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CHAPTER I 

INTRODUCTION 

The study of the dynamic response of fluid transmission lines to 

time varying input signals has been a subject of absorbing interest to 

researchers for over a hundred years now. However, some of the most 

dramatic developments in this area do not date back to more than fifty 

years. The two primary reasons for such a belated development of the 

study of fluid transients being the late advent of the digital computer 

and the not too recently attempted military and space applications of 

Fluid Control Systems. 

An elaborate review of the state of art of fluid transients is 

beyond the scope of this work. A very lucid and elegant summary of the 

mathematical models available to date for modeling fluid transients will 

be found in the paper by Reid (1). Yet another useful review is the 

paper by Goodson and Leonard (2). 

This work is concerned primarily with the frequency response of a 

fluid transmi·ssion line terminated by an orifice with a nonlinear pres

sure flow characteristic. An important example is the case of a fluid 
\ 

control system in which a fl~id line is terminated by a control valve. 

In the frequency response analysis of such a system it is customary to 

linearize the orifice-flow equation before incorporating it as a boundary 

condition for the fluid line. Such a procedure proves satisfactory for 

signals with a small amplitude. For finite amplitude signals, however, 

l 
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the nonlinearity of the orifice's pressure flow characteristic leads to 

the generation of higher harmonics of the line at the orifice (Figure l). 

These higher harmonics can endanger the stability of a system adjoining 

the line. 

It should be noted at this stage that by the name 11 finite amplitude 

signal 11 reference is made to those signals for which the nonlinearity of 

the orifice characteristic cannot be ignored. It is assumed, however, 

that these signals do not invalidate the linearization and the subsequent 

perturbation of the Navier-Stokes equations. 

Recently Strunk (3) has reported a perturbation solution for the 

frequency response of a fluid line with a nonlinear boundary condition. 

His study has revealed excellent agreement between the perturbation 

solution and the solution obtained through the finite difference method. 

The derivation of closed-form solutions for both the amplitude and phase 

response of the fundamental as well as the higher harmonics of the line 

through the application of the perturbation method is the highlight of 

Strunk 1 s work. 

The basic orifice-fl ow mode 1 employed by Strunk ( 3), however, 

neglects the inertance effect of the orifice, which may become important 

at very high frequencies. 

Subsequent to the publication of the paper by Strunk (3), several 

studies have been carried out by teams of researchers engaged in diverse 

fields of application of fluid mechanics. Notable among these studies 

are the papers by Funk et al. (4), Lahey and Shiralkar (5), and Yellin 

and Peskin (6). The mathematical models presented by these authors 

account for not only the nonlinear pressure flow characteristic of the 

orifice but also its inertance effect. 
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In this work consideration is limited to the case of a nonviscous 

fluid line. Based on the orifice-flow model, due to Funk et.al. (Chap

ter II), the author has. derived a modified boundary condition, in terms 

of flow rate, for the case of a fluid line terminated by a nonlinear 

orifice. The details of formulation of the bounda,ry value problem are 

presented in Chapter II I. In Chapter IV closed-form perturbation sol u

ti ans for the amplitude and phase response of the fundamental and the 

second harmonic; including the inertance effect of the orifice, are pre

sented. 

Identification of the dimensionless parameters of the system and 

the subsequent nondimensi.onalization of the expressions for the ampli

tude and phase response of the fundamental a.nd the percentage second 

harmonic distortion is presented in Chapter V. In this same chapter·it 

is also shown that with the inclusi.on of the inertance effect of the 

orifice a new dimensionless number comes into the picture. Equations 

defining this dimensionless number for the case of a sharp-edged orifice 

as well as a short-tube orifice are presented. 

In Chapter VI the results of numeri~al computations of the frequency 

response and the percentage secon4 harmonic distortion are discussed at· 

length. Chapter VII presents a brief review of this work together with 

the major concl usiqns reached through this study regarding the influence 

of the i nertance effect of the orifice on the sys tern• s frequency res pons~ 

at high frequencies of operation. A few recommendations for future ex

tension of this work are included, 



CHAPTER II 

TRANSIENT RESPONSE OF AN ORIFICE: 

A LITERATURE SURVEY 

The basic equation governing the steady incompressible flow of 

fluid across a circular orifice is 

i.e. , 

where 

/ffiPJ 
qo =Cd Ao/~ 

= KI q20 4P0 

q = total flow through the orifice; 
0 

p0 = pressure drop across the orifice. 

Equation (2.1) is generally referred to as the steady-state 

(2. 1 ) 

(2.2) 

pressure-flow characteristic of an orifice. In most engineering applica

tions of orifice meters, wherein the flow is unste~dy, it is generally 

assumed that an orifice closely follows its steady-state characteristic 

during transient operation. This implies that the flow conditions 

stabilize instantaneously from one steady.;.state value to anothe.r steady

state value. Owing to the high value of the speed of sound in an incom

pressible fluid, such an assumption of quasi-steady behavior proves 

satisfactory for most flow cases wherein the amplitude of the disturbance 

is small and frequencies of operation are low. 

5 



For large amplitude unsteady flows, however, the coefficient of 

discharge Cd could become sensitive to the variations in the Reynolds 

number. To date the variation bf Cd for transient flow across an ori

fice is unknown. 

6 

Secondly, for flow measurements in a system with rapidly occurring 

transients, if a sharp-edged orifice is used in conjunction with a high 

frequency pressure transducer, the recorded measurements must in general 

be corrected for inertial effects of the orifice as well as the pressure 

transducer and the associated electronics. 

The inertial or the inertance effect of an orifice leads to a pres

sure drop across the orifke which is in excess of that given by 

Equation (2~1). To date several teams of researchers engaged in such 

diverse fields of application of fluid mechanics as hydraulics, bio-

medical engineering, etc. have. reported closed form, analytical models 

for pulsatile flow across an orifice which account not only for its 

nonlinear pressure-flow characteristic, but also its inertance effect. 

A brief review of these models is presented below. 

Funk, Wood and Chao's Model (4) 

Assuming potential flow and considering the flow field to the left 

of the orifice as "flow into a sink·11 and the flow field to the right as 

11 fl ow out of a source, 11 these. authors have reported the fa 11 owing models 

for the transient response of an orifice. 

(a) Sharp-edged orifice: 

= p • [~] + p 92 
.,,;'Cd A0 TI 2(Cd A0 ) 2 

2 

(2.3} 
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(b) Short-tube orifice: 

(2.4) 

Their experimental results have shown excellent agreernent with the 

theory. 

~ahey and Shiralkar's Model (5) 

The work reported by these authors concerns the response character

istic of sharp-edged orifices for tra.nsient flow measurements. The need 

for sirnulating the loss..,.of-coolant or loss-of..,.pump accident in a water

cooled nuclear reactor has been cited as a typical application wherein 

the transient response of an orifice is of major importance. 

A solution for the inertial correction involved in the measurernent 

of flow during an exponential pressure decay across the orifice has been 

reported. 

Yellin and Peskin's Model (6) 

These authors have investigated the problem of steady-state ·oscilla

tory blood flow across heart valves by developing the following orifice 

flow rnode l : 

where 

x 
L = A fxc dx/A(x) 

0 l 

(2.5) 

{2.6) 



xc = location of ·the vena contracta 

c8 = P1 - P2IP1 - Pc 

l1po = P1 - P2 

at vena contracta 

8 

Pc = pressure 

c 2 
p ( 0) K_ = -2 -·-z 2A Cc 

(2.7) 

0 

The experimental results of Yellin and Peskin (6) encompass the 

physiological range: large amplitude pulsations of low frequency (less 

than 200/min). 

In this thesis the orifice model due to Funk, Wood and Chao (4) has 

b~en used to derive a modified boundary condition for a fluid line ter

minated by a nonlinear i.nertive orifice. The details of the formulation 

of the boundary value problem are presented i.n the following chapter. 



CHAPTER III 

FORMULATION OF THE BOUNDARY VALUE PROB~EM 

In the following analysis cylindrical coordinates have been employed 

to describe the.phenoi:nenon of fluid flow through a circular wave guide 

of finite length 1. The x-axis is identified with the center line of 

the conduit and r is a coordinate in the radial direction. 

The Basic Differential Equations 

The basic differential equations governing the propagation qf small 

amplitude disturbances in a liquid filled tube of circular cross section 

are (7): 

·(a) Equation of Motion: x-Direction: 

P ~ = - .££. + w [ a2u + l . ~] 
at ax . ar2 r ar 

( 3.1) 

i . e.' 

