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GHAPTE" I 

INTRODUCTION 

Much research has been done in the field of automotive vehicle 

dynamics. These studies have employed analytical models of vehicles 

varying in complexity from the simple automobile to a tractor-truck 

pulling two trailers. Some of the previous studies have been concerned 

with problems related to the dynamic responses of articulated vehicles 

during braking. Especially important were studies applied to the ana ly­

si s of tractor-semitrailers where jackknifing is a major cause of 

accidents. 

Computer simulations of vehicle dynamics have been developed includ­

ing modeling of suspension systems. Through these studies much improve­

ment has been made. in the ride qualities and cornering abilities of 

vehicles. Several studies have been made concerning vehicle steering 

systems. However, in most of the previous studies of articulatec;I 

vehicles, either the models were assumed to be executing a constant 

turn, or instead, the front wheel angles were specified . 

. Because steering stabilizer devices are now becoming popula~ for 

large commercial vehicles, an investigation should be made to determine 

their effects on the vehicle response. Thus, the purpose of the present 

research was to provide a method of analysis and to evaluate the perform­

ance of these stabilizing devices. 

1 
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The two major objectives of this study were: 

1. to derive and solve numerically the equations of motion describ­

ing the dynamic response of a four degree-of-freedom, two-axle vehicle 

equipped with a front wheel steering stabilizer device. 

2. make a. preliminary parametric study of the effects of a spring­

centered steering stabilizer on the dynamic response characteristics of 

a typical vehicle. 

Thi.s thesis documents the research conducted to meet these objec­

tives and summarizes some of the significant results obtained. 

Although the results of this research are not directly applicable 

to articulated vehicles, they are useful in that 

1. the feasibility of fundamental methodology is established by 

this study; 

2. some understanding of the effects of steering stabilizers is 

gained; 

3. these results provide a basis for comparison with special cases 

of more complex simulation programs to be developed in the future. 

Background 

The literature contains results from both analyti~al and experi­

mental studies relating to the dynamic responses of vehicles. Goland 

and Jindra [l] treated the problem of directional stability and control 

of an automobile in a flat turn. The dynamic equations of motions are 

written for a two degree-of-freedom model. A five degree-of-freedom 

analog computer simulation was made [2] to predict the directional re­

sponse of vehicles to torque applied to the steering wheel. 
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11 Unqer-steering 11 and 11 over-steering 11 effects for vehi.cles were 

investiigated by Ellis [3]. The response of his rnodel was expressed in 

terms .of prirnary tire coefficients to dei:nonstrate their effects on 

vehicle control. For st4dies ~oncerning vehiclq responses to steering 

inputs, a driver (or steering) functiqn was used. Several driver func­

tions with bot~ single and multipl.e feedbacks have be.en derived [4]. 

Many studies of -articulated vehicles ha'.(e been rnade and were help­

ful in th,e pre.sent rese.arch by providing the basic method of analysis. 

A simplifieq analysis was made [5] of the d.irectional stabil_ity and. 

control of a traGtor and semi-trail.er combination travelling at a con­

stant forward speed in a steady, flat turn. The combined vehicle was 

treated as a linear dynamic system with three degrees-of-freedorn. A 

similar study of a serni-trailer was made. [6] in which the equations .of 

motion were deriv.e.d using a suspensi.on simulat_ion derived usi·ng 

L,agrange's Equations. In a study by Mik.ulcik [7], a tractor-semitrailer 

was mode.led and both were allowed to. pitch, roll, yaw, and translate. 

Comparisons between results using t~e nonlinear and linearized set of 

equations were rnaq,e ancf the jackknifing phenomenon was analyzed for 

various steering anq braking inputs. This model was.extended to include 

vertical tire flexibility, tandem-axle suspension jacking, and tandem­

axle roll steer [8]. 

Papers.have also been written on the dynamic response of trucks 

pulling two trailers. Th.e first study rnodeled a 11 dolly 11 ·and trailer 

(only) while executing a steady, flat turn [9]. This simulat.iqn was 

later extende.d to include two trailers and a dolly. The vehicle, assum­

ing constant for,ward speed and sm.all lateral motions, was regarded as a 

linear syste111. Two degrees-of";'freedorn were associated with each unit 
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[10]. Results of a recent analysis for double traile,rs sh.owed the 

effects of trailer loading conditions, location of the C.G., and trailer 

length on the stability of the syst~m [11]. 

Some experimental work has been done to obtain useful tire data. 

A study was mad~ fqr truck tires to determine the road contact fqrces. 

Graphs of the tire. lateral forces versus normal force and slip angle 

were sh.own in Reference [12]. Nordeen [13] discussed a m~thocl for 

mathematically representing t;he tire lateral forces as a function of 

s 1 i p angles and verti ca 1 1 oads. 

Approach to the Problem 

The vehicle modeled in this study was a tractor-truck with a single 

rear axle. Aerodynamic characteristics, rolling resistances, and gyro 

effects of the wheels were not taken into consideration. The model hacl 

four degrees-of-freedom and was constrained to move on the horizontal 

plane. L.oad shifts due to forward and lateral accelerations were 

accounted for in ·calculating the normal forces on the wheels~ 

A moving axis system was used with the origin fixed at the vehicle 

center of ·gravity. Application of Newton's Laws both to the body and to 

the. wh.eels, together with constraint equations, yielded the equations of 

motion. The steering input force was applied directly to the steering 

arms on the. wheels. Various functions were used to represent driver 

forces ap13lied to the steering system. Tire side-forces were obtained 

using a comput~r subroutine and the braking forces were input as func­

tions ·Of time. Derivation of the equations of motion and the force 

di a grams a re given in Chapter U. 
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The numerical solution to the set of equations was found using 

DYSIMP. Chapter III contains a discussion of the solution sequence and 

a simplified computer flow diagram. 

After the program was verified using simple cases having known 

physical resul,ts, three situations were studied to determine the effects 

of a spring-centered steering stabilizer on response characteristics. 

