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PREFACE 

In this thesis, the analysis and synthesis equations (Rigid Body 

Guidance, Path Point Generation and Function Generation) for a Geared 

Spherical Five-Link Mechanism are derived. Generalized solutions were 

formed for computer solution. Graphical results are presented for an 

analysis solution, and computer results are given for the synthesis 

problems. 
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CHAPTER I 

INTRODUCTION 

Industrial linkage problems are planar, spherical, and spatial. 

Beyer (1) states that spherical mechanisms are just as important in 

machine design as planer mechanisms. This indicates that the majority 

of industrial link.age problems can be satisfied by planar or spherical 

mechanisms. Synthesis of planer link.ages has reached a high level of 

sophistication and completeness. However, the development of synthesis 

procedures for spherical mechanisms is incomplete. The objectives of 

the present study is to develop closed form equations for the analysis 

and synthesis of a geared spherical five-link mechanism. This will 

complete to a large extent the synthesis problems for spherical 

mechanisms. 

A number of studies have been made on the analysis and synthesis 

of spherical mechanisms. Soni (2) developed the design procedures for 

a sphericai drag-link (four bar) mechanism. Suh (3) synthesized the 

spherical four-link mechanism with the use of the displacement matrix. 

Spherical six link mechanisms were synthesized for path generation by 

Hamid (4). And Kohli (5) designed spherical four-link and six-link 

mechanisms for multiple separated positions of a rigid body. Other 

significant contributions in the designing of spherical mechanisms 

have been made by Huang (6), Hartenburg and Denavit (7) and Yang (8,9). 

1 
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Displacement, velocity and acceleration analyses are considered. 

The synthesis problems included in the present study are: 

1. Rigid Body Guidance and Coordination of Input 

2. Path Point Generation and Coordination of Input 

3. Function Generation 

Chapter II presents a description of the geared spherical five

link mechanism, and, the development of analysis is given. Chapter III 

presents the synthesis procedures for the mechanism. Finally, in 

Chapter IV a summary of this study is given. 



CHAPTER II 

KINEMATIC ANALYSIS OF A GEARED 

SPHERICAL FIVE-LINK 

MECHANISM 

2.1 Introduction 

A geared spherical five-link mechanis is shown in Figure 1. 

Where M, A, B, C, and Qare points on the center of the revolute 

pairs. The vectors M, A, B, C, and Qare unit vectors passing from the 

center of the sphere to the respective points, M, A, B, C, and Q. 

These vectors are the axes of rotation of the revolute pairs. 

These vectors are also labeled as the kink-links of the spherical 

mechanism. The twist angles a. 's are the angles between two vectors 
J. 

denoting links where 

al = twist angle of input link MA 

a2 = twist angle of input link AB 

a3 = twist angle of coupler link BC 

a4 = twist angle of output link QC 

a5 = twist angle of ground link MQ 

The Gear Ratio N. is equal to the Ration Rl/R2 where Rl = Radius 

of the ground gear, G1 , and R2 = Radius of the moving gear, G2. This 

gives a displacement relationship of 

3 



Figure 1 . Nomenclature of a Geared Spherical 
Five- Link Mechanism 

4 



where S is the initial position of link AB. 

The rotations of the revolute pairs are measured relative to an 

extension of the previous link. All rotations are measured using the 

right-hand rule, about the unit vector from the center of the sphere 

through the revolute pair. 

2.2 Displacement Analysis of the Geared 

Spherical Five-Link Mechanism 

In kinimatic analysis the position of the components of the 

mechanism must be computed for a given mechanism. Closed-form dis

placement relationships are required to obtain all the possible geo

metric inversions of the mechanism. These relationships allbw the 

rotations of the links to be calculated for positions of the input 

link, MA. By computing the infinitesimal motion of the various links 

in terms of the infinitesimal motion of the input link MA, velocity 

and acceleration relationships may be obtained for the mechanism. 

2.3 Discussion of Analysis Technique 

The approach used for this analysis is screw motion. Various 

works have previously been developed by Roth (10), Chen and Roth (11, 

12), and Tsai and Roth (13, 14). In particular, the methods of suc

cessive screw displacements, Kohli (15), are used to perform the 

mechanism analysis. 

The mechanism is separated in two separate open chains by 

"disconnecting" the mechanism at one of the revolute pairs. In this 

5 
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study, the separation was made at revolute pair C. The chains are now 

rotated successively where all rotation angles e. i = 1, 
1 

5 are 

zero. This in effect stretches the links of the two open chains 

along a common axis. However, in spherical mechanisms the link lengths 

are zero, as described by Denavit and Hartenberg (7). The result is 

that all kink lengths (the vectors M, A, B, C, and Q) lie on a common 

plane. In the analysis presented, the mechanism was stretched along 

the Z axis forcing the kinks to lie in the X-Y plane. 

2.4 Loop Closure Equation 

By specifying M = 1 i + 0 j + 0 k, and specifying MQ as the fixed 

link, the positions of A, B, c1 , and c2 can be found (see Figure 2). 

The vectors are 

For 

M = i 
Q = cos (a5 ) i + sin (a5 ) j 

c2 = cos (a4 + a5) i + sin (a4 + a5) j 

A= cos (a1 ) i - sin (a1 ) J 
B = cos (al + a2) i - sin (al + a2) j 

c1 = cos (al + a2 + a3 ) i - sin (al + a2 + 

the loop closure equation, the unit vectors 

a3) j 

in each open chain 

are successively rotated: e.g. rotate c1 about B resulting in c1 ', 

then rotate cl I about A resulting in cl "' and rotate cl II about M 

to produce cl I II. Rotating c2 about Q yields c2 I. The mechanism was 

previously broken at pair c resulting in two vectors, cl and c2. 

These vectors are the same vector in the closed chain. By equating 

the rotated VeCtOrS c1 I 11 and c 2 I ' the loop ClOSUre equation iS 

obtained. The loop closure equation is: 
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Figure 2" Mechanism Unfolded Onto the X-Y Plane 
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cos 04 [cos e2 (cos e3 sl -sin e3 84 + 87) 

-sin 02 (cos 03 Tl -sin 03 T4 + "T7) 

+ (cos a3 u1 -sin 03 u4 + u7) ] 

-sin 84 [cos 02 (cos 03 s2 -sin 03 85 + 88) 

-sin e2 (cos 03 T2 -sin 03 "T5 + "Ta) (2.1) 

+ (cos 03 u2 -sin 03 u5 + u8) J 
+ cos e2 (cos 03 s3 -sin 03 86 + 89) 

-sin 02 (cos 03 T3 -sin 03 "T6 + T7) 

+ (cos 03 u3 -sin 03 u6 + u9) = 

cos e5 v1 + sin e5 v2 + v3 

The derivation of the loop closure equation and the constants are 

found in Appendix A.l. 

2.5 Displacement Analysis 

Freudenstein's displacement analysis is obtained by rearranging 

the loop closure equation so that the rotations of the other links are 

functions of the input rotation for a given mechanism. It is seen that 

the rotation of the input link AB is a function of the rotation of 

input line MA. The relationship is 

(2.2) 

Equation 2.1 is now in two unknowns, 04 and e5 for specified 

rotation angles of input link MA. To obtain an equation to compute 

the output displacement, e4 must be eliminated. This may be ac

complished by the following procedures. 

Let, 

x1 = f(e2 , e3 , Si' Ti' Ui) 

x2 = f(e2 , e3 , Si' Ti' Ui) 

i = 1, 4, 7 

i = 2, 5, 8 



x3 = f ( 6 2 , 6 3 , 

x4 = f( 65, Vi) 

S. , T. , U. ) i 
J_ J_ J_ 

i = 1, 2, 3 

so that equation 2.1 becomes 

cos 64 xi -sin 64 x2 + x3 = x4 

9 

= 3' 6' 9 

(2.3) 

The angle 64 can now be easily eliminated by taking the dot product of 

(x1 x x 2 ) and equation (2.3). This produces the displacement equation 

= 2*TAN-1 AA ±VAA2 + BB2 - cc2 
65 BB + CC (2 · 4) 

where 

AA = (x1 x x2 ) . v2 

BB = (x1 x x 2 ) . v1 

cc = (x1 x x2 ) . (x3 v3) 

'rhis will prbduct two possible positions of 65. By substituting the 

values of 65 into equation (2.3), 64 may be computed 

where, 

DD = 

EE = 

FF = 

-1 [FF D~ EE] 64 = cos 

(x2 x x1 ) (i + j + k) 

(x2 x x3 ) (i + j + k) 

(x2 x x4) (i + j + k) 

This will product two possible positions of 64. The link BC can assume 

these two positions (one for each 65 from the preceeding analysis). 

Complete derivations and constants are found in Appendix A.2. 

2.6 Velocity Analysis 

The velocity analysis is obtained by taking the first derivative 

with respect to time of equations (2.1) and (2.2). This gives 
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equations, 
. 

(2.5) 85 w1 = 84 w2 + w3 . . 
(2.6) and 83 = N 82 . . . 

By specifying 82 equation (2.5) contains two unknowns, 05 and 64. 

Taking the cross product of w2 and equation (2.5) eliminates 64 and 

produces the equation (in one unknown 85). 

(W2 x W3) i 
65 = (2.7) 

(W2 x W1 ) i 

. 
Then, the values of 05 may be substituted in equation (2.5) to compute 

i (2.8) 

The complete derivation and constants may be found in Appendix A.3. 