~ = _ l . .££. + v(l) L [r· ~] 
at p ax r ar ar (3.2) 

(b) Continuity Equation:. 

ap av v au -+p-+p-+p-=O at ar r ax . (3.3) 

(c) Equation of State for a Liquid: 

(3.4) 

9 
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where u(x;r,t) and v(x,r,t) are the deviations of the components of the 

velocity vector in the x and r directions from their respective steady

state values. Similarly, p(x,r,t) represents the deviation of pressure 
. . ' 

from its mean steady-state value. 

Assumptions 

The abov~ mentioned equations apply when the following assumptions 

are true: 

1. The elasticity of the pipe walls is neglected when compared 

with the compressibility of the liquid. 

2. The variations in the fluid's temperature are small so that 

viscosity is considered to remain constant. Stipul~tion of negligible 

thermal effects also eliminates the energy equation as one of the 

describing equations. 

3. The variations of all dependent variables in the circumferential 

direction are negligible due to rotational symmetry. 

4. Small amplitude l.aminar disturbances are assumed. This implies 

that the Reynolds' number is less than 2000 and that the pressure gradi

ents are small enough so that wave shape changes due to changes in the 

speed of sound are negligible. 

5. The velocity component u is >> v. The equation of motion in 

the radial direction is therefore neglected. Neglect of this equation 

implies that the pressure is constant across the cross section of the 

tube and becomes a function only of x and t. That is, the disturbance 

is a plane wave, with the pressure p(x,t) and the density p(x,t) remain

ing uniform across the pipe. 



6. The nonlinear convect.ive acceleration terms on the left hand 

side of the equation of motion are small when compared with th_e local 

au acceleration term at . 

7. The only important viscous terms on the right hand side of 

( ) a2u l au 
Equation 3.1 are~ and r· ar. 

ar 
8. Due to the high value of the bulk modulus of a liquid, th.e 

11 

terms v • ~ and u • ~~ are considered small and neglected in writing the 

equation of continuity. 

9. The fluid velocity u is less i;han the sonic ve 1 ocity c; this 

implies that the flow is subsonic. 

10. The condui.t has a circular cross section which is constant 

throughout its length. 

The temporal variat,ion of fl1,lid density in Equation (3.3) may be 

eliminated by combining Equations (3.3) and (3.4). Thus Equations (3.1) 

to (3.4) reduce to the following two partial differential equations: 

~ = _ l . ~ + v ( l). !__ [ r . ~] 
at p ax r ar ar 

(3.5) 

and 

(3.6) 

This work is restricted to the consideration of a nonviscous fluid 

line only. Hence, the viscous terms may be omitted and Equation (3.5) 

rewri tten as 

~~ = - ~ •* (3. 7) 

Define u to be the average fluid velocity and p to be the average 

pressure across a cross section. By multiplying Equation (3.6) by 27Tr 

and integrating over the cross section, Equation (3.6) becomes 



_l .le..= au 
Kf at ax 

12 

(3.8) 

From assumptions 3 and 5, p = p. Next, defining the flow rate 

q(x,t) by the relation 

q(x,t) = (na2)·u (3.9) 

Equation (3.8) can Qe expressed as 

K 
~ = - ( f ) -~ at 2 ax na 

(3. lO) 

Combining Equations (3.7) and (3.10) the spatial domain model for a non

viscous fluid line reduces to the following one-dimensional wave equa-

ti on: 

where 

and 

a2 2 a2 
~-c;J=O 

c = ( Kf/ P) l /2 

Kf = K3/(l + (D/b) • (K3/E)) 

c = speed of sound in fluid; 

Kf = the effective bulk modulus of the fluid; 

K3 =.jsothermal bulk modulus of the fluid; 

D = internal diameter of the line; 

b =wall thickness of the conduit; 

E = modulus of elasticity of the material of the conduit; 

p =fluid clensity. 

(3.11) 
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Boundary Condition 

The orifice mqdel due to Funk et al. (4) may be used to derive a 

boundary condition for the nonviscous line in terms of the flow rate q. 

This model may be expresse.d in the form 

wh.ere 

• 2 
~p = L• q + K1 q 

0 0 0 

q = instantaneous total flow rate through the orifice; 
0 

~P = instantaneous pressure drop across the orifice. 
0 

For a sharp-edged orifice, 

C A TI 

L' = p/I( d 20) 

2 K' = p/2(Cd A0 ) 

(3.12) 

(3.13) 

and for orifices with significant axial dimension (sometimes referred to 

as short-tube orifices), 

Cd AOTI 
L• = p/I( 2 ) + pL/A0 (3.14) 

K1 = p/2(Cd A0 ) 2 ~ pfL/[A~ (200 )] 

Assume that the flow is discharging to the atmosphere, and let the 

deviations in the flow and pressure from their respective mean values 

(qs and ps) be 

Then, 

q = qo - qs 

p = ~p - p 
0 s 

~Po = Pupstr~am - Pdownstream 

- Pupstream 

=.&Po· 

(3.15) 

(3.16) 



Rewriting Equation (3.12), 

~p = L'•q + K' q2 
0 0 0 

14 

(3.17) 

Substituting for4p 0 and q0 from Equation (3.15) into Equation (3.17), 

we have 

p + p = L I ddt [ q + q ] + KI [ q + q J2 s . s s (3.18) 

The mean value of pressure Ps associated with steady flow case is thus 

P = K' q2 (3 19) s s . . 

Substituting for pressure Ps in Equation (3.18), we have 

p = L' q + K' q2 + 2K' qq s 

Differentiating Equation (3.20) with respect to time, we have 

p = L' q + 2K 1 [q + qs]q 

(3.20) 

(3.21) 

Eliminating p by using Equation (3.10), the boundary condition for a 

nonviscous· fluid line terminat.ed by an orifice may be expressed in terms 

of fl ow rate as 

i . e., 

where 

. .. . 
q + aq + $q = -Eqq x 

E = 2K' (na2)/Kf . 

a= (2K' qs}•(na2)/Kf = Eqs 

2 
S = L 1 • ( na ) I Kf 

Equations (3.20) and (3.-2) are valid for qs > -q. 

(3.22). 

(3.23) 

(3.24) 

(3.25) 
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For the frequency response analysis of a nonviscous line terminated 

by a nonlinear orifice, the boundary value problem thus consists of solv

ing Equation (3.11) subject to the boundary conditions. 

At x = 0, 

q = A·sin(wt) 

and at x = fl, 

qx = a.qt + sqt-t = .-c:qqt · 

(3.26) 



CHAPTER IV 

THE PERTURBATION SOLUTION: 

NON.VISCOUS LINE 

The boundary value problem as formulatect in Chapter III consists in 

solving the elementary wave equation 

( 4.1) 

subject to the boundary conditions 

q =A sin(wt), at x = 0 

(4.2) 

Equation (4.1) is a linear second order partial differential equa-

tion; as such it requires two initial conditions and two boundary condi

tions for a complete solution. However; if the boundary conditions have 

acted long enough, the transient effects created by the initial concti-

tions are of no consequence. The solution for frequency response may 

thus be obtained by solving Equation (4.1) subjected to boundary condi

tions (Equation (4.2)) alone. 

The nonlinearity associated with the second boundary condition 

presents considerable difficulty in obtaining an exact closed from 

solution for q(x, t). Following Strunk (3) an approximate solution to 

the boundary value problem can be obtained by applying the perturbation 

method. Assuming that the perturbed solution is analytic with respect 

to the parameter e, the total solution is sought in the form of a power 

16 



series £, given by: 

q(xj t) =.; £i q(i) (x, t). 
i=O 

17 

(4.3) 

for£ sufficiently small, .a good approximation is obtained by consider

ing only the first two or three terms of the perturb~d solution. 

Substituting Equation (4.3) in Equations (4.1) and (4.2), one ob

tains an infinite set of lil'.lear partial differential equations subjected 

to linear boundary conditions (Appendix A). The first three sets of 

system equations are: 

For 0(£ = 0), 

q(o) _ c2 q(o) = 0 
tt xx 

q(o) = A•sin(wt), at x = 0 

q(o) + "q(o) + gq(o) 0 . t n . x ~ t p tt = ' a x.= ~. (4.4) 

For O(E), 

(1) 2 (1) 
q - c q = 0 tt . xx 

q(l) = 0, at x = 0 

q(l) + a.q(l) + sq(l) = -q(o)q(o) at x = ~ x . t . tt . t ' . (4.5) 

q(2) _ c2 q(2) = 0 
tt xx 

q( 2) = 0, at x = o. (4.6) 

And at x = i, 

where the notation used is 
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2 d2 
q -~ q -~ q =_Lg_ q _i_g_ x - Cl x ' t - Cl t ' xx 2 ' t t - 2 . ax at 

This system of linear equations may be solved successively for the 

terms q(i)(x, t), (i = 0, 1, 2, 3, .. ) of the assumed solution (4.3) 

by starting with the first set (4.4). The set (4.4) is the linearized 

form of the original Equation (4. 1) and the boundary conditions (4.2). 

