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CHAPTER I 

INTRODUCTION 

Storage· and ret.rieval of information in a computing system require 

the physical structuring of data in a form which may be readily 

accessed and maintained while making efficient use of available storage 

space. Tree structuring is one method of organizin~ large amounts 

of information to attain these ends. The physical Jata structure, 

or storage structure, of any given set-of information records refers 

specifically to the scheme in which those records are arranged in a 

storage medium. Only the physical arrangement of data in tree structures 

will be considered in this paper. 

The basic concept of tree structuring involves a set of indices to 

a set of data records which are based on the collating sequence of 

keys identifying the records. Starting with a general index, a search 

is made for an appropriate pointer to a more specific index. The 

process is then repeated at this level and as many subsequent levels as 

necessary to locate a specific element of the original data set. 

Knowing what the expected performance of a given tree structure will 

be if it is implemented makes possible wise choices of the physical 

data structures used in information systems. _This study presents a 

method involving probabilistic analysis for obtaining the expected 

asymptotic performance characteristics of several constrained classes 

of tree structures which are suitable for organizing information in 
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internal storage. The classes of search trees covered and their order 

of treatment will be as follows: 1) B-trees of branching order three 

(3-2 trees); 2) Symmetric Binary B-trees, henceforward called SBB-trees; 

and, 3) balanced binary trees (also known as AVL trees). A brief 

description of these structures is presented here. Further detail will 

be added in later chapters as needed. 

The general class of tree structures known as B-trees was intro

duced in 1972 by Bayer and Mccreight (1) and has since been the object 

of continued interest and research (e.g., Bayer (2) and Davis (3)). 

B-trees have a predetermined maximum number of branches from each node 

and are maintained such that all paths from the root node to the leaf 

nodes are of uniform length. 3-2 tree is the name given to that sub

class of B-trees which has a maximum of three brancttes and two keys 

for each node. The example 3-2 tree shown in Figure 1 has a height of 

three which means that the contents of three nodes must be inspected 

to determine the insertion position for a key that is not in the tree. 

For any tree structure the term "root" applies to the node in the tree 

from which all other nodes descend. The term "leaf" refers to nodes 

which have no descendants. Furthermore, the descendants of a given 

node are its "sons" and it is their "father." This genealogical 

terminology may be carried to any level in a tree structure to describe 

the relationship between two nodes. For 3-2 trees as well as all 

classes of B-trees, the leaf nodes are all on the same level with 

respect to the root node. 

SBB-trees, as described by Bayer (2), are directed binary trees 

which may contain two types of pointers, o-pointers or vertical 

pointers and p-pointers or horizontal pointers. Figure 2 shows an 
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40 

lb 25 

5 15 20 35 45 60 

Figure 1. A 3-2 Tree 

Figure 2. An SBB-Tree 



example SBB-tree. Each node may have zero, one, or two·sons; thus, 

SBB-trees are binary trees. Since the number of downward or a-levels 

from the root node to any leaf in the tree is constant, SBB-trees can 

be viewed as a modified class of B-trees. A more.thorough description 

of SBB-trees is presented in Chapter III. 

4 

AVL trees were developed by G. M. Adelson-Velskii and E. M. Landis 

as a constrained class of binary trees in which the maximum number of 

levels in the left and right subtrees of any node in the AVL tree 

could differ by no more than one. The binary tree in Figure 3a is an 

AVL tree. The binary tree in Figure 3b is not an AVL tree, because 

the left subtree of node E has a maximum height of three while its 

right subtree has a maximum height of one. AVL trees are sometimes 

ref erred to as balanced trees since the constraints which define them 

tend to maintain a fairly even left-right dispersion of nodes. 

Analysis of AVL trees by Knuth (7), and by Van Doren and Gray (10) has 

shown that AVL trees are effective structures for organizing and 

maintaining data. The following chapters will explore probabilistic 

methods for analyzing some aspects of the performance of all of the 

above data structures. 

Development of the basic method of analysis is presented in 

Chapter II with application to 3-2 trees. It is further extended in 

Chapter III to cover SBB-trees. SBB-trees are thoroughly described 

in this chapter and are interpreted, for purposes of analysis, 

as a constrained class of 4-3 trees. Chapter IV deals with the 

analysis of AVL trees and their relationship. to SBB-trees. A summary 

including conclusions and suggestions for further research is presented 

in Chapter V. Explanations and proofs for several probability theorems 
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a.) An AVL Tree b.) A Non-AVL Tree 

Figure 3. Comparison of Balanced and Unbalanced Binary Trees 

used in the analysis are contained in an Appendix. 

The purpose in arranging the material in this order is to gain 

continuity in presentation and to obtain a logical order of development 

so that each succeeding chapter builds on the previously covered topics. 

The method of analysis developed in Chapter II for 3-2 trees is applied 

in Chapters III and IV to SBB-trees and AVL trees, respectively. The 

concepts and analysis dealing with SBB-trees in Chapter III are 

correlated with AVL trees in Chapter IV and are utilized to investigate 

some of the properties of AVL trees. 



CHAPTER II 

A PROBABILISTIC ANALYSIS OF 3-2 TREES 

The performance of a given tree structure in a particular infor

mation system is dependent upon such factors as the arrangement and 

type of hardware being used, the type and amount of data stored in each 

data element, etc. However, there are two factors inherent in the 

structure of any tree which may be viewed independently of specific 

applications. These factors are the number of node levels in the 

paths from the root node to the leaf nodes, and the number of descendants 

that any node in the tree may have. The number of levels in the 

longest path of.a tree is referred to as its height. The maximum 

number of sons that a tree node may have is referred to as its degree 

of branching. Tree height and degree of branching are inversely 

related. For example, the tree in Figure 4a has a branching degree 

of two and a height of four. In Figure 4b the same information is 

contained in a tree of height two where the degree of branching has 

been increased to four. Although the second tree requires fewer node 

accesses from root to leaf, the effort required to determine which 

pointer to follow out of a node has been increased. In this study 

only trees of very limited branching (.::_4) will be treated. Therefore, 

the primary area of interest and analysis will be to determine something 

about the expected number of tree levels. 3-2 trees, as previously 

stated, comprise a class of B-trees for which the maximum degree of 
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branching is three. The following analysis of 3-2 trees will illustrate 

a method of analysis for tree structures in general which makes use of 

a probabilistic process called a Markov chain. 

a.) Tree with Height Four and Degree of Branching Two 

1 2 14 15 

b.) Tree with Height Two and Degree of Branching Four 

Figure 4. Comparison of Tree Height and Degree of Branching 



Observations About 3-2 Trees 

As depicted in the example of Figure 5, a 3-2 tree may have one 

or two keys per node and two or three branches from any node. For 

convenience in description, an additional set of "external" nodes 

can be considered to exist as the sons of the leaf nodes at the lowest 

internal level of the tree. These nodes are indicated by the small 

35 50 

10 25 40 60 

Figure 5. 3-2 Tree Showing External Node Positions 

triangles in Figure 5 but their contents are not important. First it 

should be noted that for any B-tree the number of external nodes will 

be one greater than the number of keys in the tree. This follows if 

the external nodes are viewed as possible insertion positions for new 

keys and the observation is made that, as for a linear list, it is 

possible to insert a new key between any two keys already in the tree, 

as well as one before the first key and one after the last key. In 
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the tree of Figure 5 there are six keys and seven external nodes. 

Secondly it may be observed that the external nodes for a 3-2 tree fall 

into two distinct classes, those with one key in their father node and 

those with two keys in their father node. The observation and classi

fication of external node types is an important subject with respect 

to the probabilistic analysis presented. 

The next observations made concern the effects on the external 

nodes of a 3-2 tree that occur when a new key is inserted in the tree. 

Algorithms for updating B·-trees when insertion takes place have been 

described by Bayer and Mccreight (1) and by Davis (3). There are 

many variations and refinements of the basic operations which may 

improve tree performance in some instances, but only the basics will 

be considered here. A new key is inserted at the internal leaf node 

level once the appropriate position relative to the keys already 

present in the tree has been determined. For example, if the key 45 

is to be inserted in the 3-2 tree of Figure 5, the root node is 

examined and key 45 is found to be between key 35 and key 50. The 

corresponding pointer is followed to the node containing key 40 and 

this node is examined. Since key 45 is greater than key 40 and the 

node being examined is a leaf node, the new key is inserted as shown 

in Figure 6a. lf the key to be inserted had been less than key 40 

but greater than key 35, insertion would still occur in the same node 

with the new key being placed in the key slot occupied by key 40 and 

key 40 being moved to the right most key slot in the node. In both 

cases the node is changed from a one-key node to a two-key node which 

changes the classification of the external nodes that are its 

descendants. The net effect of this process is to destroy two external 
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3S so 

10 40 4S 60 

a.) After Insertion of Key 4S 

3S 

20 so 

10 2S 40 60 

L. 

b.) After Insertion of Key 20 

Figure 6. Effects of Insertion on the 3-2 Tree of Figure 5 

nodes with one key in their father and to create three external nodes 

with two keys in their father. Each insertion of a new key adds one 

to the total number of external nodes maintaining the relationship of 

N+l external nodes for a tree containing N keys. Comparison of 

Figures 5 and 6a illustrates these observations. The tree of Figure 5 

has seven external nodes, three external nodes with two-key fathers, 

and four external nodes with one-key fathers. The tree of Figure 6a 

has eight external nodes, two external nodes with one-key fathers and 

six external nodes with two-key fathers. The only exception to the 
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insertion process described above occurs when the insertion position 

for a new key falls inside a node that already contains two keys. When 

this situation arises the overfull node is split into two nodes con

taining one key each and the middle key of the original three is 

inserted in the father node. If the father node becomes overfull as 

a result of this insertion, it also may be split and the process may 

be propagated up as many tree levels as necessary. To illustrate this 

process key 20 will be inserted in the tree of Figure 5 resulting in 

the restructured tree of Figure 6b. Since key 20 falls between 

key 10 and key 25,.its insertion creates an overfull node which is 

split. Key 20 is the middle key so it is promoted for insertion in its 

father node. This also creates an overfull node which is split, with 

the middle key, key 35, being inserted in a new root node. The original 

node where insertion occurred was changed from a. two-key node into two 

one-key nodes thus causing the destruction of three external nodes 

with two-key fathers and the creation of four external nodes with one

key fathers. The tree in Figure 5 has seven external nodes, three with 

two-key fathers, and four with one-key fathers as compared to the tree 

in Figure 6b which has eight external nodes, all eight having one-key 

fathers. 

Concept of States 

Since the external nodes of a 3-2 tree fall into'one or the other 

of two classes, a useful concept is the "state" of an external node. 

A given external node may be in state #1, having one key in its 

father; or, it may be in state #2, having two keys in its father. 

