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CHAPTER 1 

INTRODUCTION 

Reservoir design has been predicated on the economic principle 

of "supply and demand". The underlying philosophical thrust of this 

principle requires the optimization of storage to satisfy quantita

tive demands or needs. An important design consideration in 

determining the amounts of storage required to satisfy the needs 

is the amount and distribution of sediment deposition. 

In the past, sediment storages were provided at the bottom of 

reservoirs. Since about 1950, attempts have been made to predict 

the distribution of sediment deposition through reservoirs. 

These attempts began when the fact was realized that sediment does 

tend to deposit through the length of reservoirs. 

Sediment is defined by Blench (1, pg. 3) as, "Any material 

denser than water, that is transported at any stage of flow." 

Sediment usually consists of sand, gravel, silt or clay. The study 

of sedimentation examines two distinct phenomenon - degradation and 

deposition. Both are ccincemed with the effects of flow on the land 

surface and both occur when the flow is not in equilibrium. Deposi

tion occurs when circumstances are such that the flow is unable to 

transport its sediment load. The flow, as described by Blench (2), 

is in equilibrium when it is neither degrading nor depositing and 

flows always seek equilibrium. 
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The source of most water-borne sediment in the southwest is 

sheet erosion of freshly plowed ground. In this region of the 

country, most rainfall occurs as thunderstorms in the spring months, 

and at the same time the fields are being plowed. The runoff occurs 

as sheets across the fields. The rainfall has a great capacity for 

picking up sediments. The second largest source of sediment is 

degradation of stream channels in the upper reaches of the streams. 

Here, the slopes are steep and flow velocities are high. The 

streams are seeking equilibrium. Once the sediment has reached a 

stream or river, it may be classified into the following three 

groups: suspended, bed load, and saltation. A discussion of the 

movement of sediment follows: 

Brown (4, pg. 1) states: 

The movement of sediment in alluvial streams is so 
complex a problem, that it may never be completely 
subject to a rational solution. It represents, in fact, 
the most extreme degree of unsteady, non-uniform 
flow, since the streambed as well as the water surface 
may be continually changing in flow. With the present 
state of knowledge, an approximate understanding of 
the general transport mechanism can be obtained only 
by isolating particular details or by simplifying the 
boundary conditions that only the most significant 
variables need be considered. 

In light of this comment, a discussion of sediment movement is 

limited to an explanation of the three groups of sediment transport. 

1. Suspended sediment. This sediment is suspended in the 

stream flow and is usually the smaller grained material. 

2. Bed load. This material usually is larger and more dense 

material which is rolled along the bottom of the stream. 

3. Saltation. This material is transitional between the 

suspended and bed level material and is thought to be bounced along 



the bottom of the stream. 

Since, in any stream flow, a certain amount of turbulence 

exists, it is at times difficult to separate the three groups into 

distinct classifications. 

Another type of sedimentation process is air-borne sediment. 

This type of process is characterized by dust or sand storms and 
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is not infrequent in the southwest. Air-borne sediment is difficult 

to measure, so the discussion in this thesis will deal exclusively 

with water-borne sediments. 

The amount of sediment being caused by rivers is proportional 

to the discharge of the river and the availability of sediment. 

The higher the discharge, the greater the volume of sediment. 

The greater volumes of sediment are then deposited in lakes during 

high or flood type flows. (This is also when the greatest rain

falls occur, and sheet erosion occurs). Sediments deposit in lakes 

because of a change in flow characteristics of the transporting 

streams. Under normal conditions, the following should occur as 

described by Fowler (5): 

1) The heavier grains will deposit first in the upper reaches 

of the lake. 

2) The silts and fine sands will be transported and deposited 

downstream of the heavier grains since these particles require 

lower velocities to remain in suspension. 

3) The first visual evidence of sedimentation will be the 

forming of a delta where the river bed intersects the normal water 

level of the lake. 

4) As the delta continues to grow and reduce the flow area 



at the mouth of the river, the inflow velocities will increase and 

sediments will be transported further downstream. Eventually, 

the fine sand will be distributed in the lower reaches of the 

lake. 

5) As the sediment deposition increases, the ability of the 

lake to trap the sediment will decrease, causing reduction in 

trap efficiency. 

This distribution of sediments throughout the lake have major 

consequences on the ability of the lake to perform its project 

purposes. Obviously, if flood control is a purpose and since 
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most of the heavier grains are deposited in the flood pool, this would 

reduce the total volume available for flood control operations. A 

major portion of the sediments are deposited just below the top 

of normal pool which is usually considered the conservation pool. 

Sediments in this pool could afford project purposes such as; 

water supply, irrigation, and hydro-power. Sediments which deposit 

in the inactive pool could effect the power intake structures. 

The objective of this thesis is to present a critique of 

several methodologies used in predicting the distribution of 

sediment deposition in reservoirs. This thesis is not meant to 

be critical of these methods, but will compare results using 

these methods with an actual sediment deposition occurrence in 

an attempt to aprise the reader to the problems involved in pre

dicting sediment deposition distribution. This thesis will also 

attempt to alert the reader to the importance of a careful analysis 

of the problem in designing a reservoir. 



The construction of any large reservoir requires a great sum 

of money. Contracts will be signed to provide a certain amount 

of water for useful purposes such as water supply, irrigation and 

hydro-electric power. If that reservoir is to provide the intended 

functions over a long period of time, each phase of its design must 

be thorough and competent. The amount of water necessary to ful

fill the project purposes can be determined by rather rigorous 

hydrologic computation. The amount of storage spaces or volume in 

each of the various parks is determined by the volume of water 

required for the purpose plus the volume of expected sediment. 

5 

Many texts have been written on hydraulics, and engineering students 

are fairly competent in this field. No texts and few publications 

exist on the prediction of sediment deposition, hence, the justi

fication for this work. 

This thesis is organized in such a manner as to be useful in 

the prediction of sediment deposition. Two different methods are 

described and the same sample problem is worked with each method 

and compared with actual measurements of sediment deposition. 



