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CHAPTER I
INTRODUCTION

The study of the dynamic response of fluid transmission Tines to
time varying input signals has been a subject of absorbing interest to
researchers for over a hundred years now. However, some of the most
dramatic developments in this area do not date back to more than fifty
years. The two primary reasons for such a belated development of the
study of fluid transients being the Tate advent of the digital computer
and the not too recently attempted military and space applications of

Flujd Control Systems.

gy

An e1ab0rafe review of the state of art of fluid transients is
beyond the scope of this work. A very lucid and elegant summary of the
mathematical models available to date for modeling fluid transients will
be found in the paper by Reid (1). Yet another useful review is the
paper by Goodson and Leonard (2).

This work is concerned primarily with the frequency response of a
fluid transmission line terminated by an orifice with a nonlinear pres-
sure flow characteristic. An 1mportan§ example is the case of a fluid
control system in which a fluid Tine is terminated by a control valve.
In the frequency response ana1ysis of ‘'such a system it is customary to
linearize the orifice-flow equation before incorporating it as a boundary
condition for the f]uid line. Such a procedure proves satisfactory for

signals with a small amplitude. For finite amplitude signals, however,



the nonlinearity of the orifice's pressure flow characteristic leads to
the generation of higher harmonics of the line at the orifice (Figure 1).
These higher harmonics can endanger the stability of a system adjoining
the Tine.

It should be noted at this stage that by the name "finite amplitude
signal" reference is made to those signals for which the nonlinearity of
the orifice characteristic cannot be ignored. It is assumed, however,
that these signals do not invalidate the linearization and the subsequent
perturbation of the Navier-Stokes equations.

Recently Strunk (3) has reported a perturbation solution for the
frequency response of a f]uidlline with a nonlinear boundary condition.
His study has revealed excellent agreement between the perturbation
solution and the solution obtained through the finite difference method.
The derivation of closed-form solutions for both the amplitude and phase
response of the fundamental as well as the higher harmonics of the Tine
through the application of the perturbation method is the highlight of
Strunk's work.

The basic orifice-flow model employed by Strunk (3), however,
neglects the inertance effect of the orifice, which may become important
at very high frequencies.

Subsequent to the publication of the paper by Strunk (3), several
studies have been carried out by teams of researchers engaged in diverse
fields of application of fluid mechanics. Notable among these studies
are the papers by Funk et al. (4), Lahey and Shiralkar (5), and Yellin
and Peskin (6). The mathematical models presented by these authors
account for not only the nonlinear pressure flow characteristic of the

orifice but also its inertance effect.
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In this work consideration is limited to the case of a nonviscous
fluid 1ine. Based on the orifice-flow model, due to Funk et al. (Chap-
ter II), the author has derived a modified boundary condition, in terms
of flow rate, for the case of a fluid line terminated by a nonlinear
orifice. The details of formulation of the boundary value problem are
presented in Chapter III. In Chapter IV closed-form perturbation solu-
tions for the amplitude and phase response of the fundamental and the
second harmonic, including the inertance effect of the orifice, are pre-
sented.

Identification of the dimensionless parameters of the system and
the subsequent nondimensionalization of the expressions for the ampli-
tude and phase response of the fundamental and the percentage second
harmonic distortion is presented in Chapter V. In this same chapter it
is also shown that with the inclusion of the inertance effect of the
orifice a new dimensionless number comes into the picture. Equations
defining this dimensionless number for the case of a sharp-edged orifice
as well as a short-tube orifice are presented.

In Chapter VI the results of numerical computations of the frequency
response and the percentage second harmonic distortion are discussed at-
length. Chapter VII presents a brief review of this work together with
the major conclusions reached through this study regarding the influence
of the inertance effect of the orifice on the system's frequency response
at high frequencies of operation. A few recommendations for future ex-

tension of this work are included.



CHAPTER II

TRANSIENT RESPONSE OF AN ORIFICE:
A LITERATURE SURVEY

The basic equation governing the steady incompressible flow of

fluid across a circular orifice is

/2
% - C, A (2p,)

d o o
i.e.,
- k' a2
Ap, = K 9 (2.1)
where
' 2.
K' = 0/2(C4 A" (2.2)
q, = total flow through the orifice;
p, = pressure drop across the orifice.

Equation (2.1) is generally referred to as the steady-state
pressure-flow characteristic of an orifice. In most engineering applica-
tions of orifice meters, wherein the flow is unsteady, it is generally
assumed that an orifice closely follows its steady-state characteristic
during transient operation. This implies that the f]dw conditions
stabilize instantaneously from one steady-state value to another steady-
state value. Owing to the high value of the speed of sound in an incom-
pressible fluid, such an assumption of quasi-steady behavior proves
satisfactory for most flow cases wherein the amplitude of the disturbance

is small and frequencies of operation are low.



For large amplitude unsteady flows, however, the coefficient of
discharge Cd could become sensitive to the variations in the Reynolds
number. To date the variation of Cd for transient flow across an ori-
fice is unknown.

Secondly, for flow measurements in a system with rapidly occurring
transients, if a sharp-edged orifice is used in conjunction with a high
frequency pressure transducer, the recorded measurements must in general
be corrected for inertial effects of the orifice as well as the pressure
transducer and the associated electronics. ‘

The inertial or the inertance effect of an orifice leads to a pres-
sure drop across the orifice which is in excess of that given by
Equation (2.1). To date several teams of researchers engaged in such
diverse fields of application of fluid mechanics as hydraulics, bio-
medical engineering, etc. have reported closed form, analytical models
for pulsatile flow across an orifice which account not only for its
nonlinear pressure-flow characteristic, but also its inertance effect.

A brief review of these models is presented below.
Funk, Wood and Chao's Model (4)

Assuming potential flow and considering the flow field to the left
of the orifice as "flow into a sink“ and the flow field to the right as
"flow out of a source," these authors have reported the following models
for the transient response of an orifice.

(a) Sharp-edged orifice:

2
py - Py = = [+ 2O (2.3)
Cy A 2(Cq A,)

2



(b) Short-tube orifice:

pp -y s == I e 2 21 (20
A 0 Z(Cd AO) 2D, A,

Their experimental results have shown excellent agreement with the

theory.
Lahey and Shiralkar's Model (5)

The work reported by these authors concerns the response character-
istic of sharp-edged orifices for transient flow measurements. The need
for simulating the loss-of-coolant or loss-of-pump accident in a water-
cooled nuclear reactor has been cited as a typical application wherein
the transient response of an orifice is of major importance.

A solution for the inertial correction involved in the measurement
of flow during an exponential pressure decay across the orifice has been

reported.
Yellin and Peskin's Model (6)

These authors have investigated the problem of steady-state oscilla-
tory blood flow across heart valves by developing the following orifice
flow model:

_ - v dq 2 +:q>0
Pr-P =K gtk tigq (2.5)

where

—
n
=
o
—
xX X
2
o
>
~
=1
—
pd
—



X = location of the vena contracta

CG = p] - pz/p] = pC
APO =P1 - P

Pe = pressure - at vena contracta

2
C A
S 0 2
K, = 25 (=) [1 - (= -C)°] (2.7)
2l e g ©

The experimental results of Yellin and Peskin (6) encompass the
physiological range: large amplitude pulsations of low frequency (less
than 200/min).

In this thesis the orifice model due to Funk, Wood and Chao (4) has
been used to derive a modified boundary condition for a fluid line ter-
minated by a nonlinear inertive orifice. The details of the formulation

of the boundary value problem are presented in the following chapter.



CHAPTER III
FORMULATION OF THE BOUNDARY VALUE PROBLEM

In the following analysis cylindrical coordinates have been employed
to describe the phenomenon of fluid flow through a circular wave guide
of finite length 2. The x-axis is identified with the center 1line of

the conduit and r is a coordinate in the radial direction.
The Basic Differential Equations

The basic differential equations governing the propagation of small
amplitude disturbances in a liquid filled tube of circular cross section
are (7):

(a) Equation of Motion: x-Direction:

2
u._ _3p, ,pdu,l au
T ox Tl o (3.1)
ar
1.e-’
ou _ 1., 1y 2 . du |
5t° "5 ax TV g b gl (3.2)
(b) Continuity Equation:
% 4 9V A4 au _
st TPar TPyt g0 (3.3)
(c) Equation of State for a Liquid:
% - 3P (3.4)
p K.F
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where u(x,r,t) and v(x,r,t) are the deviations of the components of the
velocity vector in the x and r directions from their respective steady-
state values. Similarly, p(x,r,t) represents the deviation of pressure

from its mean steady-state value.