These cases were (1) an impulse-type load (simulating running over an 

object or chuckhole) applied to the left front wheel, (2) a simulation 

of a blowout of the left front tire, and (3) a small change in the 

vehicle heading angle. Results from these three case~ are presented in 

Chapter IV, The conclusions from this study are given in Chapter V, 



~HAPTER ·II 

FORMULATION OF TH~ EQUATIO~S 

Equations of Motion 

The equatiqns .of motion were derived considering the vehicle to be 

moving i.n a. plane paralleJ to the hqrizontal road surface. Therefore, 

the three degrees-of-freedom associa~ed with rigid body motion of the 

vehicle body are (1) forward translation~ (2) lateral translation, .and 

(3) rotation about the vehicle center of gravit,y. Bec;ause the front 

wheel rotation about the king pin a~is is not prescribed, this creates 

a fourth de,gree-of-freedom for the front whee 1 masses. 

A moving coordinate system was used with the origin attached to the 

vehi.cle center of gravii;y. Newton 1 s ·.Laws of Moti.ons were applied tq the 

bod.Y anq to the front wheels independently. These equations were then 

combined through constra.int equations ·to yield the equations of i:notion 

for the vehicle. 

The body-centered al(is system is ,shown in Figure l. figure 2. 

illustrates the moving a~is sys"t;em fixed to tne vehicle. Differentia­

tion of.the position vec;tor R0 twice with respect to time results in the 

accel~ration of 9oint 0 in the direction of the unit vectors i and j, 

and is expressibl~ as ·. 

R =a= (U-V·r)i + (V+U·r)_i 0 0 . ~ 

6 
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Figure 1. Body Axis System Referenced to 
Fixed Axis System 

_Y_, v > 

Figure 2. Moving (Body) Axis System 
Referenced to the 
Vehicle 
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where 
. 

U = R - R e· . x y ' . . 
V = R + R e· y x ' .. 
r = e. 

Reference should be. made to Appendix A for a complete development of 

8 

the expression for Ra. Using Ra t,he equations of motion for the vehicle 

shown in Figure 2 become · 
. 

m (U-V·r) = l:F ( l ) ·x 
. 

m (V+ U·r) = EF (2) y 

I· r = EMO (3} 

The horizontal forces which act on the vehicle are shown in Figure 

3. In this diagram the st,eering angle (6) is shown as are the steering 

input forces, fsl and Fs2. Tire side-forces are. denoted by Fy; and are 

acting perpendicular to the vertical middle plane of the tires. Braking 

forces, which act along the lines of intersection of the vertical. middle 

planes of the tires and the road surface, are denoted as Fxi" The 

linear restoring moment about the king pin axis (produced by the stabi­

lizing system attached to the wheels) is given by KS+K6, wherein K is 

the effective spring constant. 

P1 and P2 locate the center of mass for the left and right wh.eel 

assemblies, respectiyely. The complete derivation of the accelerations, 

apl ancl ap2' is shown in Appendix B. An abbreviated derivation for ap2 

is presented here to provide continuity. Chasle's Theorem for relative 

motion is 
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Fy1 ~ 
& ·~r--~~--~-r--~~~-"-'-r.-.... 

td 

q 

b 

Fy3 
. ) 

Figure 3. Diagram of the Forces Which Act on the Vehicle 
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Furthermore, 

RP = Ra + P-1 + P2· 

The validity of the two equations is evident from Figures l and 3 where 

and 

. + 21 dJ' p = ai 1 . 

P-2 = (-e sin o)i + (e cos o)j, 

Differentiation qf RP yields 
. • • 1 
R = R. + e(-- di + aj) p 0 2 . 

. . 
+ e(o + e)[cos&i + sinoj]. 

. 
Taking the derivative of RP and making the substitution s = e + o pro-

duces 

·2 .. 1 .. ·2 • 
ap2 =[es sino - es coso - 2 de - a e + U-V··r]i 

·2 .. 1 . 2 .. . 
- [es coso +es sino + 2 de - ae - V-U•r]j, (4) 

and 

·2 .. l .. '2 . 
apl = [-e S sino + e s coso + 2 de - a e + U - V ·r]i 

+ [e s2 coso +es sino + }d~2+ a e + V+U·r]j. (5) 

Figures 4 and 5 show the forces applied to the left and right 

wheel.s, respectively, and figure 6 shows those associated with the 

vehicle body. Applying Newton 1s Laws to the left wheel results in 

~l a = R ply . yl + Fsl + Fyl COSo + F xl sino, 

mwl aplx = Rxl - Fyl sino + Fxl COSo, 
.. 

Iwl s, = -Ko - Fsl (s coso. + e sino) - Ryl e si no. 

- Rxl e coso, 

(6) 

(7) 

. (8) 



Figure 4. Forces Which Act on the 
Left Front Wheel 

/Fxz 

Figure 5. Forces Which Act on the 
Right Front Wheel 

l1 



Rxz. 

a 

b 

I--=-, -rw_1 
1 fx4 

Figure 6. Free-Body Diagram for the Vehicle 
(Less the Front Wheels) 

12 

Ry2 
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.. .. .. 
wherein S =a+ o is the angular acceleration of the left frqnt wheel. 

For the right whe.e l Newton 1 s Laws yi e 1 d 

1\2 ap2y = RY2 + Fs2 + ~x2 sine + FY2 coso, 

mw2 ap2x = Rx2 + F x2 case - F Y2 sino, . 

rw2 s2 = -Ko - fs2 [s case - e sino] + Rx2 e coso 

+ R 2 e sine, y ' ' 

(9) 

( 10) 

( 11) 

because of the constraint provided. by the ti.e-rod, s1 = s2. By combin-
.. 

ing Eq~ations .(6) to (11), a single expression for sis oqtained (Appen-

dix C). From Eq~ation (C-10), 

s= l 2 [-Ko-~FsSc.os&+te(Fxl-Fx2) 
Iw + '\ e 

1 c· . 2 . )J - 2 '\ e t r case + r si,no · ( 12) 

By applying Newton's Laws ·to the vehicle free-boqy shown in Figure 

6, the equations .of motion are obtai,ned for th.e vehicle. referred to. 

body-:-centered axes thf01,1gh · t~e center qf gravity. The acce.lerati,on com­

ponents have been deri~ed,previously and appear as the left sides of 

E,q~ations.(l), (2) and (3). Summing the forces in the x and y direc­

tions -and the momen~s about.the center of gravity (point 0) yields 
. 

me (U -
. 

