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ABSTRACT

Analytic design methods for coinbination feedback- 
feedforward control systems are developed and evaluation is 
made of systems yielding optimal performance while subject 
to constraints commonly encountered in the chemical industry. 
The optimization is based on minimization of the mean square 
output of a system subject to a random disturbance utilizing 
the mathematical techniques pioneered by Wiener for the solu
tion of the design equations. Side conditions of constraint 
on mean square control effort, signal-to-noise ratio in the 
feedback system, and minimization of error output caused by 
misidentification of plant parameters were found to be neces
sary to give physically realizable and meaningful designs.
The analytic design methods were found useful for analysis 
of control system performance and capabilities under a 
variety of constraints but the optimal designs are marginally 
superior to "ideal" or "invariant" feedforward controllers 
coupled with tuned proportional feedback controls. The 
principal improvement in the optimal design was in conserva
tion of control effort when compromises in system performance 
were necessary because of this restriction.
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ANALYSIS OF OPTIMAL COMPOSITE FEEDBACK- 
FEEDFORWARD CONTROL

CHAPTER I 

INTRODUCTION

There is constant need for improvement of process 
control in the chemical industry. Technical advances in many 
fields make possible new processes for which good control is 
required at conditions where measurement itself is difficult. 
At the other end of the spectrum, competitive pressures 
usually dictate that older processes must approach near- 
optimal operation if acceptable profit margins are to be 
maintained.

Development of optimal control theory has proceeded 
to a very high plane, especially for problems in electronic- 
or aerospace-related fields. However actual use of sophis
ticated optimal control laws in chemical processes has been 
limited. The present work describes an application of an 
existing control optimization technique to a class of systems 
having control capacity constraints and information sources 
typical of chemical processes.

General Control Considerations
Automatic controllers for chemical processes can be 

divided into three classes based on the source of the signal 
used to initiate control action. The type most commonly
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2
encountered is primary feedback control in which control 
action is determined by the difference between the value of 
the output or controlled variable and some reference or 
"ideal" output. Another type is feedforward control in which 
inputs or disturbances to the system are monitored and 
control action is computed to offset the effect of the dis
turbances on the output. The third type of control is 
secondary feedback in which control action is based on the 
value of secondary or uncontrolled system state variables 
which are related to the controlled output. However, in the 
present work, the class of systems will be restricted to 
those in which secondary variables are not monitored so that 
this third type of control will not be considered.

Feedback and feedforward control each have relative 
advantages and disadvantages. The principal advantage of 
feedback control as compared to feedforward control, and the 
primary reason for the greater popularity of the former, is 
that feedback has a high degree of tolerance for design 
inaccuracies. If, for some reason, a feedback controller 
produces inexact control compensation, the inexact system 
output which results is sensed by the controller and becomes 
the basis for further control action. If inexact control 
action occurs in a system having feedforward control only, 
the undesirable output persists indefinitely because feed
forward control action is initiated by deviations of the 
system inputs-only.

Feedback control possesses some limitations however, 
that are absent in feedforward control. When a high degree 
of control is attained, the difference between actual output 
and the reference (set point) becomes small so that signal- 
to-noise ratio problems become important in the feedback
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amplification system. This problem does not occur with 
feedforward control since input disturbances containing 
sufficient energy to cause significant system output generally 
produce acceptable controller signal-to-noise ratios. Addi
tional difficulties are often encountered in feedback systems 
because of dead times which occur in the output sensing sys
tem. Both feedback and feedforward control are affected 
adversely by dead time in the controller but with the former, 
the sensing dead time of feedback circuit must be added to 
the controller dead time so that the problem is intensified. 
For example a system which is temperature controlled by cool
ing water flow may have controller dead time due to factors 
such as pneumatic transmission losses and valve hysteresis.
If feedback control of the output temperature is used, addi
tional transport delay may occur if, for example, the sensor 
is located downstream. This sensing circuit dead time must 
be added to that in the controller in computing feedback 
control capacity. As feedforward control is based on values 
of input flows or temperatures, it would not be affected by 
lags in the output measurement.

The various qualities of feedback and feedforward 
control tend to complement each other. When the best possible 
control is desired, a composite controller consisting of a 
combination of feedback and feedforward is indicated. Here 
it would be expected that a controller basing its operation 
on two sources of process information is capable of control 
performance that is superior to that of a controller with but 
a single source of information.

Optimization techniques to determine the most effi
cient implementation of this information are used in the 
present work to develop design equations for composite control
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systems. Emphasis has been focused on optimization conditions 
that would be encountered in a typical chemical process.

Statement of General Problem 
It is assumed that the objective of the control de

sign and operation is to attenuate the output response of 
chemical process systems which are activated by random dis
turbances. In addition it will be assumed that the process 
system or plant can be adequately described by linear dif
ferential equations with constant coefficients; in fact, 
specific design consideration will be given to controllers 
which cause the plant to operate in the linear range for a 
large fraction of the time. Only single variable plants are 
treated, i.e., plants which have but one disturbance variable 
and one controlled output variable. The generalization to n 
disturbances is a trivial multiplication of controllers but 
the generalization to n outputs is far from trivial.

In setting up the differential equations, process 
dead times will be taken into consideration by allowing the 
argument of the time functions to be shifted along the time 
axis. All times will be referred arbitrarily to the process 
times, i.e., a disturbance entering a process will be denoted 
d(t) while the output variable which is sensed time units 
later is given as c(t + T^). The value of the controlling 
or manipulative variable must be specified by the controller
T„ time units before it is used and hence becomes m(t - t„) .M M

Under these conditions the general process dynamics 
can be described by the differential equation

^  o ( t + T ^ )  +  a^_^ c ( t + T ^ )  + . . . + a g C ( t + T ^ )  =
at at

d3 ^= b — T m(t - T ) + . .. + b m(t- T ) + g — -  d(t) + ... + g d(t) ,
 ̂ dt̂ " ^ ° ^ ^ dt^ °(1-1)



where the a's, b's and g's are constants, c(t + t )̂ is the 
output variable measured time units after the process 
time, m(t - T^) is the manipulative variable specified by 
the controller time units before the process time, and 
d(t) is the disturbance variable that enters the process at 
"process" time.

It is most convenient to work with the Laplace 
transformation of this equation that results from assuming 
zero initial conditions. Transforming (1-1) into the Laplace 
domain yields

C(s) = (s)D (s) + P^(s)M(s) , (1-2)

where P^(s) and P^(s) are the "plant transfer functions."
If dead times are absent, these functions are rational func
tions (i.e., ratios of polynomials) in the Laplace transform 
variable s, while if dead times are present they are rational 
functions multiplied by an exponential factor in s . The 
functions C(s), D(s) and M(s) are Laplace transformations of 
the output variable c(t), disturbance variable d(t), and 
manipulative variable m(t), respectively. The design ob
jective will be to define transfer functions of controllers, 
Q^(s) and (s), so that a minimum C(s) will occur when the 
manipulative variable is defined as

M(s) = Q^(s)D(s) - Q^(s)C(s) . (1-3)

The function Q^(s) is the feedback transfer function since 
its control action is based on information from the output 
while Qĵ (s) is the feedforward transfer function since its 
control action is based on information from the input. A 
block diagram of the system with its controls is shown in 
Figure 1-1.
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It is obvious that the minimum absolute value of 

system response occurs if the output variable can be made 
identically zero, in which case it follows from (1-2) that

Pd (s )
M(s) = - . , D(s) . (1-4)

This relation can be realized formally if the feedforward 
control function is defined as

Pj,(s)

There are a number of reasons why this ideal solution 
to the optimal control problem can seldom be achieved in 
practice- If the transfer function, P^(s), has a larger 
exponential dead time than does the function (s), the ratio 
given in (1-5) will have a net positive exponential factor 
which requires that the controller, (s), react to a dis
turbance before it occurs. Further if the system is bound
by constraints such as a maximum of the magnitude of the
manipulative variable, M(s), the use of (1-4) will result in 
overloading the control system with a corresponding degrada
tion of response. Finally, if there is any error in the
plant describing functions, P^(s) or P^(s), there will be a
"model error output" for which the feedforward controller 
cannot compensate.

These factors can be formulated in mathematical terms
and then incorporated into an explicit analytic optimization

*technique developed by N. Wiener [W2J. It will be shown that
•kThroughout this work, equations will be referred to 

by the equation number in parenthesis and brackets will denote 
references to the bibliography.
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in the absence of dead times, this formulation leads to the 
specification of a feedback controller with infinite gain. 
Feedback is not only insensitive to model error but is, in 
fact, the only effective way to control "model error output." 
If signal-to-noise ratios and dead times in the output 
sensing and amplification systems are considered in the 
optimization equations along with the previously mentioned 
factors of controller dead time, control effort constraint 
and model error output, then physically realizable composite 
control designs are obtained that seem to be real optimums. 
The present work is devoted to the development of the design 
equations and analysis of the resultant controls.

Control systems synthesized using Wiener's technique 
minimize the mean square of the value of some state variable 
of a system under excitation by a random disturbance. Ex
plicit evaluation of the mean square value of this variable 
is achieved by use operational transform techniques based 
on Parseval's theorem. Using these techniques, the necessary 
and sufficient conditions can be determined for the existence 
of a minimum. The mathematical implications of these condi
tions lead to the Wiener-Hopf integral equation which can be 
solved explicitly for the control function by the complex 
variable techniques described by Wiener. Output minimization 
in the presence of constraints is achieved by minimizing a 
weighted sum of several state variables after adjusting the 
value of the weighting factors (or Lagrangian multipliers) 
so that the secondary variables satisfy the side conditions 
when the system is excited by a statistically characterized 
random disturbance. The constraints must be carefully chosen 
so that all important factors of the physical problem are
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represented while still allowing mathematical solution of 
the equations.

Review of Previous Work 
The art and science of feedforward controller design 

in the process industry began about 15 years ago with the 
study of cascade control. Although feedback still dominates 
the field, interest in feedforward has increased steadily as 
process control engineers have realized that the existence 
of a continuous monitor of disturbances makes feedforward 
control particularly suitable for many chemical process 
problems [cl]. While some investigators have implied that 
feedforward alone may be sufficient for control purposes, 
most have concluded that a combination of feedback and feed
forward is needed in the majority of cases. Undoubtedly 
feedforward control will be "encountered more frequently in 
the future as an essential aspect of composite control" [BlO] 

Most of the previous work on feedforward control has 
not been concerned with explicit optimization methods. The 
reason is that if the exact mathematical model is known, a 
controller can be constructed which is the mirror image of 
the plant so that when its output is added to that of the 
plant, disturbance attenuation is perfect. Harris and 
Schecter [H2] and Bollinger and Lamb [B7,B8] in their work 
on chemical reactor controls specified mirror images of 
linear approximations to the system describing functions for 
the feedforward portion of their controllers. The feedback 
section of these control systems, chosen in both cases by 
cut and try procedures, compensated only for the plant non- 
linearities and for inaccuracies of analog computer program
ming. Haskins and Sliepcevich [H3] in their study of the
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invariance principle used nominal feedforward controllers 
with no primary feedback but showed how compensation of 
analytic non-linearities may also be programmed in the feed
forward section of the controller.

Studies of control of distillation columns are com
plicated by the fact that it is often impossible to monitor 
continuously those primary output variables that need to be 
controlled. Hence transfer functions of disturbances to 
secondary variables are found and these variables are made 
invariant by use of "mirror image" control [l 6,M1]. Feedback 
here usually consists of manual adjustment of drift although 
several authors have advocated development of more sophis
ticated feedback techniques [L7,M1].

Analytic design methods based on a calculus of varia
tions approach for feedback control systems were investigated 
by Newton, Gould and Kaiser [N2]. They found an optimal 
open loop control function and then computed the feedback 
controller necessary to give the desired open loop function. 
This optimization method was based on minimization of the 
mean square error between an ideal reference and the actual 
output in the presence of constraints, and in particular 
constraints on control effort. The equations defining 
necessary conditions for the minimum were solved by use of 
advanced complex variable theory (as demonstrated by Wiener 
[W2]) to yield an explicit analytic solution for the control 
function. The feedback controllers resulting from this 
treatment were ordinarily not physically realizable so that 
an artificial "band-pass" constraint was added to limit high 
frequency gain [N3]. The use of this constraint and its 
results are not readily evaluated for many process industry 
applications.
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In the present work, this same fundamental mathema

tical technique is employed; the main difference is in the 
type of constraints which are used and the fact that two 
control functions are computed - one relating to feedback 
alone and another overall control function for both feedback 
and feedforward. Instead of the "band-pass" constraint, a 
feedback signal corruption or noise factor is added which is 
essentially a signal to noise limitation on the feedback gain.

Chang [C2] noted that continuous measurement of the 
reference signal as well as the plant output was sufficient 
to specify two control functions separately - one an open 
loop function compensating for reference set point changes 
and a feedback control function qompensating for results of 
an external or load disturbance. More generally, Horowitz 
[H8] showed that as many separate control functions can be 
specified as there are independent measurements of system 
variables. In the present work, the ideal reference is 
assumed to be identically zero so that the open loop reference 
point control of Chang becomes trivial.

Note that the monitored quantities, i.e., the load 
disturbance and the output, are not independent in the sta
tistical sense of having a zero covariance. Indeed, if the 
system transfer functions are known exactly, then one of 
these quantities is perfectly predictable from a knowledge 
of the other. In such a situation there exists an infinite 
number of sets of combination controllers which give identical 
performance. However if error exists in the mathematical 
model, measurement of the second variable adds "independent" 
information not available from the first variable so that 
unique combinations of feedback and feedforward are specified 
to yield given performance.
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The use of Wiener's methods for optimal control de

sign as extended by others [Kl,Ll,P2,M2] define only single 
control functions for each output. Although general dis
cussions of constraints are presented, the cases studied use 
constraints which yield controllers often not physically 
realizable under conditions of measurement and model accuracy 
that exist in chemical process systems- A very important 
aspect of analytic control design for these systems by 
Wiener's method is the development of constraints that lead 
to realistic controllers on one hand and still allow solution 
of the complicated equations on the other.

