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CHAPTER I 

INTRO DU CTI ON 

The depletion of dissolved oxygen in receiving streams due to the 

discharge of raw wastewaters and treated effluents has been the subject 

of intensive research since the latter part of the last century. Con­

siderable effort has been expended in devising ways to predict the 

effect of organic substrates on the dissolved oxygen resources in the 

receiving stream. Streeter and Phelps proposed the "sag" equation for 

predicting the dissolved oxygen concentration at any downstream point 

on the stream as a resultant due to the deoxygenation constant, K1, 

determined in the closed BOD bottle, assuming the rate of accumulated 

oxygen uptake follows first order decreasing rate kinetics and the 

'reaeration constant, K2, which also followed kinetcs of a monomolecular 

reaction. Later work proved that the deoxygenation constant, K1, does 

not exactly follow monomolecular reaction kinetics, and that the 

Streeter~Phelps sag equation was inadequate to predict the exact nature 

of changes in the DO profile in receiving streams. 

Work has been underway for some time in the bioengineering labora­

tories of Oklahoma State University to overcome the shortcomings of the 

sag equation. An open stirred reactor technique has been proposed to 

simulate conditions in receiving streams; agitation and reaeration are 

provided by a mechanical stirrer, the speed of which can be varied as 

needed. Oxygen uptake determined from data obtained in the open stirred 

1 
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reactors has been compared to that obt~ined in a 11 simulated stream11 and 

found comparable. However, the determination of the reaeration rate, 

K2, and the saturation constant, Cs' is very important in this me.thod, 

since the substrate and cells concentrations vary and these variatio.ns; 

can change the values of K2 and Cs. If the K2 and c5 employed are 

inaccurate for the particular conditions under which an open reactor 

test is run, ~he open jug technique may not yield unseable information. 

As part of a continuing research effort. par't of this work was under- . 

taken to assess fac~ors which affect t~e kinetics of-reaeration and to 

determine some substrate seed relationship which might affect kinetics 

of o2 uptake using the open jar technique. Also an important part of 

this study involved use of the technique to assess the o2 uptake 

ch4racteristics of ·effluent from a laboratory operated extended aera­

tion pilot plant. 



CHAPTER II 

LITERATURE REVIEW 

As far'back as 1870, Frankland (l) said of sewage let into rivers 

and pon,ds in which some.fish had di.ed: · "Sewage contains no dissolved 

oxygen, and 1f any is absorbed from the air, it is quickly taken up by 

organic matter •. ··The precipitated sewage al so contains no oxygen" (p. -10). 

He believed the mechanism to be strictly chemical and that the oxida-
. . 

t1on of organic matter in water is effected chiefly, if not exclusively, 

by the atmospheric oxygen .disso.lved in the water, 

In 1884, Dupre (2) state.d that microphytes in water have th.e prop­

erty of consuming oxygen from.the air for their own process, deriving 

such oxygen from the air dissolved in the water. In 1908, Adeney(3) 

published results on the rate of deoxygenation in a closed bottle using 

the ~ilution technique. 

Dibdin and Thud1chum (4) in an attempt to make some allowance for 

the replenishment of oxygen supply by atmospheric reaerat'ion, used an 

open incubation test. Theriault {5); did not like the idea of·an open 

vessel, and said that they are utterly-inadequate for the purpose of 

supplying information concerhing the balanc~ which, under natur~l con­

ditions, _obtains between the rate of reaeration and the rate of deoxy­

genation of a polluted water. He thoug~t that the separate consider­

ation of these two distinct phases of ·the same problem simplfies the 

interpretation of the results and makes it possibl~ to;derive accurate 

3 
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information concerning the amount of organic matter. 

While ttie above attempts at predicting the effect of pollution on 

dissolved oxygen were being developed, the importance of estimating the 

amount of transfer of oxygen from the atmosphere to the body of water 

was also being investigated by Adeney and Becker (6) in their studies 

on the rate of solubility of atmospheric oxygen in water. 

Streeter and Phelps (7) in 1925, .while studying the pollution 

effect on the Ohio River, cqmbined both deoxygenation and reoxygenation 

effects and derived an equation for predicting the saturation deficit: 

where 

D = saturation deficit at any time, t 

D = initial DO deficit from saturation a 
L = initial oxygen demand of the organic matter a 
K1 = rate of deoxygenation constant 

K2 = rate of reoxygenation constant 

(1) 

They felt that the reoxygenation rate follows kinetics of monomulecular. 

reactionsi and that it is dependent on temperature and, to a large 

extent, on the degree of turbulence, other things being equal. They 

further assumed that the deoxygenation reaction is an orderly and con­

sistent one proceeding at a measurable rate according to the following 

definite law~· "The rat~ of bioch.emical oxidation of organic matter is 

proportional to the remaining concentration of unoxidized substance, 

measured in terms of oxidizability. 11 This law is one of a monomolecular 
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reaction~ and it states that in equal periods of time, an equal proper~ 

tion of the remaining demand will be satisfied and the rate of satis­

faction of the demand is equivalent to the rate of oxygen depletion. 

During the course of time, many researchers doubted the ability of the 

Streeter-Phelps sag equation to predict the deficit accurately •. For 

the development of any mathematical model, prediction is more important, 

as Gates, et al. (8) put it: "With any engineering problem, the empha­

sis is not on measuring the event but on being able to predict accu­

rately" (p. 665) .. 

In order to be able to predict the exact values of the oxygen sag 

curve requires that one also be able to determine correctly the rates 

of deoxygenation and reoxygenation under various conditions. Thus, 

Heukelekian (9), while studying the use of the diluti,on method for 

determining the BOD exertion of industri~l wastes, .concluded that the 

BOD determined applies only to the concentrations employed. If it were 

possible to use higher concentrations, a different value might be 

obtained~ He believed this effect to be due to possible toxic compon­

ents in the waste. Many organic substances are oxidizable at low con­

centrations and toxic at higher concentrations. While they have an 

oxygen demand at low concentrations, they may not only remain unoxidized 

at higher concentrations but may retard oxidation of an otherwise oxi­

dizabl e substrate such as sewage. Heukelekian felt that only within a 

narrow range could these effects be studied by the dilution method, but 

by a direct method the oxygen utilization over any range of concentra­

tions could be studied. To test the effect of various chemicals and 

organic wastes on oxygen depletion at various concentrations, Heukele­

kian used a reaeration method, i.e., he reaerated the incubation .mixture 



before complete DO depletion to extend the range of concentration in· 

his work. · 

6 

Ruchhoft, et al. (10) found the assumptiqn that the course of bio- · 

logical oxidation is the same in each bottle· no matter what the dilu­

tion is, may lead to serious errors because nitrification and biologi­

cal oxidation rates are' apparently affected by the concentration of 

organic.material in BOD substrate. 

To overcome this difficulty, Kittrel and Kochtitisky (11) incubated 

a large volume of each sample in an unstoppered bottle from which BOD 

bottles were filled for initial and final DO determinations. The final 

DO was determined after a 1 imited period of incub.ation that would not 

cat1se total oxygen' c;lep.leti.on. When the final DO was determined, another 

set of aoD bottles was filled from the large bottle which had been 

stored unstopp~red in the incubator to permit continuing aerobic action •. 

For the long term BOD, severa.l BOD. bottles were incubated each time it 

was necessary to refill from the large bottle to permit a final DO 

d~terlJlination each day.· 

Qrford, Rand, and ~ellman (12) proposed a single dilution technique 

called tt)e 11 jug diluti.on technique," using two one-gallon jugs with the 

di:luted mixture to be studiel. Ttre first jug was completely full and 

stoppered. Samples for dissolved oX.)lgen and any other desired analysis 

were siphoned from the first jug and replaced from the secon~ jug after 

sampling, so that the first jug was completely full and reaeration was 

prevented. When the dissolved oxygen content of the jugs was near 

depletion, the contents were reaerated and the process continued, thus 

making it possible to use a single dilu~ed sample. Elmore and Harold 

(13) also used a similar technique for the determination of BOD. 



Orford and Ingram (14) in their work on deoxygenation of sewage, 

critically .reviewed the monomolecular formula. They stated that there 

is no fundamental biological reason why oxidation should take place 

according to a monomolecular oxidation .reaction, and further concluded 

that the mono~olecular equation is a poor expression for analysis of 

biological oxidation because the two parameters of the equation K and 

L are constant. 

7 

Jennelle and Gaudy (15) studied the mechanism and kinetic course 

of BOD exertion in both open and closed systems, and observed that oxy­

gen uptake rate constants incr:epsed with increa$ing .concentrations of 

carbon source, thus militating against direct ~se of the usual dilution 
I 

technique for predicting the rate of deoxygenation in receiving streams. 

They recommendecl using an open stirred reac;tor·rather than· the standard 

BOD bottle dilution technique. Also, they studied the effect of agi ... 

tation. and founq that the degree of agitation employed in th.eir studies 

did not affect oxygen uptake in their system. However, Lordi and Heuke-
' ,. 

lekian (16), working on the effect of stirring on rate of deoxygenation, 

observed that the deoxygenation rate increased with stirring. Also Ali 

and aewtra (17) investigated the influence of turbulence on various 

parameters of BOD progression. They used two sets of BOD bottles for 

each experiment, with one set sealed and quiescent and the other set 

sealed and stirred by a magnetic stirrer. The oxygen uptake rate was 

found to increase significantly with stirring when either·sewage or 

glucose was used as substrate. 

Thus far, aspects of deoxygenation and the inadequacy of taking 

the values of deoxygenation rate constants determined in dilute quies­

cent bottles has been discussed. However, it is also important to 
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review the reoxygenation aspects to clearly understand the sag equation. 

In the past, various attempts have been made to define and predict 

the reaeration rate constant, K2, as a function of turbulence and sur­

face renewal rate, although there are other physical and chemical 

factors which can affect the rate of transfer of oxygen to the system. 

Poon and Campbell {18) studied the effect of polluted water on dif-. 

fused aeration and found that organic substances such as glycine, ,glu­

cose, and peptone reduce the oxygen transfer rate. Kothandaraman (19) 

investigated the effects of contaminants as found in a natural river 

system on the reaeration rate coefficient, and concluded that the con­

taminants in river water alter the reaeration rate to the extent of ! 

15:percent compared to the rate for distilled water. 

Kehr {20) observed that concentrations of sewage or of industrial 

wastes in natural receiving streams may range from 0.5 to 10 percent or 

more. These impurities can cause an appreciable retardation of atmos"". 

pheric reaeration and impose a burden on the stream's recovery capacity 

quite distinct from and in ad.dition to that which is represented by the 

oxygen demand of these wastes. Eckenfelder {21), working on the effect 

of undiluted chemical and pulp and paper mill wastes on the dissolved 

oxygen saturation rates, found that the saturation values in pulp and 

paper mill wastes vary from 77 to 97 percent compared to water. A chem­

ical waste containing organic aciqs, alcohols, aldehydes, and ketones 

exhi~ited a saturation value only 60 percent of that for water, and the 

oxygen transfer coefficient, a., was found to vary with the nature of 

the industrial wa~tes •. It was observed that for chipboard and repulping 

wastes, a was 0.6, for-kraft mill wastes, a was observed at 0.7, and for 

semi-chemical paper machine wastes, 1.4. Chemical wastes containing 
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organic acids, aldehydes, etc., exhibited an a value of 2.34. 

Over the years, researchers have developed various mathematical 

expressions for K2, the reaeration constant; most.of the expressions are 

derived either as a function of velocity, depth, turbulence, and diffus­

itivity. The most extensive study on reactions of natural streams was 

that reported by Churchil, et al. (22). They took field measurements of 

the actual reaeration rates of river waters which were low in dissolved 

oxygen. The waters were rel eased from the 1 ower depths of impoundments; 

thus they were of low DO content. Using multiple regression techniques, 

they arrived at a relationship for the reaeration rate in terms of 

velocity and depth. This study indicated that inclusion of other 
' hydraulic variables in a prediction equation did not offer a significant 

increase in the accuracy of the predicted reaeration rate. 

Krenkel and Orlob (23), and Thackston and Krenkel (24), using a 

recirculating flume, gave expressions in terms of longitudinal mixing, 

relating the parameters to flow and channel characteristics, respec­

tively. Isaacs and Gaudy (25) employed a 11 simulated 11 stream channel 
' and from their experimental data proposed an empirical formula in terms 

of ve 1 oci ty and channe 1 depths.. These authors a 1 so introduced to reaera­

tion calculations a method of determining the reaeration rate constant 

assuming the oxygen transfer rate follows monomolecular form (25). The 

method is that of Davis (26), i.e., the a method, and is essentially a 

curve fitting procedure. 

