based on Table XII is in order.

A glance at the estimated and actual figures in Appendix B shows that aggregate domestic demand (DDA) and its components, total investment (IFT) and total consumption (CET) track their respective paths reasonably well. The RMSE for DDA is 3.35 which is approximately 2.42 percent of its value over the simulation period. A close analysis of the error statistics of the two components of DDA, i.e., CET and IFT, reveals that their errors tend to offset each other: while the sum of the RMSEs for CET and IFT is 72.34 , the RMSE of their sum DDA is only 51.83.

The RMSE for private consumption (CE) is 33.02. This is approximately 3.3 percent of its mean value over the simulation period and is
quite small. Its simulated series, however, missed two turning points out of four. Error measures relating to government consumption (GVCEN) are also satisfactory with RMSPE of 4.06 percent. In 1971 GVCEN underestimated its actual value by almost 12 percent, resulting in an overall MAPE of 2.36 percent.

Table XII indicates that the MAPEs for private investment (IFP) and government investment (IFGN) are only 4.22 and 3.71 percent respectively. The simulated series of IFP, however, missed two turning points out of four.

A glance at the estimated and actual figures in Appendix B shows that import components of consumer goods (TMCMO.4-3), intermediate goods (TMCM6), capital goods (TMCM7), and imports of other goods (TMCM5.8+9) do not track their respective paths very well, and hence, their error measures are generally higher than those for other variables in the model. This is mainly due to the errors associated with the construction and estimation of import price deflators which were used in deflating the nominal values of import components. In addition, a close analysis of the error statistics of the four components of total merchandise imports (TMCMT) reveals that their errors tend to cancel out; while the sum of RMSEs of TMCMO.4-3, TMCM5.8+9, TMCM6, and TMCM7 is 38.94 , the RMSE of their sum TMCMT is only 21.6. The simulated series of TMCMT missed one turning point out of four.

As regards oil exports (TE331B) and oil revenues (GVRPTN), the results appear encouraging in that RMSPEs, are 4.55 percent for TE331B and 5.06 percent for GVRPTN. Their simulated series predicts the turning point of 1972 very well.

TABLE XII
RESULTS OF DYNAMIC SIMULATION

| Variable | MAE | MAPE (Percent) | RMSE | Ratio of RMSE to Variable's Mean Value (Percent) | RMSPE (Percent) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CE | 24.39 | 3.07 | 33.02 | 3.30 | 4.48 |
| CET | 36.64 | 2.95 | 45.47 | 3.07 | 3.98 |
| DDA | 38.06 | 2.35 | 51.83 | 2.42 | 3.35 |
| DDAN | 36.60 | 2.06 | 48.65 | 2.48 | 2.64 |
| GDP | 130.00 | 3.91 | 150.12 | 4.5 | 4.43 |
| GDPN | 84.11 | 2.75 | 135.24 | 5.41 | 3.23 |
| GDPNP | 23.32 | 1.65 | 29.11 | 2.06 | 2.02 |
| GNPN | 84.11 | 3.01 | 135.24 | 5.75 | 3.51 |
| GVCEN | 8.44 | 2.36 | 13.50 | 3.02 | 4.06 |
| GVRPT\$ | 102.19 | 4.41 | 153.37 | 4.53 | 5.06 |
| GVRPTBA\$ | 150.93 | 4.18 | 244.41 | 5.70 | 4.91 |
| GVRPTN | 31.15 | 4.41 | 45.54 | 4.47 | 5.06 |
| GVRTN | 31.15 | 3.14 | 45.54 | 3.90 | 3.50 |
| GXPCRB | 0.03 | 4.42 | 0.03 | 4.54 | 5.19 |
| IFGN | 6.32 | 3.71 | 8.42 | 1.86 | 6.06 |
| IFP | 5.70 | 4.22 | 7.12 | 4.44 | 5.49 |
| IFT | 19.73 | 3.37 | 26.87 | 4.06 | 4.06 |
| NEMP | 0.02 | 1.06 | 0.03 | 1.23 | 1.12 |
| PDCE | 3.22 | 3.96 | 4.04 | 4.69 | 5.23 |
| PDDA | 2.17 | 2.91 | 2.41 | 2.96 | 3.45 |
| PDGDP | 2.88 | 4.29 | 4.18 | 6.23 | 5.49 |

TABLE XII (Continued)

| PDGGDPNP | 2.67 | 2.98 | 3.83 | 4.46 | 4.01 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PDGVCE | 4.26 | 4.81 | 5.46 | 6.49 | 5.67 |
| PDIFT | 1.94 | 2.64 | 2.46 | 3.43 | 3.23 |
| PDXPCR | 3.43 | 5.68 | 5.34 | 10.09 | 7.38 |
| PR | 96.67 | 10.63 | 149.55 | 19.34 | 15.51 |
| PTE332\$ | 0.16 | 3.88 | 0.19 | 3.27 | 4.52 |
| TBMN | 38.22 | 5.39 | 61.83 | 9.21 | 6.44 |
| TECMT | 69.36 | 3.41 | 82.00 | 3.84 | 4.15 |
| TECMTN | 37.21 | 3.08 | 58.54 | 4.88 | 3.70 |
| TET | 69.36 | 3.47 | 82.00 | 3.81 | 4.25 |
| TE331B | 0.02 | 3.71 | 0.02 | 3.2 | 4.55 |
| TE331N | 37.25 | 3.71 | 58.57 | 5.18 | 4.55 |
| TMCMT | 17.65 | 3.99 | 21.60 | 3.24 | 5.45 |
| TMCMTN | 9.42 | 3.97 | 10.81 | 2.04 | 5.35 |
| TMCMO.4-3 | 8.34 | 7.13 | 10.44 | 6.94 | 9.79 |
| TMCM5.8+9 | 3.98 | 5.68 | 4.88 | 6.77 | 7.01 |
| TMCM6 | 11.40 | 8.07 | 14.67 | 7.89 | 11.63 |
| TMCM7 | 7.60 | 5.36 | 8.95 | 3.51 | 7.68 |
| TMT | 17.65 | 3.61 | 21.60 | 2.41 | 4.96 |
| WRN | 8.37 | 4.41 | 10.63 | 4.86 | 5.62 |
| WYN | 25.24 | 5.46 | 31.40 | 5.60 | 6.65 |
| XAG | 9.05 | 3.18 | 11.32 | 3.85 | 4.05 |
| XC | 3.89 | 5.87 | 4.93 | 4.71 | 8.78 |
| Xilim | 6.61 | 4.35 | 7.98 | 4.11 | 5.66 |
| XPCR | 131.25 | 7.15 | 148.59 | 7.93 | 8.08 |

TABLE XII (Continued)

| XPRF | 1.68 | 8.25 | 2.22 | 11.6 | 10.38 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| XS | 16.14 | 2.78 | 20.43 | 3.43 | 3.44 |
| XTC | 3.79 | 3.37 | 4.37 | 3.82 | 3.88 |
| XUT | 0.51 | 4.14 | 0.69 | 5.15 | 5.20 |
| YPDN | 95.92 | 6.12 | 152.39 | 12.50 | 7.80 |

The RMSPEs for the sectoral value added are all far below 10 percent, except for the value added in petroleum refining which is 10.38 percent. Fortunately, value added in petroleum refining constitute a very small fraction of Iraq's GDP ( 0.01 percent in 1978) , and the error associated with this equation should not affect the outcome of the model .

The RMSE for non-oil GDP is 29.11 which is 2.06 percent of its mean value over the simulation period and is quite small. Its simulated series captures the turning point of 1973 which is the only one in its data series. Therefore, the simulated values of GDP are off by only 3.91 percent from the actual (historical) values. It is interesting to observe that it predicts the turning point of 1972 very well.

The error statistics of price deflators are more or less on par with those of the other variables discussed earlier. In terms of RMSPE, aggregate domestic demand deflator (PDDA), and investment deflator (PDIFT) standout. It is 0.45 percent for PDDA and 3.23 percent for PDIFT. As regards employment level (NEMP) and wage rate (WRN), the results also appear encouraging in that RMSPEs are 1.12 for NEMP and 5.62 for WRN.

The simulated values of gross disposable non-wage income (PR), which is an identity (non-behavioral) variable, are off by 10.93 percent from the actual values. PR is defined as GDP minus the sum of total government revenues and total wage bill, and hence, it is relatively small. Therefore, the MAPE and RMSPE would appear relatively large.

The above analysis supports the following general conclusions regarding simulation of the model:

1. The model replicates the time paths of most endogenous variables reasonably well and its overall performance in the sample period seems acceptable.
2. There is a tendency of errors to offset among components of some of the aggregates. This feature is common in econometric studies, including econometric models of U.S. economy. 10
3. Finally, it should be pointed out that our statement in this section regarding the error statistics being "large", "small", or "acceptable" are mostly subjective and are based on the present state of the art in econometric modeling of developing countries. An informal comparison of the performance of the present model with that of some other models of developing countries might shed light on this subject. This is undertaken in Table XIII which exhibits the RMSPEs of some strategic variables of the present and three other models. Only the RMSPE is reported since this is more relevant, if any, for such a comparison. Apart from columns 1 through 4 which give the RMSPEs in percent, a ranking of the results is provided in column 5. The results, though quite encouraging for the present model, are not fully conclusive. The present model ranks first in 2 out of 5 cases. It ranks second in GDP and IFT and third in PDCE. These results, which should be interpreted cautiously, are intended to give only rough measures of some of the available range of errors in models of developing countries, and hence the relative performance of the present model.

## Multiplier Analysis

The examination of a macroeconometric model is not complete until multiplier analysis is explored. 11 The purpose of multiplier analysis

## TABLE XIII

```
ROOT MEAN SQUARE PERCENTAGE ERRORS (RMSPE)
    OF THE HISTORICAL SIMULATION OF SELECTED
            VARIABLES OF THE IRAQI MODEL, THE
                GREEK MODEL, THE LIBYAN MODEL,
                AND THE IRANIAN MODEL
```

| Variables | (1) <br> Iraq <br> $(1960-78)$ <br> $\%$ | (2) <br> Greece <br> $(950-66)$ <br> $\%$ | (3) <br> Libya <br> $\%$ <br> $\%$ | (4) <br> Iran <br> $(1958-72)$ <br> $\%$ | (5) <br> Rank of <br> Iraqi <br> Model |
| :--- | :---: | :---: | :---: | :---: | :---: |
| GDP | 4.43 | 0.9 | 5.24 | n.a. | 2 |
| CE | 4.48 | n.a. | 9.15 | 4.91 | 1 |
| IFT | 4.06 | 1.81 | 4.98 | 11.79 | 2 |
| POCE | 5.23 | 1.04 | 8.59 | 2.81 | 3 |
| XPCR | 8.08 | n.a. | 11.39 | 25.88 | 1 |

Sources: Col. 2: Nikos Vernardakis, Econometric Models for the Developing Economies: A Case Study of Greece (New York, 1978).

Col. 3: Salem M. Moustafa, "An Econometric Model of the Libyan Economy, 1962-1975" (unpub. Ph.D. dissertation, Southern Methodist University, 1979).
Col. 4: Ali M. Parhizgari, "Mathematical and Econometric Models of Development Planning: The Case of Iran" (unpub. Ph.D. dissertation, University of Maryland, 1976).
is to examine the path that the system follows, when it is subjected to an exogenous shock, and see whether it corresponds to a priori information derived from economic theory. 12 Dynamic multipliers provide measures of both the magnitude and time response pattern of endogenous variables to changes in an exogenous variable. Dynamic multiplier analysis also provides a check on the stability of the model. The system is considered stable if the dynamic multipliers become smaller and smaller in absolute value and converge to zero over time, i.e., the sum of dynamic multipliers is finite. 13

Multiplier simulations have been made for the following exogenous shocks:

- One-period shock in the volume of oil exports
- One-period shock in the price of oil
- One-period shock in the total imports of crude oil by OECD countries
- The impact of adopting the policy of denominating the price of a barrel of oil in terms of SDR (Special Drawing Rights) rather than in terms of dollar on the economy.

Each of the above changes in the exogenous variables is considered separately.

Since the exports of oil variable is endogenous in the system, we first exogenize it and then solve the model under this condition. This solution is considered to be the original solution. Then we assume an increase in the volume of oil exports in 1965 by 20 percent and solved the model to obtain the control solution. The choice of the year 1965 is arbitrary and has no significance. The increase in the volume of oil exports causes nearly every variable in the system to increase
(Table XIV). The 20 percent increase in oil exports resulted in about 14 percent increase in GDP in the first year. In the second year, the percentage increase in GDP declined sharply to about 0.7 percent and continued in this direction in the years after. These results are due to the fact that the 20 percent increase in the volume of oil exports in 1965 is a non-sustained one; it caused oil GDP to increase by about 22 percent in the same year and zero percent in the subsequent years. Consequently, the 14 percent increase in total GDP in the first year came mainly from the 22 percent increase in oil GDP; the small percentage increases in total GDP in the subsequent years came solely from non-oil GDP. The response of non-oil GDP to the increase in oil exports is very small; it increased by only 2.6 percent in the first year and by the third year the increase was only 1.16. Imports and prices increased because of the increase in domestic demand. These results indicate that the oil sector in general and oil exports in particular have little effect on domestic non-oil economic activities and the major part of the gain from these exports comes through their effect on domestic demand. The implication of this simulation experiment is that in order for Iraq to benefit from a sharp stimulus and enter an era of sustained growth, it must launch an attack on the limits that restrict its absorptive capacity and use its oil revenues more efficiently.

An increase of 20 percent in the price of oil in 1965 caused a minor decline in private consumption in the same year due to the fact that the resulting increase in the consumer price index outweighs the increase in personal disposable income (Table XV). Nevertheless, the increase in the export price of oil has an expansionary effect on the economy through its effect on government oil revenues.

TABLE XIV
PERCENTAGE CHANGES IN SELECTED VARIABLES FOR AN INCREASE IN THE VOLUME OF OIL EXPORTS BY 20 PERCENT

|  |  |  |  |  | Year |  |  |  |  |  |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| CE | 3.81 | 2.63 | 1.85 | 1.32 | .99 | .76 | .61 | .33 | .25 | .08 |
| GVCEN | 2.24 | 1.70 | 1.33 | 1.02 | .78 | .6 | .45 | .35 | .25 | .14 |
| IFGN | 12.85 | 9.05 | 6.47 | 6.45 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| IFP | 0.0 | 3.84 | 1.94 | 1.19 | 1.21 | .24 | .15 | .12 | .14 | .07 |
| GDP | 13.97 | .69 | .52 | .22 | .17 | .13 | .11 | .07 | .05 | .03 |
| GDPN | 19.68 | 1.87 | 1.39 | 1.01 | .62 | .47 | .34 | .28 | .18 | .07 |
| XPCR | 22.05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| GDPNP | 2.6 | 1.68 | 1.16 | .89 | .53 | .42 | .33 | .25 | .18 | .12 |
| YPDN | 7.75 | 2.92 | 2.03 | 1.61 | .97 | .75 | .62 | .44 | .33 | .23 |
| TMCMT | 4.39 | 4.33 | 2.99 | 2.81 | .86 | .35 | .24 | .19 | .13 | .05 |
| PDGDP | 3.77 | 1.17 | .87 | .65 | .4 | .3 | .2 | .2 | .11 | .02 |
| PDGDPNP | 1.31 | 1.06 | .77 | .59 | .36 | .26 | .2 | .15 | .12 | .07 |
| PDCE | 1.67 | 1.47 | .99 | .85 | .36 | .26 | .2 | .15 | .13 | .08 |
| PDGVCE | 2.47 | 2.38 | 1.75 | 1.27 | .86 | .66 | .26 | .2 | .15 | .13 |
| PDDA | 1.55 | 1.25 | .91 | .70 | .42 | .30 | .23 | .18 | .13 | .08 |
| WRN | 5.75 | 4.69 | 3.39 | 2.39 | 1.58 | 1.02 | .76 | .58 | .41 | .30 |
| NEMP | .12 | .08 | .05 | .04 | .03 | .02 | .02 | .01 | 0.0 | 0.0 |

TABLE XV
PERCENTAGE CHANGES IN SELECTED VARIABLES FOR AN INCREASE IN THE PRICE OF OIL BY 20 PERCENT

|  |  |  |  | Year |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| CE | -0.14 | .17 | .28 | .31 | .32 | .32 | .31 | .26 | .20 | .06 |  |
| GVCEN | 2.14 | 1.66 | 1.29 | 1.0 | .77 | .59 | .45 | .35 | .25 | .14 |  |
| IFGN | 12.69 | 9.24 | 6.32 | 6.42 | .15 | .09 | .05 | .03 | .02 | 0.0 |  |
| IFP | 0.0 | 1.24 | 1.4 | .96 | 1.08 | .17 | .11 | .09 | .1 | .07 |  |
| GDP | .41 | .37 | .28 | .27 | .12 | .11 | .09 | .08 | .05 | .02 |  |
| GDPN | 4.93 | .78 | .64 | .60 | .32 | .28 | .23 | .20 | .14 | .04 |  |
| XPCR | 0.23 | 0.19 | 0.13 | 0.13 | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 |  |
| GDPNP | .66 | .62 | .49 | .47 | .26 | .24 | .21 | .17 | .12 | .03 |  |
| YPDN | .56 | 1.16 | .91 | .90 | .50 | .44 | .4 | .30 | .26 | .11 |  |
| TMCMT | 2.80 | 2.80 | 2.18 | 2.31 | .60 | .18 | .13 | .11 | .08 | .01 |  |
| PDGDP | 4.5 | .41 | .35 | .33 | .20 | .16 | .13 | .11 | .09 | .02 |  |
| PDGDPNP | .39 | .43 | .37 | .34 | .19 | .15 | .13 | .10 | .10 | .06 |  |
| PDCE | .79 | .78 | .59 | .6 | .2 | .15 | .13 | .11 | .09 | .03 |  |
| PDGVCE | .69 | .95 | .80 | .70 | .49 | .32 | .27 | .22 | .16 | .07 |  |
| PDDA | .46 | .51 | .43 | .39 | .23 | .17 | .15 | .12 | .12 | .07 |  |
| WRN | 1.47 | 1.90 | 1.56 | 1.32 | .91 | .58 | .48 | .39 | .28 | .12 |  |
| NEMP | 0.03 | .03 | .02 | .02 | .01 | .01 | 0.0 | 0.0 | 0.0 | 0.0 |  |

Comparing the effects of the 20 percent increase in the price of oil with the 20 percent increase in the volume of oil exports, we can say that both have expansionary and inflationary effects on the economy, but the effects are larger in the case of the increase in the volume of oil exports; even though the increases in both government consumption and government investment expenditures resulting from both shocks (the increase in oil exports and the increase in oil prices) are almost of the same magnitude, the increase in GDP which resulted from the former shock is much larger than that resulted from the latter shock. The reason is that oil exports affect GDP in two ways: first, through its effect on the oil revenues, which directly affect both government consumption and government investment; second, more exports of oil means more production of oil, which al so means higher value added in the oil sector, and hence, higher GDP.