Horowitz [H9] presents a comprehensive account of 
modern non-analytic design, methods for control systems, i.e., 
designs in terms of rise time and overshoot, phase and gain 
margins, root locus techniques, etc. Although this present 
work is indebted to much of the design philosophy developed 
there, analytic methods are used here so that families of 
solutions for general situations can be investigated more 
easily and so that general control capacity for these systems 
can be explicitly evaluated.



CHAPTER II 

FUNDAMENTAL MATHEMATICAL BACKGROUND

Since development of these control design techniques 
is based on some mathematical theorems not frequently en
countered in chemical engineering, it is appropriate to 
review some of them here. Proofs of many of these results 
are presented in Appendix A.

Integral Transforms of Mean Square Values 
The basic objective of the controllers to be optimized 

is to attenuate system output. In order to preserve mathe
matical tractability, the measure of merit is taken as the 
mean square value of the output. Constraints also will be 
considered in terms of mean square values. It will be neces
sary to express these mean square values of time functions 
in terms of Laplace transforms in order to solve the optimiza
tion equations. As a preliminary to exposition of the opti
mization techniques, the general transformation of quadratic 
time functions into the s-domain will be presented. Further
more, since the disturbance has been assumed to be a random 
function, expression of these results in terms of statistical 
parameters will be required.

The transformation of quadratic time functions is 
made with the use of a result of Parseval's theorem:

If c*(t) is an arbitrary function of time which (i) 
is zero for all t < 0; (ii) approaches zero at least as fast

13
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-etas e for ail e > 0 as t “ and (iii) is bounded for all 

t ; then
i"

^ c*(t)^dt = ^ C* (s) C* (-s)ds , (2-1)

where C (s) is the Laplace transform of c* (t). The proof 
of (2-1) is presented in Appendix A.

If c*(t) is the output of a linear system having the 
transfer function, (s), then the system may be described
in the Laplace domain (cf. (1-1) and (1-2)) as

C (s) = P^(s)D(s) (2-2)

Thus the integral square output of this system is expressed 
as follows:

^ c*(t)^dt = ^ P^(s)P^(-s)D(s)D(-s)ds (2-3)

provided that the response meets the various convergence 
requirements of Parseval's theorem.

The foregoing equation, which gives the integral 
square output of a system for a deterministic disturbance, 
cannot be used if the disturbance is a random time function 
for which only the statistical properties are available. 
However the mean square output can be functionally related 
to the system transfer function and the statistically 
described disturbance. As a first step in this development, 
the mean value of the disturbance is assumed to be zero. 
Clearly it is no problem to design a control system to 
eliminate any permanent bias. The statistical property of 
random signals that is of greatest interest here is the
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so-called correlation function, .(t ,t ). This functionJL 2
is simply the non-normalized covariance between two signals 
at-specified times, t^ and t^. That is,

, (2-4)

where (...> indicates the mean value. It is further assumed 
in this work that all random signals are ergodic, i.e., that 
the mean value of time averages is constant and not a func
tion of the particular period over which the average is taken. 
This characteristic implies that the correlation function is 
a function of t^ — t^ rather than of the individual times. 
Hence ' ̂ 2  ̂ becomes where T = t^ - t^.

In order to represent random signals in the Laplace 
domain, the cross spectral density, (s) of a random signal
is defined

t (s )B* (-s ) > , (2-5)

where the function A^(s) and the function B^(s) are the 
Laplace transformations of bounded random signals a*(t) and 
b*(t) for the region 0 ^ t ^  T and are equal to zero else
where. It is shown in Appendix A that (2-4) and (2-5) may 
be related by

joo

—  j 00

This result can be used to determine the response of the 
system described in (2-2) to a random disturbance whose 
statistics are described by the self- or auto—correlation 
function, ('’’)*

Substitution of c*(t) for both a* (t) and b*(t) in
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(2-4)/ (2-5)/ and (2-6) and using the relation,

*C.C.(S' = ' (2-7)

gives the result
jco

V c * ( ° ) “ 2 ^  I ^d(=)^d(-®)*Dd(®)‘̂® • (2-8)
_jco

since from (2—4) it follows that

9c*c*(0) = <c*(t)2> , (2-9)

it can be seen that (2-8) is the mean square value of c*(t) 
as evaluated in the Laplace domain.

Note from definition (2-5) that is symmetric,
i.e.,

*Dd (®) “ *Dd (-®) ' (2-10)

Therefore it is possible to factor ^^^(s) into two symmetric
parts,

$QQ(s) = D(s)D(-s) , (2-11)

allowing (2-8) to be made formally identical to (2-3).

Integral Conditions for Optimization 
The equations of the previous section related the 

mean square output and the transfer function of a time in
variant linear system to the spectral density of its random 
disturbance. Optimal control is coincident with the minimum 
of this mean square output consistent with the existence of 
any side conditions. In this section, development of Wiener's 
technique [W2] continues as the necessary and sufficient 
conditions are developed that allow the minimization of
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integrals of the type (2-8). It will be seen later that 
explicit solution of the final control equations is possible 
if and only if the integrand of the quantity to be minimized 
is linear in the unknown control operator. In order to 
simplify the mathematical development, this specialization 
is introduced at this point- Thus the integral of (2-3) or 
(2-8) may be rewritten as

j®
J[B (s) (s) + (s) ] = ^ [B(s )P^(s ) + P2 (s) ]• [B(-s )P^ (-s) +

_  ja>
+ P2(-s)]ds , (2-12)

where B(s) is the Laplace transform of the unknown control 
operator b(t) and P^(s) and are Laplace transforms of
known or given operators. To reduce the writing, define the 
following for the arbitrary function, Q(s),

Q = Q(s) and Q = Q(-s) (2-13)

where Q(s) is some transfer function as in (2-12). Equation
(2-12) may then be rewritten

joo

J(BP^ + P^) = ^ (BP^ + Pg) (BP^ + ^ ) d s  (2-14)
_jco

When Q(s) is discussed as* an integrand such as in (2-12) or 
(2-14), Q is the complex conjugate of Q since s takes on 
imaginary values only in this integral.

The search for the unknown function, B, must always 
be restricted to functions which are physically realizable. 
This restriction shall mean that B must be non-predictive,
i.e., as an operator on a state variable, it can cause no 
control action until after the disturbance has affected it. 
Accordingly, b(t) must be zero for negative time and in the
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transform space, this requirement becomes that all of the 
poles of the function, are in the left half plane (l.h.p.).

In Appendix A, application of the calculus of varia
tions is utilized to show that the necessary and sufficient 
condition that B(s) provide an extremum for J[B(s )P^(s ) +
+ (s)] is

j“
S (bTp ^ X B q P^ + = 0 (2-15)
_jœ

This equation would be satisfied if the integrand 
were identically zero. Since B^ is an arbitrary function 
within its class and P̂  is a given non-zero function, the 
integrand can be zero if and only if

B-P, + P = 0 (2-16)0 1 2

However, general solution of this equation can lead to a B^ 
which is not physically realizable. For instance, if P^ 
contains r.h.p. zero while P^ does not, then B^P^ can equal 
-P^ only if Bq is unstable.

A more general valid solution of (2-15) can be found 
by the use of complex variable theory and Cauchy's residue
theorem. The complete development of this solution is given
in Appendix A when it is shown that necessary and sufficient 
conditions defining a so that (2-15) is satisfied is

P^(Bq P^ + Pg) = X (2-17)

where X is a function with r.h.p. poles only. The left hand 
side of (2-17) is formally identical with the result obtained 
by the partial differentiation of the integrand of (2-15) 
with respect to B^. This convenient way to arrive at (2-17) 
will be used in the subsequent development.
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Wiener's Explicit. Solution 

In order to find an explicit solution for the control 
function defined by (2-17), consider the expanded form of 
this equation

Since the left hand side was derived from an integrand along 
the imaginary axis, the argument s is always imaginary. It 
follows that is the complex conjugate of and that the 
function P^P^ is symmetric with respect to the imaginary 
axis. If it has a pole or a zero in the r.h.p., then there 
is a corresponding pole or zero (with the same imaginary 
part) in the l.h.p. Hence P^P^ can be factored into two 
parts - one factor with all of its poles and zeros in the
l.h.p. and the other with poles and zeroes only in the r.h.p.:

P^P” = YŸ , (2-18)

where Y has poles and zeros in the l.h.p. only. Note that Y 
is identical to the non-exponential part of P^ if P^ has no
r.h.p. zeros or poles.

Dividing (2-17) by Y gives

^ 2 ^  XBqY + . (2-19)

The term B^Y has no r.h.p. poles and hence is physically 
realizable. The term X/Y has r.h.p. poles only and therefore 
is not physically realizable. The inverse transform of a
r.h.p. pole can be considered as a stable function of negative
time or an unstable function of positive time; neither can

P Pbe physically constructed. The expression 2 1 also can be
Ÿ

divided into two parts - one that is physically realizable
and one that is not. If all of the functions are ratios of
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polynomials, they may be expressed as a sum of partial frac
tions. Those fractions with residues in the r.h.p. are 
transforms of functions which represent response of the sys
tem to disturbances before the disturbance occurs. The part 
of the fraction not physically realizable is designated asp p

J . The part of the fraction corresponding to the
roots of the denominator with negative real parts, i.e., the

P Pphysically realizable part, is designated as f 2 1 1
L Ÿ J +

By subtraction, (2-10) becomes

• ( - 0 )

The right hand side of this last equation is analytic (i.e., 
no poles) in the entire l.h.p.; the left hand side is 
analytic in the entire r.h.p. They are both equal, there
fore, to the same function which is analytic in the entire 
plane. Liouville's theorem in complex variable theory states 
that functions analytic in the entire plane are constants 
[H7]. Thus

P P
jY + ^ constant (2-21)Bo-

Evaluation of this constant proceeds by noting that 
the quantities displayed in (2-21) are, in general, functions 
of the complex Laplace transform variable, s. Since both 
sides of this equation are equal to some constant, obviously 
it is not possible to "solve" this equation to find a numerical 
value for s. Therefore to evaluate the constant it can be 
reasoned that the numerator and the denominator of both terms 
on the left hand side of (2-21) have the same order or degree 
as each of the factors of the integrand of (2-15) - the only 
change is the possibility of different signs of some of the
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roots (i.e., Y is of the same order as P^). It has been 
previously shown that this function approaches zero as s “ 
(Appendix A). Since (2-21) is an identity in s, it must hold 
for all values of s including that for which s becomes infin
itely large. Thus both sides of (2-21) are equal to zero 
and (2-21) may be solved explicitly for as follows

=0 = - ?  [ ^

In cases where the functions in (2-20) are not 
rational functions, a similar procedure can still be used - 
i.e., the term P^P^/Y is divided into portions that are zero 
for t < 0 and portions that are zero for t > 0. It will be 
shown in Chapter III that the former is the principal part 
of the term at l.h.p. poles. (The principal part of a func
tion at a single pole is the residue at that pole divided by
the pole itself.) The balance of the term which is zero for 
t > 0, is subtracted from both sides of this equation and, 
formally, the steps leading to (2-22) are the same as before.

It may now be seen why it was necessary to restrict 
the integrand of (2-12) to linearity in the unknown operator 
B. If Bq were present in a non-linear form, say as a quad
ratic factor in (2-17), the solution could proceed in the

  2same way except that Bq and B^ would be included in (2-20). 
Even though both sides of the altered (2-20) would be zero 
as before, evaluation of the unknown Bq at l.h.p. poles of
other functions would be required. It would become necessary
also to find the square root of functional forms on the right 
hand side of this equation in order to solve for the unknown 
function. The only possible alternative would be a very 
arduous iterative solution for 3^ in the function space.
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Utilization of Constraints - Lagrange Multipliers

When several integrals of the type of (2-14) are to 
be kept within specified limits while minimizing another, a 
form of the Lagrange multiplier rule i& used. Suppose that 
two functions, J(BP^ + P^) and J(BQ^ + Q^), are given with J 
defined as in (2-14). The first of these is to be minimized 
while maintaining the second below some given positive value 
(the value of the integral is non-negative; cf. (A-12). 
Formally the problem is to find a such that

J(BqP^ + P^) = min , (2-23)

and
J(BqQi + Og) < f * (2-24)

for £*> 0 .

There is, in general, an infinite set of functions,
B^, which satisfy the last equation. Many of these could be
considered and then the neighborhood of those giving the 
least value for (2-23) could be explored further. However 
the function space is quite a bit larger than the point space
and successful search methods for all but trivial problems
are nonexistent.

This problem can, however, be solved in an indirect 
way. Consider the function

F(A,X) = J(BP^ + P^) + X^J(BQ^ + Q^) , (2-25)

where X. is some real constant. This function is a linear 
combination of integrals of the form of (2-14) and the condi
tion for a minimum can be found by formal differentiation of 
the integrand with respect to B and solving (2-17) to obtain 
(2-22). This explicit solution for B^ will be in terms of
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the unknown, X. If the function, Bq (X), is substituted into 
(2-24), a set of numerical X's can be found satisfying that

2inequality. Normally, this function is monotonie in both X 
and |f|, and a unique largest X can be found in this set 
which satisfies (2-24) where the inequality has been replaced 
by equality.

For any arbitrary choice of X, F(Bq (X),X) will have 
a minimum value. If the particular X which satisfies (2-24) 
is chosen (where the relationship is monotonie and the in
equality has been made an equality), then F(B,X) will have 
assumed its minimum value consistent with the constraint of 
(2-24) provided this result is interpreted statistically to 
mean that the constraint is satisfied a certain percentage 
of the time. Of course once a numerical X is found, B^(X) 
can be computed in numerical terms.

The sequence of solving these equations is usually 
different in actual computations. A numerical choice is made 
for X and substituted into (2-25) which is then solved for 
Bq by Wiener's techniques- This function is substituted into 
integrals of the form of (2-14) giving values of the mean 
square error and mean square constraint. Other values for 
the parameter X are chosen and this process repeated until a 
relationship of error vs. constraint has been found. Such a 
parametric set of solutions has, of course, far greater value 
than that of a single numerical answer.