Since it is not always possible to represent adequately all of the 

physical and chemical factors which affect the stream's assimilative 

capacity, it is natural that the Streeter and Phelps sag equation is 

inadequate to predict the exact nature of the sag equation. Thus Fair 



(27) put it in plain terms when he concluded that 

••• Because of the intricacy of the microenvironment of 
receiving waters, their behavior can hardly be equated with 
any degree of true resemblance to the results of the BOD 
bottle test supplemented by coefficient of reaeration. 
Nevertheless, we admire the audacity of the Streeter and 
Phelps formulation of the oxygen sag. In its present form, 
it is a first, though greatly simplified mathematical 
model, of what actually takes place in nature. It was so 
conceived tiy its inventors, but not necessarily by its 
users.(p. XVI). 

He further states that 

••• Of greater concern, however, is the tempt~tion to over­
interpret BOD findings in terms of the constants of a first 
order reaction. Statistical 'goodness of fit 1 does not, in 
fact, identify the mechanism of purification. The pro­
cedure is purely pragmatic. Purification BOD (i.e., as it 
occurs in the receiving stream) and bottle BOD itself--may 
result from summing up of several zero-order reactions, 
including inhibition or catalysis, by reaction .Products, 
from one or more second-order reactions, or from combina­
tions of different orders of reactions. Modern biological 
treatment is accomplished by relatively complex ecological 
systems. It is hardly conceivable, therefore, that a 250-
ml BOD bottle is a more perfect instrument for wastewater 
treatment than the biomass in trickling filters or acti­
vated sludge tanks even if mathematical manipulation of 
observed data results in a well fitting curve (pp. XXII­
XXII I). 

10 

Thus, attempts have been made to pin down, determine, and predict 

the various parameters that affect the ecological systems in a natural 

stream. 

Thomas (28) proposed the introduction of a rate const,ant, K3, as 

a means of accounting for the removal or addition of BOD by deposition 

and resuspension. O'Connor (29) introduced the effect of longitudinal 

dispersion and demonstrated its importance in slow moving, highly mixed 

streams such as estuaries. Gannon (30) studied the effect of BOD rate 

on the oxygen balance in the river and observed that the BOD rates in 

the river are higher than in the BOD rate from laboratory experiments. 
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They also opserved that the period of rapid oxygen utilization _was 

associated with active nitrification .in the laboratory studies, but did 

not observe any considerable nitrification in the river, at least up to 

the low point of the oxygen sag. Velz an.d Gannon (31) thought that the 

hi~h BOD removal from the stream is due to two processes. One is th,e 

normal. biochemical respiration, and the other is biological ex~rac:tion. 

for synthesi$ of storage material~ 

Courchaine (32) studied the ~ignificance of nitri.fication on the 
; ' . . 

oxygen balance in Grand River, .Michigan, and observed that the demand 

du, to nitrification is consideraQle and should be considered as a sig- . 

nificant demand on the oxygen resources of .the stream. 

Dobbins (33) listed the various parameters affecting the oxygen 

balance in the stream in the evaluation of the effect on a stream's 

assimila~ive capacity as 

1) the remova~ of BOD by sedimentation or adsorption; 

2) the addition of BOD along the stretch by the scour of bottom 

deposits or l;>y the diffusion of p.q.rtly decomposed organic products from 

the benthal layer intq the water •bove; 

3) the add it.ion of BOD a long the stretch by the 1oc~1 , runoff; 

4) the removal of oxygen from the water by diffusion .into :the ben­

thal layer-to satisfy the oxygen demand in the aerobic zone of this· 

1 ayer; 

5) the removal of oxygen from the water by purging action of gases 

rising from the benthal layer;. 

6) the •dd'ition of oxygen by the photosynthetic action of plankton 

an~ fixed plants; 

7) the removal of ,oxygen by the respiration of plankton and fixed-
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plants, and 

8) the continuous redistribution of ·both the BOD and oxygen by the 

effect of longitudinal dispersion~ 

He thought that longitudinal ·dispersion has negligible effect on 

the oxygen profile, but stressed the accurate estimate of the rate of 

surface reaeration. 

WuhrmannL Ruchti; and Eichenb~rger {34) conducted qualitative 

experiments on self-purification in a model riv~r of ·545 meters after 

pollution with diluted sugar beet molass.es fortified with glut~mic acid. 

They thought that the rates o( pollutant elimination are strongly depend­

ent on the proportion of heterotrophic and phototrophic organisms in 

the biomass and on the absolute concentrations of the polluting sub­

strate. Self~purification may vary within short periods of time {con­

stant flo~ and pollutfon conditions provided) because of external and . . 
internal factors acting on the biocenosis which are independent of the 

polluting matter. 

Gates, Maney, Shafie, and Pohland (8) have reported the results of 

studies using open stirred reactors.· They investigated the sag equa­

tions at various reaeration rates ~nd with various combinations of sub-

' strates and seeds. They found no ·agreement in their sag curves with 

those of Streeter and Phelps., With multiple su.bstrate systems such as 

glucose-lactos~, th~ DO recovered after glucose ~as removed, then the 

lactose exerted a second sag.· Their work substantiated the previous 

results of G~udy and his co-workers regarding phasic substrate removal; 

microbial growth, and accL1mulated o2 uptake·, i.e., BOD {35)(36}{37). 

Isaacs and Gaudy {38) compared BOD exertion in the standard BOD 

bottle to that in a simulated stream. A sag curve was calculated, using 
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the Streeter-Phelps equation and the deoxygenation constant taken from 

the BOD bottle. There was little or no similarity between the observed 

profile and that calculated using the Streeter-Phelps equation. 

Later, Jennelle and Gaudy (15) compared the sag curve in an open . 

stirred reactor and the simulated stream apparat~s cited above (38), 

and found them comparable. The ra.te of oxygen uptake was found to be 

dependent upqn initial substrate concentrations. Thi~ finding was 

important because of the fact that the early·rate of oxygen uptake con-

·trols the downward leg of the sag curve and thus determines the minimum 

DO in a receiving stream.· They proposed a relationship between the 

rate of oxygen uptake and substrate concentration of the same form as 

the Monad relationship between microbial growth and substrate concen- . 

tration. Gates, Marlar~ and Westfield (39) made use of the Monad equa­

tion for relating specific growth rate, µ, and substrate concentration, 

S0 • They felt that this relationship applied well to the dilute system 

in receiving streams. 

Peil and Gaudy (40) in their study compared o2 uptake curves using 

the 10-1.iter open jar reactors with o2 uptake curves obtained in a 670-

1 iter si~ulated stream apparatus, and found the open jar technique to 

provide a fairly good prediction of the actual dissolved oxygen profile 

observed in the receiving stream. However, investigations on the effect 

of the rei:i,eration constant, K2, on the kinetics of oxygen uptake showed 

that increased agitation (higher K2 value) caused some increase in the 

accumulated oxygen uptake (BOD) curve, with most of the increase coming 

after the 11 plateau 11 area in the o2 uptake curve, i.e., after the low 

point along the DO sag curve. They suggested that the K2 of the jar 

should probably be within ! 50 percent of that estimated for the near 



downstream reaches, in the interest of providing engineering safety 

factors. 
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The foregoing review has been given as background information for 
. ' 

the present work undertaken by the author in which the open jug tech­

nique was employed to assess the,02 uptake characteristics and type of 

kinetic expresssion for various types.of treated effluents. 



CHAPTER III 

MATERIALS AND METHODS 

To study the influence of substrate-to-cell ratio (i.e., food-to­

micro.organism ratio) on kinetic~ of oxygen uptake, and to test the 

effluent obtained from a bench scale pilot plant, an open stirred 

reactor was operated under closely controlled conditions. The bench 

scale pilot plant which was operated was a total oxidation tinit µsing 

hydrolyzed sludge as the feed. 

Description of Equipment and Apparatus 

Open Stirred Reactors 

The open stirred reactor used in this study was a 8.125-inch dia­

meter cyl i ndri ca 1 pyrex vessel with a depth of 18 1 nches. The stirring . 

was provided by a 2-inch propeller located one inch from the bottom of 

the vessel. The mixer was driven by a 1/50 hp Bodine .motor. The speed 

of the propeller was regulated by a rheostat. The temperature in the 

reactor wa~ maintained constant by a Precision Scientific Lo,-Temptrol 

reqirculating water bath. The reactors were placed in a rectangular. 

plexiglass ves~el serving as a water bath (Figure 1). 

· The Pi lot Pl ant 

The bench scale pilot plant was operated to study aerobic digestion 

15 



Figure 1., Perspective View of Experimental Open Jar Reactors 

Shown in the figure are 
1) 1/50 hp Bodine motor 
2) flat"".bottomed cyl inderical Pyrex vessel 
3) inlet line for recirculating water bath 
4) vertical shaft .with .2-inch propeller 
5) outlet line for recirculating water bath 
6) Plexfglass water bath tank 
7) rheostats for control of propel] e}". speed 
8) water bath te~perature controller 
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of sludge after hydrolysis. The pilot plant operation was.begun by 

Sa.idi; after Mr. Saidi 1 s .departut"e, the author took over operation .of· 

the pilot plant. 

The pilot plant employed was a plexiglass unit with a 6.2-liter, 

aeration basin and a 3.2-liter settling ch.amber 'With a n~t volume of 

9. 4 1 i t~rs (Figure 2) • · The two chambers were separated by a movable 

baffle 1 ea vi ng a gap between it and the tank bo.ttom so that the mixed 

1 i.quor could pass to the settling tank •. Aeration .was provided by com­

pressed air t~rough sintered glass diff~sers. The flow rate of 9.4 

liters per day was provided by a mini-pump (Miltpn Roy Model MM2-B•96R) 

to allow a detention time of 16 hours in the aeration .chamber and eight 

hours in the settling chamber, with a total detention time of 24 hour,s. 

Later; since problems developed with the Milton Roy pump due to ,sus·­

pended sol ids in the feed, .a Sigrnamotpr Zero-max model was used to pump 

the feed. The experimen.ts were run at room temperature, which varied 

from approximately 24 ... 27°c~ The pH of the system was mainta.ined at 

7 :!: 0.4 throughout the experiment. The feed solution cam.e from the 

hydrolysate of trickling filter sludge obtained from the secondary c1ar-. 

ifier of the Stillwater waste treatment plant, Stillwater, Oklahoma. 

Also fed was hydrolysate of the excess slufge from this laboratory pilot, 

pl ant, ·i.e., the. system was. hydrolyti.cally-assi sted. 

Substrates and Seeds 

Stirred Reactors 

To study the kinetic;s of oxygen uptake in· the open stirre.d reactors 

with respect to food-to•microorganism ratio, ·synthetic wa.ste was used 



Figure 2. Longitudinal Section of Pilot Plant Aeration Basin 
and Settling Tank · 
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with glucose as the carbon sourc~. The composition .of the growth 

medium is g iyen e 1 sewhere, { 41 ) • . The seed was taken from an extended 

aeration pilot plant and from.a batch fed pilot plant •. Both the sub­

strate and seed were added to tap water in the reactor which had been 

previously brought to a constant temperature. 
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The treatment plant effluents used in this study were.taken from 

the pilo~ plant operated on hydrolysate of a trickling filter slud.ge 

described above, and an additional three runs·were made using effluent 

from an extended aeration pilot plant operated by Roach, a fellow· 

graduate student engaged in research. The synthetic waste he employed 

contained gluco$e as the carbon source and mineral nutrients with a 

COD:N ratio of 10:1, along with the hydrolysate of the exces.s sludge 

from the same unit •. The detention time was 24 hour.s; the feed concen­

tration was 1000 mg/l COD. His investigation pertains to biological. 

response. to quantitative and hydraulic shock loads. However, the 

effluents used in this study were taken during steady state operating . 

conditions. 

The Pilot Plant 

The feed for the hydrolytically-assisted extended aeration pilot. 

plan~ operated by the author was obtained from the secondary clarifier,' 

{trickling filter sludge) of the Stillwater muriicipal wastewater treat­

ment plant. This sludge was-acidified to pH l~ and subject~d to high 

temperature (121°c) and high pressure {15 ps.i) for five hou.rs in a lab­

oratory autoclave. The hydrolysate was, removed, cooled to .room temper­

ature and finally neutralized, and was added at known concentration 

(COD) to the feed reservoir., To this sludge h,ydrolysate.the sludge 
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hydrolysate obtained from the excess sl.udge from the pilot plant1 using. 

the same procedure, was. added to the feed reservoir and diluted, to t~e 

desired feed concentration with tap water. 

Experimental Procedures 

Th~ Open Stirred Reactor 

The rea~tor .was initially .clean.ed with acid an.d rinsed thoroughly 

to make sure that the cqntam,inants did not distort the dissolved .oxygen. 

prqfi 1 e during th,e course of the experiment. The experimenta 1 pro .. 

cedures are given separately below for the experiments with glucose and. 

for the experiments with effluents. 