Furthermore, upon insertion of a new key a given external node may 
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remain in its current state or, as shown above, it may pass to the 

other state. This information may be represented as the directed gr~ph 

of Figure 7. In order to analyze further the expected behavior of 

the tree, weighting factors must be determined for each of the digraph 

paths. These weights will be the probabilities that the corresponding 

state transitions will occur when an insertion is inade. The 

following section develops the state transition probabilities for a 

generalized 3-2 tree. 

State Transition Probabilities 

For an arbitrary 3-2 tree containing N keys, it has been shown 

that there will be N+l external nodes. The fraction of these nodes 

which are in state #1 at a particular time will.be represented by PN+l 

and the fraction that are in state #2 will be represented by QN+l· 

Since these states are mutually exclusive and collectively exhaustive, 

the sum of PN+l and QN+l is one. Therefore, if a new key is equally 

likely to be inserted in the tree at any of the external node positions, 

PN+l and QN+l may be viewed as the elements of a probability vector 

describing the tree in terms of its external nodes. The condition 

that keys to be inserted in the tree be ch9sen randomly from a uniform 

distribution insures that each of the external node positions has the 

same probability as an insertion candidate. A tree constructed by 

repeated insertion of keys chosen in this manner ~s said to be randomly 

generated. For a randomly generated 3-2 tree containing N keys, 

PN+l and QN+l represent the probabilities that a given external node 

is in state #1 or state #2 respectively; also, (N+l) X PN+l and 

(N+l) X QN+l represent the probable number of external nodes that are 



in each state. 

QSTATE #1 ~--s STATE #2 u 
Figure 7. Digraph Representation of State Transitions 

The state transition probabilities are derived by relating the 

state of a 3-2 tree described by (PN+l' QN+l) with the state of the 

same tree as it existed immediately prior to the last key insertion. 

At that time there were N external nodes (one less than the current 

number) and the fractions of external nodes, PN and QN in each of 
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the two possible states was somewhat different. The number of external 

nodes in state #1 in the previous tree plus or minus the number of 

state #1 nodes created or destroyed by the insertion process. In 

equation form this would appear as: 

(2 .1) 

Stated verbally this equation says that the probable number of external 

nodes in state #1 for the tree after insertion is equal to NxPN, the 

probable number in that state prior to insertion, minus the probable 

number of state #1 nodes destroyed by insertion, 2xPN, plus the 

probable number of state #1 nodes created by insertion, 4xQN. Similarly 

for external nodes of state #2 the probability equation would be: 

(2. 2) 
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The correctness of the coefficients in ~.nand ~-~can be verified 

graphically by comparison of the trees in Figures 5 and 6. Also, the 

sum of equations (2 .1) and (2. 2) must be equal to N+l. 

Algebraic manipulation of equations C.D and Q.2)results in the 

following matrix equation: 

N-2 3 
N+l N+l 

(2. 3) 
4 N-3 

. N+l N+l 

The general form of this equation is: 

(2. 4) 

where SN and SN+l represent respectively the probability vectors for the 

external node states of a given 3-2 tree before and after the insertion 

process, and T(N) is a probability transition matrix that is dependent 

on N. The elements of T(N) may be interpreted as the weights for the 

state transition paths of the digraph in Figure 7 as follows: 

N- 2 .. bb"l" f #1 #1 N+l = transition pro a i ity rom state to state 

3 
N+l = transition probability from state #1 to state #2 

(2. 5) 
4 N+l = transition probability from state #2 to state #1 

~:f = transition probability from state #2 to state #2 

Now that the values have been determined defining the transition 

between consecutive states for the insertion process, it will be 

advantageous to determine whether the probability vector SN+l approaches 

some set of values asymptotically; that is, whether the state of the 

tree stabilizes after a large number of insertions. For this analysis 

the construction of a 3-2 tree by repeated insertions of randomly 



generated keys will be viewed as a particular type of probabilistic 

_process known as a Markov chain. Alternatively it would be possible, 

as shown by Liu (8), to interpret the recurrence relationships as a 

class of nonlinear difference equations; however, the terminology of· 

Markov chains is used in the analysis given below. 

Concepts of Markov Chains 

A discrete finite stochastic process is a process that occurs 

in a finite number of steps, where the outcome of each step may 

depend on the outcomes of the preceding steps. For example, if there 

are three colored golf balls, one red, one yellow, and one green, in 

a box, and they are drawn at ran~om without replacement, the possible 

outcomes after three draws are as shown in Figure 8. The probability 

of each possible outcome of a given step is known when the outcomes 

of all previous steps are known. lf it is known that the outcome of 

the first step in the above example was that a yellow ball was drawn, 

then the possible outcomes of the next step are drawing a red ball 
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and drawing a green ball, each with one-half probability of occurrence. 

If the probabilities for the possible outcomes of a particular step 

of a stochastic process depend only on the outcome of the immediately 

preceding step then the process is called a Markov process. Additionally, 

if the transition probabilities are constant for every step in the 

process, the process is called a homogeneous Markov chain. If the 

transition probabilities vary according to some process related 

parameter then the Markov chain is norihomogeneous. Detailed formal 

definitions of all of these processes and their relationships are 

given by Kemeny and Snell (5) and by Parzen (9 ). The insertion of a 
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key in a 3-2 tree as pictured in Figure 7 and defined by matrix equations 

(2.3) and (2.4) is a finite nonhomogeneous Markov chain which is 

dependent on N, the number of keys in the tree. 

1 G (R, Y, G) 
R 1/2 

---lf2-~ 1 y • (R, G, Y) 

1/3 
l/~1---~ (Y' R, G) 

1/3 
G 1 R -------- (Y, G, R) 

1/3 1 y (G, R, Y) 

y 1 R (G' Y, R) 

Figure 8. A Discrete Finite Stochastic Process 

The property of this Markov chain which is of interest is known as 

ergodicity, the property of stabilization after a large number of 

steps regardless of the initial state. If the Markov chain model of 

3-2 tree insertion is ergodic the fraction of external nodes in each 

state will stabilize in a statistical sense after a sufficient 

number of insertions regardless of the initial fractional values. 

Such long term values may give valuable insight into the expected 

performance of a 3-2 tree. 

To examine the manner in which a Markov chain proceeds, the 3-2 

tree of Figure 6a will serve as an initial state. This tree has 

seven keys and eight external nodes, six with two-key fathers and 



two with one-key fathers. P18.cing these values into equation (2.3) 

yields: 

6/8)· [
5/8 

4/8 

3/8 

4/8 

Solving this equation for the values of Pg and Qg yields: 

pg = 17/32 Qg = 15/32 

which are the probable fractions of external nodes in states #1 and 

#2 respectively for the tree after an eighth key has been inserted. 

Using these values for the next step in the chain (insertion of the 

ninth key) yields: 
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(2. 6) 

(2.7) 

. [6/9 ~ - [6/9 3/9J 3/g 5/8 3/Bl 
(~10' QlO )=(17/32,15,32)· 4/g 5/9 =(2/8,6/8)· 5/8 4/8 4/9 5/9 

(2.8) 

From (2.8) it can be seen that the probability vector values after 

the n~th step of the process will be: 

(2.9) 

or 
n 

(PN+l' QN+l) = (Pi, Qi)·k~i· T(k) (2.10) 

for some initial probability vector (P., Q.). Following the devel-
1 l 

opment in Theorem 2 of the appendix a Markov chain will be ergodic 

if the product of the series of transition matrices approaches some 

limit in which all the rows are identical (all elements of a column 

are identical) as the number of steps in the chain approaches infinity. 

Equation (2.10) would then be: 

= (P., Q.)·[a bJ 
l l a b 

(2.11) 



solving for PN+l and QN+l yields: 

= a·P.+a·Q. 
1 1 

= a· (P. +Q.) 
1 1 

= a 

Q = b·P.+b·Q. = b"(P.+Q,) = b N+l . 1 . 1 1 1 
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(2. 12) 

(2.13) 

which show that regardless of the. initial values of the state prob-

ability vector, the long term values will be stable. The long term 

3-2 tree insertion process can thus be expressed as: 

a. = et • T (N) (2.14) 

Where the values of et are the steady state values of P and Q. In 

effect this says that once statistical stability is reached the system 
' 

remains statistically stable regardless of additidnal steps. 

3-2 Tree Analysis 

Expanding equation (2.14) for the T(N) obtained in equation (2.3) 

and utili.zing the relationship: 

p + Q = 1 

the stable state values of P and Q may be solved for as follows: 

((N-2)/(N+l))•P+(4/(N+l))·Q = P 

(3/(N+l))·P+((N-3)/(N~l))•Q = Q 

Multiplying through by (N+l) in (2.16) and (2.17) yields: 

((N-2)·P)+(4·Q) = p· (N+l) 

(3•P)+((N-3)·Q)= Q·(N+l) 

Algebraic manipulation gives: 

4·Q = 3·P 

and from (2 .15) 

Q = 1 - p 

so that by substitution: 

(2.15) 

(2.16) 

(2 .17) 

(2 .18) 

(2.19) 

(2. 20) 

(2.21) 



19 

4· (1-P) = 3,p (2. 22) 

giving: 

p = 4/7 (2. 23) 

and: 

Q = 3/7 (2.24) 

The validity of these values may be tested by substituting them for 

PN and QN in equation (2. 3) and noting that the re.sul ting values of 

PN+l and QN+l are likewise, 4/7 and 3/7. 

If for a randomly generated 3-2 tree of N keys (where N is 

large), the expected fraction of external nodes with one-key fathers 

is 4/7 and the expected fraction of external nodes with two-key fathers 

is 3/7 then the expected number of external nodes in each class will 

be 4/7·(N+l) and 3/7·(N+l) respectively. Furthermore, the fact that 

there are two external nodes for each one-key father indicates that 

the expected number of one-key nodes at the bottom internal level of 

the tree is l/2·4/7·(N+l) or 2/7.(N+l). Likewise, since there are 

three external nodes for each two-key father, the expected number of 

two key nodes, at the bottom internal level is l/3·3/7·(N+l) or 

l/7·(N+l). The expected total number of nodes at the bottom internal 

level would therefore be 2/7(N+l)+l/7(N+l) or 3/7(N+l). Adding 

the number of one-key nodes to two times the number of two-key nodes 

gives 2/7 · (N+l) +2·1/7 · (N+l) or 4/7 · (N+l) which is the expected number 

of keys in the bottom internal level. Subtracting this quantity from 

N, the number of keys in the tree, gives N-4/7(N+l) or 3/7N-4/7 expected 

keys in the upper levels of the tree. 
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Extension of Analysis To Upper Tree LevE\ls 

The specific information gained from the preceding analysis is 

primarily related only to the bottom internal level of the tree. In 

order to extend these concepts to levels above the' lowest one the states 

of the nodes in these levels must be used in defining the states of 

the external nodes on which the analysis is performed. For the 

analysis of the bottom two levels of a 3-2 tree it would be possible 

to define each external node by a four-tuple (m, n, o, p), where m 

is the number of keys in the grandfather node arid n, o, and p are the 

numbers of keys in each of the sons of the grandfather. From such an 

n-tuple the probability that an external node has a gfven number of 

keys in its father can be determined by a simple ratio. For example, 

if an external node with two keys in its grandfather is represented 

by (2, 1, 2, 2) then the probability that its father is a two-key node 

is the ratio of the number of external nodes with two-key fathers in 

this situation (6) to the total number of external nodes below the 

two-key grandfather (8), or .75. Analysis of this type yields eight 

distinct states for the external nodes of a 3-2 tree resulting in an 

eight-by-eight transition matrix. This analysis would still be 

reasonable but, as before, its results do not apply to the tree as 

a whole unless the tree is of only two levels. Since the method of 

analysis is fundamentally based on trees containing a large number.of 

keys and since the number of external node states increases comina

torial ly as additional levels are considered, it is easy to see that 

exact analysis of a whole tree structure would quickly grow out of 
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hand. Although analysis of this magnitude is not completely infeasible, 

it definitely calls for the application of non-trivial electronic 

computing techniques. 