CHAPTER III 

DEVELOPMENT OF DESIGN EQUATIONS

The basic mathematical techniques have now been 
developed which are capable, under a practical set of condi
tions, of yielding an optimizing controller function. Three 
principal problems remain:

(i) Casting the real control design problem and 
associated constraints into the proper form such that the 
mathematical machinery can process the data;

(ii) Development of the proper set of constraints so 
that the procedure yields a control design which gives a real 
and practical optimum;

(iii) Investigation of some simplifications of the 
procedure which give control designs not importantly different 
from the optimum.

(i) Problem Format
Although portions of the mathematical procedure could 

have been developed for more general systems, use of the 
entire chain of methods necessitates that the system describ
ing equations be linear and time invariant. Usually this 
requirement will not be a serious restriction since an optimum 
control design is to be developed, and deviations from steady 
state operating conditions might be expected to be small 
enough so that a linear approximation to the dynamics is 
reasonably valid. Another limitation dictated by mathematical

24
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expedience is that the constraints and side conditions for 
optimization must all he expressed in terms of quadratic 
functions. This restriction is actually an attractive feature 
to the chemical engineer who often works on processes in 
terms of variances and who will usually be readily able to 
interpret his problem in terms of mean square deviations. 
Traditional constraints such as rise time, overshoot, band 
width, phase margin, etc., are often much more difficult to 
cast quantitatively into intuitively important terms in 
process industry problems.

It is important to recognize, however, that mean 
square deviation may not be the ideal measure of controller 
performance in all cases. It weights large errors much more 
than the smaller ones, and this characteristic may or may 
not be appropriate for a given situation. At times, such as 
in a chemical reaction where yield is usually a higher order 
function of the control variables, the weighting for large 
errors may be insufficient. For random inputs, Chang [C2] 
has shown that if the cost function is a monotonie increasing 
function of the absolute value of error, then a quadratic 
constraint is at least monotone with the cost function. For 
deterministic inputs, even this modest result is not always 
true.

The mean square criteria is not used only as a measure 
of the output error. In general, there will be constraints 
given which limit the size of a given control variable. For 
instance, if control is achieved by variation of some flow 
rate, a certain maximum and minimum flow rate is available; 
alternatively the rate of change of flow rate may be limiting. 
If the controller calls for control effort which exceeds the 
capacity of the plant, the controller is said to be
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"saturated" and no longer obeys the linear equations of tbe 
original model. In principle it would be possible to set up 
a new non-linear model which accounts for the saturation 
tendencies of the plant but then the design techniques 
described would no longer be applicable. Controller design 
methods for non-linear systems do not have, at the present at 
least, the scope or generality of the techniques described 
here. Hence the approach will be to limit the mean square 
value of various control efforts and, in doing so, limit the 
fraction of time that the system will operate outside its 
linear range. For instance if a given signal has a normal 
or gaussian probability distribution, then the control effort 
will be within the mean square value about 68% of the time.

(ii) Constraints 
The general plan used in the development of the 

controller design equations is first to perform the optimiza
tions using a minimum number of constraints. Conflicts are 
shown to exist between the predictions of the resulting 
control laws and generally known controller performance so 
that the design bases are reexamined. Constraints are added 
to the problem based on physical reasons so that realistic 
optimal control laws are obtained. One of the principal 
difficulties of this study is the problem of definition of 
proper realistic constraints in a form that still permits 
solution of the mathematical problem.

There are a number of implicit constraints contained 
in the traditional methods which must be extracted and stated 
explicitly by this variational procedure. Proper constraint 
definition seems to be one of the reasons why dynamic pro
gramming methods and Pontryagin's Maximum Principle often
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give "optimum" controllers that are different from the tradi
tional designs. These situations of implicit constraints 
are complicated and subtle and will be discussed in the 
sample problems as they are used as vehicles to develop the 
overall design procedure.

(iii) Computational Simplifications 
While the mathematical procedures described will, in 

principle, yield an explicit solution to the optimizing 
problem, in fact it turns out that, for even moderately 
complicated problems, the algebraic detail becomes all but 
prohibitive. In the following a simple but general example 
will be pursued in detail with introduction and discussion 
of simplifications at various points which will not sig
nificantly affect the final results.

Specific Transfer Functions for Demonstration Purposes
The transfer functions for a simple physical system 

will be developed in this section for use throughout this 
chapter so that some subsequent discussions can be made at 
the physical, intuitive level.

The plant to be modelled is an elementary first order 
system but does possess all of the important classes of ele
ments found in more complex units: gain, poles and non
minimum phase dead time. Shown in Figure 3-1, it consists 
of a perfectly stirred tank containing a heating coil through 
which heat transfer media is circulated. It is assumed that 
the temperature of this media is constant throughout the-coil 
and can be used as the manipulative, control variable. The 
material entering the tank is subject to the disturbance of 
varying temperature, and it is desired to maintain the output 
temperature of the tank constant. The only accessible point
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Figure 3-1.— System Used to Demonstrate Design Equations
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of measurement of the output is some point downstream so that 
a pure time delay may exist between a change in the actual 
system temperature and its measurement. The manipulative 
variable itself need not react instantly; a dead time may 
also exist between the time that the controller gives an 
order and its execution.

The equation describing the dynamics of this system 
is found by making an energy balance;

dc(t + T )
PVCp — ------- = FCp[d (t) - c (t + T^) ] + UjjA^Cm(t - T^) - c (t + t^) ] ,

(3-1)

where d(t) is the feed temperature;
c(t + T^) is the output temperature observed at a time 

after leaving the vessel;
m(t - T ) is the coil temperature as set by the con
troller at a time before entering the vessel;M
p is the density of the flows;
V is the volume of the tank;
Cp is the specific heat of the flows ;
F is the flow rate ;

J.S the overall heat transfer coefficient;
A is the heat transfer area.

The gradients or driving forces are the differences 
between the externally accessible values of the variables 
which are then corrected for the time lags. It is desired 
to find the linear operators which will permit construction 
of the controller equation defining the optimal manipulative 
variable :

Lj^m(t) = L^d(t) - L^c(t) . (3-2)

These equations can be identified with the general
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forms previously considered by first subtracting the steady 
state components and then transforming the resulting equation 
into the s-domain. The Laplace transform of the perturbation 
equations are

K

M = - Q^C , (1-2)

where
FC

“ VpC ' ^  PVC ' ~ ^  ' (3-4)P P
and C, D, and M are the Laplace transform of c(t)-c^^, 
d(t)-d / and m(t)-m respectively, and Q and Q are theS S S S L.
Laplace transforms of and respectively.

Comparison of (3-1) with (1-2) shows that the follow
ing definitions are appropriate

- T T T T  =

“ " s f a   =
For future convenience, the following definitions are also 
made s

A P* . (3-7)s + a D

^  = P* . (3-8)S + ex M

The functions P* and P* are the so-called minimum phase por-D M
tion of the transfer function. Since all of the constants
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are non-negative, notice, for this general class of systems, 
that the exponential time lag for the plant transfer function, 
P^, is always equal to or larger than the lag of the load 
transfer function P^.

Calculation of the optimal control function requires 
the values of plant transfer functions as well as the statis
tical characterization of the random disturbance. For a 
particular problem, disturbance parameters may be measured 
experimentally or calculated from theoretical considerations 
[b 2,C2,Ll,N2,S2]. It has been shown [L1,S2] that the spectral
density of any random disturbance can be represented by the

2 2 2sum of terms of the form u / (-s + a ), and often one of
these terms dominate. It will be assumed here that the 
spectral density of the disturbance can be adequately repre
sented as

■ (3-9)
O - S

This equation is an exact form of that representing 
(a) constant magnitude square waves whose sign changes as a 
random function of time, (b) square waves with randomly 
changing signs and amplitude, and (c) a gaussian noise 
produced by passing "white" noise through a first order 
filter. In general, signals with identical spectral density 
may have quite different time behavior.

Normally the exact form of the random disturbance 
does not exert an overpowering influence on the configuration 
of the optimal controller so that some liberties may be taken 
in specification of these parameters. If a more complicated 
spectral density is employed, additional difficulties may be 
expected in the solution of the design equations.
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Canonical Form of Equations for Minimization
In order to proceed with the optimization, equations 

must be developed relating the disturbance to the controlled 
output which is to be minimized. Equations will also be 
developed relating the disturbance to the manipulative 
variable since this latter is an important state variable 
that will be subject to constraint.

The overall controlled system response to the dis
turbance is found by algebraic elimination of the manipulative 
variable from between (1-2) and (1-3) giving

C = P D + P M  / (1-2)D M
M = Q^D + Q^C , (1-3)

The output variable can be eliminated from between the same
two equations giving the functional dependence of the 
manipulative variable on the disturbance.

It is seen that although the system was described by linear 
differential equations, the above expressions are not linear 
in the unknown control operators, and Q^, so that solution
of the equations shown in Chapter II would be very difficult
at best. Therefore the general approach described by Newton, 
Gould, and Kaiser [N2] will be used. The relationships
(3-10) and (3-11) will be written in terms of unknown opera
tors that do form linear equations relating the output and 
manipulative variable to the disturbance. Thus after the
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optimization has been completed, tbe unknown operators, 
and Q^, can be determined algebraically as functions of the 
intermediate operators.

The unknown intermediate operators must be chosen in 
such a way so that their physical realizability implies 
physical realizability of the real control functions. In 
other words, it would be undesirable to define the inter
mediate functions in such a way that, after solving for them 
while carefully excluding the possibility of predictive 
elements or unstable poles, it were found that the algebraic 
manipulations leading back to the real controllers intro
duced these undesirable elements. As a first step, define 
an overall control function, T^, such that

§ = + P„ . (3-12)

This choice of T^ is somewhat arbitrary; several other forms 
could have been chosen but all lead to the same type of re
sults- From (3-12) it is seen that C is a nonpredictive and 
stable function of D if both T^ and are nonpredictive and 
stable. Optimization conditions have already been defined 
so that T^ is not predictive, and since is a real plant 
transfer function, it cannot be predictive. P^ could be 
unstable however, and if (3-12) is to be used, unstable poles 
would have to be removed by internal feedback prior to the 
optimization. In principle, an unknown function could be 
defined permitting cancellation of an unstable pole with a 
r.h.p. zero but this procedure would lead to an unstable 
controller that would saturate due to stray residual noise. 
Thus a further restriction placed on both P^ and P^ of (1-2) 
is that unstable poles have been removed by feedback prior 
to optimization.[N2].
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Although, the definition (3-12) is satisfactory from 

the standpoint of the C/D relationship, the M/D relationship 
must also be examined since obviously the manipulative 
variable may not be a predictive function of the disturbance. 
Comparison of (3-11) and (3-12) shows that

from which it follows

D = ^  * (3-14)M

Equation (3-14) presents no problems if contains no non
minimum phase elements, i.e., r.h.p. zeros or pure time

— TSdelays. If P. does contain factors of the form (s- z)e ,M
then the ratio of T /P„ will contain factors of the form  ̂ D M
e / (s- z) which implies that M could act in anticipation of 
the disturbance and/or is not a stable function of the 
disturbance. To prevent predictiveness or instability in 
m/d , T^ may be redefined by the following modification of 
(3-12):

D = V g  + Pg , (3-15)
where is the product of non-minimum phase factors,
(s - z)e“'̂ ®, of P. - This definition changes (3-13) to theM
form

-D = %  ' a  +

and yields the following expression for the M/D ratio

M
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in which, the non-minimum pha.se elements have been cancelled. 
Both C/D and M/D are now nonpredictive and stable if is.

The function T^ alone does not uniquely define either 
Qjj or Q^; it merely determines a relationship between infinite 
sets of Qq 's and s any of which would give the same 
manipulative variable and output relationship with the dis
turbance. This result does not stem from the particular 
definition made for T^ in (3-16); basically the relationships 
of the manipulative variable and the output with the dis
turbance can be used to find only one unknown function. If 
two independent intermediate functions had been defined, say 
one primarily dependent on and the other primarily de
pendent on then (3-16) could be used to find some par
ticular combination of these two functions which would appear 
by itself in both of the equations defining C/D and M/D.
Any optimization procedure dependent only on these two ratios 
could only define a form for the (3-16) relationship and not 
the individual components. For example, if T^ and T^ are 
defined as follows

p p o
T , (3-19)

then from (3-16)

and

T = T - Tg . (3-20)

(3-22)
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Any solution of equations involving only C/D and M/D cannot 
be specific in or T^, but only in the difference, - T^. 
Interestingly enough, this result implies that the optimal 
feedback and feedforward controllers are not individually 
unique functions of the simple input-output relationships. 
Another unique intermediate function will be developed after 
additional quantities have been found which are to be opti
mized by the control system.

Minimization of Mean Square Error - No Constraints
Equations will be developed in this section to define 

the overall transfer function, T^, which when substituted 
into (3-6), will give minimum mean square output- Optimal 
controls in the absence of constraints will be considered 
in some detail since they represent the simplest class of 
limiting cases for complicated situations that will be 
studied later. The mean square output may be computed from 
(2-8) and (3-15) as follows:

joo

^  ^ < V d  + '■d> • '='-23)
—  “I CO

The condition for optimal T^ corresponds to a minimum of this 
integral which is found by formal partial differentiation of 
the integrand, 
result equal to X:
the integrand, ' with respect to T^ and setting the

+ ^D>*DD =
where X has poles in the r.h.p. only. It has been seen that 

may be factored into two parts,
= DD , (2-17)

where D has only l.h.p. poles and zeros and D has only r.h.p. 
poles and zeros. Thus (3-23) may be expanded to give
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(3-25:'

This equation will be solved first under the assump
tion that both and P., are minimum phase, i.e., andD M  M C
of (3-5) and (3-5) are both zero. Thus

and

where

T^DD + P^DD = X ,

;
=  B^P* ;

(3-26)

(3-27)

(3-28:

and the B's are the non-minimum phase factors of the 
respective P's. (Note that if dead time exists only in the 
output sensing circuit, i.e., =0, > 0, then (3-5; and
(3-6) show that

Bd = B^ = e-"c= (3-29:

Use of (3-29) with (3-28) in (3-25) also leads to (3-27) so 
that the following results are valid whenever there is no 
dead time in the controller action itself.)