Assumptions

The above mentioned equations apply when the following assumptions
are true:

1. The elasticity of the pipe walls is neglected when compared
with'the compressibility of the Tiquid.

2. The variations in the fluid's temperature are small so that
viscosity is considered to remain constant. Stipulation of negligible
thermal effects also eliminates the energy equation as one of the
describing equations.

3. The variations of all dependent variables in the circumferential
direction are negligible due to rotational symmetry.

4. Small amplitude laminar disturbances are assumed. This implies
that the Reynolds' number is less than 2000 and that the pressure gradi-
ents are small enough so that wave shape changes due to changes in the
speed of sound are negligible.

5. The velocity component u is >> v. The equation of motion in
the radial direction is therefore neglected. Neglect of this equation
implies that the pressure is constant across the cross section of the
tube and becomes a function only of x and t. That is, the disturbance
is a plane wave, with the pressure p(x,t) and the density p(x,t) remain-

ing uniform across the pipe.
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6. The nonlinear convective acceleration terms on the left hand

side of the equation of motion are small when compared with the Tocal

u

acceleration term — 3T

7. The only important viscous terms on the right hand side of

E 2 1 3u
quation (3.1) are ——E-and i

8. Due to the h1gh value of the bulk modulus of a liquid, the

3p. 3
terms v or and u - ™

equation of continuity.

are considered small and neglected in writing the

9. The fluid velocity u is Tess than the sonic velocity c; this
implies that the flow is subsonic.

10. The conduit has a circular cross section which is constant
throughout its Tength.

The temporal variation of fluid density in Equation (3.3) may be
eliminated by combining Equations (3.3) and (3.4). Thus Equations (3.1)

to (3.4) reduce to the following two partial differential equations:

du_ _ 1. 3p .3 r..3u

3t~ T o ax * v(r) ar [r ar (3.5)
and

1 ,3p L3V, Vv, 3u,_

'K‘; 5t T ar T v T oax 0 (3.6)

This work is restricted to the consideration of a nonviscous fluid
line only. Hence, the viscous terms may be omitted and Equation (3.5)
rewritten as

u_
ot

3
o (3.7)

o=

Define u to be the average fluid velocity and p to be the average
pressure across a cross section. By multiplying Equation (3.6) by 2ur

and integrating over the cross section, Equation (3.6) becomes
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2B . 2 (3.8)

Qo
x|

1
K;
From assumptions 3 and 5, p = p. Next, defining the flow rate

q(x,t) by the relation
q(x,t) = (va®)-u (3.9)

Equation (3.8) can be expressed as

%%;= - (_fzg.éﬂ (3.10)

K
T8 X

Combining Equations (3.7) and (3.10) the spatial domain model for a non-

viscous fluid Tine reduces to the following one-dimensional wave equa-

tion:
EE%-- ¢ é-2-52*-:0 (3.11)
ot aX
where
¢ = (Ke/p)/
Kg = Kg/(1 + (D/b) - (K5/E))
and
¢ = speed of sound in fluid;
Kf = the effective bulk modulus of the fluid;
K3 = jsothermal bulk modulus of the fluid;
= internal diameter of the line;
b = wall thickness of the conduit;
E = modulus of elasticity of the material of the conduit;
p = fluid density.
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Boundary Condition

The orifice model due to Funk et al. (4) may be used to derive a
boundary condition for the nonviscous Tine in terms of the flow rate q.
This model may be expressed in the form

2

Ap, = L' ao +K' q (3.12)
where
g, = instantaneous total flow rate through the orifice;
Apo = instantaneous pressure drop across the orifice.
For a sharp-edged orifice,
L = oS 2°”> (3.13)
K' = p/2(C, A0)2

and for orifices with significant axial dimension (sometimes referred to

as short-tube orifices),

Cd Aoﬂ
L' = o/V(—=—) + oL/A, (3.14)
k' = p/2(cy A% + ofL/IAE (20,)]

Assume that the flow is discharging to the atmosphere, and let the
deviations in the flow and pressure from their respective mean values
(qS and ps) be

q=4a, -9
° = (3.15)
P =24p, - Pg
Then,

APy = Pypstream ~ Pdownstream

B pupstream
=4Apg - (3.16)
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Rewriting Equation (3.12),

[ 1 2
Apy =L'-q  + K' q (3.17)

Substituting forap and q, from Equation (3.15) into Equation (3.17),
we have

. d 2
ptps =L gla+tad+K [q+aq]l (3.18)

The mean value of pressure Ps associated with steady flow case is thus

2

P = K qg (3.19)
Substituting for pressure Ps in Equation (3.18), we have

p=L'q+K q2 + 2K' qq (3.20)
Differentiating Equation (3.20) with respect to time, we have

p=1L"q+2K [q+q.]q (3.21)

Eliminating p by using Equation (3.10), the boundary condition for a
nonviscous fluid line terminated by an orifice may be expressed in terms

of flow rate as

Ke . :
~(—%) q, = L' q+2K' [q +q.Iq
Ta .
1.€.,
q, + og + 84 = -eqq (3.22)
where
e = 2K' (ma®)/K (3.23)
. 2
o= (2K qg)+(ma)/K, = eqg (3.24)
8 = L'~ (ma®) /K, (3.25)

Equations (3.20) and (3.-2) are valid for 4 > -9.
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For the frequency response analysis of a nonviscous Tine terminated
by a nonlinear orifice, the boundary value problem thus consists of solv-
ing Equation (3.11) subject to the boundary conditions.

At x =0,
q = A-sin(ut) (3.26)
and at x = &,

qX =‘aqt + Bqtt = feqqt'



CHAPTER IV

THE PERTURBATION SOLUTION:
NONVISCOUS LINE

The boundary value problem as formulated in Chapter III consists in
solving the elementary wave equation

2

- =0 (4.1)

qtt 9x
subject to the boundary conditions
q = A sin(wt), at x = 0

qX + 0th + Bqtt = _quta at X = L. (4-2)

Equation (4.1) is a linear second order partial differential equa-
tion; as such it requires two initial conditions and two boundary condi-
tions for a complete solution. However, if the boundary conditions have
acted Tong enough, the transient.effects created by the initial condi-
tions are of no consequence. 'The solution for frequency response may
thus be obtained by solving Equation (4.1) subjected to boundary condi-
tions (Equation (4.2)) alone.

The nonlinearity associated with the second boundary condition
presents considerable difficulty in obtaining an exact closed from
solution for q(x, t). Following Strunk (3) an approximate solution to
the boundary value problem can be obtained by applying the perturbation
method. Assuming that the perturbed solution is analytic with respect

to the parameter e, the total solution is sought in the form of a power

16
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series ¢, given by:
q(x, t) = Pl o) (x, ). (4.3)
i=0
For ¢ sufficiently small, a good approximation is obtained by consider-
ing only the first two or three terms of the perturbed solution.
Substifuting Equation (4.3) in Equations (4.1) énd (4.2), one ob-
tains an infinite set of linear partial differential equations subjected

to Tinear boundary conditions (Appendix A). The first three sets of

system equations are:

For 0(c = 0),

i) - oY o

¢ = pesin(ut), at x = 0

Q§0) * aqﬁo) + Bqﬁg) = 0, at x.= 2. (4.4)
For 0(e),

- eo

o1 =0, atx=0

D e sl sl - ) gt s
For 0(c%),

RN

(2 = 0, at x = 0. (4.6)

And at x = &,

(2) (2) (2) _

q, © T eq”l + gy —v-[q<°)q§]) + q{1ql0)g

Q' a;

where the notation used is
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2 2
q =3, q =3 4 -39, .34
X x> 't ot? Txx ax2’ tt at2 :

This system of linear equations may be solved successively for the
terms q(i)(x, t), (i=0,1,2, 3, .. .) of the assumed solution (4.3)
by starting with the first set (4.4). The set (4.4) is the linearized
form of the original Equation (4.1) and the boundary conditions (4.2).