2.7 Acceleration Analysis 

Taking the second derivative with respect to time of equations 

(2.1) and (2.2) provide 

65 zl + z2 = 64 z3 + Z4 

63 = N 62 

(2.9) 

(2.10) 

By taking the cross product of z3 and equation (2.9), 64 is eliminated 

and the acceleration relationship as a function of 62 is obtained. 

(z3 x z4 ) • I - (z3 x z2 ) • i 
(2.11) 

After computing the values of 05 , a substitution into equation (2.9) 

provides a relationship for 04 . 

. i 
(2.12) 



11 

Appendix A.4 gives the complete derivation and constants. 

2.8 Sample Computations for a Given 

Spherical Five-Link Mechanism 

The derivations in the previous sections are used to compute the 

displacements, velocities and accelerations of each component in order 

to provide an Analysis. 

The input data was 

°'1 = 45° 

°'2 = 45° 

°'3 = 90° 

°'4 = 90° 

°'5 = 45° 

N = 2.0 

(3 = 00 

. 
e2 = 1.0 

• 
e2 = 1.0 

Computations were made 
. 0 

for increments of 5 taken from 5° to 360° of 

rotation for the input link MA. The results are plotted in Figures 

3, 4, and 5. 
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CHAPTER III 

SYNTHESIS OF A GEARED SPHERICAL 

FIVE-LINK MECHANISM 

3.1 Introduction 

Kinematic Synthesis is the inverse of Kinematic Analysis. That 

is, the dimensions of the mechanism components must be found, so that 

the mechanism will provide a specified motion. In this chapter, the 

Geared Spherical Five-Link Mechanism is synthesised for rigid body 

guidance, point-path generation, and function generation. 

The synthesis of the mechanism was achieved through the use of 

the displacement matrix. This method provides a convenient step-by

step solution. For problems of two and three positions, the solution 

can be simplified while still in matrix form. Mathematical procedures 

which Suh (9, 16) developed to design a spherical four-link mechanism 

are extended to derive synthesis equations for the geared spherical 

five-link mechanism. 

Suh' s approach states that a point P 1 ( x1 , y 1 , z1 ) can be dis

placed to a point P2 (x2 , y 2 , z2 ) by rotating P1 about an axis U 

through e degrees to point P2 , by the equation, 

x2 xl 

y2 = ~12] yl (3.1) u, 612 
z2 zl 

15 
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Where, 

u2 vers 612 + cos 912 u ,U vers 612 - u sin 812' x x y z 

[n12lu a 
u u 812 + Uzsina12 

2 
812 + cos 812 = vers Uy' vers 

x y 
' 12 u u 812 - Uysina12 U ,U 812 

+ u x sin a12 , vers vers 
x z y z 

u u vers 812 + u sin 812 x z y 

u u vers 612 - u sin 812 
(3.2) y z x 

u2 vers 812 + cos 912 z 

and 012 is the rotation difference (82 - al) from position 1 to 

position 2. By employing Suh's method and variation of it, the geared 

spherical five-line mechanism can be designed for rigid body guidance, 

path-point generation, and function generation. 

3.2 Rigid Body Guidance 

The problem of synthesis for Rigid Body Guidance is one of 

dimensioning a mechanism so that it will move a rigid body connected 

to the coupler link BC through a number of specified positions. The 

maximum number of positions of Rigid Body Guidance for a geared 

spherical five-link mechanism is limited to five. by the CQ side of the 

mechanism. 

The positions of a rigid body can be specified by rotating the 

rigid body from position 1 to position n about a unique axis s1N 

through an angle ~lN. A displacement matrix, previously solved by 

Suh (9), may be found that will describe this rotation by using the 

equation 

-1 

(3. 3) 



f I 

where, 

D1N - is the displacement matrix which rotates the rigid body 

from Position 1 to Position n 

17 

P .. = 1,2,3 - a point on the rigid body in the initial position. 
1,1 

Two points will uniquely describe a rigid body 

P11 • = 1,2,3 - designates the point in the nth position. 
,1 

The displacement matrix DlN describes the motion of any point on the 

rigid body. Thus, any point on the rigid body may be computed in the 

nth position as a function of the initial position. 

3.3 Derivation of Design Equations for 

Rigid Body Guidance and Coordination 

of the Rotation of Input Link MA 

The mechanism is designed in two parts for rigid body guidance. 

The positions of the points C and Qare determined on the CQ side, 

which is identical to the problem with a four-link spherical mechanism. 

The MAB side of the mechanism can be defined by two equation sets in 

twelve unknowns, which would indicate seven positions. However, the 

mechanism is constrained to five positions by the CQ link. Thus, this 

allows for a solution to the rigid body guidance with input coordina-

tion for four positions by specifying the input link rotations. 

3.3.1 General Equations for CQ Side 

Point C lies on the rigid body, therefore the nth position of C 

can be found by using Equation 3.1, 
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CxN c 
x 

CyN = [n1N] c y 

CzN c z 

This will provide CN in terms of C such that 

c = all c + al2 Cy + al3 c 
xN x z 

CyN = a21 c + a22 c y + a23 CZ (3.4) x 

CzN = a31 c x + a32 Cy + a33 c z 

The a's represent the elements of the displacement matrix D1N. 

The link CQ has a constant length. Therefore, the condition, 

(3.5) 

will insure that the link CQ will be of constant length for all n 

positions. By using the equations, 

cxN2 + c2 + c2 = 1 
yN zN 

Q2 + Q2 + Q2 = 1 
x y z and ( 3, 6) 

which constrain the points to lie on the unit sphere and by using 

equation (3,5) the equation 

(CxN - C )Q + (C N - C )Q + (C N - C )Q = 0 xx y y-y z zz (3,7) 

can be derived. By substituting the values of CxN' CyN' and CzN into 

equation (3,7) and by simplifying the general rigid body guidance 

equation for the CQ side is obtained 

(a -1)~ ~ + a ~ + a ex+ a ~ + 
22 c Q 23 Q 31 c 32 c z z z z z 

(3.8) 
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3.3.2 General Equations for MAB Side 

The value for the unknown gear ratio, N, may be specified for the 

MAB side of the mechanism. This will leave 6 + (n-1) unknowns in A , 
x 

A ' B B , M , M ' and e2i, i = 2, ... n. y x' y x y 

By using the displacement matrix mathematics, the point B can be 

rotated about A and then about M to obtain B in its nth position. 

This is found by, 

(3,9) 

where, 

[D 1 is the displacement matrix for rotating 
lNJ A, e3N 

a point about A by 8 3N 

and 

[ D J is the displacement matrix for rotating 
lN M, e2N 

a point about M by e2N. 

The point BN on the rigid body can also be found in terms of B 

from equation (3.1). Since the mechanism is assumed to lie on a unit 

sphere only BxN and ByN are necessary to define the point. Setting 

the two resulting values of BxN and ByN equal produces the general 

rigid body guidance equations for side MAB. These are in the form of: 

A2M2B Tl + A2B T3 + M2B T2 + B T4 x x x x x x x x 

+ A A M2B Tl + A A B T3 - A M2B T5 - A B T6 x y x y x y y z x y z y 

+ A A M2B Tl + A A B T3 + A M2B T5 + A B T6 x z x z x z z y x z y z 

+A A M M B Tl - A A M B T7 + A M M B T5 - A M B T8 x y x y x x y z x z x y x z z x 

+ A2M M B Tl - A2M B T7 + M M B T2 - M B T9 y x y y y z y x y y z y 
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+ A A M M B Tl - A A M B T7 - A M M B T5 + A M B TB y z x y z y z z z x x y z x z z 

+ A A M M B Tl - A A M B T7 - A M M B T5 - A M B TB xzxzx xzyx yxzx yyx 

+ A A M M B Tl - A A M B T7 + A M M B T5 + A M B TB yzxzy yzyy xxzy xyy 

+ A2M M B Tl + A2M B T7 + M M B T2 + M B T9 z x z z x y z x z z y z 

(3.lOa) 

and 

A2M M B Tl + A2M B T7 + M M B T2 + M B T9 x x y x x z x x y x z x 

+ A A M M B Tl + A A M B T7 - A M M B T5 - A M B TB x y x y y x y z y z x y y z z y 

+ A A M M B Tl + A A M B T7 + A M M B ~5 + A M B TB x z x y z x z z z y x y z y z z 

+ A A M2B Tl + A A B T3 + A M2B T5 + A B T6 · xyyx xyx zyx zx 

+ A A M2B Tl - A A B T3 - A M2B T5 - A B T6 y z y z y z z x y z x z 

+ A A M M B Tl - A A M B T7 - A M M B T5 + A M B TB x z y z x x z x x y y z x y x x 

+ A A M M B Tl - A A M B T7 + A M M B T5 - A M B TB y z y z y y z x y x y z y x x y 

+ A2M M B Tl - A2M B T7 + MM B T2 - M B T9 z y z z z x z y z z x z 

= 0 (3.lOb) 

T's are functions of e2 and e3 in the nth position, and a's are elements 

in the displacement matrix for the nth position. (See Appendix B.l for 

the expansion of the T's). 
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3.4 Rigid Body Guidance and Coordination 

of Input Link MA 

3.4.1 Two Positions of a Rigid Bod.y 

For two positions of a rigid body the general equations 3.8, 3.lOa, 

and 3.lOb are written once. This gives the difference of rotations 

from position 1 to 2. By specifying all of the unknowns except one 

in 3:8 and two in 3.lOa and 3.lOb, the design may be computed. 