Experiments Using Synthetic Waste. The cleaned reactors were 

placed in the water bath and ten liters of tap water were added. After 
' 

fixing the propel l'ers in position,, the motor was starte.d. After making 
. . 

' . 

sure that ·the water in the r~actor re~ched the equilibri:um temperature 

(22.5 ! o.s0c}, a stoichiometric afT1ount of sodium sulfite {0.7 gm} and 

cobalt chloride catalyst.were .added to remove the disso,lved oxygen in 

the system, and DO in the system was monitored at close intervals •. 

After recover~ of DO in the system and after assuranc~ that enough data 

were obtained to determine the reaeration .rate and the saturation .value, 

fe~d solutions. in pre .. determi ned volumes were added to the reactor from 

the stock. solutions ·already prepared. A sample for COD determin~tion , 
. . ' 

was then taken •. The .seed was added; suspended s·olids ,concentration of 

the seed was determined on a concentrated sample and the concentration 

in the open jar was calculated from a knowledge of the seed dilutfon. 

The experirnent was continued and DO was monitored at clos~ inte.rvals · 
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daily for five days to determine the dissolved oxygen profile in. the 

system. After five days, the filtrate COD and suspended solids were 

determined. The oxygen uptake was ca lcu l .a ted from the dissolved oxygen 

profile obtained, using the reaeration rate constant, K2, and the sat­

uration value, Cs, determined graphically from the reaeration data. 

Experiments Using Effluents~ Effl~ent from bench scale pilot 

p 1 ants was added to the a 1 ready c 1 eaned reactors; the prope 11 er. was 

fixed in position, and th~ experiment started. In some experiments., 

the DO was brought to a value of 80-90 percent of saturation and other 

experiments were conducted with the effluent as it came from the pilot· 

pJant. Samples were taken both in the beginning and at the end of the 

exp.eriments to determine tota 1 and fi 1 trate COD, suspended so 1 ids, and 

N03-N. However, in some experiments; the DO profile was determined 

before measuring ~· In some experiments, the K2 value w,as attaine~ 

before running the DO profile ·as per experiments using synthetic wastes. 

After a reasonably good DO profile was obtained, 20 ml of Clorox was 

added to kill the microorganisms, and twelve hours• time was allowed to 

complete the kill. It was essential to assure that the only mechanism 

changing the DO was reaeration. ~he absence of o2 uptake was checked 

on a Warburg apparatus in preliminary studies. Reaeration experiments 

were performed similar .to those described above using glucose as sub­

strate. The reactor was then taken out of the water bath, cleaned 

thorou~hly, and the reaeration ex~eriment was again run with the tap 

water keeping the system constant (temperature, stirring rat~) except 

that the sam~le was tap water instead of the effluent. This was done• 

to determine the effect of effluents on the reaeration rate, K2, and 
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saturation values compared to tap water. 

A few runs were made in which additional solids from the pilot 

plant and hydrolysate from the sludges of the pilot plant were added to 

simulate conditions of release of substrate and solids from the pilot. 

plant.· These ~tudies will be discussed in detail in the next chapter. 

Regardless of the nature of the effluent~ the sample volume was 

ten liters. In general, effluents were employed without any dilution. 

In a few cases, the effluent was diluted and these will be delineated 

as the results are presented in the next chapter. 

Experiments on Factors Affecting K2 

It is well known that various constituents of the effluent as well 

as physical factors regarding the reactor can affect the values of K2• 

It was therefore of interest to investigate these aspects. Special 

stud i e.s were conducted to determine the effect of prope 11 er speed on K2 i 

studies .to determine the effect of biological solids concentration on 

K2 were also made. Also, since K2 was determined in some studies after 

measuring ,the DO profile, it was essential to add a microbial killing. 

agent. Experiments were conducted using Clorox·and cyanide as killing 

agents and their effect on K2 was determined. 

Pilot Plant Operation 

The pilot plant feed was prepared on alternate days each time pro­

viding enough feed for two days in the feed reservoir. The procedure 

followed in operating the unit was as follows: The feed line was. 

removed from the unit and the suction end removed from the feed reser­

voir and placed in the Clorqx solution. This was done to clean and 
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disinfect the feed line. Immediately after removing the feed line from 

the aeration tank of the pilot plant, the effluent port was stoppered, 

the clarification tank baffle wa,s removed, and the total contents of 

the system momentarily mixed. At this time, a sample was taken to 

determine the bi'tllogical solids concentration in the system, and the 

baffle was reset. Also during this time, samples were removed from the 

effluent collection reservoir after thoroughly mi~ing it f~r measure- -

ment of-biological solids, filtrate COD, and total COD. Then the feed 

reservoir was clean.ed with dichromate soluti-on and thoroughly rinsed 

free of-spent solution with distilled water._ The hydrolysate of the 

trickling filter sludge was added to the feed reservoir and the liquor 

was brought to half the reservoir v~lume with tap water. A sample was 

taken for COD {total), then hydrolysate·of the excess sludge from the 

pilot plant was added and the volume made up to the operating feed 

reservoir capacity; -samples for total and filtrate COD and biological_ 

solids ~ere takeh. The total sampling period usually required approx­

imately one hour, and during this time the feed lines were beingi cleaned 

with Clorox solution, rinsed with tap water, and flushed with new feed. _ 

The line was then re-engaged with .fresh medium, and the pil.ot. plant set 

into continuous flow operation until the fol1owi~g sampling period. -

Periodically, a portion of the settled sludge was with~rawn from the 

bottom of the clarifier and biological_ solids determinations. were made 

prior to.hydrolyzing it. After acidifying to pH 1, this portion of. 

sludge was subjected to high temperature {121°c) and high pressure (15 

psi) for five hours in a laborator>' autoclave. The hydrolysate was 

removed, cooled to room temperature, and finally neutral h:e.d. Equal 

portions were added each two days over a period of 7-10 days, at which 



time a new sample of sludge was withdrawn and hydrolyzed for gradual 

refeeding to the reactor. 

Analytical Proc~dures 

Dissolved Oxygen 

For the runs made with glucose, dissolved oxygen was monitored 

electrometrically using a Precision Scientific Com~any DO analyzer. 
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The instrument was calibrated before each experiment and checked daily, 

using the Winkler Method, as explained in Standard Methods {42). 

For the runs with effluents, the dissolved oxygen concentration 

was monitored electrometrically by using a Weston-Stack oxygen analyzer 

which was standarized periodically by using the Winkler Method. 

Chemical Oxygen Demand 

COD determinations were made according to Standard Methods (42). 

Biological Solids Concentration 

Solids concentrations were determined by filtering a 40-ml sa!T]ple 

through tared membrane filters (0.45 µ pore size, Millipore Filte~ 

Corp., Bedford, Mass.). The filtered sample was dried in an oven at 

l03°C for two hours, and cooled in a desiccator for two hours before 

the final weight was taken. 

Ni trat~-Nitrogen 

Nitr~te-nitrogen was determined (using the Brucine Method) accord­

ing to Standard Methods (42) for the treatment of water and wastewater. 
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Methods of Analyses 

The saturation va'lue, Cs' and the reaeration rate, K2, were deter­

mined by using the following procedures: 

1) The method described by Isaacs aAd Gaudy (43), herein termed 

the 11 a. Methocl, 11 was employed. 

2) The reaeration rat~ and saturation values were also determined 

using a diff~rent methpd, for which .details are given below. 

where 

The equation ~as given by 

dC/dt = rate of transfer of oxygen per unit time . 

K2 = reaeration rate constant, hr- 1 

Cs = saturation value of DO concentration under the test 

conditions, mg/1 

Ct = DO concentration at any time, t 

(1) 

Equation (1) is a monomolecular equation; thus, it follows first 

order reaction kinetics. 

Substituting dC/dt = 0 in equation (1): 

0 = K2(cs - Ct) 

= c - c = 0 s t 

cs = ct 

Thus, it can be seen that when the rate of transfer of DO 

approaches zero, the dissolved oxygen in the stream approaches the 

saturation value, C5 • 

(2) 
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Rewriting equation (1) 

dC/dt = Kh ( l - ~: } (3) 

and expanding the equation (3), the reaeration equation can be arranged 

.tn a standarcl straight line form: y 

r 
.q 

J~-x (4) 

This equation is sil)lilar to the standard form: · 

Y = b - b/ax (5) 

wherein the parameters X and Y are Ct and dC/dt, respectively. 'a' and 

'b, 1 the intercepts, are 'Cs'· ~nd 1 K2Cs.' respectively •. The slope of 

the straight line is given by 

the. reaeration constant •. The saturation value, c,, is determi.ned (by . 

measuring the intercept 1a' =.cs on the X-axis. 

The intercep~ on the Y-axis. 'b' = K2Cs is the maximum rate of · 
I 

transfer. where the DO concentration in. the system i~ ze.ro. 

An example of reaeration data is sh,0wn in Figure 3. The plot shows 

the value of dC/dt at a t of 5.5; using a one-hour inte.rva1 for compu­

tation. The value of dC/dt {0.58) is t.DO between hours six an.d five. 

This dC/dt exists at a DO level {Ct) of 4.3 mg/l~ Similarly, values of 



Figure 3. Arithmetic Plot of the Reaeration Data, DO versus Time 

Figure 4. Arithmetic Plot ~f the Reaeration Data, dC/dt versus 
ct {Method 2) . . . 

-1 K2 = 0.145 hr Cs= 8.4 mg/l 
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rate of transfer for each successive time .interval during the length of 

the experiment (i.e., the DO level and t~e corresponding oxygen transfer 

rates) are computed and plot~ed in Figure 4, which is a plot of the 

straight line in accordance with equation (4). The intercept on the 

x~axis in Figure 4 is the saturation value, and the slope of the 

straight line is the reaeration rate constant, K2• (Also, the reaera-
intercept on Y-axis 

tion rate can be computed by intercept on X-pXi s ~ . 

The values of DO saturation, Cs' and the rea~ration rate, K2, using 

the above method (Figure 4) are in good agreement with the values deter­

mined using the method suggested by Isaacs and Gaudy (see Figure 5). 

The oxygen uptake was calculat~d from the dissolved oxygen pro-

files and corresponding reaerat1on rate, K2, and the saturation values, 

C , determined using the dC/dt method (Method No.02). An example of the s 
calculation of accumulated oxygen uptake (i.e •. , BOD curve) is shown in 

Appendix A. 



Figure 5. Logarithmic Plot of DO Deficit (Method No. 2) versus 
Time · 

-1 K2 = 0.141 hr Cs = 8.4 mg/l 
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CHAPTER VI 

RESULTS AND DISCUSSION 

The results presented below. are divided into. two disti.nct cate­

gories: 1) tests on the kinetics .of oxygen.uptake, and 2) tests using 

effluents from the laboratory bench scale extended aeration pilot 

plants to evaluate the. oxygen uptake characteristics in the receiving 

stream using an open stirred reactor. Also, some of the factors 

affecting the reaeration rate will be discussed in this chapter. Dis­

cussion of the data proceeds as the results are presented •. 

· Studies on the Kinetics of Oxygen Uptake Using 

Open Stirred Reactors With Seed From a 

Batch Operated Activated Sludge Unit 

The results are presented in decreasing order of F/M ratio. Shown 

in Figure 6 is the,dissolved oxygen.profile and the. corresponding oxy­

gen uptake for an initial F/M ratio of 18.7 with an initial concentra-. 

tion of 112 mg/l of soluble organic material (COD) and a biological 

solids concentration of 6 mg/l; the carbon source consisted of 90 mg/l 
.. . ' -1 . 

·glucose. The system was operated.at.a K2 of 0.117 hr and a DO sat-

uration value of 7.4 mg/l; total oxygen uptake exerted in five days 

was .44 m~fl. The o2. uptake curve shows a_slight upward concavity during 

the downward leg· of the DO sag curve, ,suggesting that first order 

decreasing rate o2 uptake may have been attained. 
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Figure 6. Dissolved Oxygen Profile and Accumulated Oxygen 
Uptake (BOD) Curve for "Young" Cell S~ed at F/M 
Ratio of ~ 18.7 . 

sag Initial Substrate Concentration 90 mg/l 
S0 COD Initial COD 112 mg/l 

XO Initial Cell Concentration .6.00 mg/1 _, 
K2 Reaeration Constant ,0.117 hr 

cs Saturation DO .7.4 mg/l 



'• 
I 

0 0 0 0 0 0 0 
LO LO 0 LO 0 0 LO . . . . . . . 
00 " LO N 0 LO N 

" l.O 

L/5UJ '00. 

-

\ 
\ 
1 

1 

~ 
0 

~ I 

it 
; 

I 

x 
I\ 
~ 

" 
0 0 0 0 0 
0 LO 0 LO 0 . . . . . 
0 " LO N 0 
LO (Y) N ..-

L/5W 'a)j l?'.j.d n ua5A'xo 

36 

0 
N 

0 
0 ...... 