The solution for q(o)(x, t) at x = % becomes the forcing function
for the set (4.5) and likewise each successive solution is influenced
by the previous solutions. For this reason, the set (4.4) is termed the
generating system, and its solution, q(o)(x, t), is called the generating
solution.

The generating system was solved by the method of separation of
variables, using a complex exponential representation for the boundary
conditions (Appendices B and C). The solution is

2 in(2x2-6)-sin(Ax)
q(o)(x, ) = Alqeos(0) + r, sin(212-6)-sin(ax

2> sin(wt)

1+ 2r2 cos(2x2-6) + rs

(r2 - 1) sin(xx)
+ (— 2 5) cos(ut)] (4.7)
1+ 2r, cos(2x12-06) + ry

where
A = w/c (Appendix B); (4.8)

ry = /L1 + ac)? + (8cw)?] " (4.9)

ryo= [0 - (a0)® - (seu)? ¥ + dec)?] (4.10)

6 = tan”! [-28cw/{1 - (ac)? - (8cw)? 1] (4.11)

When the inertance effect of the orifice is neglected (8 = 0),

Equation (4.7) reduces to (Appendix D):
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(0)(x. 1) = Alkcos(rx) + ~1zec)sin(ie) cos(ue)
v Coosox cos?(18) + ac?-sin’(aa) sinCia

. (ac) sin(ax)
wt) - w .
sin(ut) <cosz(m) + u2c2 sinz(u)>COS( 2

(4.12)
Equation (4.12) 1is identical to Equation (23) reported by Strunk (3).
Next, considering Equation (4.7) again, the solution at x = &

becomes (Appendix E):

a{9) (s, £) = Apsin(ut + ) (4.13)

where

A, = A(B,) (4.14)

[f2° 2
By = m_*n — (4.15)
[1+ 2ry cos(2re-6) + r2]

4 = tan”! [n/m] (4.16)
m = Besin(2x2 + ¢0) (4.17)
n = (r5 - 1)-sin() (4.18)
B = ¢n2 + 52 (4.19)

by = tan”'[n/¢] | (4.20)
n=1+r5+2r, cos(o) (4.21)

£ = 2ryesin(e) (4.22)

Notice Equation (4.13) 1is functionally of the same form as Equation
(24) reported by Strunk (3). The parameters B, and ¢1» however, now
assume a new definition in the light of the inertance effect of the

orifice at x = 2.
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Next, from Equation (4.13), we have

a{® (s, 1) = (uA])wcos(ut + ;)

q(o)(l, t) qﬁo)(z, t) = o A?-sin(wt + ¢1)-005(wt * 4q)

7 ohZ-sin(2ut + 24;) (4.23)

Equation (4.23) is the forcing function for the set (4.5). By once
again using the method of separation of variables, the solution for set

(4.5) becomes (Appendix F):
(1) _ 1 g2 : .
g' ' (x, t) = - TS A (BZ)-s1n(2Ax)-s1n(2wt t 24 * ¢2) (4.24)
where

Ry
B, = [{cos(2:t) - 2cu-sin(21s) 2 + f{acesin(2ae) Pl (4.25)

tan” [-ac/{cot(2x2) - 2(gcw) 1] (4.26)

%

Equation (4.24) 1is again functionally of the same form as Equation
(26) reported by Strunk (3); the parameters Ays By, 2P and ¢, now
assume a new definition in the light of the inertance effect of the ori-
fice at x = 2. Notice that the solution q(])(x, t) given by Equation
(4.24) constitutes a second harmonic component of the total solution
q(x, t). By continuing this process, additional harmonic components
will be obtained, and thus the approximate solution improved. Strunk
(3) has found, however, -that the amplitudes of the higher harmonics are
less than one percent of the amplitude of the fundamental. Hence only
the first two terms in Equation (4.3) havé been included in the results -

presented in this chapter.



CHAPTER V

NONDIMENSIONAL FREQUENCY RESPONSE AND
PERCENTAGE SECOND HARMONIC
DISTORTION

In this chapter expressions for the frequency response of a nonvis-
cous fluid Tine and the percentage second harmonic distortion of the
input signal resulting from the nonlinearity of the boundary condition
at x = ¢ are derived. These expressions will be subsequently shown to
be functions of the following nondimensional ratios:

XL = x/%, axial position number;
FN = w&/c, frequency number;
MS = qS/(Aoc), mach number of steady flow through the orifice;

AQ = A/qs, ratio of input flow amplitude to mean flow amplitude;

AR = naz/A , ratio of Tine's cross sectional area to orifice
area;

BCP1 = (AR)(MS), a boundary condition parameter;

BCP21 = (81)(cw), a boundary condition parameter referred to a
sharp-edge orifice (81 is defined below);

BCP22 = (g2)(cw), a boundary condition parameter referred to a
short-tube orifice (g2 is defined below).

From Equation (3.25),

(A2
g =L'(ma )/Kf'
Hence, using Equations (3.13) and (3.14), one may write for a sharp-edged

orifice,

21
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A 2
81 = (2452 ) ()

and for a short-tube orifice,
C,A_ 2
- d o (T
52 = (o= + oL/A)- ().
It may be readily verified that both BCP21 and BCP22 are nondimensional
parameters. '

Next, consider the dimensionless ratios,

[1/(¢y)1-BCP1;
[1/(cy)® + F(L/D,)1-BCP1.

ZR1 = (al)c

(a2)c

ZR2
From Equation (3.24),
@ = (2K qg)+(ma")/(K,).
Hence, using Equations (3.13) and (3.14), one may write for a sharp-edged
orifice,
%)

al = (p/(Cy AP vag (ra)/(K,)

and for .a short-tube orifice,

02 = [p/(Cy A )% + ofL/(D, A2)1-q ma/(Kc).

It may be noted at this stage that Equation (7) reported by Strunk
(3) is incorrect. The correct version of this equation is Equation |
(2.1). This discrepancy in the form of equations affects the definition
of the parameter K' and consequently causes a 2 to appear erroneously in
Strunk's (3) definition of ZR. Expressions for ZR1 and ZR2 are derived

in Appendix G.
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The inclusion of the inertance effect of the orifice in the analysis
brings into consideration an additional dimensionless ratio defined by

BCP21 (or BCP22).
Amplitude Ratio: Fundamental

Next, consider Equation (4.7) which has been reproduced below,

2r2-sin(2x2-e)

q(®(x, t) = A[{cos(ax) + > sin(axdsin(ut)

1+2r2 cos(2u-e)+r2

(r2-1) -sin(x)
+{ 2 2)-cos(mt)].
1+2r2 cos(2A£-6)+r2

One may rewrite this equation as,

) (x, 1) - A-(Bg)-[{b(x) } sin(ut) + {a(x) }cos(wt)] (5.1)

where
By = 1/[1 + 2r, cos(2xre-6) + rg] (5.2)
b(x) =[{1 + 2r2 cos(2ae-6) + rg} cos(ax)
+ 2r2-sin(2k2-6)-sin(kx)] (5.3)
a(x) = [{r5 - 11sin(a)]. (5.4)
From Equation (5.1),
6l (x, t) = A-(By)-c(x)-sin(ut + b(x)) (5.5)
where
2 2 172
c(x) = [a®(x) + b™(x)] (5.6)
and
#(x) = tan” [a(x)/b(x)]. (5.7)

Hence, the amplitude ratio for the generating solution is:
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|, (0) |
9 (X t)_ . g.c(x) (5.8)

Nondimensional plots of frequency response of a nonviscous 1line given by
Equation (5.8) are presented in Chapter VI.