Side CQ 

Specify: Q /Q , Q /Q , and C /C x z 'Y z y z 

Substituting these values into the general equation provides the 

solution, 

where 

c = z 

c x c-= 
z 

+ a23 

+ a21 

c2 
x 

c2 
z 

~ c -i)J /[<a21 
+a 1+ (a33 Qz 32 c z 

~ 
+ 8 31] Qz 

1 

c2 
+ _][_ + 1 

c2 
z 

Side MAB 

Specify: N(Gear Ratio), 

Qz 
- 1) -

Qz 

e22 (Rotation of input e2 from position 1 to 2) 

A , A , M , and M x y x y 

(3.11) 
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Substituting these values into the general equation and reducing to two 

unknowns by dividing by B provides the solutions: z 

B E E6 - E3 E4 
.1 = 1 

E7 = B E2 E4 - El E5 z 

B -E E7 - E3 x 2 
= EB -= 

B El z 

Where the E's are constants obtained from substitution. Appendix B.2 

contains the values of these constants. 

3.4.2 Three Positions of a Rigid Body 

In the three positions rigid body guidance problem, each of the 

general equations must be written twice. The displacement matrix DlN 

is used twice (once for a position change from 1 to 2 and then for a 

position change from 1 to 3). With this data, we may specify the 

needed values for each equation and compute the coordinates of the 

remaining unknowns. 

Side CQ 

Specify: c ' c x y 

C may be computed from the constraint condition: z 

c2 + c2 + c2 = 1 x y z 

By substituting the specified values into the general equation, the 

equation may be exp~essed as: 

(3.12) 
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The D1N1 s (i = 1,2,3) are the coefficients for the position change from 

1 ton. Writing equation (3.12) two times, once for each position 

change, enables the solution to be found by simultaneous equations, 

so that 

Qx D32 D23 - D33 D23 
Dl -= = 

Qz Dl2 D23 - Dl3 D22 

~= -Dl2 Dl - D32 

Qz D22 

By rearranging the constraint equation for a unit sphere the x, y, and 

z coordinates are found, 

Appendix B.3 contains the values of 0. 

Side MAB 

Specify: Mx' My' 622 and 623 

Substituting the known values into the general equations (3.lOa) and 

(3.lOb) results in four non-linear equations having four unknowns B /B , x z 

B /B , A , and A . This class of problems may be solved with the 
y z x y 

Newton-Raphson Iteration Technique (17,18). In using this technique, 

initial estimates are made for the unknowns. These estimates are 

continually corrected during the solution process until the error is 

minimized. Appendix C has a description of the Newton-Raphson Techni-

que. 
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3.4.3 Four Positions of a Rigid Body 

Four positions is the maximum number of positions for Rigid Uody 

Guidance with coordination of input link rotations. 'l'he solution for 

the MAB side is simplified if the angular displacements of the input 

link are specified. However, three other values may be chosen if 

desirable. 

Side CQ 

Specify: 
c x 
c z 

Substitute this value into equation ,3.8) in the form 

= 0 (3.13) 

The d. 1 s are coefficients of the general equation. (See Appendix B. 4 
in 

for the definition of all d. 's. 
in 

The general equation (3.13) may be solved by the method of linear 

superposition. 

Let, 
c Qx 

;>..l = _Ji c Qz z 
(3.14a) 

c ~ ;>..2 = _Ji c Qz z 
(3.14b) 

(3.15a) 

(3.15b) 
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and 

(3.15c) 

The general equation now ta,k.es the form of: 

(3.16) 

This may be broken into three sets of equations: 

n = 2,4 

n = 2,4 

n = 2,4 

By solving each set of simultaneous equations the values of L. , M. , 
J. J. 

and N. i=l,2,3 are found. Substituting these values into the 
J. 

compatability equations (3.14a) and (3.14b) and expanding results in: 

= 0 (3.17a) 

and 

= 0 (3.17b) 

The ti's are functions of A1 . Appendix B.5 contains the values of 

t. (i = 1, ... 6). 
J. 

By using Sylvesters dialytic eliminate technique, A2 may be elimi

nated, and a solution of Al may be found. This is obtained by solving 

the determinant : 



tl t2 t3 0 

0 tl t2 t3 
= 0 

t4 t5 t6 0 

0 t4 t5 t6 

for A1 • This will result in a fourth order polynomial in Al with O, 

or 4 real roots. Substituting each real answer of Al into equation 

(3.17a) and (3.17b) gives a solution for A2• By substituting the 

solutions of Al and A2 into equations (3.15a), (3.15b), and (3.15b), 

Qx/Qz, ~/Qz' and Cy/Cz may be found. 

Side MAB 

Specify: 822 , 823 , and 824 
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The solutions of A , A , B , B , M and M are found "hy using the x y x y x y 

Newton-Raphson Iteration Technique for non-linear equations. The 

procedure is the same as in part 3.4.2. 

3.4.4. Five Positions of a Rigid Body 

The MAB side of the Geared Spherical Five-Link Mechanism is 

solved by the method used for three and four positions of a rigid body. 

However, M and M are the only specified variables. A solution (for x y 

five positions) may also be obtained with two input rotations specified. 

The CQ side of the mechanism is solved by using the techniques of 

four position synthesis of a rigid body. However, the problem is 

solved in two parts. First, solutions for positions 12, 13 and 14 are 

obtained. By varying the value of C /C , a curve representing the x z 

solutions of this part may be drawn. Then, solutions for positions 

12, 13 and 15 are obtained and graphed in the same manner. The inter-

.. 
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sections of these two curves is the solution for all five positions. 

Appendix D.l contains solutions of rigid body guidance problems. 

3,5 Path Point Generation 

In path point generation, the problem is to design a mechanism 

such that a point on the rigid body of the coupler link will trace a 

path through a number of specified points. A procedure often used for 

point path generation is to extend the rigid body guidance problem. 

Suh (9) has previously developed this technique. 

On the sphere, the displacement of the rigid body with a point 

tracing a path may be described as follows. A point on the rigid body 

is rotated about an axis s1N by an angle ~lN from position 1 to 

position n. This may be achieved by taking the cross product (P, X PN). 

(P1 and PN are unit vectors from the sphere center to points P1 and PN 

respectively.) The cross product provides the screw axis: 

81N = pl X PN (3.18) 

and 

(3.19) 

Thus, a displacement matrix may be found to rotate point P1 to PN, 

which is 

(3.20) 

The rigid body may also experience a rotation s1N about P1 from 

position P1 to PN. This rotation may be placed in the displacement 

matrix form: 

( 3. 21) 



28 

This matrix will result in elements having cos (S1N) and sin (S1N) 

terms. By multiplying these two displacement matrices, the displace-

i 
ment of the rigid body may be described by a displacement matrix wit.h 

SlN as an unknown. 

3.6 Development of the General Equations for 

Path Point Generation for the Geared 

Spherical Five-Link Mechanism 

From the development in Section 3.5, the equation for the displace-

ment equation of the path generation rigid body is: 

(3.22) 

Equations for point BN on the rigid body may be found from the rigid 

body displacement equation. Equations are also found from rotating B 

about A by 63 and then rotating the displacement B about M by 62 . 

These equations appear as: 

(3.23) 

and 

(3.24) 

'I'he point C on the rigid body may also be described by two equations: 

(3.25) 

and 

(C - C ) Q + (C - C ) Q + (C - C ) Q = 0 xN x x yN y -y zN z z (3.26) 

Together these general equations produce 3(n-l) equations in 2(n-l) + 10 

unknowns. Thus, a maximum of eleven points may be traced by the coupler 
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link. There are two methods by which these path generating problems 

' may be solved. One method is for two-five positions, and the other is 

for six-eleven positions. 

3.7 Path Point Generation for 

Two-Five Points 

Equations (3.18) and (3.19) are used to calculate the displacement 

matrix: 

By specifying B , B , A , A , M , M , and e2N in equation (3.24), the x y x y x y 

values of BxN' ByN' and BzN may be calculated. Then, by substituting 

these values into equation (3.23) and (3.22), the s1N1 s may be computed. 

This provides the displacement matrix for the rigid body. The solution 

may be obtained by solving for the CQ side. This is exactly the same 

solution as obtained in rigid body guidance. 

3.8 Path Point Generation of 

Six-Eleven Points 

Setting equation (3.23) equal to (3.24) produces three equations 

of which any two are unique general equations. Another unique equation 

may be obtained by substituting values of CN obtained in equation (3.25) 

into equation (3.26). These three general equations may be written 

(n - 1) times and solved using the Newton-Raphson Iteration Technique 

described in Appendix C. Appendix D.2 contains a solution of a five-

point generation problem. 
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3,9 Function Generation for the Geared 

Spherical Five-Link Mechanism 

Function Generation is the cooperation of input and output rotation-

al displacements for multiply-separated positions. The mechanism may be 

designed for function generation by kinematic inverstion (9), If the 

output link CQ is fixed, as the ground link, thert successive rotations 

of the links about vectors A, M, and Q are made respectively. This may 

be expressed as, 

(3.27) 

The mechanism must be rotated by -e5 about Q due to the inversion. 