CHAPTER II 

REVIEW OF LITERATURE 

An understanding of sediment transport in rivers can be 

obtained from a study of Dr. Blench's (1) many works. Notably 

among Dr. Blench's books are Mobile Bed-Fluviology and Hydraulics 

of Sediment-Bearing Canals and Rivers, both of which give a good 

description of how rivers transport sediment and the results of 

various criteria on the ability of rivers to transport sediments. 

Lloyd C. Fowler (5) in his publication Determination of 

Location and Rate of Growth of Delta Formations gives a good 

description of delta formation and growth and the effects of 

various types of soils on delta formations. As in most cases in 

literature on sedimentation, the formulas proposed use parameters 

which cannot be quantified with any real accuracy. 

Many articles on sedimentation have appeared in the American 

Society of Civil Engineers Journal of the Hydraulics Division. 

Noteworthy among these is the paper entitled Distribution of 

Sediment in Large Reservoirs by Whitney M. Borland and Carl R. 

Miller (3) which appeared in Volume 84, published in April 1958, 

on which a large portion of this paper is based. Also noteworthy 

is the article entitled Trap Efficiency of Reservoirs, Debris Basins 

and Debris Dams by Charles M. Moore, Walter J. Wood, artd Graham 

W. Renfro (6) which appeared in Volume 86, published in February 1960. 

6 



A method of measuring sediment in reservoirs is presented in 

the US Department of Agriculture pamphlet entitled Silting of 

Reservoirs by Henry M. Eakin and revised by Carl B. Brown (4). 

The pamphlet also includes data from resurveys of various reser

voirs. Even though the methods described in this literature are 

still in use, they are completely out-of-date because of techno

logy advances in survey equipment. The literature contains useful 

data as to the resurveyed reservoirs. 

Although tremendous volumes of work have been accomplished in 

the field of sedimentation, little has been written on sediment 

deposition distribution. Most formulas pertaining to this subject 

are empirical and most do not treat the whole problem as is 

attached in this paper. 

7 



CHAPTER III 

PREDICTING SEDIMENT DISTRIBUTION 

In Chapter I, the general nature of sediment transport, the 

trends of sediment distribution and the effects of sediment 

deposition were discussed. In this chapter, the art of predicting 

sediment deposition distribution throughout the depth of a 

reservoir will be discussed. The procedures discussed will be 

somewhat empirical, however, like hydrology, predicting the 

distribution of sediment in a lake is an art. It is an art, in 

that the number of parameters effecting the solution are beyond 

the limits of capability to handle in an analytical fashion. The 

engineer must develop a sense or feel for the problem. This 

sense comes from experience in the field and an understanding of 

geology, soil mechanics and hydrology. Certain variables have a 

definable effect upon the amount, kind, and therefore, distribution 

of sediment deposits in a lake. For comparison during the dis

cussion, Lake Texoma, a classical problem in sediment deposition 

and distribution, will be referred to as an example. 

The physiological characteristics of the basin above a pros

pective dam site will have an effect upon the amount, type, and 

therefore, distribution of sediment deposits in the lake. The 

size of the basin above the dam or the total drainage area is 

indicative of the amount of sediment available for transport and 
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depending upon rainfall, the amount of flow with which to transport 

the sediment. However, the size of the basin above can be de

ceiving since as with most of the other variables used in 

solving the problem, it is not independent. But in predicting 

deposition, the first step should be to determine the size of 

the basin. 

The shape of the basin also can have an effect upon the 

problem. A basin whose width equals or exceeds its length, will 

for the most part, have a smaller ratio of net sediment contri

buting area to total drainage area than one whose length exceeds 

its width. Normally, as the width to length ration decreases, the 

net sediment contributing area to total drainage area will in

crease. In Lake Texoma, the width to length ratio is 0.26 and 

~he net sediment contributing area to total drainage area is 0.72. 

The second step in solving the problem of distribution is to 

determine the net sediment contributing area. Areas in the basin 

behind upstream large dams contribute little or no sediment to the 

proposed impoundment and sediment which passes through these 

structures may generally be assumed to pass through the proposed 

lake. Areas within the basin which are so broad and flat that 

drainage direction cannot be determined, should also be considered 

as non-contributing. Areas above distinct alluvial fans should be 

considered as only partially or non-contributing. Areas such as, 

above Hutchison, Kansas, on the Arkansas River, where most of the 

flow is lost due to irrigation or in-seep into groundwater should 

not be considered as contributing. Computing the net sediment 

contributing area in many instances will rely upon the judgement 

9 
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of the engineer. A careful study of the physiological features 

from aerial photographs and U.S.G.S. quadrangle maps will aid the 

engineer in his decisions. Generally, a knowledge of the topographic 

features within the basin is essential in determining the amount 

and character of the transported sediments. If time allows (and 

perhaps time should be provided), sediment sampling stations 

should be located within the basin. In most large basins within 

the continental United States, some sampling stations with long 

periods of record have been established by various govermnental 

agencies. Care must be taken in locating sampling stations. 

Stations should be located for easy access and should reflect the 

character of the basin above the station. A station located just 

above or below a dramatic change in stream slope will produce 

readings which will be misleading for predicting sediment inflows 

for a proposed dam downstream. Stations should not be located in 

areas where stream velocities will be higher or lower than normal 

for_ the reach under investigations. 

This leads naturally into a discuss·ion of the rivers and 

streams within the drainage basin. Rivers are again dependent 

variables, dependent upon such things as topography, rainfall, 

runoff and use. However, a knowledge of the rivers within the 

basin will aid the engineer in understanding the phenomenon of 

sediment transport. Geologists have classified rivers into three 

rather distinct groups according to age. A young river has such 

features as a "V" shaped cross section, relatively straight align

ment, high velocities, steep bed slopes and during flood, light 

suspended sediment loads with ~ed loads of heavy material. A dam 
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located on a young river will normally produce a deep narrow lake. 