Before proceeding to the consideration of the second harmonic dis-
tortion, it is important to see how each term appearing in Equation
(5.8) can be expressed in terms of nondimensional ratios defined at the
beginning of this chapter.

From Equation (4.10),

2 1/2
ry = [ - (ac)? - (6cw)? ) + 4(pcw)?]

Thus, for the case of a sharp-edged orifice:

2 22 2. 1/2
FT = [{1 - (ZR1)" - (BCP21)“} + 4(BCP21)7] . (5.9)
Next, from Equation (4.9),
ry = r]/{(1 + ac)2 + (BCw)z}
i.e.,
ry = /401 4 ZR1)2 + (BCP21)2y . (5.10)

Also from Equation (4.11),

tan'1 [-28cw/{1 - (OLC)2 - (BCw)2 1]

6

6 = tan”| [-2(BCP21)/{1 - (ZR1)? - (BCP21)? 1] (5.11)
Next, from Equation (4.8),
228 = 2(w/c)e = 2(FN) (5.12)

and

aw o= WX Wb X () L(xL). (5.13)
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Thus, the arguments of the circular functions appearing in Equa-
tions (5.3) and (5.4) may be expressed in terms of the dimensionless
ratios FN, XL etc. Equation (5.8) can also be rewritten as a nondimen-

sional equation.
Percentage Second Harmonic Distortion

Next, consider the second harmonic distortion. From Equation (4.24)

aVx, 1) = - ¢ AT (8,)sin(2ix) sin(2ut + 26y + o)

(M ix, )] = e-td ¢ A2 (8,)-sin(21x) ) (5.14)

Hence, from Equation (5.8) and Equation (5.14) the harmonic distor-

tion due to the second harmonic is obtained as:

] 2 .
|eq(])(x, t)l _ erq °C A -(BZ)-s1n(2Ax) (5.15)
I q(O)(X, t)l A'(B3)'é(x) '
From Equation (4.14),
Ay = AGBY)
and from Equation (3.24),
. (a)
9
(for a sharp-edged orifice).
Substituting for A] and ¢ in Equation (5.15),
2
| .o(1) | BS B, _.
erq' "(xs t) o1 Ay (7r7). (<L _2y.8in(22x)
O R MCUNG B R
Hence, the percentage second harmonic distortion is given by,
2
| (1) I B B, .
e g (% ) (25.0). (B (zR1) - (—2).810(20x) (5 47)
| q(o)(x, t) | qq By c(x)
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L

In the above equation, sin(2xx) = sin(2-FN-XL).
The product (83 -c(x)) appearing in Equation (5.17) above consti-
tutes Equation (5.8) which has already been shown to be amenable to

nondimensionalisation. From Equation (4.25),
2 -1/2
B, = [{cos(2a2) - 2(gcw) sin(2ae) £ + fac-sin(2a8) ]

Therefore, for the case of a line terminated by a sharp-edged orifice,

82 = [{cos(2+FN) - 2(BCP21)-sin(2-FN) F

v + {(ZR1)-sin(2-FN) f]-]/z (5.18)
From Equations (4.15) and (5.2),

B4 = (i + n?) -85 (5.19)
From Equations (4.17, 4.19, 4.20, 4.21, and 4.22),
m2 = [{1 + rg + 2r2 cos (o) ?
: . ? . 2
+ {2r2'51n(e) 1 sin“(xe + ¢o) (5.20)
where from Equations (4.20, 4.21 and 4.22),
2
-1 [] tr, ¥ 2r2 cos(0) ( )
¢ = tan — 5.21
0 2r2 sin(e)
From Equation (4.18)
n? = (r5 - 1)esin’(3). (5.22)

It has already been shown that the terms ris Tos Ay AX, 9 etc.
can be expressed as functions of nondimensional ratios FN, XL, BCP1 etc.
Thus B% given by Equation (5.19) may be readily nondimensionalized.

This implies that the percentage second harmonic distortion given by
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Equation (5.17) can also be expressed as a function of nondimensional
ratios, defined at the beginning of this chapter.

The listing of the computer programs (Appendix H) may be referred
to for the numerical computation of nondimensional frequency response

and the percentage second harmonic distortion.



CHAPTER VI
DISCUSSION OF RESULTS

The nondimensional plots presented in this chapter refer to the
variation of (a) the amplitude ratio of the fundamental Equation (5.8),
and (b) the percentage second harmonic distortion Equation (5.17) as
functions of the frequency number FN and the axial position number XL
for fixed values of the boundary condition parameters BCP1 and BCP21.
The parameter BCP1 has been varied from a value of 0.01 to 1.0, while
BCP21 has been considered for the range 0.0 to 0.65. Sample values for
BCP21 for a typical Tine-orifice system have been tabulated in Table I.
Plots with BCP21 = 0.0 correspond to the case wherein the inertance
effect of the orifice has been neglected. These plots.are identical to
those presented by Strunk (3). Strunk's results are, however, in error
due to his usage of an incorrect form of the orifice-flow equation. The
error resulting from such an incorrect usage, however, is local in
nature and remains restricted to the definition of the nondimensional
parameter ZR1. Figures 2 and 3 demonstrate how, for a given FN, BCPI]
and BCP21, the amplitude ratio of the fundamental and the percentage
second harmonic distortion are affected by the incorrect definition of
ZR1 at different locations along the Tine. In this work the results

obtained by Strunk (3) have been corrected and reproduced for the

specific purpose of comparison with the author's results.
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TABLE I

SAMPLE VALUES FOR BCP21 AND BCP22 FOR
A TYPICAL LINE ORIFICE SYSTEM

Fluid density = 3 x 10'5 1b secz/ft-in.4 Ratio Kf/E‘= 0.01

Bulk modulus of fluid = 3 x ]05 psi Coefficient of discharge=0.6

Inner diameter of line = 1.0 in. Diameter of orifice = 0.25 in.

Wall thickness of line = 0.0625 in. Thickness of orifice=0.125 in.

Frequency
w(Rad/Sec) (Cyc/sec) BCP21 BCP22
0.0 0.00 0.0 0.0
100.0 15.92 0.00554 0.00857
500.0 79.58 0.02768 0.04284

1000.0 159.16 0.05536 0.08569
1500.0 238.73 0.08305 - 0.12853
2000.0 318.31 0.11073 0.17137
2500.0 397.89 0.13841 0.21422
3000.0 477.47 0.16609 0.25706
3500.0 557.04 0.19377 0.29991
4000.0 636.62 0.22145 0.34275
5000.0 795.78 0.27682 0.42844
6000.0 954.93 0.33218 0.51413
7000.0 1114.09 0.38755 0.59981
8000.0 1273.24 0.44291 0.68550
9000.0 1432.40 0.49827 0.77119
10000.0 1591.55 0.55364 0.85688
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From Equation (5.17) it is clear that the percentage second harmon-
ic distortion is directly proportional to the ratio (AQ) of the input
flow amplitude to the mean flow amplitude. The results presented in
this chapter apply only for one ratio, AQ = 0.5.

A fixed value of 0.6 was considered for the coefficient of dis-
charge Cd.