A 20 percent decrease in total imports of oil in 1965 by OECD countries causes nearly every variable in the system to decrease (Table XVI). It results in about seven percent decrease in oil exports in the first year. This leads to about eight percent decrease in oil GDP, and hence, almost five percent decrease in total GDP. This result supports our a priori conviction that economic activities in Iraq are extremely vulnerable to fluctuations in international oil markets.

These simulation experiments indicate that oil variables are a major source of fluctuation in GDP and other economic indicators. These findings have important implications for development planning policies which should emphasize the efforts to decrease the economy's dependence on the oil sector by diversifying investment and increasing production in the non-oil sectors.

TABLE XVI
PERCENTAGE CHANGES IN SELECTED VARIABLES FOR A TWENTY PERCENT DECREASE IN THE TOTAL IMPORTS OF OIL BY OECD COUNTRIES

| Variable | 1 | 2 | 3 | 4 | 5 | $\begin{aligned} & \text { Year } \\ & 6 \end{aligned}$ | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CE | -1.27 | -. 91 | -. 62 | -. 45 | -. 33 | -. 25 | -. 21 | -. 15 | -. 11 | -. 09 |
| GVCEN | -0.73 | -. 56 | -. 44 | -. 34 | -. 26 | -. 20 | -. 15 | -. 12 | -. 09 | -. 05 |
| IFGN | -4.31 | -3.13 | -2.15 | -2.18 | -. 05 | -. 03 | -. 02 | 0.0 | 0.0 | 0.0 |
| IFP | 0.0 | $-1.25$ | -. 65 | -. 39 | -. 41 | -. 09 | -. 06 | -. 04 | -. 05 | -. 02 |
| GDP | -4.71 | -0.28 | -. 19 | -. 15 | -. 08 | -. 06 | -. 05 | -. 04 | -. 03 | -. 02 |
| GDPN | -3.22 | -0.66 | -. 46 | -. 36 | -. 21 | -. 16 | -. 12 | -. 10 | -. 06 | -. 03 |
| XPCR | -7.62 | -0.07 | -0.05 | -0.04 | -0.04 | -0.01 | -0.01 | -0.01 | 0.0 | 0.0 |
| GDPNP | -0.86 | -0.57 | -. 39 | -. 30 | -. 18 | -. 14 | -. 11 | -. 08 | -. 07 | -. 04 |
| YPDN | -2. 56 | -1.01 | -. 67 | -. 55 | -. 33 | -. 25 | -. 21 | -. 15 | -. 11 | -. 08 |
| TE331B | -6.86 | -0.06 | -0.04 | -0.04 | -0.01 | -0.01 | -0.01 | -0.01 | 0.0 | 0.0 |
| TMCMT | -1.45 | -1.46 | -1.01 | -0.95 | -. 31 | -. 13 | -. 10 | -. 07 | -. 06 | -. 01 |
| PDGDP | -1.56 | -0.39 | -. 27 | 0.21 | -. 13 | -. 10 | -. 07 | -. 06 | -. 03 | -. 01 |
| PDGDPNP | -0.44 | -0.37 | -. 26 | -. 20 | -. 12 | -. 09 | -. 07 | -. 05 | -. 02 | -. 03 |
| PDCE | -1.28 | -0.91 | -. 62 | -. 45 | -. 33 | -. 25 | -. 21 | -. 15 | -. 12 | -. 09 |
| PDGVCE | -0.91 | -0.80 | -. 58 | -. 43 | -. 29 | -. 19 | -. 14 | -. 11 | -. 09 | -. 06 |
| PDDA | -0.52 | -0.44 | -. 31 | -. 24 | -. 14 | -. 10 | -. 08 | -. 06 | -. 03 | -. 03 |
| WRN | -1.92 | $-1.60$ | $-1.13$ | -. 81 | -. 54 | -. 34 | -. 26 | -. 20 | -. 16 | -. 11 |
| NEMP | -0.04 | -0.03 | 0.02 | 0.01 | -. 01 | -. 01 | -. 01 | -. 01 | 0.0 | 0.0 |

To examine the impact of adopting the policy of denominating the price of a barrel of crude oil in terms of SDR, rather than in terms of dollar, the model is run intact up to 1971. Then the dollar prices of $0 i l$ for the period 1972-1978 are adjusted using the dollar-SDR exchange rate. The choice of the year 1972 is dictated by the fact that prior to 1972 the dollar-SDR exchange rate is one. 14 Table XVII indicates that if OPEC and hence Iraq had adopted SDR pricing of oil rather than dollar pricing of oil to safeguard the purchasing power of its oil revenues against inflation and dollar depreciation against other major currencies, oil revenues accruing to Iraq would have gone up substantially and the growth of economic activities in Iraq would have been faster. This result explains the reason behind of some OPEC countries' demand for linking oil prices to currencies other than the US dollar, e.g. to DMs or SDRs.

Forecast for 1979-1985

The complete system is dynamically simulated to forecast the Iraqi economy for the years 1979 to 1985. This forecast is predicated on the assumption that all the exogenous variables, other than oil variables, will continue to grow at their historical rates. It is further assumed that 1960-1978 estimates of the structural parameters will continue to be valid during the forecast period 1979-1985 which is a reasonable assumption since the forecast period is not long.

Before the war, oil production and exports in Iraq (like in Saudi Arabia, Kuwait, and the United Arab Emirates) were constrained by policy measures rather than resource considerations. Currently, however, oil production and exports is constrained neither by policy nor by resource

TABLE XVII
PERCENTAGE CHANGES IN SELECTED VARIABLES FOR ADOPTING THE POLICY OF DENOMINATING THE PRICE OF A BARREL OF OIL IN TERMS

OF SDR

|  |  | Year |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| CE | 0.04 | .12 | .79 | 1.2 | .8 | 1.2 | 1.69 |
| GVCEN | 0.85 | 3.59 | 10.91 | 13.11 | 14.12 | 16.69 | 21.13 |
| IFGN | 10.06 | 13.13 | 22.83 | 22.13 | 21.56 | 23.97 | 29.17 |
| IFP | 1.86 | 2.54 | 4.25 | 11.09 | 12.37 | 13.85 | 15.96 |
| GDP | 0.33 | .79 | 3.08 | 3.94 | 4.37 | 5.66 | 7.50 |
| GDPN | 2.39 | 7.88 | 17.85 | 15.19 | 14.71 | 18.99 | 25.96 |
| GDPNP | 0.45 | 1.38 | 5.16 | 5.4 | 5.39 | 6.82 | 8.83 |
| XPCR | 0.25 | 0.44 | 1.88 | 2.93 | 3.58 | 4.79 | 6.50 |
| YPDN | 0.71 | 2.62 | 9.02 | 9.44 | 9.87 | 11.5 | 14.32 |
| TMCMT | 3.07 | 6.30 | 11.5 | 16.68 | 18.14 | 20.01 | 24.37 |
| PDGDP | 2.05 | 7.03 | 14.33 | 10.83 | 9.91 | 12.62 | 17.18 |
| PDGDNPN | 0.31 | 1.2 | 3.53 | 4.12 | 4.09 | 4.23 | 5.06 |
| PDCE | 0.77 | 2.36 | 7.62 | 7.97 | 9.33 | 9.93 | 12.11 |
| PDGVCE | 0.44 | 1.62 | 5.90 | 7.68 | 7.33 | 8.93 | 10.66 |
| PDDA | 0.35 | 1.39 | 4.03 | 4.61 | 4.53 | 4.64 | 5.52 |
| WRN | 0.79 | 2.84 | 10.47 | 11.79 | 10.17 | 12.07 | 14.05 |
| NEMP | 0.02 | 0.07 | 0.25 | 0.32 | 0.38 | 0.5 | 0.66 |

constraints, but rather by the war damage to oil facilities (the war between Iraq and Iran started in September 1980). Therefore, we had to exogenize the oil sector and simulate the model through 1985 using the Wharton Middle East Economic Service projections for the Iraqi oil variables (shown in Table XVIII) as our assumptions for these variables during the forecast period.

Wharton projections for the Iraqi oil variables are based on the following assumptions:15 (a) Renovation, and in some cases reconstruction, of the damaged oil facilities is expected to progress slowly, given the continued hostility from Iran; (b) Iraq's re-capturing of its pre-war market share will be a slow process. Iran is expected to start increasing its output at the same time as Iraq, and the current oil glut is not expected to disappear very fast. All these are expected to make it difficult for Iraq to have a quick recovery in its oil sector.

As far as oil prices are concerned, Iraq is expected to adopt a rather moderate stand in the short run, in order to re-capture its pre-war market.

Results of the forecast are shown in Table XIX. Some of the implications of this forecast might be summarized as follows:

1. Government oil revenues are estimated at $\$ 11.7$ billion in 1981. This represents a drastic decline compared with the revenues accrued to the government in 1980. This is mainly a consequence of the 60 percent drop in oil production. Based on our oil production and price assumptions described earlier, however, a very rapid recovery in oil revenues is projected over the forecast horizon.
2. Real non-oil GDP is projected to register a decline of around one percent in 1981. Combined with the close to 60 percent decline in

TABLE XVIII
VALUES OF OIL PRODUCTION, EXPORTS, AND PRICES USED DURING THE FORECAST PERIOD, 1979-85

|  | Oil Production <br> (million bbl/d) | Oil Exports <br> (million bbl/d) | Official Prices <br> of Iraqi Oil <br> (US $\$ /$ bbl) |
| :--- | :---: | :---: | :---: |
| $1979 *$ | 3.48 | 3.28 | 18.50 |
| $1980 *$ | 2.51 | 2.31 | 30.3 |
| 1981 | 1.00 | 0.82 | 36.5 |
| 1982 | 1.85 | 1.65 | 37.0 |
| 1983 | 2.40 | 2.18 | 39.0 |
| 1984 | 3.30 | 3.05 | 44.20 |
| 1985 | 3.40 | 3.14 | 51.40 |

Source: Wharton Middle East Economic Service, Gulf Economic Outlook, (October, 1981), p. 159.
*Figures for these two years are actual, source: National Foreign Assessment Center, International Energy Statistical Review (August 25, 1981).

TABLE XIX
FORECAST RESULTS FOR MAJOR
ECONOMIC INDICATORS, 1979-85

| Variable | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CE | 1784.3 | 1905.6 | 1816.1 | 1914.1 | 2059.6 | 2238.8 | 2415.7 |
| \% Change | 9.1 | 6.8 | -4.7 | 5.4 | 7.8 | 8.7 | 7.9 |
| GVCEN | 1456.9 | 1851.9 | 2440.2 | 3057.5 | 3730.4 | 4459.1 | 5387.8 |
| \% Change | 22.8 | 27.1 | 31.7 | 25.2 | 22.0 | 19.5 | 20.8 |
| IFGN | 1978.6 | 2299.5 | 2531.0 | 2870.1 | 3401.1 | 4129.9 | 5273.0 |
| \% Change | 20.5 | 16.2 | 10.0 | 13.4 | 18.5 | 21.4 | 27.6 |
| IFP | 324.2 | 347.7 | 351.4 | 354.0 | 365.7 | 389.2 | 430.6 |
| \% Change | 10.2 | 7.2 | 1.1 | 0.7 | 3.2 | 6.4 | 10.6 |
| IFT | 1972.7 | 2051.5 | 2018.0 | 2047.3 | 2180.2 | 2382.1 | 2729.0 |
| \% Change | 7.3 | 4.0 | -1.8 | 1.5 | 6.5 | 9.3 | 14.6 |
| GDP | 6436.3 | 5516.5 | 3845.1 | 4853.7 | 5608.1 | 6783.6 | 7160.7 |
| \% Change | 22.4 | -14.3 | -30.3 | 26.2 | 15.5 | 21.0 | 5.6 |
| GDPNP | 2535.0 | 2682.0 | 2657.1 | 2776.6 | 2956.3 | 3180.4 | 3460.9 |
| \% Change | 10.3 | 5.8 | -0.9 | 4.5 | 6.5 | 7.6 | 8.8 |
| XAG | 340.7 | 355.0 | 361.4 | 369.7 | 386.7 | 409.1 | 436.1 |
| \% Change | 6.8 | 4.2 | 1.8 | 2.3 | 4.6 | 5.8 | 6.6 |
| XC | 415.6 | 463.4 | 469.2 | 473.9 | 487.1 | 511.0 | 574.9 |
| \% Change | 19.9 | 11.4 | 1.3 | 1.0 | 2.8 | 4.9 | 12.5 |
| XTC | 192.0 | 201.0 | 206.8 | 215.9 | 228.3 | 247.7 | 273.3 |
| \% Change | 9.3 | 4.7 | 2.9 | 4.4 | 5.8 | 8.5 | 10.3 |
| XMM | 458.0 | 480.5 | 460.9 | 466.6 | 492.7 | 539.1 | 600.4 |
| \% Change | 11.2 | 4.9 | -4.1 | 1.3 | 5.6 | 9.4 | 11.4 |

TABLE XIX (Continued)

| XS | 988.7 | 1043.3 | 1022.5 | 1108.8 | 1213.2 | 1318.5 | 1415.6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \% Change | 7.2 | 5.5 | -1.9 | 8.4 | 9.4 | 8.7 | 7.4 |
| XUT | 40.1 | 38.8 | 36.3 | 41.6 | 48.4 | 55.0 | 60.7 |
| \% Change | 20.2 | -3.2 | -6.6 | 14.9 | 16.1 | 13.7 | 10.4 |
| XPCR | 3864.9 | 2897.1 | 1174.3 | 2063.5 | 2636.7 | 3586.8 | 3681.8 |
| \% Change | 32.4 | -27.4 | -58.2 | 75.7 | 27.8 | 36.0 | 2.7 |
| GVRPT\$ | 20000.5 | 24000.3 | 11000.7 | 21000.5 | 29000.4 | 45000.6 | 54000.7 |
| \% Change | 101.4 | 18.5 | -51.9 | 83.7 | 38.4 | 55.4 | 20.0 |
| TECMTN | 6576.2 | 7422.2 | 2765.1 | 6040.8 | 8546.1 | 13754.8 | 18406.5 |
| \% Change | 102.3 | 12.9 | -62.7 | 118.5 | 41.5 | 60.9 | 19.3 |
| TMCMTN | 1686.4 | 2727.7 | 3664.5 | 4855.2 | 6108.9 | 7986.3 | 10514.9 |
| \% Change | 35.6 | 61.7 | 34.3 | 32.5 | 25.8 | 30.7 | 31.7 |
| TBMN | 4889.7 | 4694.4 | -899.4 | 1185.6 | 2437.3 | 5768.5 | 5981.6 |
| PDGDP | 156.6 | 212.9 | 217.0 | 246.4 | 269.0 | 308.4 | 345.4 |
| \% Change | 22.5 | 36.0 | 2.0 | 13.5 | 9.2 | 14.7 | 12.0 |
| PDGDPNP | 141.1 | 154.7 | 170.6 | 186.9 | 202.5 | 218.1 | 233.5 |
| \% Change | 3.1 | 9.6 | 10.3 | 9.6 | 8.3 | 7.7 | 7.1 |
| PDDA | 142.5 | 157.5 | 174.9 | 192.9 | 210.0 | 227.1 | 244.1 |
| \% Change | 9.2 | 10.5 | 11.1 | 10.3 | 8.9 | 8.2 | 7.5 |
| PDCE | 157.9 | 171.0 | 186.7 | 202.6 | 217.2 | 230.9 | 243.3 |
| \% Change | 6.1 | 8.3 | 9.2 | 8.5 | 7.2 | 6.3 | 5.4 |

the oil sector (resulting from the war damage to the oil facilities), this will lead to a total real GDP decline of over 30 percent in 1981. A slow but steady recovery is projected in the non-oil GUP for the next four years, with a much more rapid growth in the oil sector.

The most seriously affected sectors in the non-oil economy are expected to be manufacturing and services sectors. The former, which accounted for 17 percent of non-oil GDP in 1980, is projected to decline by over four percent in 1981, followed by a weak upturn of 1.3 percent in 1982. Services (including public utilities), which accounted for 40 percent of non-oil GDP in 1980, is projected to register a decline of around two percent in 1981.

The productive sectors, particularly agriculture, construction, and transportation and communication, while showing a significant slowdown, are not projected to undergo negative growth. It should perhaps be noted that despite the fact that the Gulf War did not start until midSeptember of 1980, an overall deceleration is apparent in the 1980 annual average estimates. So that the trends of 1981 are the continuation of trends which started late 1980.

The fastest recovery is projected to occur in the services sector, with a significant upturn in utilities and other services to occur as early as 1982. This forecast is based on the assumption that the government, in its effort to minimize the effects of the war on the Iraqi people, will give top priority to basic public services. This trend will continue during 1983 and 1984, when an overall recovery is projected to be well underway.
3. Real private consumption expenditures and real fixed capital formation are projected to suffer a small negative growth rate in 1981.

The decline in the latter is partly due to the reluctance of foreign business in Iraq to undertake, or participate in, new investments, despite the government's assurances that there is no economic crisis resulting from the war and that Iraq has enough reserves to meet all foreign commitments in the long run. Fast recovery is projected for both of these variables, particularly for private consumption expenditures.

Unlike private consumption expenditures and capital formation, and mainly due to the new spending needs imposed by the war, government consumption expenditures were projected to increase significantly during 1979 and 1980. In fact our projection indicates that there was a marked acceleration in the growth rate of government consumption expenditures both in 1980 and in 1981. Compared with around 23 percent growth in 1979, nominal public consumption expenditures are projected to have grown by more than 27 percent in 1980, and by close to 32 percent in 1982. Although a steady deceleration is projected over the next three years, it is slow and gradual, and growth in nominal public consumption expenditures is projected to stabilize around the 20 percent per annum range toward the end of the forecast horizon.
4. Domestic inflation rates (excluding the effects of the oil sector) are not expected to be influenced significantly by the war. Most inflation rates are projected to be growing by eight to nine percent per year. This type of performance is partly due to the government's policies of controlling prices through subsidies.
5. Nominal merchandise imports are projected to grow by over 34 percent in 1981. Combined with the close to 63 percent decline in the export earnings, this will lead to Iraq's first negative merchandise
trade balance. After a more than ID 4600 million merchandise trade surplus in 1980, Iraq is projected to show a deficit of almost ID 900 million in 1981. As with other economic indicators, a rather quick improvement in merchandise trade balance is projected. Based on our oil production and price assumptions, a surplus of around ID 1180 million is projected for 1982 and this should grow very rapidly to more than ID 5890 million by 1985.
$1_{\text {William E. Kost, "Model Validation and the Net Trade Model," }}$ Agricultural Economics Research, XXXII (1980), pp. 1-17.