The solution for q(o)(x, t) at x = i becomes the forcing function 

for the set (4.5) and likewise. each successive solution is influenced 

by the previous solutions. For this reason, the set (4.4) is termed the 

generating system, and its solution, q(o)(x, t), is called the generating 

solution. 

The generating system was solved by the method of separation of 

variables, using a complex exponential representation for the boundary 

conditions (Appendices Band C). The solution is 

( ) 2r2 sin(2Ai-e)·sin(Ax) 
q 0 (x, t) = A[(cos(Ax) + ) sin(wt) 

1 + 2r2 cos(2Ai-e) + r~ 

(r~ - 1) sin(Ax) 
+ ( 2) cos(wt)] (4.7) 

1 + 2r2 cos(2Ai-e) + r2 

where 

A= w/c (Appendix B); (4.8) 

r2 = r1/[(l + ac) 2 + (scw) 2J (4.9) 

2 2 2 . 2 l/2 
r1 = [{1 - (ac) - (Sew) J + 4(scw) ] (4.10) 

e = tan-l [-2Scw/{l - (ac) 2 - (scw) 2 B (4.11) 

When the inertance effect of the orifice is neglected (s = 0), 

Equation ( 4. 7) reduces to (Appendix D): 
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q(o)(x, t) = A[(cos(Ax) + (l2a2c2 )sin~A~) co~(H) sin(Ax)) 
cos (Ai) + a c •sin (Ai) 

sin(wt) - ( (ac) sin(Ax) )cos(wt)]. 
cos2(Ai) + a2c2 sin2(Ai) 

(4.12) 

Equation (4.12) is identical to Equation (23) reported by Strunk (3). 

Next, considering Equation (4.7) again, the solution at x = i 

becomes (Appendix E): 

where 

/2' 2 
.f m + n 

¢1 = tan-l [n/m] 

n = (r~ - l)·sin(Ai) 

B = /n2 + E,2 

¢0 = tan-1[n/E,] 

2 n = l + r2 + 2r2 cos(e) 

r; = 2r2·sin(e) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

Notice Equation (4.13) is functionally of the same form as Equation 

(24) reported by Strunk (3). The parameters B1 and ¢1, however, now 

assume a new definition in the light of the inertance effect of the 

orifice at x = i. 
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Next, from Equation (4.13), we have 

qi0 )(.i, t) = (wA1)·cos(wt + cp 1) 

q(o)(1, t) qi0 )(1, t) = w A~·sin(wt + cp1)·cos(wt + cp 1) 

= ~ wA~·sin(2wt + 2cp1) (4.23) 

Equation (4.23) is th~ forc,ing function for the set (4.5). By once 

again using the method of separation of variables, the solution for set 

(4.5) becomes O\ppendix F): 

q(l)(x, t) = - t c A~ (B2)·sin(2>.x)•sin(2wt + 2cp1 + cp2) (4.24) 

where 

-1/2 
B2 = [{cos(2>.1) - 2Bcw•sin(2>.1) f + {ac•sin(2>.1) f] (4.25) 

cp2 = tan-1[-ac/{cot(2>.1) - 2(Bcw) fl (4.26) · 

Equation (4.24) is again funcJionally of the same form as Equation 

(26) reported by Strunk (3); the parameters A1, B2, cp 1, and cp2 now 

assume a new definiti.on in the light of the inertanc;e effect of the ori

fice at x = 1. Notice that the solution q(l)(x, t) given by Equation 

(4.24) constitutes a second harmonic component of the total solution 

q(x, t). By continuing this process; additional harmonic components 

will be obtained, and thus the approximate solution improved. Strunk 

(3) has found, however, that the amplitudes of the higher harmonics are 

less .than one percent of the amplitude of the fundamental. Hence only 

the first two terms in Equation (4.3) have been included in the results · 

presented in this chapter. 



CHAPTER V 

NONDIMENSIONAL FREQUENCY RESPONSE AND 

PERCENTAGE SECONO HARMONIC 

DISTORTION 

In this chapter expressions for the frequency response of a nonvis-

cous fluid line and the percentage second harmonic distortion of the 

input signal resulting from the nonlinearity of the. boundary conc:lition 

at x = t are c:leri ved. These expressions wi 11 be subsequently shown to 

be functions of the following non.dimensional ratios: 

XL = x/t, axial position nuwber; 

FN = wt/c, frequency number; 

Ms = qs/(A0c), mach number of steady flow through the orifice; 

AQ = A/qs, ratio of input flow amplitude to mean flow amplitude; 

AR= wa2/A , ratio of line 1 s cross sectional area to orifice 
area; 0 

BCPl = (AR)(Ms)' a boundary condition parameter; 

BCP21 = (sl )(cw), a boundary condition parameter referred to a 
sharp-edge orifice (Sl is d~fined be1ow); 

BCP22 = (s2)(cw), a boundary condition parameter referred to a 
short-tube orifice (a2 is defined below). 

From Equation (3.25), 

2 S = L1 ·(wa )/Kf. 

Hence, using Equations (3.13) and (3.14), one may write for a sharp-edged 

orifice, 

21 
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and for a short-tube orifice, 

/Cd Ao 1T a2 
s2 = (p/V 2 + pL/A0 ) • (y). 

f 

:~. It may be readily verified that both BCP21 and BCP22 are nondimensional 

parameters .. 

Next, consider the dimensionless ratios, 

ZRl = (al)c = [1/(Cd) 2]·BCP1; 

ZR2 = (a2)c = [l/(Cd) 2 + f(L/D0 )]·BCP1. 

From Equation (3.24), 

Hence; using Equations (3.13) and (3.14}, one may write for a sharp-edged 

orifice, 

and for.a short-tube orifice, 

It may be noted at this st;age that Equation (7) reported by Strunk 

(3) is incorrect. The correct version of this equation is Equation 

(2.1). This discrepancy in t,he form of equations a,ffects the definition 

of the parameter K' and consequently causes a 2 to appear erroneously in 

Strunk.'s (3) definition of ZR. Expressions for ZRl and ZR2 are derived 

in Appendix G. 
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The inGl us ion of the i nertance effect .of the orifice in the analysis 

brings into consideration an additional dimensionless ratio defined by 

BCP21 ·(or BCP22). 

Amplitude Ratio: Fundamental 

Next, consider Equation (4.7) which has been reproduced below, 

( ) 2r2·sin(2x1-e) 
q 0 (x, t) = A[(cos(xx) + . sin{xx))sin(wt) 

1+2r2 cos(2x1-e)+r~ 

(r~-l}·sin(xx) 
+ ( . · 2)·cos(wt)]. 

1+2r2 cos(2x1-e)+r2 

One ma.y rewrite. this equation as , 

q(o)(~, t) = A·(B3)·[{q{x)} sin(wt) + {a(x) }cos(wt)] (5.1) 

where 

where 

and 

B3 = l/[l + 2r2 cos(2x1-e) + r~] 

b(x) = :Ul + 2r2 cos(2u-e) + r~} c;os(xx) 

+ 2r2·sin(2x1-e)·sin(xx)] 

2 a ( x) = [ { r 2 - l } sin (xx) ] . 

From Equation (5.1), 

~(x) = tan-l [a(x)/b(x)]. 

Hence, ~he amplitude ratio for the generating solution is: 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5. 7) 
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(5.8) 

Nondimensional plots. of frequency response of a nonviscous line given by 

Equation (5.8) are presented in Chapter VI. 

Before proceeding to the consideration of the second ha.rmonic dis

tortion, it is important to see how each term appearing in Equation 

(5;8) can be expressed in terms of nondimensional ratios defined at the 

beg-inning of thi.s chapt.er. 

From Equation (4. 10), 

2 2 2 2 1/2 
r 1 = [{l - (ac) - (Sew) } + 4(ecw) ] 

Thus, for the case of a sharp-edged orifice: 

2 1/2 
r 1 = [ {l - (ZRl )2 - (BCP21) 2 } + 4(BCP21) 2J . (5 .9) 

Next, from Equation (4.9), 

2 2 r 2 = r 1; {( 1 + ac) + ( S cw) } 

i.e. , 

Also from Equation (4.11}, 

e = tan-l [-2scw/{l - (ac) 2 - (scw) 2 B 

i.e. , 

e = tan-1 [-2(BCP21)/{l - (ZR1) 2 - (BCP21) 2 B 

Next, from Equation (4~8), 

2A1 = 2(w/c)1 = 2(FN) 

and 

AX = w~ = w~ • ~ = ( FN) -( X~) • . 