3.10 Derivation of the General Design Equation 

for Function Generation of the Geared 

Spherical Five-Link Mechanism 

There is a constraint imposed on the coordinates of M and Q 

because M and Q lie on a great circle. Since the choice of that great 

circle will not help specify an additional position of function 

generation, the following simplifications may be made: 

~ = 1 

Qx = 0 

Qz = 0 

M = 0 z 

and 

M2 + M2 = 1 x y 
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Making these substitutions in equation (3.27) produces B as a function 

of B , B , B , A , A , A , M and M . Knowing that the link BC is of x y z x y z x y 

constant length allows the use of the equation 

(BxN - B )C + (B N - B )C + (B N - B )C = 0 x x y y y z z z (3.28) 

Substituting BN into this equation will produce (n-1) equations in seven 

independent unknowns (B ' B,A,A, c x'. c y' M ) • Thus, eight po-x y x y x 

sitions of function generation may be solved. The gear ratio, N, and 

a sphere of unknown radius would allow for two more positions; however, 

these would produce highly complex equations. 

3.10.1 Function Generation for Two Positions 

Specify: 

Compute: 

M , A , A , B , B , C /C , 82 , 85 , N x x y ·x y x z . 

M , A , B from unit sphere constraing equations 
y z z 

By computing BN from equation (3.27) values may be found for BxN' 

ByN' and BzN' Substituting these values into equation (3.28) results 

in the equation: 

C IC = - I C IC ( B N - B ) + ( B N - B ) I I ( BxN - Bx) I ( 3. 29 ) x z y z y y z z 

3.10.2 Function Generation for 

Three Position Synthesis 

Specify: 

Compute: 

M , A , A , B , B , N x x y x y 

M , A , B y z z 

Solving for B2 and B3 with equation (3.27) provides two equations 

in two unknowns: 



c c 
Dl2 ~+ D22 f + D32 = 0 c z z 

and 

c c 
Dl3 ~+ D23 f + D33 = 0 c z z 

Solving these equations by simultaneous equations produces: 

and 

The 

ex D32D23 - D33D22 

Cz = Dl2D23 - Dl3D22 

= 

= 

values of c C , and c may now be computed to be: x' y z 

c 1 = z 
jn~ 2 

+ D2 + 1 

c = DlCz x 

C = D C y 2 z 
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(3.30a) 

(3.30b) 

The D's are constants obtained from the displacement equation (3.28). 

3.10.3 Function Generation for Four Positions 

Specify: 

Compute: 

M , A , A , B /B , N x x y x z 

M , A y z 

The solution for this problem is similar to the solution for four 

positions of a rigid body for the CQ side. The solution procedures are 

identical. If an exact answer is not required, then the Newton-Raphson 

Iteration Technique may be used. 



3.10.4 Function Generation for Five Positions 

Specify: 

Compute: 

M , A , A , N x x y 

M , A 
y z 
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Solve for BN in terms of Busing equation (3.27). By substituting 

BN into equation (3.28), the problem is identical to a five position 

rigid body guidance problem for the CQ side of the geared spherical 

five-link mechanism. By iterating the value of B /B for positions 12, x y 

13, and 14, the solution curve may be obtained for positions 12, 13, and 

14. Then, by iterating B /B for position changes 12, 13, and 15, the x z 

solution set for these positions is obtained. The intersection of the 

two curves is the solution to the five position problem. 

3.10.5 Function Generation for Six 

to Eight Positions 

By applying the Newton-Raphson Iteration Technique for sets of 

non-linear equations (Appendix C) this set of problems may be solved. 

There will be (n-1) equations in (n-1) unknowns for an n position 

function generation problem. The Newton-Raphson Iteration Technique 

may be used to solve all the function generation problems. This would 

simplify programming for the set of problems. 



CHAPTER IV 

SUMMARY 

As a result of the research, a unified approach for the analysis 

and synthesis of the Geared -Spherical Five-Link Mechanism has been 

developed. The successive screw displacement method (15) was used for 

the analysis of the mechanism, and the displacement matrix method (9, 

16) were applied for synthesis of rigid body guidance, path-point gener

ation, and function generation. 

The screw displacement method proved to be very adaptable to 

spherical mechanisms. By "unfolding" the linkage onto a plane and 

successively rotating the kink-links the motion may be easily visualized. 

Equating the two parts of the disconnected joint results in a closed 

form solution. Any gearing arrangement may be readily incorporated in 

the analysis. This allows gearing changes after the general analysis 

equations have been derived. 

The use of the displacement matrix for synthesis provides a 

generalized approach to rigid body guidance, path-point generation, and 

function generation. The initial matrix equations are produced by 

rotational matrices in a successive order. This allows the simplifi

cation of equations (while still in matrix form) for problems of less 

than maximum synthesis positions. By arranging the synthesis equations 

for path-point generation and function generation, the solutions may be 

obtained through the use of the rigid body guidance equations for the 
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CQ side of the mechanism for a maximum of five positions. Through 

performing the proper matrix multiplications and substitutions, path

point and function generation problems may be simplified in an equation 

form identical to those of rigid body guidance equations for the CQ side. 

Since the equations for synthesis are developed by employing the 

displacement method, the general computer program which uses the 

Newton-Raphson Iteration Technique for non-linear sets of equations 

would make solutions available to all the synthesis problems. Changes 

in gearing ratio or arrangement can be made after the general equations 

have been developed. This may be accomplished either by substitution 

into the present equations and/or by inversion of the mechanism. 

The present work is concerned with only one gea~ing arrangement of 

the Geared Spherical Five-Link Mechanism. However, the developed 

equations are very general and proper substitution into these equations 

will define all of the gearing combinations. Thus, 1;his study provides 

the general equations and methods for their solution for analysis and 

synthesis of the Geared Spherical Five-Link Mechanism. 
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APPENDIX A 

ANALYSIS OF A GEARED SPHERICAL 

FIVE-LINK MECHANISM 

A.l Loop Closure Equation 

M = 1 

Q = cos (a5 )i + sin (a5 )j 

c2 = cos (a4 + a5)i + sin (a4 +. a5)j 

A= cos (a1 )i - sin (a1 )j 

B = cos (a1 + a2)i - sin (a1 + a2 )j 

cl = cos (al + a2 + a3)i - sin (al + a2 + a3)j 

Rotations of vectors on the right hand side of the X-axis are right-

hand positive screw sense. Rotations of vectors on the left hand side 

of the X-axis are negative right hand screw sense. 

c2N = cos e5 lc2 - (c . Q)Q] + sin e5 ("Q x c 2) + (c2 . Q)Q 
2 

CiN = cos 64 [c1 (c1 B)B] sin 64 (Bx c1 ) + (c1 B)B 

c" = cos e3 [ci (c' . A)A] sin e3 (Ax ci) + (c' • A)A lN 1 1 

ClN = cos e2 [c;: (c" M)M] - sin e2 (M x c") + (c" . M)M 1 1 1 

By substituting c;:N into c;:N and c;:N into Ci~' and by setting Ci~ = c2N' 

the loop closure equation is obtained. The si~lified equation is 

obtained by letting: 

L1 = c1 - (c1 . 'B)B 

L2 = B x c1 

38 
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L - (c1 . 13)13 3 -

Rl = L - (11 A.)A. 
l 

R = L - (12 . A.)A. 
2 2 

R = L -3 3 (13 A.)A. 
-
R4 = A x L l 

R5 =A x 12 
-
R6 =A x L 

3 

R7 = (11 . A.)A. 

RB = (12 A.)A. 

R9 = (13 . A.)A. 

s. = R. - (R. . M)M i = 1, 9 
1 1 1 

... ' 
T. = M x R. i = 1, ... ' 9 

1 1 

u. = (R. . M)M i = 1, . .. ' 9 
1 1 

-
(c2 Q)Q v1 = c2 - . 

v2 = Q x c2 

v = (c . "Q)"Q 
3 2 

This produces the equation found on page 7, 

A. 2 Constants for Displacement 

Analysis 

xl = cos 82 (cos 83s1 - sin 8384 + 87) 

- sin 82 (cos 83Tl - sin 83T4 + T7) 

+ (cos 83U2 - sin 8}15 + u8) 

x2 = cos 82 (cos 8382 - sin 8585 + 88) 

- sin 82 (cos 83T2 - sin 83T5 + TB) 

+ (cos 83u2 - sin 83u5 + us) 



x3 = cos 62 (cos 6383 -sin 6386 + 89) 

- sin 62 (cos 63T3 -sin 63T6 + T9) 

+ (cos 63u3 -sin 63u6 + u9) 

X4 = cos 65 (v1) + sin 05 (v2) + (v3) 

A. 3 Constants for Velocity 

Analysis 

wl = v2 cos 65 - v1 sin 05 

W = -sin 2 

w = 3 
cos 

sin 

64 

64 

64 

[Cos 

-sin 

62 (cos 0381 -sin 

62 (cos 03T1 -sin 

0}·4 + 87) 

63T4 + 'T7) 

+ (cos 03u1 -sin 03u4 + u7 )] 

-cos 62 [cos 62(cos 6382 -sin 6385 + 88 

-sin 62(cos 63T2 -sin 63T5 + TB) 

+ (cos 03u2 -'sin 03u 5 + u8 )] 

[-62 sin 02 (cos e381 -sin 0384 + 87) 
. 