Equation (3-27) is solved by dividing through by D 
and setting both sides of the equation equal to zero, giving

DT^ = -P*D , (3-30'

or, since only l.h.p. poles and zeros are present,
*

=  -Bd -
Substitution of this result into (3-16) gives

P_

i3-3i;,

M
BpQç (3-32)

As (3-32) only defines a relationship between and Q^, an 
arbitrary form of one control function must be chosen in
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order to find the other.

A significant case to examine is the one in which 
feedback is absent, i.e., is zero, so that (3-32) gives

(3-33)

Substitution of = 0 and the value for from (3-33) into 
(3-6) shows that the "optimal" output for this design is 
identically zero. This relationship given by (3-33) is the 
"ideal" or "nominal" feedforward controller such as would be 
developed by ordinary feedforward design methods or by 
"invariance theory" [H3]. When a control system for a 
minimum phase plant is designed without constraints and when 
the feedback portion of such a design is arbitrarily made 
zero, the optimal control becomes ideal feedforward control.

It is of interest to examine another important 
specialization of (3-32). If the feedforward control is 
prohibited, i.e., is arbitrarily made zero, then it 
follows :

M
(3-34)

This equation can be satisfied by a non-predictive control 
function, Q^, only if = 1, i.e., only if dead times 
and are zero, and then only by letting be infinitely 
large. Theoretically it appears that the perfect feedforward 
control of a minimum phase plant can be matched only by 
unreal infinite gain feedback control. This question will 
merit further discussion but it is clear here that not all 
of the physically important constraints have been included 
in the problem statement. Both the ideal feedforward control 
and the specification of infinite gain feedback control have
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resulted from this source.

Before proceeding to the development of constraints, 
the case of an unconstrained plant containing dead times will 
be considered using the example system described by (3-5) 
and (3-6). This case is studied separately because there 
are significant differences in both the solution method and 
result when dead times are present. Equation (3-25) may be 
rearranged

or by particularizing and using (3-22)

+ is! . (3-36)a + s t t  + s a + s D
The second term on the right hand side of (3-36) must

be split into its physically realizable and unrealizable 
parts. Although this term has only l.h.p. poles, the 
exponential factor in the numerator makes part of it non
zero for t < 0. To see this point, consider a general case
of a sum of fractions of the type ke^^ where 3,t > 0. (It

3 + s
is assumed throughout that the roots of the denominator are
distinct. If they are not, the method of finding residues
is different but the results are the same.) The inverse
transform of this factor is ke ̂ ^ ̂ ̂ u(t + T) where u(t) is
the unit step function. A plot of this result is shown in
Figure 3-2. The control function T^ cannot compensate for
error which occurs for t < 0; hence the only part of Figure
3-2 that is useful for design purposes lies to the right of

—3 (t + T)t = 0- This function is described by ke u(t) which
has the transform of ke which is the principal part of

3 + s
the original term at this l.h.p. pole.



40

Dead
Time

t

Figure 3-2. Inverse Transform of keTS

Solution of (3-35) now proceeds by retaining only 
the principal parts of the second term at l.h.p. poles which 
gives

TdU
+ D r _e

- a L a e
a + s a 

from which it follows that

+ s G + s J = 0 , (3-37)

= -^D<^DO + '
where

DO

(3-38)

and

D1
A e_____ - e____
~ a - a

The relation between the specific controller functions, 
and Qjj, is found by substitution of (3-38) into (3-16) :



41
* *

1 + ■ <^-35 >

This controller is the limiting case for all systems
to be studied containing dead time and thus will be pursued 
further. First consider the controller for no feedback, 
i.e., =0, so that it follows from (3-39) that

P*
°D = - (?D0 + ■ (3-40)M

This result is the classical solution to the "predictor" 
problem [N2]. If a control system is asked to anticipate a 
random signal and maintain a minimum mean square deviation 
from the reference, the control action is attenuated to
compensate only for that part of the signal it knows about.
Differentiation of the signal is used to attempt to "predict" 
trends based on average frequencies.

The situation for the existence of feedback control 
only is found by allowing the feedforward function to be 
zero. Then from (3-39)

.
P*[l - e “ (Too + ^01=)^

This solution is valid and is physically realizable if
T = 0 .  Thus a feedback controller has been found which C
controls with the same degree of effectiveness as feedforward 
control. This equivalence is theoretically possible if there 
is a finite dead time in the controller but none in the out
put sensing loop so that both feedback and feedforward are 
subject to the same dead time.

This result can be clarified by consideration of 
the physical situation. If there is no dead time in the
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controller, the output response can theoretically be reduced 
to zero by feedforward control. Finite feedback control 
cannot do this well since the control action cannot be keyed 
to a variable that is identically zero. If pure time delays 
exist, however, a zero output cannot be achieved even by a 
perfect feedforward controller. In such a case, there is an 
output to which a feedback controller can be keyed. All 
that is necessary is to determine the functionality relating 
input and output and simply design the feedback controller 
to give the same signal as the feedforward controller gives 
for the same disturbance. Of course, limits of gain and 
noise will probably prevent realization of this controller 
in actual practice.

Control System with Constraint on Control Effort
The mathematics of optimization in the presence of a 

constraint have already been presented in Chapter II. Im
plementation of these techniques where a constraint is placed
on the magnitude of available control effort is considered 
in the following discussion.

In general, the control effort may be constrained in 
several ways : (i) by the maximum level which it can attain;
(ii) by some maximum rate of change; or (iii) by some maximum 
value of a linear combination of these or other operators on 
the manipulative variable. Thus let

A = P^M , (3-42)

where P^ is some linear operator in the Laplace transform 
space, and let the constraining condition be

|a(t)\ < £ . (3-43)
where a(t) is the inverse transform of A.
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The objective will be to find a T^ which minimizes 

the mean square output but in addition requires that (3-43) 
be valid a large fraction of the time. This dual goal will 
be achieved by minimizing the integral corresponding to 
(2-25) whose integrand is the sum

F(Td .X) = • (3-44)
The quantity, is the Fourier transform of the mean
square output as computed by (3-23) and $ is the integrand  AA

3» P ̂
^  ^ • -  <3-45)

_joo M M

Substituting (3-23) and (3-45) into (3—44) and then 
formally differentiating the integrand with respect to T^ 
and setting the result equal to X leads to

+ '■d > + %  ?D]*DD = ^ • (3-46)M M

Rearranging and using (2-10) gives

P "p”
(1 + ^  )DTd + = +  • (3-47)M M

The function contained in parentheses of the first 
term of (3-47) must be symmetric with respect to the imaginary 
axis - every pole or zero with a positive real part has a 
counterpart with a negative real part. Thus this term may 
be written as follows

P P
1 + = YŸ . (3-48)

M M
where Y has l.h.p. poles and zeros only, and Y has r.h.p. 
poles and zeros only. With this substitution, (3-4 7) becomes



44 
P db“

• (3-4 9 )

The principal parts of the second term are found at 
l.h.p. poles and the physically realizable part of the left 
hand side of (3-49) is set equal to zero, giving

where, as before, [...]_̂ means the sum of principal parts 
in the r.h.p. All quantities on the right hand side of 
(3-49) are known except the parameter, X., which can be 
evaluated by substituting Tĵ (X) into (3-45) and then re
quiring that

cp^(O) = X . (3-51)

If (3-51) is valid, then X is the variance of a(t). By 
proper selection of X, (3-43) can be made true for an 
arbitrary fraction of the time provided that the distribution 
function for a(t) is known. Of course this distribution 
function is seldom known so that this condition may be 
approximated by using the normal (or any other suitable) 
distribution. A very conservative approach could be used in 
the form of the Chebychev inequality [W4].

To illustrate the foregoing general discussion, the 
specific solution will be obtained for the system described 
by (3-3). Assume that the constraint of (3-43) is taken to 
be only on the magnitude of control effort so that is
unity. Thus (3-48) becomes

and from (3-49) it follows that

2
YŸ = 1 + (a^ - s^) , (3-52)
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^ _ M  a + s r --------- D-----------  1 , (3-53)
D ĵ 2 3 + s L (a + s) (a + s) (P - s) J +

where 2
+ -| .

The principal parts of the bracketed expression are found at 
the l.h.p. poles giving explicitly

• » - “ >

The only unknown on the right hand side of this equation is 
\ which appears explicitly in the equation as well as 
implicitly in P. A numerical choice for X fixes the func
tional form and numerical constants of T^ so that it can be 
substituted into (3-45) to find a numerical value for (0). 
Adjustments in the value chosen for X could then be made 
until (3-51) is satisfied. With T^ fixed, the nominal output 
is computed using (3-23) and the relationship between the 
feedback and feedforward controllers (3-16) is defined.

It is of interest to investigate the form of the 
specific control functions, and Q^, when only one of the 
two are permitted. To reduce writing, define constants so 
that (3-54) may be written

■'d = (a I°S)
If is made zero, then using (3-55) in (3-16) gives

%  = •
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Conversely, if is made zero, then the same equations yield

(+TpO + TplS) ■'c®

K^(P + s) ®

It is noted here as with (3-41) that if the feedback dead 
time, T^, is zero, it is possible to define a feedback con
troller that theoretically performs as effectively as feed
forward in output attenuation. Again the explanation lies 
in the fact that perfect output attenuation is not expected 
of the feedforward controller so that finite output exists 
to which feedback can be keyed. In (3-57) as in (3-41) the 
numerator of the feedback controller is one degree higher in 
s than the equivalent feedforward controller thus making it 
a differentiator. However, the feedforward controller 
operates directly on the input disturbance while the feedback 
controller operates on the partially integrated and smoothed 
output. The net result can intuitively be seen to be 
equivalent.

Effect of Error in the Mathematical Model 
In the previous development, optimization goals have 

been achieved using only one of the two available degrees of 
freedom which was accomplished by arbitrarily choosing one 
of the two control functions as zero. In a particular 
application, circumstances may make it necessary to choose 
one control function to be zero but in general, the "best" 
combination of and will be sought. It has been already
pointed out that other constraints will be required to specify 
the individual functions, and Q^, uniquely. An additional 
constraint will be defined through consideration of feedforward
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control limitations. These limitations have made it secondary 
in use to feedback even though the previous equations seem 
to indicate the equality if not superiority of feedforward.

One of the principal weaknesses of feedforward 
control is its sensitivity to error in the mathematical model 
used in its design. If feedforward control is based on an 
inaccurate model, it will produce partially inappropriate 
control action. No knowledge of its error is transmitted 
back to the controller since feedforward compensation is 
based only on the value of the input.

Model error can be divided into two classes: (i)
permanent error, i.e., a value of a parameter which has been
assumed or measured inaccurately; or (ii) transient error, 
i.e., parameter values which change with time. The former 
type of error will succumb to development of accurate model
identification techniques, or can be "tuned out" by adaptive
control practices. However the variability of transient 
error will cause model error output indefinitely. Examples 
of the latter range from scaling of heat transfer surfaces 
and ambient temperature cycling to variations of catalyst 
concentration or activities in systems where other variables 
are the measured forcing functions. In short, this type of 
error is a form of unmeasured disturbance which is regarded 
here in relation to the transfer functions of the monitored 
variables. An optimal controller must take this type of 
error into consideration.

Computation of the model error factor will be made 
by determination of incremental response due to incremental 
changes to the system parameters. Thus, from (3-5)

C + Ac = (T* + At* + + AP^)(D + a d ) (3-58)
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where Ac, At *, Ap^ and Ad  are errors and T* = B.,T^. From D D D M D
definition (2-5), the spectral density of this output is

(3-5,9)*C+AC,C+AC ‘ T + AC)T>-

The error terms may be restricted to factors that are un
correlated with system time constants by inclusion of the 
known, correlatable portion in these parameters. This 
inclusion would occur automatically, for instance, in 
empirical experimental system identification techniques. 
Thus, assume

lim —  (c Ac ) = lim ^  ( Ac C ) = 0 ,
*P-*00

and (3-59) becomes

T T T T (3-60)

*C+AC,C+AC T ^^T^T ^ ^"^T^^T^ ^CC ^ *ACAC '

As shown by (A-13), the contour integral of the last term in 
this equation is positive unless A c(t) is identically zero. 

The mean value of the "error output," Ac, may be 
found by subtraction of (3-15) from (3-58) which yields

Ac = (At* 4- àP^)D + (T* + P^) AD + (At* + AP^) AD 

The following covariances are assumed to be zero.

(3-62)

<DAD> = < (At * + AP ) (T + P*)> = (AD(AT + AP )> = 0 ,D D D D u  D (3-63)
and the definition of spectral density is used again so that 
the mean square value of the error output is

j"
<ACÂC> = ^ [( (AT* + AP ) (AT* + AP ) >DD +2TT] O D D D D

- 3 ”
+ (T^ + P^)(T^ + P^)(ADAD>]ds . (3-64)
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Equation (3-64) gives the value Qf output which is

to be expected because of error in the mathematical model
used to design the control system. A simple way to include
the effect of model error in the design procedure would be
to minimize the integral of the sum in (3-15). Somewhat more

2generally, a minimization of (Ac ) with a constraint on the 
2value of (c ) will be considered so that the effect of 

emphasizing reduction of 
design can be evaluated.

2 2emphasizing reduction of either (c ) or (AC ) on the optimal

Explicit Determination of Parameter Error 
If the output defined by (3-64) is to be included in 

the optimization procedure, the A's must be related to the 
primary parameter variations. These relationships will be 
developed in the following discussion.