(5.10) 

(5.11) 

(5.12) 

(5.13) 
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Thus, the arguments of the circular functions appearing in Equa

tions ,(5.3) and (5.4) ma,y be expressed in terms .of the dimensionless 

ratios FN, XL etc. Equation (5.8) can also be rewritten as a nondimen-

sional equation. 

Percentage Second Harmonic Distortion 

Next, consider the second harmonic distortion. From Equation (4.24) 

q(l)(x, t) = - l •c A~ (B2)·s1n(2Ax)·sin(2wt + 2~ 1 + ~2 ) 

(5.14) 

Hence, from Equation (5.8) and Equation (5.'14) the harmonic distor

tion due to the second harmonic is obtained as: 

le:g(l)(x, t)I e:·l ·c A~ ·(B2)·sin(2Ax) 

I q(o)(x, t)i = A·(B3)·e(x) 

From Equation (4.14), 

Al = A(Bl) 

and from Equation (3.24), 

- (a.l) e: - --
qs 

(for a sharp-edged orifice). 

Sul;>stituting for A1 and e: in Equation (5.15), · 

I ( l) I B2 B . . 
e:·{ (x, t) = l .(~)·(ZRl)·{l 2).s1n(2\x) . 

I q o)(x, t) I 4 qs B3 c(x) 

Hence, the percentage second harmonic distortion is given by, 

(5.l5) 

(5.16) 

I, fl(x, t)I = (25.0)·(_A)-(ZRl)-(B~ B2).sin(2Ax). (5.17) 
I q o)(x, t) I · qs 63 c(x) 



26 

In the aqove equation, sin(2Ax) = sin(2·FN·XL). 

The product (B3 ·c(x)) appearing in Equation (5.17) above consti

tutes Equation (5.8) which has already b~en shown to be amenable to 

nondimensionalisati.on. From Equation (4.25), 

2 2 -1/2 
B2 = [{cos(2u) - 2(scw) sin(2u) .f + foc·sin(2u)}] 

Therefor~, for the case of a line terminated by a sharp-edged orifice, 

B2 = [{cos(2•FN) - 2(BCP2l)·sin(2•FN} f 
+ {(ZRl)·sin(2·FN} fJ- 112 

From Equations (4.15) and (5.2}, 

B2 = (m2 + n2)·B2 
1 . 3 

From Equations (4.17, 4.19, 4.20, 4.21, and 4.22}, 

m2 = [ {1 + r~ + 2 r 2 cos ( e) f 

+ {~r2 ·sin(e) f] sin2(A1 + ~0 ) 

where from Equations (4.20, 4.21 and 4w22), 

1 + r~ + 2r2 cos(e) 
~o = tan-l [ 2r2·sin(e) ] 

From Equation (4.18) 

n2 = (r~ - l)·sin2(A!). 

(5. 18} 

(5.19} 

(5.20) 

(5.21) 

(5.22) 

It has already been shown that the teri:ns r 1, r2, H, A.x, e etc. 

can be expressed as functions of nondimensional ratios FN, XL, BCPl etc. 

Thus B~ given by Equation (5.19) may be readily nondimensionalized. 

Th.is implies that the percentage second harmonic distortion given by 



Equation (5.17) can also be expressed as a function of nondimensional 

ratios, defined at the beginning of this chapter. 

27 

The 1 i sting of the. computer programs (Appendix H) may be referrecl 

to for t,he numeri ca 1 computation of nonc,lime~si anal frequency response 

and the percentage second harmonic c:li~tortion. 



CHAPTER VI 

DISCUSSION OF RESULTS 

The nondimensional plots presented in this chapter refer to the 

variation of (a) the amplitude ratio of the fundamental Equation (5.8), 

and (b) the percentage second harmonic distortion Equation {5.17) as 

functions of the. frequency number FN and the axial position number XL 

for fixed values of the boundary condition parameters BGPl and BCP21. 

The parameter BCPl has be.en v~ried from a value of 0.01 to 1.0, while 

BCP21 has been considered for the range 0.0 to 0.65. Sample values .for 

BCP21 for a.typical line-orifice system have been tabulated. in Table I. 

Plots with BCP21 = 0.0 correspond to the case wherein the inertance 

effect of the ori.fice has been neglected. These plots are identical to 

those presented by Strunk (3). Strunk's results are, however, in error 

due to his usage of an incorrect form of the orifice-flow equation. The 

error resulting from St,JCh an incorrect usage, ttowever, is local in 

nature and remains restri.cted to the definition of the nondimensional 

parameter ZRl. Figures 2 and 3 demonstrate how, . for a given FN, BC Pl 

and BCP21, the amplitude ratio of the fundamental and the percentage 

second ha.r~onic disto.rtion are affected by the incorrect de.finition of 

ZRl at different locations along the line. In this work the results 

obtained by Strunk ( 3) have been corrected and reproc:tuced for the 

specific purpose of compc;irison with the autnor's results. 

28 
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TABLE I 

SAMPLE VALUES FOR BCP21 AND BCP22 FOR 
A TYPICAL LINE ORIFICE SYSTEM 

Fluid density= 3 x 10-5 lb sec2/ft-in. 4 Ratio Kf/E = 0.01 

Bulk modulus of fluid = 3 x 105 psi Coefficient of discharge= 0.6 

Inner diameter of line= 1.0 in. Diameter of orifice= 0.25 in. 

Wall thickness of line= 0.0625 in. Thickness of orifice= 0.125 in. 

Frequency 
w(Rad/Sec) (Cyc/sec) BCP21 BCP22 

0.0 0.00 0.0 0.0 
100.0 15.92 0.00554 0.00857 
500.0 79.58 0.02768 0.04284 

1000.0 159. 16 0.05536 0.08569 
1500.0 238.73 0.08305 0.12853 
2000.0 318.31 0.11073 0.17137 
2500.0 397. 89 0. 13841 0.21422 
3000.0 477. 47 0.16609 0.25706 
3500.0 557.04 0.19377 0.29991 

4000.0 636 .62 0.22145 0.34275 

5000.0 795.78 0.27682 0.42844 

6000.0 954. 93 0.33218 0.51413 

7000.0 1114. 09 0.38755 0.59981 

8000.0 1273.24 0.44291 0.68550 

9000.0 1432. 40 0.49827 0.77119 

10000.0 1591.55 0.55364 0.85688 
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From Equation (5.17) it is clear that the percentag~ second harmon

ic distortion is directly proportional to the ratio (AQ) of the input 

flow amplitude to the mean flow amplitude. The results presented in 

this chapter apply only for one ratio, AQ = 0.5. 

A fixed value of 0.6 was considered for the coefficient of dis-

charge ed. 

Fig1.1re 4 presen"l;s the frequency response of a nonviscous line at 

x = R. for different values of the boundary con di ti on parameter BC Pl. 

Linearizati,on of the bound.ary condition yields an identical plot for 

the frequency response. The inertance effect of the orifice has been 

neglected for ,this plot. From this figure one may notice that for in

creasing va,lues of the parameter BCPl the amplification of the funda

mental flow response is decreased progressively until a transition point 

is reac.hed at BCPl = 0,36. At this point the characteristic impedance 

of the nonviscous line and the load impedance of the orifice (excluding 

its inertance effect) are equal. The system is free from the presence 

of reflected waves if the impedances are matched; hence at BCPl = 0.36 

the amplitude of.the fundamental is neither amplified nor attenuated. 

When the i.nertance eff~ct of the orifice is neglected, Equation (5.8) 

reduces to Equation (27) reported by Strunk (3). In this equation the 

term c(x) is a positive quCl,ntity ~nd the term B~ remains numerically 

greater than unity until th.e parameter BCPl crosses the transiUon value 

of 0.36. ~eyond this transition point B~ is less than unity and hence 

attenuation of the fundamental flow response results. The corresponding 

second harmonic distortion for the case of matched impedances is pre-

sented in Figure 19. 
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The plot designated as in Figure 5 has been reproduced from 

Figure 4. In Figure 5 the inertance effect of the orifice has been 

taken into account. The parameter BCP21 exclusively accounts for the 

inertance effect of the orifice. From Figure 5 one notices that as 

BCP21 is increased in value numerically, the natural frequencies of the 

line shift toward the left. The fundamental natural frequency of the 

line is thus decreased. This is as it should be, because the natural 

frequency of a linear (distributed) oscillatory system tends to decrease 

as the inertance effect present at its boundary becomes large. A slight 

increase in the value of the peak amplitude is also noticeable from 

Figure 5. Notice that the shift in the natural frequency of the line 

would be appreciable as ~he parameter BCP21 assumes values greater than 

0.25. Thus the inertance effect of the orifice is appreciable for BCP21 

greater than 0.25. For the typical example of line-orifice system con

sidered in Table I the case BGP21 = 0.25 corresponds approximately to a 

frequency of operation of 700 c/s for a sharp-edged orifice and about 

500 c/s for a short-tube orifi.ce. 