In order to obtain a more simplified though somewhat less mathe

matically precise means of analyzing an entire tree, an assumption is 

made that the behavior of the nodes at each level of the tree structure 

is probabilistically independent of the other levels in the tree. 

This means that for any level in the tree the next lower lE;ivel may 

be viewed as external and the level in question may be analyzed as 

the bottom internal level. This is not a completely accurate assumption 

since it is assumed that any insertion position at the actual bottom 

level of the tree is equally likely to be filled. In reality, however, 

this approximation is very close to true for randomly generated trees 

containing a large number of keys. To support this concept the results 

of the Markov analysis applied to an entire 3-2 tree can be compared 

to the results of empirical testing obtained by Davis (3, p. 41) for 

3-2 trees generated in the same manner. Davis found the tree utiliza

tion to be approximately two-thirds for such trees where utilization is 

defined as: 

Utilization = #Keys I #Key Slots (2. 25) 

Utilization is an important performance measure because it relates the 

storage space that a structure occupies to the amount of that storage 

space which actually contains useful information. For B-trees, 

utilization is inversely related to tree height. Calculation of the 

utilization of the bottom internal level of a 3-2 tree from the results 

of the last section is accomplished by dividing the expected number of 

keys by the product of the expected number of nodes and two key slots 
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per node. 

4/7(N+l) 
2 · 3/7 (N+l) = 2/3 (2.26) 

Extending the behavior of the bottom level to the entire tree gives 

an expected tree utilization of two-thirds which is consistent with 

the empirical results. 

Using the two-thirds as the expeeted tree utilization for a 

3-2 tree, the average number of keys per tree node will be 1.33. Thus, 
l 

the average number of branches from a node will be 2.~3. For a 3-2 

tree of m levels the exected number of keys can then be computed as: 

0 1 m-1 N = (1.33) · (2.33) +(1.33) · (2. 33) + ... +(1.33) · (2.33) 

This geometric progression may be solved by multiplying through by 

(2.33) and solving for Nin the following.sequence: 

(2. 33) · N = 
1 2 m (1.33). (2.33) +(1.33). (2.33) + ... +(1.33). (2.33) 

(2.33) 0 N-N = (l.33)·(2.33)m-(l.33) 

m N = (2.33) -1 

(2. 27) 

(2. 28) 

(2.29) 

(2. 30) 

Thus for a 3-2 tree of N keys the expected number of levels is given 

by: 

m = log2. 33 (N+l) (2. 31) 

Comparison of this result with the empirical results obtained by 

Davis (3) lends additional credence to the approximations given by 

extension of the analysis to upper tree levels. For a sample of eight 

randomly generated 3~2 trees containing 300 keys and built according 

to the same maintenance rules as the 3-2 trees analyzed above, Davis 

obtained an average utilization of .674052 (3, p. 41). This compares 

with .666 ... or 2/3 obtained.in equation (2.26) above. For the same 

sample the tree height was always seven levels (3, p. 49) which is 



the smallest integer greater than 6.74, the expected number of levels 

in a 300 key B-tree as calculated from equation (2.31) above. 
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CHAPTER III 

ANALYSIS OF SYMMETRIC BINARY B-TREES 

This chapter is devoted to the analysis of a particular data 

structure defined by Bayer (2) in 1972 as a symmetric binary B-tree. 

There are two main reasons for analyzing this tree structure in this 

study. Firstly, it provides a vehicle for illustrating the expansion 

of the analysis techniques developed in chapter two to B-trees of 

higher order branching. This is accomplished by interpreting 

SBB-trees as B-trees of branching order four (4-3 trees). Secondly, 

due to the·binary structure of SBB-trees and their special relation

ships to AVL trees, the analysis in this chapter will serve as a 

basis for the detailed comparison of AVL trees and SBB-trees which 

is developed in chapter four. Possible extensions of probabilistic 

analysis to AVL and other binary tree structures will be viewed 

in the light of these comparisons. 

Description of SBB-Trees 

SBB-trees are directed binary trees in which the keys are ordered 

such that all nodes in the left subtree of any given node contain 

keys less than its key and all nodes in the right subtree contain 

keys greater than its key. The terms node and key may be used 

interchangeably here since there is exactly one key per node. A 

pointer between two nodes may be one of two types as shown in Figure 9. 
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a-pointers point vertically or downward to the next node while p-pointers 

point horizontally to an adjac'ent node. The conditions related to 

nodes and pointers that must be met for a binary tree structure to be 

an SBB-tree are: 1) there must be the same number of a-pointers in 

the paths from the root node to each leaf node, 2) there must be two 

descendants from each node except those which have no internal node 

Figure 9. An Example SBB-Tree 

descendants pointed to by a-pointers, and 3) there may never be two 

consecutive p-pointers in a path from the root node to any leaf node. 

The tree in Figure 9 has two internal a-levels; therefore, it may 

be said that the a-height (h) of the tree is two. This means that 

a path from the root node, 45, to any leaf node will contain exactly 

one a-pointer. The actual height (k) of an SBB-tree, however, is 

the maximum number of nodes in any path from the root node to the leaf 

nodes. Thus, the height of the SBB-tree of Figure 9 is £our since 

the longest path contains nodes 45, 60, 65, and 70. The relationship 



between the height (k) and number of a-levels (h) is dependent upon 

the number of p-pointers in the longest path of the tree and can be 

expressed as: 

h < k < 2h 

(2, p. 292}. Furthermore, the number of a-levels for an SBB-tree of 

N keys has been shown by Bayer (2, p. 294) to be bounded by the 

following relation: 

log2 (N+l) .::_ h .::_ 2log2 (N+2)-2 

The identification of two types of pointers and the conditions 

determining when they are used provide a means of constraining a 

binary tree from becoming excessively unbalanced. It is shown in 

chapter four that another class of constrained binary trees, AVL 

trees, is a proper subset of the class of SBB-trees. ; 

Interpretation of SBB-Trees as 4-3 Trees 
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Knuth (7, p. 469) explains how the concept of a-pointers and 

p-pointers as developed by Bayer may be applied to give a binary tree 

representation of 3-2 trees. These same ideas can be extended to 

SBB-trees and 4-3 trees. If all of the keys in a given SBB-tree 

which are directly connected by p-pointers are grouped together in 

multi-key nodes as sho.wn in Figure 10,. the resulting structure is a 

4-3 B-tree. This class of B-tree has a maximum of four downward 

branches and three keys per node. Although the p-pointers have been 

eliminated, the information they represented has been retained by 

letting the relative position of the keys within the 4-3 tree nodes 

be such that the key previously pointed to by a a-pointer from the 

next higher a-level occupies the center key slot in the new 4-3 node 
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and the keys that were connected to it by p-pointers occupy the 

appropriate left or right key slot. This information is important 

because it is used to determine the proper action to take during 

maintenance operations. Now that the structure of SBB-trees has been 

presented the next step will be to observe how this structure is 

maintained when new keys are inserted. 

a. ) An SBB-Tree 

b.) 4-3 B-Tree Interpretation of above SBB-Tree 

Figure 10. 4-3 Tree Interpretation of an SBB-Tree 

Maintenance of SBB-trees 

The maintenance algorithms for SBB-trees have been defined by 

Bayer (2, pp. 297-301) in a somewhat crY1ltic though mathematically 



quite precise manner. The following is a verbal description of 

these algorithms and their extensions to 4-3 trees. 
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Insertion of keys in an SBB-tree follows much the same procedure 

as insertion for any other type of tree structure. A traversal of 

the tree is made searching for the key which is to be inserted. 

Assuming that there is not a duplicate key in the tree, an external 

node, which represents an insertion position, will be encountered. 

The new key is inserted at this position with a p-pointer connecting 

it to its father. The result of this process for inserting key 50 

in the tree of Figure lla is shown in Figure llb. After the 

insertion process has been completed, the resultant tree requires 

no further maintenance if it still conforms to the conditions defining 

SBB-trees. However, if the father node of the newly inserted key 

was connected to its father by a p-pointer, the insertion creates 

two successive p-pointers which are not allowed by the SBB-tree 

definition. This situation is depicted in Figure llc where key 35 has 

been inserted in the tree of Figure lla. When two successive p-pointers 

occur the tree must be restructured so that it again fits the SBB-tree 

definition. 

The method of accomplishing restructuring is called "splitting" 

(2, p. 297) and involves different changes in pointer type, pointer 

direction, and node relationships for the different cases that arise 

involving p-pointers. These operations for the lowest level in an 

SBB-tree are pictured in Figure 12. The basic situations which arise 

and are not allowed are consecutive p-pointers in the same direction 

and consecutive p-pointers in opposite directions. Figure 12a 

shows two of the possible cases of the first situation that may arise 



a.) An SBB-Tree 

b.) The Tree of a.) After Key 50 Is Inserted 

c.) The Tree of a.) After Key 35 Is Inserted 

Figure 11. Insertion in an SBB-Tree 
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a.) Consecutive p-Pointers in Same Direction 

b.) Consecutive p-Pointers in Opposite Directions 

Figure 12. Lowest Level Splitting Operations for SBB-Tree 
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and it also shows the restructured configuration of the nodes after 

splitting. In both instances node B is elevated to the next higher 

a-level; the p-pointer from B to A becomes a a-pointer; the p-pointer 

from C to B is reversed to point from B to C and it becomes a 

a-pointer; and the o-pointer which previously pointed to c becomes 

a p-pointer pointing to B. This new p-pointer that is created at 

the next higher a-level in the tree may cause a consecutive p-pointer 

in the same direction are the left-right symmetric versions of the 

two situations in Figure 12a. These would occur if the consecutive 

pointers were to the right of node C instead of to the left and 

corresponding splitting operations would be applied. For the 

situations involving consecutive p-pointers in opposite directions as 

shown in Figure 12b, node B is elevated to the next higher o-level, 

and a-pointers from B to A and B to C replace the p-pointers from 

C to A arid A to B. Like cases in Figure 12a, the a-pointer which 

originally pointed to C becomes a p-pointer to B at the next higher 

o-level. Symmetric versions of the situations in Figure 12b are also 

possible and would be handled in a symmetric manner. 