63T4 + 'T7) -02 cos 02 (cos 03T1 -sin 

<-a . 
e384) + cos 62 sin 0381 -63 cos 

3 

(-93 
. 

63T4) -sin 62 sin 63Tl -63 cos 

+ <-a 3 
sin 63Ul -83 cos 63u4)] 

[-62 sin 62 (cos 0382 -sin 6385 + sa) 
. 

(cos 63T5 + TB) -6 cos 62 e3T2 -sin 2 

<-a 
. 

63S5) + cos 62 sin 6382 -63 cos 3 

(-93 
. 

63T5) - sin 62 sin 63T2 -6 3 cos 

<-a 
. 

63U5 )] + sin 03u2 -03 cos 
3 . 

+ -6 2 sin 02 (cos 6383 -sin e386 + 89) 
. 

(cos 63T6 + T9) -62 cos 62 03T3 -sin 

40 
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(-a 
. 

e386) + cos 62 sin 6383 -63 cos 3 

(-e . 
e3rr6) - sin 62 sin e::?3 -e3 eos 3 

(-a3 
. 

eii6) + sin e3u3 -e3 cos 

A.4 Constants for Acceleration 

Analysis 

z = 1 cos e5v2 -sin e5vl 
- ·2 z2 = -05 cos e5v1 -

·2 
e5 sin e5v2 

.._ 
z3 = sin 04 (cos ,02 (cos 0381 -sin 0384 + 87) 

~-

- sin 02 (cos 03T1 -sin 03'T4 + 'T7) 

+ (cos 03u1 -sin e}Y4 + u7 )] 

-cos 04 [cos 02 (cos 0382 -sin e385 + 88) 

-sin 0 (cos 03T2 -sin e3'T5 + 'T8) s 

+ (cos 03u2 -sin e3u5 + u8)] 
- ·2 z4 = -04 cos 04 [cos 62 (cos 0381 -sin 0384 + 87) 

-sin 02 (cos 03T1 -sin e3'T4 + 'T7) 

+ (cos 03u1 -sin 03t\ + u7 )] 

•2 
-64 sin 04 [cos 02 (cos e382 -sin 0385 + 88) 

-sin 02 (cos e3T2 -sin 93T5 + T8) 

+ (cos e3u2 -sin 03u5 + u8)] 
. 

[-92 e2(cos 0384 + 87) -204 sin 04 sin 0381 -sin 
. 

02(cos -02 cos e3T1 -sin 63T4 + 'T ) 

02(-e3 
. 7_ 

+ cos sin 0381 -03 cos 0384 

-sin 02(-e3 sin e3T1 -e3 cos 03'T9) 

+ (-e3 sin 03u1 -e3 cos e3u4)] . 
[-e2 03 85 + 88) -264 cos 64 sin 02(cos 0382 -sin 

'· '· . 
03 'T5 + 'T8) ·-0 cos 02(cos e3T2 -sin 2 
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.02(-e3 
. 

63S5) + cos sin 6382 -63 cos 

-sin 02(-63 sin 03T2 -e3 cos 63T5) . . 
63U5 )] + (-63 sin 03u2 -03 cos 

+ cos 64 c-02 sin 62 (cos 0381 -sin e3s4 + .87) 

-62 cos 62 (cos 03T1 -sin 63T4 + T7) 
·2 

-62 cos 62 (cos 6381 -sin 0384 + 87) 
·2 +62 sin 62 (cos 63Tl -sin 63T4 + T7) . 

(-a3 6381 -83 cos 0384) -262 cos 62 sin 
. (-a 

. 
63T4) -262 cos 62 sin 03T1 -6 3 cos 

.. 
+ cos 62 (-63 sin 0381 -03 cos 63S4) .. 
-sin 62 (-6 3 sin 03T1 -63 cos 0i.4) 

+ (-6 3 sin 03u1 -03 cos 63u4) 

+ cos 62 
'2 

(-63 cos 638.1 
·2 +63 sin 63S4) 

·2 6 T +62 ' 63T4) -sin 62 (-63 cos 3 1 3 sin 

+ ·2 
(-63 cos 

- ·2 03u1 +0 3 sin 6fJ4 )] 

-sin 64 [-62 sin 02 (cos 0382 -sin 6385 + 88) 

-62 cos 62 (cos 03T2 -sin 03T5 + T8) 

•2 
-62 cos 62 (cos 6382 -sin 6385 + sa) 

+62 
2 sin 62 (cos 03T2 -sin 03T5 + T8) 
. (-a . 

63S5) -262 sin 62 sin 6382 -63 cos 3 . 
02 r-e 3 

. 
63T5) -262 cos sin 63T2 -6 3 cos 

(-a 
.. 

63S5) + cos 62 sin 6382 -63 cos 3 

-sin 62 (-83 sin 03T2 -63 cos 63T5) 

(-a 
.. 

6fJ5) + sin 03u2 -e3 cos 
3 

+ cos 62 
·2 

(-63 cos 
- ·2 0382 +6 3 sin 6385) 

+ sin 62 
·2 

(-63 cos 
- ·2 03T2 +6 3 sin 63T5) 

·2 
+ (-63 cos 

- ·2 
63U2 +63 sin e3u5)] 
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.. 
(cos 83S6 + 89) + -8 sin 82 83s3 -sin 2 

-82 cos 82 (cos 83T3 -sin 83T6 + T9) 
•2 

-82 cos 82 (cos 8383 -sin 83T6 + T9) 
·2 +8 2 sin 82 (cos 83T3 -sin 83T6 "" .. T9) 
. 

(-e3 sin 
. 

83S6) -26 sin 82 83s3 -83 cos 2 . 
(-e3 

. 
83T6) -282 sin 82 sin 83T3 -63 cos 

+ cos 82 (-a 
3 

sin 83s3 -83 cos 83S6) 

-sin 82 (-03 sin 83T3 -e3 cos 83T6) 

+ (-a 
3 

sin 83u3 -8 3 cos 8}16) 

82 (-a2 - ·2 
83S6) + cos cos 83s3 +8 3 sin 

3 

-sin 82 (-e2 - ·2 sin 83T6) cos 83T3 +83 3 
+ ·2 

(-83 cos 
- ·2 

83u3 +83 sin 83U6) 



APPENDIX B 

CONSTANTS FOR RIGID 

BODY GUIDANCE 

B.l Definition of T's for General 

Equation, MAB Side 

Tl = (1 - cos 82)(1 - cos 83) 

T2 = (1 - cos 82 )(cos 83) 

T = 3 
(cos 82) (1 - cos 83) 

T4 = (cos 82)(cos 83) 

T5 = (1 - cos 02 ) (sin 83) 

T6 = (cos 82 ) (sin 03) 

T7 = (1 - cos 03)(sin 82) 

TB = (sin 82)(sin 03) 

T9 = (sin 02 ) (cos 83) 

B.2 Definition of E's for Two Position 

Synthesis of Rigid Body Motion 

for MAB Side 

E = A2M2T + A2T 2 
1 xx 1 .x: 3 + MxT2 + T4 

+ A A M M T1 - A A M T7 + A M M T5 - A M TB xyxy xyz zxy zz 

+ A A M M T1 + A A M T7 - A M M T5 - A M TB x z x z x z y y x z y y 
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E2 = A A M2T1 + A A T3 - A M2T5 - A T6 x y x x y z x z 

+ A2M M Tl - A2M T + M M T2 - M T9 y x y y z y x y z 

+ A A M M T1 + A A M TT + A M M T5 + A M TB yzxz yzy xxz xy 

- al2 

E3 = A A M2T1 + A A T3 + A M2T5 + A T6 x z x x z y x y 

+ A A M M T1 - A A M T7 - A M M T5 + A M TB y z x y y z z x x y x z 

+ A2M M Tl + A2M T7 + M M T2 + M T9 z x z z y x z y 

- a13 = 0 

E = A2M M T 4 xx y 1 + A2M TT + M M T2 + M T9 

+ A A M2T1 x y y. 

x z x y z 
2 + A A T3 + A M T5 + A T6 x y z y z 

+ A A M M T1 - A A M T7 - A M M T5 + A M TB x z y z x z x y y z y x 

- a21 

E5 = A A M M T1 + A A M T7 - A M M T5 - A M TB xyxy xyz zxy zz 

+ A;M~Tl + A;T3 + M;T2 + T4 

+ A A M M Tl - A A M T7 + A M M T5 - A M TB y z y z y z x x y z x x 

- a22 

E6 = A A M M T1 + A A T7 + A M M T5 + A M TB xzxy xz yxy yz 

+ A A M2T1 + A A T3 - A M2T5 - A T6 y z y y z x y x 

+ A2M M T1 - A2M T7 + M M T - M T z y z z x y z z x 9 

B.3 Definition of the Constants D 

DlN = (all - l)Cx/Cz + al2Cy/Cz + al3 

D2N = a21Cx/Cz + (a22 - l)Cy/Cz + a23 

D3N = a31cx/Cz + a32cy/Cz + (a33 - 1) (for n = 2,3) 

where: 
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all = 82 
xN (1 - cos ~lN) + cos ~lN 

al2 = s:iCNsyN (1 - cos ~lN) -SzN81N~lN 

al3 = 8xN8zN (1 cos q.lN) +SyN81N~lN 

a21 = s s (1 - cos ~lN) +SzNslN~lN xN yN 

a22 = 82 (1 - cos ~lN) + cos yN 

a23 = 8yN8zN (1 cos ~lN) + 8xN81N~1N 

a31 8JtN8zN (1 - cos ~lN) -SyN81N~lN 

a32 = 8yN8zN (1 cos ~lN) + 8xN81N~lN 

a33 = 82 (1 - cos ~lN) + cos ~lN zN 

B.4 Definition of d's for 

Rigid Body Motion of 

the QC Side 

dlN = (all - l)Cx/Cz + al3 

d2N = a12 

d3N = a21Cx/Cz + a23 

d4N ~ a22 - l 

d5N = a32 

d6N = a31Cx/Cz + (a33 - l) 

The a1N' s are elements of the displacement matrix describing the 

rigid body motion. 