Figure 6 depicts the percentage second harm.onic distortion as a 

function of frequency number FN for different values of the parameter 

BCPl. As already noted by Strunk (3) for increasing values of BCPl, the 

harmonic distortion becomes significant over a t>roader frequency range. 

Plot 1. in Figure 7 has been reproduced from Figure 6 a 1 ong with 

other plots which depict the superposition of the inertance effect of 

the orifice on the percentage second harmonic distortion. The shift 

in the second harmonic natural frequency is noticeable for increasing 

values of the parameter BCP21. The peaks, however, are of constant 

amplitude indicating thereby that peak amplitudes of the second harmonic 
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are also increasing as the value BCP21 is increased. 

Figure 8 depicts the phase response of the fundamental harmonic. 

It may be noticed that for ver:y low values .of the parameter B<;P21 the 

switching point (point where the phase angle switches fr:om a negative 

value to a positive value) of the phase response coincides with the 
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peak amplitude of -th.e fundamental (Figure 5). However, as the value of 

BCP21 is increased, this match between the peak amplitude of the funda

mental and the switching point of its phase response is lost. Also, it 

may be notic.ed that for a given value of the frequency number FN, the 

effect of increasing the value of the parameter BCP2l leads to an in

crease in the magnitude of the phase angle. Figure 9 depicts the sarne 

phase response but with one difference of the negative phase angles being 

converted to positive Phase angle by the addition of 360° of pha~e. 

Figure 1. 0 depicts the phase response of the second harmonic for 

BGPl = 0.1 with two different values for the parameter BCP21. Some of 

the peaks that appear.in this figure have been missed by Strunk (3) due 

possiqly to the use of a larger step-size in the numerical computations .. 

Figure 11 is the, corrected version of Figure 5 reported by Strunk (3). 

In Figl!re 12 the amplitude response of the fundamental (for FN = 

0.8) as a function of the Axial. Position Number XL has been presented 

along with the superposition of the inerta.nce effect of the orifice. 

Nqtice that at x = t, the. amplification of the fundamental flow response 

increci.ses with i.ncreasing values the parameter acP21. This information 

is Blso derivable from Figure 5 if one considers the variation of the 

amplitude response, at FN = 0.8, for increasing val.ues of the parameter 

BCP21. Notice again that beyoncj BCP21 = 0.25 the influence of the 
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inertance effect of the orifice on the amplitude response is appreciable.· 

Figure 13 depicts the amplitude response of the fundamental as a 

function of the axial position for FN = 1.6. · The same conclusions as 

those derived for Figure 12 apply to the discussion of this figure also. 

In Figure 14 the pe.rcentage second. harmonic distortion has been 

plotted as a function of the axial position number XL for BCPl = 0.1 and· 

FN = 0.8. Here again one notices that errors .of appreciable magnitude 

are possible in the. estimation of the percentage second harmonic distor

tion for values of BCP21 greater than 0.25. Also for BCP21 = 0.65684 

one notices that.the amplitude of the second harmonic is of the same 

order of magnitude as the fundamental. Thus for highly inertive (short

tube) ori. fices it may be necessary to improve the accuracy of the 

perturbation solution bY considering additional terms of the total solu

tion given by Equation (4.3). 

In Figure 15 the percentage second harmonic distorti,on has been 

considered as a function of the Axial Position Number XL for BCPl = O.l 

and FN = 1.6. Notice that for FN = 1.6 no appreciable error in the 

estimation of the percentage second harmonic distortion results even for 

very high values of the parameter BCP21. This information is also con

tained in Fi.gure 6. Thus if the Frequency Number FN assumes.a value 

such that one is operating in the immediate vicinity of the valleys 

depicted in Figure 6, then .the harmonic distortion due to the second 

harmonic is small and so also is the error introduced by the neglect of 

the inertance effect of the orifice. 

Figures 16, 17 and 18 depict the amplitude r~sponse of the funda

mental and th.e percentage second harmonic distortion as a function of 

the Axial Position Number XL for BCPl = 1.0. For BCPl = 1.0 the 
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dimensionless ratio ZRl is greater than unity, hence attenuation of the 

f1,mdamental flow response results at x = Jl. Also it will be noticed 

that increasi.ng the value of the parameter BCP21 has little influence 

on the flow response for BCPl = 1.0. This may be explained by referring 

to Equation (4.9) which indicates that for BCP21 less than unity and 

ZRl greater than unit,y, the term r2 is a strong function of ZRl and 

therefore increasing values of BCP21 exert only a weak influence on the 

flow response at BCPl = 1.0. 

This result concerning the influence of the inertance effect of the 

orifice on the system 1s.frequency response for BCPl = 1.0 is, strictly 

speaking, not a valid result, because for small diameter lines, the 

basic assumption of the Reynold's number being less than or equal to 

2000 is violated when t~e dimensionless ratio BCPl assumes a value of 

unity. 

Figures 19 and 20 are similar to Figures 4 and 11. The value of 

the parameter BCPl, however, is now changed to 0.36. As already pointed 

out, for this value of BCPl, the .load impedance of the orifice (with its 

tnertance effect excluded) matches the Characteristic Impedance of the 

non viscous 1 i ne. The amp 1 i tude response of the fundamenta 1 thus remains 

constant with frequency. Figures 19 and 20 then indicate the variation 

of the percentage second harmonic distortion as functions of the Fre

quency Numtier FN and the Axi a 1 Position Number X.L. 
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GHAPTER VII 

SUMMARX, CONCLUSIONS AND RECOMMENDATIONS 

Summary 

This work is an extension of the work earlier reported by Strunk 

(3) concerning the frequency response of a nonviscous line with a non

linear boundary condition. In hi~ work, however, the inertance effect 

of the oriJice, which becomes important at high frequencies, has been 

neglected. The model reported by him therefore ·remains valid for low 

frequency perturbations only. 

In ~his thesis a generalized moclel, which accounts .for inertance 

effect of the orifice, h.as been developed. This model is applicable for 

the propa9ation of ·both low and high frequency disturbances through the 

line. At low frequencies, when the inertance effect of the ori-fice is 

small, it has been shown that this model reduces, as a special case, to 

the model reported by Strunk (3). 

The, orifice-fl ow mode 1 clue to Funk et al • ( 4) has been emp 1 oyed in 

this work to qeri ve a modified boundary conqi ti on for the case of a 

fluid line terminated by a nonlinear inertive orifice. The nonviscous. 

wave equation has been suqsequently solved, subject to this new boundary 

condition, by applying the Perturbation Method. Closed form nondimen

sional solutions for the amJ.llitude and phase response of the first and 

second harmonic;:s have beef,l reported. An important dimensionless number 
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which exclusively accounts for the inertance effect of the orifice has 

qeen identified. Nondimensional plots of the frequency response obtain

ed, as a result of perturbing this dimensionless number, have been 

presented. 

Conclusions 

The conclusions which have been reached as a result of this study 

are: 

1. The influence of the inertance effect of the orifice on the 

frequency response of a nonviscous line may be accounted for by a dimen

si.onless number. This number has been referred to as a boundary condi

tion parameter (BCP21) in this work. It has been found to be a function 

of the inertance of the orifice (i.e., its physical size, coefficient 

of discharge, etc.), the physical properties of the fluid, the sonic 

velocity, the cross-sectional area of the line, and finally the frequency 

of oscillation of the disturbance. 

2. The influence of the inertance effect of the orifice is depend

ent on yet another dimensionless number, referred to as boundary condi

tion parameter BCPl in this work. This parameter is a function of the 

noninertive load impedance of the orifice (i.e., its resistance), and 

the characteristic impedance of the nonviscous line. 

3. For BCPl = 0.1 it has been found that the inertance effect of 

the orifice on the frequency response becomes appreciaple as BCP21 

assumes values in excess of 0.25. For small diameter lines (lines with 

internal diameter one inch or less) terminated by a sharp-edged orifice, 

of size in the range 1/8 inch to 1/4 inch, this would generally mean 

that the inertance effect is appreciable beyond a frequency of operation 



56 

of 700 c/s. For short-tuqe orifices (orifices with thick.ness in the. 

range 1/8 inch to 1/4 inch) th.e inertance effect is appreciable beyond 

a frequency of operation of .500 c/s. 

4. The natural frequencies of the line have been found to decrease 

as the inertance effect of the orifice was made large. 

5. Depending on the va 1 ue of the frequency number FN, the effect 

of the orifice's inertance.is either to amplify or to attenuate the 

amplitude of the fundamental and the magnitude of the second harmonic 

distortion. 