If promotion creates a consecutive p-pointer situation in the 

next higher a-level when any of the above splitting operations are 

performed, the situation at that level is handled in much the same 

manner. This splitting operation may propagate several o-levels up 

through an SBB-tree. Figure 13 shows examples of splitting at a 

higher level which correspond to the situations for the lowest level 

shown in Figure 12. Again, symmetric versions are possible in all 

instances. The only additional factor which must be taken into 

account at higher levels is the redistribution of the subtrees of the 



a.) Consecutive p-Pointers in Same Direction 

B.) Consecutive p-Pointers in Opposite Directions 

Figure 13. Higher Level Splitting Operations for SBB-Trees 
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restructured nodes. For example, in the first case of Figure 13a 

the subtree of node D consisting of node E becomes a subtree of node 

M after splitting. The use of the insertion and splitting processes 

in combination makes possible the addition of nodes to an SBB-tree 

while maintaining the SBB-tree defining cond1tions. Since the tree 

of Figure llc is no lbnger an SBB-tree following the insertion of 
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key 35, the splitting process may be applied resulting in the SBB-tree 

of Figure 14. 

The maintenance procedures described for SBB-trees may be 

extended in a straightforward manner to the 4-3 tree interpretation. 

If a new key may be inserted in an empty slot in a leaf node then no 

further action is necessary. However, if an empty key slot is not 

available to hold the new key a splitting operation analogous to the 

SBB-tree splitting is performed. The 4-3 trees of Figures 1Sa, lSb, 

and lSc correspond to the SBB-trees of Figures Ila, llb, and 14 

respectively and demonstrate the maintenance of the 4-3 tree inter

pretation for insertion cases involving one-key nodes and three-key 

nodes. The two situations involving insertion in nodes containing 

two keys are shown in Figure 16. It is important to note that 

insertion in the empty key slot of a two-key node does not call for 

a node split, but insertion on the opposite side does. This premature 

splitting of a 4-3 tree node before it is full must be taken into 

consideration in the formulation of the state transition equations. 
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Figure 14. SBB-Tree of Figure llc After Splitting Process 
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55 70 

1 /z\ ·--
a.) 4-3 Tree Interpretation of Figure Ila 

60 

65 70 

2 

b.) Tree of a.) After Insertion of Key 50 

10 15 55 

_l ___ l_ 

c.) Tree of a.) After Insertion of Key 35 

Figure 15. Insertion in One Key and Three Key Nodes for a 4-3 Tree 
Interpretation of an SBB-Tree 

35 
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10 15 20 55 62 65 70 

a.) Tree of Figure 15a After Insertion of Key 62 

10 15 20 55 65 70 

b.) Tree of Figure 15a After Insertion of Key 68 

Figure 16. Insertion in Two-Key Nodes for a 4-3 Tree Interpretation 
of an SBB-Tree 
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State Transition Equations for a 4-3 Tree 

Interpretation 

Following the same procedure that was used to develop the state 

transition equations for 3-2 trees in the preceding chapter, the 

first step is to categorize the external nodes. Again basing the 

states on the number of keys in the father node, there will be three 

distinct states into which an external node may fall. External nodes 

with one, two, and three keys in their father nodes will be referred 

to as being in classes 1, 2, and 3 respectively. Examples of nodes 

in each of these classes can be seen in the trees of Figure 15. 

Next, the relationships between these states before and after 

insertion are examined. It is easily seen that insertion in a 

one-key node as depicted in Figure lSb, always results in a two-key 

node so that two class 1 external nodes are destroyed and three class 

2 external nodes are created. For insertion in a three-key node the 

result is always a split which causes the loss of four class 3 nodes, 

and the creation of two class 1 nodes and three class 2 nodes. This 

can be seen in Figure lSc. Note that there is no way for an insertion 

to transform class 1 nodes into class 3 nodes. 

The logic for determining the transitions caused by insertion 

in a two-key father node are not quite so simple. Observing the 

two-key leaf node at the right in Figure lSa it can be seen that 
• 

there are three external nodes for this leaf, each of which is 

assumed to be equally probable as the target of an insertion. This 

assumption is fundamental to the method of analysis. Based on 



38 

observation of these external nodes as insertion positions, it 

follows that there is a one-third probability of a new key being 

inserted in the empty key slot to the left of key 65 and there is a 

two-thirds probability of insertion to the right of key 65 causing 

a node split. If no split occurs as in Figure 16a, three class 2 

external nodes will be destroyed and four class 3 external nodes will 

be created. Figure 16b shows that a split will cause the loss of 

three class 2 external nodes and the creation of four class 1 external 

nodes. 

Representing the fraction of external nodes in each state as 

PN+l' and QN+l' and RN+l respectively for a randomly generated 4-3 

tree interpretation of an SBB-tree of N keys, the corresponding 

number of external nodes in each class wiU be (N-l-l)·PN+l' (N+l)·QN+l' 

and (N+l)·RN+l" Relating the current state of the tree to the state 

immediately prior to the last key insertion when the number of external 

nodes was N, results in the following set of state transition equations: 

(N+l)·PN = (N·PN)-(2·PN)+((8/3)·QN)+(2·RN) 

(N+l)·QN = (N·QN)+(3·PN)-(3·QN)+(3·RN) 

(N+l)·~ = (N·~) + ((4/3)•QN)-(4·RN) 

The general format of these equations indicates that the probable 

number of external nodes in a given class after insertion is equal 

to the probable number in that class before insertion plus and/or 

minus the probable number of external nodes in that class created 

and/or destroyed by insertion in a particular type of father node. 

Special note should be made of the coefficients of QN in the first 

and third equations where the two-thirds and one-third probability 

(3.1) 

(3.2) 

(3. 3) 
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factors, obtained for the two possible occurrences dealing with 

insertion in a two key node are incorporated. 

Rewriting the transition equations in matrix format yields: 

N-2 3 0 
N+l N+l N+T 

(PN+l' QN+l' ~+l) (PN, QN' ~)· 
8/3 N-3 4/3 = N+l N+T N+l (3.4) 

2 3 N-4 
N+l N+l N+l 

The elements of the three-by-three matrix are all nonnegative and 

its row sums are all one; therefore, it is a probability transition 

matrix and equation (3.4) defines a nonhomogeneous Markov chain. 

Extending the concepts of state digraphs and their relationship 

to Markov chain models to the 4-3 tree interpretation of SBB-trees 

results in the digraph of Figure 17. Note that there is no path 

from state #1 to state #3 because a transition of that type is not 

possible. This missing path corresponds to the zero entry in the 

state transition matrix of equation (3.4). The other elements of the 

state transition matrix may be assigned to the digraph paths as 

follows: 

N-2 N+l = transition probability from state #1 to state #I 

3 N+l = transition probability from state #1 to state #2 

8/3 N+l = transition probability from state #2 to state #1 

N-3 N+l = transition probability from state #2 to state #2 (3.5) 

4/3 N+l = transition probability from state #2 to state #3 



2 - transition probability from state #3 to state #1 N+l -

3 N+l = transition probability from state #3 to state #2 

N-4 N+l = transition probability from state #3 to state #3 

Figure 17. State Transition Digraph for 4-3 Tree 
Interpretation of SBB-Trees 

Analysis of the_4-i Tree Interpretation for 

SBB-Trees 
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Determination of the steady state values of the state probability 

vectors in equation (3.4) proceeds as for 3-2 trees. As stated in the 

Appendix the theorems and development of the method using Markov 

chain concepts on two-dimensional transition matrices with nonzero 

entries can be extended in a straightforward manner to transition 

matrices of any dimension and the restriction to nonzero entries 
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can be relaxed if paths of equal length exist from every state to 

every other state in the state transition digraph. For the 4-3 tree 

interpretation of SBB-trees this may be accomplished by a path of 

length two as can be seen in Figure 17. The set of equations (3.1)

(3.3) and the relationship 

P + Q + R = 1 (3.6) 

are used to solve for PN+l' QN+l' and RN+l at the limit where the 

vectors (PN+l' QN+l' RN+l) and (PN, QN, RN) are equal. Thus, ignoring 

subscripts and rewriting equation (3.2) yields: 

(N·Q)+Q = (N·Q)+3·P-3·Q+3·R 

subtracting (N·Q) from both sides and restructuring gives: 

Q = 3.(P+R)-3·Q 

or substituting (1-Q) for (P+R) from (3.6): 

Q = 3 - (6 •Q) 

(3. 7) 

(3.8) 

(3.9) 

therefore Q=3/7. Note that the N terms can be removed from any of the 

equations (3.1)-(3.3) in the manner that they were removed from (3.7) 

to obtain (3.8) above. This indicates that the equations are 

independent of N. Removing the N terms and substituting 3/7 for Q 

in equation (3.3) results in 4/35 for the value of R. Finally, 

P = 1 - Q - R = 1 - 3/7 - 4/35 = 16/35 (3.10) 

Thus, the long term values of the probability state vector are: 

PN+l = 16/35, QN+l = 3/7, RN+l = 4/35 (3.11) 

Through the use of these values the number of keys in each type 

of father node, and thus the number of each type of father node in the 

bottom internal level of the tree can be determined. The number of 

keys in one key father nodes is: 

P· (N+l)·l/2 = 16/35· (N+l)·l/2 = 8/35· (N+l) (3.12) 
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where the factor 1/2 is the ratio of internal keys per external nodes 

for a father node of this type. Similarly for twb-key and three-key 

father nodes the number of keys is: 

Q·(N+l)·2/3 = 3/7· (N+l)·2/3 = 2/7·(N+l) 

R·(N+l)~3/4 = 4/35·(N+l).3/4 = 3/35·(N+l) 

It follows directly that the number of nodes of each type is: 

(8/35) 

(1/7) 

(1/35) 

(N + 1) nodes containing one key 

(N + 1) nodes containing two keys 

(N + 1) nodes containing three keys 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3 .17) 

The total number of keys in the lowest internal level is obtained by 

summing the values in (3.12), (3.13), and (3.14): 

(8/35+2/7+3/35)· (N+l) = 21/35·(N+l) = 3/5·(N+l) (3.18) 

Likewise~ the nuniber of nodes in the bottom internal level is the sum 

of (3.15), (3.16), and (3.17): 

(8/35+1/7+1/35)·(N+l) = 14/35.(N+l) = 2/5·(N+l) (3.19) 

The number of keys in the upper levels of the tree is one less than the 

number of nodes in the lowest level, or: 

2/5·(N+l)-l = 2/5·N=3/5 

The utilization of the bottom internal level is: 

3/S·(N+l)keys/3·2/3·(N+l)key slots= .5 

(3. 20) 

(3. 21) 

This utilization, when thought of in terms of individual nodes, means 

that the average number of keys per node at the bottom internal level 

is 1.5. The average degree of branching from these nodes is one greater 

than the average number of keys or 2.5. This can be confirmed by 

dividing the total number of branches out of the bottom internal level 

by the expected number of nodes in that level: 

(N + 1) I [2/5) . (N + ID= 5/2 = 2.5 (3.22) 
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It must be remembered that the above analysis applies. rigorously only 

to the bottom internal level of a tree. The bottom level of the 4-3 tree 

analyzed above is actually an interpretation of the bottom a-level 

of an SBB-tree~ 

Analysis of Upper Tree Levels 

An attempt to thoroughly analyze more than the lowest level of a 

4-3 tree using Markov chain analysis quickly grows out of manageable 

proportions due to the excessive number of distinct states in which 

an external node may be classified. For analysis in terms of only 

one additional level above the lowest there would be 117 different 

combinations of grandfather and father nodes and the addition of 

higher levels increases this number combinatorially. 