B. 5 Definition of t 's for 

Linear Superposition 

tl = NlN3 

t2 = A.l(M3Nl + MlN3) + (L3Nl + LlN3) 
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2 . 
t 3 = A1M1M3 + A1 (L3M1 + L1M3 - 1) + L1L3 

t4 = N2N3 

t 5 = A1 (M3N2 + M2N3) + (L3N2 + L2N3 - 1) 

2 
t6 = AlM2M3 + Al(L3M2 + L2M3) + L2L3 



APPENDIX C 

NEWTON-RAPHSON ITERATION TECHNIQUE 

FOR SETS OF NON-LINEAR EQUATIONS 

Given two non-linear equations, 

f(x,y) = 0 

and g(x,y) = 0 

in two unknowns x and y. An iterative solution for x and y may be 

obtained by using the Newton-Raphson Technique. Let, 

af/ax = f x 

af/ay = f 
y 

ag/ax = g x 

ag/ay = gy 

Let x =randy= s be roots, and expand both functions in Taylor Series 

form about point (x, y) in terms of (r - x) and (s - y). Where (x, y) 

is a point in the neighborhood of the root (r, s). 

Then, 

and 

Let: 

r-x1 = /:J. x 

and 

s-yl = /:J. y 
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So that the Taylor Series expansion ending with the first partials is 

represented in matrix form: 

This provides the corrected solution for (x21y 2 ): 

x2 = x1 + !J.x 

Solving for !J.x and !J.y: 

!J.x = 

and 

!J.y = 

-ff 
y 

-g y 
y 

f -f x 

g -g 
x 

will provide a correction to the initial estimates, resulting in an 

answer closer to the real root. By repeating this procedure several 

times, an answer may be determined sufficiently close to the real root 
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APPENDIX D 

COMPUTER SOLllrIONS FOR SYNTHESIS 

PROBLEMS OF A GEARED SPHERICAL 

FIVE-LINK MECHANISM 

D.l Rigid Body Guidance 

Displacement Matrix for Position 1-2 

¢.848235274 

-¢.140815306 

0.51(1)556527 

-¢.418857144 

-0.768326496 

0.483976328 

¢.324122778 

-¢.624375963 

-¢.7107¢3157 

Displacement Matrix for Position 1-3 

0.922058397 

0.350445872 

-0.164304593 

0.251532581 

-t/J.865189829 

-0.433794788 

-0.294176319 

¢.358656169 

-¢.8859¢4¢25 

Displacement Matrix for Position 1-4 

r/J.492¢2976 

r/J.692799582 

¢.527195799 

-t/J.376829¢¢5 

(J.715384221 

-tJ.5884(J9(J99 

-t/J.78479127 

¢.¢9¢852¢29 

t/J.613057282 

Displacement Matrix for Position 1-5 

0.163691592 

6.984524696 

-0.06247914 

-r/J. ¢771 71637 

-t/J. ¢5¢4611¢1 

-tJ.995739933 
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r/J.167822524 

(J.¢6771754 



RIGID BODY GUIDANCE FOR THE GEARED SIDE OF A 

GEARED SPHERICAL FIVE-LINK MECHANISM 

USING THE NEWTON-RAPHSON TECHNIQUE FOR SETS OF NON-LINEAR EQUATIONS 

FOR 4 POSITIONS OF A RIGID BODY 

HAVING A GEAR RATIO OF 2 

51 

*********************************************************************** 

INITIAL VALUES AND ESTIMATES OF POINTS IN THE INITIAL POSITION 

Bl= fl.I B2=-¢.7¢71¢6781 B3=-¢7¢71¢6781 
Al= ¢.7¢71~6781 A2=-¢.5 A3=-¢.5 
Ml= 1 M2= ¢ M3= ¢ 

INITIAL VALUES OR ESTIMATES FOR INPUT ROTATIONS (DEG) ABOUT M 

THETA 12= 165 
THETA 13= 190 
THETA 14= 245 

*********************************************************************** 

VALUES FOR THE 1 TH CALCULATION 

FOR THE FUNCTION F 

F( 1 )= l.17¢¢8E-¢6 
F( 2 )=-2.¢8f/.1¢1E-¢6 
F( 3 )=-4.92474E-¢6 
F( 4 )= 2.18516E-¢6 
F( 5 )= l.2813¢E-¢5 
F( 6 )=-7.73942E-¢6 
F( 7 )=-5.3¢¢¢¢E-1¢ . 
F( 8 )=-2.6¢¢¢¢E-1¢ 
F( 9 )= fl.I 

CORRECTION FACTORS FOR VARIABLES IN NEXT CALCULATION 

C( 1 )= 2.92279E-¢4 
C( 2 )= 8.74616E-¢5 
C( 3 )=-8.74725E-¢5 
C( 4 )=-8.82444E-¢5 
C( 5 )=-2.f/.13938E-¢4 
C( 6 )= 7,91441E-¢5 
C( 7 )= ¢ 
C( 8 )=-6.31¢59E-¢5 
C( 9 )= 5.¢5¢51E-¢5 



INPUT VALUES AND CORRECTED ESTIMATES FOR NEXT CALCULATION 

b(l)= 164.9998129 0(2)= 189.99968¢3 0(3)= 244.99~618¢ 

Bl= 2.92279E-¢4 B2=-¢.7¢7¢19319 B3=-¢.7¢7194254 
Al= ¢.7¢7¢18537 A2=-¢.5¢¢2¢3938 A3=-¢.499920856 
Ml= 1 M2=-6.31¢59E-¢5 M3= 5.¢5¢51E-¢5 

VECTOR B= 1.000000116 
VECTOR A= 1. 000000053 
VECTOR M= 1.000000007 
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*********************************************************************** 

CQ Side 

END OF RUN 
ERROR CODE = 3 
FOR EQUATION 
696883 +-8¢8¢41.5 *Q+ 139~885.62 

-l.3¢¢fl)fl)E-¢5 Q+4 
REAL ROOTS IMAGIMARY ROOTS 

fl).28147381¢ -¢.471551323 
0.28147581¢ ¢.471551323 

-1.4142¢9775 fl) 

CX/CZ = fl) 

*Q+2+ 1633917.529 

LAMDAl=-1.4142¢9775 

01= ¢ 
02=-¢.7¢711¢853 

LAMDA22=-l.¢¢¢¢¢2217 

03= ¢.7fl)71¢27¢9 

Ql= ¢.7¢71¢3781 
Q2= fl).499999718 
Q3= ¢.5¢¢¢¢4525 

RIGID BODY GUIDANCE FOR THE GEARED SIDE OF A 

GEARED SPHERICAL FIVE-LINK MECHANISM 

*Q+3+ 

USING THE NEWTON-RAPHSON TECHNIQUE FOR SETS OF NON-LINEAR EQUATIONS 

FOR 5 POSITIONS OF A RIGID BODY 

HAVING A GEAR RATIO OF 2 

*********************************************************************** 

INITIAL VALUES AND ESTIMATES OF POINTS IN THE INITIAL POSITION 



Bl=¢ B2=-¢.7¢71¢6781 B3=-¢,7¢71¢6781 
Al= ¢,7¢71¢6781 A2=-¢.45 A3=-¢.55 
Ml= 1 M2= ¢ M3= ¢ 

INITIAL VALUES OR ESTIMATES FOR INPUT ROTATIONS (DEG) ABOUT M 

THETA 12~ 165 
THETA 13= 19¢ 
THETA 14= 24¢ 
THETA 15= 3¢5 
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*********************************************************************** 

VALUES FOR THE 1 

FOR THE FUNCTION F 

F( 1 )= ¢,¢353569 
F( 2 )=-¢.¢241858 
F( 3 )=-¢,132631 

TH CALCULATION 

F( 4 )=-¢.¢125394 
F( 5 )=-3.34724E-¢3 
F( 6 )=-2.457¢6E-¢3 
F( 7 )=-¢.15856 
F( 8 )=-0.137267 
F( 9 )=-5.3¢¢¢¢E-1¢ 
F( 1¢ )= 4.99999E-¢3 

CORRECTION FACTORS FOR VARIABLES IN NEXT CALCULATION 

C( 1 )=-¢.¢968723 
C( 2 )=-¢.¢144711 
C( 3 )= ¢.¢1447¢7 
C( 4 )=-¢.¢7123¢3 
C( 5 )=-¢.¢98¢293 
C( 6 )=-6.¢9¢31E-¢3 
C( 7 )=-¢.¢145326 
C( 8 )= ¢.¢16¢144 
C( 9 )= ¢.¢61147 
C( 1¢ )=-¢.¢695924 