Ille (v + 

V • r) = -Rx1 -R +Fx3 + F 4 x2 ·x 

U· r) = "-R 1 -. y R . + y2 
F . + ·y3 Fy4 

I·r = -RY1a - RY2a - ~ d Rx1 + ~ d Rx2 

1 1 
- Fy3b + 2w Fx3 - Q Fy4 - 2w Fx4 

+ 2 Ko - a F . '' s 

(13) 

( 14) 

(15) 
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The reaction forces are eliminated using the e,i<pressions for Rxl' Rx2,. 

R.yl' and ~Y2 from Equations (6), (7), (9), and (10)~ Substituting the 

accelera.tion components from Equations (4) and (5); and using mwl = ~, . 
= mw anq e = r yields . . 

me (U - V•r) - -2 mw (V + U·r) - 2 "1w a r + Fs 

+ (F l + F 2} coso + F 3 + F 4. ·x x · · x x · 

rnc (V + u·r) = -2 "1w (V + U·r) - 2 "1w a ~ + Fs 

+ (Fxl + Fx2} sine+ (fyl + Fy2) COSo 

+ Fy3 + Fy4· 
• . " • 2 

I· r = -2 a 11\v ( V + U • r + a r) + d mw ( e s s i no 

.. 1 • 1 
- es coso - 2 d r) + Fxl (a sine-+ 2 d coso) 

+ Fyl (a coso - ~ d sine) + Fx2 (a sine 

- ~- coso) + FY2 (a case+~ si,no) - b FY3 

1 . 1 
+ 2 q Fx3 - Fy4 Q - 2 d Fx4 + 2 Ko. 

The equations of motion ar~ nc;>w complete and describe the movement 

of the. vehicle in terms of the four degrees-of-freedoms -x, y, e, and o. 

and their derivatives. These equa~ions, when written in first .. order 

form, appear as a se~ of nonli.near differential equations .. 

.y =· 1 2 [-Ko -}F5 S cos&+ i e (Fx_l - Fx2) 
I +me · w w 

- ~ mw e d (f coso + r2 sine)] ( 16) 

r = 2 1 1 - 2 [-2 a m (~ + U·r) 
. IC + 2a "1w + 2 d ~ C 



+me de (i sino -.Y coso) + Fxl (a sine + 1 c;I coso) 

+ F l (a coso -1 d sine) + Fx2 (a sine 1 - 2 d coso) 
'Y 

+ Fy2 (a COSo + } d si no) l 
Fx3 - b Fy4 - F b + - w y3 2 

l 
-2w Fx4 + 2 Ko J. 

2 m 2 l 
U = V·r - w . a r + [(Fx.l + F. x2) coso m + 2 m m + 2 m c w c w 

- (Fyl + FY2) sine+ Fx3 + Fx4• 

2a mw 1 
V = -U· r- m + 2 m r + m . + 2 m [ (Fyl + FY2) coso 

c w c w 

s = y 

e = r 

o = y - r 

Rx = U + r R . y 
. 
R = V - r R y x 

15 

( 17) 

( 18) 

( 19) 

(20) 

(21) 

(22) 

(23) 

(24) 

The tire side-forces (F .) appear in Equations (17), ,(18) and (19). y1 

The side-force is a function of the normal force (vertical load on the 

tire) and the. tire slip-angle (a,ngle between the .wheel heading and the 

direction of the velocity vector for the point of contact). 

Equations for Normal Forces 

Acting on the Tires 

Due to the vehicl.e inertia, the vertical load at each axle has a 

dynamic term in addition to the. static load. Figure 7 illustrates the 



b a 

Figure 7. Normal Forces and Weight Transfer During 
Forward Acceleration 

16 
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forces associatec;I with the acceleration in the forward clirection. 

Applying Newton's La~s, the resulting expressions for the front and rear 

vertical loads, z1 and z2 respectively, are 

m (U-V·r) h c 
a + b 

m g a m (U-V·r) h z = c . + _c_· ___ _ 
2 a + o ~ + b 

The forces on the front axle are shown in figure 8 where 
. 

me a me h ( U - V • r) 
mf = me - a + b - g (a .+ b) 

1 f= 2 d+e. 

Application of Newton's Laws yield 

1 1 me g a 1 me h . 
F z 1 = mw g + 2 me g - 2 a + b - 2 g (a + b) ( U - V • r) 

me h me h g . me h2 . 
+ (-f- - f (a + . b ) ) V + U • r - f g (a + b ) ( U - V • r) 
. 

(V+·U·r). 

1 1 me g a 1 me h • 
F z2 = mw g + · 2 g mw - 2 a + b - 2 g · (a + b) ( U - V • r) 

me a h m h . m h2 . 
+ ( f (a + b) - -f-H V + U · r) + f g (a + b) ( U - V • r) 
. 

(V+U·r). 

The rear axle forces are shown in Figure 9 where 
. 

ma me h (U-V·r) 
mr = me - (a + b) - g (a + b) 

Normal. forces resulting from Newton's Laws are 
. 

1 me g a 1 m h ( U - V • r) 
F - + ""'"" _c--..--..--..---
z3 - 2 (a + b) 2 (a + b) 

(25) 

(26) . 



Figure 8. 

h 

Free-Body Diagram Used to Calculate 
Front Wheel Normal Forces 

( 

tn,,.ay 

h 

Figure 9. Free-Body Diagram Used to Calculate Rear 
Wheel Normal Forces 

18 
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. . 
me h ( V + U • r) h ( U - V • r) 

+ w (a+ b) [a+ g ]. (27) 

. 
_ 1 me g a 1 me h ( U - V • r) 

Fz4 - 2 (a + b) + 2 (a + b) 
. . 

m h (V+U·r) h (u-V·r) 
_c_w_(~a-+~b..-) ~ [a + g ] · · (28) 

Front Slip Angle Equations 

The derivat~on of an expression1 for the front slip angle utilizes· 

both the velocity vector of the point of road contact of the front tire 

and a vector in the direction of the front wheel heading. For simpli­

city, the point of road contact is assumed to lie on a verti.cal line 

passing through the center of mass of th.e front wheel assembly. There­

fore, and also because the motion is constrained to a horizontal plane, 

the velocity of each point of road contact is equivalent to the velocity 

of th.e center of n:iass of each wheel assembly. The acceleration of the 

contact point may be denqted as apo· From the derivatibn of apo (Appen-. 
dix B), [ can be expressed as p .. 