In order to simplify the analysis, the assumption of the 

probabilistic independence of tree levels that was made in chapter 

two for 3-2 trees will be applied here to SBB-trees interpreted as 

4-3 trees. As before, it must be pointed out that this assumption is 

not valid in a rigorous mathematical sense but approximates the true 

situation. In effect it yields an approximate model of behavior. 

Making use of this simplifying assumption allows the extension 

of the results obtained for the behavior of the bottom internal 

a-level of an SBB-tree to the SBB-tree as a whole. It is then 

possible to estimate the expected number of a-levels for an SBB-tree 

of N keys. If the average number of keys per tree node is 1.5, the 

average branching from each node is 2.5 and the expected number of 

keys (N) for a tree of m levels can be expressed approximately 

as the geometric progression: 



o 1 m-1 
N = (l.5)·(2.5) +(1.5)·(2.5) + ... +(1.5)·(2.5) 

Multiplying the above through by 2.5 gives: 

2.S·N = (1.5) · (2.5) 1+(1.5) · (2.5) 2+ ••. +(1.5) · (2.S)m 

subtracting (23) from (24) yields: 

or: 

m 
(2.S)·N~N = (l.5)•(2.5) -(1.5) 

m N = (2.5) - 1 

Thus for an SBB-tree of N keys the appro.ximate expected number of 

a-levels is given by: 

m = log2. 5 (N + 1) 
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(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

This result, however, ignores the P-levels within a given a-level 

which add additional key comparisons in the search paths of an SBB-tree. 

If .the expected number of key comparisons necessary to traverse a given 

o-level is calculated, this value will be equal to the average number of 

binary tree levels present in an SBB-tree o-level. The traversal of 

a oni::;-key node requires one comparison and occurs with a probability 

of 16/35 according to the value of PN+l in (3.11). The traversal of a 

three-key node requires two comparisons and occurs with a probability 

of 4/35. Traversal of a three key node occurs with a probability of 

3/7; however, one-third of these traversals will require only one node 

comparison while two-thirds will require two comparisons. This is due 

to the fact that of the three equally likely a-pointers out of the 

o-level, two are subsequent to the p-pointer within the o-level. Thus 

the average number of node comparisons for each a-level is the sum of 

the average numher of one node comparisons, 

lh/~S ~ S/~S " ~1/3S = ~/S 
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and twice the number of two node comparisons, 

2 . (4/35 + 10/35) = 28/35 = 4/5 (3.29) 

The result is 7/5 or 1.4 binary tree levels per SBB~tree a-level, or 

1. 4 · log2. 5 (N+l) binary tree levels for an SBB,..tree of N keys. Knuth 

(7) has shown that the expected path length to an external node for 

completely balanced binary trees is approximately log2N. Since 

completely balanced trees are a subset of SBB-trees in the binary 

tree sense it would be expected that for an identical number of keys 

the expected path length to an external node in an SBB-tree would be 

somewhat larger. Forming the ratio of the two values and simplifying 

yields: 

1.4 · log2•5N 

log2 N 

log10 2 
= (1.4) log10 2.5 1.06 (3.30) 

The analysis thus seems to give an intuitively plausible approximation 

to the expected performance of a randomly built SBB-tree but it needs 

to be subjected to empirical testing. 

The fact that the similar analysis of 3-2 trees in Chapter II is 

supported by empirical evidence lends credence to the results given 

here, however. 



CHAPTER IV 

ANALYSIS OF AVL TREES 

As stated in chapter one, AVL trees are a class of balanced 

binary trees for which the maximum number of levels in the left and 

right subtrees of any node differ by no more than one. If this 

difference becomes greater than one at any node when a new key is 

inserted in the tree, then a restructuring process must be applied to 

nodes such that the proper balance is regained. Basically there are 

two operations used to accomplish this rebalancing, rotation and 

double rotation. 

Rotation is used as shown in Figure 18, where triangular nodes 

represent arbitrary subtrees of height h or h+l as labeled. In 

Figure 18a, the left subtree of node B, which has node A as its root 

node, has a height of h+2 while the right subtree has a height of h. 

In order to rebalance the tree, node A, the root of the left subtree, 

becomes the root of the tree, while node B, the previous root of the 

tree, is rotated to the position of root node for the right subtree. 

The right subtree of node A before rotation becomes the left subtree 

of node B after rotation. The result is a balanced tree with root node 

A. This operation will work unless a tree becomes unbalanced in the 

manner shown in Figure 19a. If a simple rotation were used in this 

case the resulting tree would also be unbalanced because instead of 

shortening the subtree of maximum height, it would merely shift it 
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a.) Unbalanced AVL Tree b.) Rebalanced AVL Tree 

Figure 18. AVL Tree Rotation Process 

to the other side of the tree. To avoid this problem the double 

rotation process shown in Figure 19b and 19c is used. A simple 

rotation is applied first to the largest subtree of the unbalanced 

tree and then to the tree itself. The result (Figure 19c) is a 

balanced AVL tree with root node B. The rotate and double rotate 

operati?ns also apply to the reflections of the trees of Figures 18 

and 19 and may be used at any level of an AVL tree where an imbalance 

occurs. 

Leaf and Semi-leaf Node Analysis 
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The concept of external node classification may be applied to AVL 

trees. A leaf and semi-leaf analysis suggests three classes of 

external nodes as pictured in Figure 20. Those nodes labeled 1 have 

leaf node fathers and semi-leaf node grandfathers. Those nodes 

labeled 2 have semi-leaf node fathers. The remainder of the nodes are 

labeled 3 and have leaf node fathers but their grandfathers are not 



a.) Unbalanced AVL Tree 

b.) AVL Tree After First Rotation Step 

c.) AVL Tree After Second Rotation Step 

Figure 19. AVL Tree Double Rotation Process 
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semi-leaf nodes. 

"' Close observation of the relationships between these classes yields 

the fact that every semi-leaf node has one son that is an external node 

of class 2 and two grandsons that are external nodes of class 1. 

Therefore, there are always twice as many class 1 external nodes as 

there are class 2 external nodes. Using the method of analysis as 

extended in chapter three, PN+l' QN+l' and ~+l will represent the 

fraction of external nodes in classes 1, 2, and 3 respectively for an 

arbitrary AVL tree containing N keys. As before, for a tree of N keys, 

there will be N+l external nodes. The possible changes that can occur 

in external node states when a key is inserted in an AVL tree are 

displayed in Figure 21. The trees shown result from inserting a new 

key in an external node from each of the tree classes in the tree of 

Figure 20. Figure 2la indicates that insertion in a class 1 external 

node causes the loss of two class 1 nodes, the loss of one class 2 node, 

the addition of four class 3 nodes, and the addition of one to the total 

number of external nodes. This particular insertion requires a double 

rotation, but the results would be the same for a simple rotation. 

For insertion in a class 2 external node, Figure 2lb shows that two 

class 1 nodes are lost, one class 2 node is lost, four class 3 nodes 

are gained, and one external node is added to the total. This 

demonstrates that insertion in a class 2 external node has the same 

effect on an AVL tree with respect to its set of external nodes as 

insertion in a class 1 node. Finally, insertion in a class 3 external 

node has the effect of destroying two class 3 nodes, creating two 

class 1 nodes, creating one class 2 node, and creating one additional 

external node in the system. This is depicted in Figure 2lc. Rotation 



Figure ~O. Example AVL Tree with Classified External 
Nodes 
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and double rotation occurring at levels higher than the lowest possible 

rotation level will cause arrangement of subtrees, but as shown in 

Figure 22, these will not affect the number of external nodes in any 

given class. If these observations are used to formulate the state 

transition equations for an AVL tree containing N-1 keys before insertion 

and N keys after insertion the resulting set of equations is: 

(N+l)·PN+l = (N·P )-(2·P )-(2·Q )+(2•R ) (4.1) N N N N 

(N+l)·QN+l = (N·Q )-(l·P )-(l·Q )+(l·~) (4.2) N N N 

(N+l) ·~+l = (N·~)+(4·PN)+(4·QN)-(2·~) (4. 3) 

In order to simplify the analysis, this set of three equations can be 

reduced to two equations by utilizing the relationship between class 1 

and class two external nodes: 

p = 2Q ( 4. 4) 

The simplification can be accomplished by defining 

S=P+Q=3·Q (4. 5) 



a.) After Inserting Key 15 in a Class 1 External Node 

b.) After Inserting Key 25 in a Class 2 External Node 

c.) After Inserting Key 45 in a Class 3 External Node 

Figure 21 .. AVL Trees Resulting from Insertion in Each of the 
. External Node Classes of Figure 20 
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and substituting for P plus Qin the sum of equations (4.1) and (4.2) 

and in equation (4.3). The resulting equations are: 

( 4. 6) 

( 4. 7) 

Rearranging (4.6) and (4.7) in matrix format yields: 

N-3 4 
N+l N+l 

(SN+l' ~+l) = (SN' RN)· 
3 N-2 

(4. 8) 

N+l N+l 

An interesting observation can be made at this point by comparing the 

transition matrix in equation (4.8) above with the transition matrix 

derived for 3-2 trees in Chapter II. The two matrices are identical. 