INPur VALUES AND CORRECTED ESTIMATES FOR NEXT CALCULATION 

0(1)= 164.1667322 0(2)= 190.9169858 0(3)= 243,5¢3¢522 0(4)= 
3¢1.¢11972 

Bl=-¢.¢968723 B2=-¢.721577881 B3=-¢.692636¢81 
Al= 0.635876481 A2=-¢,5489293 A3=-¢.556¢9¢31 
Ml= 1 M2= ¢ M3= ¢ 



VECTOR B= l.fl)fl)98fl)3622 
VECTOR A= 1.¢148987¢8 
VECTOR M= l 
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-------------------------------------------------------~---------------

NORMALIZED INPUT VALUES AND CORRECTED ESTIMATES 

Bl=-¢.fl)964¢¢913 
Al= ¢.631191893 
Ml= l M2= ¢ 

B2=-¢l.718{Zl66639 
A2=-¢.544885264 
M3= {Zl 

VECTOR B= l 
VECTOR A= l 
VECTOR M= l 

VALUES FOR THE 2 

FOR THE FUNCTION F 

F( 1 )= 8.3423¢E-¢5 
F ( 2 ) = 1. 7¢567E-¢3 
F( 3 )=-3.89242E-¢3 
F( 4 )= 5.265¢6E-¢3 
F( 5 )=-2.fl)285¢E-{Zl3 
F( 6 )= l.~6672E-¢3 
F( 7 )= 4.¢719¢E-{Zl4 
F( 8 )=-l.6fl)4{Zl2E-¢3 
F ( 9 )=-3. ¢¢¢{Zl¢E-ll 
F( l{Zl )=-2.¢fl)¢{Zl¢E-ll 

TH CALCULATION 

B3=-¢.689265671 
A3=-¢.551993518 

CORRECTION FACTORS FOR VARIABLES IN NEXT CALCULATION 

C( l )=-¢.149fl)91 
C( 2 )=-{Zl.{Zl583194 
c( 3 )= ¢.¢815969 
C( 4 )=-¢.{Zl413965 
C( 5 )=-3.84855E-¢3 
C( 6 )=-¢.fl)435365 
C( 7 )=-{Zl.fl)ll4792 
C( 8 )= ¢.{Zl136387 
C( 9 )= l.48476E-¢3 
C( 1¢ )= {Zl.1692 

INPUT VALUES AND CORRECTED ESTIMATES FOR NEXT CALCULATION 

0(1)= 163,5¢89767 0(2)= 191.6979273 0(3)=243,58785¢¢ 0(4)= 
31¢.7¢64179 



Bl=-[6.245491913 
Al= (ll,589795393 
Ml= 1 M2= f6 

B2=-f/j.776386¢39 
A2=-¢.548733814 
M3= ¢ 

VECTOR B= 1. ¢323V-\2897 . 
VECTOR A= 1.¢¢36234¢6 
VECTOR M= 1 

B3=-¢.6fl)7668771 
A3=-fl),59553¢¢18 

NORMALIZED INPUT VALUES AND CORRECTED ESTIMATES 

Bl=-¢.24162f/l411 
Al= ¢.588729754 
Ml= 1 M2= fll 

B2=-¢.764142129 
A2=-¢.547742365 
M3= ¢ 

VECTOR B= 1 
VECTOR A= 1 
VECTOR M= 1 

VALUES FOR THE 3 

FOR THE FUNCTION F 

F( 1 )= 4.94987E-¢3 
F( 2 )=-2.41¢86E-¢3 
F( 3 )= 3.4¢228E-¢3 
F( 4 )=-¢.¢187969 
F( 5 )= l.93948E-f63 
F( 6 )=-4,522¢¢E-¢3 
F( 7 )= 2.79fl)96E-¢3 
F( 8 )=-¢.¢2813f/l8 
F( 9 )= 8. fllfl.)(ll(llr/JE-11 
F( 1¢ )= 8.¢(1l¢¢fllE-ll 

TH CALCULATION 

B3=-¢.598fl)85599 
A3=-¢,594454¢17 

CORRECTION FACTORS FOR VARIABLES IN NEXT CALCULATION 

C( 1 )= fl.).¢426769 
C( 2 )= 2.24733E-¢3 
C( 3 )=-¢.¢2¢11(67 
C( 4 )= ¢.¢2853¢4 
C( 5 )= 9.¢9581E-¢3 
C( 6 )= ¢.¢198762 
C( 7 )= 4.36545E-¢3 
C( 8 )=-6.5619¢E-¢3 
C( 9 )= l.97477E-¢3 
C( 1¢ )=-0.0391762 

INPUT VALUES AND CORRECTED ESTIMATES FOR NEXT CALCULATION 
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0(1)= 163.7587863 0(2)= 101.321494¢ 0(3)= 243.7¢¢7227 9(4)= 
3¢8.4615693 

Bl=-¢.198943511 
Al= ¢.61726¢154 
Ml= 1 M2= ¢ 

B2=-¢.761894799 
A2=-¢,538646555 
M3= ¢ 

VECTOR B= 1.¢¢2228869 
VECTOR A= 1.¢¢1289877 
VECTOR B= 1 

B3=-¢.61819q299 
A3=-¢.574577817 

NORMALIZED INPUT VALUES AND CORRECTED ESTIMATES 

Bl=-0.198722171 
Al= ¢.616862444 
Ml= 1 M2= ¢ 

VECTOR B= 1 
VECTOR A= 1 
VECTOR M= 1 

VALUES FOR THE 4 

FOR THE FUNCTION F 

B2=-¢.761¢47134 B3=-¢.6175¢85¢9 
A2=-¢,538299496 A3=-¢.5742¢76¢8 
M3= ¢ 

TH CALCULATION 

F( 1 )= 4.¢2949E-¢4 
F( 2 )=-l.58632E-¢4 
F( 3 )= 2.24839E-¢4 
F( 4 )=-l.29345E-¢3 
F( 5 )= 4.41853E-¢4 
F( 6 )=-4.¢3972~¢4 
F( 7 )=-4.48451E-¢5 
F( 8 )=-l.1¢785E-¢4 
F( 9 )= 7.¢¢¢¢¢E-ll 
F( 1¢ )= l.¢¢¢¢¢E-ll 

CORRECTION FACTORS FOR VARIABLES IN NEXT CALCULATION 

C( 1 )= ¢.¢171664 
c( 2 )= 6.44831E-¢3 
C( 3 )=-¢.¢1347¢2 
C( 4 )= 2.68357E-¢3 
C( 5 )=-4,9664¢E-¢4 
C( 6 )= 3.34847E-¢3 
C( 7 )= l.79375E-¢3 
C( 8 )=-l.21257E-¢3 
C( 9 )= 4,94¢62E-¢4 
c( 1¢ )=-¢.¢2¢2752 



INPUT VALUES AND CORRECTED ESTIMATES FOR NEXT CALCULATION 

0(1)= 163.8613457 0(2)= 191.2515931 0(3)= 243,7287976 0(4)= 
3¢7.29961¢9 

Bl=-¢.181555771 
Al= ¢.619546¢14 
Ml= 1 M2= ¢ 

B2=-¢,754598824 
A2=-¢. 538796136 
M3= ¢ 

VECTOR B= 1.¢¢¢516¢14 
VECTOR A= 1.¢¢¢¢18696 
VECTOR M= 1 

B3=-¢.63¢9787¢9 
A3=-¢. 57¢8591'38 

NORMALIZED INPUT VALUES AND CORRECTED ESTIMATES 

Bl=-¢.1815¢8946 
Al= r/j.61954¢223 
Ml= 1 M2= ¢ 

VE.CTOR B= 1 
VECTOR A= 1 
VECTOR M= 1 

VALUES FOR THE 5 

FOR THE FUNCTION F 

B2=-¢,7544¢42¢7 
A2=-¢.5387911¢¢ 
M3= ¢ 

TH CALCULATION 

F( 1 )= 7.36¢91E-¢5 
F( 2 )=-2.7578fbE-¢5 
F( 3 )= l.¢446¢E-¢5 
F( 4 )=-3.12216E-¢4 
F( 5 )=-2.3¢757E-¢5 
F( 6 )=-2.59281E-¢5 
F( 7 )= 5.89722E-¢5 
F( 8 )=-4.53fbl2E-¢4 
F( 9 )=-5.¢¢¢fl)¢E-ll 
F ( 1¢ )= ¢ 

B3=-¢.63¢815975 
A3=-¢,57¢8538¢2 

CORRECTION FACTORS FOR VARIABLES IN NEXT CALCULATION 

C( 1 )=-3.86642E-¢4 
C( 2 )=-5.79916E-¢4 
C( 3 )= 8.¢4780E-¢4 
C( 4 )= 5,24423E-¢4 
C( 5 )= 3,77287E-fl)4 
C( 6 )= 2.13¢51E-¢4 
C( 7 )=-l.62613E-¢5 
C( 8 )=-5.59¢4fl)E-¢5 
C( 9 )= l.5851¢E-¢4 
C( 1¢ )= l.¢5252E-¢3 
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INPUT VALUES AND CORRECTED ESTIMATES FOR NEXT CALCULATION 