0. 
co 

0 
l.O 

0 
N 

0 

V) 

!-
::i 
0 

....... .. 
QJ 

E .,.... 
f-



37 

Figure 7 gives the dissolved oxygen profile and the corresponding 

oxygen uptake with an F/M ratio of 16.80. The added glucose concen­

tration was 120 mg/l, and the measured initial COD was 134 mg/l. Bin-. 

logical solids (suspended solids) concentration at the start of the 

test was 8 mg/l. The experiment was performed at a K2 of 0.128 hr-1 

and Cs of 7. 1 mg(1 , as dete.rmi ned from the reaera ti on data. The oxygen · 

uptake was 36 mg/1; the sag curve was well rounded when compared to the 

experiment in Figure 6. The low point was reached a little earlier in 

this experiment. The oxygen uptake curve showed a slight upward con­

cavity until the low point of the sag was attained. 

The initial glucose concentration for the experiment shown in 

Figure 8 was 100 mg/l and the observed initial COD was 120 mg/l. Ini­

tial biQlogical solids concentration (X0 ), was 8 mg/l, giving an F/M 

ratio of 15.00. When operated at a K2 of 0.11 hr-1 and a saturation 

value of 7.7 mg/l, the system yielded an oxygen uptake of 44 mg/l. The 

sag of the dissolved oxygen profile was.well rounded, and reached the 

low point earlier than in Figure 7. 
-1 The experiment in Figure 9 was conducted at a K2 of 0.097 hr , . 

and the saturation value obtained from the reaeration data was 7~5 mg/l. 

The nominal glucose concentration was 50 mg/1, and the measu.red·COD was 

56 mg/1. The initial seed concentration was 6 mg/l, giving an F/M ratio 

of 9.3. The oxygen uptake at 120 hours was 31 mg/l. In this experiment, 

the low point of the sag was reached faster than those with higher F/M 

values, but the recovery of dissolved oxygen was somewhat slower, which 

may have been due to the fact that K2 was lower in this exp.eriment. 

In Figure 10, it is seen tha:t 31 mg/l of oxygen was used in metab­

olizing 60 mg/1 glucose (initial COD= 65 mg/1). The seed concentration. 
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Figure 7. Di$solve.d Oxygen Profile and Accumulated Oxygen 
Uptake (BOD) Curve for "Young" Cell Seed at F/M 
Ratio of 16.80 . 

sog Initial Substrate Concentration 120 mg/1 
S0 COD Initial COD 134 mg/1 

XO Initial Cell Concentration 8 mg/l 

K2 Reaeration Constant o. 128 hr-1 

cs Saturation DO 7 .4 mg/l 
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Figure 8. Dissolved Oxygen Profile and Accumulated Oxygen 
Uptake (BOD) Curve for 11 Young 11 Cell Seed at F/M 
Ratio of "' 15 

sag Initial Substrate Concentration 100 mg/l 
S0 COD Initial COD 120 mg/l 

XO Initial Cell Concentr~tion 8.00 mg/l 

K2 Reaeration Constant 0. 11 hr- l 

cs Saturation DO 7.7 mg/l 
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Figure 9. Dissolved Oxygen Profile and Accumulated Oxygen 
Uptake (BOD) Curve for 11 Young 11 Cell Seed at F/M 
Ratio of ~ 9.3 

sag Initial Substrate Concentration 50 mg/l 
S0COD Initial COD 56 mg/1 

XO Initial Cell Concentration 6.00 mg/l 

K2 Reaeration Constant 0.097 hr-1 

cs Saturation 00 7.5 mg/1 
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Figure 10. Dissolved~Oxygen Profi.le and Accumulated Oxygen 
Uptake (BOD) Curve for 11 Young 11 Cell Seed at F/M 
Ratio of ~ 8.1 

sag Initial Substrate Concentration 60 mg/l 
S0COD Initial COD 65 mg/l 

XO Initial Cell Concentration 8.00 mg/l 

K2 Re~eration Constant 0.07 hr-1 

cs Saturation DO 7.7 mg/l 
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was 8.0 mg/l, and the F/M ratio was 8.1. The experiment was conducted 

at a K2 of 0.07 hr-1 and a saturation value of 7 ~7 mg/l •· When reviewed 

in relation to the previous figures, there appears to be a general . 

trend in that as F/M decreases, the lower point of the sag is reac;hed· 

earlier. 

The experiment in Figure 11 was conducted at an F/M ratio of 7.9, 

with an initial glucose concentration of 55 mg/1 an~ an observed initial 

COD of 71 mg/1. · The ini~ial biolo.gical sol ids .concentration was 9 mg/l, . 

and. the reaeration rate was 0.13 hr-lqt a saturation val,ue of. 8.00 mg/l. 

The o.xygen uptake exerted was 3~ mg/1 •. The trend of the dissolved oxy- . 

gen profile remained similar to the previous ones in that the minimum 

disso.lved oxygen level of the sag curve was reached more rapidly as·.F/M 

increased. In Figur~ 12, the glucose concentration was 40 mg/l; and the 

measured initial COD was 52 mg/l. The initial biological solid~ concen­

tration was 9 mg/l providing an F/M ratio of 5.80. The .oXYgen uptake 

exerted was 27 mg/l. The etcperimen.t was conducted at a reaeration rate 

of 0.107 hr-1, and a dissolv.ed oxygen saturation .value of 8.0 mg/1. 

Th,e -fact that in all of. these experiments the nature of the sub­

strate was the same (glucose) and the seed was taken from the same batch 

unit; facilitates comparison of the kinetics. The K2 vaJues were not 

all the same, but ·the larg_est difference was from a high of Q.130 hr-1 

(Figure.11) to. a low of 0.07 hr-l (Figure 10). ·Figures 6-12 show that 

as the F/M ratio decreases, .the shape of the dissolved OXYgen profile 

changes in a particular way, i.e., the low point of. the sa.g is reached 

earlier with decreasing F/M ratios. This tr.end may be due in part to a 

slightly decreasing trend in K2 as the F/ M ratio was decreased, but in 

the main it appears that it can be attributed to the fa~t that the time 



Figure 11. Dissolved Oxy~en Profile and Accumulated Oxygen 
Uptake (BOD) Curve for 11 Young 11 Cell Se.ed at F/M 
Ratio of ~ 7 .9 

sag Initial Substrate Concentration 55 mg/l 
S0 COD Initial COD 71 mg/l 

XO Initial Cell Concentration 9.00 mg/l 

K2 Reaeration Constant o.13 hr-1 

cs Saturation DO · a.oo mg/1 
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Figure 12. Dissolved Oxygen Profile and Accumulated Oxygen 
Uptake (BOD) Curve for 11 Young 11 Cell Seed at F/M 
Ratio of 5.80 

sog Initial Substrate Concentration 40 mg/l 

S0~0D Initial COD 52 mg/l 

XO Initial Cell Concentration 9.00 mg/l 

K2 Reaeration Constant 0.107 hr-1 

c 
s 

Saturation DO 8.00 mg/1 
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to reach the low point in the sag depends upon the time to attain maxi­

mum total growth, and at higher F/M ratios more time is r~q~ired because 
• J 

there is a proportional1y greater amount of substrate to exhaust before 

attaining maximum population. The recovery phase of the DO profile can 

be expected to occur after exhaustion pf exogenous substrate and attain­

ment of maximum population. The speed of recovery of DO would be 

expected to depend upon the biomass concentration present for endogenous 

and/or autodigestive metabolism as well as the reaeration rate. For the 

studies shown in Figures 6-12, the initial solids concentrations were 

small and the size of the population after removal of substrate depended 

on 11 F11 rather than on 11 M, 11 thus for lower F/M ratio, the endogenous . 

../ phase of o2 uptake would be expected to be lower and the recovery of DO 

more rapid. Such a trend was not evidenced. In fact, there was a ten­

dency toward somewhat slower recovery at the lower F/M ratios. In these 

experiments, this was probably due to the slightly lower K2 values which 

were employed as F/M was decreased. Lower K2 values were used since it 

was necessary to develop a 11 sag 11 in order to calculate.the o2 uptake. 

It was seen that there was in some experiments an upward concav-

ity in the o2 uptake curve, which suggested the possibility of attain­

ment of exponential uptake in the early portion of the BOD curves~ 

Figure 13 is a plot of o2 uptake versus time on semilog coordinates • 

. The origin on the X-axis was shifted, for each experiment, to the right 

to facilitate plotting all seven curves in the same figure. The accu­

mulated o2 uptake curves are plotted in decreasing order of F/M ratio 

from left to right. Curves are numbered 6 through 12, corresponding to 

Figures 6 through 12. At the high F/M ratio, there is some evidence 

that an exponential phase of o2 uptake developed between hours 10 and 



Figure 13. Logarithmic Oxygen Uptake versus Time for Experiments· 
With 11 Young 11 Cell Seed (Figures 6-12) 

Figure F/M K2(hr- l) 

6 18 • .JO 0.117 
7 16.80 0.128 
8 15.00 0.110 
9 9.30 0.097 

10 8.10 0.070 
11 7.90 0.130 
12 5.80 0.107 
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30. Straight lines are fitted to early portions of the other curves 

as well, although evidence for development .of an exponential phase is 
I 

seen to diminish .as the F/M ratio (i.e., initial substrate concentra-

tion) decreases. 

Studies on the Kinetics of Oxygen Uptake Using 

Open Stirred Reactors With Seed From a Lab­

oratory Extended Aeration Pilot Plant 

54 

It was of interest· to study the effect of types of seed cells on 

oxygen uptake kinetics. The following runs were made using seed from 

an extended aeration pilot plant. These seed cells represented a much 

"older" .or more mature population than those from the batch unit which . 

were employed in the .. studies of the previous section. 

The slow-growing ;character of the· seed from an. extended aeration , 

plant is sh.own in Figure 14. The F/M ratio. was 100, and 96 hours were 

required.for attainment of the low point of the sag; the DO recovered 

rapidly. The .seed concentration was. less than one mg/l, .and the nomi-
' . . 

nal glucose concentration was 75 mg/l (m~asured COD = .86 mg/1) •. At a 

K2 of'0.07 hr-land a corresponding saturation value of'8~6 mg/l, the 

oxygen uptake exerted was 32 mg/l. 

The experiments in Figures 15-17 indicate that as F/M ratio is. 

decreased, recovery of the sag curve.proc~eds somewhat more slowly, and 

the lo~ .point of the sag OCCLJ~S in a shorter time period •. For the 

experiment shown in Fi.gure 15, the substrate was 50 mg/1 glucose, and 

the measured initial COD ~as 76 mg/l. Initial biological solids concen­

tration was less than one mg/l (0.86 mg/l calculated by d'ilution factor) 

and the F/M was 88. The 5-day oxygen uptake was 26 mg/l at a K2 of 



Figure 14. Dissolved Oxy9en .Profile and Ac.cumulated Oxygen 
Uptake (BOD) Curve for "Old" Cell Seed at F/M 
Ratio of 100 

Initial Substrate Concentration 75 mg/l 
Initial COD 
Initial Cell Concentration 
Reaeration Constant 
Saturation DO 

86 mg/l 
1.00 (0.86) mg/l 

0.07 hr- l 

8.6 mg/l 
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Figure 15. Dissolved Oxy9en Profile and Accumulated Oxygen 
Uptake (BOD) Curve for 110ld 11 Cell Seed at F/M 
Ratio of 88 "" 76 

Inftial Substrate Concentration 50 mg/l 
In it i a 1 ,COD 
Initial Cell Co"centration 
Reaeration Constant 
Saturation DO . 

76 mg/l 
1.00 (0.86) mg/l 

0.068 hr-1 

8.75 mg/l 
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0.068 hr-1; saturation value was 8.75 mg/l. The oxygen uptake was 

exerted very slowly. The lowest point of the sag was reached at the 

same time as in Figure 14, but the recovery of oxygen in the system was 

rather slow compared to Figure 14. 

Figure 16 shows the results of an experiment with an F/M ratio of 

· 47. Initial biological solids concentration was 2.3 mg/l (by calcula­

tion), the glucose concentration was 90 mg/l, and th~ measured initial 

COD was 107.0 mg/l. This experiment was run at a K2 of 0.123 hr-1, and 

the saturation value d_etermined from the reaeration data corresponding 

to this K2 was 8.00 mg/l. The minimum point of the sag was reached at 

76 hours, compared to 96 hours for the experiments in Figures 14 and 

15. The oxygen recovery also was a little slower. The 5-day BOD was 

44 mg/l. 

The.experiment shown in Figure 17 was conducted with an initial 

substrate of 70 mg/l glucose and a measured COD of 91 ~g/l. Biological 

solids concentration was 2.3 mg/l, with an F/M ratio of 40. The oxygen 

uptake exerted in five days was 33 mg/l at a K2 of 0.097 hr-1 and a 

corresponding Cs of 8.1 rng/l. The lowest point of the sag was reached 

at 44 hours, compared to 76 hours in Figure 16. 