\ 
.· \ :~ 

i 3 \ i 3\ 
'-----",/ -·· 

b.) After Restructuring 

a.) Before Restructuring 

Figure 22. Comparison of the Number of External Nodes In the 
Various Classes Following Restructuring at a 
Level Higher than the Lowest Possible Rotation 
Level 
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This means that the stable probability vector values for (4.8) are the 

same as those for 3-2 trees, (3/7, 4/7). Using equations (4.4) and (4.5) 

to transform the value obtained for S, 3/7, back into values for 

P and Q, gives the long term probabilities for all of the original 

three classes of external nodes as: 

PN+l = 2/7 QN+l = 1/7 (4. 9) 

It may further be observed that the probability that an external node 

descends from a leaf node is equal to the sum of PN+l and RN+l: 

PN+l + RN+l = 6/7 ( 4 .10) 

It follows that the probable number of external nodes descending from 

leaf nodes for an AVL tree of N keys asymptotically is: 

(N+l) · 6/7 · ( 4. ll) 

and since. there are two such descendants from each leaf node the 

probable number of leaf nodes would be: 

(N+l) · 3/7 ' ( 4 .12) 

For support of the validity of the above analysis reference is 

made to an exhaustive combinational analysis of ten key balanced trees 

by Knuth (7, p. 462). Knuth's analysis gives the exact probability of 

one-seventh that when the tenth item is inserted in the tree, no 

imbalance will occur at its father node. This corresponds to insertion 

at a class 2 external node position for which the probability value 

obtained above is also one-seventh. Insertion in a class 1 external 

node position, for which the probability shown in equations (4.9) is 

two-sevenths, corresponds to the situations where insertion causes 

an imbalance at the grandfather node. Knuth also obtained two-sevenths 

as the exact probability for a ten key balanced tree. 



Balanced Trees as a Proper Subset of SBB-Trees 

One of the properties of the class of SBB-trees as they were 

defined in the preceding chapter is that it contains the class of 

balanced trees (AVL trees) as a proper subset. This means that all 
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AVL trees can be represented·as SBB-trees, but not all SBB-trees are 

balanced trees. Bayer (2) proves these facts by presenting an algorithm 

which will translate all possible AVL trees into SBB-tree format and 

by giving an example of an SBB-tree that is not balanced to show that 

the subset is a proper subset. A description of th~ algorithm for 

translating an AVL tree to SBB-tree format and some examples of 

various AVL trees and their SBB-tree counterparts follows. 

To convert a given balanced tree to an SBB-tree, the height of 

the tree must first be determined. If the height of the tree is odd 

then the pointers from the root node to the left and right subtrees 

are both converted too-pointers (downward pointers). If the height 

of the tree is even then the heights of the left and right subtrees 

must be determined. Once they are determined, they are compared; if they 

are equal then the pointers from the root node to the left and right 

subtrees are both converted top-pointers (horizontal pointers). If 

the subtree heights are not equal the pointer from ~he root node to the 

subtree of greater height is converted to a p-pointer. The pointer to 

the lesser subtree becomes a o-pointer. The algorithm is then applied 

recursively to the subtrees until all pointers in the balanced tree 

have been set. To demonstrate this, a step-by-step conversion of the 

balanced tree of Figure 23a is shown in subsequent trees of Figures 23 
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(b-d). The tree of Figure 23a with root node D has a height of three 

which is odd so both pointers to the subtrees of node D are converted 

to a-pointers as in Figure 23b. The subtree with root node B is of 

even height (two) and both of the subtrees of node B are of equal height 

(one); therefore, the pointers to the subtrees of node Bare both 

p-pointers as in Figure 23c. The right subtree of node D which has 

root node E is also of height two but its left subtree zero height 

while its right subtree has a height of one. The pointer to the larger 

right subtree thus becomes a p-pointer. The pointer to the left 

subtree, which is an external node in this case, is a a-pointer. These 

steps are shown in Figure 23d. Leaf nodes can always be considered 

as trees of height one so that pointers to external nodes are always 

a-pointers. The proof that this algorithm works for all balanced 

trees is given by Bayer (2, p. 295). By observing the SBB-tree of 

Figure 24 it is easily seen that not all SBB-tree are balanced trees. 

The path from root node B to leaf node G contains four nodes while the 

path from B to A contains only two. 



a.) Example Balanced Tree 

b.) Pointers from Node D Converted to SBB-Tree Format 

c.) Pointers from Node B Converted to SBB-Tree Format 

c.) Pointers from Node B Converted to SBB-Tree Format 

Figure 23. Conversion of AVL Pointers to SBB-Tree Format 
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Figure 24. An SBB-Tree That is not a Balanced Tree 

SBB-Tree Interpretation of AVL Maintenance 

Operations 
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As shown in the previous section, any balanced tree can be 

represented as an SBB-tree. However, the analysis of SBB-trees presented 

in the preceding chapter cannot be applied directly to balanced trees 

because the maintenance algorithms on which the state transition 

equations are predicated allow the SBB-trees to become unbalanced when 

insertions are made. An example of this incongruity is outlined in 

the trees in Figure 25. Insertion of key S in the balanced tree of 

Figure 2Sa results in the balanced tree of Figure 2Sb. The SBB-trees 

derived from both of these balanced trees by application of the algorithm 

of the last section are shown to the right of each tree. For comparison 

the SBB-tree obtained by inserting key 5 in the SBB-tree of Figure 25a 

using the maintenance algorithms described in chapter three is shown 

in Figure 25c. Not only does this tree fail to correspond to the 

SBB-tree of Figure 25b, but it fails to remain a balanced tree. The 

correlation between insertion in an AVL tree and the resulting effects 

on SBB-tree models of these balanced trees must be investigated before 



an SBB-tree state tran.sition model can be derived that is directly 

applicable to. AVL analysis. 
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There are four basic situations in which insertion occurs in an 

AVL tree. In order of inspection they are: 1) .insertion below a leaf 

node that has a semi-leaf father, 2) insertion below a semi-leaf, 

3) insertion below a leaf that has a brother node which is not a leaf, 

and 4) insertion below a leaf that has a brother node which is a leaf. 

Inspecting first the case of insertion below a leaf node that has 

a semi-leaf father as pictured in Figure 26a, it is evident that this 

type insertion will always cause an imbalance at the grandfather node 

of the newly inserted node, node 50 in the example. A rotation or 

double rotation at this node is all that is required to rebalance the 

tree as shown in Figure 26a-b. Inspection of the resi.il ting SBB-trees 

which are represented as 4-3 trees in Figure 26 shows that the 

corresponding maintenance operation for these trees is merely the 

creation of a three key node from a two key node by internally shifting 

the old keys and inserting the new one. Figure 27 demonstrates the 

second possible insertion situation. This situation will never cause 

an AVL tree imbalance and its corresponding SBB-tree operation is 

insertion in the empty key slot of a two key node. The similarity 

between the situations of Figures 26 and 27 was evidenced in the section 

of this chapter dealing with leaf and semi-leaf analysis when the 

transition equations for these two types of insertion were combined to 

simplify the analysis. 

The third insertion situation--insertion below a leaf node which 

has a brother that is not a leaf node--will never cause an imbalance 

because the subtree containing the non-leaf brother has a greater 



a.) Example AVL Tree and Corresponding SBB-Tree 

b.) AVL Tree and Corresponding SBB-Tree Obtained by 
Inserting Key 5 in the AVL Tree of a.) 
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c.) SBB-Tree Obtained by Inserting Key 5 in the SBB-Tree of 
a.) 

Figure 25. Comparison of Key Insertion Results for AVL Trees 
and SBB-Trees 
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40 

10 20 30 50 60 

a.) Example AVL Tree and Corresponding SBB-Tree 

40 

10 ~~-5_5~6o_J 
b.) AVL tree of a.) and Corresponding SBB-Tree After 

Inserting Key 55 and Performing a Double Rotation 

10 

c.) AVL Tree of a.) and Corresponding SBB-Tree After 
Inserting Key 65 and Performing a Single Rotation 

Figure 26. Insertion Below a Leaf Node that has a Semi-Leaf Father 
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Figure 27. AVL Tree of 26a and Corresponding SBB-Tree After 
Inserting Key 45 Showing Insertion Below a Semi
Leaf Node 
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40 

10 I 20 30 50 

a.) Example AVL Tree and Corresponding SBB-Tree 

I ;40 I I 
,-

10 20 , _ ___,_s_o [~o j 

b.) AVL Tree of a.) and Corresponding SBB-Tree After Inserting 
Key 60 

Figure 28. Insertion Below a Leaf Node that has a Brother Which is 
not a Leaf Node 
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height than the subtree in which the insertion is made. Insertion 

of key 60 below the node containing key 50 as depicted in Figure 28 

demonstrates this situation. The corresponding SBB-tree operation will 

always be inserted in one of the empty key slots of a one key node. 

This third situation as well as the first and second situations have 

required only simple internode maintenance in the corresponding 

SBB~tree interpretations. This, however, is not the case for the 

fourth situation. 

Insertion below a leaf node which has a brother node that is also 

a leaf may cause an AVL tree imbalance in some instances and not in 

others. If an imbalance does occur it will always :occur at some node 

higher in the tree than the grandfather of the node being inserted. 

The trees diagrammed in Figure 29 show the different! situations that 

may occur when an imbalance arises. If a single rotation is required 

to restructure the AVL tree, the corresponding SBB-tree operation will 

be an overflow of two keys from the node in which the insertion occurs 

to its immediately adjacent brother. This is shown in Figure 29b. 

If a double rotation is required to restructure the AVL tree after 

insertion there are two possible SBB-tree operations that may occur. 

These are shown in Figures 29c and 29d. In the first case key 25 

is inserted in the left subtree of the AVL tree of Figure 29a. After 

restructuring it remains in the left subtree and the corresponding 

SBB-tree operation is that of a one-key overflow to an immediately 

adjacent brother node. ·In the second case key 35 is inserted in the 

left subtree of the AVL tree of Figure 29a but after restructuring 

it has been shifted to the right subtree. This corresponds to a two 

key overflow in the SBB-tree representation. The fact that the number 
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40 

10 ,_·60 J __ ] 
a.) Example AVL Tree and Corresponding SBB-Tree 

60 

b.) AVL Tree of a.) and Corresponding SBB-Tree After Inserting 
Key 15 and Performing a Single Rotation 



10 20 

c.) AVL Tree of a.) and Corresponding SBB-Tree After 
Inserting Key 25 and Performing a Double Rotation 

30 

65 

60 

10 20 35 40 60 

d.) AVL Tree of a.) and Corresponding SBB-Tree After 
Inserting Key 35 and Performing a Double Rotation 

Figure 29. Insertion Involving an Imbalance at a Node Above the 
Grandfather Level 



of keys in the second level node of the SBB-tree representation is 

not changed in any of the above three situations is significant. It 

means that the second level may be ignored in forming transition 

relationships for these cases. This, however, is not the situation 

for insertions of this type which do not cause imbalance in the AVL 

tree. 
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Cases where the fourth type of insertion occurs in AVL trees and 

no imbalance arises correspond in the SBB-tree sense to insertion in 

a full node where the adjacent brother node does not have enough empty 

k·ey slots to accept an overflow. Figure 30 illustrates one example of 

such a situation. The node in which insertion was attempted was full 

so that a node split occurred with key 20 which previously occupied 

the center position of the node being promoted to the next cS-level 

up. This instance in which the number of keys in a n~de in the second 

level is changed makes impossible an SBB-tree analysis such as the 

one in chapter three which involved only the lowest internal level. 