. . l . 
RP = (Rx - r R-Y - 2 d r - e f3 

. 
cos o) i + ( R + r R + a r 

y x 

- e f3 sino)j; 

R = R i + R · j, 
P px · ·.PY 

The wheel heading angle ~ is expressible as 

1 
~=2TI-o. 

The angle (¢) of the velocity-vector is obtained by using the relati.on 

¢ = Arc tan (Rp/Rpy). 
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Therefore, the front slip angle is iµ - ¢. These expressions are valid 

if o > 0 and RPY > O. Similar expressions are used for the case when 

o < 0 and R < 0. - ' PY -
l iJ;=27f-o 

1 
¢ = 2 7f +Arc tan (-RPY/Rpx) 

°'f = ijJ "." ¢. 

Rear Slip Angl~ Equations · 

Although the rea~ slip angle (ar) can be obtained by a previous 

method, a different pro~edure is used because the rear wheel heading is 

always i.n the direction of the unit vector i. Appendix D contains the 

complete deri.vation of ar. By defining q as the point of contact, for 

the rear ti.res, the velocity vector is given as 

. • 1 
R = (R "." rR - -'-Wr)i+ (R + rR - br)j q . x y 2 y x 

or 
. 
[. = R i + R j. q qx qy 

Using the definition of the dot product 

K · [ = \AB\ cosa, . 
the rear slip angle can b,e expressed in t.erms of R and the unit vector q 

i. 

Therefore, 

a = Arc cos r 
(29) 
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The sign of ar is the same as the sign of Rqy· Knowing the normal 

forces and slip angles, the tire siqe-forces can be read from Figure 10 

showing FY (empirically) as a function of F2 and a. 

Transfer Equations for the Axis Systems 

Equations (16) through (24) are derived with reference to the mov­

ing axis system x-y. 14 ·is _useful, however, to express the position of 

the center of gravity referred to the fixed axis ~ystem X-Y. From 

Figure l the transfer equations can be seen to be expressible as 

(30) 

and 

Ry = RY cose + Rx sine, ( 31) 
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CHAPTER III 

COMPUTER SOLUTION 

As shown in the previous chapter, the motion of the vehicle can be 

described by a set of nine first-order, nonlinear differential equations. 

The solution to this set of equations was obtained using the Oklahoma 

State University IBM 360/65 digital c;omputer and 11 DYSI~P 11 (a continuous 

DYnamic SIMulation Program). DYSIMP was developed by students and 

faculty from the School of Mechanical and Aerospace Engineering and has 

the capability of solving, simultaneously, a maximum of 100 first-order 

differential equations. Integration methods available to the user are 

the (1) simple Euler, (2) modified Euler, and (3) fourth-order Runge­

Kutta methods. The standard program output consists of up-to-five 

tables, each containing time-histories of up-to-ten variables. Five 

printer-plots, each containing as many as five variables, can also be 

produced. The program is.coded in FORTRAN IV and may be execl,.lted in 

either single or double precision, 

The differential equations to be solved for this research problem 

were supplied to DYSIMP using a 11 derivative subroutine. 11 Therefore, 

programr:ning the solution. involved. developing a sequence of computer 

operations to evaluate the nine derivatives appearing in th.e set of nine 

differential equations. 

Evaluation of the derivatives depended upon the state variables, 

steering force (Fs)' braking forces (Fxi)' and tire side-forces (Fyi). 

23 
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Fs is a linear function of the state variables and Fxi is prescribed by 

the user as a function of time. However, Fyi is a nonlinear, empiric­

ally determined function of the slip-angle and normal forces (Fzi) which 
. . 

are, in turn, dependent on U and V. A 11 look-up table 11 subrqutine was 

used to find Fyi and this prevented the development of expressions for . . -

U and V which would involve Fyi directly. By choosing the integration 

step-size sufficiently small, calculation of the normal forces could be 

made using values for the derivatives from the previous time-step. 

(Between any two time steps, the greatest change in Fyi was found to be 

less than five percent of its maximum value.) 

As stated earlier, the tire side-forces were obtained using a 

11 look-up table 11 subroutine. In previous studies, investigators calcu­

lated F . using empirical equations to approximate test data. Figure 10 y1 - . . . 

shows a plot of-the side-force (Fyi) versus normal force (Fzi) and slip-

angle for a specific truck tire. A two-dimensional table was set up 

using Fyi as a tabulated funct_ion of the Fzi and the slip-angle. Even­

increments were used on both axes (normal force and slip angle) and a 

three-step, lin_ear interp.olation procedure was used for the interr:nediate 

values. 

After the tire side-forces were evaluated, the derivatives for one 

time-step were expressed in terms of known quantities. Although the set. 
. . . 

of equations is linear in the time-domain, the y~ r, and v equations are 

coupled by the derivative terms. A subroutine callec;I 11 SIMQ 11 was used to 

solve for these three derivative values. The other six derivative ex­

pressions were direct evaluations. With these values~ the derivative 

subroutine was then input to the main program and the integration was 



performed for. one time-increment using the Runge-Kut ta fourth-order 

method. DYSIMP cal led the subroutine for e·ach time-step. 

25 

A brief flow-chart describing the sequence of -0perations for the 

derivative subroutine is shown by Figure 11. The look-up table algo­

rithm was also supplied to DYSIMP in the derivative subroutine with the 

addition of one control card. 