Light sediment deposition will occur in the bottom of the lake during 

floods. The heavier bed load material will probably not reach the 

lake as it will be dropped as the peak flow passes and will not 

be transported a great distance. One would not expect an extensive 

delta to be formed on this type of lake because of the lack of 

growth along the stream channel and the light sediment loads. These 

light loads are usually due to the lack of available sediments. An 

example of a stream in the young age is the Arkansas River above 

Canyon, Colorado. A stream in mature age has a "U" shaped cross

section with some over-bank flow during flood. The river will show 

mild meanders with somewhat gentler slopes and slower velocities. 

These rivers are normally degrading during floods and will carry 

large suspended sediment loads and large bed loads. Bed load 

material will be somewhat heavier (as discussed in Chapter 1) than 

the suspended loads and will be transported greater distances than 

young rivers are capable of doing. The river will probably experi

ence some growth of willows and/or salt cedars in the over-bank 

areas. A dam across a river in mature age will produce a lake which 

will experience some delta growth. However, the "U" shaped cross

section will prohibit extensive delta growth. Some sediment will 

be deposited in the higher reaches of the lake but because of the 

high suspended load, most deposition will occur in the lower reaches 

or the bottom of the lake. A river in old age will exhibit a broad 

flat cross-section with extensive over-bank flow during floods. 

Excessive meanders with frequent ox-bow lakes representing cut-off 

meanders will be present. The channel slopes will be flat and the 



river will exhibit slow velocities with large base flows. A 

lake on a river in old age will most likely experience heavy delta 

growth with most sediments being deposited at or above top of 

nonnal pool. 
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Stream bed slopes or gradients are indicative as to the amount 

of sediment transported. Streams with steep slopes (greater 0.5%) 

usually carry little sediment. This is not due to lack of carrying 

capacity, but rather to a lack of available sediment for transport 

as most of these streams are located in mountainous terrain. 

Streams with steep slopes are degrading and over time will reach 

an equilibrium point with respect to sediment load. This is a 

primary cause of meanders in streams with mild slopes (0.5% to 0.5%). 

Mildly sloped streams are primarily degrading and only occasionally 

reach or exceed equilibrium. Once equilibrium is exceeded, deposi

tion occurs. Streams with flat slopes (less than 0.05%) usually 

are constantly degrading or depositing and the sediment load to 

carrying capacity is close to unity. Sudden changes in stream 

slope affects the carrying capacity of sediment. A sudden change 

from steep to mild slopes could cause deposition of part or all of 

the streams sediment. While a change from mild to steep slopes 

could induce a degrading effect. The engineer should examine the 

stream slopes within the basin under study. This examination 

should help in the establishment of sediment contributing drainage 

area, sediment available for transport and a better understanding of 

the nature of the stream under study. 

An accurate and long time record of stream discharges with 

corresponding integrated sediment measures is a tremendous aid in 
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predicting sediment yields and distribution. Streams which show a 

wide variance in discharges (as due most streams within the South

west) usually will transport large quantities of sediment. Streams 

with a small variance in discharge will transport less sediment. 

This is due primarily to a stream bed which is constantly wetted 

and becomes armored. A stream whose discharge varies allows the 

overflow area to dry and become subject to wind and rain action, 

thus, breaking up the top soil. Plants which survive in this type 

of overflow area usually aid in the breaking up of the top soil and 

making the soil more susceptable to erosive action. 

An investigation of the land cover and use within the basin is 

required to understand and predict sediment loads. Heavy timbered 

lands usually do not erode as much as grass lands. This is due 

mainly to the shielding effect of trees against the forces of 

erosion such as wind and rain. However, if timber operations are 

in progress, large amounts of sediment will be produced. If the 

shielding effect of the trees is removed_, the soil becomes very 

susceptable to erosion. National grasslands such as those found in 

the Dakotas and Nebraska will produce more sediment than timbered 

lands. Arid lands with little or no vegetation will yield large 

amounts of sediment during high flows (periods of intense rainfall). 

In the Southwest, lands used for agricultural purposes produce most 

of the sediment which occurs in the stream. Even with the relatively 

new methods of agriculture erosion checks, little or no gain can 

be found in the loss of good top soil to erosion (as measured in 

stream gages). As stated in Chapter I, most plowing occurs just 

before heavy spring rains, and most harvesting takes place just 
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before the heavy fall rains. These actions loosen the top soil and 

aid the erosive action of the rainfall. Until recent Environment 

Protection Agency regulations become effective, this process will 

also contribute to pollution of the river with pesticides and 

other harmful farm additives. 

Large stable urban areas produce little sediment, but do add 

greatly to stream pollution. Urban areas which are expanding, 

produce large amounts of sediment. In recent years, the advent of 

massive housing development has added large amounts of sediment to 

streams. If large stable urban areas exist in the drainage areas, 

consideration should be given to subtracting that area or at least 

a portion of that area from the total sediment contributing areas. 

If the urban area is growing and new housing developments are in 

process or a predicted population growth is forecast, then that 

area should be included in the contributing area. 

Upstream reservoirs have an effect upon sediment transport in 

streams. Large dams effectively trap most of the suspended sedi-

ment and all of the bed load. The sediment which passes through 

these dams can be assumed to pass through any downstream structure. 

The area above large dams should not be considered as sediment con-

tributing. Small Soil Conservation Service dams trap most sediments 

during normal flows. However, during high flows, a large portion 

of the suspended sediment will be discharged. The life of these 
. 

smaller dams is short and probably will not exceed 50 years before 

their basin will be full of sediment. Therefore, consideration 

should be given to count some percentage of small dams drainage 

area as sediment contributing. Over a long period of time, upstream 
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large dams will effectively reduce the amount of sediment deposition 

in a downstream lake. Initially, though, these structures could 

increase sediment in the river due to the scouring effect of their 

discharges. Since the water being discharged is relatively free of 

sediment, it has a large capacity for picking up sediment, hence, 

the scouring effect innnediately downstream of the structure. This 

effect is not all bad, since in hydro-power projects, predicted 

scour can be used to increase the hydraulic head to the turbines. 