Figure 4 presents the frequency response of a nonviscous line at
x = & for different values of the boundary condition parameter BCPT.
Linearization of the boundary condition yields an identical plot for
the frequency response. The inertance effect of the orifice has been
neglected for this plot. From this figure one may notice that for in-
creasing values of the parameter BCP1 the amplification of the funda-
mental flow response is decreased progressively until a transition point
is reached at BCP1 = 0.36. At this point the characteristic impedance
of the nonviscous line and the load impedance of the orifice (excluding
its inertance effect) are equal. The system is free from the presence
of reflected waves if the impedances are matched; hence at BCP1 = 0.36
the amplitude of -the fundamental is neither amplified nor attenuated.
When the inertance effect of the orifice is neglected, Equation (5.8)
reduces to Equation (27) reported by Strunk (3). In this equation the
term c(x) is a positive quantity énd the term B% remains numerically
greater than unity until the parameter BCPI croéses the transition value
of 0.36. Beyond this transition point B% is less than unity and hence
attenuation of the fundamental flow response results. The corresponding
second harmonic distortion for the case of matched impedances 1is pre-

sented in Figure 19.
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The plot designated as 1 in Figure 5 has been reproduced from
Figure 4. In Figure 5 the inertance effect of the orifice has been
taken into account. The parameter BCP21 exclusively accounts for the
inertance effect of the orifice. From Figure 5 one notices that as
BCP21 is increased in Va]ue numerically, the natural frequencies of the
line shift toward the left. The fundamental natural frequency of the
line is thus decreased. This is as it should be, because the natural
frequency of a linear (distributed) oscillatory system tends to decrease
as the inertance effect present at its boundary becomes large. A slight
increase in the value of the peak amplitude is also noticeable from
Figure 5. Notice that the shift in the natural frequency of the line
would be appreciable as the parameter BCP21 assumes values greater than
0.25. Thus the inertance effect of the orifice is appreciable for BCP21
greater than 0.25. For the typical example of line-orifice system con-
sidered in Table I the case BCP21 = 0.25 corresponds approximately to a
frequency of operation of 700 c/s for a sharp-edged orifice and about
500 c/s for a short-tube orifice.

Figure 6 depicts the percentage second harmonic distortion as a
function of frequency number FN for different values of the parameter
BCP1. As already noted by Strunk (3) for increasing values of BCP1, the
harmonic distortion becomes significant over a broader frequency range.

Plot 1 1in Figure 7 has been reproduced from Figure 6 along with
other plots which depict the superposition of the inertance effect of
the orifice on the percentage second harmonic distortion. The shift
in the second harmonic natural frequency is noticeable for increasing
values of the parameter BCP21. The peaks, however, are of constant

amplitude indicating thereby that peak amplitudes of the second harmonic
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are also increasing as the value BCP21 1is increased.

Figure 8 depicts the phase response of the fundamental harmonic.
It may be noticed that for very low values of the parameter BCP21 the
switching point (point where the phase angle switches from a negative
value to a positive value) of the phase response coincides with the
peak amplitude of the fundamental (Figure 5). However, as the value of
BCP21 is increased, this match between the peak amplitude of the funda-
mental and the switching point of its phase response is lost. Also, it
may be noticed that for a given value of the frequency number FN, the
effect of increasing .the value of the parameter BCP21 leads to an in-
crease in the magnitude of the phase angle. Figure 9 depicts the same
phase response but with one difference of the negative phase angles being
converted to positive phase angle by the addition of 360° of phase.

Figure 10 depicts the phase response of the second harmonic for
BCP1 = 0.1 with two different values for the parameter BCP21. Some of
the peaks that appear in this figure have been missed by Strunk (3) due
possibly to the use of a larger step-size in the numerical computations.
Figure 11 1is the corrected version of Figure 5 reported by Strunk (3).

In Figure 12 the amplitude response of the fundamental (for FN =
0.8) as a function of the Axial Position Number XL has been presented
along with the superposition of the inertance effect of the orifice.
Notice that at x = &, the amplification of the fundamental flow response
increases with increasing values the parameter BCP21. This information
is also derivable from Figure 5 if one considers the variation of the
amplitude response, at FN = 0.8, for increasing values of the parameter

BCP21. Notice again that beyond BCP21 = 0.25 the influence of the
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inertance effect of the orifice on the amplitude fesponse is appreciable.

Figure 13 depicts the amplitude response of the fundamental as a
function of the axial position for FN = 1.6. - The same conclusions as
those derived for Figure 12 apply to the discussion of -this figure also.

In Figure 14 the percentage second harmonic distortion has been
plotted as a function of the axial position number XL for BCP1 = 0.1 and"
FN = 0.8. Here again one notices that errors of appreciable magnitude
are possible in the estimation of the percentage second harmonic distor-
tion for values of BCP21 greater than 0.25. Also for BCP21 = 0.65684
one notices that the amplitude of the second harmonic is of the same
order of magnitude as the fundamental. Thus for highly inertive (short-
tube) orifices it may be necessary to improve the accuracy of the
perturbation solution by considering additional terms of the total solu-
tion given by Equation (4.3).

In Figure 15 the percentage second harmonic distortion has been
considered as a function of the Axial Position Number XL for BCPT = 0.1
and FN = 1.6. Notice that for FN = 1.6 no appreciable error in the
estimation of the percentage second harmonic distortion results even for
very high values of the parameter BCP21. This information is also con-=
tained in Figure 6. Thus if the Frequency Number FN assumes a value
such that one is operating in the immediate vicinity of the valleys
depicted in Figure 6, then the harmonic distortion due to the second
harmonic is small and so also is the error introduced by the neglect of
the inertance effect of the orifice.

Figures 16, 17 and 18 depict the amplitude response of the funda-
mental and the percentage secornd harmonic distortion as a function of

the Axial Position Number XL for BCP1 = 1.0. For BCP1 = 1.0 the
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dimensionless ratio ZR1 is greater than unity, hence attenuation of the
fundamental flow response results at x = 2. Also it will be noticed
that increasing the value of the parameter BCP21 has little influence

on the flow response for BCPT = 1.0. This may be explained by referring
to Equation (4.9) which indicates that for BCP21 less than unity and

ZR1 greater than unity, the term‘r‘2 is a strong function of ZR1 and
therefore increasing values of BCP21 exert only a weak influence on the
flow response at BCP1 = 1.0.

This result concerning the influence of the inertance effect of the
orifice on the system's frequency response for BCP1 = 1.0 is, strictly
speaking, not a valid result, because for small diameter lines, the
basic assumption of the Reynold's number being less than or equal to
2000 is violated when the dimensionless ratio BCPT assumes a value of
unity.

Figures 19 and 20 are similar to Figures 4 and 11. The value of
the parameter BCP1, however, is now changed to 0.36. As already pointed
out, for this value of BCP1, the Toad impedance of the orifice (with its
inertance effect excluded) matches the Characteristic Impedance of the
nonviscous line. The amplitude response of the fundamental thus remains
constant with frequency. Figures 19 and 20 then indicate the variation
of the percentage second harmonic distortion as functions of the Fre-

quency Number FN and the Axial Position Number XL.
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CHAPTER VII
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
Summary

This work is an extension of the work earlier reported by Strunk
(3) concerning the frequency response of a nonviscous line with a non-
Tinear boundary condition. In his work, however, the inertance effect
of the orifice, which becomes important at high frequencies, has been
neglected. - The model reported by him therefore remains valid for Tow
frequency perturbations only.

In this thesis a generalized model, which accounts for inertance
effect of the orifice, has been developed. This model is applicable for
the propagation of both low and high frequency disturbances through the
line. At low frequencies, when the inertance effect of the orifice is
small, it has been shown that this model reduces, as a special case, to
the model reported by Strunk (3).

The orifice-flow model due to Funk et al. (4) has been employed in
this work to derive a modified boundary condition for the case of a
fluid 1ine terminated by a nonlinear inertive orifice. The nonviscous .
wave equation has been subsequently solved, subject to this new boundary
condition, by applying the Perturbation Method. Closed form nondimen-
sional solutions for the amplitude and phase response of the first and

second harmonics have been reported. An important dimensionless number
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which exclusively accounts for the inertance effect of the orifice has
been identified. Nondimensional plots of the frequency response obtain-
ed, as a result of perturbing this dimensionless number, have been

presented.
Conclusions

The conclusions which have been reached as a result of this study
are:

1. The influence of the inertance effect of the orifice on the
frequency response of a nonviscous line may be accounted for by a dimen-
sionless number. This number has been referred to as a boundary condi-
tion parameter (BCP21) in this work. It has been found to be a function
of the inertance of the orifice (i.e., its physical size, coefficient
of discharge, etc.), the physical properties of the fluid, the sonic
velocity, the cross-sectional area of the line, and finally the frequency
of oscillation of the disturbance.

2. The influence of the inertance effect of the orifice is depend-
ent on yet another dimensionless number, referred to as boundary condi-
tion parameter BCP1 in this work. This parameter is .a function of the
noninertive load impedance of the orifice (i.e., its resistance), and
the characteristic impedance of the nonviscous line.