Figure 18 is a plot of oxygen uptake versus time on semilog 

coordinates. At the highest F/M ratio, there is some suggestion of the 

development of an exponential phase. 

The general trends of the curves of this section and the previous 

one are similar, and the major difference between them is attributable 

to the intrinsic growth behavior of the seeds. The "younger" cells of 

the previous section exerted a faster o2 uptake rate than did the 

11 older 11 cells taken from the extended aeration pilot plant. In both 
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Figure 16. Dissolved Oxy~en Profile and Accumulated Oxygen 
Uptake (BOD) Curve for 11 0ld 11 Cell Seed at F/M 
Ratio of 47 

sag Initial Substrate Concentration 90 mg/1 
S0COD Initial COD 107 mg/l 

XO Initial Cell Concentration 2.3 mg/l 

K2 Reaeration Constant O. 123 hr-1 

cs Saturation Con$tant 8.00 mg/l 
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Figure 17. Dissolved O~y9en Profile and Accumulated Oxygen 
Uptake (BOD) Curve for ''Old" Cel 1 Seed at F/M 
Ratio of 40 

sog Initial Substrate Concentration 70 mg/l 
S0COD Initial COD 91 mg/1 

XO Initial Cell Concentration 2.3 mg/l 

K2 Reaeration Constant 0.097 hr-1 

c s Saturation DO 8.1 mg/1 
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Figure 18. Logarithmic Oxygen Uptak;e versus Time for Experiments· 
With 11 0ld 11 Cell Seed {Figures 14-17) 

Figure No. F/M K2{hr-1) 

14 100 0.070 
15 88 0.068 
16 47 0.123 
17 40 0.097 
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cases, the data provide some suggestion that exponential o2 uptake was. 

attained at the higher F/M ratios employed. 

Studies on the Kinetics of Oxygen Uptake of 

Effluents From Laboratory Bench Scale 

Extended Aeration Pilot Plants 

Effluents were taken from two extended aeration pilot plants: 

1) effluents .from the extended aeration pilot plant operated by the 

author, and 2) effluents from the extended aeration pilot plant operated 

by Mr. Roach, a fellow graduate student researcher. The first unit was 

fed hydrolysate of secondary clarifier sludge from the Stillwater treat­

ment plant •. This pilot plant was operated in accorda-nce with the con­

cept of the "hydrolytic assist." The second unit was fed glucose; it 

was also 11 hydrolytically assisted.", The operational details of the 

pilot plants have been given in the Materials and Methods chapter. 

One of the primary purposes of this study was to determine the 

purification ability of .the extended aeration treatment by testing the 

effluents with regard to oxygen uptake using the open reactor technique. 

So the author took over operation of an extended aeration pilot plant 

which had been previously operated as part of a past Master's research 

effort of a fellow graduate student, Mr. Saidi. The study was performed 

with the aim of determining whether the 11 hydrolytically assisted" 

extended aeration process could be successfully employed as a sludge 

disposal unit for secondary sludge. On April 21, 1974, the author took 

charge of the unit which had been operating for 161 days. The mixed 

liquor suspended solids concentration was approximately 14,000 mg/l. 

The aeration chamber suspended sol ids were 1 ater slowly reduced. The . 
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reduction in mixed liquor suspended solids was due to the fact that the 

feed COD concentration in subsequent weeks was lower compared to the 

previous concentrations which had been approximately 1200 mg/l, and to 

the fact that relatively large concentrations of biological solids were 

withdrawn for hydrolysis and refeeding (e.g., two liters at 30,000 mg/l 

compared to much. lower values and cqncentration~ prior to this time). 

All pilot plant operational data during the period of operation by the 

author are shown in Figure 19. The mixed liquor suspended solids con­

centration is plotted on the lower graph. The broad arrows mark the 

times of sludge withdrawal from the unit settling chamber for hydroly­

sis and refeeding. The sludge concentration and volume withdrawn are 

given in the figure legend. For examples on day 167, 2000 ml of ,sludge 

at a concentration of 30,000 mg/l were withdrawn, hydrolyzed, and refed 

in equal portions during the time elapsed between days 167 and, 179, at 

which time another 2000 ml at 28,540 mg/l were withdrawn. The inflow 

concentration is shown in the top graph. The COD concentration of the 

inflowing hydrolysate of the municipal secondary sludge (trickling 

filter sludge) is designated by hexagons, the total COD, i.e., municipal 

sludge hydrolysate, plus internal mixed liquor suspended solids h.ydroly­

sate by circles, and the total filtrate COD by triangles. The effluent 

characteristics are shown in the center ~raph. The effluent was char­

acterized by total COD (clarifier effluent), biological solids concen­

tration in the effluent, and soluble COD, i.e., filtrate COD (small 

arrows). 

From day 162 to day 216, the effluent characteristics remained at 

rather steady low levels. After day 217, the effluent supernatant CODs 

showed an increase due to the leakage in biological solids concentration~ 



figure 19. Performance of an Aerobic Digesti-0n Pilot flant 
Employing Pre-hydrolyzed Sludge as Feed Stock· 
(from 162 days to 267 days of operation) 

The thin arrows designate, the times that pilot 
plant effluent sample~ were studied in open 
jar.reattors for d~tetmi~ation of 02 uptake. 
The. numbers for ea<;h arrow designate the number. 
each experi-ment presented in the report. Sludge 
withdrawals from the pilot .Plant are represented 
by thic;k arrows, and the details are given below:, 

Day of 
Withdrawal 

167 
179 
190 
199 
209 
217 
225 
231 

'239 
248 
259 

Volume of MLSS 
Withdrawn, ml 

20()0 
2000 
1800 
1800 
1500 
1500 
1500 
1500 
1500 

900 
900 

Cone. of MLSS 
Withdrawn, mg/l 

30,000 
28,540 
19,5·70 
15,120 
11,870 
13,240 
11,950 
8,580 
5,920 
5,480 
5,560 
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However, substrate utilization was not affected, as shown by the 

effluent filtrate COD, which remained rather steady at low levels •. 

After day 217, the leakage of solids might possibly be attributed to 

fluctuations_ in feed concentrations.· 

70 

The last o2 uptake study in an open jar was performed on day 208 

(see narrow arrow marker). After day 208, the author's main purpose in 

running the unit was to keep this process operational until another 

investigator could as.sume operational responsibility. After nearly 2/3 

of a year into the operation with the high ash feed, it was desira~le 

th.at the unit remain functional. Thus, while the feed was allowed to 

vary and there was some relaxation of ope~ational care, the unit aper ... 

ated continuously. It is interesting to note that the filtrate COD 

remained low throughout this period, i.e., the efficiency did not suf­

fer due to the load fluctuations. 

At various times during th~ operational life of the pilot plant, 

effluents were testedin open stirred reac;tors to determine o2 uptake. 

The results are presented in chronological order. 

Shown ih Figure 20 is the dissolved oxygen profile and the oxygen 

uptake curves for effluent taken from the total oxidation pilot plant 

during the 112th day of operation (durin~ this time Mr •. Saidi, not the 

author~ was.operating the pilot plant). The feed concentration -0n that 

day was 1200 mg/l of trickling filter sludge hydrolysate, and the total 

inflow COD (i.e •. , including internal hydrolysate) was 1730 mg/1. The 

effluent was diluted with an equal amount of tap water. After dilution, 

the dissolved organic material had a COD of 49 mg/l, and suspended sol~ 

ids concentration was 12 mg/1. The system was operated at a reaeration. 

rate of 0.162 hr- 1 ~ with a corresponding saturation value, Cs, equal to. 



Figure 20. DO ~rofile and 02 Uptake Curves for the Effluent 
From the Pilot Plant 

Initial Final 
Substrate Concentration 

Filtrate COD 49 mg/l 
Suspended Solids Cone. 12 mg/l 16 mg/1 
Reaeration Rate Constant, K, 0.162 hr-1 
Dissolved Oxygen Saturation2Constant, Cs, 7~55 mg/l 
Oxygen Uptake, 17 mg/l · 
Dilution Rate, 1/1 
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7.55 mg/1. The o2 uptake at the end of the experiment was 17 mg/l. 

The dissolved oxygen profile increased ini~ially, followed by a slow sag 

before the DO recovered in the system. The initi~l increase in DO 

attests to the lag period which existed. This is also reflected in the 

rather long lag in o2 uptake. After this lag period, the o2 uptake 

curve was concave upwards suggesting autoc~talytic growth of the micro­

organisms exerting thi BOD. 

The results shown in Figure 21 are the DO profile and o2 uptake of 

a sample of effluent taken on the 119th day of operation. On. this day; 

the feed to the unit consi~ted of 1240 mg/1 COD of trickling filter 

hydrolysate. No internal sludge hydrolysate was fed on this day. The 

filtrate effluent COD was 76 mg/1. The effluent was tested directly, . 

i.e., it was not diluted. The initi~l biological solids concentration. 

was 12 mg/1, and the system exerted an oxygen demand of 28 mg/l. The 

firtal soluble organic material (COD) after five .days was reduced to 59 

mg/l, 'and biological sol ids to 8 mg/1. The reactor was operated at ·a K2 

or 0.095. · Similar to Figure 20, this experiment also showed an initial 

DO increase and a gradual reduction in DO concentration. However, the 

DO changes in the system were not pronounced. The oxygen uptake curve 

showed essentially zero order kinetics, as .the DO remained in t~e sys-· 

tern at practically the same level throughout.the experiment. 

Figure 22 shows results for a similar'. experiment, but with low. 

initial DO of 3.3 mg/1. The soluble substrate concentration was rather 

low--24 mg/1--but the biological solids concentration was a little 

higher than the previous experiment, 56 mg/l. There was a ·rather rapid 

increase in the dissolved oxygen concentration to about 5 mg/l, attest­

ing, again, to the apparent lag in metabolism. The DO remained at 



Figure 21. DO Profi 1 e and O? Uptake Curves for the Effluent From 
the Pilot Plant 

Initial Final 
Substrate Concentration 

Filtrate COP 50 mg/1 59 mg/1 
Suspended Solids Cone. 12 mg/1 8 mg/1 
Reaeration Rate Constant, K , 0.095 hr-1 
Dissoved Oxygen Saturation tonstant, C5 , 7.80 mg/1 
Oxygen Uptake, 28.00 mg/l 
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Fi.gure 22. DO Profile and 02 Uptake Curve,s for the Effluent From 
the Pilot Plan't 

In1t1al Final 
Substrate Concentration 

Filtrate COD 24 mg/l 
Suspended Sol ids Con.c. 56 mg/1 
Reaerat1on Rate Constant~ K , 0.13 hr-1 
Dis.solved Oxygen Saturation2Constant, C5 , 7 .20 mg/l 
Oxygen Uptake, 32.00 mg/l 
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slightly below 5 mg/l until after the 90th hour, when recovery began. 

The reaeration rate was.0.13 hr- 1 ~ and the saturation value was 7.2 mg/l. 

The oxygen uptake {BOD) exerted was 32. mg/l. .· 

o2 uptake of the pilot :Plant effluent on day 179 is shown in Fig- · 

ure 23. The initial soluble COD was 32 mg/l, and the biological solids. 

concentration was 76 mg/1. After five days, the concentration of sol­

uble organic material decrea~ed to 28 mg/1,.and the biological solids 

to 73 mg/1. With a .reaeratiQn rate of -0.09 hr-1 and a corresponding 

saturation value of 7.65 mg/1, the BOD of the efflue~t was 20 mg/l. 

Analyses for N03~N were made, and there was no nitrification during the 

course of the experiment~ 

The above Figures· {20-23) show that in al.l cases there was an ini­

tial increase in DO concentration. The effluent was employed as it 

existed in the. effluent holding tank, and the DO there wa.s not satur~ 

ated. Thus, the lower.DO values together )rlith the metabolic lag 

exhibited by the cells from this extended aeration unit brought about 

the initial increase in DO. In general, the results showed tha4 if th.e 

effluents were let into a receiving stream with reasonably low K2, they 

would not cause any stress to the oxygen re.sources of the stream. The 

experiment of Figure 20, for which the sample was diluted with 50 per 

cent tap wate·r, was the only one which showed any recog.nizable sag. 

The other three experiments· {Figures 21-23) did not show any sag at all, 

yielding almost straight line kinetics for oxygen uptake.; In Figure 23, · 

even th9ugh the suspended solids concentration, 76 mg/1, was the highest -

of any tested in this series, it produced the lowest·BOD5, attesting to 

the low biological activity of suspended solids from.this treatment 

process. 