The need for maintaining a knowledge of the number of keys in brother 

nodes at the bottom level due to overflow considerations is the basic 

cause of this problem. Figure 31 demonstrates that insertion situations 

of this last type described may cause.node changes in any level above the 

bottom internal level; therefore, an analysis based on the two lowest 

internal levels would still not give a completely accurate result. 

Here as before it is the categorization of nodes that determines the 

degree of difficulty of the analysis to be done. 
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10 

a.) An Example AVL Tree and Corresponding SBB-Tree 

20 40 

30 

b.) AVL Tree of a.) and Corresponding SBB-Tree After Inserting 
Key 15 

Figure 30. Insertion Involving No Imbalance in AVL Tree, but Involving 
a Node Split in the Corresponding SBB-Tree 
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a.) An Example AVL Tree 

10 20 

b.) SBB-Tree Corresponding to the Tree of a.) Before Insertion of 
Key 15 

so 

20 30 

25 I 351 ~o 145 I ~ I 15 I ~o i s5 I 
c.) SBB-Tree Corresponding to the Tree of a.) After Insertion of 

Key 15 

Figure 31. AVL Insertion with Corresponding SBB-Tree Maintenance at 
Higher Levels 
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Further Analysis of AVL Trees 

It has been shown above that an AVL tree may be interpreted as an 

SBB-tree which in turn may be interpreted as a 4-3 Tree. Using a 4-3 

tree model for AVL trees and ignoring any rotations that may occur at 

AVL tree levels higher than three above the inserted node, a probabilistic 

analysis may be conducted in the following manner. 

States are assigned to the external nodes according to their AVL 

tree relationships. They are not assigned as before, according to the 

number of keys in the father node of the B-tree representation. An 

external node is in state #1 if it has a leaf node father and a semi-

leaf node grandfather. It is in state #2 if it has a semi-leaf node 

father. If an external node has a leaf node father which has a leaf 

node brother than it is in state #3. State #4 consists of external 

nodes having a leaf node father which has a semi-le~f node brother and 

state #5 consists of external nodes having a leaf node father whose 

brother has two sons. Examples of external nodes in each of these 

states can be seen in Figure 32. 

Formulation of the state transition equations proceeds as in 

previous analyses relating the state of the (N+l) external nodes 

after insertion to the states of N external nodes immediately before 

an insertion. The resulting equations are: 

(N+l)·PN+l (N·PN)-(2·QN)+(2·RN)+(2·UN)+(2·VN) (4.13) 

(N+l) ·QN+l = (N·Q )-(l·P )-(l·Q )+(l·R )+(l·U )+(l·V ) ( 4. 14) N N N N N N 

(N+l)·RN+l = (N·RN)+(4·PN)+(4·QN)-(4·RN)+(4·VN) (4.15) 

(N+l)·ll N+l (N·llN)+(2.RN)-(2·llN)-(2. (3/2) ·lJN) (4.16) 
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Figure 32. Classification of AVL Tree External Nodes 
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(N+l)·VN+l = (N·VN)+(2·(3/2)·UN)-(2·VN)-(2·(4/2)·VN) (4.17) 

The coefficients obtained for equations (4.13) and (4.14) are straight-

forward, but those obtained for equations (4.15), (4.16), and (4.17) 

require further explanation. In equation (4.15) the insertion of a 

new node in an external node position which is in either state #1 or 

state #2 will cause the addition of four external nodes in state #3 

(terms (4·PN) and (4·QN). The insertion of a new node in a state #3 

external node position causes the loss of four state #3 external nodes 

unless those nodes are arranged in the situation depicted by the subtree 

with root node R in Figure 32. In this situation restructuring occurs 

and the four state #3 external nodes are retained. Writing this in 

terms of external node probabilities, four external nodes are subtracted 

for all cases of insertion in state #3 external nodes as (-4·RN) and 

those cases where the state #3 and state #5 nodes occur in combination 

are added back as (4·VN). The same type of situation arises in 

equation (4.16). Two state #4 external nodes are gained whenever a 

new node is inserted in a state #3 external node position (term (2·~)) 

and two state #4 external nodes are lost every time a new node is 

inserted in a state #4 external node position (term (-2·UN)). Two 

state #4 external nodes will also be lost when insertion occurs in a 

state #1 or state #2 external node position and these external nodes 

are arranged in combination with a state #4 external node as in the 

subtree with root node C in Figure 32. This situation arises with 

probability UN and as can be seen in Figure 32 there are three 

external node positions below nodes A and B and only two below node 

D. Multiplying this ratio by the probability of the situation gives 

(3/2·UN) for the probability of losing two state #4 external nodes 
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(term (-2·(3/2)·UN)). Two state #4 external nodes will not be lost 

if insertion occurs at state #1 and state #2 external nodes which are 

without a corresponding state #4 external node as is the case for the 

external nodes below nodes G and F in Figure A. Any time insertion 

occurs as in the last situation discussed for equation (4.16) two state 

#5 external nodes will be created (term (2'(3/2)'UN) in equation (4.17)). 

Two state #5 external nodes are destroyed when insertion occurs in a 

state #5 external node position (term (2·VN)). Two such external nodes 

are also lost upon insertion in a state #3 external node when such an 

insertion causes restructuring. This situation, the same as discussed 

for equation (4.15), occurs with probability VN and the ratio of state 

#3 external nodes to state #5 external nodes is four to two. The 

resulting term in equation (4.17) is (-2·(4/2)·VN). 

Analysis conducted earlier in this chapter on the leaf and semi

leaf nodes of AVL trees showed the limiting probability for.state #1 

and state #2 nodes to be three-sevenths (P+Q = 3/7) and the probability 

for the remaining states to be four-sevenths (R+U+V = 4/7). Using 

these results, equations (4.13)-(4.17) can be solved for the limiting 

probabilities of states #1-#5 as follows: 

Rewriting equations (4.16) and (4.17) gives: 

U = (l/3)·R 

V = (3/7)·U = (3/7)· (l/3)·R = (l/7)·R 

Substituting the expressions for U and V into the relationship 

R+U+V = 4/7 

gives: 

R+(l/3)·R+(l/7)·R = 4/7 

(4.18) 

(4.19) 

( 4. 20) 

(4.21) 
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Solving for- R yields: 

R == 12/31 
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( 4. 22) 

Substitution of the value of R in equations (4.18) and (4.19) yields: 

u = 4/31 

v ::: 24/217 

As in the previous analysis of states #1 and #2: 

p = 2/7 

Q = 1/7 

( 4. 23) 

( 4. 24) 

( 4. 25) 

(4.26) 

Relating these results to the 4-3 tree model, it can be seen from 

Figure 33 that (P+Q) is the probability that an external node has a 

two-key father node; that (U+V) is the probability that an external 

node has a one-key father node; and that R is the probability that an 

external node has a three-key father node. Thus: 

P+Q = 3/7 (4.27) 

U+V = 40/217 

R = 12/31 

For a tree of N keys the expected number of keys in one-key father 

nodes in the bottom internal level is: 

(U+V)· (N+l)·(l/2) = (40/217)· (N+l)· (1/2) = 20/217 

(4.28) 

( 4. 29) 

( 4. 30) 

where the factor 1/2 is the ratio of internal keys to external nodes 

for a father node of this type. Similarly for two- and three-key father 

nodes the expected number of keys will be: 

(P+Q)· (N+l)-(2/3) = (3/7)·(N+l)·(2/3) = 2/7· (N+l) 

(R)· (N+l)' (3/4) = (12/39)·(N+l)· (3/4) = 9/3l·(N+l) 

(4.31) 

( 4. 32) 

Dividing each of the results in equations (4.30)-(4.32) by the number 

of keys in the corresponding node type gives the expected number of 

nodes of each type in the bottom internal level as: 
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(20/217)·{N+l) nodes containing one key 

(1/7)· (N+l) nodes containing two keys 

(3/31).(N+l) nodes containing three keys 
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(4.33) 

(4.34) 

(4.35) 

Summing the values in (4.30)-(4.32) gives the expected number of keys in 

the bottom internal level as: 

(20/217+2/7+9/3l)·(N+l) = 145/217· (N+l) (4.36) 

Likewise the expected number of nodes in the bottom internal level is 

the sum of values from (4.33)-(4.35): 

(20/217+1/7+3/31)· (N+l) = 72/217· (N+l) 

The utilization at the bottom internal level is: 

145/217· (N+l)Keys/3· (72/217)·(N+l)Key slots~ .6713 

From the utilization the average number of keys per node can be 

calculated as: 

.6713·3 = 2.014 keys/node 

The average branching from a node is one greater than this or: 

2.014+1 = 3.014 external nodes/node 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

Assuming probabilistic independence of levels and extending the 

above results to all levels of the tree allows approximation of an 

expected number of levels in a tree of (N+l) keys. Following a 

development similar to that used in Chapter three to arrive at an 

expression of the approximate expected number of tree levels (m) gives: 

m = log3 . 014 (N+l) (4.41) 

for the 4-3 tree interpretation of AVL trees. The average number of 

binary tree levels or key comparisons per 4-3 tree level may be 

calculated also following the logic of chapter three as the average 

number of one-key comparisons plus twice the average number of two 

key comparisons, or: 
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40/217+01/3). (3/7)+ (2/3). (3/7)+(12/31) ·2 = 1,.673 

Multiplying the results of equations (4.41) and (4.42) gives an 

(4. 42) 

approximate expected number of binary tree levels for the 4-3 tree model 

of an AVL tree as: 

l.673·log3_014 (N+l) 

Comparing this with the expression for expected path length to an 

external node for a completely balanced binary tree yields: 

1.673 log3•014 (N+l) 

log2_0 (N+l) 

log102. 0 
= (1.673) ~ 1.055 log103.014 

This result is dependent on several assumptions: 

( 4. 43) 

( 4. 44) 

1) All 4-3 tree levels have identical asymptotic characteristics 

2) All 4-3 tree levels are statistically independent 

3) All AVL rotations are ignored at levels higher than three 

levels above the inserted node. 

Qualitatively the effect of this last assumption can be examined in 

the example of Figure 34. Here a double rotation occurs at a level 

higher than three above the node creating the imbalance, node E. The 

only node states that are affected by the restructuring are states 

#4 and #5 and since these both correspond to one-key 4-3 tree nodes 

there is no immediate effect at this step on the 4-3 tree analysis. 

However, the probability that a state #4 or state #5 external node 

will be an insertion position at a later step in the process is 

affected and assumption 3) neglects this effect in the state transition 

equations. 

Nevertheless, the above analysis lends additional credence to the 

conjecture offered by Knuth (7, p. 460) that the average external 

path length of balanced trees is approximately log2N+.75 where N is the 



a.) An Unbalanced Tree Showing External Node Classifications 

b.) Tree of a.) After Double Rotation at Node D 

Figure 34. Effect of Rebalancing at Higher AVL Tree Levels 
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number of keys internal to the tree. 