Assume that the various functions can be expanded 
into Maclaurin's series with respect to the parameter 
variations :

P(§) = P (0) + -|̂
?=o

(3-65)
§=0

where P is a transfer function and § is error in a particular
parameter. P (0) is the estimate of P(§) used for design;

9Pthe term -z-r is called the "error coefficient" [Tl ]. As aos
first approximation to P (§), only the linear term of this 
series will be retained assuming that the higher order terms 
are small with respect to the first:

ÔPAP = P(§) - P(0) = (3-66)
§=0

In all of the problems considered here, the 
operators are rational functions in s multiplied by an
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exponential time lag. Therefore representation of the gen
eral transfer function with its errors is

] ] ]
(3-67)

where § is the vector [Ak , Az . , . . . , Az , Ap , Ap , Ae ],1 n X m
The following equations are derived from the definitions in 
(3-67):

ap
a AK AK=0

P
K

ap

X

ap
a A p . ]
ap

-p (3-68)

Ap.=0 Pj + =

a AE = -sP .
AE=0

Therefore the error due to parameter variation may 
he approximated

a k ^AP
Az .X - AE p . + s sj ]

] (3-69)

Equation (3-16) shows that T^ is affected by errors 
in the plant functions as well as errors in the controller 
functions. Normally however, any variations in the controller 
will be at least an order of magnitude less than those in 
the plant functions. Time constants of transmission lines 
and control valve reactions would be included in the plant 
transfer functions (possibly as an equivalent dead time).
For these reasons, it will be assumed that
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AQ^ = AQ^ = 0 . (3-70)

Therefore,
ÔT* ÔT*

^’■d = âiTM D

Evaluation of the partial derivatives using (3-16) gives 

from which it follows that

• » - » >

In (3-73) there again appears an undefined function, 
Q^, to be minimized, which is not linear in describing a 
"state" quantity, AC. No amount of rearranging will allow AC 
to be described by a single unknown function of and
which is linear in describing both C and AC; hence a new 
unknown function must be introduced. A number of choices 
are possible but the one chosen here will be defined as

P P Q

where is the non-minimum phase portion of P^. Other 
choices of the form of T^ would not affect the end result. 
Using this definition in (3-73) gives

M D

from which it follows that
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iAc, Ac

M M D D
(3-76)

Thus the spectral density of a third state variable 
has been defined adding another dimension to the optimization 
problem. The previously described optimization procedure 
can be used to find the control function for a minimum of 
the mean square value of one of these quantities while the 
variances of the other two equal the respective constants. 
There are six permutations of _completely equivalent ways to 
formulate this problem. The one used here is given as 
follows :

Assume that the control effort is constrained by

<a(t)^> < Z , (3-77)

and that the system output is constrained by

<c(t)^> < U , (3-78)

then find the operators T* and T^ such that ( A c ( t ) i s  
minimized.

Resorting to the use of Lagrange multipliers, the
problem becomes that of minimizing a contour integral whose
integrand is :

where the contour integrals of and satisfy theAA CC
constraints of (3-77) and (3-78) respectively. The minimum 
is found by formal differentiation with respect to T^ and T^
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and setting the results equal to and X^ which are func
tions with r.h.p. poles only. Explicitly

P P~
+ (AdSd + \iDD)B;(B^Tg + Pg) + >̂ 2 3 ^  ,

M M
(3-80)

and

| ^ =  (  ^  )  G -  ^  ) C ^  ^

= Xg . (3-81)

Solution of (3-81) proceeds by noting that the last 
two factors form a symmetric function which is factorable 
into parts with l.h.p. poles and zeros, and r.h.p. poles and 
zeros. Let these factors be Y and Y respectively. Then,

(3-82)
D D

If the transfer functions are all minimum phase, 
i.e., if B^ and are both unity, (3-82) can be satisfied 
if Tg = or if Y = 0. If then (3-80) can be solved
for Tĵ  in a manner very similar to that already investigated. 
If Y = 0, the first term of (3-80) is also zero and it would 
be nothing more than coincidence if were defined so that 
it also satisfied the second part of (3-80) . Therefore, the 
solution T^ = P^ will be examined. The more complicated 
problem of non-minimum phase transfer functions would
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require evaluation of physically realizable parts as in 
(3-37).

From (3-74), if and only if approaches
infinity at all frequencies, a solution which has been met 
earlier. Here, however, the situation is different; has 
not been arbitrarily set equal to zero; indeed, there is no 
arbitrariness whatsoever in this solution. After (3-80) has 
been solved, as previously, yielding a value for T^, then 
(3-16) may be solved for Q^. For a very large Q^, (3-16)
may be rearranged

«D = (’’d + ^D> ■ (^-83)M

Thus, although approaches infinity, the feedforward func
tion, Q^, remains a finite function balancing the feedback 
so that the overall control function, T^, becomes such that 
control effort and output attenuation constraints are met. 
This result contradicts the notion that is sometimes implied 
that infinite gain feedback theoretically causes infinite 
control effort. The infinite gain feedback in this computa
tion achieves near-zero output by adding "mirror images" of 
the measured and unmeasured disturbance to the plant. Of 
course this feedback is physically unrealizable despite the 
fact that it is within previous constraints so that a further 
examination of design bases and constraints is in order.

The result which pitted an infinite feedback system 
against the feedforward to achieve a finite, optiite.1. overall 
transfer function seems to be the result, at least in part, 
of assuming zero error in the controller. The results which 
call for infinite gain of the feedback controller stem from 
a more subtle source. The basic problem is that continuous 
equations are describing a physical phenomena which has, in
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effect, a limited threshold. Consider the following analogous 
situation from the field of diffusion.

If a salt shaker were emptied into the Mississippi 
River, ordinary continuous diffusion equations would indicate 
that if a chemist in Tokyo took a series of samples, in 
principle, he could detect a change in salt concentration 
due to this disturbance even though the level of the change were 
infinitesimally small. Likewise, the feedback controller in 
the above design is being called upon to make corrections 
based upon output changes which are very small. If a zero 
mean square output is not required, the feedback controller 
attempts to maintain the variance of the output as near to 
the constraint limit as possible to minimize other values, 
even in the face of parameter variations. To achieve this 
result, maximum gain or a very narrow proportional band is 
employed. While the design method has been developed with 
constraints against instability (of. (3-15)), a feedback gain 
of infinity can be no better than borderline stable. Infinite 
gain will be applied not only to the signal but also to any 
noise in the controller and in the sensing element. Control 
action based on this noise introduces error in the output, 
as well as contributing to saturation of the controller. An 
addition to the equations will be introduced in the next sec
tion to counteract the tendencies discussed here.

Design Equations for Finite Feedback Control
In control systems of the type considered here, the 

controller measures the value of some state variable and then 
computes a control effort that depends on the value of this 
state variable. In a real situation, it processes not only 
the value of the given state variable but also any error that
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is present in the sensed value of the variable and any noise 
generated in the controller. The system output is therefore 
not the result of only the primary disturbance and the ideal 
computed control effort but in addition is corrupted by 
control effort erroneously computed from controller noise.
This excess control effort also contributes to saturation of 
the controller capacity. These two effects limit the degree 
of control effort that can be keyed to a given variable.
From a slightly different point of view, the signal-to- 
noise ratio of the quantity which ultimately activates the 
manipulative variable must be sufficiently high so that there 
is more disturbance attenuation than output corruption.

These effects are usually much more important in the 
feedback portion of the control system than the feedforward.
It is seldom desirable to initiate a great deal of feedforward 
control effort because of a small disturbance. Disturbance 
signals important enough to affect a plant output signifi
cantly are generally large enough to give high signal-to- 
noise ratios in a controller. On the other hand, feedback 
controllers are particularly susceptible to these difficul
ties. The very success of any control effort adds to the 
problem - as the output becomes closer to the ideal of zero, 
the signal-to-noise ratio of the feedback diminishes. In 
the limit, the feedback controller will be attempting to 
compensate for signals generated within itself and can tend 
to produce more output than it eliminates. This behavior 
is an instability that is somewhat different from that 
traditionally produced by poles in the r.h.p. Both however, 
tend to occur at high amplification factors and prevention 
of this effect is one of several concealed constraints in 
the "gain margin" and similar factors built into the
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traditional design methods. For the above reasons, a signal- 
to-noise type constraint will be imposed only on the feedback 
system.

The formulation of a gain constraint on the feedback 
presents somewhat of a problem in order that it be in a form 
amenable to solution by Wiener's techniques. It would also 
be desirable to avoid introduction of another Lagrange 
multiplier since each new variable introduces another dimen
sion to be explored by numerical calculation and Bellman's 
"Curse of Dimensionality" [Bl] becomes especially acute.

The method to be used here will be to alter (1-3) so 
that the feedback function, Q^, operates not only on the 
output, C, but also on a random noise factor, 6. (The same 
Greek letter will be used for the factor and its transform; 
the context should indicate which is meant if the argument 
is not stated.) The factor 6 tends to mask the effect of 
small outputs so that most feedback control effort is 
delayed until the output exceeds 6. Thus the response 
somewhat resembles that of a system with a small dead time. 
The manipulative variable then becomes

M = Q^D - Qç,C(C + 6 )  . (3-84)

The other equations remain unchanged but will be repeated 
here for convenience while deriving the final design 
equations :

C = P D + P M  , (1-2)D M

- o  = <  '

A = P^M , (3-42)

Ac = (A[B T^] + AP )D + (B T_ + P_)AD , (3-62)M D D M D D
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From the above it follows

M = ' l Y C o f  —  -  %  + %  V >  ' < - - >

and

c = = ' V d  + ^  ' <3-86)

and
B T_ AP.. AP

(3-87)

=  (  +  ^ ' “r, )  C  1  -  )  °  +  < V d  +  V " "  •

The term 6 does not appear in (1-2), but is introduced into 
(3-86) by (3-84) and is neglected in finding AC.

These equations are used to find the optimizing T^
and T^ the same way as in the foregoing developments. The 
function,

'■<''d'''c'̂ 1-*-2> = h c . A C  * ’'l^CC + ■ <3-381

is the integrand of the contour integral which is to be
minimized. From (3-85) to (3-87),

Ap Ap 5 3 7
'aC.AC = <Vd <VD ) •

g g IP
• ( 1 - ) *d D + < V D  + 3j,) (B„T^ + P^) *AoAD '

D (3-89)
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*CC = ( V D  + ?D)*DD +  5 ^ -- *55

'AA = B Â  %

In these equations it was assumed that no correlation exists 
between D and Ad or 5.

Necessary and sufficient conditions for the minimum 
of (3-88) are found as before by formal partial differentia
tion of the integrand with respect to and and setting 
the two results equal to and X^, functions with r.h.p. 
poles only.

+ ^ ( V d + PD)*ADAD + + ?D)*DD
2 _

p ^  ^D*DD M M
= X^ , (3-92)

■ ' - W  V . .  •  V »

= X^ . (3-93)

The spectral density of 5 appears only in the second of these 
equations which, as will be seen, determines T^. The noise
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factor, ô, affects the overall transfer function only 
insofar as it affects thereby changing the amount of 
identification uncertainty that must be allowed for in the 
feedforward control.

Since there are two equations with two unknowns, in 
principle it is possible to reduce by elimination to one 
equation which can be solved for one unknown. Since the 
unknowns are functions however, and functions with differing 
arguments at that, this elementary approach will not work. 
Therefore, recourse must be taken to successive numerical 
approximations to obtain a solution. Although convergence 
of the solution has not been shown, there are reasons to 
believe that the numerical process will always converge 
rapidly to a solution and the examples worked herein show 
convergence. Although this situation is a rather unsatis
factory state of affairs, it has the saving grace that it 
seems to work.

The general method of solution is based on the idea 
that the principal reason for existence of the control system 
is the elimination of output, that is, to make C = 0. It 
was seen previously that a successful design for C = 0 is 
B^Td = -P^. On the other hand, if the control effort is very 
small because of constraints, then B^T^ =0. Although a 
number of other important factors have been introduced to 
the equations, an approximation to be used in (3-85) to the 
overall control effort would be some constant, Y, times P^, 
i.e., let

B^Td = -YP^ , 0 < Y £ 1 . (3-94)

Equations (3-92), (3-93) and (3-94) could then be solved by
successive approximations adjusting the value for Y until
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<='^>">controll.d ^ <^>'>u„controlled '

The resulting control functions would then be very near 
optimal.

Actual calculations later indicate that the control 
design is quite insensitive to the value used for y in 
(3-94). This result is logical since often the error factors 
themselves are little more than shrewd guesses and seldom are 
functions known with a high degree of accuracy. A choice of 
Y = 1 was found to be quite satisfactory for reasonably 
effective controllers.

With the aid of (3-95), equation (3-93) may be solved 
explicitly for T^. Using (3-95) in (3-93) and rearranging 
the result gives

AP AP
(  ^  -  V ^  }  = ^2  •

The function enclosed in braces in the first term does not 
change value when (-s) is substituted for s and may be 
factored into parts with only l.h.p. or r.h.p. poles and 
zeros. Defining new functions and repeating (3-96)

T^YŸ - Z = ; (3-97)

solving as in previous sections:

= i  [ +  ]+ -
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With known, is found by rearranging (3-84) to

give

M M  D D

® M ® M  [  ^ A D A D  C  ■'■ ^ 2  P ^ P Z  )  ^ D D  ]  }  "^M M

B Ap B B T  B.B T
. *DDM O D

+ V d C*AD,AD +

or
T^UU + W = . (3-100)

and this equation is solved as before. There are no direct
approximations in this equation except for that included in
T^ from (3-94) through (3-98). The assumption for T^ made
in that equation has the effect here of influencing the
degree of desirable "detuning" of T^ because of model mis-
identification. Again it is intuitive that the solution to
this set of equations should be fast converging.

With T and T_ both defined, arbitrariness discussed C D
earlier has been removed from and Q^. Solving (3-64) for 
Q gives

V e ,

'■d =
The non-minimum phase factors in the numerator B„ and B^ areM D
cancelled by their counterparts in P^ and P^ from which
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these factors arose. In the denominator, the second term 
vanishes as s " and since cannot be infinite at any 
frequency, the second term must be less than one at all 
frequencies. Furthermore the second term is positive 
because must not be negative - otherwise the factor 
1/(1 + would not attenuate disturbances (cf. (3-64)).
For these reasons the denominator may be expressed in a 
power series as follows:

= , (3-102,
1 _ 5 £ e  T -D - ' -D

and is physically realizable since the terms can contain only 
dead times and/or r.h.p. zeros (B^ cancels positive exponen
tials and r.h.p. poles arising from r.h.p. zeros of P^) .

The physical significance of this solution is 
interesting. The control action at the time of sensing the 
output is given by the numerator of (3-101). After a period 
of time corresponding to the dead time in the system (from 
sensing until control action begins), the control effort is 
modified by the second term in the above expansion. After 
another similar lag, a third modification occurs as a result 
of the third term above, and so on. Thus the controller 
applies what it considers to be ideal corrective action due 
to any disturbance. This action is modified when information 
about the results of the original change reach the controller 

With T^, and T^ known, rearrangement of (3-16) 
can be solved for using definition (3-64):

V d =

or
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Qd = F- + V c )  '*M
(3-104)

and since

 ̂+ V c  = (3-105)

then becomes

=

J- (T„ + B^T^) 
_M____________

(1 - ^  T^)
(3-106)

The numerator of this function is realizable since B,, cancelsM
non-minimum phase elements in P„ and the denominator isM
expandable as in (3-102).