ENTER 

. CALCULATE THE STEERING FORCE 

CALCULATE THE FRONT AND REAR SLIP ANGLES 

CALCULATE THE NORMAL FORCES 

EVALUATE THE TIRE SIDE-FORCES 

DEFINE BRAKING FORCES 

EVALUATE THE DERIVATIVES 
• • • • • • 

. U, J3, 9• ~. Rx, Ry 

CALL SIMQ TO EVALUATE 
' ' . oJr> V 

RETURN 

Figure 11. Flow Diagram of Derivative 
Subroutine 
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CHAPTER IV 

NUMERICAL RESULTS 

Verification of the Program 

After the program was wri1;ten and 11 de-bt1gged, 11 a study of several 

simple cases was made to verify that the computed results were accurate 

(qualitatively, at least) and reasonable. Although these cases were 

relatively simple, no shortcuts in the computation sequence were made, 

thus verifying that the ent.ire program was functioning properly. 

Using a sample problem, a search was made to determine the typical 

step-size needed for numerical stability. The integration was performed 

over a maximum time-period of twenty seconds. Applying a step-function 

steering force of 31 pounds, beginning at three seconds, and using K=50 

ft-lb/rad, solutions were found for computing increments of .500, .250, 

.125, and .100 seconds. Figure 12 illustrates the computed response of 

V for three of the step-sizes. (The results using a time-increment of 

.500 seconds were highly unstable and are not shown on Figure 12.) It 

was concluded that .125 seconds was an acceptable step-size and was 

used in all the remaining computer solutions. This appeared to be 

satisfactory for maintaining nw:nerical stability. 

Three alternating-direction forces were applied during a twenty­

second period to the steering arm to observe the quality of the physical 

response. 6ecause of the sign convention, a positive force should 

27 
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creat~ a negative wheel-angle. The three applied forces and correspond­

ing points of appl1cat•on were: (1) +20 lbf@ 80 ft, (2) -40 lbf@ 220 

ft, and (3) +40 lbf @ 560 ft. (F5 acting to the left is taken to be 

positive.) These forces were. appl iec;I for a duration of one second and 

the input force was held at zero for all other times~ The initial value 

of the forward velocity (U) was 40 ft/sec while all other variables were 

initially zero. 

The varying wheel angles resulting from applying these forces are 

shown i.n Figure 13 for two different spring stabilizer constants (K=Q 

and K=lOO). For this same stuqy the path of travel for the ve.hicle 

center of gravity (C.G.) is shown by Figure 14. Although there have 

been no previous studies wi.th which to compare these results, they seem 

to be reasonable. 

Another study was made t.o check the simul at.ion by applying both 

equal and unequal braking forces at the rear w~eels~ The vehicle was 

given an initial. forward velocit.y of 40 ft/sec and all other variables 

initialized as ze.ro. A braking force of -400. lbf (forward forces are 

taken to be positive) was applied at t=3 secqnds to each of the re.ar 

wheels. Figure 15 shows .the path of travel to be unaltered, as expect­

ed. It should also pe noted that the angular rotation of t~e vehicle 

remained zero (as i.t should) during the entire braking period. 

From the equation of:motion (F=rna), the accel~ration can be deter­

rni nec;I for the. case of equal praki ng forces. The forces are constant 

and, therefore, the acceleration is constant. For constant acceleration 

along a linear path, the velocity may be found at any point usi-ng the 

expressio\1 V2 '= V~ + 2a (S-S0 ). This expression matches very well with 

the. numeri ca 1 solution as can be seen from Figure 16. 
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Th~ same initial condi.tions as before wefe used for the case of 

unequal braking forces~ After t,hree seconds, forces of -425. lbf ·and 

-300. lbf were· applied to the left am;I right rear wheels, respectively. 

The path of travel for the vehicle ~.G. for this situation may also be 

observed from Figure 15. Application of a larger left-wheel force pulls 

the vehicle to the left. as it should. 

Although these few cases hardly verified the applicability of the 

computer solution to all anticipated situations, the results of these - . 

studies were reassuring and were judged to b,e sufficient for a continua-

ti.on into the next phase of the research. Certainly, the true test of 

applicabillty of th.is method would be correlation with results taken 

experimentally, but sue~ verification is beyond the scope of this 

present research effort. 

Ana1Ysis of Si.tuat.ions Which May 

Occllr During Normal Driving 

After having gained some confidence that the methodology and th.e 

computer program were reliable, a study was undertaken to gain quantita­

tive insight into the characteristic behav,ors of typical vehicles. 

during simulated front-tire impacts and failures. Also, a major 

objective of this portion of the research was to gain some awareness of 

the effectiveness of simple mechanical spring-type steering stabilizer 

devices. 

A study was.made to determine the effect of the steering stabilizer 

device during an impact load applied to the left front wheel. A simpli­

fied simulation was (!lade of the impulse forces resulting from the front 

wheel encountering a hole or bump in the road. For this case the 



35 

response charact~ristics studied were (1) the path of travel of the 

vehicle C.G. and (2) the steering arm force associated with that path. 

In an attempt to simulate, approximately, th.e action taken by the 

driver, the restoring steering force was expressed as a linear ·function 

of the vehicle rotation and the wheel angle (Fs = c1e + C26). Both con­

stants were arbit;rarily assign~d a value of 600. The initial forward 

velocity was chosen to b~ 40 ft/sec and all other input variables taken 

to be initially zero. An impact force of -100 lbf was applied to the 

left front wheel over the time -interval from 2.0 to 2.125 seconds. The 

driver reaction tii:ne was estimated to be about li seconds. Therefore, 

a steering force was not applied until 3.125 seconds (i.e., the vehicle 

had traveleq forward approximately 45 feet). 

Three different spring constants (0, 100 and 200 ft- lbs/rad) were 

used for this simulated front wheel di~turbance. Figure 17 shows the 

different paths of travel for the C.G. The steering forces associated 

with the three spring-constant values are shown by figure 18. Although 

the differeneie in t.he lateral movement of the C.G. between K=O (effect,­

ively no spring stabilizer)· and K=200 is only approximately 1.5 ft, this 

small distance coulq be sufficient to keep the driver from entering the 

lane of oncoming traffic and, thus, is enough to prevent an accident. 

Steering forces for this study were small, but it should be noted that 

K=O yielded forces which were over twice those for K=200. For a rela­

tively large spring constant, significantly less driver effort is 

~xperienced. 