3. For BCP1 = 0.1 it has been found that the inertance effect of
the orifice on the frequency response becomes appreciable as BCP21
assumes values in excess of 0.25. For small diameter lines (lines with
internal diameter one inch or less) terminated by a sharp-edged orifice,
of size in the range 1/8 inch to 1/4 inch, this would generally mean

that the inertance effect is appreciable beyond a frequency of opération
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of 700 c/s. For short-tube orifices (orifices with thickness in the
range 1/8 inch to 1/4 inch) the inertance effect is appreciéb]e beyond
a frequency of operation of 500 c/s.

4. The natural frequencies of the line have been found to decrease
as the inertance effect of the orifice was made large.

5. Depending on the value of the frequency number FN, the effect
of the orifice's inertance is either to amplify or to attenuate the
amplitude of the fundamental and the magnitude of the second harmonic
distortion.

6. For BCP1 = 0.1, the percentage second harmonic distortion be-
comes appreciable if (a) the frequency number FN corresponds to a natural
frequency of the line, and (b) BCP21 is of a value greater than 0.25.
This suggests that at high frequencies of operation it may be necessary
to improve the perturbation solution by addition of the third and possi-

bly even the fourth harmonic term.
Recommendations for Future Study

Areas which it is felt are worthy of future study include:
1. Investigation of -the frequency response of a viscous fluid Tine
with nonlinear inertive orifice as a boundary condition.

2. Experimental validation of the theory.
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APPENDIX A
SETS OF LINEAR SYSTEM EQUATIONS

Substituting Equation (4.3) in Equations (4.1) and (4.2) one obtains

T IR RN DU
- ¢ [qig) e qil) + e qii) + e qii) oo+
= 0. (A.1)
[© e g 2@ w0y = A sin(at). (A.2)
[ial®) + e gl w2 gl 0y aggle) 4 ¢ 1)
e 2,
I L {q§°) e qil)
el ai?) e (A.3)

X =2
Equating terms with 1ike powers of el dp Equations (A.1), (A.2)
and (A.3), the following sets of Tinear partial differential equations

with linear boundary conditions are obtained.

For 0(c = 0),
o) - 20 <0
At x = 0,
q{® (0, t) = A sin (at) (A.4)
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At x = &,
0 +aaf® 4o qfY) = 0
For 0(¢),
- )
At x.= 0,
q(]) (0, t) =0 (A.5)
At x = 2,
e aefl e ) ol o
For 0(52),
RN
At x = 0,
‘) (0, t) = 0 (A.6)
At x = 2,
0@ 40 qf2) 4 5 @) = ql0) g{1) 4 (1) o),
For 0(53),
SRR
At x = 0,
q(3) (0, t) =0 (A.7)
At x = g,
0¥ 40 qf® 15 qld) = (ql®) g2 1 q11) 4(1) 4 (@) o)

~and so on.



APPENDIX B
AN EQUATION DEFINING "a"

Consider the elementary wave equation,
=0 (B.1)

Let

q = X(x)-T(t) (B.2)
where X is a function of "x" alone and T is a function of "t". Substi-
tuting Equation (B.2) in Equation (B.1) and separating the variables,

one obtains

where -Az is a constant of separation. We thus obtain:

T+ (2 AT =0 (B.3)

tt

Xy * A° X =0 4 (8.4)

For purposes of frequency analysis (i.e., for steady oscillatory flow
case), we assume a harmonic solution for T.

Let,
T=oc, ettt (B.5)

Substituting Equation (B.5) in Equation (B.3), we have

2 2

C3 ('002) e'lwt +2% ¢ C3 e'lwt

= ()
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Simplifying and considering the positive root of A, we have
X = w/cC

Equation (B.4) has a solution

_ iax -1AX
X —»C] e + C2 e

Substituting Equations (B.5) and (B.7) in Equation (B.2),

+C ei(mt-lx)

i(wt+ax)
e 5

q(xs t) ) C4

where C4 and C5 are complex constants.
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APPENDIX C
SOLUTION FOR q')(x, t)

Consider the set

RN e
At x =0,
q(o) = A sin(wt)

= In [A e'¥Y] (C.2)

At x = ¢,

Assume a solution of -the form,
q(O)(X, _t) = F e'i(wt + }\X) + G e'i(wt - }\X) (C.4)

where F and G are complex constants and A = w/c. Using a complex expo-
nential representation for the boundary conditions, we have
At x =0,

Im( F+G) elut - Im[A eiwt} : (C.5)
where Im refers to the Imaginary part of, and A is a real number. In,
the above equation, since the imaginary part of Equation (C.4) satisfies
the boundary condition at x = 0, it is to be expected that the imaginary
part of q(o)(x, t) will be the actual solution to the generating system

(Equation (4.4)).
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From Equation (C.5), we have
F+G=A (c.6)

Next, consider the boundary condition at x = 2. We have

in)(z’ t) = iX[F ei(wt + Xl) -G ei(wt - XQ)] (C-7y
in)(z’ t) =‘1w[F ei(wt +_K2) + 6 ei(wt -‘Az)] (C-S)
ol (x, 1) = -P[F efl0t + M) 4 g gllut - )y (C.9)

Substituting Equations (C.7, C.8 and C.9) in Equation (C.3) and rearrang-

ing terms yield:

F [] - aC = i(BCw)]

G 1"+ ac + i(Bcw)
- 1 el (202) | (c.10)
where
_ 1 - ac - i(Bcw)
= T e+ iteca) (c.1m)
r .
H=[ 5 51 e'® (C.12)
(1 + ac)” + (Bcw)"
where
ry = [41 - (ac)™ - (Bcw)™} + 4(scw)”] (C.13)
o = tan”| [——pgtN ] | (C.14)
1 - a"c™ - (Bcw) .
Let
! (c.15)
ro = ~75 C.15
20 (1 +ac)? + (Bew)®
From Equations (C.15, C.12 and C.10),
£,= r e—i(ZAQ - 9) (C.16)
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Eliminating F from Equations (C.6) and (C.16),

ALT + 1, el (24-8)
G = - : 5 (C.17)
1+2r, cos(2xe-6) + rs

Rewriting Equation (C.4) as
q(O)(x, t) - G[% e](wtf"XX) + e'l(wt‘—}\X)] (C.]g)
and substituting Equations (C.16) and (C.17) in Equation (C.18), and

considering the imaginary part of q(o)(x, t) to be the true solution,

one obtains
2r, sin(2x2-6)

q®) (x, t) = AL{cos () + > sin(x))

1+ 2r2 cos(2xr2-0) + rs

(r3-1) sin(ax)
sin(wt) +

5 cos(ut)].
1+ 2r2 cos(2xr2-0) + ry

(C.19)



APPENDIX D

DERIVATION OF STRUNK'S SOLUTION (B = 0)
FOR q{®)(x, t)

From Equation (C.14) we notice that when the inertance effect of
the orifice is neglected (g8 = 0),
6 =0

and from Equation (C.11), the expression for H reduces to

H= (52 (0.1)

Similarly, from Equation (C.13),

ey = [1 - (e0)?] (D.2)
and
Q=[1-wdﬁu1+mf
- [T - (D.3)

Equation (C.19) then reduces to

q(o) (x, t) = A[{cos(ax) + 2H sin(2)2) 5 sin(ax))sin(wt)
1 + 2H cos(2x2) +H

+

(HZ - 1) sin(xx) cosgwt)] (D.4)
1 + 2H cos(2xs) + H

Substituting Equation (D.1) in Equation (D.4) and expressing sin(2xs)

as 2sin(ag) cos(a%), one obtains

/ 22 .
_ 1-aC .
q(O) (x, t) = A[{pos(xX)+(coszzkl)%::ézg)sizgiii; s1n(kX)>
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sinut) - —p—2clsinfad) ) cosut)] (0.5)

cosz(xz) + a"c sinz(xz

Equation (D.5) is the same Equation (23) reported by Strunk (3).
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where

Let

and

Then

where

APPENDIX E

AN EXPRESSION FOR q(°)(z, t)