Figure 2~. DO Profile and 02 Uptake Curves .for the Effluen,t From· 
the Pilot Plant . · 

Initial Final 
Substrate Concentration 

Filtrate COD - , 32 mg/l 28 mg/l 
Suspende( Solids Cone~ 76 mg/l 73 mg/l 
Nitrate Nitrogen 0.00 .mg/l 0.00 mg/l 
Reaerat1on Rate-Constant, K2, 0.09 hr-l 
Dis!;olved Oxygen Saturation Constant, C5 , 765 mg/l 
Oxygen Uptake, 26 mg/1 · 
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From the results, it can be seen that the organic matter (COD) in 

the effluent from a hydrolytically assist~d extended aeration unit 

treating hydrolyzed trickling filter sludge is sl.owly metabolized and 

there is an apparent metabolic lag. The results indicate that this 

waste is subject.to a high degree of biological treatment, and the 

effluent does not cause se.rious stress to the stream. Only scant nitri­

fication data were collected during this span of operation. For the 

experimental results shown in Figure 23, determination .for N03-N was 

made, and none was found. However, it is known from the previous oper-
• 

ation by Saidi that the effluent .exhibited varying ,degrees of nitrifica-

tion during the first. 105 days .of operation. Thus, some of the o2 

uptake shown in Figures 20, 21, and 22 could have been due to nitrifica­

tion. 

The next three experiments (Figures 24, 25, and 26) were undertaken 

to observe• the type of kinetics in th.e receiving stream when a high con­

centration .of biologicals was containe~ in the effluent. Therefore, 

additional mixed liquqr solids ~ere added to the effluent $amples in 

the open stirred reactors before the start of the experiment. 

Figure 24 shows results of an eKlJeriment using effluent and bio­

logical solids taken during the 16th day of operation. The biological 

sol ids concentration was incr.eased from 16 mg/l to 178 mg/l by addition 

of mixed liquor solids from the aeration chamber. The soluble COD was 

42 mg/l. At the end of five days, .the biological solids concentration . 

decreased slightly to 160 mg/l (i.e., by 18.mg/l), and there was little 

or no difference in the soluble organic material measured:as COD (it 

changed from 42 mg/1 to 40 mg/1). At a K2 of 0.185 hr-l with a Cs of. 

5.9 mg/l, the oxygen uptake exerted was 27 mg/l. No nitrification was 



F~gure 24. DO Profile and 02 Uptake Curves for.the Effluent From 
the Pilot Pl ant With the Addition of Mixed Liquor 
Su$pended Solids · 

Initial . Final 
Substrate ·Concentration 

Filtrate COD . 42 mg/1 40 mg/1 
Sus.pended Sol id~ Cone. · 178 mg/l 160 mg/1 
Nitrate Nitrqgen Cone. 0.00 mg/l 0.00 mg/1 
Reaf!rat1on Rate Constant, :K2, 0.185 hr-1 · 
D1sso1vea Oxygen Saturation Const.ant~ C5 , 5.90 mg/1. 
Oxygen Uptake; 27.00 mg/1 
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observed during the experiment. The DO profile exhibited a well . . 
rounded sag. Approximately 24 hours were required for both the falling 

leg and the rising leg of the oxygen sag curve. After apparent zer0 

order kinetics in the early phase of uptake, a decreasing rate curve 

developed. 

Figure 25 is an experiment with almost the same amount of initial 

biological solids as that used in the experiment shown in Figure 24, 

run on day 197 of the pilot plant operation. During the course of the 

experiment, the concentrations of total and soluble organic material 

measured as COD did not show any change. (Initial filtrate COD, 56 

mg/l~ final filtrate COD, 56 mg/l, initial total COD, 172 mg/l, final 

total COD, 172 mg/l) •. B~t there was a c~nsiderable amount of nitrifi-

cation. The N03-N Concentration increased from zero mg/1 to a final 

concentration of 23 mg/l. Biological solids concentration increased by 

17 mg/l, i.e., from 165 to 182 mg/l. The total oxygen uptake computed. 

using a K2 of 0.093 hr-l and a saturation value, Cs, of 8.95 mg/1, was 

23 mg/1. The oxygen uptake curve did not flatten out as in Figure 24, 

because the DO in the system recovered rather slowly • 

. The results shown in Figure 26 are the o2 uptake of a sample of 

effluent taken on the 198th day of operation of· the pi 1 at pl ant. The 

biological solids were increased to an initial value of 337 mg/1. 

Also, the initial DO was raised by aeration prior to making the test. 

During the period of the experiment, the filtrate COD did not change 

significantly; it showed a decrease of 4 mg/l from an initial value of 

56 mg/l to a final value of 52 mg/l. The biological solids increased 

slightly from 337 mg/1 to 345 mg/1. But the total organic material 

measured as COD decreased from 308 mg/l to 288 mg/l, i.e., a decrease 



Figure 25. DO Profile and 02 Uptake Curves for the Effluent From 
the Pilot Plant With the Addition of Mixed Liquor 
Suspended Solids 

Initial Final 
Substrate Concentration 

Non-filtrate COD .172 mg/1 172 mg/1 
Filtrate COD 56 mg/l 56 mg/l 

Suspended Solids Cone. 165 mg/l 182 mg/1 
Nitrate Nitrogen Cone. 0.00 mg/1 23.00 mg/l 
Reaeration Rate Constant; K , 0.093 hr-l 
Dissolved Oxygen Saturation2Constant> Cs, 8.95 mg/1 
Oxygen Uptake, 23.00 mg/41 
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Figure 26. DO Profile and o2 Uptake Curves for the Effluent From 
the Pilot Plant With the Addition of Mixed Liquor 
Suspended Solids · 

Initial Final. 
Substrate Concentration 

Non-filtrate COD 308 mg/l 288 mg/l 
Filtrate too 56 mg/1 52 mg/l 

Suspended Solids Cone. 337 mg/l 345 mg/l 
Reaeration Rate Constant, K ~ 0.125 hr-1 
Dissolved Oxygen Saturat1on2Constant, Cs' 8.80 mg/1 
Oxygen Uptake, 44.00 mg/1 · 
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of 20 mg/1 of total COD. The N03-N concentration decreased from 29.5 

mg/1 to a low value of 14.7 mg/l. There is no apparent explanation for 

this decrease, since the trickling filter hydrolysate was known to con~ 

tain excess nitrogen in relation to carbon source. The DO in the system 

came down faster than in the previous two experiments.. The system was· 

operated at a reaeration rate of 0;125 hr-1 and a corresponding sat~ 

uration value of 8.8 mg/1. The computed oxygen uptake was 44 mg/l. 

Two experiments were performed to observe the o2 uptake behavior 

when significant amounts of both substrate and biological solids were 

present in the effluent. In these experiments~ the effluents were 

initially aerated to increase initial DO concentrations in the system. 

The substrate consisted of hydrolysate of the sludge withd.rawn from the 

pilot plant. The results are shown in Figure 27 •. The actual effluent 

at the pilot plant had an initial soluble COD of 64 mg/l (196th day of 

operation), and a suspended solids concentration of 138 mg/1. After 

the addition of both the hydrolysate and the biological solids from the 

aeration chamber~ concentrations were raised to 160 mg/l of COD and 305 

mg/l, respectively. After five d'ys, the total COD concentration 

decreased only 50 mg/l (312 mg/1 ~o 264 mg/l), whereas the soluble 

organic material decreased by 100 mg/1 (160 mg/1 to 60 mg/l), but the 

biological solids concentration remained at almost a constant level 

(initial concentration 305 mg/1; final concentration 297 mg/l). The 

system showed nitrification (24 mg/1) from an initial 14 mg/l concen­

tration to a final value of 38 mg/1 of N03~N. The total oxygen uptake 

exerted was 96 mg/l at. a K2 of 0. 145 hr= 1 and a sat'uration va 1 ue of 8. 7 

mg/1. The DO profile showed a distinct secondary sag which was 

expressed as a 11 plat~au 11 in the oxygen uptake curve. 



Figure 27. DO Profile and 02 Uptake Curves for the Effluent From 
the.Pilot Plant With the Addition of MLSS and the 
Recycle Sludge ·Hydro.lysate · 

Initial 
Substrate Concentration 

Non-filtrate COD 312 mg/l 
Filtrate COD 160 mg/l 

Suspended Solids Cone. 305 mg/l 
Nitrate Nitrogen Cone. 14 mg/l 
Reaeration Rate Constant, K2, 0.145 hr-1 
Dissolved Oxygen Saturation Constant, Cs, 
Oxygen Uptake, 96 mg/l 

Final 

264 mg/l 
60 mg/l 

297 mg/l 
38 mg/l 

8.7 mg/l 
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For the experiment spawn .in Figure 28, hydrolysate of the trickling 

filt~r-sludge-was added to the reactor along with the mixed liquor sus­

pended solids from the aeration tank of the pilot plant (206th day of 

operation). The day the experiment.was run, the effluent of the pilot, 

plant contained 7.5 mg/l suspende~ stilids •nd 90 mg/1 of solubl.e COD •. 

After the addition of the trickling filter hydrolysate- and the solids, 

the concentration of-the soluble substrate was 112 mg/1 and that of sus­

pended solids, 222 mg/l. ·Within five hours, the DO in the system reach­

~d the minimum point of the sag, but the DO quickly recovered and 

remained at a rather constant level. After five days; the soluble COD 

value decreased by 64 mg/1 (112 mg/l to.48 mg/l), whe·reas the suspended 

solids increased by about 50 mg/l (222 mg/l to 272 mg/1). Total COD 

decreased by about 20 mg/l, from 214 to 174 mg/1, and there was :a small 

amount of· nitrification, 6 mg/l (from an initial value_ of 20 mg/l to .a 

final value of 26 mg/l. The total oxygen uptake was 55 mg/l at a K2 of 

0.141 hr-l and a dissolved oxygen saturation value of 8.4 mg/l. 

Figures 20 to 28'give a fair idea of the efficiency of the pilot. 

plant. Figures 20 to 23 show that the actual effluents from the pilot 

plant·did not cause any appreciable reduction in the oxygen resources 

of the stream for medium values of reaeration con~tant; also the BOD 

values were rather low. Even when large amounts of 11 biological 11 solids 

were purposely add.ed to the effluent, the recovery after an early sag 

was rather rapid (e.g., Figure 24) except when there were significant 
I 

amounts of nitrification. Th~ results ,shown in Figures 27 and 28 indi­

cate that although the treated effluents plus addition of excessive . 

solids did nqt cause appreciable oxygen uptake, the leakage of both 

suspended solids and either cell hydrolysate or raw trickling filter 



Figure 28. DO Profile and 02 Uptake Curves for the Effluent From 
the Pilot Plant With the Addition of MLSS and the 
Trickling Filter Sludge Hydrolysate 

Initial 
Substrate Concentration 

Non-filtrate COD 214 mg/l 
Filtrate COD 112 mg/l 

Suspended Solids Cone. 222 mg/l 
Nitrate Nitrogen Cone. 20 mg/1 
Reaeration Constant, K, 0.141 hr-1 
Disso.lved Oxygen Satur~tion Constant, 
Oxygen Uptake, 55 mg/1 

Final 

194 mg/1 
48 mg/1 

272 mg/1 
26 mg/1 

Cs, 8.4 mg/1 
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sludge hydrolysate may cause considerable strain on the oxygen resources 

of the stream. 

An additional three runs were made using effluent from a hydro­

lytically assisted extended aeration pilot plant operated by Mr. Roach, 

a fellow graduate student engaged in research. The operational proce­

dure for the pilot plant was given in detail in the Materials and 

Methods chapter. 

On March 2, 1974; effluent was taken from Mr. Roach's unit, placed 

in the open jar reactor and diluted with 50 percent tap water {Figure 

29). On the day the sample was taken, the feed COD for the unit was 

1950 mg/l, filtrate COD of the effluent was 20 mg/l, with a suspended 

solids concentration of 10 mg/l. After dilution, the COD of the fil­

trate was 36 mg/l. It would appear that either the original effluent 

COD value or the one with dilution was in error, since the COD of the 

tap water has been found to be 10-11 mg/l. The dissolved oxygen in 

the system increased slightly before a slow sag occurred. This general 

behavior was similar to that shown in Figure 20 for the effluent which 

was taken from the author's pilot plant. The oxygen uptake showed an 

initial lag before showing an increase in the rate of BOD. The soluble 

organic material was reduced from 36 mg/l to 7 mg/l; the biological 

solids increased by a slight amount (4 mg/l). The reaeration rate was 

0.23 hr-1 at a saturation value of 7.85 mg/L The OxYgen uptake exerted 

was 12 mg/l of BOD. 