2Robert S. Pindyck and Daniel L. Rubinfeld, Econometric Models and Economic Forecasts (New York, 1976), p. 315.
$3_{\text {Lawrence R. Klein and Richard M. Young, An Introduction to Econ- }}$ ometric Forecasting and Forecasting Models (Lexington, 1980), p. 61.

4R. F. Wynn and K. Holden, An Introduction to Applied Econometric Analysis (New York, 1974), p. 179.
${ }^{5}$ Ibid. p. 184.
6 Moshin S. Khan "Experiments with a Monetary Model for the Venezuelan Economy," IMF Staff Papers, XXI (1974), pp. 389-413.
${ }^{7}$ Klein and Young, p. 65.
${ }^{8}$ Charles C. Holt, "Validation and Application of Macroeconomic Models Using Computer Simulation," in J. S. Duesenberry, et al., eds., The Brookings Quarterly Econometric Model of the United States (Chicago, 1965), p. 639.

9pindyck and Rubinfeld, pp. 316-317; Kost, pp. 3-6.
${ }^{10}$ Ta-Chung Liu and Erh-Cheng Hwa, "A Monthly Econometric Model of U.S. Economy," in Lawrence R. Klein and Edwin Burmeister, eds., Econometric Model Performance Comparative Simulation Studies of the U.S. Economy (Philadelphia, 1976), pp. 70-107.
$11_{\text {Nikos }}$ Vernardakis, Econometric Models for the Developing Economies: A Case Study of Greece (New York, 1978), p. 111.

12 klein and Young, p. 64.
13Jan Kmenta, Elements of Econometrics (New York, 1971), p. 593.
${ }^{14}$ International Monetary Fund, International Financial Statistics (Washington, D.C., 1979), p. 427.

15 Wharton Middle East Economic Service, Gulf Economic Outlook (Philadel phia, 1981), p. 164.

## CHAPTER V

## SUMMARY AND CONCLUSIONS

## Summary

In the preceding chapters a macroeconometric model of Iraq was developed and evaluated. The model is based on annual data covering the period 1960-78. The basic behavioral and institutional characteristics of the economy, as well as the restrictions imposed by data were, in general, important considerations while designing and specifying the model. Availability of data have conditioned the level of disaggregation; behavioral and institutional characteristics of economic agents in Iraq have conditioned the specification of individual equations.

The model is a non-linear simultaneous equation system of fiftythree equations of which twenty-seven are stochastic and the remainder are non-behavioral or identities. It contains a private consumption function, a government consumption function, a private investment function, a government investment function, four import functions, an export function, eight value added functions, an output function, six price functions, a wage rate function, an employment level function, and a government income equation. It also contains some identities to close the system. The primary emphasis in this model was given to the investigation of the effects of the oil sector on the structure and recent performance of the Iraqi economy.

The model is examined with regard to its ability in reproducing the historical data. The results of the dynamic simulation indicates that the model replicates the time paths of most endogenous variables reasonably well and its overall performance in the sample period seems acceptable.

Dynamic multiplier analysis of the model showed the following:

1. The model is stable and exhibits damped oscillations in response to exogenous shocks.
2. The model's dynamic response to changes in exogenous variables are consistent with a priori information derived from economic theory.
3. An increase in oil exports is more expansionary and inflationary than a similar increase in the export price of oil.
4. Oil export earnings, and hence, economic activities in Iraq are extremely vulnerable to fluctuations in both international oil markets and developments in the international monetary system.

The model is also examined with regard to its ability of rendering reasonable ex ante forecasts of its endogenous variables. Considering our oil production and price assumptions during the forecast period (1979-85), the model seems capable of rendering a reasonable and meaningful short-run forecast of Iraqi economy.

Limitations and Suggestions for<br>Further Research

The macroeconometric model developed, tested, and applied in this study is subject to some limitations and shortcomings. First, the model is incapable of evaluating different policies in allocating government investment expenditures into different sectors of the economy.

Considering the large size and importance of government investment projects in Iraq, this shortcoming is a serious one. Second, it does not include a detailed agricultural sector which reflects the structural characteristics of this section of the economy. Third, the model lacks a detailed manpower sector. These aforementioned channels for further improvement and expansion of the model are not explored here mainly because of data limitations. Hence, it would be fair to regard the present model as a prototype exercise, one that can be expanded and refined as more institutional information, more detailed and qualititatively better, longer time-series data, and more funds become available.

## Conclusions

This study shows that data deficiencies while serious enough to prevent us from doing everything we would ideally want to do, are not serious enough to render meaningful and useful econometric modelling of Iraqi economy an impossibility. The model, in general, appears to be well specified considering the behavioral and institutional characteristics of the economy. Nevertheless, the fact that the present model deals with a dynamic economy, one which is experiencing a fairly rapid structural change, will limit the range of a meaningful forecast horizon for the model and will necessitate frequent re-estimation of the model parameters.

Abdul-Rasool, Ali F. "The Effect of the Pattern Use of 0il Revenues on the Growth and Prices of Iraq." (Unpub. Ph.D. dissertation, University of Massachusetts, 1970).

Abolfathi, F., G. Kenyon, M. D. Hayes, L. A. Hazelwood, and R. Grain. The OPEC Market to Nineteen Eighty-Five. Massachusetts: Lexington Books, 1977.

Al-bashir, Faisal. A Structural Econometric Model of the Saudi Arabian Economy 1960-1970. New York: John Wiley \& Sons, 1977.

Al-Eyed, Kadhim. 0il Revenues and Accelerator Growth: Absorptive Capacity in Iraq. New York: Praeger, 1979.

Alnasrawi, Abbas. Financing Economic Development in Iraq. New York: Praeger, 1967.

Ando, A., E. C. Brown and E.W. Adams. "Goverment Revenues and Expenditures." In J. S. Duesenberry et al., eds., The Brookings Quarterly Econometric Model of the United States. Chicago: Rand McNally \& Company, 1965, pp. 533-585.

Behrman, Jere and Lawrence R. Klein. "Econometric Growth Models for the Developing Economy." In W. A. Eltis, M. Scott and J. N. Wolfe, eds., Induction, Growth and Trade, Essays in Honour of Sir Roy Harrod. London: Clarendon Press, 1970, pp. 167-187.

Central Statistical Organization. Annual Abstract of Statistics 1970. Iraq, 1971.
$\qquad$ - Annual Abstract of Statistics 1972. Iraq, 1973.
$\qquad$ - Annual Abstract of Statistics 1975. Iraq, 1976.
$\qquad$ - Annual Abstract of Statistics 1976. Iraq, 1977.
$\qquad$ - Annual Abstract of Statistics 1978. Iraq, 1979.

Chang, Peter T. "A Macroeconometric Forecasting Model of Taiwan." (Unpub. Ph.D. dissertation, Oklahoma State University, 1977.)

Del Rio, Abed B. and Lawrence R. Klein. "Macroeonometric Model Building in Latin America: The Mexican Case." In N. D. Ruggles, ed., The Role of the Computer in Economic and Social Research in Latin America. New York: Columbia University Press, 1974, pp. 161-190.

Europa Publications. The Middle East and North Africa 1978-79. London, 1978.

- The Middle East and North Africa 1979-80. London, 1979.

Evans, Michael. Macroeconomic Activity: Theory, Forecasting and Control. New York: Harper \& Row, 1969.

Fekrat, M. A. "Growth of Opec-Type Economies: A Preliminary Theoretical Inquiry." Economia Internationzale, XXXII (1979), pp. 77-87.

Friedman, Milton. Theory of Consumption Function. New Jersey: Princeton University Press, 1957.

Haddad, Adeeb K. "An Econometric Monetary Model of the Jordanian Economy." (Unpub. Ph.D. dissertation, Oklahoma State University, 1978.)

Holt, Charles C. "Validation and Application of Macroeconomic Models Using Computer Simulation." In J. S. Duesenberry et al., eds., The Brookings Quarterly Econometric Model of the United States. Chicago: Rand McNally \& Company, 1965, pp. 637-650.

Intriligator, Michae1 D. Econometric Models, Techniques and Applications. New York: Prentice-Hall, Inc., 1978.

International Monetary Fund. International Financial Statistics. Various issues, Washington, D.C.

Iraqi Office Press. Iraq Monthly, London, (September 1981).
Kader, Ahmed A. "The Role of the 0il Export Sector in the Economic Development of Iraq." (Unpub. Ph.D. dissertation, West Virginia University, 1974.)

Kermani, Taghi T. Economic Development in Action: Theories, Problems, and Procedures as Applied in the Middle East. Ohio: World Publishing Company, 1967.

Khan, Moshin S. "Experiments with a Monetary Model for the Venezuelan . Economy." IMF Staff Papers, XXI (1974), pp. 389-413.

Khouja, M. W. and P. G. Sadler. The Economy of Kuwait - Development and Role in International Finance. London: The Macmillan Press Ltd., 1979.

Klein, Lawrence R. "What Kind of Macroeconometric Model for Developing Economies?" In Arnold Zellner, ed., Readings in Economic Statistics and Econometrics. Boston: Little, Brown and Company, 1968, pp. 559-570.

- "The Treatment of Undersized Samples in Econometrics." In Alan A. Powell and Ross A. Williams, eds., Econometric Studies of Macro and Monetary Relations. Amsterdam: North-Holland Publishing Company, 1973.

Klein, Lawrence R. and Richard M. Young. An Introduction to Econometric Forecasting and Forecasting Models. Lexington: Lexington Books, 1980.

Kmenta, Jan. Elements of Econometrics. New York: Macmillan Publishing Co., Inc., 1971.

Kost, William E. "Model Validation and the Net Trade Model." Agricultural Economics Research, XXXII (1980), pp. 1-17.

Lipsey, Richard G. "The Relation Between Unemployment and the Rate of Change of Money Wage Rates in the United Kingdom, 1862-1957: A Further Analysis." Economica, XXVII (1960), pp. 1-31.

Liu, Ta-Chung and Erh-Cheng Hwa. "A Monthly Econometric Model of U.S. Economy." In Lawrence R. Klein and Edwin Burmeister, eds., Econometric Model Performance: Comparative Simulation Studies of the U. S. Economy. Philadelphia: University of Pennsylvania Press, Inc., 1976.

Mallakh, Ragaei El, Mihssen Kadhim and Barry Poulson. Capital Investment in the Middle East: The Use of Surplus Funds for Regional Development. New York: Praeger, 1977.

Marzouk, M. S. "An Econometric Model of Sudan." Journal of Development Economics, I (1975), pp. 337-358.

- "A Note on Input-Output Analysis and Macroeconometric Modets: A Comment." Journal of Development Economics, III (1976), pp. 385-387.

Morgan, D. "Fiscal Policy in Oil Exporting Countries, 1972-1978." IMF Staff Papers, XXII (1979), pp. 55-86.

Moustafa, Salem M. "An Econometric Model of the Libyan Economy, 19621975." (Unpub. Ph.D. dissertation, Southern Methodist University, 1979.)

National Foreign Assessment Center. The World $0 i 1$ Market in the Years Ahead: A Research Paper, Washington, D. C., (August 1979). - International Energy Statistical Review, Washington, D. C., (August 1981).

OPEC. Annual Statistical Bulletin 1979. Vienna, 1979.
Parhizgari, Ali M. "Mathematical and Econometric Models of Development Planning: The Case of Iran." (Unpub. Ph.D. dissertation, University of Maryland, 1976.)

Perry, George L. Unemployment, Money Wage Rates, and Inflation.
Cambridge: M.I.T. Press, 1966.
Pindyck, Robert S. and Daniel L. Rubinfeld. Econometric Models and Economic Forecasts. New York: McGraw-Hill Book Company, 1976.

Salin, Asim. "The Role of the Central Bank of Iraq in Determining and Controlling the Money Supply." The Economist. (Iraqi Economists' Association), XIX (1978), pp. 31-56.

Samuel son, Paul A. "The Art and Science of Macro-Models Over 50 Years." In Garry Fromm and Lawrence R. Klein, eds., The Brookings Model: Perspective and Recent Developments. Amsterdam: North-Holland Publishing Company, 1975, pp. 3-10.

Sapir, Andre. "A Note on Input-Output Analysis and Macroeconometric Models." Journal of Development Economics, III (1976), pp. 377383.

Sayigh, Yusif A. The Economies of the Arab World. New York: St. Martin's Press, 1978.

Shahshahani, Ahmad and J. M. Dowling. "An Econometric Model Forecast of Iran, 1975-1985." The Journal of Energy and Development, II (1976), pp. 148-162.

Snyder, Donald W. "Econometric Studies of Household Savings Behavior in Developing Countries: A Survey." The Journal of Development Economics, X (1974), pp. 139-153.

Thorbeck, Erik and Apostolos Condos. "Macroeconomic Growth and Development Models of the Peruvian Economy." in Irma Adelman and Erik Thorbeck, eds., The Theory and Design of Economic Development. Baltimore: John Hopkins Press, 1966, pp. 181-209.

Todaro, Michael P. Development Planning: Models and Methods. 0xford: Oxford University Press, 1971.

UNCTAD Staff. "Models for Developing Countries." In R. J. Ball, ed., The International Linkage of National Economic Models. Amsterdam: North-Holland Publishing Company, 1973.

United Nations. Yearbook of International Trade Statistics 1966. New York, 1968.
. Yearbook of International Trade Statistics 1970. New York, 1973.

- Yearbook of International Trade Statistics 1975. New
York, 1976. Yearbook of International Trade Statistics 1975. New - Yearbook of International Trade Statistics 1979. New York, 1980.
- Studies on Selected Development Problems in Various Countries, 1972. New York, 1973.

Vernardakis, Nikos. Econometric Models for Developing Economies: A Case Study of Greece. New York: Praeger, 1978.

Wharton Middle East Economic Service. Gulf Economic Outlook. (October 1981), Philadelphia.

Wynn, R. F. and K. Holden. An Introduction to Applied Econometric Analysis. New York: John Wiley \& Sons, 1974.

APPENDIX A

TSLS ESTIMATES OF THE BEHAVIORAL EQUATIONS

$$
\bar{R}^{2}=0.965 \quad \text { SEE }=65.30 \quad h=0.83
$$

$$
\text { GVCEN } / \mathrm{N}=3.6549+\underset{(4.56)}{0.0913} \text { GVRTN } / \mathrm{N}
$$

(7.17)

$$
+0.7765 \operatorname{GVCEN} / \mathrm{N}(-1)
$$

$$
\begin{equation*}
\text { IFGN }=-2.8259+\underset{(12.32)}{0.1856} \text { GVRPTN } \tag{5.1}
\end{equation*}
$$

$$
+0.1704 \operatorname{GVRPTN}(-1)
$$

(5.14)
$+0.1131 \operatorname{GVRPTN}(-2)$ (3.18)
$+0.1293 \operatorname{GVRPTN}(-3)$ (5.83)

```
焐2 = 0.999 SEE = 16.11 O= -0.59 DW = 2.43
```

$$
\begin{align*}
& \bar{R}^{2}=0.975 \\
& \text { SEE }=3.80 \\
& h=-0.45 \\
& \operatorname{IFP}=58.1702+\underset{(1.52)}{0.0462}\left(\frac{\operatorname{PR}(-1) * 100}{\operatorname{PDIFT}}\right)  \tag{4.1}\\
& +\underset{(9.80)}{0.1158 \mathrm{IFT}(-1)-\underset{(-2.08)}{43.4304} \mathrm{Q} \mathrm{CB}} \\
& \bar{R}^{2}=0.888 \quad \text { SEE }=18.88 \quad h=0.55
\end{align*}
$$

$$
\begin{align*}
& C E=-57.7799+0.4684\left(\frac{\text { YPDN * } 100}{\text { PDCE }}\right)  \tag{1.1}\\
& +0.4805 \mathrm{CE}(-1) \\
& \text { (3.76) }
\end{align*}
$$

$$
\begin{equation*}
\text { TMCMO.4-3 }=98.4963+\underset{(7.17)}{0.2039} \mathrm{CE}-\underset{(-1.74)}{0.5121} \mathrm{XAG} \tag{8.1}
\end{equation*}
$$

$$
+80.4827 \text { Q74 }
$$

$$
(3.90)
$$

$$
\bar{R}^{2}=0.900 \quad \text { SEE }=19.41 \quad D W=1.67
$$

$$
\begin{equation*}
\text { TMCM5.8+9 }=27.7542+\underset{(2.24)}{0.0646} \mathrm{CE} \tag{9.1}
\end{equation*}
$$

$$
-\underset{(-1.83)}{0.2690} \mathrm{XMM}+\underset{(1.84)}{0.0477} \mathrm{IFT}
$$

$$
\bar{R}^{2}=0.879
$$

$$
\text { SEE }=7.87
$$

$$
D W=1.84
$$

$$
\begin{equation*}
\text { TMCM6 }=320.7549+\underset{(6.57)}{0.5205} \text { TMCM7 } \tag{10.1}
\end{equation*}
$$

$$
\bar{R}^{2}=0.889 \quad \mathrm{SEE}=29.75 \quad \mathrm{DW}=1.77
$$

$$
\begin{aligned}
\text { TMCM7 }=294.7812+ & 0.4590 \text { IFT } \\
& (20.89)
\end{aligned}
$$

$$
-\frac{368.2734}{(-3.26)}\left(\frac{\operatorname{PTM} 7(-1)}{\operatorname{PDIFT}(-1)}\right)
$$

$$
\bar{R}^{2}=0.975 \quad \text { SEE }=28.23 \quad D W=2.52
$$

$$
\begin{equation*}
X A G=153.2066-\underset{(-2.16)}{0.0971} \text { TMT }+\underset{(3.01)}{0.1534} \text { CET } \tag{13.1}
\end{equation*}
$$

$$
\bar{R}^{2}=0.522 \quad S E E=27.03 \quad D W=2.01
$$

$$
\begin{equation*}
X M M=0.1525 \mathrm{IFT}+0.1047 \mathrm{CET}-0.0666 \mathrm{TMT} \tag{14.1}
\end{equation*}
$$