6. For BCPl = 0.1, the percentage second harmonic distortion be~ 

comes appreciable if (a) the frequency numl)er FN corresponds to a natural 

frequency of the line, and (b) BCP2l is of a value greater than 0.25. 

This suggests that at high frequencies of operation it may l)e necessary 

to improve the perturbation solution by addition of the third and possi

qly even the fourth harmonic term. 

Recommendati ans for Future Stu<;ly 

.A.reas which it is felt are worthy of future study include: 

l. Investigation of ·the frequency response of a viscous fluid line 

with nonlinear inertive orifice as a boundary condition. 

2. Experimental validation of the theory. 
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APPENDIX A 

SETS OF LINEAR SYSTEM EQUATIONS 

Substituting Equation (4.3) in Equations (4.1) and (4.2) one obtains 

(o) (1) 2 (2) 3 (3) 
[qtt + E qtt + E qtt + E qtt + • • • + • • .] 

- c2 [q(o) + E q(l) + E2 q(2) + E3 q(3) + + ] 
xx xx xx xx • • • • • 

= 0. (A.l) 

[q(o) + E q(l) + / q( 2) + ... ]x = 0 =A sin(wt). (A.2) 

[{q~o) + E q~l) + E2 q~2) + .• .. } + a{qio) + E q~l) 

2 (2) (o) (1) 2 (2) 
+ E qt + · • · } + B {qtt + E qtt + E qtt }]x = JI. 

2 (2) 
+ E qt + • • 0 ]X = JI.' (A.3) 

Equating terms with like powers of 11 E11 in Equations (A. l), (A.2) 

and (A.3), the following sets of linear partial differential equati.ons 

with linear boundary conditions are obtained. 

For O(E = 0), 

q(o) _ c2 q(o) = 0 
tt xx 

At x = 0, 

q(o) (0, t) = A sin (wt) (A.4) 
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At x = R-, 

q(o) + a q(o) + S q(o) = 0 
x t tt . 

For 0(£), 

At x.= 0, 

q(l) (0, t) = 0 (A.5) 

At x = R-, 

q(l} +a q(l) + S q(l) = .-q(o) q(o) 
x t tt t 

For 0(E2), 

q(2) _ c2 q(2) = 0 
tt xx 

At x = 0, 

q( 2) (0, t) = 0 (A.6) 

At x = R-, 

q(2) +a q(2) + S q(2) = -{q(o) q(l) + q(l) q(o)} 
x t tt t t 

For O(E 3)' 

q(3) _ c2 q(3) = 0 
tt xx 

At x = 0, 

q( 3) (0, t)' = 0 (A. 7) 

At x = R-, 

_ a11d so on. 



APPENDIX B 

AN EQUATION DEFINING 11 ).. 11 

Consider the elementary wave equation, 

(B. l) 

Let 

q = X(x)•T(t) (B.2) 

where X is a function of 11 x11 al ore and T is a function of 11 t 11 • Substi

tuting Equation (B.2) in Equation (B.l) and separating the variables, 

one obtains 

1 Ttt Xxx 2 
2 r= x= -),. 
c 

where -),.2 is a constant of sep~ration. We thus obtain: 

2 2 Ttt + ()... c )T = 0 

X + ),.2 X = 0 xx . 

(B.3) 

(B.4) 

For purposes of frequency analysis (i.e., for steady oscillatory flow 

case), we assume a harmonic solution for T. 

Let, 

T - C eiwt - 3 

Substituting Equation (B.5) in Equation (B.3), we hav~ 

C3 (-w2) eiwt + ),.2 c2 C3 eiwt = 0 
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Simplifying and considering the positive root of >.., we have 

A. = w/c 

E,quation (B.4) has a solution 

x = c, eiA.x + c2 e-iA.x 

Substitutin~ Equations (B.5) and (B.7) in Equation (B.2), 

q(. = C ei(wt+A.x) + C ei(wt-A.x) 
. x' t) .. 4 5 

where c4 and c5 are complex constants. 

(B.6) 

(B. 7) 

(B.8) 



APP~NDIX C 

SOLUTION FOR q(o)(x, t) 

Consider t,he .set 

q(o) _ c2 q(o) = 0 
tt xx . ( c. 1) 

At x = 0, 

q(o) =,A sin(wt) 

= Im [A eiwt] (C.2) 

At x = R., 

(C. 3) 

Assume a sol uti.on of -the form, 

(C.4) 

where F and G are com~lex constants and A = w/c. Using a complex expo

nent.ial representation for the boundary condittons, we have 

At x = 0, 

Im(F+G) eiwt = Im[A eiwt] (G.5) 

wh.ere Im refers to the Imaginary part of, and A is a real number. In i 

the above equation, since the imaginary part of Equation (C.4) satisfies 

the boundary condit,ion at x = 0, it is to be expec;:ted that the imaginary 

part of q(o)(x, t) will be the act,ual solution to t,he generating system 

(~quation (4.4)). 
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Froi:n Equation (~.5}, we have 

F + ~ = A (C.6) 

Next, consider the boundary condition at x = t. We have 

qio)(t, t) = jw[F ei(wt +,;u) + G ei(wt - ;q,)] 

ql~)(t, t) = -w2[F ·ei(wt + u) + G ei(wt - ;u)] 

(C. 7) 

(G.8) 

(C.9) . 

Substituting Equations (C.7, C.8 and C.9) in Equation (C.3) anc;I rearrang'

ing teri:ns yield: 

where 

where 

Let 

E = [l - ac - 1(acw)] 
G l + ac + 1(scw) 

= H e i(2u} 

_ l ~ ac - · Bew) 
H - l + ac + i sew 

rl i e 
H = [ . . . . 2 . 2] e 

(l + ac)· + (sew), 

2 . 2 2 2 1/2 
rl. = [{l - (ac) - (sew} } + 4(sc;w) ] 

8 = tan-1 [ -2scw ] 
l - a2c2 - (scw) 2 

rl r = __ ____,,,__ _ __...,...-=-

2 (l + ac)2 + (Scw) 2 

From Equations (C.15, C.12 and C.10}, 

E = r e-i(2AR, - e) 
G 2 

(C. 10) 

(C.ll) 

(C.12) 

(C.13) 

(C.14) 

(C.15) 

(C.16) 
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Eli~inating F from Equations (C.6) and (C.16), 

A[l + r 2 ~i(2Ai~a)] 
G = . 2 (C.17) 

1 + 2r2 cos(~Ai-a) + r2 

R~writing Equation (C.4) as 

q(o)(x, t) = G[~ ei(wt:t-Ax) + ei(wt-Ax)] (C. 18) 

and subs~ituting Eq1,1a~ions (C.16) and (C.17) in Equation (C.18), and 

considering the imaginary part o'f q(o) (>,<, t) ~o be the true solu~ion, 

one obt.ains . 

( ) 2r2 sin(?Ai-a) 
q 0 {),<, t) = A[(cos(Ax) + . · . · 2 si.n(Ax)) 

1 + 2r2 cos(2Ai-a) + r 2 

(r~-1) sin(Ax). ) 
sin(wt) + ( .. · · . · . 2 cos(wt)]. 

1 + 2r2 cos(2Ai-a) + r 2 

(C.19) 



APPENDIX D 

DERIVATION OF STRUNK 1 S SOLUTION, (8 = 0) 

FOR q(o) (x, t) 

From Equation (C.14) we notice that when the inertance effect of 

the orifice is neglected (8 = 0), 

e = o 
and, from Equation (C.11), the e){pressi.on for H reduces to 

H = ( l - a.c) 
l + a.C 

Simi.larly, from Equation (C.13), 

and 
2 2 r 2 = [l - (a.c) ]/[l + a.c] 

= [l - a.CJ = H 
l + a.c 

Equation (C.19) then reduces to 

( D. l) 

(D.2) 

(D.3) 

q(o) (x, t) = A[(cos(!tx) + · 2 ~ sin( 21ti}, . sin(!tx))sin(wt) 
l + 2H cos(2H) + H2 

+ (H2 - l} sin(!tx) cos(wt)] 
. 1. + 2H cos(2H) + H2 

(D.4) 

Substituting Equation (D; 1) in E:qua~ion (D.4) and expressing sin(2H,) 

as 2sin(1t1) cos(1t1), one obtains 

q(o) (x, t) = A[(cos(!tx) + (l -a.2G2) sin(u) cos(u) sin(Ax)) 
cos2(u) + a.2c2 sin2(u) 
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. ( } ( (ac}•sin(Ax} ) ( }] sin wt - . 2 2 2 . 2 cos wt 
cos (Ai} + a c sin (Ai} 

( D .5) 

Equation (D.5) is the same Equation (23) reported by Strunk (3). 