For the situation of high quality nominal control, 
i.e., when approaches - P^, it is of interest to consider 
a rearranged version of (3-106), namely,

-P_ _ T

n V D (3-107)

from which it is seen that

lim = BD M PM
(3-108)

Actually the approximation of (3-108) is valid whenever 
reasonably good output attenuation is found from the design 
equations.

Detailed algebraic solution of the foregoing design 
equations is given in Appendix B for a system similar to that
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of (3-3) except that it is generalized to third order in the 
denominator and first order in the numerator. Digital

iecomputer programs written in Osage Algol providing numerical 
solutions to these equations are listed in Appendix D.

The Osage Algol language is a modification of 
Algol 60 [W2,N1] used on the Osage high speed computer at 
the University of Oklahoma Computer Center.



CHAPTER IV 

ANALOG COMPUTER SIMULATIONS

In this chapter, analog computer simulation for the 
various controllers which were developed in previous chap
ters will be considered. The analog computer is rather 
idealized compared to those systems encountered in practice. 
The mathematical model is known with a precision and accuracy 
usually unattainable in a process plant. Non-linearities 
are virtually absent unless deliberately programmed and the 
extraneous noise level is much lower than normally encountered 
in a real system. These factors can give a misleading picture 
of controller efficacy unless some steps are taken to consider 
them deliberately. Nonetheless analog computer results can 
often give a valuable intuitive insight to the statistical 
quantities which have been heretofore drily computed.

The primary disturbance used for these tests was 
derived from a custom built signal generator in which, at 
intervals determined by an adjustable time base, the regu
lated output voltage was switched electronically in a random 
fashion depending on whether the number of electrical impulses 
collected on the plate of a thyratron tube has been odd or 
even during the time base interval. The instrument used 
generated square waves of constant absolute magnitude but 
with random sign changes whose average frequency was variable 
over a range of 0.5 to 500 zero crossings per second.

The desired spectral density of the input disturbance
66



67
is obtained by filtering the noise generator output. Thus
if § is the desired spectral density and is theDD
spectral density of the actual output where

2 L.
c~ — s

and

*D*D* *2^ 2 'V — S

then a filter of the form — +~s give the desired
signal since

2i
DD

u s + g* 
u* s + g *D*D* ■ (4-3)

This type of transformation is limited only by 
differentiator accuracy and saturation when "stepping up" 
the frequency and by power content of the signal when 
"stepping down" the frequency. The resulting output signal 
is, of course, no longer a series of randomly distributed, 
constant magnitude square waves but (when stepping down) more 
closely approaches a signal with gaussian amplitude variation 
as the degree of filtration is increased (cf. (3-22) and 
[B2,L1,N2,S2]).

Some difficulties occur in analog programs for trans
fer functions with very small coefficients of high order 
derivatives. When these equations are "solved" for the high
est order derivative, very high feedback gains result which 
use an excessive number of amplifiers and impair computing 
accuracy. To alleviate this problem, the small roots can be 
factored from the denominator of the rational function and 
the partial fractions corresponding to these factors are
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programmed separately. The output from the small terms is 
added to that of the principal function to form the entire 
response.

In order to conserve the number of amplifiers and to 
preserve computational accuracy, passive circuitry was ex
tensively used so that several time constants could be com
puted in one amplifier [B3]. The results from this arrange
ment were accurate so long as the order of the denominator 
of the transfer function exceeded that of its numerator.
When the two were equal, long division was performed so that, 
as a consequence of superposition, a constant term could be 
added to a stable transfer function.

ia.s^ ?
0 r 0 ^n -1------  X = r--------------------  + —  I X . (4-4)

!  bjs: I
0 0
In some cases, the controller is required to differen

tiate the input signal one or more times so that the order 
of the right hand side of (4-4) may be higher than the left.
A control law with differentiation can result when control 
prediction is desired. In this case the controller uses the 
differentiation to indicate the trend of the signal and bases 
control action on the trend as well as the magnitude. Re
arrangement and polynomial division as before gives an equa
tion similar to (4-4) but with positive powers of s present
as well as the constant k to be coefficients of x. Again
these can be added together from a separate treatment because 
of superposition.

Differentiation on the analog computer was
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accomplished by the "implicit differentiator" shown in Figure 
4-1. If the potentiometer in the lower loop has the value 
of one-tenth, then the equation described by this model is

X + y - ^ ydt = y , (4-5)

so that
y = ^  . (4-6)

Variation of the value of the potentiometer allows close 
approximation to perfect differentiation. If the pot setting 
is less than one—tenth, the circuit is stable while it 
approaches perfect differentiation as the value is raised 
to one-tenth. The best setting in practice may be somewhat 
different from one-tenth because of slight variations of 
amplifier input resistances and hence the circuit can be 
tuned in order to cancel out these effects.

In practice, differentiation is often unsatisfactory 
since noise and inaccuracies are magnified by infinite dif
ferencing. Actual differentiators are usually only approxi
mations to true differentiation; in some cases the approxima
tions may be quite poor [BlO].

When part or all of the required transfer function 
contained a dead time, the proper signal was fed through a 
time delay generator which used a third order Fade approxi
mation [B3,B10], Thus any transfer function of the type 
previously considered in this work can be programmed.

Figure 4-2 represents the overall analog computer 
program with blocks representing the various transfer func
tions. The transfer functions of some of the control func
tions are zero for specific situations.
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Figure 4-1.— finplicit Differentiation Circuit for Analog Computer
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Figure 4-2.— Block Diagram of Plamt and Controller for Analog Computation



CHAPTER V 

ANALYSIS OF OPTIMAL CONTROL SYSTEMS

The design techniques presented in previous chapters 
have been used to generate controllers for various plant 
models. The effectiveness of these controllers was studied 
by extensive digital computation and analog simulation. The 
results of the digital studies are presented here primarily 
in the form of graphical correlations of optimal controller 
performance. The performance diagrams depict the relation
ships between available control effort and the level of out
put attenuation for various values of disturbance frequencies, 
model dead times, model error and feedback noise. The analog 
computer was used to generate plant responses illustrating 
pertinent points of design and control effectiveness.

The arrangement used in presentation of these results 
is similar to that used to present the development of the 
design equations, i.e., the simpler situations with few 
constraints are studied first. As more complex factors are 
included, the previous correlations and analog simulations 
serve as standards and limiting cases. This method of 
presentation has the advantage that the "undiluted" effect 
of the several variables can be studied without being masked 
by other factors.

The system to be considered in the following discus
sion is the model as developed in Chapter III:

72
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-TgS —

K e K^e
= = - T T T -  ° + - -a T — -  " •

To simplify the presentation the following parameter values 
are assumed:

^   ̂ '

where d has the units of 1/unit time. Various values for
and T„ are to be considered. The disturbance, D, is of the M
form previously considered with spectral density

*DD = - T ^  ' <^-9>o — s
2where u is the mean square amplitude and o is the mean 

frequency. The manipulative variable, M, is defined by the 
control law

M = Q^D - Q^(C + 6) , - (3-84)

where 6 is the feedback noise with constant spectral density

*66 = • (5-1)

and are the feedback and feedforward control 
functions respectively as defined by (3-101) and (3-106).

Systems Without Parameter Errors or Dead Times 
As a basis for later comparisons and in order to 

study certain effects in the absence of as many complications 
as possible, the system described by (3-3) will first be 
considered with the dead times, and T^, both equal to zero. 
In addition, it is assumed that there exists negligible error 
in the system parameters. The digitally computed performance
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diagram for this model (Figure 5-1) shows the variation of

2mean square output, (c ), as a function of mean square control 
2effort, (a ), for parametric values of mean disturbance

frequency, cj. These optimal controls were the result of
2 2 2minimizing the sum (c ) + X (a ) and parametric values of

the weighting factor, X, are also shown. The mean square
value of the disturbance for all cases was 25.

The value of parameters is given in reduced units
referred to the output variable. Thus a constant disturbance
having a [mean] square amplitude of 25, would, if uncontrolled,

2produce a mean square displacement in the output of 25/oc or 
5.25. The actual uncontrolled mean square output computed 
for the above random disturbance was 3.571. These units may 
be multiplied by any factor for a particular problem.

Figure 5-1 shows that the mean square output de
creases as control effort increases approaching zero as the 
control effort approaches a finite asymptote. The fact that 
a mean square control effort of 25 is required asymptotically 
for a disturbance whose mean square value is 25 is the more 
or less fortuitous result of having identical plant and con
trol gains = 1). This equality of limiting control
effort and disturbance magnitude can always be arranged for 
models of this type by judicious use of scaling factors on 
the disturbance and manipulative variable since the "ideal" 
feedforward control ratio, M/D, is the ratio of gains, (of. 
(3-33)) .

While there is a broad variation in control effort- 
output relationships as a function of disturbance frequency, 
there is much less variation in the parameters of the optimal 
controllers. For the simple case considered here, the overall 
control function, T^, is
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Figure 5-1.— Response Characteristics of Optimal Feedforward 
Control of First Order System for Various Disturbance 

Frequencies, a. Results are from minimization 
of sum (c^) + X^(a^).
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D (1 + s/a)(1 + s/0)  ̂ ’

(cf. 3-55)). The disturbance frequency a does not enter into 
the calculation of the poles of this overall control transfer 
function.

The two non-zero constants of the numerator of T^ are 
plotted on Figure 5-2 as functions of disturbance frequency 
for constant values of the Lagrange multiplier X. The coeffi
cient of the first derivative T^^ ^ is essentially constant 
over the entire frequency range while the constant term T^^  ̂
does decrease somewhat at higher frequencies, reflecting the 
fact that these frequencies produce less output and thus re
quire less gain to attenuate their effect. Overall there is 
only modest controller variation for a broad disturbance 
frequency change and it is evident that a controller designed 
for the system natural frequency (2 radians per unit time) 
would be only moderately different from the optimum controller 
based on a unit step function disturbance, i.e., as the dis
turbance frequency approached zero. For the rest of these 
example calculations, the control systems will be evaluated 
for a mean disturbance frequency of 1.5.

The model under consideration is assumed to be free 
of parameter error. As shown in Chapter III, this assumption 
leads to specification of feedforward control without feed
back if there exists finite noise or dead time in the feed
back circuit. The feedforward controller, Q^, that is thus 
specified has one pole and one zero (Table 5-1). As the 
amount of control effort increases and output decreases, the 
time constants of the pole and zero both decrease and the two 
become almost equal as they get smaller. The small time
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TABLE 5-1

PARAMETERS OF FEEDFORWARD CONTROL FUNCTION, =? k ,D 1 + ps
FOR SYSTEM WITHOUT DEAD TIME OR MODEL ERROR

Mean Square 
Output,
<c^>

Mean Square 
Control

2Effort, (a >
Gain,
k

Time 
Constant 

of Zero, z

Time 
Constant 

of Pole, p
Lagrange Multiplier, 
X, of the minimized
sum <c / + X <a >

.4402 X lO"® 24.998 .9999 .00194 .0020 0.0019531

.6999 X lO"^ 24.991 .9999 .00385 .0039 0.0039063

.1101 X lO"^ 24.964 .9996 .00760 .0078 0.0078125

.1699 X lO”"̂ 24.859 .9984 .01481 .0156 0.015625

.2526 X lO"^ 24.469 .9935 .02812 .0312 0.03125

.3469 X 10“^ 23.126 .9755 .0510 .0620 0.0625

.4011 X lO"^ 19.209 .9128 .0851 .1210 0.125

.3215 11.270 .7372 .1254 .2235 0.25

1.335 3.313 .4280 .1580 .3535 ' 0.5

2.626 0.433 .1621 .1743 .4473 1.0

00
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constants tend to make both less important individually, and 
further since they approach a common value, they tend to 
cancel so that the controller becomes a simple proportioning 
device (cf. (3-33)).

In Figure 5-3 the Bode diagrams of the mirror images 
of the overall controller ^transfer functions corresponding 
to some of the controllers in Table 5-1 are shown along with 
the Bode diagram of the plant transfer function. As implied 
by (3-17), the ideal overall control transfer function, T^, 
from the stand-point of output attenuation would be the 
negative of the plant transfer function, As the degree
of control effort increases with decreasing values of 
Lagrange multipliers, X, the difference between and -T^ 
becomes negligible so that the sum of + P^ vanishes - 
the perfect feedforward controller.

Several optimal controllers were studied on an analog 
computer and compared with the "ideal" or invariance feed
forward controller of (3-33) under conditions such that the 
manipulative variable M was constrained by electrically 
clipping the controller output. This clipping is equivalent 
to controller saturation in a chemical plant and as such is 
a non-linearity so that the responses cannot be computed 
analytically by the methods heretofore described. The input 
disturbance was that described by (3-9) where o =1.5 and 
was obtained by filtering a square wave having a random 
average frequency about 20 times higher. The resulting noise 
signal is approximately gaussian with respect to the model.

In Figures 5-4 to 5-6, ssimple responses of an "ideal" 
feedforward controller are compared with those of two optimal 
controllers. The latter are designed so that the mean square 
control effort is 88% and 67% respectively of that of the
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"ideal" controller. The uppermost channel on these figures 
is a record of the disturbance D. The second represents 
the action of the manipulative variable M as called for by 
the controller- In the case of the "ideal" controller, this 
channel is a mirror image of the disturbance while for the 
optimal controllers, there is attenuation of the magnitude 
of M. The third channel shows the manipulative variable 
after clipping occurs. It is seen that there was far more 
saturation of the signal from the "ideal" controller than 
that from the optimal controllers. The "ideal" controller 
used more mean square control effort than the others but, of 
course, the maximum could not exceed the level of clipping 
for any of the designs.