Substituting x = & in Equation (4.7) and rearranging terms, the

tant equation may be written in the form

q{0) (g, 1) = (A'B3)[¢n2 + g% {sin(0a + 9,) ¥ sin(at)

+ {(rg - 1) sin(a2) } cos(wt)]

B . 2

By = 1/[1 + 2r, cos(2x8 - 8) + r2]
=1+ rz + 2r, cos(9)

n 2 2

£ =21, sin(o)

3 -1

o = tan [n/€]

B = n2 + g2

m = Besin(ag + ¢0)
- (vl .

n = (r2 - 1) sin(xg)

Equation (E.1) reduces to

q(O)(z’ t) = A'B3 yhz + n2 [sin(wt + ¢])]
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¢ = tan™" [n/m]
Let

By = By v + n®
and

Ay = A(B,)

Then, Equation (E.7) reduces to

0 (s, ©) = Apesin(t + ¢;).
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APPENDIX F
| (1)
SOLUTION FOR q\'’/(x, t)

From Equation (4.23) we notice that the forcing function has a fre-
quency 2w; hence,’for the response q(])(x, t) we assume a solution of
the form

q“)(x, t) - Je'i(2wt+27\X) + Kei(Zwt—ka) . (F.])

Since the imaginary part of Equation (4.23) is the true forcing function,
the imaginary part of q(])(x, t) will be the actual solution to the set

given by Equation (4.5).

From the consideration of the boundary condition at x = 0, one
obtains
J+K=20 (F.2)
Hence, Equation (F.1) reduces to
¢ (x, t) = 31 (?9) [(24).5in(22x)] (F.3)
Substituting Equation (F.3) in the boundary condition at x = & for the

set given by Equation (4.5), incorporating Equation (4.23) into this
boundary condition, and then solving for the complex constant J, one
obtains

g c(A) el (201)]

J = [cos(2an) = 2(8cw) ST(232) + T{(ac) sin(2az) 1]

(F.4)

Substituting for J in Equation (F.3) and considering the imaginary part

of q(])(x, t) to be the true solution, one obtains -
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o ix, t) = - %7. c-A? (B,) -+ sin(2xx)-sin(2ut + 297 + ¢,)

(F.5)

where
» ) -1/2

B, = [{cos(222) - 2(gcw)-sin(2x8) ¥ + {(ac)-sin(2xe) ¥']

(F.6)

=] -0

by = tan " Lormom . AL (F.7)



APPENDIX G

EXPRESSIONS FOR THE LINEARIZED LOAD IMPEDANCE
OF ORIFICE AND THE DIMENSIONLESS RATIOS
ZR1 and ZR2

From Equation (3.20) we have
p = LG+ K'a® + 2K'qq,. (6.1)
Hence, the linearized Toad impedance of the orifice is
=P.=l 14 !
Z,=q =g ll'a+2Kaq]
Let

1]

g=1ImI[A eiwt]

where Im refers to the Imaginary part of. Then,

Z

2K'q + i(wl') (6.2)

And for L' =0,

= 1
Z, = 2K'qg (G.3)
Next, the characteristic impedance of a nonviscous Tine is given by
Z, = oc/(nd)
Now consider the ratio
Z (2K'q.)-na
_TR s
Rl =g==——Fc
c P
2 q
_ re2K'(ra”)yq. s
- [( Kf )] Kf‘ C (G.4)
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Substituting -for ¢ from Equation (3.23), we have

K

f.3s
5T

IR = [e*

= e qsoc

Substituting for o from Equation (3.24)

IR = ac
For a sharp-edge orifice o = (al)
ZR1 = (ol)-c
For a short-tube orifice a = (a2)
IR2 = (a2)-c
Next, from Equation (G.4),
Jr < 2K (m®) Kf 9
fooP°
2K'(ﬂa2)

_—--—-—————-—02.o
= Kf' o Ao MS

For a sharp-edge orifice from Equation (3.13),

2K' = —Lf—s
(CqA,)
2
ZR1 = C““leyi—jﬁ'cz‘Ao‘Ms
K.(C, A) |
f*°d "o
- 1. (scp1
= _.?. )
Cq

Next, for a short-tube orifice, from Equation (3.14),

oflL
2

2K' = ——Ps +
(Cyh )" D, A

Substituting for 2K' in Equation (G.8),
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2
ZR2 = (F).[—8— + —2TLy (Zup
: d o 00

ly + £ (51
EZd' D,/ " A, T s

1 L
[Ls + f (=)]-BCP1. (6.10)
5 Dy
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APPENDIX H

LISTINGS OF COMPUTER PROGRAMS

PROGRAM TO COMPUTE THE AMPLITUDE RATIO FUNDAMENTAL (ARFUND) THE PERCENTAGE
SECOND HARMONIC DISTORTION (PSHDIS), THE PHASE ANGLE OF THE FUNDAMENTAL
{(PHI1) AND THE PHASE ANGLE OF THE SECOND HARMONIC (PHI3) AS FUNCTIONS OF THE
FREQUENCY NUMSER 'FN' (FOR GIVEN VALUES OF THE BOUNDARY CONDITION PARAMETERS
BCP1 AND BCP21 )e THIS PROGRAM WORKS FOR NUNZERO VALUES OF BCP21 AND FN.

'ASS IGNMENT OF A ZERO VALUE TO EITHER 3CP21 OR FN WILL LEAD TO A 'DIVIDE CHECK

ERROR' [N THZ INTERNAL STATEMENT NUMBERS 28 AND 46 RESPECTIVELY. THE RESULTS

-OF STRUNK ARE READILY DBTAINED BY CONSIDERING SMALL NONZERO VALUES FOR THE

PARAMETER BCP2l.

DATA ICNT s JCNT+CDs XL +BCP219AQ/050¢0.651.0,0.001,0.5/
PI=3.14159
5 BCP1=0.1 .
10 ZR1=(BCP1)/((CD)*%*2)
15 WRITE(6,20)3CP1,8CP21
20 FORMAT(1HO, "8CP1 =*y1X,sF4:2,5X,*BCP2L =!41X,F10.8)
WRITE(5,25)
25 FORMAT (LHO»5X,* FN? 13X 4% ARFUND? 411X+ * PSHDIS® 412X, PPHIL Y5 13X, #PHI 30
$)
DO 45 L=1,7
IF(L-1126,26,27
26 FN=0,025
60 TO 30
27 FN=FLOAT(L-1) :
30 RO=(1.0-((ZR1)#*%2)-((BCP21)*%2))
R1=SORT{( (RO)¥*2)+4.0%( (BCP21)*¥%2))
DNRL=((1:C+(ZRL1))%%2)+((BCP21)*#2)
R2=R1/DNR1
IF(ZR1-1.0)32432,31

THIS CHECK COMES INTO EFFECT WHEN BCPl CROSSES THE TRANSITION VALUE OF 0.36.
IT IS ASSUMED THAT THE PARAMETER BCP21 REMAINS (NUMERICALLY) LESS THAN UNITY.
FOR VALUES OF *BCPl®' GREATER THAN 0.36, *ZR1' IS GREATER THAN UNITY,AND FCR
18CP21* REMAINING LESS THAN UNITY, THE SIGN OF *RO' IS GOVERNED BY THE VALUE
CF 'ZR1',

NOTICE FOR BCP21=0.0 AND *ZR1* GREATER THAN UNITY, THE ARGUMENT OF THE
YSIRT ! DEFINING *R1' IS A PERFECT SQUARE OF A NEGATIVE NUMBER. THEREFORE 'R1'
IS A NEGATIVE NUMBER AND SO IS *R2'.

FOR LESS THAN UNITY, POSITIVE NONZERO VALUES OF *BCP21' THE ARGUMENT OF
SSQRT* DEFINING *R1" IS NOT A PERFECT SQUARE. HOWEVER, IF THE TERM (4.0%(
BCP21)%*%¥2) 1S SMALL COMPARED TO THE SQUARE OF 'RO', THEN IT MAY BE NEGLECTED
AND ONLY FOR SUCH CASES THE SIGN OF 'R1* (AND *R2') CONTINUES TO BE GOVERNED
BY THE VALUE OF 'ZR1l'.