$$
\begin{array}{lll}
(8.18) & (12.88) & (-3.45)
\end{array}
$$

$$
\bar{R}^{2}=0.978 \quad \text { SEE }=14.29 \quad D W=1.18
$$

$$
\begin{equation*}
X C=\underset{(11.35}{0.2563} \text { IFT }-\underset{(-4.35)}{0.0902} \text { TMT }+\underset{(1.65)}{0.0075} \text { TET } \tag{15.1}
\end{equation*}
$$

$$
\bar{R}^{2}=0.964
$$

$$
\mathrm{SEE}=17.19
$$

$$
D W=2.08
$$

$\bar{R}^{2}=0.962 \quad$ SEE $=7.58 \quad D W=1.86$

$$
\begin{equation*}
X T C=19.3015+\underset{(5.07)}{0.0564} \mathrm{CET}+\underset{(1.49)}{0.0167} \mathrm{IFT} \tag{16.1}
\end{equation*}
$$

$$
\bar{R}^{2}=0.962 \quad \text { SEE }=7.58 \quad D W=1.86
$$

$$
X S=-68.4866+0.4458 C E T
$$

$$
(20.56)
$$

$$
\bar{R}^{2}=0.961 \quad \text { SEE }=47.15 \quad D W=1.42
$$



```
        -0.0032 TMT
        (-2.13)
\mp@subsup{R}{}{2}=0.989 SEE = 0.91 㧨 =-0.55 DW = 2.17
    TE331B = 0.2490 + N (11.13) 0.0468 OETMB - 0.1053 Q72
    + 0.0001 (IFGN + GVCEN - GVRNPTN)
        (5.48)
R2 = 0.970 SEE = 0.03 DW = 2.32
XPCR = 2932.6245 GXPCRB
    (25.30)
\mp@subsup{R}{2}{2}=0.986 SEE = 74.65 DW = 1.35
    GXPCRB = -0.0240 + 1.1024 TE331B
    (53.28)
```



```
XPRF = 546.7097 GXPRFB
    (37.75)
R}\mp@subsup{\overline{R}}{}{2}=0.95 SEE=2.16 DW = 1.09
\[
\begin{align*}
& \text { PTE332 } \$=1.0125+ 0.9574 \text { PTE331\$ }  \tag{23.1}\\
&(69.91)
\end{align*}
\]
\[
\bar{R}^{2}=0.999 \quad S E E=0.15 \quad \rho=0.57 \quad D W=1.52
\]

GVRPT\$ \(=-230.1660+0.9444\) GVRPTBA\$
(74.30)
\[
\bar{R}^{2}=0.997 \quad \text { SEE }=208.71 \quad D W=2.45
\]
\[
\text { WRN }=-279.3418+1.1904 \operatorname{PDCE}(-1)+0.7130(\text { GDPNP } / \text { NEMP) }(27.1)
\] (2.17) (4.15)
\(\bar{R}^{2}=0.947\)
SEE \(=25.09\)
\(D W=1.33\)
\(N E M P=1.5477+\underset{(2.86)}{0.0001}\) GDPNP \(+\underset{(14.64)}{0.0587}\) TIME
\[
\bar{R}^{2}=0.998 \quad S E E=0.02 \quad D W=1.57
\]
\[
\begin{align*}
& \text { PDCE }=33.0621+ 0.0267 \text { DDA }  \tag{29.1}\\
&(15.76)
\end{align*}
\]
\(-\underset{(-2.10)}{162.9375}\left(\frac{\text { SUBN }}{\text { IFGN }+ \text { GVCEN }- \text { SUBN }}\right)\)
\(\bar{R}^{2}=0.955\)
\(S E E=5.66\)
\(\rho=-0.45\)
\(D W=2.17\)
\[
\bar{R}^{2}=0.959 \quad \text { SEE }=5.43 \quad D W=2.33
\]
\[
\begin{equation*}
\text { PDIFT }=22.1139+\underset{(14.87)}{0.7305} \frac{(\text { PTM6 } * \text { TMCM6 }+ \text { PTM7 } * \text { TMCM7) } / 100}{\text { TMCM6 }+ \text { TMCM7 }} * 100 \tag{31.1}
\end{equation*}
\]
(20.00)
\[
\bar{R}^{2}=0.979 \quad \text { SEE }=3.0 \quad=0.57 \quad D W=1.69
\]
\[
\begin{equation*}
\text { PDGDPNP }=10.3358+\underset{(18.77)}{0.9214} \text { PDDA } \tag{33.1}
\end{equation*}
\]
\[
\bar{R}^{2}=0.954 \quad \text { SEE }=4.51 \quad D W=2.01
\]
\[
\begin{equation*}
\text { PDXPCR }=7.2247+0.9394 \text { PTE331 } \tag{34.1}
\end{equation*}
\]
\[
(32.06)
\]
\[
\bar{R}^{2}=0.983 \quad \text { SEE }=4.89 \quad D W=1.87
\]

\section*{APPENDIX B}

DYNAMIC SIMULATION
(A11 variables are preceded by IQ which stands for Iraq.)
\begin{tabular}{ll} 
ACTUAL & COLUMA: ZERA SECTOR \\
PREDICTED & COLUMN: DYNAMIC
\end{tabular}

PREDICTED COIUMN: DYNAMIC
VARIARLE GRAPHED : IGCE PRIVATE CONSUMPTION EXPFNDITURES. MILL. IG7S OINARUN DRPA NGT. ACT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline DATS & actual & FREDICTED & DIFFFRENCE & * & difference & & GRAPH RANGE UF VAluFs: & 648.768 T0 & 1635.481 & \\
\hline & ( * & \(1+1\) & (TIE \(=\mathrm{X}\) ) & & & & & & & \\
\hline 196501 & 739.1186 & 657.105 & 81.981 & & 11.992 & \(\cdots\) & * & & & - \\
\hline 196611 & 747.222 & 7133.138 & 44.184 & & 5.913 & - & + * & & & \\
\hline 1967\%1 & 648.768 & 735.921 & -57.153 & & -8.8:9 & - & + & & & \\
\hline -964"1 & 758.885 & 728.8936 & 29.987 & & 3.352 & - & + * & & & \\
\hline 196らい! & 765.344 & 744.725 & 21.617 & & 2.821 & \(\bullet\) & + * & & & \\
\hline 1970.1 & 743.963 & 766.972 & -23.895 & & -3.792 & - & + & & & \\
\hline 9971.11 & 838.218 & 833.649 & 4.569 & & 7.545 & - & \(x\) & & & \\
\hline 1972:1 & 874.698 & 898.353 & -23.656 & & -2.7:4 & - & ** & & & \\
\hline ¢9731.1 & 854.356 & 854.370 & -0.1514 & & -11.ç2 & - & x & & & \\
\hline 1.974:12 & 114f:-498 & 1157.330 & -16.933 & & -1.476 & - & & ** & & \\
\hline 1975.11 & 1384.597 & - 382.648 & 1.951 & & 9. \(1+1\) & - & & & \(x\) & \\
\hline :976: & 1323.576 & 3377.224 & 16.352 & & 1.235 & - & & ** & & \\
\hline 1977"1 & 1521.563 & 1524.855 & -3.286 & & -0.216 & - & & & & \(x\) \\
\hline 197811 & 1635.49! & 1614.575 & 15.3!6 & & 1.:34 & - & & & & \\
\hline
\end{tabular}

SUMMAFY STATISTICS:
fienn absolute error
MEAN ABSOLUTE \(*\) ERROR
ROOT MEAN SQUARED \(x\) ERROR
MEAN OF ACTUALS
MEAI! OF PREDICTED
riaximum absolute resioual
thfil statistics (based on log-relative-changes):
\begin{tabular}{|c|c|c|c|}
\hline 24.3926 & MEAN SQUAFE ERRUR & (D) & n. 3.37 \\
\hline \multicolumn{4}{|l|}{3.0738} \\
\hline 33.0227 & FIRSt INEQUALITY CPEFFICIENT & (U) & E.475R \\
\hline 4.4816 & SE.COND INEQUALITY COEFFICIENT & (1) \({ }^{\text {a }}\) & ก.5426 \\
\hline \(998.375 \%\) & \multicolumn{2}{|l|}{MEAN OF actuals} & 9.19611 \\
\hline 991.6897 & \multicolumn{2}{|l|}{MEAN OF PREDICTEDS} & 0.1693 \\
\hline 81.9805 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
STANDARD DEVIATICN OF ACTUALS \\
standard deviatiun of predicteds
\end{tabular}}} & 9.1114 \\
\hline & & & 0.1935 \\
\hline & \multicolumn{2}{|l|}{STANDARD DEVIATIUN OF PREDICTEDS correlation between actuals and prenicteds} & n. 2433 \\
\hline 1635.4812 & RIAS PROPORTION & (UM) & n. 0186 \\
\hline 1618.575? & VARIANCE PROPORTION & (US) & r.apen \\
\hline 6.48 .7678 & COVARIAISCE PROFORTION & (UC) & \(0 \cdot \mathrm{RC} 34\) \\
\hline \multirow[t]{5}{*}{657.1055} & REGRESSION PROF ORTION & (UR) & n.:ret \\
\hline & DISTURRANCE PRGPOPTION & (10) & 6.9813 \\
\hline & IHTERCEPT & (1) & ?. P186 \\
\hline & SLOPE ESTIMATE & (B) & 1.4.54 \\
\hline & slofe estimate-hithout intercept & ( \(\mathrm{B}^{\prime}\) ) & 9.961? \\
\hline
\end{tabular}
ACTUAL COLUEA: ZERO SECTOR

FREDICTID COLVIN: DYMMMIC
VARIABLE GRAPHED : IGCET TOTAL CONSUMFIION EXPEINITURFS
MILL. 1975 CIHARSTRANSF ORMATION


SUMMARY STATISTICS:
mfan absolutr error
:EAN ABSOLUTE X ERROR
GOOT MEAN SQUARED ERROR
root meán squaped \(x\) firror
MEAN OF ACTUALS
farimum absolute residual
36.6420
2.9594
45.4714
3.9825
1478.4758
1467.4933
87.8211


2434.2561
2466.55 .34
\(76 i .1692\)
946.7324
aximum ef actuals
Maxivum of preoicteo
HINIMUM OF PRFDICTED
761.1672 946.7324

THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):

\begin{tabular}{ll} 
ACTUAL & COLUMN: ZERD SECTOR \\
PRERICTEO & COLUMP: LYYAMIC
\end{tabular}
VARIABLE GRAFHED : IGODA GGGREGATE DOMFSTIC DFMAHD

MILL. 1975 DINARSTRANSF ORMATION
\begin{tabular}{|c|c|c|}
\hline date & actual & hredicten \\
\hline & * ) & ) \\
\hline 36511 & 1286.11 & 182.922 \\
\hline -966.1 & 1345.35! & 1266.756 \\
\hline :967:1 & 1231.156 & 1287.792 \\
\hline 1358:1 & 1389.25 & 1345.538 \\
\hline 969:1 & 1439.03n & :385.696 \\
\hline 197031 & 1449.9ra & 1437.558 \\
\hline . 371 :1 & 1573.394 & 1547.271 \\
\hline 197211 & 1638.98: & , 66.1 .348 \\
\hline -973:1 & 1.698 .145 & 46'99. 215 \\
\hline 97411 & 2312.77A & 2319.315 \\
\hline 197511 & 3:31.199. & 3 C 33.847 \\
\hline 197671 & 3385.969 & 3369.247 \\
\hline (977:1 & 3888.394 & 3753.735 \\
\hline -978:1 & 4272.134 & 4265.012 \\
\hline
\end{tabular}

sumatary statistics:
mCAN ABSOLUTE ERROR
UEAN ABSOLUTE \(x\) ERROR
ROOT MEAN SOUARED ERROR
ROCIT MEAN SQUARED \(x\) ERROR
man of actuals
EAN OF PREOICTEDS
MAXI:AUM ABSOLIJTE RESIDUAL

TAXIRMM OF ACTUALS
haxiaum of predicteos
MIHIMUM OF ACTUAL:
MINIMUM OF PRFDICTEDS
4272.9336
\(4265 .{ }^{n} 117\)
1231.1555
1182.n2ล5
38.7657
2.3495
51.8317
3.3516
2138.7646
2112.4944
1144.6587


4272.9336
\(4265 . n 117\)
1231.1555
1182.7255
theil statistics (based on logmelatiye-changes):
\begin{tabular}{|c|c|c|}
\hline MEAN SQUARF friot & (D) & nonele \\
\hline FIRST INEQUALITY COEFFICIENT & (U) & C.2918 \\
\hline SECOND INEQUALITY COEFFICIENT & (UP) & 0.3049 \\
\hline MEAN OF ACTUALS & & 0.79?4 \\
\hline MEAN JF PREDICTEDS & & 0.9987 \\
\hline Standard deviation of actuals & & \(0.1: 12\) \\
\hline Standard deviation of predicteds & & n.11981. \\
\hline CORRELATION EETWEEN ACTUALS AND & Prenicteds & C.92?3 \\
\hline BIAS PROETRTION & (UM) & n.y25? \\
\hline VARIANCE PROPORTION & (US) & \(0.1{ }^{18}\) \\
\hline COVARIANCE PROPORTIMN & (UC) & 9.8.867 \\
\hline REGRFSSION PPOPORTIDN & (UP) & r.9174 \\
\hline DISTURBANCE PROPORTION & (1)T) & 0.9573 \\
\hline INTFRCEPT & (A) & C. 1123 \\
\hline SLOPE ESTIMATE & (B) & 1.599 \\
\hline SLOPE ESTIMATE.WITHOUT THTERCEPT & (E') & n.0908 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ictual & CULUGN: ZERO SECTMP \\
\hline prfficted & colurn: dy:famic. \\
\hline
\end{tabular}

Vafiaple graphed : IgDDAh agGregate domfstic demand


GUMMARY STATISTICS:
hearl absolute ekror
MI.AN ABSOLUTE \& ERROR

MRAN ABSOLUTE X ERROR
POOT MEAN SQUARED \% ERPOR
MEAN OF ACTUALS
MEAN OF FREDICTEDS
haximum arsolute resioual.
36.69115
2.7642
48.6572
2.6373
1957.7942
1939.6917
99.4492


5573.4961
5474.7469
735.6992
728.5215
theil statistics (based en log-relative-changesi:

\begin{tabular}{ll} 
ACTUAL & CULUMH: ZEAR SECTOR \\
PREOICTED & COLUMN: DYNAIIC
\end{tabular}

PRETICTED COLUMN: DYMAiIIC
VARIARLE GRAPHED : IQGDP GHOSS DOMESIIC PRODUCT MILL.IGTS DINARSTRANSFORMATION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DATE: & actual. & Prfoicted & OIFFERENCE & x & oifference & GRAPH & RANGE OF YALUES: & 2166.629 T0 & \multicolumn{3}{|c|}{5757.875} \\
\hline & * 1 & \(1+3\) & (TIE = \({ }^{\text {P }}\) & & & & & & & & \\
\hline 96501 & \(2239.54{ }^{\circ}\) & 3166.629 & 12.917 & & 3.256 & - +* & & & & & \\
\hline :96, \({ }^{9}\) ? & 2359.321 & 2396.288 & 43.139 & & \(1.8 \in 1\) & - ** & & & & & \\
\hline 9671 & 2212.5:7 & ¢413.n15 & -190.499 & & -9.617 & -* & & & & & \\
\hline 196a:1 & 2576.52: & 2566.738 & 9.782 & & 0.381 & x & & & & & - \\
\hline 963:1 & 2658.653 & 2713.145 & -54.992 & & -2.15 J & - & *+ & & & & \\
\hline -97031 & 2733.96 .3 & 2874.641 & -139.679 & & -5.115 & - & * + & & & & - \\
\hline 197111 & 2897.319 & 3915.979 & . 118.660 & & -4.796 & - & * * & & & & - \\
\hline 972.1 & 285.9.n¢7 & 2958.639 & -149.572 & & -5.325 & - & * + & & & & - \\
\hline -973.41 & 3324.197 & 3419.754 & 0. 5.557 & & -2.875 & - & ** & & & & - \\
\hline 1974.11 & 3431.177 & 3626.429 & -195.252 & & \(-5.691\) & - & * & + & & & - \\
\hline (975)1 & 4122.194 & 3946.44 \% & 75.754 & & 1.883 & - & & + * & & & \(\bullet\) \\
\hline 97611 & 4784.176 & 4484.562 & 299.613 & & 6.263 & - & & & + & * & - \\
\hline . 97711 & 4954.203 & 47611.617 & 193.586 & & 3.9 .18 & - & & & & + & - \\
\hline 9761 & 5257.875 & 5076.949 & 180.726 & & 3.441 & - & & & & & * \\
\hline
\end{tabular}

SUMMARY STATISTICS:
MFAS ARSOLUTE ERROR
TLAN AESOLUTE \(x\) ERROR
FOOT MEAN SOUARED ERROR
ROOT MEAN SQUARED \(\boldsymbol{z}\) ERROR
MEAN OF ACTIJALS
MEAH OF PPEOICTEDS
MAXIMUM ABSOLUTE RESIOUAL

\section*{MAXI:AIM OF ACTUALS \\ HAXIMUM OF PRFDICTEDS \\ minimum of actuals \\ TINIMUM OF FPEDICTEDS}

THEIL STATISTICS (BASEO ON LOGMREIATIVE-CHANGESI:
\begin{tabular}{|c|c|c|}
\hline MEAH SQUARF ERROR & (D) & 0.0"2? \\
\hline First inequality coefficient & (U) & n. 4835 \\
\hline SECOND INEQUALITY CEEFFICIENT & (1)') & 0.6514 \\
\hline MEAN OF ACTUALS & & \(\because 0.56\) \\
\hline MEAN OF PREDICTEDS & & 0.0655 \\
\hline STANUARD DEVIATION OF ACTUALS & & 9.0727 \\
\hline Stalldard deviatint of predicteus & & O.f? 0 ? \\
\hline CORRELATION PETUEFN ACTUALS AND & PRF.DICTEDS & ก.8.15 \\
\hline GIAS PPOPORTION & (UM) & noninf \\
\hline variance proportion & (US) & 0.5:49 \\
\hline COVARIATSE FFROFORTION & (UC) & ก.46.51 \\
\hline REGRESSICN FROPORTION & (UP) & 0.1954 \\
\hline IISTURBANCE PROFORTION & (UD) & 9.8.45 \\
\hline INTERCEPT & (1) & ก.0.357 \\
\hline SLOPF ESTIMATE. & (B) & 1.55 n- \\
\hline SLOPF ESTIMATE - \({ }^{\text {LITHOUT }}\) INTERCEPT & (8) \({ }^{\text {P }}\) & 1.1496 \\
\hline
\end{tabular}
\(\therefore\) ATUAL
FRFEICTED
VARIABLE GRAPHED : IGIGDFH GRISS DOMESTIC FRODUCT AT MARKET PRICES

MILL.CURR.DINARSUN DRPA NAT. ATT


SUMMARY STATISTICS:
mean absolute error
MEAN ABSOLUTF \& ERROT
ROOT MEARS SOUARED ERROR
ROOT MEAN SQUARED \% ERRGR
an of actuals
MEAN CF PREDICTED
MAXIMUM ABSOLUTE RESIGUAL

MAXIMUM OF ACTUALS
MAXIMUM OF PREDICTEDS
MIVIMUM OF ACTUALS
MINIMUM OF PREDICTEDS
84.1135
2.7544
135.2427
3.2309
2497.9487
2471.6284
366.8747


6623.1250
6856.3203
885.7976
theil statistics (based on log-relative-changess:


ACTUAL FREDICTED

VARIABLF GRAPHED : IWGDPAP

summary statigtics:
MFAN ABSOLUTE ERROR
MEAN AESOLUTE Z ERROR
QOOT MFAN SQUAFED ERROR
rnot mean squared x frror
MEAN OF ACTUALS
RiEAN OF PFFgICTED
MAXIMUM ABSOLUTE RESIDUAL
```