The second channel from the bottom shows the uncon
trolled output P^D and the lowest channel is the controlled 
output C. The variation of the controlled output as a func
tion of clipping level is given in Figure 5-7 for the above 
series of tests. Even though all tests were run for a time 
period exceeding 250 system time constants, the random nature 
of the disturbance caused considerable variation in the 
results, especially in the data from the system having poorest 
control. However it is clear that the greatest output 
attenuation was achieved by the "ideal" controller even under 
conditions where considerable clipping of the manipulative 
variable has occurred. When the controller outputs were 
clipped to relatively low levels, the output from all three 
systems approach the same value since all were saturated 
most of the time.

The above discussion shows that the optimal controller 
does not perform its prime function - disturbance attenuation - 
better than the simple "ideal" controller even under
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conditions of constrained control effort. The principal 
improvement is that the optimal controller saturates the 
constrained control boundaries a smaller fraction of the 
time. Although control saturation may not be of importance 
for some applications, such behavior frequently implies other 
undesirable nonlinear effects such as overloading and 
hysteresis. These effects will cause further important 
degradation of control efficiency. The responses shown above 
where the control effort has been clipped cleanly may tend 
to underemphasize this beneficial aspect of the optimal 
controller. Nonetheless, it is obvious that even if con
troller saturation is to be avoided, a sanguine estimate of 
the amount of available control effort should be used for 
design purposes. An actual optimal controller will not use 
more control effort than its design value thus some disturb
ance attenuation will be sacrificed in using the optimum 
design if greater control effort is available than had been 
assumed in the design calculations.

Systems Without Parameter Error but with Dead Time
Introduction of non-zero dead time into the model 

3described by (3-t6) has an important effect on the performance 
of the controlled system. It is assumed that the time delay 
occurs in the response of the controller, i.e., = 0,

> 0. Since this time delay applies equally to both feed
forward and feedback control, the assumption of no parameter 
error dictates that feedforward control without feedback is 
to be used again for this case. In Figure 5-8 the relation
ship between available control effort and output attenuation 
is plotted for optimal controllers of the same system as 
before but with various parameters of dead time. The lines
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of constant values of the Lagrange multiplier, used in 
the optimization are also shown. The size of the time delay 
limits the degree of output attenuation that can be attained 
regardless of the amount of control effort applied. It is 
interesting to note, however, that even if the dead time is 
equal to the system time constant (the system time constant 
in this case is the reciprocal of the natural frequency and 
equals one half), the mean square output may still be reduced 
to 30% of the uncontrolled value.

As in the previous case, the optimal feedforward 
controller has one pole and one zero but there is an important 
difference. As shown in Table 5-2, the time constant of the 
pole decreases and hence becomes less important as the avail
able control effort increases. The time constant of the 
zero however, approaches a finite limit so that the controller 
approaches the ideal, differentiating predictor of (3-40) as 
the control effort constraint is relaxed. The Bode diagrams 
of the overall control function shown in Figures 5-9 and 
5-10 reflect the influence of this zero by the slope change 
of the magnitude ratio just above the system natural 
frequency. It is especially evident for the case when the 
dead time is 0.1 in Figure 5-9. The differentiation of the 
disturbance causes the mean square of the control effort to 
approach infinity in an attempt to achieve better control.

The responses shown in Figure 5-11 are analog com
puter tests of the same system as was used previously except
a pure dead time of 0.10 time units was included. TheM
controller used in the test shown in the top channel was the 
"ideal" or invariant controller that was so successful in 
attenuation of output in the minimum phase system previously 
considered. In this case, however, the design gives



TABLE 5-2
(X + zs)POLE AND ZERO FREQUENCY OF FEEDFORWARD CONTROL FUNCTION, 0^ = k 77-— -----,D (1 + ps)

FOR FIRST ORDER SYSTEM WITH DEAD TIME = 0.125, PARAMETER ERROR = 0

Mean Square 
Output,
(c^>

Mean Square 
Control

2Effort, (a >
Gain,
k

Time 
Constant 

of Zero, z

Time 
Constant 

of Pole, p

Lagrange Multiplier, 
X, of the Minimized
Sum (c^) +

.0357 415.6 .978 .00098 .1032 .0009765

.0360 2 2 1 . 6 .978 .00195 .1039 .0019531

.0368 128.8 .977 .00390 .1051 .0039063

.0383 76.08 .975 .00380 .1077 .0078125

.0413 51.35 .972 .01560 .1125 .015625

.0479 38.04 .965 .03118 .1216 .03125

.0655 29.46 .942 .0620 .1374 .0625

.1367 2 1 . 2 0 .871 .1 2 1 0 .1614 .125

.4778 1 1 . 2 2 .695 .2235 .1903 .25

1.4992 3.11 .399 .3535 .2143 .5

2.710 0.40 .150 1
_!

.447 .2265 1 . 0

COyo
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relatively poor control. The redeeming feature of this 
controller is that the performance does not seem to 
deteriorate rapidly as the degree of manipulative variable 
clipping is increased. The results in Figure 5-12 show that 
the "ideal" controller is one of the poorest for very little 
clipping, but becomes one of the better controllers as the 
saturation level is reduced.

The second set of curves on Figure 5-11 shows the 
response of the differentiating predictor of (3-40) where 
the weighting factor for control effort is zero; i.e., there 
is no constraint on control effort. It can be seen that an 
improvement in response is obtained over the nominal con
troller in the region of least clipping. The manipulative 
variable has not been shown for these cases because the 
controller response for this differentiator was simply a 
series of high frequency fluctuations from one control limit 
to the other. (The same is true to a lesser degree for the 
imperfect differentiators to be discussed in the following.) 
Not only does this controller use a large amount of control 
effort but, as can be seen from the above figures, clipping 
of control effort exerts a relatively large effect on its 
efficiency. Although this unconstrained optimal controller 
is easily the best considered at the highest level of control 
effort, it falls off to be the poorest when the ability of 
the controller to respond is restricted (Figure 5-12).

The lower channels on Figure 5-11 show the controlled 
response of this system (which contains dead time) where 
controllers are used that were optimized in the presence of 
constraints on control effort. These controllers correspond 
to those implied in the construction of the performance 
diagram. Figure 5-8, resulting from minimization of the sum.
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2 2 2(c ) + X (a ) for the given values of Lagrange multiplier,

X. As indicated on Figures 5-11 and 5-12, efficiency of 
output attenuation and sensitivity to control effort clipping 
using these controllers is a compromise between the perform
ance of the nominal controller and the unconstrained optimal 
controller. When sufficient control effort is available, a 
control design similar to the constrained optimal would seem 
most reasonable. However, it is clear that a considerable 
reduction in performance must be expected from the control 
of a system containing pure time delay regardless of the 
design used.

Sometimes the net dead time can be reduced or 
eliminated entirely by anticipatory measurement of the dis
turbance before it enters the system. It is evident from 
the foregoing results that premeasurement is desirable when
ever it is possible. In that way, the system would be con
verted into one similar to that represented in Figure 5-1 
provided the disturbance could be anticipated a length of 
time corresponding to the dead time of the controller. How
ever premeasurement usually introduces or intensifies model 
error so that a more comparable situation will be treated 
below.

Systems with Model Error but without Dead Time
The next class of systems to be considered is one in

which model error is present but dead time is assumed absent.
Again the system is that described by (3-3) and (3-9) but
mutually independent mean square errors of 0.25 was assumed
for each of the parameters. Strictly speaking it is not
possible to have mean square errors of 0.25 in the dead times
while the mean value of = 0. However, for theC M
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present, interest is to be focused on optimum system perform
ance in the absence of dead time and the output resulting 
from this factor may be considered merely as a separated 
unmonitored system input. The cases for which the mean value 
of dead times are not zero will be analyzed in a later 
section.

The output-control effort relationship for various
levels of output due to model error is shown in Figures 5-13,
5-14, 5-15, and 5-16. Each graph is constructed for a
different value of feedback noise level. A very low level
of feedback noise is considered in Figure 5-13 where the
average of the absolute value of the feedback noise 6 is 

-410 , i.e., 0.0053% of the average absolute value of the
uncontrolled output. Lines of constant "error output" (Ac )
are nearly horizontal over the full range of interest showing
that the nominal output is a weak function of control effort
for a constant error output. Figure 5-14 is the same as
Figure 5-15 except that the level of noise and error in the
feedback system is assumed to have an absolute value 100
times greater, i.e., the absolute value of the feedback noise
is 0.53% of the uncontrolled output. (Expressed in terms of
the specific model developed in Chapter III, if the input
temperature variation is 5®, then the mean absolute value of
the uncontrolled output would be 1.88® and the feedback noise
assumed for the present case is 0.01®.)

Some of the optimal control functions computed for
construction of this graph are given in Table 5-3. Groups A,
B and C show the parameters of the overall control function,
T , and feedback control function, T , for broad ranges of 

2output (c ) but at relatively constant sensitivity or model
2error output (Ac ). Within each group the feedback transfer
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function remains constant but there is considerable variation 
in the overall transfer function- Groups D and E show the 
parameters of the two transfer functions over a broad range 
of sensitivities but at relatively constant output. Here 
the situation is reversed from that of the first three groups. 
There is little variation in the overall transfer function, 
but there are variations in the feedback transfer functions 
showing that changes in sensitivity have been achieved almost 
entirely by the use of feedback. (Note here that the overall 
transfer function includes both the feedback and feedforward; 
cf. (3-if) ; hence there is no implication that output attenua
tion is achieved by feedforward alone.) In Table 5-4 the 
error output for several optimal controllers is compared

TABLE 5-4
MODEL ERROR OUTPUT OF OPTIMAL CONTROLLERS 

WITH AND WITHOUT FEEDBACK

Controls Designed to Minimize 
Model Error Output

Controllers 
Designed without 
Consideration 

of Model 
Error

Operating as 
Designed

Operating with 
Feedback Removed

<Ac^> <c^> <Ac^> (c^> <Ac^> <c^>

.059 .2334 3.07 .222 3.03 .222

.060 .0451 3.92 .0338 3.62 .0338

.065 .0151 4.35 .0043 4.16 .0043

.063 .0071 4.47 .0004 4.33 .0004

.116 .8290 2.52 .823 2.76 .823

.119 .1152 3.38 .110 3.23 .110

.128 .0171 4.16 .012 3.93 .012

.125 .0067 4.47 .0004 4.33 .0004
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to the error output from the same controllers when feedback 
is removed- The error output of the "optimal" controllers 
without feedback increases to approximately the same level 
as that of a controller designed for an errorless model.
Thus the earlier conclusion that sensitivity reduction is 
achieved solely by the use of feedback has been confirmed- 

A phenomenon occurs in Figure 5-14 that was not 
observed in Figure 5-13. At low levels of nominal error 
there is a limit to the degree of "desensitizing" that is 
possible with feedback. Once this limit has been reached, 
the "error output" is almost unaffected by further increases 
in the allowable mean square control effort. Figure 5-17, 
a cross plot of this data, illustrates the situation more 
clearly. Use of feedback consuming only small additional 
amounts of control effort initially effects a marked reduc
tion in system sensitivity. For relatively large values of 
mean square output, further sensitivity reduction is possible 
but gives a high relative cost in control effort. At the 
smaller values of mean square output, the initial sensitivity 
reduction, although considerable, is less than at high values 
of mean square output. In this latter case, it is virtually 
impossible to achieve very low levels of error output. Thus 
there is a lower limit on output attenuation for a given 
sensitivity which arises almost entirely from the second term 
of (3-90); i.e., it is the response caused by amplification 
of noise and sensing error in the feedback system. Any 
attempt to decrease the sensitivity when there is a low 
nominal output must result in a greater portion of the overall 
control being performed by feedback and use of more feedback 
would cause an increase in output due to feedback signal 
corruption.
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The presence of factors in the system that impair 

feedback performance cause a pronounced increase of system 
sensitivity to model error. Figures 5-15 and 5-16 show the 
relationship between control effort, nominal output and 
model error output for cases where the average feedback noise 
has been increased by factors of 10 over the previous example 
to 5.3% and 53% of the average absolute value of the uncon
trolled output. Although the curves are topographically 
similar to those before, the parametric values of the error 
output show that there is a significant loss of overall 
sensitivity reduction. Very little reduction can be achieved 
in the latter case even for large amounts of control effort.

In principle, the conditions for an optimum controller 
for a specific application could be found on these graphs by 
having estimates available for the feedback noise, error in 
model parameters, maximum available control effort and either 
maximum allowable output or maximum allowable model error 
output. Knowing four of these quantities would define a 
point on one of these graphs which in turn would define the 
achievable level of the fifth quantity. Computation of the 
quantities implies a definition of the optimal control used 
to compute the point in question. From a different point of 
view, this point would correspond to values of the Lagrange 
multipliers and of (3-88) which, when substituted into 
the design equations, would give a controller design whose 
performance is described by the coordinates of the point. 
Estimates for the feedback noise, model error and available 
control effort are usually available from design considéra-

2tions or actual measurements. The two output quantities (c >
2and (Ac ) however, should both be as small as possible. In 

some cases, an allowable upper limit on one or both may
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exist but normally it will be simpler to think of minimizing 
a weighted sum of the two.

On each of the foregoing figures describing overall
system performance, dashed lines are shown where the sum of 

2 2(c ) + 1(Ac > is minimized for values of the weighting factor 
\ equal to 0.1 and 1.0. These lines generally lie close to 
the base curve (where the feedback gain is low) for moderate 
levels of nominal output and then rise sharply at some fairly 
low level of nominal output. Prom the previous discussions 
it can be seen that at moderate levels of nominal output, 
the optimal controller uses feedforward control to attenuate 
the principal portion of transient disturbances. The feedback 
compensates only a smaller portion, mainly the drift. At 
some point, depending on the particular situation, the amount 
of feedback is drastically increased but a corresponding 
increase in system performance is quite limited by the time 
this point is reached. Only in cases of very low feedback 
noise or relatively poor output attenuation would the optimal 
controller consist primarily of feedback compensation.