Tires blowing out on th.e front wheels may create forces which cause 

the driver to lose control of the vehicle. A study was made to determine. 

if a spring stabilizer will increase the controlability of th.e vehicle 
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during a blowout.- The front-wheel forces during a bl.owout depend on 

tire size, vehicle speed, deflation time, and ot,her factors .. These 

factors are not easily deteri:nined. Therefore, for the present stl!QY an 

approximation was used. By applying kinematic principles and judgment, 

a fqrcing function, shown by Figure 19, was selected and applied, compu­

tation.ally, to the left front wheel. 

The steering force for.this study was expressed as Fs =,c1e + c2o 

+ c3 where c1 = )00 lbs/rad,, c2 = 600 lbs/rad~ and c3 = -26 lbs. The 

driver reaction tii:ne was, again, taken to be l~ seconds. Initial coDdi~ 

tions chosen were U = 40 f~/sec and other variables taken initially 

t.o be zero. 

Again, using three val1,1es of K (0, 100, 200) ,_the three paths of 
. . 

the C.G. were computed and, are shown by Figure 20. Steering forces· 

associated with these paths are shown by Figure 21. 

For this blowout simulation, the C.G. traveled slightly more than 

23 ft to the left of the intend,ed path without the spring stabilizer 

(i.e., for K=O). However, using K=200, the r(la~imum distance to the left 

was 18.7 ft. The extr~ 4.3 ft could, perhaps, result in the vehicle 

entering an unsafe region or running off the left shoulder. The steady­

state responses for all three cases are nearly identical. The simulated 

steering force contained no component to dri-ve the vehicle back along 

the original path but, inst.earl_, was· intended only to restore it to a 

path parallel to that of the main roadway. A maximum steering force of 

-125 lbf was.needec,I using the 11 stiffer11 (K=200) stabilizer while a force 

of -205 lbf was required with no stabilizer at all. Although '!;hese are 

merely representative. numbers, the analysis showed tnat approximately 
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70 percent more force would be required .if the vehicle were not equipped 

with a steering stabilizer.· 

A centering device tends to keep the vehicle in a straight line 

and may actually hinder the response when a change in heading (i.e., 

manueverability) is desired. The objective of the next study was to 

determine th.e effect of the stabilizer when a normal change in heading 

is made. The steering forc;e used for this study was a linear function 

of the rotation angle (e) and the velocity M rotation (r), (i.e., Fs = 

c1 (e+r) where c1 = 300). The chosen initial conditions were U = 60 ft/ 

sec and e = 4 degrees. All other variables were initialized as zero. 

Constant and equal braking forces of -800 lbf were applied after .5 sec 

to each of the rear wheels. The chosen initial conditions and the 

selected braking forces may physically reflect a vehicle being pulled 

off ,the roadway onto the right shoulder as in a normal stopping maneu­

ver. No steering force was applied until the vehicle C.G. had traveled 

6 ft to the right. At this point the steering function was allowed to 

start 11 dri ving 11 the vehi cl.e to change the heading angle frow 4 degrees 

to 0 degrees. 

The paths of travel for the C.G., using the three sp~ing constants 

K = 0, 100, 200, are shown by Figure 22. Steering arm forces for all 

three cases were small and about the same magnitude. The maximum steer­

ing arm force was 16.0 lbf. 

For the case of no stabilizer, the C.G. traveled 10.4 ft to the 

right and made the -4 degrees change in heading in only 106 ft of for­

ward travel from the point of application of the steering force. 

However, for K = 200, the maximum distance to the right was 12.0 ft and 

the -4 degrees heading change required 400 ft of travel. A distance of 
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1.6 ft might be critical for a narrow shoulder or a drop-off in the 

pavement. It can be concluded from this study that 11 oversteering 11 may 

result from the installation of a centering-type steering stabilizer. 



CHAPTER V 

SUMMARY, CQNCLUSIONS AND RECOMMENDATIONS 

This study ha.s qeen made t9 develop an analytical method. for deter­

m.ining the effect;s of steering stabilizers on vehicle controlability. 

The model us.ed for this research simulated a single front axle and a 

single rear axle vehicle wi~h the weight and di1T1ensions chosen to be 

roughly equivalent to that of a typical tractor-truck. Application of 

Newton's Laws of motion to the body yielded the equations of motion an~ 

this set of equations .was solved numerically using the Oklahoma State 

University lB~ 360/65 computer. 

Investigations were mad.e for one particular type of stabilizing 

device to illustrate. the capa~ilities of the meth.od of analysis employed 

in this research and to gain physical insight into the significant 

effects of stabi 1 izing devices. · The major steps taken in thi. s stuQy are 

presented below. 

l. Equations of mo ti on were derived for a four-de.gree-of-freedom 

vehicle moving in a plane parallel with the. horizontal roadway. 

2. A numerical solution was obtained for the set of equations 

using DYSIMP and an auxiliary 11 table look-up" subroutine. 

3. The validity of ·the computer program was verified by comparing 

with result;s for several simple cases in which the trends.of response 

were known. 
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4. Three different driving situations were investigated to deter­

mine the effects of a steering stabilizer on the overall vehicle 

response. 

The observations.and conclusions made frorn this study are listed 

here. 

1. The method of analysis (and the a.ssociated computer program) 

developed to stuc;ly the effects of steering sta.bilizer devices on the 

vehicle response provi c:led re.sul ts that were physically reasonable for 

the cases studied. 

2. Although a simple vehicle model was used, the technique can be 

readily extended to more comple~ systemso 

3. During blowouts and sud.den forces applied to the front wheels, 

a stabilizer will decrease the l.ateral. distance traveled by the vehi.cle 

C.G. Given the proper situation this distance could be sufficient to 

prevent an accident. 

4. The steering force, which is proportional to the driver input 

force, req1,1ir:-ed to control the ve.hicle during a sudden force on the 

front wheels was decreased b.y using a stabilizing device. Not only was 

the maximum value less, but also the force required over the entire 

restoring time interval gradually decreased, Thus, less effort was 

supplied by the driver~ 

5. The driver reaction time used in this study was estimate.d to 

be l~ seconds. The actual time wil.l vary between drivers and will de­

pend upon the. situation. However, this device produces a restoring 

force the instant the front wheel is displaced (i.e., it. reacts "passive­

ly"). Therefore, a spring device will supply a restoring force during 

the reaction time interval of the driver. 