MAXIMUM OF ACIUALS
MAXIMUM OF PREDICTEDS
MIHIMUN OF ACTUALS
MINIMUM OF PRFDICTEDS

```

```

ACTUAL

```

\section*{FREDICTED OLUMN: DYGAMIC}

VAKIABLE GRAPHED : IQASPN GRUSS NATIONAL PRODUCT
MILI. CURF, DINARSTRANSF IRMATIO:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DATE & ACTUAL & & PREDICTEO & DIFFERENCE & 3 & OIFFFRENCE & & GR APH & range. of values: & 756.597 in & & 6454.125 & \\
\hline & 1 & * ) & ( + ) & (TIT \(=x\) ) & & & & & & & & & \\
\hline 96591 & & 756.597 & 769.441 & -12.944 & & 1.698 & - \({ }^{\text {x }}\) & & & & & & \\
\hline 1966:1 & & 822.999 & 329.434 & -6.435 & & -J.782 & - \(\times\) & & & & & & \\
\hline 967 11 & & 847.999 & 882.23,1 & -35.132 & & -4.147 & -** & & & & & & \\
\hline 96811 & & 943.899 & 922.132 & 21.7!7 & & 2.371 & - X & & & & & & \\
\hline 969:1 & & 995.699 & 988.513 & 7.185 & & U. 722 & - \(X\) & & & & & & , \\
\hline . 97111 & & 1145.198 & 1046.920 & 38.277 & & 3.527 & & X & & & & & - \\
\hline 19710i & & 1213.898 & 1145.234 & 73.664 & & 6.944 & & X & & & & & - \\
\hline . 97211 & & 1354.398 & 1337.7n0 & -33.3n2 & & -2.353 & & * & & & & & \\
\hline :973:1 & & 1544.390 & 1588.891) & -44.491 & & -2.841 & & & x & & & & \\
\hline 1974\% & & 3135.997 & 3083.251 & 52.747 & & 1.682 & - & & \(x\) & & & & \\
\hline 197511 & & 39 fi 7.195 & 3932.732 & -25.537 & & -4.654 & - & & & x & & & - \\
\hline -976:1 & & 4413.797 & 4661.621 & -246.824 & & -5.592 & - & & & & * & & \\
\hline 9.97711 & & 5455.195 & 5242.531 & 212.664 & & 3.898 & - & & & & & ** & \\
\hline 1978:1 & & 6454.125 & \(\leqslant 087.328\) & 366.797 & & 5.683 & - & & & & & & \\
\hline
\end{tabular}

SUMMARY STATISTICS:
IFAN ABSOL.UTE RRROR
MEAN ABSOLUT: X E.RROR
ROOT MEAN SQUARED ERPIR
ROOT MEAN SQUARCD \(x\) FRROK
mean of actual.s
MEAN OF PREDICTEDS
MAXIMUM ABSOLUTE RESIDUAL
haximum of actuals
MAXIMUM OF PRFOICTEDS
MINIMUM OF ACTUALS
MINIMUM OF PRFDICTEDS
\begin{tabular}{|c|c|c|c|}
\hline 84.1147 & MEAN SQUARE ERROR & (D) & 9.0122 \\
\hline \multicolumn{4}{|l|}{3.0116} \\
\hline 135.2421 & FIrst inequality coefficient & (11) & ก.2:198 \\
\hline 3.578 ? & SECOND INFQUALITY COEFFICIENT & (U') & ח. 28.5 \\
\hline 2348.9529 & \multicolumn{2}{|l|}{mean of actuals} & 0. 1649 \\
\hline 2322.6431 & \multicolumn{2}{|l|}{MEAN OF PREDICTEDS} & 0.1591 \\
\hline 366.7969 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & 0.1667 \\
\hline & & & C. 1550 \\
\hline & \multicolumn{2}{|l|}{STANDARD DEVIATICA OF PREDICTEDS CORRELATION RETHFEN ACTUALS AND PREDICTEDS} & U.96n? \\
\hline 6454.12511 & EIAS PROPORTION & (UM) & n. 015 ? \\
\hline \(6: 37.3281\) & VARIANCT PROPORTION & (U5) & (1.9522 \\
\hline 756.5974 & COVARIANCE PROPORTION & (UC) & C.9327 \\
\hline \multirow[t]{5}{*}{769.4414} & REGRESSION PPOPORTIDN & (1JP) & C.0-77 \\
\hline & IISTURGANCF PROPORTION & (Un) & 0.9772 \\
\hline & IIITEPCFPT & (1) & 0.0116 \\
\hline & SLOPE ESTIMATE & (B) & J.0265 \\
\hline & SLOPF ESTIMATE-HITHOUT INTERCEPT & (B') & 1.0x 15 \\
\hline
\end{tabular}
MCTUAL COLUMN: ZCRO SECTMR
prenicten coluhrs arbakic
variable grapied : Iggucen
gCVERNMENT CENSUMPTION EXPEHDITURFS
MILL.CURR.DINARSUN DRPA HAT. ACT

\begin{tabular}{ll} 
ICTUAL & COLUMN: 2ERA SE.CTOR \\
FREDICTED & COLUAN: UYINAMIC \\
VARIABLE GRAPHED : IGOVRPTS
\end{tabular}
\begin{tabular}{|c|c|}
\hline Date. & ACTUAL \\
\hline 1965\%1 & 367.92: \\
\hline 366:1 & 394.24 \\
\hline 967:1 & 364.37: \\
\hline -964i1 & \(487.9{ }^{\text {a }}\) \\
\hline '96.911 & 479.04: \\
\hline 97r.11 & 512.E4: \\
\hline '971: & 94..71. \\
\hline 2972:11 & 575.0.6. \\
\hline \(!97311\) & 1443.11; \\
\hline :974.1 &  \\
\hline 1975', & 753110 \\
\hline .97641 & 85, 0 ery \\
\hline 9977id & 9631.in) \\
\hline :778:1 & 1 (12) 1 . 0 \\
\hline
\end{tabular}

REDICTED
summary statistics:
MEAN ABSCLUTE FRRJR
MEAN ABSULUTF X ERROR
ROOT MEAN SQUARED \(x\) FRRO

MFAN OF ACTUALS
MEAA OF PREDICTEDS
haximum aesolute resinual

MAXIMUM OF ACTUALS
MAXIMUM OF PRFDICTEOS
MINIMUM OF ACTUALS
MINIMUM OF FREDICTEDS
GOVERNMFNT OIL REVENUES MILL.CURR.DOLLAROPEC ASB

102.1953
4.4133
153.3721
5.3619

r381.6641
364.3791
351.942
351.9426
governmfnt oil rivenues
MILL.CURR.DOLLAROPEC ASB
theil statistics cbased on log-relative-changes):

actual
croicted
VARIABLE GRAPHFD : I GGVRPTsBA gnverinment oll revenues east.

MILL. CURR.DINARSTRANSFORMATION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Ofite & actual & fredictif & OIFFERENCE & \(x\) & difference & & GRAPH RANGE OF VALUFS: & 685.155 & 12533.594 & \\
\hline & 1* & ( + ) & (TIE = \(x\) ) & & & & & & & \\
\hline 265\%1 & 737.697 & 697.622 & \(39.94{ }^{1} 6\) & & 5.421 & - \(x\) & & & & - \\
\hline 196691 & 785.503 & 737.894 & 47.614 & & 6.16 & - x & & & & \\
\hline 1967.1 & 685.05 ? & 754.2:5 & -69.153 & & -10.195 & - X & & & & \\
\hline 1968:1 & 845.874 & 822.372 & 23.487 & & 2. 177 & - x & & & & - \\
\hline 1969:1 & 852.985 & 872.723 & 13.75.7 & & -2.316 & - \(\times\) & & & & - \\
\hline . 97611. & 874.96 & 933.6:2 & -59.506 & & -6.818 & -** & & & & - \\
\hline \(\bigcirc 97111\) & 1183.2 j & '211.182 & -27.979 & & -2.365 & - \(x\) & & & & - \\
\hline : 972.31 & 1766.166 & :113.844 & -37.678 & & -3.534 & - ** & & & & - \\
\hline \(973 \cdot 11\) & 2926.935 & 20:10.393 & 7.542 & & ก. 312 & & \(x\) & & & - \\
\hline - 774 ? 1 & 7317.8.99 & 7667.168 & -349.359 & & -4.774 & - & & ** & & - \\
\hline :975:1 & 9535.547 & 8954.758 & 580.789 & & 6.191 & - & & & * & - \\
\hline 37641 & 111498.699 & \(1: 191.465\) & 497.145 & & 4.135 & - & & & + & - \\
\hline -977:1 & 11076.496 & 1.1414.433 & -337.934 & & -3.151 & - & & & * & + - \\
\hline 197811 & 12533.594 & 19518.371 & 15.223 & & 0.121 & & & & & +* \\
\hline
\end{tabular}

Summatr statistics:
AEAN ABSULUTE ERROR
MEAN ABSCLUTE \& ERROR
GOOT MEAN SQUARED ERRCR
COOT MEAN SGUARED X ERROR
MEAN OF ACTUALS
RAXIMUM ABSOLUTE RESIDUAL

\section*{haxilium of actuals \\ MaxIMUM CF FREDICTEDS \\ MIHIMUM DF ACTUALS \\ Minimum of fercicteds}

COLJMM: ZERר SECTOR COLUMI: DY:IMMIC
150.9393
4.181
294.4151 4.1801
\(244.415: 1\) \(244.415:\)
4.9785
4287.1016
4264.9297 580.7891

\subsection*{12533.5937}
theil statistics (based on log-relative-changess:

```

ACTUAL COLUMN: ZEROSECTOR
COLUMN: DY!uAM

```
VARIABLE GRAFHED : IGRVRFTM GOVERNMFNT OIL REVERUES
\begin{tabular}{|c|c|c|}
\hline DATE & ACTUAL & predicteg \\
\hline & ( * ) & ( + ) \\
\hline -065.11 & 131.400 & 125.694 \\
\hline - 9661.1 & 14?.89? & 137.776 \\
\hline '367.1 & 1314.132 & 142.669 \\
\hline 968:1 & 174.257 & 163.126 \\
\hline 960:1 & 171.0.86 & 178.926 \\
\hline 197801 & 183.786 & 196.471 \\
\hline 997141 & 296.765 & 276.750 \\
\hline 197271 & 191.418 & 201.465 \\
\hline 1.97311 & 557.496 & 555.489 \\
\hline -974.1 & 1683.298 & 1767.945 \\
\hline 197511 & 2214.853 & 215\%.288 \\
\hline 1976 11 & 2516.167 & C411.946 \\
\hline +97712 & 2.844 .156 & 2752.461 \\
\hline 197811 & 3:12.2:* & 31636.316 \\
\hline
\end{tabular}

SUMMARY STATISTICS
\begin{tabular}{|c|c|}
\hline MEAN ABSOL.UTE ERROR & 31.1532 \\
\hline MEAN ABSOLUTE \% ERROR & 4.413: \\
\hline FOOT MEAN SGUARED ERRGA & 45.5424 \\
\hline root mean squared x Error & 5.1819 \\
\hline hean of actuals & 1217.2153 \\
\hline mean of predicteds & 1167.7566 \\
\hline HAXIIUM ABSJLUTE RESIDUAL & 98.2247 \\
\hline MAXIMUM OF ACTUALS & 3.12.1997 \\
\hline haximum of predicteos & 3:36.3152 \\
\hline MINIMUM OF ACtUALS & 139.1322 \\
\hline MINIMUM OF PREDICIEDS & 125.693a \\
\hline
\end{tabular}


THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGES):
\begin{tabular}{|c|c|c|}
\hline MEAN SGUARE ERROR & (D) & ConP76 \\
\hline FIRST INEQUALITY COFFFICIEMT & (1) & B.1812 \\
\hline SECOND INEQUALITY COEFFICIFNT & (110) & n.2rá \\
\hline MEAH OF ACTUALS & & 0.2479 \\
\hline MEAN OF PREDICTENS & & n. 2451 \\
\hline STANDARD DEVIATION OF ACTUALS & & C.4156 \\
\hline Standard deviation of pfedicteds & & n. 3854 \\
\hline CORRELATION BETWFEN ACTUALS AND PR & & ¢.9793 \\
\hline BIAS PROPORTION & (UM) & 0.0ere \\
\hline VARIANCE PROPORTION & (US) & 0.1007 \\
\hline COVARIBNCE FROPORTIOH & (UC) & 0.8771 \\
\hline REGRFSSTON PROPORTION & (UR) & 0.7617 \\
\hline DISTURBANCE PROPORTION & (un) & 0.9362 \\
\hline INTERCEPT & (A) & 0.3178 \\
\hline SLOPE ESTIMATE & (B) & 1. \(\mathrm{rffe}_{1}\) \\
\hline SLIAPF ESTIMATE.-HITHOUT INTERCEPT & (B) & 1.0352 \\
\hline
\end{tabular}
actual.
ACTUAL
VAEIAPLEF GRAPHED : IGGVRTN TOTAL GOVERNMFNT REVEMUE


SUMMARY STATISTICS:
meat! nesolute error
HFAN ABSULUTE \% ERRDK
PDOT MEAN SQUARED ERROR
ROOT HEAN SQUJARED \(z\) ERROR
MEAN OF ACTUALS
mean of preuicteds
MAXIYUN ABSOLUTE RESIDUAL
31.1532
3.13711
45.5424
3.5019
1164.9905
1155.5315
99.22117

MAXI:AUM OF ACTUALS
MAXIMUM OF PREDICTEDS
MINIMUM OF ACTUALS
MIMIMUM OF actuals
ninimum of predicteos
3275.8525
3299.969:
192.4118

theil statistics (based on log-relative-changis):


\section*{PRFDICTED COLUMN: DYNAMIC}

VARIARLE GRAPHED : IGGXPCRB CRUDE DIL PRCOUCTION BILL. BARRELS TRANSFORMATION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DATE & actual & & Predictio & DIFFERENCE & \(x\) & Difference & & GRAPH R & Range of valufs: & 0.449 Tn & 0.935 & \\
\hline & 1 & 1 & \(1+1\) & (TIE = X) & & & & & & & & \\
\hline 196591 & & 0.473 & 0.450 & 7. 029 & & 6.071 & - & * & & & & \\
\hline 1966)1 & & ".5"P, & 1.474 & 0.034 & & 6.7:9 & & + * & & & & - \\
\hline . 196711 & & J. 448 & \(\cdots .496\) & -i. 047 & & -1\%.553 & - & + & & & & - \\
\hline 1968:1 & & ก. 549 & r.534 & n. 018 & & 3.363 & \(\bullet\) & & + * & & & - \\
\hline :969:1 & & 9.555 & 9.566 & -0.011 & & -1.950 & - & & * * & & & - \\
\hline 19761 & & r.565 & 0.503 & -0.038 & & -6.681 & - & & + & & & - \\
\hline [971.11 & & 3.618 & 1.632 & -0. 0.14 & & -2.226 & - & & + & & & - \\
\hline 197293 & & 0.535 & 9.556 & -n.121 & & -3.978 & - & & * + & & & - \\
\hline 197301 & & f. 737 & 0.733 & 0.ce4 & & ก.520 & - & & & \(x\) & & - \\
\hline 97411 & & 0.719 & 0.754 & -0.0.035 & & -9.862 & - & & & * + & & - \\
\hline \(\therefore 97511\) & & 9.825 & 0.771 & 1.1055 & & 6.646 & - & & & + & * & - \\
\hline 1976.1 & & J. 8 R2 & 4.838 & 0.153 & & 4.895 & - & & & & * * & - \\
\hline ; \(977{ }^{\circ} 1\) & & a.857 & 8.887 & -4."29 & & -3.438 & - & & & & & - \\
\hline :978"1 & & 0.935 & 0.935 & D.enci & & 0.033 & & & & & & \\
\hline
\end{tabular}

SUNMAKY STATISTICS:
MEAN ARSOLUTL. ERRUR
MLAN ABSOLUTL X FRROR
ROOT MEAN SOUAPED ERROR
root mean souared \(x\) error
MEAN UF ACTUALS
HEAN OF PREDICTEDS
MAXIMUM ABSOLUTE RESIOUAL

MAXIMUM OF ACTUALS
MAXIMUM OF PREDICTEDS
MINIMUM OF ACTUALS
MINIMUM OF PREDICTEDS

theil statistics (based on log relative-changes):
\begin{tabular}{|c|c|c|c|}
\hline 0.6273 & MEAN SQUARE ERROR & (0) & O.0rg2 \\
\hline \multicolumn{4}{|l|}{4.4167} \\
\hline 0.1313 & First inequality cgefficif.nt & (u) & 0.5978 \\
\hline 5.1884 & SECOND INEQUAI.ITY COEFFICIENT & (10) & 0.6519 \\
\hline 0.6581 & MEAN OF ACTUALS & & T. 0 ¢ 14 \\
\hline P. 6589 & \multicolumn{2}{|l|}{MEAN OF PREDICTEDS} & 0.1562 \\
\hline \multirow[t]{3}{*}{0.1545} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{STANOARD DEVIATION OF ACTUALS STANDARD DEVIATION OF PREOICTEDS}} & \(0.12{ }^{0}\) \\
\hline & & & rootir \\
\hline & \multicolumn{3}{|l|}{Correlailon betwen actuals ano pregicteds vores?} \\
\hline 4.9351 & BIAS PROFORTION & (UM) & 0.n 37 \\
\hline 1.9348 & VARIANCE PROPORTION & (US) & \(0.25: 57\) \\
\hline 0.4783 & COVARIANCE PROPORTION & (UC) & ก. 7446 \\
\hline \multirow[t]{5}{*}{「.450n} & REGRESSICN PROPORTION & (UP) & 0.72 .1 ? \\
\hline & DISTURBANCE PROPORTION & (UD) & 0.9751 \\
\hline & INTERCEFT & (A) & п. P12A \\
\hline & SLOPF ESTIMATE & (8) & 1.1416 \\
\hline & SLOPE ESTIMATE-WITMOUT INTERCEPT & ( \(\mathrm{B}^{\prime}\) ) & 1. 6678 \\
\hline
\end{tabular}

ACTUAL
FRCDICT
VARIARLE GRAPHEU : IUIFGN
IGTAL GROSS FIXED PUBLIC INVESTMEAT
MILL.CURR.DINARSIPAQ AAS

\begin{tabular}{|c|c|}
\hline & (*) \\
\hline [9659] & 71.2 c \\
\hline . 366 :1) & \(76.23 \%\) \\
\hline 1967: & \(73.7 \%\) \\
\hline 1968:1 & \(75.8 \%\) \\
\hline 1964:1 & \(91.4 \%\) \\
\hline 9706: & 1:1.1: \\
\hline 197111 & \(105.07 \%\) \\
\hline ; 97\% 1 & \(114.6: 4\) \\
\hline 1973.1 & 218.00 \\
\hline 974.1 & 446.10:0 \\
\hline :975:1 & 798.01\% \\
\hline - 976111 & 1112.44. \\
\hline 1977:1 & 1392.153 \\
\hline 678.1] & 164:.8\% \\
\hline
\end{tabular}
\(1+1\)
\(65: 1855\)
76.598 76.592 75.311 84.977
91.163 91.163 91.163
101.398 176.964 124.657 124.657
214.662 441.576 818.620 1117.240
\(: 376.718\) i 646.872
DIFFERENCE
(TIE \(=\times\) )
11.115
-0.342
4.339
-9.177
\(n .237\)
-9.288
-1.964
14.757
4.238
4.424
-18.628
2.359
15.335
\(-6 . n 72\)
x Difference
GRAPH RANGE CF VALUES:
60.085 t 0
1546.R72

IT = X
15.611


THEIL STATISTICS (BASED ON LOG~RFLATIVE-CHANGES):
MEAN ABSOLUTE ERRDR

EAN ABSOLUTE \& ERROR ROOT MEAN SGUARFD ERROR root mean squared \% ERROR

AFAN OF ACTUALS
MEAN OF PREDICTEGS
MAXIMUM AESOLUTE RESIDUAL
5.3192
3.7757
8.4235
6.1554
451.11820
451.4146
18.62 .114

\footnotetext{
MAXIMUM OF ACTUALS
MAXIMUM UF PREDICTEOS
MIMIMUM OF actuals
MINIMUM OF PPFRICTEDS
}
1543.800 .0
1646.8723
646.8723
\(71.249 \%\)
69.2847

\begin{tabular}{ll} 
ACTUAL & COLUMN: ZERO SECTOR \\
PREDICTED & COLUMN: DYIAMIC \\
VARIABLE GRAPHED \(: ~\) &
\end{tabular}
gRoss fixed private investment
MILL. CURR.DINARSTRANSF ORMATION