APPENDIX E 

AN EXPRESSION FOR q(o)(1, t) 

Substituting x = 1 in Equation (4.7) and rearran~ing terms, the 

resultant equation may be written in the form 

q(o)(i, t) = (A·B 3)[/n2 + r:.2 {sin(u + ¢0 )} sin(wt) 

+ {( r~ - 1) sin ( u) } cos (wt)] (E .1) 

where 

(E.2) 

n = 1 + r~ + 2r2 cos(s) (E.3) 

s = 2r2 sin(s) (E.4) 

¢0 = tan-l [n/F.] (E.5) 

Let 

( E.6) 

and 

m = B·sin(A1 + ~ ) . 0 (E. 7) 

n = (r~ - 1) sin(A1) ( E. 8) 

Then Equation (E.l) reduces to 

q ( o) ( 1 , t) = A • B 3 lrn2 + ~ 2 [ s i n ( wt + ¢ l )] (E.9) 

where 
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Let 

and 

<Pl = tan - 1 [n/m] 

B = B /m2 + n.i 1 3 

Then, Equa~ion (E.7) reduces to 

q(o)(t, t) = A1•sin(wt + <1> 1). 
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(E.11) 

(E.12) 

(E.13) 



APPENDIX F 

SOLUTION FOR q(l)(x, t) 

From Equation (4.23) we notice t.hat the forcing function has a fre

quency 2w; hence,. for the response q(l)(x, t) we assume a solution of 

the form· 

( F .1) 

Since the imaginary part of Equation (4.23) is the true forcing function, 

the imaginary part of q(l)(x, t) will be the actual solution to the set 

given by Equation ( 4.5). 

From the consideration of the boundary condition at x = 0, one 

obtains 

J + K = 0 

Hence, Equation ( F .·l) reduces to 

q(l)(x, t) = Jei( 2wt) [(2i)·sin(2Ax)] 

(F.2) 

(F.3) 

Substituting Equation (f .3) in the boundary condition at x = R- for the· 

set given by Equation (4.5), incorporating Equation (4.23) into this 

boundary condition, and then solving for the complex constant J, one 

obtai,ns .. 

i[lc(Al)2•ei(2•1)] 

J = [ cos(2u) - 2(~cw) si-n(2u) + i {(ac) sin(2u) }] (F •4) 

Substituting.for Jin Equation (F.3) and considering the imaginary part 

of q(l)(x, t) to be the true solution, one obtains. 
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where 

71 

q(l)(x, t) = - l · C·A~ (B2) • sin(2t..x)•sin(2wt + 2•1 + •2) 

( F .5) 

2 2 -1/2 
a2 = [ {cos(2u) ,. 2(scw) •sin(2u) J + {(ac) •sin(2u) J ] 

-1 [ -ac ] 
•2 = tan cot(2A.!) ~ 2(Scw) 

( F .6) 

( F. 7) 



APPENDIX G 

EXPRESSIONS FOR THE LINEARIZED ~OAD IMPEDANCE 

OF OR.IFICE AND THE DIMENSIONLESS RAHOS 

ZRl and ZR2 

From Equation (3.20) we have 

p = L1q + K1 q2 + 2K 1 qqs. 

Hence, the linearized load impedance of the orific;:e is 

z = .E.. = .l [LI q + 2K I qq ] 
i q q s 

Let 

q = Im [A eiwt] . 

where I.m refers to the !magi nary part of. Then, 

( G. l) 

Z2 = 2K 1qs + i(wL 1 ) (G.2) 

And for L 1 = O, 

z = 2K I q 
i s 

Next, the charac;:teristic impedance of a nonviscous line is given by 

2 Z = pc/ ( 1Ta ) c ' 

Now consider the ratio 

2 (2K'q )·11a s 
pc 
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(G.3) 

(G.4) 



Substituting .fore from Equation (3.23), we have 

Kf qs 
ZR = re· - • -· ] . ~ p c 

= E q •C s 

Substituting for a from E,quation (3.24) 

ZR= ac 

For a sharp-edge orifice a = (al) 

ZRl = (al) •c 

For a short-~ube ·ori_fice a = (a2) 

ZR2 = (a2) •c 

Next, from Equation (G;4), 

= 2K'(7ra2) ~c2·A •M 
· Kf ·. o s 

For a sharp-edge orifice frqm Equa~ion (3.13), 

ZRl. 
2 

= ( p•1Ta )·c2·A ·M 
K (C A )2 o s . 
f d 0 

l = 2 . (BCPl) 
c d 

Next, for a short-tube orifice; from ~quation (3.14), . 

Substituting for 2K 1 in Equation (G.8), 
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(G.6) 

(~. 7) 

(G.8) 

( G.9) 
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2 
ZR2 = (~a ') • [ . P 2 + pfL] c2·A ·M 

f (Cd Ao) Do A~ o s 

2 
= [~ + f (~)]·(~a )·Ms 

Cd o o 

= [1r+ f (L)]·BCPl. 
C Do 

d 

(G.10) 
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APPENDIX H 

LISTINGS OF COMPUT~R PROGRAMS 

PROGRAM TO COMPUTE THE. AMPL lTUDE RATIO FUNDAMENTAL IARFUNDI THE PERCENTAGE 
SECOND HARMONIC DISTORTION IPSHOISI 1 THE PHASE ANGLE OF THE FUNDAMENTAL 
IPHill AND THE PHASE ANGLE OF THE SECOND HARMONIC IPHlJI AS FUNCTIONS OF THE 
FREQUENCY NUMSER 1 FN 1 IFOR GIVEN VALUES OF THE BoUNDARY CONDITION PARAMETERS 
BCPl ANO BCP21 I. THIS PROGRAM WORKS FOR NONZERO VALUES OF BCP21 ANO FN • 

. ASSIGNMENT tiF A ZERO VALUE TD EITHER dCP21 O~ FN WILL LEAD TO A 'DIVIDE CHECK 
ERROR' IN THE I~ERNAL STATEMENT NUMBERS 28 AND 46 RESPECTIVELY. THE RESULTS 

-OF STRUNK ARE ~EADILY OBTAINED BY CONSIDERING SMALL NONZERO VALUES FOR THE 
PARAMETER BCP21. 

DATA ICNT1JCNT1CD1XL1BCP211AQ/01010.61l.010.00l10.5/ 
PI=3.14159 . 

5 BCPl=O.l 
10 ZRl=IBCP1J/llCOl**21 
15 WRITEl612018CP11BCP21 
20 FORMATllHO,•BCPl = 1 olXoF4.2,5Xo 1BCP21 =11lX1Fl0.8J 

WRITEl6o251 
25 FORMAT! lHO ,5X, 1 FN1 113X , 1 ARFUN0 1 1llX1·1 PS HD IS 1 0 l2X, 'PHU' 1 l3Xo 'PHI 31 

$1 
DO 45 L=l,7 
IFIL-1126126127 

26 FN=Oo025 
GO TO 30 

27 FN=FLOATIL-ll 
30 RO•ll.O-llZR11**21-llBCP211**2ll 

Rl=SQRTll[ROl**21+4.0*llBCP211**2ll 
DNRl=llloO+IZRlll**21+11BCP211**21 
R2=Rl/ONR1 
IFIZRl-1.0132132131 

THIS CHECK COMES INTO EFFECT WHEN BCPl CROSSES THE TRANSITION VALUE OF 0.36. 
IT IS ASSUMED THAT THE PARAMETER BCP21.REMAINS !NUMERICALLY) LESS THAN UNITY. 
FOR VALUES OF 1 BCP1 1 GREATER THAN 0.36, 'lRl' IS GREATER THAN UNITYoAND FOR 
1 BCP21 1 REMAINING LESS THAN UNITY, THE SIGN OF 1R0 1 IS GOVER!\IED BY THE VALUE 
OF 1ZR1 1 • 

NOTICE FOR BCP2l=O.O AND 1 ZR1 1 GREATER THAN UNITY, THE ARGUMENT OF THE 
0 S~RT 1 DEFINING 1 Rl 1 IS A PERFECT SQUARE OF A NEGATIVE NUMBER. THEREFORE 1 Rl 1 

IS A NEGATIVE NUMBER AND SO IS 1 R2 1 o 
FOR LESS THAN UNITY, POSITIVE NONZERO VALUES OF 1 1lCP2l 1 THE ARGUMENT OF 

1 SORT 1 DEFINING 1 Rl 1 IS NOT A PERFECT SQUARE. HOWEVER, IF THE TERl,'1 14.0*I 
BCP2ll **21 1 S SMALL COMPAR!:D TO THE SQUA~E OF 1 RO'• THEN IT MAY BE NEGLECTED 
AND ONLY FOR SUCH CASES THE SIGN OF 1Rl' (AND 1 R2 1 J CONTINUES TO BE GOVERNED 
BY.THE VALUE Of 1ZR1 1 • 