O(l)= 163.86¢1998 0(2)= 191.2481554 0(3)= 243.737392¢ 0(4)= 
3¢7. 3597715 

Bl=-¢.181895588 
Al= ¢.62¢¢64646 
Ml= l M2= ¢ 

B2=-¢.754984l23 
A2=-¢•538413813 
M3= ¢ 

VECTOR B= l.¢¢¢¢¢1137 
VECTOR A= l.¢¢¢¢¢¢465 
VECTOR M= 1 

B3=-¢. 63¢¢11195 
A3=-¢.57¢64¢751 

NORMALIZED INPUT VALUES AND CORRECTED ESTIMATES 

Bl=-¢.181895485 
Al= ¢.62¢¢654¢1 
Ml= l M2= ¢ 

VECTOR B= 1 
VECTOR A= 1 
VECTOR M= l 

B2=-¢.754983694 
A2=.;..¢,538413688 
M3= ¢ 

B3=-¢.63¢¢1¢837 
A3=-¢.57¢640618 
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-----------~------------------------------------~----------------------

VALUES FOR THE 6 TH CALCULATION 

FOR THE FUNCTION F 

F( 1 )= 2.58¢89E-¢6 
F( 2 )=-9.5¢5¢8E-¢7 
F( 3 )=-¢.65782E-¢6 
F( 4 )= 8.95462E-¢7 
F( 5 )=-l.5468¢E-¢7 
F( 6 )= 9.62521E-¢6 
F( 7 )=-7.28¢57E-¢6 
F( 8 )= 2.¢4944E-¢6 
F( 9 )=-2.¢¢¢¢¢E-ll 
F( 1¢ )=-5.¢¢¢¢¢E-ll 

CORRECTION FACTORS FOR VARIABLES IN NEXT CALCULATION 

C( 1 )= l.¢1663E-¢6 
C( 2 )=-9.49546E-¢6 
C( 3 )= l.1¢861E-¢5 
C( 4 )= l.55446E-¢5 
C( 5 )= l.l4327E-¢5 
C( 6 )= 6.1¢396E-¢6 
C( 7 )= 3.22449E-¢6 
C( 8 )= 2.23591E-¢6 
C( 9 )= l.559¢2E-¢5 
C( 10 )= 2.26¢13E-¢5 



INPUT VALUES AND CORRECTED ESTIMATES FOR NEXT CALCULATION 

0(1)= 163.86fl)1998 0(2)= 191.2481554 0(3)= 243.7379649 0(4)= 
3f()7.36fl)9174 

Bl=-f().181894468 
Al= ft). 62f()~8fl)f()46 
Ml= 1 M2= ¢ 

B2=-fll. 75499319¢ 
A2=-¢.5384¢2255 
M3= ft) 

VECTOR B= ¢.999999999 
VECTOR A= 1 
VECTOR M= 1 

B3=-¢.62999975¢ 
A3=-f().57¢634514 
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*********************************************************************** 

CQ Side 

Cx/Cz . -8 

/ 

-4 4 8 / 

-0.5 / 
// 

/ 

/ 
/ 1235 

~ 

/~------

/ 
/ 

/ 

/-, ,,,,,, ' 
/ -1.0 

1 
/ 

/ 
'.../ 

Cy/Cz 

Figure 6. Circle Point Curves for 
Positions 12, 13, 14 and 
12, 13, 15 

1234 



D.2 PATH POINT GENERATION 

Pl=(,57735¢269,-,816496581,¢) 
P2=(.831724289,.546¢362¢2,-.1¢¢395¢69) 
P3=(,326975171,.9¢8754556,.25933¢66¢) 
P4=(.5917531¢9~-.18412¢746,,78481¢654) 
P5=(.157517762,.6¢9616916,.776888168) 

s12=(.¢81972231,.¢5796312¢,.994354186) 
s13=(.-.211742597,-.149724626,.791643797) 
s =(-.64¢795216,-.45311¢642,.37686228) 
s~~=(-.634326533,-.448536593,.48¢5752¢4) 
Q12=88.¢3¢75945 ) 
Q13=123.58791¢2 ) 
Q14=6¢.529¢1277 )) 
Q15=114.¢¢44255 

LET, 
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The resulting displacement matrices are .identical to those obtained 
in the five position rigid body guidance problem. Therefore, the so
lutions are the same. 

D.3 FUNCTION GENERATION 

FUNCTION GENERATION FOR EIGHT POSITIONS 

OF THE INPUT AND OUTPUT LINKS OF A 

GEARED SPHERICAL FIVE-LINK MECHANISM 

HAVING A GEAR RATIO OF 2 

USING THE NEWTON-RAPHSON TECHNIQUE FOR SETS OF NON-LINEAR EQUATIONS 

*********************************************************************** 

ESTIMATES OF POINTS IN THE INITIAL POSITION 

Ml= ¢.7¢71¢6781 

Al= 1.¢¢¢¢¢¢¢¢¢ 

M2= ¢.7¢71¢6781 

A2= ¢.¢¢¢¢¢¢¢¢¢ 

M3= ¢.¢¢¢¢¢¢¢¢¢ 

A3= ¢.¢¢¢¢¢¢¢¢¢ 



Bl= fl).7fl)71fl)6781 

Cl= fl). fl)fl)fl)fl)fl)fl)fl)fl)fl) 

Ql= fl).fl)fl)fl)fl)fl)fl)fl)fl)fl) 

B2=-fl). ~(fl)71fl)6781 

C2= fl). fl)fl)fl)fl)fl)fl)fl)fl)fl) 

Q2= 1. fl)fl)fl)fljfl)fl)fl)fl)fl) 

B3= fl). fl)fl)fl)fl)fl)fl)fl)fl)flj 

C3= 1. {Dfl)fl)fl)!(1¢lfl)fl)~ 

Q3= fl). fl)fl)fl)fl)fl)fl)fl)fl)¢ 

-----------------------~-----------------------------------------------

INPUT-OUTPUT ROTAT!ONS 

POSITION 
1- 2 
l..;. 3 
1- 4 
1- 5 
1- 6 
1- 7 
1- 8 

INPUT 
lfl).fl)fl)(I} 
2¢. fl)fl)fl) 
3fl). fl)fl)fl) 
4fl).fllfl)fl) 
5fl),fllfl)fl) 
6fl). fl)fl)fl) 
7fl).fl)fl)fl) 

OUTPUT 
31.365 
52.497 
65.135 
72.135 
73.555 
65. fl){Dl 
37.117 

*********************************************************************** 

VALUES FOR THE 1 TH CALCULATION 

FOR THE FUNCTIONS 

F( 1 )=-6.55394E.:.fl)6 
F( 2 )=~4.64776E-fl)6 
F( 3 )=-l.58377E-¢5 
F( 4 )=-0.88581E~fl)7 
F( 5 )=-5.83188E-fl)6 
F( 6 )=-5.445fl)4E-fl)6 
F( 7 )=-3.73264E-fl)6 
F( 8 . )=-5. 3fl)fl)fl)fl)E-lfl) 
F( 9 )=· ~ 
F( lfl) )=-5.3fllfl)fl)fllE-lfl) 
F( 11 )= fll 

CORRECTION FACTORS FOR VARIABLES IN NEXT CALCULATION 

C( 1 )=-fll,fll8fl)591148 
C( 2 )= fl).fl)8fl)591149 
C( 3 )= fl) 
C( 4 )= fl).fl)68(1}92834 
C( 5 )= fl).171¢44(1}88 
C( 6 )=-fl).fl)19366894 
C( 7 )=-¢,(1}19366894 
C( 8 )= fl),13¢9fl)7895 
C( 9 )=-fl).fl)44537fl)71 
C( lfl) )= fl),fll54182563 
C( 11 )= ¢ 

CORRECTED ESTIMATES FOR NEXT CALCULATIONS 



Ml= ¢.626515633 M2= ¢,78769793¢ M3= ¢.¢¢¢¢¢¢¢¢¢ 

Al= 1. ¢¢¢fl){ll¢¢¢¢ A2= fl). fl)68¢92834 A3= ¢ .1 71¢44¢88 

Bl= ¢.687739887 B2=-¢,726473675 B3= ¢,13¢9¢7895 

Cl=-¢. ¢44537¢71 C2= 0. 054182563 C3= 1. ¢¢¢.¢¢¢¢¢¢ 

Q,l= ¢.¢¢¢¢¢¢{ll¢¢ Q2= l.fl)¢fl)¢¢¢¢¢¢ Q3= ¢.¢¢¢¢¢¢¢¢¢ 

VECTOR Q= 1 
VECTOR M= 1.¢12989867 
VECTOR A= 1.¢33892714 
VECTOR B= l.fl)17887¢3 
VECTOR C= 1. ¢¢49193 

NORMALIZED INPUT VALUES AND CORRECTED ESTIMATES 

Ml= ¢.622485675 M2= ¢.782631193 M3= ¢.¢¢¢¢¢¢¢¢¢ 

Al= ¢.983472595 A2= 0.066967436 A3= ¢.168217173 

Bl= ¢.68167¢379 B2=-¢.72¢¢6233¢ B3= ¢.129752594 

Cl=-¢.¢44427928 C2= fl),¢54¢49782 C3= ¢,997549387 

Q,l= ¢.¢¢¢¢¢!Z)¢¢{ll Q2= l.¢¢fl)!Z)¢¢¢!Z)¢ Q3= fl). ¢!Z)¢¢¢!Z)!Z)¢¢ 
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