It is known that, the path length to an external node in a balanced 

binary tree is bounded by 1.4404 lo&jN+2)-0.328 (7, p. 4S3), but the 

asymptotic average for this path length has never heen rigorously 

determined. Empirical evidence concerning this average supports 

the conjecture mentioned above. 

It is hoped that the analysis given here will be of some 

assistance in eventually resolving this matter. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 
I 

FOR FVRTHER RESEARCH 

A method has been presented in this study for analyzing search 

trees by utilizing probability concepts involving Markov chains. The 

development of this method is presented for randomly built 3-2 trees 

maintained without overflow. Extension of the method of analysis to 

the 4-3 tree interpretation of SBB-trees is then presented to provide 

a point of correlation between B-tree analysis and binary tree anlaysis 

as well as to show expanded applicability of the method. Finally, the 

behavior of balanced trees is inspected. In .all cases only the simplest 

of maintenance operations and state transition relationships are 

considered. The application of analytical results to all levels of a 

tree structure is based upon simplifying assumptions. Suggestions that 

the results of this type analysis are credible are based on comparisons 

with results of limited empirical testing. Extension of the method 

of analysis to a multilevel analysis as recommended below should, 

however, produce more refined results. 

There is a definite need for empirical testing of the SBB-tree 

data structure for comparison with the analytical results obtained in 

this ·paper. Some of the properties of this structure make it a prime 

candidate for further research. For example, the concepts of vertical 

and horizontal binary tree levels could be extended to obtain a 
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correspondence among classes of binary search trees and other multikey

multibranch node structures. This might allow an analysis technique 

developed for one type of structure to be extended to another via the 

correspondence. 

Several possible extensions of the method of analysis as presented 

offer areas for further investigation. The area bf key deletion is 

one example. It may be desirable in many cases to know the expected 

performance of a tree structure under conditions of insertions and 

deletions of keys according to some statist:l.cally determined pattern. 

This could also involve extension of the method to include provisions 

for tree structures in which the probabilities of the insertion 

positions are not uniformly distributed. The analysis of B-trees of 

higher branching order could be accomplished in a straightforward 

manner with the qnly difficulties arising from the number of equations 

involved and from the solution of these equations for the stable 

state probability values. The alleviation of these problems might be 

accomplished by the development of some generalized algorithms for 

generating the state transition equations, given the characteristics 

of a tree structure, and the application of appropriate methods for 

solving such large sets of equations. The analysis of external nodes 

in terms of higher tree levels implies a dramatic increase in the number 

and complexity of the state transition relationships. However, the 

ability to extend the analysis to multiple levels of a tree structure 

would eliminate areas of uncertainty introduced by the assumption of 

probabilistic independence of levels. There is also a need to analyze 

B-tree structures utilizing such maintenance operations as overflow 

and multiway splitting. Comparisons with empirical results of testing 
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on trees utilizing these types of operations would provide additional 

evidence concerning the usefulness of the method. 

Other legitimate questions may be raised relating to how a 

structure proceeds from its initial state to a stable state via the 

Markov chain process. The concepts presented hereir~ state that for 

a data structure with a given initial state, maintenance defined by 

a Markov chain will ultimately result in a stable state. Research 

relating rate of convergence to the initial state, the type of 

structure, the size of the structure, etc. is needed. In addition, 

there is need for research on other statistical factors besides the 

asymptotic averages on which this report has concentrated. Analytical 

determination of variance and comparison with results of empirical 

variances obtained in testing is a good example. 

The number of areas in which additional work is desirable 

indicates in part the need for further research in the field of 

data structures analysis. Hopefully the topics covered in this study 

will provide insight on these matters. 
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APPENDIX 

The method of analysis described in chapter two and used through

out this study makes use of several theorems relating to nonhomogeneous 

Markov chains. The theorems and proofs given are the unpublished work 

of the author's advisor, Dr. James R. Van Doren. These theorems are 

extensions to nonhomogeneous Markov chains of theorems by Kemeny and 

Snell (5) for homogeneous Markov chains. 

Theorem 1. 

If T(n) is a 2x2 probability transition matrix which is dependent on 

n and which has no zero entries; and, if certain elements of T(n) 

are defined as follows: 

1) e: is the smallest entry in T(n) n 

2) X is any two-component column vector 

3) MO is the larger element of X 

4) mo is the larger element of X 

5) Ml is the larger element of the vector T(n)"X 

6) ml is the smaller element of the vector T(n)·X 

the the following are true: 

1) M1.2_ MO 

2) m1.::_ m0 

3) M1- m1 < (l-2·e:n)(M0-m0) 

Proof of Theorem 1. 

Since T(n) is a probability transition matrix its row sums must 

equal one; thus, the elements of any row may be represented as (a, 1-a) 
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where e:n~ a ~l and e:n~ 1 - a < 1. The elements M1 and m1, of the product 

vector T(n)·X, will therefore have the form 

a·m +(1-a)·M 
0 0 

and ariy convex combination of two numbers lies between them. If the 

element in question is M1, then 

M1 = a·m0+(1-a)·M0 

= M0~a(M0-m0 ) 

Substituting e: for (a) where a > e: > 0 yields n - n 

This proves part 1). 

Similarly if the element in question i.s m1, then 

m1 = a·m0+(1-a)·M0 

= (a-l).·M0+m0 

= (l-a)(M0-m0)+m0 

Substituting e:n for (1-a) where (1-a) -~ e:n > 0 yields 

ml ~ e:n (Mo-mo) +mo ~mo 

This proves part 2). 

Reversing the second inequality 

-ml ~-mo - e:n(Mo-mo) 

and adding it to the first inequality 

yields 

Ml -ml ~ Mo-mo-2. e:n (Mo-mo) 

~ (M0-m0)(1-2·e:n) 

This proves Part 3). 

Q. E. D. 



Theorem 2 

If p = 
n 

n 
n T(i) 

i=k 
where {T(i): i=k, ... ,nJ 

is a sequence of 2x2 probability matrices which have nonzero 

entries and are commutative; and, if the sequence: 
n 

{IT (l-2·E.) ; n=k, .... } 
i=k 1 

where E. is the minimum entry in T(i), converges to zero, 
1 

Then the following are true: 

1) The sequence of probability matrices P has limit 
n 

lim P = A 
n 

n~ 

2) Each row of A has the same probability vectota where a= 

(a1 , a2), a1+a2 - 1, and a1 , a2 > 0. 

Thus: 

:~ = [: J 
Proof of Theorem 2. 
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Let P. be a two element column vector in which the j'-th component 
J 

is one and the other component is zero; and let M and m be the 
n n 

maximum and minimum components respectively of the column vector P ·P .. 
n J 

As defined above P =P 1 ·T(n) and due to the commutativity of the n n-

sequence, Pn = T(n)·Pn-l" Hence 

P ·p, = T(n)·P •pj 
n J n-1 

where Mn-land mn-l are the maximum and minimum components of Pn_ 1 ·Pj 

by definition. 

From Theorem 1 

M > M 
n-1- n and m < m 

n-1 - n 



which may be extended from k to n as 

and 

mk ~ mk+l < • • • ~ mn-1 .'.':_ mn 

Al so from Theorem 1 

for n > k 

Defining d by: 
n 

d - M -m n n n for n=k, .... 

where dk-1 = 1 

Then: d ~ (l-2·En)·dn-l < (1-2•£ )(1-2·£ )·d < n n n-1 n-2 

Rewriting in product form: 
n n 

d ~ dk-1 II (1-2·£.) n i=k 1 
= II (l-2°£.) 

. k 1 1= 
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By hypothesis this sequence converges to zero; therefore d approaches 
n 

zero as n approaches infinity. 

Thus P ·p. approaches a vector with identical components, say a .. 
n J J 

Since P ·p. is in fact the j-th column of P , P approaches a matrix 
n J n n 

with all rows identical. 

Since a. must follow the relationship m < a. < M by definition for all 
J n J - n 

n .:::_ K, and mk > 0 while Mk > 1, 0 < aj < 1. 

Since the row sums of P are one this must also be true of the limit. n 

Q. E. D. 

Application of Theorem 2: 

If 



i-1 3 
i+2 i+2 

T(i) = 
4 i-2 

i+2 i+2 

the the matrix product T(k) ·T(j) = T(j) "T(k) for k and j; any two 

values of i, because: 

[
-3 

.T(i) = l+i!2 4 

and . 32 will be the smallest 
1+ 

element of T(i), £ .. 
1 

Therefore: 

and since 

6 
(l-2·£i) = (l-i+2) = 

n 

i+6-2 i-4 i+l 
i+2 = i+2 < i+2 

• n i+l II (l-2°£.)< II i+2 . k 1 1= i=k n 
II n+l k+l k+2 n n+l 

i+2 = k+2 k+3 · · · "n+l n+2 i=k 
k+l 

= n+2 
n 

88 

which approaches zero as n approaches infinity, the p~oduct II(l-2°£.) 
i=k 1 

also approaches zero as n approaches infinity. 
n 

Thus the sequence II T(i), n=k, ... converges to some limiting 
i=k 

probability matrix with identical rows. 

Theorem 3 

If T(i), Pn' a, and A are defined as in Theorem 2. 

The the following are true: 

1) For any probability vector o 

a = lim o · P ·n n-+<x> 
2) is the unique probability vector such that 

a.·T(i) = a 

3) T(i)"A = A·T(i) =A 

Proof of Theorem 3. 

ff o is a two clement probability row vector then 



Since 

A =[al a21= llJ. (al, a) =lll ·a 
a 1 a~ 1 2 1 

the product 

Since o·P approaches o·A, o·P approaches ~. 
n n 

This proves part 1). 

P and T(i) are commutative so that 
n 

P ·T(i) = T(i)"P 
n n 

From Theorem 2, part 1) PN approaches A as n approaches 00 • Therefore: 

PN'T(i) approaches A·T(i) 

and T(i)·P approaches T(i)'A 
n 

and T(i)·A = A·T(i) 

Since T(i) is in essence a column of row probability vectors, it 
\ 

follows from Part 1) above that each row of T(i)"A is~ 

Therefore: T(i)·A = A·T(i) =A 

This proves part 3). 

Rewriting the equality of part 3) with A = I ~lgives 
[~ lT(i) =[~] 

Thus for each row of the product 

a'T(i) = a 

This proves part 2). 

The uniqueness of a can be shown since for any probability vector such 

that 13·T(i) = 13, 13·P approaches a according to Part 1) above. It 
n 

follows that if 13·T(i) = 13, 13·P = 13 and therefore a = 13. 
n 
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Q. E. D. 

By straightforward modifications the above theorems may be 

extended to.transition matrices of any dimension. Furthermore; the 

requirement that transition matrices have nonzero entries may be 

relaxed if it can be shown that there exists a transition path of the 

same length from any state to every state in the Markov chain. In 

effect this means that there must be a transition matrix with all 

nonzero entries which is the product of two or more transition matrices 

that may contain zero entries. 
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