6. Because the stabilizing device tends to keep the vehicle 

traveling in a strai.gh_t path, it may produce hari:nful effects when a 

chQnge in direction is .desired. Results of this study indi.cated that 

overs tee ring wi 11 occur due to the presence of the spring device and. · 

may be expected to cause an increase in the lat.eral dist.ance travelec;I 

by tne vehicle C.G., thus allowing the. vehicle to enter an unsafe 

region. Therefore, the spring device may create undesiraqle effects 

when the vehicle is qeing manuevere~. 
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7. The spring device causes a significant increase. in the requi.red 

steering force when a large rotation of .the front wheels is desired~ 

For sharp turns, backing-up, and other slow rnaneuver.s, the wh.eel i:nay 

often l:)e rot~ted as much as 40 degrees. To turn the .wheels the driver 

must, supply er:10ugh force t.o overcoi:ne the restoring moment, thus creating 

another undesirable effect from.the spring device. 

Recommendations for further study concerning this research are 

given as .follows. 

1. Experimental stuc;lies should be made to correlate results from· 

the computer program with those experienced in real-life situations. 

This would allow the computer program to be used as a useful design tool 

and also to provide a dyM.mic simulation for the investigation of acci­

c;lents. 

2. The vehicle mod.el shoulci be extended to incl.ude one and two· 

trailers. Jackknifing (a common problem for articulated vehicles) could 

then be analyzed by this model. 

3. A study should be macte to determine a more accurate tran.sfer 

function to describe the driver response. 
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4, for this research the center qf mass for th.e front wheels was 

assumed ~o lie on a vertical line passing through the pqint of tire con­

tact with the roaq. It should be determined if a significant change 

occurs l:>Y moving t.he center -of .mass to a point between t.he king pin axis 

and the point of contact. 

5 .. Both front wheels were assumed to rotate the same amount. 

However, the twq wheels may actually rotate to slightly c;lifferent 

angles and an investigatfon should be made t9 determine the effects this 

difference has on the vehicle response, 

6. Gai:nber in the front wheels shoul.d be studied to determine the 

restoring moment due to the camber angle, the max.imum allowable angle, 

anc;l -the effe·cts of cqmbining a steering stabilizer with different camber 

angles. 

7. A single.rear axle was used for this research model. The i:nodel 

shoulc;l be extenc;le~ tq include tandem axles each with dual tires. 

8. A study shoulci be made to determine r:nore accurately the forces __ 

experienced bY the front wheels during blowouts anc;l other situations 

which are of interest. 

9. The method of applying the braking forces should be improved 

so as to better simulate· the actual ·driver application of braking forces. 

for gi.ven situa_tions. 
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APPENDIX A 

DERIVATION OF R0 

The displacement of the 9rigin (moving axis.system x-y) with 

respect to the fixed reference system X-Y is given b.Y, 

R0 = Rxi + Ryj. 

Thus, differentiation yields 
~ . . . . 
R =.V = R i + R i + R J. + R J·. ·o o · x · x · y y · 

Because i and j are unit vectors, then 

~i = i = eJ 

d. : . -a!= J = -ei. 

Substitution of i and j into Equation (A.l) yields 
. . 
[ = R i + R ej + R j - R ej 

o x x Y' Y 

which can be simplified to yield 

Letting 

• • • e • 

R = (R - R e)i .+ (R + R e)j. 
0 x y y x 

U = R - R e ' x y' . . . 
V :;: R + R e 

y x 

(A.l) 

(A.2} 

(A.3) 

r = e (A.4) 
,;_), 

R0 can be expresseq as 

R = v = Ui +VJ". 
0 0 
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Di ffer:entiat,ing th~ aqove equation results as 

•• ID e • e 

R =a = Ui + Ui +VJ'+ VJ', Q 0 . ' ' 

U~ing E,ql)ations (A.2), (Ao3) and (A.4) yield 

R. =a = (U-·V·r)i + (v +U·r)j. 0 0 . .. . 
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ApPENOIX B 

QERIVATIQN OF THE FRONT WHEEL C.G. ACCELERATION 

The centers of gravity for the left and right front wheels are de­

noted as P1 and P2 , respectively. Refer~nce should be made to Figures. 

1 and 3. A detailed development will be given nere for the acceleration 

of point P 2• The pas i tion of P 2 can Qe writ~en vectora lly as 

Rp2 = Ro + P", + P2 

where R0 , P-1 and P-2 are defined as 

R =Ri+RJ0 

0 '~ y 

- . 1 d' pl = al + 2 J 

p2 = -e sinoi + e cosoj. 

Differentiating the e~pression of Rp2 yields 

. . 
The terms for P-1. and P-2 can be expres~ed as 

..!.. ti l m 

p = ai + ...... dj (B ..• 2) 1 ' 2 
. . . . . 
Pz = (-e ocoso)i - (e sino)i - (e osino)j + (e coso)j. (B.3) 

e G e fl! 

Substituting ~ = ej and j = -ej into Equations (8.2) and (6.3) produces 

.!.. 1 . • 
pl = -2 dBi + aej 

. . . 
P-2 = --e (o + e)(cosoi + sinoj) 
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Substitution of·the a,bqve expressions into Equation (B.l) yields 
SI - • • 1 . • 
RP2 = R0 + e(-2 ~i + aj) - e(o + e)(cosoi + sinoj). (6.4) 

Differentiating Equation (B.4) produces 

1 • 1 • . R 2 = i 2 = [ + e(--2 di + aj) + e(--2 di + aj) p p 0 .. 