Figure 30 is an experiment similar to Figure 29 with 50 percent 

dilution with tap water. The initial soluble organic material was 30 

mg/l, and the biological solids concentration was 12 mg/l. After five 

days, the filtrate COD was 15 mg/l and the final biological solids 



Figure 29. DO Sag and O? Uptake Curves for the Effluent From 
Mr. Roach's Extended Aeration Pilot Plant 

Initial Final 
Substrate Concentration 

Filtrate COD 36 mg/l 
Sus.pended Solids Cone. 16 mg/l 

7 mg/l 
12 mg/l 

Reaeration Rate Constant, K2, 0.23 hr-l 
Dissolved Oxygen Saturation Constant, Cs, 7.85 mg/l 
Oxygen Uptake, 12 mg/l 
Dilution Ratio, .50/50 
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Figure 3U. DO Sag and 02. Uptake Curves for·the Effluent From 
Mr. Roach's Extended Aeration Pilot Plant 

Initial Final 
Substrate: Concentration 

Filtrate COD 30 mg/l 15 mg/l 
Suspended Solids Cone. 12 mg/l 8 mg/l 
Reaeration Rate Constant, K2, 0.163 hr-1 
Dissolved Oxygen Saturation Constant, Cs, 7.6 mg/l 
Oxygen Uptake, 10.00 mg/l 
Dilution Ratio, 50/50 
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concentration was 8 mg/1. The sag curve showed a tr~nd si.mil~r to. 

Figure 29 ·and Fi,gure 20, i.e., an initial increa~e in DO followed by a 

slow sag and a slow recovery. The oxy~en uptake curve showed an ini­

tial lag before the rate increased. The oxygen uptake exerted waslO 

mg/l at a reaeration rate of 0.163 hr-1 and a saturation value of 7.6 
' 

mg/1. Mr. Roach took no effluent:data on this day, but it is apparent 

from the results of the open jar test that the effluent was of a high 

quality. 

The plot in Figure 31 is the o2 uptake fo.r a sample taken on March 

9, 1974, from ~r. Roach's pilot plant. In this experiment, no dilution 

water was added to the sample •. The ini~ial soluble substrate concen­

tration was 45 mg/l, and the biological solids 12 mg/l. After five 

days, the soluble COD was 36 mg/l and the biological solids concentra­

tion was 16 mg/l. At a K2 of 0.103 hr-1 and a saturation value of 7.1 

mg/l, the sample exerted an oxygen uptake of 23 mg/l. This result is 

si.milar to that shown in Figure 23, wherein the sample was not diluted 

and oxygen uptake showed straight line kinetics, i.e., there was no sag 

in the DO profile •. 

The results of figures 20, 29 and 30 show that when the sample was 

dilute,d with tap, water they showed a lag period followe.d by a period of 

more rapid o2 uptake. The lag might be due to a reduction in concen­

tration of viable seed organisms. The later period of semi-rapid o2 

uptake (compared with steady straight line o2 uptake of undiluted 

samples) might be .due to the diluting out of possible, inhibitory sub­

stances in the effluent. When the effluents were diluted with tap 

water, there was a significant reduction in soluble COD during the 

5-day incubation period. But when the samples were taken without any 



Figure 31. DO Sag and 02 Uptake Curves for the Effluent From 
Mr. Roach's Extended Aeration Pilot Plant 

Initial 
Substrate Concentration . 

Filtrate COD 45 mg/1 
Suspended Solids Cone. 12 mg/l 
Reaeration Constant, K2, 0.103 ht-1 
Dissolved Oxygen Saturation Constant, 
Oxygen Uptake, 23 mg/l 

Final 

36 mg/l 
16 mg/l 

Cs, 7.1 mg/l 
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dilution, less change in the sol.uble COD took place.' Unfortunately, 

during th.is time nitrification .data were not taken. While it m.ust be 

admitted that the data leave much to be desired, the overall trend 

regarding o2 uptake of the effluents without added seed, suspended sol­

ids, and/or substrates, is that the "residual" COD in the efflue_nts 

from the pil-0t plant is indeed rather slowly metabolized biologically 

resistant orgarjic matter, and it should not be expected that it can be 

removed by normal secondary treatment processes. Also, these results 

indicate that the condition of discharge with respect to stream flow, 

i.e., dilution of the effluent, may exert subtle effects upon the 

observed kinetics beyond the usually expected effect of substrate con­

centration on rate of o2 uptake. 

Table I gives values of important parameters determined during the 

early opeh jar experiment. Also shown are the values ?f K2, the reaera­

tion rate constant, .and the dissolved oxygen saturation concentration, 

Cs' calculated using the two different methods described in detail in 

the Materials and Methods chapter. In this study, oxygen uptake was· 

computed us.i ng the constants K2 and Cs obtained from Method No. 2. 

However. the Cs v~lues used in the first trial of the a Method (Method 

No. 1) were those obtained as a result of employing Method No. 2. Thus, 

in a real sense, both methods were employed and it would appear that 

Method No. 2 not only provides a more direct way of determining C. from . ' . s 

a limited amount.of data, but also gives K2 values which compare well 

with those obtained by the a method. Based upon the experience gained 

here, it appears ideal to employ both methods; i.e., use Method No. 2 

to determine the saturation value, then employ Method No. 1 using the Cs 

from Method No. 2.to determine K2; and finally check the K2 using 
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TABLE I 

VALUES OF THE PARAMETERS DETERMINED 

ReaeraHon 
Suspended Sol. Rate, K , hr-1 

mg/l Method 2Method 
No. 2 No. 1 

Initial Final dC/dt a 

-saturation Nitrate 
Const., Cs Nitrogen 

Method Method Cone. 

F/M 
Oxygen 0 
Uptake Temp. C 

No. 2 No. 1 mg/] 
dG/dt a Initial Final Remarks 

112{ 90) 15 6 

8 

16 0.117 0.107 7.40 7.40 18.70 44 22.5 "Young" Cell Seed 

172 

308 

312 

214 

134(120 9 45 0.128 0.128 7.10 7.10 

120(100) 

56( 50) 

54( 6J) 

71 ( 55) 

52( 40) 

10 

9 

9 

8 

6 

B 

93 0.11 0.107 7.70 7.60 

20 0.097 0.085 7.50 7.40 

37.5 0.07 0.718 7.70 770 

15 0.13 0.114 8.00 8.00 

0.107 0.107 8.00 8.00 

86( 75) 19 1 (J.86)15 0.07 0.073 8.60 8.60 

76( 50) 1 (0.86)13 0.068 o.064 B.75 a.so 
107( 90) 10 2.3 50 0.123 0.118 8.00 8.00 

91 ( 70) 

49 

60 

24 

32 

42 

172 56 

288 56 

264 160 

194 112 

36 

30 

45 

2.3 30 0.097 0.098 8.10 8.10 

59 

12 

12 

56 

28 76 

40 178 

56 165 

52 337 

60 305 

48 222 

15 

36 

16 

12 

12 

16 0.162 0.147 7.55 7.4 

8 0.095 0.092 7.8 7.8 

0.130 0.126 7.2 7.65 

73 0.09 0.091 7 .65 7 .65 

1150 0.185 0.204 5.9 5.9 

182 

345 

297 

272 

12 

0.093 0.106 8.95 8.95 

0.125 0.120 8.85 8.60 

0.145 0.167 8.7 8.7 

0.141 0.144 8.4 8.4 

0.23 0.22 7.85 7.85 

8 0.163 0.163 7.6 7.4 

16 0.103 0.1026 7.1 7.1 

16.80 36 

15.00 44 

9.30 31 

S. l 31 
7 .9 39 

5.80 27 

100 

88 

47 

40 

32 

26 

44 

33 

4;05 17 

5.00 28 

0.428 32 

26 

o.oo 0.00 0.236 27 

0.00 23.00 0.039 23 

29.50 14.70 0.166 44 

14.00 38.00 0.525 96 

20 26 0.507 55 

2.289 12 

2.507 10 

3. 75r 23 

22.5 

2 5 

llQldll 

Effluent from pilot plant 
{di luted 50/&G) 
Eff. from p.p~ (not di 1 ute~ 

Effluent suspended 

Solids, no dilution 

Recycle sludge hydrolysate 
+ MLSS added to the effl uert 

Trickling filter sludge 
hydrolysate + MLSS added 
to the effluent 
Hr. Roach's effluent 
(50 + 50 dilution) 

(50 + 50 dilution) 

No dilutior 

In experiments 24-28, the K2 values employed in 02 uptake calculations were obtained 
using actual experimental reactor mixed liquor after running the DO profile. The K2 
values were also run on tap water to determine a values for experiments 24-28. These 
were 1.49, 0.80, 1.16, Oo83, and 1 .01, respectively. 0 

~ 



Method No. 1. 

A Study of the Factors Affecting the 

Reaeration Rate and Some Useful 

Aids to the Methodology 

105 

For the success of the open stirred reactor technique, the deter­

mination of the best estimate of the value of reaeration rate constant, 

K2, and the dissolved oxygen saturation value, Cs, in the system, is 

important. Since the various parameters, like the solubility and type 

of organic mate~1al~ concentration of biological solids, pressure, and 

agitation may affect the oxygen transfer rate and the saturation value, 

the determiti~tion of these values is a' matter of considerable Goncern 

in the field. In addition to natural components of the liquor, one has 

to add sodium sulf1te,.or bubble nitrogen gas to remove the dissolved 

oxygen to conduct the reaeration rate test. It is also necessary to add 

an inhibitory agent to stop the oxygen uptake due to the microorganisms. 

It has been reported that even the addition of double the normal valu.e 

df sodium sulfite might affect the reaeration rate (44). 

While a comprehensive study of ·all of the parameters affecting the 

reaeration rate and th.e technique of obtaining K2 may be somewhat .beyond 

the scope of th1s work, a few of the aspects have been investigated and 

· are reported in this chapter. 

·Relation netween Mixing Propeller Speed and 

the Reaeration Rate, K2 

To simulate stream conditions 1n the open jug, the reaeration rate 

in the reactor should be adjusted to a value somewhere near the value 
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of that in the receiving stream. Figure 32 gives an arithmetic plot of 

. the reaeration rate versus the speed of the propeller~ the transfer 

medium was tap water. ·· The speed of the propeller was measured with a 

Precision Stroboscope (Sargent .. Welch Company, Skokie, Ill.). The· 

reaeration .rate increased slowly in a straight line up to 675 rpm. At 

speeds higher than 675, the reaerat1on rates increased enormously for· 

a small increase in the. speed of the propeller.. Figure 33 is a .semi­

logarit~mic; plot of the data; the gener~l 'trend is one of exponential 

increase in K2 with increasing rpm over ,the range stud1ed •. 

Relation ,Between Biological Solids Concen­

tration and the Rea~ration Rate Constant 

The effect of biological solids on the reaeration rate should be 

studied more extensively than was done in this investigation. However, 

the experimental r~sults which were obtained herein s~owed that the 

· effect is two-fold: 1} biological solids do affect the reaeration .rate, 
I ' 

and 2} the effect is apparen~ly different, depending upon the value of. 

x2 (assumedly dependent upon agitation and/or mixin.g velocity} •. In 

Tables JI and III, the K2 data are presented in incr~asing order of 

suspended solids •. Table II covers low K2 values, i.e., those up_ to.~ 

:!:' 0.2 hr-1• It is seen that except for .the study at 42 mg/l .suspended 

solids, ,the effec~ of the ~olids was to increase the value of K2 over 
. . 

that at the corresponding rpm in tap water. Table III shows the results. 

for higher K2 values. ·At the lowest suspended sands concentration, the 

K2 was increased because of the presence of solids, but as the solids 

concentration was increased, .the K2 was.decreased becaµse of the 

presence of suspended solids. 
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Figure 32. Arithmetic Plot of Propeller Speed versus Reaeration 
Rate, K2, hr-1 . 
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Figure 33. Logarithmic Plof of Propeller Speed versus Reaeration 
Rate, K2, hr-
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TABLE II 

EFFECT OF SUSPENDED SOLIDS ON LOW. REAERATION RATES, ! 0.2 hr-l 

Reaeration Rate, K2 K2 With Solids 
Suspended 

Tap Water (no Solids) Sol ids Solids K2 With Tap Water 

0.25 0.165 o. 174 . 1.054 
25 0.151 0.167 1.105 
25 0.163 O. l93 1. 184 . 

42 0.231 0.113. 0.748 
75 0.198 0.347 1.752 
95 0.203 0.267 1.315 

102. 0.239 0.287· 1.200 

TABLE III 

EFFECT OF SUSPENDED SOLIDS ON HIGH REAERATION RATES >0.25 hr-l 

Reae~ation Rate, K2 K2 With Sol ids . 
Suspended Tap Water - No Tap Water + 

Sol ids , Suspended Solids Suspended Solids· K2 With Taj;) Water . 

35 1.43 2.19 1.531 
50 0.83 0.73 0.879 
70 1.49 1.26 0.845 

105 1.60 0.78 0.787 

Note: 15 ml Clorox added to all reactors 



The results agree with Poon and Campbell (18) in that at low 

reaeration rate~ and low suspended solids concentrations there is an 

increase in the amount of reaeration rate, K2• With the results at 

hand, further conclusions are diffiuclt to make and would seem to 

require a considerable amount of research data. 