The topography of the basin to be inundated will somewhat 

determine how sediment will be deposited. Before predicting sedi-

ment distribution, the engineer should derive an elevation-area 

curve and an elevation-capacity curve. The elevation-area curve 

is derived from planimetering the contours within the basin. The 

elevation-capacity curve is then computed from the elevation-area 

curve. The conic volume formula has been found to be the most 

accurate representation of most basins. This formula is: 

dV = Ai + (Ai + 1) (dh) 
3 (3-1) 

where: dV = Volume between elevations whose areas are Ai and 

Ai+ 1, and dh =Height between elevations whose areas are Ai 

and Ai + 1. Progressive sunnnations of dV will yield the capacity 

at any elevation whose areas are Ai + 1. From the formula, it 

can be seen, flat basins with broad flat areas at lower elevations 

will produce large volumes at those elevations with little change 

in elevation. While basins which are "V" shaped require a large 

change in elevation to produce a large volume. An example of 

e~evation-capacity curves and elevation-area curve for Lake Texoma 



is shown on Figure 1. It is normally expected, that after sedi

mentation occurs, a somewhat smaller volume and area would be 

expected at each elevation but the shape of the curve would not be 

altered drastically. 
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The character or type of sediment being transported is another 

factor in how the sediment will be deposited. As discussed in 

Chapter 1, sands are vey susceptable to a change in river regimes. 

That is, any change in the flow characteristics of a river trans

porting sand will effect the amount of sand transported. When that 

river flows into a lake, the velocity of flow will be altered and 

the heavier sands will be deposited. Since most transport occurs 

during flood time, it is expected initially, that most sands will 

be deposited at or above top of conservation (normal) pool and will 

form a delta. As the delta grows, the flow area of the river· is 

reduced, so that, velocities can be retained further downstream 

and increase the growth of the delta into the lake basin. Over a 

period of ti.me,' sands will be deposited throughout the depths of 

the lake. Rivers transporting sediments consisting mainly of clays 

will deposit their loads more uniformly in the lake basin. Over 

time, some delta growth would be expected from clay bedded streams 

due to a reduced basin capacity at the higher elevation in the basin 

and vegetation growth in the unwetted areas during normal flow 

periods. 

A study of the climatology of the basin is important to under

stand the transport media or river flow characteristics. The 

amount of rainfall is a factor in determining the volume of water 

or discharge of the river. The intensity and distribution (as to 
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time of year) very often determines the amount of sediment in the 

rivers. In the southwest, rainfall usually occurs as thunder

storms of high intensity over a short period of time. They 

occur normally during the spring and fall of the year and most 

often just after fields have been plowed or the crops have been 

harvested. This phenomenon produces the high sediment yields ex

perienced in this region of the country. The force with which the 

rainfall hits the earth determines the amount of soil dislodged. 

If the soil has been disturbed by plowing, etc., more soil will 

be dislodged and transported by the runoff. The picking up and 

transporting of the soil most often occurs as sheet erosion. This 

occurs during and directly after high intensity rainfall as a 

sheet of water flowing over a broad area. The deeper the water, 

the more erosion occurs as the tractive force between the water 
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and the soil is directly proportional to the depth of water. Since 

sheet erosion is the primary source of sediment in the stream, much 

research by State and Federal agencies has been done in attempting 

to stop this phenomenon. However, methods such as contour plowing, 

sediment checks, ditch checks, etc., have yielded little results in 

prohibiting sheet erosion. It appears that the hedge rows of 

France and the stone fences of England are still the best methods of 

breaking up sheet erosion. But these methods are too expensive 

when applied to the broad expanses of most American farms. 

The design of the dam is another primary factor in the way 

sediment is deposited in the lake basin. Following is a discussion 

of three types of dam designs and their effects upon sediment 

distribution. 



1. Valley gated. A valley gated dam consists of an earthen 

embankment with a gated spillway. Normally, this type of dam has 

a flood pool not over 40 feet deep or about the height of the 

tainter gates. Flood protection is usually for something less 

than the 50-year flood. The top of water is expected to be in 
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the flood pool often. Little or no surcharge above top of flood 

pool is provided (Keystone Dam has only three feet of surcharge) 

since operation of the gates is fast and the top of water may be 

controlled easily. During large floods, when most sediment is 

deposited in the lake, the top of flood pool is reached quickly 

and a higher percentage of sediment may then be assumed to deposit 

at the higher elevations. Trap efficiencies or the ability of the 

lake to trap or hold inflowing sediment is lower than can be ex

pected in other dam designs and usually are in the range of 70 

percent to 90 percent. As lakes with valley gated spillways begin 

to fill with sediment, trap efficiency will be markably lower. 

2. Frequent service-low level spillways. This type of dam 

design has an earthen embankment with a chute type spillway located 

located at or near the top of normal pool. The spillway is frequent

ly used and the height of flood pool rarely exceeds 20 to 30 feet. 

The flood pool is made up of inducted surcharge and during high 

flows will be used more often. The spillway is uncontrolled and 

is dependent on the depths of water in the flood pool to govern 

discharges. High percentages of sediment inflow will be deposited 

at or above the top of normal pool. With the range of deposition 

not nearly as great as experienced with gated spillways. 

3. Limited Service - High level spillways. This type of dam 
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has an earthen embankment with a high level spillway. The flood 

pool is usually deeper than in the two previously discussed designs. 

The spillway is set at a much less frequent flood such as the 

Standard Project Flood. Normally during floods, sediment will be 

distributed over a. more larger range of elevation than the valley 

gated spillway. 

Project purposes effect sediment deposition distribution in 

reservoirs. Following is a discussion of various project purposes 

for which if a reservoir is operated will effect sedimentation. 

1. Flood Control. The depth and frequency of use of flood 

control pools of reservoirs on sand bedded streams· normally deter

mine distribution of sediment in the lake. A small pool which is 

infrequently used limits the distribution of most deposits to 

around the top of conservation pool. While a lake with a lar~e 

flood pool that is frequently used, will have a broader range of 

sediment deposition. A small pool which is frequently used may 

cause the sediment to be distributed at lower elevations because 

of rapid delta growth. A large flood pool that is infrequently 

used will cause a concentrated deposition at or just below top of 

conservation pool (as in the case of Lake ~exoma). 