31 R2=-R2 
32 THETA=ATANll-2.0*IBCP2l)l/(l.O-llZR11**21-llBCP211**2111 

DNR2=l .O+ 12. O*R2*CrJSI I 2. O*FN I-THETA 11 +I l·R2 I **2 I 
B3=1.0/0NR2 . . 
AX=((IR21**21-l.Ol*ISINIFN*XLll 
BX=DNR2*1COSIFN*XLll+l2.0*R2*1SINl(2.0*~Nl-THETAll*ISINIFN*XLlll 
CX=SORTlllAXl**21+11BX)**2ll . . 
ETA=l.O+llR21**21+2•0*R2*COSITHETAJ 
ZETA=2.0*R2*SINITHETAI 
PHIO=ATANIETA/ZETAI 
ETASQ=IETAl**2 
ZETASO=IZETAl**2 
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31. 8=SQRT(ETASQ+ZETASQI 
32 IF(ZETAl33o34134 
33 33 SAI=FN-PHIO 
34 GO TO 35 
35 34 SAl=FN+PHIO 
36 35 XM=B*SINlSAI) 
37 XN=(((R21**21-l.Ol*SIN(FNI 
38 SOM=<IXMl**21 
39 SON=(IXN)**2J 
40 B4~((ZRll*SINl2.0*FNl>**2 
41 s2~1 .• o/lSORT((COSl2.0*fN)-2.0*(BCP2ll*SlN(2.0•FNIJ••2•B4)) 
42 BlSO=(SQM+SQNl*ll83)**21 
43 ARFUND=IB31*lCXJ 
44 PSHDIS=ABS ( ( (25.0 )*AO*ZRl*BlSQ*B2ll<SINl2.0*FN*Xll l/CB3*CXJl 
45 PHil=ATAN(XN/XMI 
46 PHI2=ATANl1-ZRll/((1.0/(TANl2.0*FNJJJ-2.0*CBCP2111J 
47 PHl3=(2.0*PHill+PHI2 
48 PHilD•lPHll*lS0.01/lPIJ 
49 PHI2D=llPHl21*180.0J/(PIJ 
50 PHI3D=lPHl3*180.0l/CPII 
51 IFlPHllOJ36137,37 
52 36 PHI1D=PH110+360.0 
53 37 lFlPHl3Dl38,39,39 
54 38 PHI30=PHI3D+360.0 
55 39 WRIT~l6,40)FN,ARFUND,PSHDIS,PHI1D,PHI30 
56 40 FORMATllHO,Fl0.5,lOX,F5.21lOX,F7.21lOX~Fl.2.1ox,F1.21 
57 IFlFN-6.0141,46,46 
58 41 FN=FN~0.025 
59 JCNT=JCNT+l 
60 IF(JCNT-39130130,42 
61 42 JCNT=O 
62 45 CONTINUE 
63. 46 BCP2l=BCP21*1.5 
64 IFlBCP21-0.5Jl5,15,50 
65 50 BCP21=0.001 
66 ICNT=ICNT+l 
67 BCPl=IBCPll•lO.O 
68 IF<ICNT-1110,10,55 
69 59" STOP 
70 END 



c 
c 
c 
c 
c 
c 
c 

l 
2 
3 
4 
5 

6 
7 
8 
9 

10 
11. 
12 
13 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36" 
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PROGRAM TO EVALUATE THE AMPLITUCE RATIO FUNDAMENTAL IARFUNDI AND THE PERCEN
TAGE SECOND HARMONIC DISTORTION IPSHDISI AS FUNCTIONS OF THE AXIAL POSITION 
NUMBER 1XL11 FOR GIVEN NONZERO VALUES OF THE FREQUENCY NUMBER 1FN' ~NO THE 
BOUNDARY CONDITION PARAMETER 1BCP21 1, 

DATA ICNT,JC~T.CD1BCPl1BCP211AQ/0,0,0.6,l.0,0~25.0.5/ 
5 FN=l.6 
10 ZRl=IBCPll/llCDl**2l 
15 WRITEl61201FN,BCP1,8CP21 

·20 FORMATl1H0, 1FN =1,lX,F4.2,5x, 1BCPl =•,1x.Fs.2,5x,•ecP21 =•.ix. 
$Fl0.8J 

WR ITEi 612 51 
25 FORMAT( lHO' I XL I' lOX, 1ARFUND' 'lOX, I PSHD.1 s' I 

XL=O.O . 
30 RO=ll.O-llZR11**21-llBCP211**211 

Rl=SORTlllROl**21+4.0*llBCP211**211 
DNRl=llloO+IZRlll**21+11BCP2ll**ZI 
R2=Rl/ONR1 . 
IFIZR1-l.0132,32J31 

THIS CHECK COMES INTO EFFECT WHEN BCPl CROSSES THE TRANSITION VALUE OF 0.36. 
IT IS ASSUMED THAT THE PARAMETER BCP21 REMAINS NUMERICALLY LESS THAN UNITY. 
FOR VALUES O.F 1BCP1 1 GREATER THAN 0.36, 1ZR1 1 IS GREATER THAN LJ:~ITY 1 AND FOR 
1BCP21 1 REMAINING LESS THAN UNITY, THE SIGN OF 1R0 1 IS GOVERNED BY THE VALUE 
OF • ZRl'. 

NOTICE FOR BCP2l=O. 0 AND 1 ZRl' GREATER THAN UNITY, THE ARGUMENT OF THE 
1SORT 1 DEFl~ING 1Rl 1 IS A PERFECT SQUARE OF A NEGATIVE NUMBER. THEREFORE •Rl' 
IS A NEGATIVE NUMBER AND SO IS 1R2'• 

FOR LESS THAN UNITY, POSITIVE NONZERO VALUES OF 1 BCP21 1 THE ARGUMENT OF 
•SORT' DEFINING 1Rl 1 IS NOT A PERFECT SQUARE. HOWEVER, IF THE TERM 14.0*I 
BCP211**21 IS S~ALL COMPARED TO THE SQUARE OF 1R0 1, THEN IT MAY BE NEGLECTED 
AND ONLY FOR SUCH CASES THE SIGN OF 1 Rl 1 IAND 1 R2 1l CONTINUES TO BE GOVERNED 
BY THE VALUE OF 1ZR1 1• 

31 R2=-R2 
32 THET A=ATANI 1-2 .O*I B.:P2 li" II (l .0-1 I ZR U **21-11 BCP21) **211 I 

ONR2=l.0+12.0*R2*COSll2.0*FNJ-THETAIJ+llR21**21 
B3=1.0/DNR2 
AX=lllR21**21-l.OJ*ISINIFN*XLll 
BX=ONR2*1COSIFN*XLll+12.0*R2*1SIN112.0*FNl-THETAll*ISINIFN*XLlll 
CX=SQRTlllAXl**2l+llBXJ**2)J 
ETA=l.O+llR2l**2l+2.0*R2*COSITHETAJ 
ZETA=2.0*R2*SINITHETAI 
PHIO=ATANI ET A/ ZETAJ 
ETASQ=IETAl**2 
lETASO=IZETAl**2 
B= SORT I ET ASO+ZETAS QJ 
IFIZETAl33,34134 

33 Sb. I=FN-PHI D 
GO TO 35 

34 SAI=FN+PHIO 
35 XM=B*SINISAll 

XN=lllR21**2l-l.Ol*SINIFN) 
SQM=llXMl**2l 
SQN=llXNl**2l 
B4=11ZRll*SINl2.0*FNll**2 
B2=1.0/ISQRTllCOSl2oO*FNl-2.0*IBCP2ll*SINl2.0*FNll**2+B41l 
BlSQ=ISQM+SQNl*llB3l**21 . 
ARfUND=IB3l*ICXl 
P SHO! S=AB SI I I 2 5. Ol *AO* ZR l* Bl SQ* B2*S IN 12.0*FN*XLI I IC B3*CX l I 
WRITEl6,36lXL,ARFUND,PSHDIS 

36 FORM AT 1lHO,F5. 2 el OXoF5.2 ,1 OX ,F7. 21 
XL=XL+O. l 
JCNT=JCNT+l 
IFCJCNT-10130,30,40 

40 JCNT=O 
BCP2l=BCP2l*l.5 
IFIBCP21-0.5115115150 · 

50 BCP21=0.00l 
lCNT,.ICNT+l 
BCPl~IBCPll*lO.O 
IFIICNT-lJl0,10,55 

55 STOP 
ENO 
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