```

actual COLUAN: ZERN SECTOR
prfficteo COLUMN: DYHAMIC

```

VARIABLE: GRAPHEO: IOIFT
IMPLICIT DEFLATOR OF gROSS FIXED INVFSTMENT
MILL. 1975, MINARSTRANSFORMATION


SUMMARY STATISTICS:
MEAN AGSOLUTE ERROR
MEAN ABSOLUTE X FRRDR
qOOT MEAN SGUARED ERROR ROOT MEAN SQUARED \(x\) ERROR
MEAN OF ACTUALS
MEAN OF PPEDICTEDS
MAXIMUM ABSOLUTE RESIDUAL

MAXIMUM OF ACTUALS
MAXIMUM OF FREGICTEDS
MINIMUM OF ACTUALS
MINIMUM OF FREDICTEDE
19.7268
3.3679
26.8679
4.064
660.288
651.993
57.498
1838.6784
1838.67811
1798.4596
1798.4598
251.5564 251.5564
235.2941

IHFIL STATISTICS (BASED ON LOG-RELATIVE-CHANGSS:

ACTUAL COLUMN: ZERO SECTOR

\section*{VARIABLE GRAPHED : IONEMP}
employment level.
MILLIONS
THANSF ORMATION


\section*{ACTUAL COLUBN: ZERO SFCTOR OLUMN: DY:IAMIC}

COPISUMFR PRICI IUDEX
\begin{tabular}{|c|c|c|}
\hline OCTE: & ACTUAL & prfoicten \\
\hline & * ) & 1 \\
\hline 96571 & 57.815 & 64-68P \\
\hline 1960.1. & 62.694 & 65.763 \\
\hline 96.7!'1 & 72.144 & 66.769 \\
\hline 1968 & 67.987 & 68.111 \\
\hline 9691 & 67.885 & 69.751 \\
\hline -270:1 & 77.77? & 71.772 \\
\hline 197111 & 75.54 ! & 73.498 \\
\hline j972:1 & 13.465 & 75.599 \\
\hline 197311 & 73.119 & 73.211 \\
\hline 197411 & \(84 \cdot 1\) 1:4 & 82.372 \\
\hline 197511 & 104.1931 & 174.161 \\
\hline -976: & 123.374 & 116.673 \\
\hline 97711 & 119.482 & 118.659 \\
\hline -978.1 & 148.825 & 144.966 \\
\hline
\end{tabular}


THEIL STATISTICS (BASED ON LOG-RELATIVE-CHANGFS):
MEAN ABSOLUTE ERFADR
MLAN ABSOLUTF \(x\) FRROR
ROOT HFAN SQUARED \& FRROR
MFAH OF ACTUALS
MEAN DF PREIUICTEDS
MAXIMUM AESOLUTE RESIDUAL
3.2185
3.9691
4.763
5.2328
86.1397
85.4143
6.9891


148.8246
144.9659
57.8146
64.6884

actual
PREOICTED
COLUAH: ZERO SECTOR

VARIARLE GRAPIED : IgPDDA IMPLICIT DEFLATOR OF AGGREGATE LOMESTIC DEMAND


THEIL STATISTICS (BASEO ON LOG-RELATIVE-CHANGES):
\begin{tabular}{|c|c|c|c|}
\hline 2.1727 & MEAN SQUARE ERROR & (0) & n. ni2l \\
\hline \multicolumn{4}{|l|}{2.9153} \\
\hline 2.4799 & First inequality coffficifnt & (U) & 0.4886 \\
\hline 3.4495 & SECOND INEQUALITY COEFFICIENT & (U) & O.667\% \\
\hline 81.1727 & \multicolumn{2}{|l|}{MEAN OF actuals} & c. 0.1534 \\
\hline 81.4296 & \multicolumn{2}{|l|}{MFAN OF PREDICTEDS} & 0.15964 \\
\hline 4.4306 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
STANDARD DEVIATION OF ACTUALS \\
STANDARD DPVIATION OF PREDICTEDS
\end{tabular}}} & C.068? \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{STANDARD DEVIATION OF PREDICTEDS CORRELATION BETWEEN ACTUALS AND PREDICTEDS}} & 0.9621 \\
\hline & & & ก.7658 \\
\hline 130.4372 & BIAS PROPORTION & (UM) & O. 0235 \\
\hline 12R. 3477 & VARIANCF PRCPORTION & (US) & C.n14? \\
\hline 57.2934 & COVARIAIICE PROPORTION & (IJC) & 0.9582 \\
\hline \multirow[t]{5}{*}{61.5335} & REGRESSION PROPORTION & (UR) & D. 0.467 \\
\hline & DISTURBANCE PROFORTION & (UD) & ก.9299 \\
\hline & INTERCEPT & (A) & 9.n159 \\
\hline & SLOPF. ESTIMATE. & (B) & C.8416 \\
\hline & SLOPF ESTIMATE-WITHOUT INTERCEPT & (B) & n.969? \\
\hline
\end{tabular}
```

ncrual
premictirn
COLUMN: ZERO SECTIOR
colictin coluIAN: OYRAMIC

```
VAPIAGLE GRAFHED : IQFUGDR IMPLICIT DEFLATIR OF GDF INDEX: I975=1IA TRANSFORM;TION


SUMMARY STATISTICS:
MEAN ABSOLUTE ERROR
MEAN ABSOLUTE X ERRUR
OOT MEAN SQUARED ERROR
ROOT MEAN SQUARED \% ERROR
MEAN OF ACTUALS
MEAN OF FPEDICTEDS
MAXIMUM ABSOLUTE RESIDUAL

\section*{MAXIMUM GF ACTUALS \\ MAXIMUM OF FRFDICTEOS \\ MAXIMUM OF FRF.DICTE \\ MInImum of PPEDICTEDS}

THEIL STATISTICS (BASED ON LOG-RELATIVE.CHANGES):

\begin{tabular}{ll} 
ACTUAL \\
PREDICTED & COLUMN: ZFRO SERTOR \\
VARIABLE GKAFHED & \(:\) IGPDGDPNP
\end{tabular}

VARIABLE GKAFHEO : IQPDEDPNP IMPLICIT DEFLATOR OF NOM OIL GDF
INDEX: \(1975=1\) CO TRANSFORMATION

actual
ACTUAL
FREDICTED
VARIABLE GRAFFED : IQRNGVCE IMPLICIT DEFLATOR OF GOVERNMEHT CONSUMPTION EXPENDITURES INDEY: IOTS=1FR TRANSFORIIATIOR
\begin{tabular}{|c|c|}
\hline Date & ACTUAL \\
\hline & * ) \\
\hline :965:12 & \(6 i .447\) \\
\hline 1966:1 & 60.19 H \\
\hline 9671 & 64.593 \\
\hline 968: & 61.514 \\
\hline 76911 & 6.3 .222 \\
\hline 9781 & 64.304 \\
\hline 9711 & 75.577 \\
\hline 97? 11 & 73.68. \\
\hline :973:1 & 73.245 \\
\hline 197411 & 84.274 \\
\hline 1975: & 10\%.s: \\
\hline 1076:1 & 123.158 \\
\hline 1977 i1 & \(118.86^{\prime}\) \\
\hline :978 11 & 148.5\% \\
\hline & \\
\hline
\end{tabular}

REDICTEO
\(\left(+\begin{array}{l}\text { 61.542 }\end{array}\right.\) 64.971 64.951 66.751
67.542 68.768 75.553 77.522 76.633 95.84? 114.218
113.859 113.859
127.739 127.739
137.162

SUMMARY STATISTICS:
MEAN RESOLUTE. ERROR
MEAN ABSOLUTE x ERROR
ROOT MEAIN SOUARED ERROR
ROOT MEAN SQUARED \(x\) ERROR
mean of actuals
MEAN OF PREDICTED
MAXIMUM ABSOLUTF, RESIDUAL

DIFFERENCE \(x\) OIfFERENCE


THEIL STATISTICS (BASED ON LOG~RELATIVE-CHANGES:
\begin{tabular}{|c|c|c|c|}
\hline 4.5653 & MEAN SQUARE ERROR & (D) & 0.0070 \\
\hline \multicolumn{4}{|l|}{4.81413} \\
\hline 5.4563 & FIRST INEQUALITY COEFFICIENT & (U) & 0.7341 \\
\hline 5.67116 & SECOND INEQUALITY COEFFICIENT & (11) & 0.9252 \\
\hline 84.1459 & \multicolumn{2}{|l|}{MEAN OF actuals} & ก. 0.691 \\
\hline 84.5828 & \multicolumn{2}{|l|}{mean of preitctedis} & D.0615 \\
\hline \multirow[t]{3}{*}{11.3339} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
STAMOARO DEVIATION OF ACTUALS \\
standard deviation of prfdicteds
\end{tabular}}} & \(0.0 y 01\) \\
\hline & & & 0.0524 \\
\hline & \multicolumn{2}{|l|}{CORRELATION BETHITN ACTUALS ANO PREDICTEDS} & n.42n3 \\
\hline 148.5023 & BIAS PROPORTION & (UM) & ก.3083 \\
\hline 137.1624 & VARIANCE PROPORTION & (US) & 0.2:53 \\
\hline 60.1976 & COVARIANCE FROPOPTION & (UC) & n.7966 \\
\hline \multirow[t]{5}{*}{\(61.542 ?\)} & RTGPESSSION PPOPORTIOR & (UP) & の.n3nt \\
\hline & GISTURBANCE PROPORTIOM & (un) & 0.9619 \\
\hline & INTERCEPT & (A) & 0.9745 \\
\hline & SLOPT ESTIMATE. & (B) & 0.7237 \\
\hline & SLOPF ESIIMATE-UITHIUT INTERCEPT & ( \(\mathrm{B}^{\circ}\) ) & n.9540 \\
\hline
\end{tabular}

ACTUAL
COLUMI!: ZFRO SECTOR

VARIAELE TRAFHLD : IGPOIFT IMPLICIT DEFLATOR DF GROSS FIXFE INVESTMENT INDEX: 1975=1L: TRANSFORMATION

```

ACTUAL COLUMN: ZERO SECTOR

```
VARIARLE GPAPHED : IQMDXPCR IMPLICIT DEFLATOR OF VALUE ADDED IN CFUDE PETPOLEUM INDEX: IGT5=1TG TRANSFORMATION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline dATE & ACTUAL & Pregicted & OIFFERENCE & \% & DIfference & Grapl range dif values: & 21.532 T & 120.922 \\
\hline & * ) & \(+3\) & (TIE = \(x^{\prime}\) ) & & & & & \\
\hline :9651] & 21.532 & 22.293 & -0.761 & & -3.534 & - \({ }^{\text {x }}\) & & \\
\hline 1.96691 & 21.8.16 & 22.356 & -7.551 & & -2.525 & - \({ }^{\text {x }}\) & & \\
\hline -967:1 & 21.875 & 22.11 r & -9.236 & & -1.479 & - \(\times\) & & \\
\hline -968:11 & 22.337 & 22.336 & 3.961 & & ?. 274 & - x & & \\
\hline 96971 & 22.15 & 22.285 & -n. 127 & & -. 3.574 & - \(x\) & & \\
\hline 137r 11 & 23.268 & 2<.217 & 1.0151 & & 4.515 & - + * & & \\
\hline -07111 & 31.759 & 25.787 & 4.272 & & 14.213 & - + * & & \\
\hline 1973:1 & 27.22 E & 24.918 & 2.3:8 & & 8.478 & - +* & & \\
\hline 1973^1 & 27.91A & 30.319 & \(-2.4 n \mathrm{n}\) & & -8.593 & - * + & & \\
\hline 274\%1 & 113.272 & 90.437 & 12.835 & & 12.428 & - & & * \\
\hline -975 1 & 110.011. & 111.11,6 & -1.166 & & -1.166 & - & & ** \\
\hline :976:1 & 91.253 & 193.414 & -12.276 & & -13.383 & - & & + \\
\hline 197711 & 106.961 & 111.973 & -4.113 & & -3.752 & - & & * + \\
\hline 1978.1 & 1211.722 & 114.863 & 6.159 & & 5.111 & - & & \\
\hline
\end{tabular}

Summarit statistics:
MEAN ABSOLUTE ERROK
MEAN ABSOLUTF \(X\) ERROR
ROU HEAN SUUARED ERRCR

MEAN OF aCtUALS
MEAT: OF PPEOICTEDS
haximum absolute residual
```

MAXIMUM OF ACTUALS
MIMIMUM OF ACTUALS
MINIMUM UF PREDICTEDS

```
3.4319
5.6806
5.3406
7.3811

52.9801
52.5340
12.8351

\subsection*{1211.7223
114.8534 \\ 114.8534 \\ 22.1115}

THEIL STATISTICS (BASFD ON LOG-RELATIVE-CHANGES):

ACTUAL COLUMN: ZERI SECTOR
phenicted CULUNM: DYNAMIC

YARIAELE GRAPHED : IOPR
PRIVATE NON-HAGE INCOME (INCLUUING OEPRE)
MILL.CURR.DINARSTRANSF ORMATIIOH

VARIARLE GRAPHED: IQPTE332S REFINED PETRCLFUM PRODUCTS EXPORT PRICF US I/BRL TRARSFORMATION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DATE: & actunl & & Prgidicten & DIFFERENCE & * & DIFFEMENCE & GRAPH RANGE OF VALUFS: & 2.241 T0 & & 13.119 & \\
\hline & 1 & , & ( + ) & (TIE \(=\times\) ) & & & & & & & \\
\hline . 96511 & & 2.291 & 2.39\% & -8. 8.99 & & -4.311 & -** & & & & . \\
\hline !966.1 & & 2.313 & 2.397 & -7.784 & & -3.653 & -** & & & & \\
\hline 196711 & & 2.291 & 2.376 & -0.985 & & -3.717 & - \(\times\) & & & & \\
\hline !96891 & & 2.257 & 2.397 & -V.14:1 & & -6.217 & -** & & & & \\
\hline 1969.1 & & 2.21, 1 & 2.393 & -0.192 & & -8.725 & -** & & & & - \\
\hline 1971.1 & & 2.211 & 2.387 & .0. 0.186 & & -8.45.3 & -** & & & & . \\
\hline 1971.1 & & 2.615 & 2.733 & -n.118 & & -4.5.14 & - \(x\) & & & & - \\
\hline 1972:1 & & 2.783 & 2.753 & 9.13: & & 1.177 & - +* & & & & \\
\hline 1973:1 & & 3.433 & 3.513 & -n.082 & & -2.394 & ** & & & & \\
\hline !974'1 & & 9.923 & 14.240 & -0.317 & & -3.193 & - & & * & & - \\
\hline 1975.1 & & 11.175 & 11.438 & . 3.255 & & -2.284 & - & & & ** & - \\
\hline 197611 & & 11.368 & 11.679 & 0.289 & & 2.411 & - & & & +* & \\
\hline 1977:1 & & 12.784 & 12.518 & n. 266 & & 2.983 & - & & & & + * \\
\hline 1978)1 & & 13.319 & 12.749 & 0.17: & & 1.295 & - & & & & - \\
\hline
\end{tabular}

SUMMARY STATISTICS:
MEAN ABSOLUTF. FRPOP. MEAN ABSULUTE X ERROR ROGT MEAN SOUARED ERROR RUOT MEAN SQUARED \(X\) ERRCR
DEAR UF ACTUALS
MEFAN OF FREUICTEDS MAXIMUM AESOLUTE RESIUUAL
```