2. Hydro-Power. If hydro-power is a project purpose, the top 

of normal pool is normally drawn down somewhat below the top of 

conservation pool. As flood waters. enter the lake, deposition 

begins somewhat below the top of conservation pool. This tends 

to decrease the life of the conservation pool. 

3. Recreation. If recreation is a project purpose, the top 

of conservation pool should be maintained at a fairly constant 
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elevation. A high percentage of sediment would then be deposited 

in the flood pool. Recreation areas should not be located in the 

upper end of pools since delta growth could limit access to favor

able recreation water. 

4. Water Supply. The use of the lake for water supply will 

cause the top of normal pool to be drawn down as in the case of 

hydro-power. Water supply inlets should be located close to the 

dam to allow a range of withdrawals which could not be achieved 

in areas that may have delta growth. In sizing a conservation 

pool for water supply, care should be taken to adequately predict 

sediment deposition so that contracts for water can be honored 

after 5-100 years of sedimentation. 
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Figure 2 is a cross-section of a typical large reservoir. The 

volume behind the dam i.s divided into three layers. Layer one 

represents the inactive storage which in the past was known as the 

sediment storage (7). Layer two represents the conservation 

storage. Layer 3 represents the flood storage. Depending upon the 

previously discussed project purposes, the normal water surface 

would be at top of conservation pool. 

The foregoing discussions of the various parameters which effect 

sedimentation in reservoirs has been general in nature. The words; 

probably, most often, normally, etc., have been used liberally •. As 

in most cases, engineers involved with predicting sediment behavior 

should come to expect the unusual to occur. The cause and effect 

of differing sediment happenings are often better explained with 

hindsight. But the fact is, that sediment deposition and distri

bution must be forecast if project purposes are to be fulfilled. 
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Too large an estimate, would add additional costs to our already 

expensive structure, while a conservative answer might jeopardize 

the intended use of the project. 
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The fourth step in predicting sediment distribution is deter

mining sediment inflows. Ideally, one will have a gaging station 

with a long period of record such as the Durwood, Oklahoma gage on 

the Washita River. The gaging station will record flows continu

ously with integrated sediment samples taken by hand periodically. 

The flows with corresponding percent concentration by dry weight of 

suspended sediment are recorded in ascending order according to 

flows. The flows are then divided into groups as shown on Table I, 

sunnned and averaged along with the corresponding percent concen

trated sediment. These values are then plotted on log-log paper to 

produce a curve as shown in Figure 3. 

The next procedure is to compute the flow-duration. This is 

accomplished by determining the total number of days of record 

then assembling the flows into representative groups and computing 

percentages as shown in Table II. Total time of record in Table II 

was 9, 946 days. Using Figure 3 and Table II construct Table III. 

Percent concentration is read directly from Figure 3~ Sediment 

load is computed by multiplying percent concentration times the 

discharge. Percent time is read from Table II. Next, plot sedi

ment load in million tons per year. Percent time flow is equal or 

exceeded on special graph paper as shown in Figure 4. Sediment 

load is plotted on standard log scale while percent time is plotted 

on special scale which elongates small values for easy reading. 

These small values produce the largest amount of sediment yield. 



TABLE 1 

SAMPLE GROUPING OF FLOWS AND 
SEDIMENT CONCENTRATION 

No Discharge Percent 
Sameles GFS Concentration 

0-99 
E•52 E•2810 E•0.69 

Average 54 0.0133 

100-199 
E=lOS Exl6.078 E=2.30 

Average 153.1 0.0219 

200-399 
E~l77 E=S0.539 E=7.39 

Average 285.5 0.0416 

400-599 
E=ll9 E=67.845 E=ll. 51 

Average 483.6 0.0974 

600- 7.2.2_ 
E=85 l\='i8. hl l E=lS.441 

Average 690 0. 1817 

800-999 
E=56 E=50.343 E=lJ. 989 

Average 899 0.2498 

1000-1499 
E=79 E=95.855 E=22.95 

Average 1213 0.2905 

J 500-29•J•l 
E=l06 E=225.4.2b 1:>50.63 

Average 2. I 27 0. L;77 

3000-6999 
E=85 E=403.414 1::=71. 955 

Average 4. 746 0.8465 

7000-12 999 
E=38 E=350.655 E=44.76 

Average 9325 1.1705 

13 000-24 999 
E=43 E=819.490 E=47.0ll3 

Average 19. 058 L.0931 

25 ,000-4~ 999 
E=l7 E=52LJ. 570 E=tl .01, 

Ave ra~1.l~ 'JI . L'i I • (1L._q1.,, 

50,000-hi.gher 
E=5 E=357. 100 E=l. 76 

Average 7 L.420 . 3520 

24 
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TABLE II 

FLCM - DURATION AT DURWOOD 

Number of Days Percent of 
Flow (c. f.s.) Equal or Exceeded Total Time 

so 9311 98.05 
100 8997 94. 75 
200 8079 85.08 
500 5017 52.84 

1,000 2834 29.84 
2,000 1628 17.14 
5,000 678 7.14 

10,000 263 2.73 
20,000 72 .758 
50,000 6 .063 
75,000 1 .0105 

Maximum Daily 85,900 cfs 

Maximum Instantaneous 91,300 cfs 
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Figure 3. Suspended Sediment Concentration Curve at Durwood, Oklahoma 
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TABLE III 

SEDIMENT LOAD versus PERCENT TIME OF FLOW 
AT DURWOOD 

Sediment Load 
Percent Millions of 

Concentration Tons/Year 

.300 274 

.317 272 

.343 257 

.440 220 
1.040 208 
1.200 120 

.880 44 

.463 9.26 

.243 2.43 

.0965 .4825 

.0280 .056 

.0168 .017 

.0127 .006 
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Percent 
Time 

.01 

.0104 

.0105 

.063 

.758 
2.77 
7.14 

17 .14 
29.84 
52.84 
85.08 
94. 75 
98.05 
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'--
From this curve, read the average sediment load for delta increments 

of percent time and construct Table IV. Next, multiply the delta 

increment of percent time by the average sediment load to get the 

incremental annual sediment load. Sum the incremental annual 

sedi~ent loads for the annual sediment load by the weight of an 

acre-foot of sediment to arrive at the annual sediment load. For 

Durwood, as shown at the bottom of Table IV, this value is 6,094 

Ac-Ft/Yr. Divide this value by the sediment contributing drainage 

area which for Durwood is.7,200 square miles to arrive at the 

sediment yield of 0.85 Ac-Ft/Sq Mi/Yr. 
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TABLE IV 