. . . 
~ e(o + e)(cosoi + sinoj) - e(o + e)(cosoi 

. . . ~ 

- osinoi + sinoj + ocosoj} (B.5) 

Defining B = (e + o) and substitut,ing into Equat,_ion (B.5) results as 

- .!!. 1 .. .. l ·2 ·2 .. 
ap2 = R0 - 2 dei + aej - 2 de j - ae. i - ee(cosoi + sinoj) 

. . . 
- ee(ecosoj - osinoi - esinoi + ocosoj) (B.6) 

.. 
Using the express1on for R0 deri.ved in Appendix A and collecting terms 

yields· 

·2 .. 1 .. ·2 . 
ap2 = ~B sino- eB coso - 2de- ae + U-V·r)i 

·2 .. 1 '2 .. . 
-~B coso+e(3sino+ 2 de -ae-V+U·r)j. (B.7) 

The expression fof apl is derived in a. similar (llanner. Displace­

ment of P1 may be expressed as. 

where 

[P 1 = .Ro + P-3 + P4 

- . 1 d' P3 = a1. + 2 J 

P-4 = e sinoi - e cosoj 

Repeating the procedure for ap2 with these two changes yields 

·2 .. 1 .. ·2 . 
ap 1 = (-e B s i no + e B cos 8 + 2 d e - a e + U - V • r) i 

·2 .. .. 1 '2· . 
+ (e B coso + e B sino + a e + 2 d e + V + U·r)j 

(B.8) 
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A~PENDIX C 

.. 
DERI~ATIQN OF THE S EQUATION 

The equatians af motion for the left wheel are 
' ' 

~l a = R ply yl + Fsl + F 1 y COSo + .F xl sino 

~l a· = R - Fyl sino + F COSo pl x · xl xl. 
.. 

+ e!sino) 1wl s, = -Ko - Fsl (S cos;o - Ryl i 

- R l e COSo. x ' 

e sine 

( c .1) 

(C.2) 

(C.3) 

Solvi.ng Equations (C. l) and (C.2) .for flyl and Rxl' th.en substituti.ng into 

Equation (C~3) yields 
.. 

Iwl s1 = -Ko - "Wl e(aply sino + aplx coso) 

- s F 1 COSo + eF 1 • s ' x (C .4) 

Using the components of apl expressed as 

0 2 . " l d · l a 2 a .1 = e(-s s1no +a coso +.""'°'2 - r - -2 - r )_ p x · · ~ · e e 

. 
+ U - V·r 

anc:I. 

·2 ·· . a · 1 d 2 a 1 = e(B · coso .+ s s1no + - r + -2· - r ) + ~ + u·r p y · · · e · e 

anc:I subs~ituting into Equation (C.4) results in 

s 1 = . 1 .. 2 { -Ko - ~ 1 e ( ~ d cos o + a s i no ) ~ 
1wl + mwl e 

+ ~1 e(a coso - t c;I sino)r2 - S Fsl coso + e Fxl. 
. . 

- ~l e[(V+U·r) sino . .+ (U-V·r) coso]L- (G.5) 
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The equations of motion for the right.wheel are 

m 2 a. 2 = R 2 + F 2 + F 2 sine+ f .2 case W p Y ·· y s x . · . Y. 

rnw2 ap2x = R 2 + F ·2 coso - F 2 sine ' ' x x ' . y . 

rw2 a2 = -Ko - Fs2 (s case - e sine) + Rx2 e case 

+ RY2 e sine. 

R·epeating the previqus .procequre 1,1sing 

·2 ·· . a · l d 2 ' 
ap2y = -e(s cqso +.~sine - i r + li r) + V + U·r 

anq 

( ·2 · ~ ~ - l.9.. r0 
- ~ r2) + u' - V•r ap2X = e 8 Slnu - S C()Su 2 e e 

results in 
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. l 2 1 
t ~2 e[r(a sine - 2 q case) - r (a cos& + 2 d sine) 

. . 
+ .(U - V•r) COSo + (V + U·r) sine]} 

.. .. 
Assuming that ~l = ~2 , Iwl = Iw2, s1 = ~ 2 and thus equating 

Equat;ions (C.5) and (C.6) yield the following e~pression . 
(F52 - Fs 1) s cqse = .-e(Fxl + Fx2) + 2rnw e[a(r si,ne 

- r2 case) +.(LJ - Vr) case 

. 
+ (V + u ) sine. . r 

Introcluc,ing the r~quirei:nents. that 

F = F l + F 2 s s. s 

and combining ~quations (G.7) and (C.8) yields 

(C.6) 

(C. 7) 

(C.8) 
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Fs2 (s coso) =} Fs s coso - } e(Fxl + Fx2) 

. 2 
+ mw e[~(r sine - r coso) 

. . 
+ (V + U·r) sine + (U - V•r) coso] (C.9) 

Substitution of Equation (C.9) into (C.6) gives the desired expression 
.. 

for s in terms of F s. 

1 1 1 s = ---~2 {-Ko - 2 Fs s COS8 + 2 e(Fxl - Fx2) 
I + m e w w 

- mw e[i d(~ coso + r2 sine)]} (C.10) 



where 

APPENDIX D 

DERIVATION Of REAR S~IP ANGLE ., ' , 

from Figures l and 3, Rq is expre.ssed as 

Rq =.R0 + R2 

R0 =~xi + Ryj 

R2 = -bi + ~ wj. 

Differentiating Equations (D. l), (D.2) anc;I (D.3) yields 
. . . 
R = R + R q 0 2 . . . . 
R = R i + R i + R J0 

. 0 x . ~ y 
..:... . 1 . 
R2 = -bi + ! wj. 

. . 

. 
+ R • 

YJ 

Because i = rj and j = -ri and substituting these expressions .into 

Equations (D.4) and (~.5) yield 
. . . 
R = (R - rR )i + (R + rR }j 

0 · X y ·y X· 

R• l • b ' 
2 = -2"_wn-, rJ 

Rq is now expressed as 

..:... . 1 • 
R = (R - r R - -2 w r)i + (R + r R - b r)j. q x _y y .x . 

( D. 1) 

(D.2} 

(D.3) 

(D.4) 

(D.5) 

The &ngle between Rq and t~e wheel heading (unit vector in the i direc-

tion) is the rear slip angle (ar). Using the definition for th~ dot 
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product, 

A · [ = IAal cosa 

and letting 

A=,; 

. 
-B - R 
' 'p 

Eq1,Jation (D.6) becomes 

th.us 

where 

and 

R 
ar = Arc cos ( . gx . . ) 

I 2 R 2 
iRqx + qy 

l R = -R - r R - - w r qx · x y 2 

R =R+rR·-br qy y x . . 

The sign of ar is equal to the sign of Rqy· 
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