31 R2=-R2
32 THETA=ATAN((-2.0%(BGP21))/(1.0-((ZR1)*¥2)~((BCP21)%**2)))
DNR2=1¢0+ {24 0%R2*¥COS( (2. 0%¥FN)=THETA) ) +((R2)*%2)
B3=1.0/DNR2
AX=({(R2)#%2)~1.0)*( SINIFNXXL))
BX=DNR2% (COS{FN¥XL) )+(2,0%R2*¥(SIN((2. O*FN)-THETA))*(SIN(FN*XL)))
CX=SORT (L (AX)*%2)+({BX)*%*2))
ETA=1.0¢((R2)%*%2)#2,0%R2*COS(THETA) \
ZETA=2.0%R 2% SINI THETA)
PHIO=ATAN(ETA/ ZETA) . .
ETASQ=(ETA)*x2 f
ZETASQ=(ZETA)**2

75



33

34
35

36
37

39
40

41

42
46

50

55

B=SQRT(ETASQ+ZETASQ)

IFUZETA)33,34,34

SAI=FN-PHIO

G0 TO 35

SAI=FN+PHIO

XM=B*SIN(SAI)

XN=(({R2)#%2)-1.0)%SIN(FN)

SQM={(XM)**2)

SON=({XN)**2)

Ba4=({ZR1L}*SIN({2+0%FN))#%2
B2=1.0/(SQRT{(COS{2.0%FN}-2.0%(BCP21) *SIN{2.0%FN) )**2+B4))
B1SQ={SQM+SON)*((B3)**2)

AREUND=(B3)*(CX}
PSHDIS=ABS{((25.0)*AQ%ZR1*BLSQ*B2*SIN{(2.0%FN*XL))/(B3%CX))
PHIL=ATAN{XN/XM)

PHI2=ATAN({-ZR1) /{(1e0/(TAN(240%FN)}) -2,0%(BCP21)))
PHI3=(2.0%PHIL}+PHI2

PHI1D=(PHI1*180.,0)/(PI)

PHIZ2D=((PHI2}*180.0)/(PI)

PHI3D=(PHI3*180.0)/(PI}

IF{PHI1D)36,37.37

PHI1D=PHI10+360,0

IF(PHI3D)38+39,39

PHI3D=PHI3D+360,0
WRITE(6440)FNsARFUNDoPSHDIS,PHILD,PHI3D
FORMAT(LHO,F1045410X+F5.2910XsF722+,10X9F7.2410X4F7.2)
IF(FN=~6.0)41,46446 .

FN=FN+0.025

JCNT =JCNT +1

IF(JCNT-39)30430442

JCNT=0

CONTINUE

BCP21=BCP21%¥1.5

IF(BCP21~-0.5)15+15,50

BCPZ1=0.001

ICNT=ICNT+1

BCP1={BCP1}*10.0

IF(ICNT~-1)10410,55

STOP

END
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PROGRAM TO EVALUATE THE AMPLITUCE RAT IO FUNDAMENTAL (ARFUND) AND THE PERCEN-
TAGE SECOND HARMONIC DISTORTION (PSHDIS) AS FUNCTIONS OF THE AXIAL POSITION
NUMBER *XL*', FOR GIVEN NONZERO VALUES OF THE FREQUENCY NUMBER *FN' AND THE

BOUNDARY CONDITION PARAMETER *BCP21°*.

DATA ICNT,JCNT,CD+BCPL1+BCP21+AQ/0+04+0¢651e0,042540.5/
5 FN=1l.6
10 ZR1=(BCPL)/ {(CD)*%2)
15 WRITE(6420)FN,BCP1,BCP21

"20 FORMAT(LHO,*FN =4 1XyF422+5Xs'BCPL ='41XsF5.2,5X,'BCP21 =?,1X,

$F10.3)
WRITE(64+25)
25 FORMAT{1HO,*XL"®,10X, "ARFUND*,10X, *PSHDIS")
XL=0.0
30 RO=(1.0-{{ZR1)*%2)=((BCP21)%**2))
R1=SORT(((RO)*%2)+4,0%{{BCP21)*%2))
DNRI=({1.0+(ZR1))%#2 )+ ((BCP21)*¥2)
R2=R1/DNR1
IF{2R1-1.0)32,32,31

77

THIS CHECK COMES INTO EFFECT WHEN BCP1 CRﬁSSES THE TRANSITION VALUE OF 0.36.

IT IS ASSUMED THAT THE PARAMETER BCP21 REMAINS NUMERICALLY LESS THAN UNITY.
FOR VALUES OF °*BCP1' GREATER THAN 0.36, 'ZR1' IS GREATER THAN UNITY,AND FOR
"BCP21* REMAINING LESS THAN UNITY, THE SIGN OF *RO* IS GOVERNED BY THE VALUE
OF 'ZR1'.

NOTICE FOR BCP21=0,0 AND *ZR1' GREATER THAN UNITY, THE ARGUMENT OF THE
*SORT* DEFINING 'R1®' IS A PERFECT SQUARE OF A NEGATIVE NUMBER. THEREFORE 'R1?
IS A NEGATIVE NUMBER AND SO IS 'R2°'.

FOR LESS THAN UNITY, POSITIVE NONZERO VALUES OF ¢BCP21' THE ARGUMENT OF
'SQRT " DEFINING 'R1* IS NOT A PERFECT SQUARE. HOWEVER, IF THE TERM (4.0%(
BCP21)%%2) IS SMALL CCMPARED TO THE SQUARE OF 'RO*, THEN IT MAY BE NEGLECTED
AND GNLY FOR SUCH CASES THE SIGN OF *R1°*' (AND *R2') CONTINUES TO BE GOVERNED
BY THE VALUE OF °*ZR1l°'. ’ .

31 R2=-R2
32 THETA=ATAN{(-2.0%(BIP21) )/ (1.0-{(ZR1)**2)~((BCP21}#¥*2)))
DNR2=140+ (24 0¥R2¥COSI( 2. 0% FN)-THETA) ) #( (R2) %%2) :
B3=1.0/DNR2
AX={({R2)*¥2)-1.0) ¥ {SIN(FN*XL))
BX=DNR2* (COS{FN*XL ) ) +(2.0%¥R2*¥{SIN( (24 OXFN)-THETA) ) * {SIN(FN*XL}))
CX=SQRT{ [ (AX)**2}+{{BX)*%2))
ETA=1.0+({R2)*%2})+2.,0%R2#COS(THETA)
ZETA=2.0%R2*SIN(THETA)
PHIO=ATAN(ET A/ ZETA)
ETASQ={ETA)*%2
ZETASO=(ZETA)*%2
B=SQRT(ETASQ+ZETASQ)
IF{ZETA)33434,34
33 SAI=FN-PHIO
GO TO 35
34 SAI=FN+PHIO
35 XM=B#SIN(SAI)
XN={ ((R2)%%2)=1.0) %S IN{FN)
SQM=({ XM) %¥x2)
SQAN={ (XN) *%2)
B4=((ZRLY*SIN{2.0%FN) ) **2
B2=1.0/{SQRT({COSt 2+ 0*FN)-2, 0% {BCP21) *SIN(2.0%FN )} ¥%2+B4))
BlSU={SQM+SQAN)I *((B3) *%2)
ARFUND=(B3)* (CX])
PSHDIS=ABS(((2540) *AQ¥ ZR1*B1SQ¥B2*SIN(2.0%FN*XL) )/ (B3*(X))
WRITE{6+36) XLy ARFUND,PSHDIS
36 FORMAT(LIHOsF5.2+10XyF5.2410X,F742)
XL=XL+0.1
JONT=JCNT +1
IF(JCNT~10)30+30440
40 JCNT=0
BCP21=BCP21%*1.5
IF(BCP21-0.5)15,15450 -
50 BCP21=0.00C1
ICNT=ICNT+1
BCP1=(BCP1)*10.0
IF(ICNT-1)10,10,55
55 STQP
END
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