ANNUAL SEDIMENT LOAD 

Delta Incremental Incremental Annual + Delta Incremental Incremental Annual 
Percent Time Sediment Load Sediment Load + Percent Time Sediment Load Sediment Load 

.00 - .01 294 2.94 + 19 5.60 5.60 

.01 - .02 252 2.52 + 20 5.05 5.05 
.03 238 2.38 + 22 4.25 8.50 
.04 232 2.32 + 24 3.45 6.90 
.05 226 2.26 + 26 2.85 5.70 
.06 222 2.22 + 28 2.38 4. 76 
.07 218 2.18 + 30 2.01 4.02 
.08 217 2.17 + 32 1.68 3.36 
.09 216 2.16 + 34 1.44 2.88 
.10 215 2.15 + 36 1.23 2.46 
.15 213 10.65 + 38 1.06 2.12 
.20 212 10.60 + 40 .902 1.84 
.3 214 21.4 + 42 .785 1. 57 
.4 214 21.4 + 44 .680 1.36 
• 5 214 21.4 + 44 - 46 .593 1.18 
. 6 213 21.3 + 48 .520 1.07 
.7 209 20.9 + 50 .458 .91 
.8 202 20.2 + 52 .391 .78 
.9 195 19.5 + 54 .346 .69 

1.0 187 18.7 + 56 .303 .68 
1.0 - 1.2 177 35.4 + 58 .264 .52 

1.4 165 33.0 + 60 .234 .46 
1.6 153 30.6 + 62 .204 .45 
1.8 143 28.6 + 64 .179 .34 
2.0 135 27.0 + 66 .157 .31 
3 11.4 114.0 + 68 .138 . 27 
4 81. 5 81.5 + 70 .122 .24 
6 61.0 61.0 + 72 .101 .23 
7 37. 5 37.5 + 74 ,093 .18 
8 29.5 29.5 + 76 .081 .16 
9 24.5 24.5 + 78 .061 .13 

10 20.5 20.5 + 80 .060 .12 
11 16.7 16.7 + 82 .051 .11 
12 14.3 14.3 + 84 .043 .o 
13 12.2 12.2 + 86 .043 .0 
14 10.5 10.5 + 88 .030 .0 
15 9.30 9.30 + 90 .024 .0 
16 8.05 8.05 + 92 .019 .0 
17 7,10 7.10 + 94 .014 .0 
18 6.30 6.30 + 96 .9906 01 

TOTAL 929.1 

or 9,291,000 tons/year ~ 1524 
or 6,094 Ac-Ft/ Year ~ 7,200 
or 0.85 Ac-Ft/Sq Mi/Year which is the sediment yield of the 

sediment contributing drainage area 



If no gaging station exists in the basin, an estimate of the 

sediment yield will be required. The US Department of Agri-

culture (7) developed the formula: 

Se = Sm Ae 
Am 

0.8 

.<3-2) 

where Se = Sediment yield to structure being designed (in tons 

per year), Sm= Sediment yield to a surveyed reservoir (in tons 

per year), Ae =drainage area of reservoir being designed, Am= 

drainage are a of surveyed reservoir. For similar bas'ins, Se and 

Sm may be expressed in Ac-Ft/Yr. Using this formula to compute 

the sediment yield for Lake Texoma when compared to Eufaula Lake 

gives a sediment yield of 23,188 Ac-Ft/Yr as compared to a 

measured yield of 25,700 Ac-Ft/Yr or an error of about 10 percent. 

This is within acceptable limits of accuracy considering the 

present methods of reservoir sediment surveys. Another method 

of estimating sediment yields is to compare similar basins 

directly. The sediment yield (in Ac-Ft/Sq Mi/Yr) of Eufaula is 

0.931 while at Lake Texoma the yield is 0.889. In comparing the 

basins, one would find a higher percentage of cultivated ground 

in the Eufaula Basin and would reduce slightly the yield value. 
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However, a direct comparison gives only a five percent error which 

is better than the preceding formula. 

The fifth step in predicting sediment distribution is determin-

ing the trap efficiency of the proposed lake. Trap efficiency is 

the amount (in percent) of the sediment inflow that will remain in 

the lake basin. Researchers developed the following procedure for 

determining trap efficiency (6). 
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A. Determine total volume of sediment storage required for 

the proposed reservoir. For Lake Texoma; 

0. 889 X 28925 X 100 .. .:;;. 2, 571, 000 Ac-Ft, where: 0. 889 is sed i

ment yield in Ac-Ft/Sq Mi/Yr, 28925 is the sediment contributing 

drainage area, and 100 is the proposed life of the lake in years. 

B. Determine the amount of storage to satisfy the proposed 

project purposes. Inactive storage must be included since this 

storage provides the necessary head required for the hydro-power 

turbines. At Lake Texoma this storage is 3,288,000 Ac-Ft. 

C. Determine the average annual runoff or water inflow. 

This value is 4,006,000 Ac-Ft at Texoma. 

D. Compute (A + B)/C = 1.46 for Texoma. 

E. Using the curves shown in Figure 4, determine the trap 

efficiency. In the case of Lake Texoma, use the median curve, 

and the trap efficiency is about 98 percent. The curves were 

drawn from computed trap efficiencies of some forty-one reservoirs 

throughout the United States.(6) 
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e 
.C. B. Brown (4) developed the following formula for determining 

trap efficiency. 

CT = 100 [ 1 - 1/ (1 + 0 .1 C/W)J 

where: CT = trap efficiency and, C/W = ratio of reservoir capacity 

to drainage area. For Lake Texoma: 

1 .. [l' (1 + 0.1 r5.859.00Q1 ;I 
[ 39719 J -

CT = 93. 7% 

93.7 percent is somewhat low since the computed trap efficiency 

of Lake Te~oma is 99.2 percent. The 98 percent computed by the 

U.S. Department o.f Agriculture method compares more favorably 

with the actual computed value. However, over the useful life of 

the lake, Brown's formula would probably give a more realistic 

trap efficiency. The problem with using this formula is that 

it ignores the various types of sediment possible in a river. 