MAXIMUM OF ACTUALS
MAXIMUM UF PREDICTEDS
MIHIMUM OF ACTUALS
MINIMUM OF PREDICTEDS

```
n. 1653
3.8896
-. 1863
4.5237
5.8109
5.9683
3.3174
\(13.119:\)
12.9402
2.21111
2.3762

THEIL STATISTICS (BASED ON LOGmRFLATIVE-CHAMGES):

actual
rreficted
variatle grarmed : igtban
TRADE BALANCE O!! GOUDS
MILL. CURR diMARSTPANSF ORMATION

VAKIABLE GRAPHED : IGTFCMT TUTAL. MERCHANDJSE EXPORTS MILL. 1975 DTHARSUN YITS


SUMMARY STATISTICS:
MEAN ABSOLUTE: ERROR
MEAN ABSOLUTE \(x\) ERROR
HOOT MEAN SQUARED ERRIR
MFAN OF ACTUALS
MEAN OF FREDICTEDS
makimum hesulute residual
```

MAXIMUM OF ACTUALS
MAXIMUM OF PREDICTED
MINIMUM OF ACTUALS
MIMIMUM UF FPEOICTEDE
2836.7281
2437.1111
2837.1111
1563.6 .13
1567.3938

```
69.3622
3.4141
82.61331
4.1403
2130.9624
2.25 .7891
\(134.867 ?\)
thfill statistics (basfo on log-rflative-chayifis):

\begin{tabular}{ll} 
ACTUAL & COLUMH: ZERA SECTOR \\
FREDICTEA & COLUMH: DY:HAMIC
\end{tabular}
UARIABLE GRAPHED : IQTECMTN TUTAL HERCHANDISE EXPORTS MTLL.CURR-DIMARSUH YITS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline date & actual & PREDICTED & DIFFERENCE & \% & DIFFFRENCE & GRaph Pange of valufs: & 297.474 19 & & 3951.577 & \\
\hline & (*) & \(1+1\) & (TIE \(=\) X) & & & & & & & \\
\hline . 965.1 & \(314.95:\) & \(3 \mathrm{S11} .485\) & 14.465 & & 4.533 & - \(x\) & & & & \\
\hline 196601 & 333.51. & 317.434 & 16.184 & & 4.821 & - \({ }^{\prime}\) & & & & \\
\hline 9671 & \(297.47:\) & 318.783 & -21.293 & & -7.191 & - X & & & & \\
\hline - 968 -1 & 371.72: & 361.183 & 17.537 & & 2.835 & - \(x\) & & & & \\
\hline -95318 & 372.12 & 375.355 & -3.235 & & -3.86,9 & - x & & & & \\
\hline 197\%1 & 392.89 & 413.943 & -11.143 & & -2.837 & - ** & & & & \\
\hline 971:1 & 5!19.03: & 512.116 & -2.086 & & -.11.417 & - X & & & . & \\
\hline 972.1 & \(371.31:\) & 371.624 & -0.314 & & -7.785 & - x & & & & \\
\hline 97311 & 58 B .1 y & 574.842 & 13.258 & & 2.254 & - \(x\) & & & & \\
\hline - 3741 & 1949.93? & \(\because 738.235\) & -88.305 & & -4.529 & - \(x^{-1}\) & ** & & & \\
\hline 19751 & 2457.201 & 2353.191 & 97.0.79 & & 3.959 & - & & ** & & \\
\hline 97611 & 2737.90: & 2624.227 & 117.673 & & 4.298 & - & & & ** & \\
\hline 977.1 & 285rionm: & 2974.8.4 & -124.8:14 & & -4.379 & - & & & * & + \\
\hline 197811 & \(325 r .98 i\) & 3251.577 & -.0.6.77 & & -1).921 & - & & & & *** \\
\hline
\end{tabular}

SUMMARY STATISTICS:
mean absolute error
MEAN ABSOLUTE X ERROP
RDOT MEAN SQUARED ERRCR
ROOT MEAN SGUARED \(x\) ERRJJ
MEAM OF ACTUALS
MEAN OF PREDICTEDS
MAXIMUM ABSOLUTE RESIDUAL

MAYIMUM OF ACTUALS
hayimum of preoicteds
Mimimum of actuals
HINIMUM OF PRFDICTEDS
37.2120
3.9776
58.5436
3.7031
1198.6331
1197.4131
124.8940


3257.8999
3251.5767
297.3999
399.4854

```

ACTUAL COLURN: ZEPO SECTOR
Brficten culumin: ornamic

```

VARIAELE GRAPHED : IQTET EXPORTS OF GOODE AND SERVICES
MILL.1975 DINARSUN DRPA NAT. ACT


\section*{SUMMARY STATISTICS:}
\begin{tabular}{|c|c|}
\hline MEAN ABSTLUTE ERROK & 69.3622 \\
\hline Mcal! ABSOLUTE \% ERROF & 3.4737 \\
\hline ROOT MEAN SQUAPED ERRIR & 82.903) \\
\hline ROOT MEAN SQUARED \(\%\) ERROR & 4.2531 \\
\hline Mrafl of actuals & 2148.7821 \\
\hline MEAN UF FREDICTEDS & 2143.6096 \\
\hline !aximum arsulute residual & 134.8672 \\
\hline MAXIMUM UF ACTUALS & 2945.7437 \\
\hline maximum jr pridicteds & 2986.8267 \\
\hline minimum of actuals & 1513.5239 \\
\hline MINIMUM OF PREDICTEDS & 15117.7439 \\
\hline
\end{tabular}

THFIL STATISTICS (BASED ON LOG.-RFLATIVE-CHANGES):
MEAN SQUARE ERROF
( 1 )
0.01147

FIRST INEQUALITY COEFFICIENT
FECONO INEQUALITY COEFFICIEN
(U)

MEAN OF ACTUALS
MEANOF PRE.OICTEDS
STANDARD DEVIATION OF PREDICTEDS
CORRELATION BETMEEN ACTUALS AND PREDICTEDS
BIAS PROPORTION
VARIANCF PROPORTION
COVARIANCE PROPORTION
REGRESSION FROPORTION
DISTURBANCE PROPORTION
INTERCEPT
SLOPF ESTIMATE
SLOPF ESTIMATE WITHGUT JNTERCEPT
\begin{tabular}{ll} 
(UM) & 0.0143 \\
(US) & 0.0182 \\
(UC) & 0.9776 \\
(UR) & 0.0215 \\
(UD) & 0.9742 \\
& \\
(A) & -0.7171 \\
(B) & 0.9157 \\
(B.) & 0.7955
\end{tabular}
\begin{tabular}{ll} 
ACTUAL & COLUMA: ZERO SECTOP \\
PRFEICTER & COLUMN: OYMAMIC
\end{tabular}

VARIABLE GRAPHED : IOTE \(331 B\) EXPORTS IF CRUDE PETROLFUM
RILL. BARRFLS transfirmation

```

l.REIICTED

```

VARIAELE GRAPHED : IUTE33in FXPORTS OF CRUGF PETROLEUM

```

ACTUAL
Hrtinictad
COLUMM: ZFRO SECTOR
COLuIh:: OYNAllir.

```

artunl roliman: zern sector

PRFIICTEO COLUMA: OY:IAMIC
VAPIAELE GRAPHED : IQIMCMTN TCTAL MERCHANDISE IMPORTS

MILL.CURR.DINARSUN YITS


SUMMARY STAIISTICS:
NEAN ABSOLUTE ERROR
MEAH ABSOLUTE X ERRUR ROOT MEAN SQUARED ERROR ROOT MEAN SQUARED \(x\) ERROR

> 9.4249 3.9714 10.8 .871 5.3529 527.7775 527.8149 18.1289
of actuals
haxifum arsolute residual

MAXIMUM OF ACTUALS
MAXIMUM OF PREDICTEDS
MIHIMUM OF ACTUALS
MINIMUM OF PREDICTEDS
1323.:531
1312.1146
144.16811
theil statistics (based on log-relative-changes):

FIRST INEQUALITY COFFFICIFN
(D)
\(0.11: 29\) SECOHO INEGUALITY COEFFICIFNT
(U)

MFAN OF ACTUALS
MEAN OF PRERICTEDS
STANDARD DEVIATION OF ACTUALS
standard deviation of predicteds CORRELATITN BETWEEN ACTUALS AND PREDICTEDS nelatin between Actuals nob predicteos ner

\section*{RIAS PROPORTION}

VARIANCF PRIPORTION
COVARIANCE PROPORTICN COVARIANCE PROPORTICN
REGRISSION PROFORTION DISTURBANCE PROPORTION
(UM)

IHTERCEPT
SLOP! ESTIMATE.
SLIPV FSTIMATE HITHNUT INTERCEPT
3.1639
0.2945

ก. 1617
n. 1565
n. 9841
0.0588
0.083
\(0.083^{2}\)
0.8982
0.8982
0.0 .485
0.14405
0.9497
\(0 . r 138\)
1.0389
1.0173
\begin{tabular}{ll} 
ACTUAL & COLUMN: ZERC EEETOA \\
DPPEICTED & COLUAN: DYNAMIC.
\end{tabular}



SUMMARY STATISTICS:
IIEAN ABSOL.UTF. FRRAR
MEAN ABSOLUTE \(\boldsymbol{x}\) ERROR
ROOT HEAN SQUARED ERRIUR
ROUT MEAN SQUARED \(x\) EKROR
MFAN UF ACTUALS
MEAN OF PREDICTEDS
MAXIMJM ABSOLUTE RESIDUAL

MAXIMUM OF ACTUALS
MAXIMUM OF PREDICTEDS
MINIMUM OF ACTUALS
MINIMUM OF PREDICTEDS
theil statistics (based on log-RELATIVE-CHANGFS):

```

ACTUAL

```

VARIARLE GRAPHED ：IGTMCN5＋A．4 IMPORTS OF SITC 5，8，AND J MTLL．I975 DINAPSTPANSFORMATION

summary statistics：
MEAN ABSOLUTE ERROR
AEA：J ABSOLUTL \(\boldsymbol{x}\) ERROR
OOT MEAAI SOUAFED ERRUR
ROUT MEAN SQUARED \(x\) ERROG
GEAM OF ACTUALS
MEAL OF PREDICTED
MAYIMUM ABSILUTE RESIDUAL

\section*{TAXIMUM OF ACTUALS
MAXIMUM OF PREDICTCDS \\ MINIMUM OF ACTUALS \\ minimum of prfoictens}

THEIL STATISTICS（BASED ON LOG－RELATIVE－CHANGES）：
\begin{tabular}{|c|c|c|c|}
\hline 3.9815 & MEAII SQUARE ERROR & （D） & O．cifa \\
\hline \multicolumn{4}{|l|}{} \\
\hline 4.9756 & First ineguality comfficient & （u） & 0.3937 \\
\hline 7.1954 & SFCOND INEQUALITY COFFFICIE：NT & （11） & 0.4012 \\
\hline 72．1644 & \multicolumn{2}{|l|}{meall of actuals} & n． 1142 F \\
\hline 71.1225 & \multicolumn{2}{|l|}{MEAN OF PREDICTEDS} & 7．0546 \\
\hline 1：0．5333 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
STANDARD DEVIATICN OF ACTUALS \\
STANDARD DEVIATION OF FREOICTEDS
\end{tabular}}} & 9．2171 \\
\hline & & & 9.1947 \\
\hline & \multicolumn{2}{|l|}{STANDARD DEVIATION OF FREDICTEDS CORRFLATION BETHEEN ACTUALS AND PREDICTEDS} & 2.9179 \\
\hline 113.6743 & EIAS PROPORTION & （UM） & 0．ntas \\
\hline 11． 4.4581 & VARIANCT PROPORTION & （US） & n．fte6 \\
\hline 45.5123 & COVARIANCE．PROPORTION & （UC） & \％．9151 \\
\hline \multirow[t]{5}{*}{46.6 .731} & FEEGPESSIOA PROFORTION & （UR） & n．9「27 \\
\hline & IISTURBANCE PROPGRTION： & （un） & 2.9784 \\
\hline & INTEPCERT & （A） & －0．013？ \\
\hline & SLOPT FSTIMATF & （B） & 1． 2234 \\
\hline & Slojfe estimate without inttreept & B＇） & 1．0゙5月 \\
\hline
\end{tabular}
```

ACTUAL COLUHN: ZERG SECTO
PREOICTED COLUAH: DYMABIC

```

VARIARLF GRAPHED : IOTMCMG IMPORTS OF SITC



TOTAL IMPORTS OF GOODS AND SERVICES
MILL. 1975 DINARSUN DRPA NAT. ACT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAT: & ACTUAL. & & Preoicteo & DIfferfince & x & OIFFEREIICF & & graph range of valufs: & 365.35519 & 1954.874 & & \\
\hline & , & ) & ( + ) & (TIF \(=x\) ) & & & & & & & & \\
\hline . 96511 & & 426.4 .7 & 388.768 & 37.641 & & 8.828 & - * & & & & & \\
\hline 966.11 & & 444.377 & 418.263 & 36.115 & & 8.127 & - +* & & & & & \\
\hline 1967\%) & & 365.315 & 38..085 & -14.13: & & -4.1332 & - \({ }^{\text {P }}\) & & & & & - \\
\hline -968.1 & & 385.16? & 416.167 & -21.114 & & -5.481 & -** & & & & & - \\
\hline -969 1 1 & & 396.655 & 439.954 & -4.3.299 & & . 13.916 & - ** & & & & & , \\
\hline :97411 & & 427.18 ? & 442.853 & -15.671 & & -3.668 & - \(X\) & & & & & - \\
\hline 1071:1 & & 538.983 & 522.163 & 15.920 & & 2.959 & & +* & & & & - \\
\hline 1972:1 & & 51.).021 & 51C.377 & -16.257 & & -3.271 & & *+ & & & & - \\
\hline 1373:1 & & 674.546 & 6111.334 & 4.511 & & 0.746 & & \(x\) & & & & - \\
\hline 1974.1 & & 1395.118 & 1391.634 & 4.484 & & n. 3 ?1 & - & & x & & & - \\
\hline 1975:1 & & 1792.0.at & 1781.876 & 11.174 & & 9.564 & - & & & & Y & - \\
\hline :976:1 & & 1465.286 & 1481.240 & -15.354 & & -1.5.89 & - & & & & & - \\
\hline 1977:1 & & 1954.874 & 1944.286 & 10.687 & & 0.542 & - & & & & & \\
\hline [978'1 & & 1847.256 & 1846.683 & 0.573 & & 1-031 & - & & & & & + - \\
\hline
\end{tabular}
jUMMAKY STATISTICS:
MEAR! ABSOLUTE ERROR
MEAN ABSOLUTE X ERRDR ROOT HEAN SQUARED ERRIR ROOT MEAN SQUARED \(x\) FRROR
MEAN OF ACTUALS
MEAH OF PREDICTEDS
MAXIMUM ABSOLUTE RESIDUAL

MAXIMUM OF ACTUALS
MAXIMUM OF PRFDICTEDS
GINIMUM OF ACIUALS
MINIMUM OF FREDICTEDS
VARIABLE GRAFPED : IGTMT TOTAL IMPORTS OF GOODS AND SERVICES

THEIL STATISTICS (BASFD ON LOG.RELATIVE-CHANGF.S):