Effect of Chlorine and Cyanide on Reaeration 

Rate, K2 

112 

Ch 1 ori ne .has benera lly been used by workers in the field to i nh i bit· 

o2 utiliza.tion by microorganisms. The brief investigation made in these 

studies provided some indication that microorganisms killed by chlorine 

released lysis products, as measured by an incr.ease in the soluble 

organic material (COD), whereas for the same concentration of biologfcal 

solids, there was no release of soluble products when cyanide was used 

instead of chlorine as the inhibitory agent. The results are summar-

ized in Tables IV and V. 

Experiments indicated that addition of Clorox to water did not 

affect the K2 ~o any significant amount at levels of 1-3 ml/l (Table VI). 

A series of experiments was conducted to compare t~e K2 values (at iden­

tical propeller speed) for tap water, tap + Clorox, and tap + cyanide, 

with various amount~ of suspended {biological) solids added.to the sys­

tem containing Clorox and cyanide. The results are summarized in Table 

VII. It is seen that except for the experiment at 50 mg/l suspended sol­

ids, killing cells with cyanide yielded K2 values closer to those, 

observed for tap water at identical propeller speed. Further work on 

the advisability of employing cyanide rather than chlorine is being 

planned in the bioenvironmental engineering .laboratories. 
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TABLE IV 

CONCENTRATIONS.OF,SOLUBLE ORGANIC MATERIAL {COD) BEFORE AND AFTER 
INHIBITION WITH CLOROX AS THE INHIBITORY AGENT 

Filtrate COD Filtrate COD 
Clorox Cone. Suspended Solids Before Killing After Ki 11 i ng 

ml/l Cone., mg/l mg/l mg/l 

2.0 35 62.5 58.59 

2.5 70 85.93 97.65 

3.0 105 74.~7 85.84 

TABLE V 

CONCENTRATIONS OF SOLUBLE ORGANIC MATERIAL (COD) BEFORE AND AFTER 
. INHIBITION WITH CYANIDE AS THE INHIBITORY AGENT 

Filtrate COD Filtrate COD 
Cyanide Cone. Suspended Solids Before Killing After Ki 1 ling, 

mg/l Cone.'· mg/l mg/1 mg/1 

100 35 46.87 46.87 

150 70 58.59 58.59 

200 105 62.5 46.87 
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TABLE VI 

EFFECT OF CLOROX ON REAERATION RATE 

tone. of 
Clorox 

l ml/l 

2 ml/l 

3 ml/l 

Reaeration Rate 
Tap Water Tap Water + Chlorine 

o.336· 

0.540 

0.540 

0.378 

0.462 

0~5696 

TABLE VII 

~ With Chlorine 
K2 With Tap Water 

1.125 

0.855 

1.054 

COMPARISON OF REAERATION RATES BETWEEN CHLORINE AND CYANIDE 
AS i'NH IB !TORY AGENTS 

K2 With . K2 With 
Suspended " Ta_p Water Tap Water Tap Water Clorox cxanide 
Solids Cone. Without +Solids + Solids k2 With K2 With · 

mg/l Solids + Cl oro.x + Cyanide Tap Water Tap .water 

25 0.163 0.495 0.1925 0.036 1.180 

35 1.4337 2.1883 1.89 1. 526 1.318 

50 0.8316 o. 7294 . 0.495 0.877 0.595 

70 l ,485 1.26 1.485 0.848 l.00 

75 0.198 0.3465 0.308· 1.75 1.55 

l 05 1.5992 0.7845 0.9039 0.490 0.565 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

In this work, the open stirred reactor technique was used to study 

the kinetics of oxygen uptake with respect to initial 11 food 11 (COD} to 

cell concentration (suspended solids} ratio, and it was found that with 

11young 11 cell seed and glucose as substrate, the oxygen uptake curves 

fol.lowed logarithmic rate kinetics in the early phase of o2 uptake; but 

the duration of the logarithmic phase decreased with decreasing F/M 

ratios. With 11 old 11 cell seed, the oxygen uptake curves did not show any 

definite logarithmicrate kinetics; at very high F/M ratios, logarith­

mic uptake was approached. 

Effluents from the laboratory extended aeration pilot plants were 

tested in the open jars for their effect on the oxygen resources of a 

receiving stream. In these studies, the effluents were dilut~d by 1/1 

ratio; undiluted samples were also tested in the open stirred reactors •. 

It was found in these studies that in both of these cases the extended 

aeration effluents do not deplete the oxygen resources of the stream in 

any appreciable ma.nner. Also, the experiments operated by adding the 

mixed. liquor solids. to the effluents would not cause any severe deple­

tion of the oxygen resources of the receiving stream. But the experi­

ments operated to test the effec~ of leakage of both the soluble sub­

strate (in this case, sludge hydrolysate} and biological solids showed 

considerable oxygen uptake, thus they could cause severe strain on the 
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oxygen resources of streams without abnormally high reaeration constants. 

This study also gave an idea of the efficiency of ,treatmen~ in the 

pilot plants operated in th.e labdratot"y. It was observed that the 

treatment eff~ciency was rather high; most'of the soluble COD fed to 

the pilo~ plants was removed. in the pilot plant itself and the soluble 

COD which was releasedi can be removed only very slowly. This removal 

canno~ possibly be accomplished 1n the pilot plant operation ~t the 
i 

usually low hydraulic,petention times. Thus, this.study shows that all 

of the possible organic material. (soluble COD) was removed in the treat­

ment plants, and furth.er reduction is ·not possible within the relatively. 

short hydraulic detention time in these systems. 

A few experiments were performend .on the effect of suspended ~olids 

on the reaeration rate, K2, and it w~s found that low suspended solids 

concentration and relatively low K2 values tended· to increase·the a. 

factor. However, at higher K2 .values· {i.e., greater mixing speed), a.· 

decreased with increased solids. 

Prelirrii.nary studies on the use of cyanide as the inhibitory agent 

for~microbial respiration .inste~d of chlorine indicated that the use of 

cyqnide should be inve.stigated further, since the res~lts were favor­

able. Chlorine gave reasonably good results, but its .use did cause some 

release of :soluble organic.material (COD). 



CHAPTER VI 

SUGGESTIONS FOR FUTURE WORK 

1. Additional studies should be made to determine the effect of 

the source of the seed on the oxygen uptake kinetics. 

2. The·o2 uptake kinetics due to nitrification in the receiving 

stream should be studied in more detail. 

3. In-depth studies should be conducted to determine the effect of 

contami nan.ts on the reaera ti on rate cons tan ts and the dissolved oxygen 

saturation constants. 

4. Studies should be ma.de on a variety of possible microbial 

inh,ibitory agents to employ during reaeration studies in determination . 

of -1<2 and Cs when samples contain biological solids.· Study of the use 

of cyanide should prove useful, based on the preliminary studies in this 

investigation. · 

5. The possibili~y of determining the amount of change, if any, 

of rea~ration rates during the course of a jar study might be accom­

plished if one could measure o2 uptake man~metricqlly .along with the DO 

sag measurement. This independent measure; of the BOD curve along with 

the profile data woulq alldw one to back c:alculate the K2 values f"Or 

various time .intervals. · Thus one might determine the degree of con­

stancy of K2 throughout the experiment. Also, the average K2 thus cal-· 

culated could be compared to the K2 determined at the end of the open 

jar test. 
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In the successf~l use of the open stirred reactor technique, the 

accuracy of determining the reaeration rate cqnstant,.K2, and the dis­

solved oxygen saturation constant, Cs, is vital to determination of 

oxygen uptake values in th.e receiving stream. In this study, reaera­

tion rate, K~, and the saturation constant, Cs, were calculated using a 

graphical method (Method No. 2~-see Chapter III, Materials and Methods), 

and these values were checked With an6ther method (Method No. 1--see 

Chapter III, Table I). After obtaining the best estimate of K2 and c5 , 

and after measuring the DO profile during the given jar test, the oxy­

gen uptake can· be calculated using a numerical integration .technique. 

The calculations are illustrated in Table XIII. Employing the DO pro-
• I 

file (column 1) and calculating the deficit from saturation (column 2), 

this deficit is mult1plied by the reaeration rate, K2, and the selected 

interval of time, ilt, to yield the total ·oxygen transf~rred to the 

reactor (column 6). This value is summed with the change in DO con­

centration in the system during ilt (colul'lifl 7), yielding the oxygen 

uptake exerted by the microorganisms in the stabilization of organic 

waste dl.lring th~ time interval (column 8). The accumulated oxygen 

uptake is given by the successive summation of these values over the 

length of the experiment (column 9). The data presented. in this .table 

were obtained during the study presented in Figure 10. 
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TABLE VI II 

CALCULATIOtJ OF OXYGEU UPTAKE FROM OPEN STIRRED REACTORS 

1 2 3 K4 D 5 
K2BL\ t 

7 8 o2 Uptake 
Tim~ DO D 2 -1 L\t L\DO 6-7 
Hour mg/l mg/l mg/1-hr Hour mg/l mg/l mg/l mg/l 

0 6.55 1.15 0.0805 0.00 0.00 0.00 0.00 0.00 
4 5.40 2.30 0.1610 4.00 0.644 -1. 15 1.794 1.79 
8 4.25 3.45 0.2415 4.00 0.966 -1.15 2.116 3.91 

12 3.25 4.45 0.3115 4.00 1.246 -1.00 2.246 6. 15 
16 2.35 5.35 0.3145 4.00 1.498 -0.90 2.398 8.55 
20 1.40 6.30 0.4410 4.00 1.764 -0.95 2.714 11.26 
24 0.90 6.80 0..476 4.00 1. 904 -0.50 2.404 13. 67 
26 0.35 7.35 0-.5145 2 .. 00 l. 029 -0.55 1 • 5790 15.25 
28 0.48 7.22 0.5054 2.00 1.0908 +0.13 0.8808 16. 13 
32 0.60 7 .10 0.4970 4-.00 l .·988 +o .. 12 1.868 17.99 
38 0.70 7.00 0.4900 4.00 l.960 +O. 10 1.860 19 .85 
40 1.30 6.40 o .. 4480 4.00 l.792 +0.60 l. 192 21.05 
44 2. l 0 5.60 0.392 4.00 J .568 +0.80 0.768 21 .81 
48 2.80 4.90 0.3430 4.00 1.372 +0.70 0.672 22.49 
52 3.35 4.35 0.3045 4.00 10218 +0.55 0.668 23 .15 
56 3.75 3.95 0.2765 4.00 1.106 +0.40 0.706 23.86 
60 4.25 3.45 0.2415 4.00 0.966 +0.50 0.466 24.33 
64 4.65 3.05 0.2135 4.00 0.854 +0.40 0.454 24.78 
68 4.75 2.95 0.2065 4.00 0.826 +O. l 0 0.726 25.51 
72 5. l 0 2.60 0.1820 4.00 o.728 +0.35 0.378 25.88 
76 5.30 2.40 0.1680 4.00 0.672 +0.20 0.472 26.36 
80 5.35 2.35 0.1645 4.00 0.658 +0.05 0.608 26.96 
84 5.50 2.20 0.1540 4.00 0.616 +0.15 0.466 27.43 
88 5.55 2. 15 0.1505 4.oo 0,6020 0.05 0.5520 27.98 
92 5.70 2.00 0.1400 4.00 0.56 +O. 15 0.41 28.39 
96 5.80 1.90 o. 1330 4.00 0.532 +0.10 0.432 28.82 

100 5.80 1.90 0.1330 4.00 0.532 0.00 0.432 29.26 
104 5.85 1.85 0.1295 4.00 0.518 +0.05 0.468 29.72 
108 5.85 1.85 0.1295 4.00 0.518 +0.00 0.518 30.24 
112 5.55 1.85 0.1295 4.00 0.518 0.00 0.518 30.76 
110 6.00 1.70 0.1190 4.00 0.476 +0.15 0.326 31.09 
120 610 1.60 0.1120 4.00 0.448 +0.10 0.348 31.43 

cs= 7.7 mg/l 
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BOD - biochemical oxygen demand, mg/1 

COD - chemical oxygen demand, mg/l 

C · - dissolved oxygen saturation constant, mg/l s 
DO . - dissolved oxygen deficit from saturation at any time, t~ mg/l 

Ct - dissolved oxygen at any time, t, mg/1 

1t - rate of transfer of dissolved oxygen per unit time, mg/l/hr-1 

K2 - reaeration rate constant, base e(hr.;.1) 

S0gl - initial substrat~ concentration (mg/l) as glucose 

S0COD - initial soluble COD, mg/l 

X0 - initial biological solids concentration (suspended solids), 

mg/l 

X - mixed liquor biological solids (suspended solids), mg/l 
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