Several methods of sediment distribution will be discussed 

and compared to the measured distribution of Lake Texoma. All 

of the methods are empirical since a truely analytical methods which 

handles the multitude of parameters has yet to be developed. 

The area increment method is a mathematical method developed 

by E. A. Cristofuno, as published in (3), while employed by the 

Bureau of Reclamation. This procedure is based on the assumption 

that the sediment in a lake can be approximated by reducing the 

reservoir area at each reservoir elevation by a certain amount. 

The method involves a series of assumptions. Using Lake Texoma 

as an example, the procedure follows: 

Given: Original capacity at Elevation 640 = 5,859,000 Ac-Ft 

Amount of sediment = 306,000 Ac-Ft. 
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. (This is the measured amount but in a proposed reservoir would be 

computed by Sediment Yield (Ac-Ft/Sq Mi/Yr) times sediment contri

buting area (sq. mi.) by years). 

Original depth at dam • 130 feet. 

The basic equation is: 

Vs = A0 (H - h0 ) + V 
0 

where: A = area correction factor in areas which is the original 

reservoir area at the new zero elevation at the dam. 

V0 = Sediment volume below new zero elevation. 

Vs = Sediment volume to be distributed in the reservoir 

H = reservoir depth at the dam 

h0 = depth in feet to which reservoir is completely filled 

with sediment new zero elevation. 

Step 1 

Vs = 306,000 Ac-Ft 

H = 130 feet 

Assume h0 = 10 feet 

then A0 = 566 feet 

V 0 = 2403 Ac-Ft 

306,000 = 566 (130 - 10) + 2407 

-F 70,327 

Step 2 

Assume ho = 20 feet 

Ao = 1545 Ac 

Vo = 12,480 Ac-Ft 

306,000 = 1545 (110) + 12,480 

-F 182,430 



Step 3 

Assume ho = 25 feet 

Ao = 3500 ac 

v = 2800 Ac-Ft 
0 

306,000 305 (105) + 28,000 

f. 395,500 

Step 4 

Assume h0 = 23 feet 

A0 2500 Ac 

Vo = 21,500 

306,000 = 2500 (107) 

289,000 

Step 5 

Assume ho = 24 feet 

Ao = 3000 Ac 

Vo = 25,000 

306,000 = 3000 ( 106) 

f. 343,000 

use h0 = 23 feet 

+ 21,500 

+ 25,000 

Area correction factor = 2500 acres 

new zero elevation of dam = 5.33 feet 
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Construct Table V by computing accumulative sediment volume 

(Column 5) by applying the area correction factor at each depth 

increment (Column 4) and computing sediment volumes (Column 5) 
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by the average end area method. Column 6 is the revised areaand 

Column 7 is the revised capacity. Column 8 and 9 show actual 

measured values. Column 10 shows percent error in capacity 

values between estimated and measured capacity. Table VI shows 

that the method gives good results in the upper elevations but 

the errors become large in the lower elevations. This method 

appears acceptable for those reservoirs which have depth over 

100 feet and which have deep inactive pools. One must remember 

that the pools of most concern are those which store water for 

project purposes. 

The empirical area-reduction method was developed by Whitney 

M. Borland and Carl R. Miller (3). The two steps involved in 

the method are: 

1. Classify the proposed reservoir using four basin curves 

developed from actual reservoir lakes. 

2. Make trial and error computations using the average end

area or prismatical formula until the computed capacity equals the 

predetermined capacity. 

The four basic curves were developed for resurvey data of 

thirty reservoirs of varying capacities and drainage basins. The 

general classifications are~ 



TABLE V 

AREA INCREMENT METHOD 

Original Original Sediment Revised Measured 
Elevation Area Capacity Ao Volume Area Capacity Area Capacity Percent 

(Feet) (Acres) (Ac-Ft) (Acres) (Ac-Ft) (Acres) (Ac-Ft) (Acres) (Ac...;. Ft) Error 

1 2 3 4 5 6 7 8 9 10 

640 144,000 5,859,000 2500 289,000 141,500 5,569,000 144,100 5,553,000 0.2 
630 121,000 4,534,000 2500 264,000 118,500 4,271,000 120,200 4,233,000 0.9 
620 101,000 3,425,000 2500 239,000 98,500 3,185,000 98,600 3,142,000 1.4 
610 73,500 2500 71,000 70,400 

82,200 2,512,000 2500 214,000 79,700 2,299,000 76,000 2,273,000 1.1 
600 61,300 1,784,000 2500 189,000 58,800 1,595,000 57,200 1,610,000 0.9 

590 46,800 1,216,000 2500 164,000 44,300 1,052,000 43,900 1,106,000 4.8 
580 36,500 799,500 2500 139,000 34,000 660,500 34,500 711,200 7.1 
570 26,100 486,900 2500 114,000 23,600 372,900 24,500 420,400 11.3 
560 18,800 264,300 2500 89,000 16,300 175,300 17,600 213,800 18.0 
550 10,400 117,200 2500 64,000 7,900 53,200 9,400 80,600 34.0 
540 4,4~0 42,300 2500 39,000 1,900 3,300 3,500 21,200 84.4 
533 2,500 21,500 2500 21,500 0 0 1,500 8,000 100 
530 1,500 12,480 1500 12,480 0 0 700 2,300 100 
520 600 2,400 600 2,400 

w 
0 0 0 0 00 

510 0 0 0 0 0 0 0 0 
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M 
Reservoir 

type Classification 

1.0 - 1.5 
1.5 - 2.5 
2.5 - 3.5 
3.5 - 4.5 

Gorge 
Hill 
Floodplain foothill 
Lake 

IV 
III 
II 
I 

where M is the reciprocal of the slope of th~ line obtained by 

plotting depth as ordinate against capacity or abscissa on log-log 

paper (See Figure 5 ). From Figure 5, M = 3.9 and reservoir is 

a type I classification or Lake type reservoir. 