```

ACTUAL
PREOICTED CULUMN: DYNAHIC
COLUSAN: ZERD SECTOR

```
VARIABIE GRAPHED : IOWRN AVTRAGE WAGF RAT
\begin{tabular}{|c|c|c|}
\hline DATE & actual & PREDICTED \\
\hline & * ) & \(1+\) \\
\hline 196541 & 118.333 & 121.7 :8 \\
\hline 1966:11 & 12 A .257 & 136.395 \\
\hline 1967:1 & 128.983 & 136.911 \\
\hline 1968.11 & 135.125 & 143.564 \\
\hline 196911 & 144.997 & 146.842 \\
\hline !97r.1 & \(15) .251\) & 152.ras \\
\hline :971:1 & 154.343 & 159.9 .7 \\
\hline 197211 & 164.58 ? & 18R.757 \\
\hline 1973:11 & 176.844 & 185.052 \\
\hline 197471 & 254.157 & 238.354 \\
\hline 1975:1 & 311.66? & 292.377 \\
\hline -976.91 & 345.378 & 341.225 \\
\hline :977:11 & 394.169 & 379.46 .4 \\
\hline [978:1 & 447.133 & 439.311 \\
\hline
\end{tabular}
\begin{tabular}{rc} 
\\
DIFFERENCE & \\
(TIE OIFFERENCF \\
-3.376 & -2.853 \\
-7.838 & -6.111 \\
-7.328 & -5.449 \\
-7.439 & -5.465 \\
-2.785 & -1.933 \\
-1.777 & -1.183 \\
-5.588 & -3.623 \\
-24.175 & -14.689 \\
-8.278 & -4.641 \\
15.873 & 6.219 \\
19.284 & 6.188 \\
4.153 & 1.2182 \\
-1.294 & -0.385 \\
8.432 & 1.8 .85
\end{tabular}

theil statistics (based en log-RELATIVE-Changes):
\begin{tabular}{|c|c|c|}
\hline MEAN A & ABSOLUTE ERROR & 8.3701 \\
\hline MEAN & ABSOLUTE \% ERROR & 4.41 .15 \\
\hline ROOT M & meaid souared errjor. & 1:0.634? \\
\hline RUOT M & mean squared x error & 5.629 9\% \\
\hline MEAN C & CF Actijals & 218.4727 \\
\hline MEAN O & Of Predicteds & 22,.0324 \\
\hline Maximu & um apsolute residual & 24.1754 \\
\hline Maximum & UM Of ACtUALS & 447.4329 \\
\hline MAXIMU & UM UF PREDICTEDS & 439.8318 \\
\hline GIVIMU & UM OF ACtuals & 118.3328 \\
\hline HINIMU & UM IJF PPEDICTEDS & 121.7084 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline MEAN SOUARE ERROR & (D) & 0.3728 \\
\hline first ineguality coefficient & (U) & 0.3906 \\
\hline SECOND INEGUALITY COEFFICIENT & (U)' & \(0.50 n 5\) \\
\hline MEAN OF ACTUALS & & n.1r23 \\
\hline MrAN OF PREDICTEOS & & 0.19987 \\
\hline STAMDARD DEVIATION OF ACTUALS & & \(0 \cdot 00012\) \\
\hline STANDARD DEVIATION OF PREDICTEDS & & ronRO5 \\
\hline CORRELATION BETUEEN ACTUALS AND & & O.812? \\
\hline BIAS PPOPORTION & (UM) & ก. 0146 \\
\hline VARIANCE PROPORTION & (US) & A.0331 \\
\hline COVARIANCE PROPORTION & (UC) & 0.9622 \\
\hline REGRESSION PROPORTION & (UR) & C.fibe \\
\hline DISTURBAHEE DROPORTION & (UD) & 0.9768 \\
\hline INTERCEPT & (A) & 0.6125 \\
\hline SLIPPF ESTIMATE & (B) & 0.6938 \\
\hline SLOPF [STIMATE WITHOUT INTERCEPT & ( \(\mathrm{B}^{\circ}\) ) & n.986: \\
\hline
\end{tabular}
\begin{tabular}{ll} 
YCTUAL & COLUMN: 2FRO SECTOK \\
FREDICTED & COLUHII: OVIIAMIC
\end{tabular}
variagle graphed : iquyn total wage bill
\begin{tabular}{|c|c|c|}
\hline DATi & actual & PREDICTED \\
\hline & ( * ) & ( + ) \\
\hline 96511 & 234.50 : & 243.72 \\
\hline :966:1 & 261.6.0 & 28:0.8. \\
\hline 967 1:. & 277.6:1 & 239.299 \\
\hline 768:1 & 294.2り: & 314.8:14 \\
\hline 96,9 :1 & 32:.6\%: & 331.451 \\
\hline 1975:1 & 344.0 :¢ & \(352.9 \% 4\) \\
\hline :973.12 & 363.55, & 389.6.9 \\
\hline 97201 & 398.76 & 469.525 \\
\hline 973:1 & 44:1.5!: & 465.423 \\
\hline 1974:1 & 664.978 & 616.798 \\
\hline 1975י1 & 8.38.97) & 781.376 \\
\hline .976.1 & 956.03:n & 943.183 \\
\hline -977:1 & \(1135.5 \%\) & 1132.87\% \\
\hline 97811 & 1314.291 & 1278.175 \\
\hline
\end{tabular}

SUMMARY STATISTICS:
MFAN ABSOLUTF. ERRIR
MEAN ABSOLUTF \(\%\) ERROR
ROOT MEAN SOUARED ERROR
ROOT MEAN SQUARED \(x\) FRROA
MEAN CF ACTUALS
MFAN OF PRFDICTEDS
MAXIMUM ABSULUTF RESIDUAL

MAXIMUM OF ACTUALS
MAXIMUM OF PREDICTEDS
MINIMUM OF ACTUALS
MINIMUM OF FREDICTEDS
\begin{tabular}{|c|c|}
\hline DIFFERENCE & \(x\) oifference \\
\hline (TIE = X) & \\
\hline -3.5.22 & -3.634 \\
\hline -19.251 & -7.359 \\
\hline -18.439 & -6.831 \\
\hline -20.614 & -7.:33 \\
\hline -17.0!) & -3.384 \\
\hline -8.8it & -2.559 \\
\hline -13.119 & -4.3R2 \\
\hline -65.82.5 & -16.513 \\
\hline -24.923 & -5.658 \\
\hline 48.1112 & 7.235 \\
\hline 57.523 & 6.857 \\
\hline 13.617 & 1.423 \\
\hline 2.63 \% & 0.232 \\
\hline 35.825 & 2.741 \\
\hline
\end{tabular}

\section*{GRAPH RANGE OF VALUES: 234.500 Tn}
1314.200

\(: *\) \(-7.153\) -3.384
-2.559 -4.3 R2 \(-16.513\) 5.658
7.235 7.235
6.857 6.857
1.423 1.423
\(: 1.232\) 2.741

theil statistics (based on log-relative-changes):
\begin{tabular}{|c|c|c|c|}
\hline 25.2345 & MEAN SOUARE ERROP. & (D) & 0.0034 \\
\hline 5.4577
31.3963 & FIRST INEQUALITY COFFFICIENT & & 0.3587 \\
\hline 6.6517 & SECOND INEQUALITY COEFFICIENT & (U') & O.6165 \\
\hline 559.9067 & mean of actuals & & 0.1326 \\
\hline 562.5842 & mean of predicteos & & 0.1277 \\
\hline 65.8254 & STANDARD DEVIATION OF ACTUALS & & 0.7948 \\
\hline & Standard deviation of predicteds & & 0.1119 \\
\hline & CORPFLATION RETUEEN ACTUALS AND PR & OS & 0.7922 \\
\hline 1314.830.1 & BIAS PROPORTION & (UM) & n.0ヶ7\% \\
\hline 1278.1750 & VARIANCT PROPORTION & (US) & 0.11491 \\
\hline 234.5 .75 & COVARIANCE PREPORTIOH & (UC) & 7.7439 \\
\hline 243.'1217 & REGRFSSION PROPIRTION & (UP) & 0.6133 \\
\hline & CISTURBANCF PROPORTION & (Un) & 0.9797 \\
\hline & INIERCEPT & ( A\()\) & n. 1154 \\
\hline & SLOPP ESTIMATE & (B) & C.9175 \\
\hline & SLOFE ESTIMATE. WIthnut intercept & ( \(\mathrm{A}^{\circ}\) ) & 1.r)i3 \\
\hline
\end{tabular}
rctual
MRIDICTER COLUMN: ZERO SECTOR
VARIABLE GRAPHED : IGKAG VALUE ADDED IN AGRICULTURE
MILL. 1975 DINARSUN DRFA MAT. ACT
\begin{tabular}{|c|c|c|c|}
\hline DATE. & actual & \multicolumn{2}{|r|}{predicted} \\
\hline & ( & * 1 & \(1+1\) \\
\hline :965،1 & & 246,6997 & 25A.865 \\
\hline -96611 & & 244.213 & 265.384 \\
\hline 96711 & & 273.1979 & ? 72.486 \\
\hline 968:1 & & 292.486 & 275.715 \\
\hline 9¢9,1. & & 293.256 & 277.8:9 \\
\hline "976.9 & & 287.8.2 & 294.458 \\
\hline -97141 & & 273.5143 & 239.857 \\
\hline -972n1 & & 363.135 & 355.651 \\
\hline ;97301 & & 273.629 & 272.341 \\
\hline 97411 & & 311.984 & 27\%.341 \\
\hline ;975:11 & & 297.31: & 291.136 \\
\hline [9761]. & & 337.485 & 318.260 \\
\hline 1.97711 & & 298.936 & 3 ¢1.249 \\
\hline 1978.1 & & 318.938 & 325.868 \\
\hline
\end{tabular}

theil statistics (based on log-rilative-changes):

©CTUAL
rrenictef
ariable graphev: IO×C
COLUHM: ZERA SECTOR COLUMA: DY:JAMIC
\begin{tabular}{ll} 
DATE ACTUAL \\
\(965: 1\) & PREDIC \\
47.153
\end{tabular}
\begin{tabular}{|c|c|}
\hline & - ) \\
\hline - \(965: 1\) & 47.153 \\
\hline !96611 & 51.1ヶ \\
\hline -967:1 & 46.555 \\
\hline :968:1 & 5\%.57* \\
\hline 96911 & 50.778 \\
\hline 1910.1 & 51.784 \\
\hline
\end{tabular}
\begin{tabular}{ll}
96701 & 51.784 \\
\(971 \% 1\) & 52.789 \\
97211 & 55.8 .15 \\
973 & 671.364
\end{tabular}
\begin{tabular}{ll}
97311 & 67.369 \\
974.1 & 69.441 \\
1975.11 & 9.3
\end{tabular}
\begin{tabular}{rrr}
97411 & 69.4411 & 71.485 \\
997511 & \(91.3: \%\) & 93.916 \\
976.1 & 196.871 & 201.417 \\
997711 & 284.2 .6 & 281.311 \\
197811 & 346.57 & 342.962
\end{tabular}

\section*{SUMMARY STATISTICS:}

MEAN AESOLUTF ERROR
MF.AN ABSOLUTE Y ERROR
MF.AFI ABSOLUTE X ERROR
ROOT MEAN SOUARED ERRIR KDOT MEAN SQUARED \(x\) ERROR

IEAII OF ACTUALS
HEAN OF PREDICTED
MAXIMUM ABSOLUTE RESIDUAL

\section*{IAXIAUM OF ACTUALS \\ haximum of pridicteos \\ MINIMUM OF ACTUALS \\ MINIMUM OF PREDICTEOS}
value added in construction
MILL.197ti DIMARSUN DRPA MAT. ACT

DIFFERTNCE * DIFFERENCE
GRAPH RANGF OF YALUES:
36.643 Ti
346.570


THEIL STATISTICS (BASED ON LOG ~RELATIVE-CHANGES):

\begin{tabular}{ll} 
ACTUAL & COLUMN: ZERO SECTO \\
PREDICTED & COLUMN: DYNAMIC
\end{tabular}
VARIABLE GRAPMED : IGXMM VALUE ADDED IN NGN-UIL MINIMG + MANUFACTURING MILL. 1975 DIMARSTRAFISFORMATION


SUMMARY STATISTICS:
MEAN ABSOLUTE ERRIR
MLAN ABSOLUTE \(x\) FRROR
ROOT MEAN SGUARED ERROR
FOOT MEAS SQUAPED \& ERROR
MEAN OF ACTUALS
MEAS OF FREDICTEDS
gaximum absolute residual


ActuAl
ACTUAL
REPICTED

COLUMN: ZERO SECTIR COLUMN: DYMAMIC

VARTABLE GRAPHED : IGMPCP
value added in rrude petroleum
Mill. 1975 Dimarstransformation

gUMMARY STATISTICS:
MEAN ABSOLUTE ERROR
MEAN ABSOLUTE y ERRGR ROOT MEAN SQUARE[S ERROR ROOT MEAV SQUARED \(x\) ERRUP

EAH OF ACTUALS
MEAN OF PREDICTEDS
Maximum absolute residual


MAXIMUM OF PREDICTEDS
IINIMUM OF ACTUALS
MINIMUM OF PREDICTEDS
2726.71 .66 1212.32116
1236.7415

ACTUAL
PREUICTEE COLUAN: 2ERO SECTOR

VARIARLE GRAPHED : IQXPRF


SUMMARY STATISTICS:
MEAN ABSOLUTE ERROR
ME AN ABSOLUTE: E ERROR
ronot mean squared \(x\) error
mean of actuals
MFAN OF PREDICTEDS
MAXIMUM AHSOLUTE RESIDUAL

MAXI:IUM OF ACTUALS
MAXIMUM OF PRFDICTEDS
MINJMJM OF ACTUALS
MINIMUM OF PRRDICTEOS
THEIL STATISTICS (BASED ON LOGMRELATIVE-CHAHGES):
\begin{tabular}{|c|c|c|c|}
\hline 1.6855 & MEAN SQUARE fRROR & (0) & 0.0147 \\
\hline \multicolumn{4}{|l|}{8.2463} \\
\hline 2.2183 & FIRST INEOUALITY COEFFICIENT & ( 6 ) & 0.9789 \\
\hline 10.3751 & SECORD INEQUALITY COCFFICIFAT & (11) & 1.4408 \\
\hline 19.1128 & mean of actuals & & 0.10999 \\
\hline \(19.5 n 87\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MEAN OF PREDICTEDS
STANDARD DEVIATIOII OF ACTUALS}} & 0.1920 \\
\hline \multirow[t]{3}{*}{4.4961} & & & 9.0842 \\
\hline & \multicolumn{2}{|l|}{Standaro orviation of fredicteds} & \(0.11{ }^{17}\) \\
\hline & \multicolumn{2}{|l|}{CORRELATION PETUEEN ACTUALS AND PREDICTFDS} & 0.2514 \\
\hline 47.9337 & BIAS PROFORTION & (UII) & 0.0142 \\
\hline 36.4376 & VARIANCF PROPORTION & (US) & 0.0477 \\
\hline 17.5746 & COVARIANCE PPROPORTION & (UC) & 0.948 ! \\
\hline \multirow[t]{5}{*}{10.955?} & REGRESSION PROPORTION & (1JP) & n.e.446 \\
\hline & disturbance propertion & (UD) & n. 4512 \\
\hline & Intercept & (A) & n.0823 \\
\hline & SLOFE FSTIMATE & (B) & 0.1413 \\
\hline & SLDPE ESTIMATE-WITHOUT INTERCEPT & ( \(\mathrm{B}^{\circ}\) ) & 0.5565 \\
\hline
\end{tabular}
actual
PREDICTEO
PREDICTEN COLUMN: OY'NAMIC
VARIABLF GRATHED : IBXS VILUE ADOCD IN S!RVICES

\begin{tabular}{ll} 
ACTUAL & COLIMMIJ: 2FRO SECTOR \\
PREDICTED & COLUMN: DYNAMIC
\end{tabular}

PREDICTED COLUMN: DYNAMIC
VARIARLE GRAPHED : IOXTC VALUE ADDED IN TRANSFORTATION AHD COMMUNICATION MILL.IG75 DINARSIRAQ AAS

```

ACTUAL COLUIAN: ZER!O SECTO
PrEgilcted COLumN: DYHAMIC

```
VARIAPLE GRAPMED : IOXUT VALUF. ADDEO IN UTILITIES MILL.IGTS DIHARSUH DRPA NAT. ACT


SUMIAARY STATISTICS:
MEAN ABSULUTF ERPOR
MFAN ABSOLUTT. \% ERROR
RDOT MEAN SOUARED ERPAR
ROOT MEAN SOUARED * FRROR
MEAN OF ACTUALS
MAXIMUM AESOLUTE RESIDUAL
0.5118
4.11429
0.6956
5.2917
13.3831
13.1817
1.4251


33.3577
31.5327
5.1156
4.8219

THFIL STATISTICS (BASFD ON LOG-RELATIVE-CHANGES):
\begin{tabular}{|c|c|c|}
\hline MFAN SQUARE ERROR & (D) & \(0.0 \div 59\) \\
\hline FIRST INEQUALITY COFFFICIENT & (u) & ก.4645 \\
\hline SFCOND INFPUALITY COEFFICIFNT & (10) & 0.9559 \\
\hline MEAN OF ACTUALS & & 0.1442 \\
\hline MEAN OF PREDICTETS & & 0.1 ¢44 \\
\hline Standaro deviation of actuals & & n.ngnt \\
\hline Standard deviation of predicteds & & 0.11796 \\
\hline CORRFLATION BETHFEN ACTUALS AND & PREDICTEDS & 0.4893 \\
\hline ETAS PRIPORTION & (UM) & O.n \\
\hline VARIANCR PRCPORTION & (US) & 0.0156 \\
\hline CUVARIAHCE. FROPORTION & (UC) & 0.9844 \\
\hline REGRTISSION FROPORTIDN & (Un) & 0.16 .76 \\
\hline UISTURBANCE PROFGRTION & (UT) & n.8323 \\
\hline IHTERCEFT & (A) & fi.n64n \\
\hline SLOD: ESTIMATE. & (B) & ก. 5555 \\
\hline SLOPF ESTIMATE.WITHOUT JNTEPCEPT & (B') & 0.973 \\
\hline
\end{tabular}

ACTUAL
PREICTEO
VARIAELE GRAPIIED: IDYPDN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline DATE. & actual & predictien & differmace & \(x\) & DIFFERENCE: & GRAPH R & Rang of valufs: & 565.598 T 9 & \(3274 . \mathrm{r} 37\) & \\
\hline & ( *) & \(1+1\) & (TIE = X) & & & & & & & \\
\hline -965:1 & 565.598 & 584.148 & -18.550 & & -3.280 & - X & & & & - \\
\hline -9667: & 612.398 & 621.85 .7 & -9.459 & & -1.545 & - \(y\) & & & & - \\
\hline 196711 & 641.1f6 & 663.761 & --2. 9.595 & & -3.524 & - ** & & & & - \\
\hline 1968 is & 6811.142 & 669.566 & 1 T .575 & & 1.555 & - X & & & & - \\
\hline 1969!1 & 722.113 & 777.788 & 1.4 .325 & & 1. 9.984 & \(x\) & & & & - \\
\hline 1.97711 & 785.1113 & 733.331 & 51.582 & & 6.58 .4 & ** & & & & - \\
\hline 197111 & 797.133 & 74.3 .484 & 53.649 & & 6.739 & ** & & & & - \\
\hline \(1972 \cdot 1\) & 985.981 & 1039.236 & -23.255 & & -2.359 & - \(x\) & \(x\) & & & - \\
\hline -973:1 & 867.393 & \(913.8{ }^{1} 1\) & -46.4n7 & & -.5.35 & ** & & & & - \\
\hline 1974.1 & 1377.714 & 124:3.347 & 137.364 & & 9.970 & - - & + & & & - \\
\hline \(1975: 1\) & 1594.445 & 1682.547 & -88.1才2 & & -5.526 & - & * * & & & - \\
\hline 197671 & 1733.031 & 2!778.475 & -345.145 & & 19.911 & - & * & + & & - \\
\hline :977.1 & 2423.629 & 2292.670 & 130.954 & . & 5.4113 & - & & + & & - \\
\hline 1978.1 & 3274.097 & 2.883.184 & 390.713 & & 11.940 & - & & & + & * \\
\hline
\end{tabular}

SUMMARY STATISTICS:
MEAN ABSOLUTE ERRDR
MEAN ABSOLUTE \(x\) ERROR
OOT MEAN SQUARED ERROK ROOT MEAN SQUAPED \% ERROR

GEAN OF ACTUALS
MAXIHUM ABSSLUTE RESIDUAL

AAXIMUM OF ACTUALS
GAXIMUM OF PREDICTETS
MINIMUM OF ACTUALS
MINIMUM OF PREDICTEDS

\[
\frac{h}{\text { VITA }}
\]

Mohammed Shihab Abduljabbar
Candidate for the Degree of
Doctor of Philosophy

Thesis: AN ECONOMETRIC MODEL OF THE IRAQI ECONOMY, 1960-78

\section*{Major Field: Economics}

\section*{Biographical:}

Personal Data: Born in Baghdad, Iraq, January 21, 1952, the son of Mr. and Mrs. S. Abduljabbar.

Education: Received Bachelor degree in Applied Statistics from the University of Baghdad in 1972; received Master of Arts degree in Economics from Ohio University in 1977; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in May, 1982.

Professional Experience: Research Assistant, Ministry of Planning, Iraq, 1973-1974; Trainee, United States Bureau of Census, August 1974-July 1975; Visiting Economist, Wharton Econometric Forecasting Associates, May-November, 1981.```


[^0]:    Source: United Nations, Office of Development Research and Policy Analysis, DRPA Computer Tape of National Accounts, Labour Force and Population, 1980 (New York, 1981).