From Figure 6, select the appropriate area design curve, in 

1. 5 ( 1 - p) 0. 2. this case, select type I where Ap = 3.4170p Construct 

Table VI. Columns 1, 2, 3, and 4 are self-explanatory. Column 5 

is read from Figure 6 on the appropriate curve selected. Column 6 

is obtained by selecting a new elevation whose sediment area is 

zero (in this case, Elevation 511.0). Divide the new zero ele-

vations' original area by the corresponding value in Column 5. 

(in this case, 40/0.016) and this value becomes a constant. 

Multiply this constant by each value for Ap to obtain the sedi-

ment area in Column 6. Column 7 is obtained by the average end-

area method: 

dV = Al + A2 (dh) 
2 

Column 8 is the cumulative sums of dV. Columns 9 through 11 are 

again self explanatory. To make the total volume of sediment 

equal, the estimated sediment inflow will require a trial and 

error procedure for determining the new zero elevation. 

Since the curves were drawn from measured reservoirs, it is 

permissable to alter the curves slightly in order to campensate for 

unusual circumstances. Other methods of distributing sediment in 
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TABLE VI 

EMPIRICAL AREA - REDUCTION METHOD 

·- \_ 

Original Original Cum. Sed. Revised Measured 
Elevation Area Vol. Relative Ap .sed. Area Sed. Vol. Vol. ·Area Vol. Vol. Error 

(Feet) ~AC2 ~Ac-Ft2 DeEth ~TyEe I2 ~Ac2 ~Ac-Ft2 ~Ac-Ft2 (Ac2 ~Ac-Ft2 ~Ac-Ft2 % 
1 2 3 4 5· 6 7 8 9 10 11 12 

640 144,000 5,859,000 1.0 0 0 22,650 305,000 144,000 5,554,000 5,553,000 0.01 

630 121,000 4,534,000 0.92 1.81 4530 45,.400 282,350 116;000 4,557,000 4,233,000 7.6 

620 101,000 3,425,000 0.85 1.82 4550· 44,000 236,950 106,000 3,188,000 ·3,142,000 1.5 

610 82,200 78,200 
73,500 2,512,000 o. 77 1. 70 4250 40,750 192,950 69,500 2,319,000 2,273,000 2.0 

600 61,300 1,784,000 0.69 1.56 J900 36,400 152,200 57,400 1,632,000 1,610,000 1.4 

590 46,800 1,216,000 0.6'2 1.35 3380 . 31,050 115,800 43,400 1,100,000 1,106,000 0.5 

580 36,500 799,500 0.54 1.13 2830 25,650 84,750 ,. 33,700 714,700 711,200 0.5 

570 26,100 486,900 0.46 0.92 2300 20,900 59,100 23,800 427,800 420,400 1..8 

560 18,800 264,300 0.39 0.75 1880 15,900 - - 38,200 16,900 226,100 213.,800 5.7 

550 10,400 117,200 0.31 0.52 1300 10,900 i2',30Q. 9,100 94,900 80,600 17.7 

540 4,400 42,300 0.23 0.35 880 6,900 11,400 3,SQO 30,900 21,200 45.8 

530 1,500 12,500 0.15 0.20 500 2,450 4,500 1,000 8,000 2,300 247.8 

520 600 2,400 0.077 0.075 190 1,040 1,060 400 1,300 0 100 

511* 40 20 0.007 0.016 40 20 20 0 0 0 0 

510 0 0 0 0 0 0 o· 0 0 0 0 .i::-
I-' 

.,---
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reservoirs were studied; however, the two methods presented in 

this paper represent; in the author's opinion, the most compre

hensive methods which now exist. 
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The other methods studied appear to rely heavily on artistic 

ability and a feel or how the sediment is distributed. For the 

experienced engineer, a combination of methods appears to be the 

best solution. Using the two empirical methods presented herein 

and a developed feel for sedimentation, the predicted distr.ibution 

should be well within the measurable limits. 



CHAPTER IV 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

The following steps are necessary in predicting sediment 

deposition distribution: 

1. Determine drainage area. 

2. Determine sediment contributing area. 

3. Determine sediment yield in acre-feet/square mile/year. 

4. Derive an elevation-area and an elevation-capacity curve 

for the proposed reservoir. 

S. Apply both empirical methods described in Chapter III. 

6. Compare results with similar reservoirs. 

7. Adjust results to account for special conditions such 

as may be found in the basin, due to unusual operations predicted, 

or project purposes. 

A special note about items six and seven is required. One 

should not rely entirely on comparison of reservoirs of a similar 

character in predicting sediment distribution nor should the results 

obtained from the empirical methods go without question. An 

experienced engineer will perform items five and six, then after 

studying all of the factors previously discussed in the paper, 

perform item seven. One should also be aware that the adjusted 

areas and capacities at each elevation should produce a curve 

similar to the original elevation area and elevation capacity curves. 
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The importance of adequately predicting sediment distribution 

in a proposed reservoir cannot be understated. The writer feels 

that this science which is less than forty years old can be 

improved. Basic data in sediment yields is lacking on most rivers 

in the United States. The method of collection of what little 

data is collected is spotty and accurate. Little effort has 

been expended to improve data collections. The method of surveying 

existing lakei;; for sediment deposits is almost ludicrous. Sediment 

ranges sometimes almost a mile apart are resurveyed and the end

area method is used to determine the amount of sediment deposited. 

As a comparison, in highway design, cross-sections are taken at 

not over 100 feet apart to determine fills and cuts. This is not 

entirely the fault of the eng;i.neers performing the work, since the 

equipment necessary to adequately map the bottom of a lake is 

very expensive and requires highly trained technicians for which 

usually no funds are available. In conclusion, with the computers 

of today, a mathematical model could be developed to predict sedi

ment distribution on a reservoir in any basin. The problem is, 

are agen.cies in water resource development willing .to expend the 

necessary funds to gather accurate data in detail and quantity 

necessary to supply such a model? 
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