To illustrate the response of composite control 
systems, a model similar to the one discussed above was 
programmed on the analog computer except that error is assumed 
to exist only in the plant gain, K^. A mean square feedback 
noise level of 10  ̂ corresponding to about 5.3% of the uncon
trolled output was used for design purposes. The output 
control effort diagram of this system is quite similar to 
those shown previously except that the level of error output 
is considerably lower since there is only one error source 
(Figure 5-18) . The optimal controller that was programmed 
corresponded to conditions represented by the starred point 
on Figure 5-18. This particular combination was chosen for
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illustrative purposes because it represents a compromise 
between control effort and sensitivity while retaining good 
nominal output attenuation. Feedforward control yielding 
this nominal output would have a mean square error output 
approximately 20 times greater than the optimum. The 
parameters of the optimal control system are given in 
Table 5-5.

TABLE 5-5
OPTIMAL CONTROLLER TRANSFER FUNCTIONS FOR SYSTEM 

WITH ERROR IN PLANT GAIN

Overall Control Function, T_:

0.973

Feedback Control Function, T„:

(1 + .245s)0.951

Feedforward Controller Function, Q :

(1 + .064s) (1 + .790s)
(1 + .083s) (1 + .567s) *0.865

Feedback Controller Function, Q :

(1 + .245s)6.48

Samples of system response under various conditions 
are shown in Figures 5-19, 5-20, 5-21 and 5-22. If there is 
no parameter error, perfect control can be achieved by feed
forward control alone. Feedforward control of the perfect
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model in Figure 5-19A shows constant near-zero output despite 
the scale factor of two between the uncontrolled and con
trolled response shown on this series of figures. Theoret
ically, control by feedback for this system can be made 
arbitrarily close in every way to control by feedforward by 
use of very high gain and, although it is not realizable in 
practice, perfect output attenuation by feedback can be very 
nearly achieved on an analog computer. Figure 19B shows the 
same system controlled by a proportional feedback controller 
with a gain of 60 - a practical maximum for most process 
applications. Although the control shown here is significantly 
poorer than with feedforward, it is still quite good (remem
bering the scale factor of two between the two 
representations).

Error in the gain factor of the plant transfer func
tion drastically impairs feedforward control performance 
(Figure 5-19C). If this error were constant and permanent, 
it could be "tuned" out by adjusting feedforward gain but it 
is assumed here that such effects are transitory and cannot 
be permanently tuned out. The effect of this error on per
formance of the feedback system is almost negligible (Figure 
5-20A). As a matter of fact the feedback controlled output 
remains a constant fraction of the uncontrolled output; the 
controlled output is larger in Figure 5-20A than 5-19B simply 
because the plant gain error was assumed in a direction such 
that the actual output is greater than that calculated for a 
given disturbance. Feedback is sensitive to two types of 
constraints however - dead time and noise injection into the 
feedback detection and gain system. This latter is shown in 
Figure 5-20B where the noise depicted in the lowest channel 
was added to the signal entering the feedback control system.
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In actual practice it would not be possible to isolate the 
noise as shown here; part would be generated in the feedback 
system and part would exist as faulty measurement.

Optimal control performance is shown in Figure 5-21. 
Figure 5-21A shows the response of the optimal system when 
error and feedback noise are absent. Close examination is 
required to determine the difference between the response of 
this case and that df ideal feedforward under similar condi
tions ; the values for the optimal feedforward control param
eters in Table 5-5 are not greatly different from those of 
ideal feedforward. In Figure 5-21B, the effect of the addi
tion of the model error is shown. The feedback portion keeps 
the controller relatively efficient although not so efficient 
as the high gain feedback of Figure 5-20A. When feedback 
noise is added, however, the results shown in Figure 5-21C 
show that the optimal composite control is superior to all 
previously tested. Furthermore, this system consumes far 
less control effort than the feedback of Figure 5-20B, its 
nearest competitor in terms of output attenuation.

This question remains however: "How does optimal
composite control compare with a composite system designed 
by non-analytic methods,?" It "was observed earlier (Figure 
5-7) that in the absence of dead times, output attenuation 
of ideal feedforward control is as good or better than that 
of optimal feedforward and that the major control improvement 
with the optimal control is reduction of control effort. In 
the present case, the fact that the overall control function, 
T^, approaches guarantees that the optimal approaches
the nominal (cf. (3-108) and Table 5-5) so that the prin
cipal difference for comparison will be in the feedback.

Ideal feedforward control formed part of the
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non-analytic composite controller which was compared to the 
optimal controller. Proportional feedback was added and the 
gain adjusted until the output was approximately minimized 
for the system operating with all side conditions. This 
minimized output, which occurred at feedback gain of 10 to 
15, is shown in Figure 5-22A to be somewhat different in 
character but about the same in magnitude as that of the 
optimal system (Figure 5-21C). As in the earlier case with 
feedforward alone, the main difference was that somewhat less 
control effort was required by the optimal. When saturation 
of control effort was simulated by clipping the manipulative 
variable at a level corresponding to about 75% of the maximum 
disturbance magnitude, performance of both systems deteriorated 
but the output response of the nominal feedforward with pro
portional feedback was not significantly different from that 
of the optimal system (Figure 5-22B, C).

Thus composite control is significantly superior to 
feedback or feedforward alone but output attenuation of the 
optimal composite control system is not better than that of 
a nominal non-analytic system even when subjected to side 
conditions very close to those for which the optimal has been 
designed.

Model Error with Pure Dead Time 
If there is dead time in the controller (T^ > 0), 

then even in the absence of model error and feedback noise, 
there is a non-zero lower limit on the degree of attainable 
output attenuation (Figure 5-8). When model error and feed
back noise are present along with the dead time a further 
degradation occurs in controller performance. Figures 5-23 
and 5-24 show output vs. control effort for systems with mean
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square model error of 0.25 in each of the parameters and in 
the presence of pure time delays of 0.10 and 0.25 respective
ly. It should he remembered that a dead time, delays the
response of the feedforward and feedback controllers by the 
same amount. Thus only relatively poor sensitivity reduction 
is possible even when nominal output is relatively high.

Some values of model error output on these figures 
exceed those for the nominal feedforward control system 
without feedback given in Table 5-4 and on the "no-feedback" 
base line on Figure 5-13. Thus, the optimal controller for 
a system containing dead time is considerably more sensitive 
to model error than nominal control. This result, coupled 
with the previously discussed sensitivity of this controller 
to permissible maximum control effort (Figure 5-12), indi
cates that caution is necessary in application of this 
"predictive" control design and underscores the advantage of 
using^ feedforward without dead times wherever possible

The situation for dead time in the feedback circuit 
only (T^ > 0) is shown in Figure 5-25 for = 0.1. The high 
model error output in this case results from the fact that 
the dead time limits the capability of the feedback to 
attenuate output. Thus even though the feedback noise level 
is very low (i.e., the same as considered in Figure 5-13 - 
0.0053% of uncontrolled output), the time delay prevents 
effective sensitivity reduction. This result combined with 
information from Table 5-4 shows not only that sensitivity 
reduction is achieved by use of feedback but also that, in 
the absence of feedback, very little can be done to reduce 
sensitivity.
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Optimal Control as a Function of Model Error
The previous figures were constructed on the basis 

of mean square errors of 0.25 in each of the parameters of 
the system. If the error output were "normalized" by dividing 
it by the variance of the model parameters, i.e., the mean 
square error of each of the parameters (where all errors are 
equal), then the given curves change very little for all 
levels of model error. This effect is shown in Figure 5-26 
where mean square control effort is plotted against "nor
malized" model error output at two levels of nominal output. 
Points shown for mean square model error of 0.1, 0.25 and 
0.8 are seen to lie on the same curve. Furthermore the con
trollers corresponding to points on these curves were essen
tially independent of model error level. Within each of the 
groups of controllers shown in Table 5-6, the only important 
change was in the value of the model error. All controller 
parameters are relatively constant within each group. However 
a change in the level of model error changes the magnitude
of model error output and shifts the location of the curve

2 2describing optimum for weighted sums, (c > + X(Ac >; thus the 
form of the optimal control for a specific situation of 
constraints would be affected.

All previous calculations except those associated 
with Figure 5-18 were made on the basis of uniform error in 
each of the model parameters. Figure 5-18 showed that similar 
results are obtained when the model error exists in only one 
of the parameters, which, in that case, was the plant gain 
factor, Kĵ . The magnitudes of the model error output was 
less, of course, than when error was assumed to exist in all 
of the parameters.

A comparison of the magnitude of model error output
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for the same relative error in each of the plant parameters 
is given in Table 5-7 for which a mean square model error of 
0.25 was assumed for each of the elements in the following 
model:

-T -(T + T  )S
^ K p d  y ) e  D + Kw(l +  W

(s + a)(1 + R^s) '  ̂ ^

where = 1 ,

*D = = *1 = ,
a = 2 ,

■'c = ■"m  = •

The model error output was computed on the basis of a nominal 
feedforward controller without feedback and for a disturbance 
whose spectral density is the same as that for the previous 
correlations.

Model error output was zero for variations in pole 
locations and feedback dead time since the feedforward con
troller does not depend on system natural frequencies or 
output sensing. However when these errors are present along 
with others, interactions occur producing model error output 
especially in design of the feedback portion of the control. 
Note that the product which occurs throughout the
feedback design (cf. (3-64)), is quite dependent on system 
natural frequencies.

The least positive output resulted from error in the
time constants of the zeros of and P„ and was the same forD M
both. Slightly more mean square output resulted from error 
in the gain factors of the load and manipulative variable 
transfer functions and again the mean square output was the
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TABLE 5-7

MODEL ERROR OUTPUT CAUSED BY PARAMETER VARIATION 
OF 0.25 FOR INDIVIDUAL ELEMENTS OF MODEL

K, -TC=
c =

-TM=M
(a + s) (1 + R^s)

Term Containing 
Error

1
Mean Square Model Error 

, 2\Output, <c /

^D 0.8929

0.8929

^D 0.7653

^M 0.7653

a 0

^1 0

'̂ M 2.6784

^C
-,

0
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same for gain error in either of the two functions. The 
largest model error output resulted from error in the con
troller dead time. As illustrated previously in Figures 5-22 
and 5-23, the model error output could be considerably higher 
if the controller were designed as an optimal partial differ
entiator instead of an ideal controller.

Optimal Controls for Higher Order Plants 
The results of optimal control design for first order 

systems can be extended with few changes to more complicated 
plants. This simple extension is possible because the opti
mization is essentially a cancellation technique; i.e., the 
control function cancels the non-minimum phase plant poles 
and zeros and adds poles and zeros that give the desired 
performance.

A significant difference does appear when the net 
system order is higher however, in that feedback noise and 
dead time exerts a greater influence on optimal control 
sensitivity. This effect is seen in the control effort- 
output diagram shown in Figure 5-27 for the following system

C = M + D
(s + 2) (1 + 0.45s) (1 + 0.60s) (5-7)

-4The feedback noise is assumed to be 10 (0.65% of the abso
lute value of the uncontrolled output) and the model error 
has a uniform mean square value of 0.25 for all of the param
eters. Although the topography of Figure 5-27 is quite sim
ilar to that of Figure 5-14 which depicts a first order system 
with similar constraints, it is seen that the general level 
of model error output is a much larger fraction of the "no
feedback" base for the third order system.

An explanation of this result lies in consideration
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of the third order system response to a step function (Figure 
5-28). The s-shaped response curve starts very gradually so 
that the output is masked by noise for a longer period of 
time than for first order response. Thus feedback control 
of higher order systems tends to act as though small dead 
times were present.

First Order 
System —,

Third Order 
System

Portion of signal masked by noise

t

Figure 5-28. System Response to Step Functions



CHAPTER VI

EXPERIMENTAL STUDIES

In this chapter, previously considered controller 
designs are applied to a physical system. The mathematical 
procedures leading to the controller designs and the analog 
computer studies presented in the last chapter are self- 
contained within the framework of basic assumptions by which 
the dynamics of chemical process systems were represented.
The validity of these assumptions is an important factor 
under consideration in the experiments described in this 
chapter.

Process Description 
The experimental system used was one which has 

evolved through five previous doctoral research projects 
[F1,S3,G1,B5,H3]. At the heart of the process, shown 
schematically in Figures 6-1 and 6-2, is a perfectly stirred, 
jacketed vessel with hot and cold fluids entering the stirred 
center and jacket respectively. The control objective is 
to vary the flow rate of the hot fluid so that the temperature 
of the separating wall remains constant despite variations 
in the flow rate of the cold fluid. Even though this appara
tus has become quite artificial and the control objective 
somewhat impractical, it possesses a number of very desirable 
characteristics.

(1) The heat transfer which occurs is an important
128
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and typical basic chemical engineering process;

(2) The system dynamics are reasonably sensitive and 
responsive to control so that significant control is possible;

(3) The system must be described by higher order 
equations so that some of the more elaborate controller de
signs can be investigated;

(4) Product-type non-linearities are present so that 
some dynamic model error always exists regardless of the care 
in identification and operation of the system;

(5) The system itself is simple in basic design 
keeping maintenance and operating problems moderate.

System Components 

Reactor
The simulated reactor (Figure 6-2) was identical to 

that used by Stewart [S3], except that the wall between the 
oil and coolant was replaced. Instead of steel, the wall 
was molded of type metal and was 0.480 inches thick. Eight 
thermocouples were located at 3/4 inch spacing approximately 
45° apart. Only one, the fourth from the bottom was monitored 
continuously to be used as the controlled output variable 
c(t). Hot oil entered the one liter reactor at the center 
of the bottom. The oil was agitated by a 4 paddle stirrer 
driven by a 1/15 horsepower 1725 RPM electric motor. The oil
left the reactor at the top and off center. The coolant, a
50% solution of ethylene glycol and water, entered through a 
distributer into the bottom of the annular space surrounding
the reactor wall and left from the top.

Constant Temperature Feed Tanks
The oil was maintained at a constant temperature in
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a 35-gallon tank. The oil was agitated by a 1/8 horsepower 
1725 RPM Lightnin Mixer, Model NC2- The tank contained coils 
for both cold water and steam. The steam flow rate was con
trolled by a Research control valve (1/2 inch), Model 75S, 
air-to-close (C^ = 0.8 and a 3-15 pound range spring). The 
recording controller was a Minneapolis-Honeywell Brown 
Electronik Potentiometer Pyrometer, Model 152P14P-93-18, with 
a copper-constantan thermocouple pickup.

The oil from the heated tank then flowed through a 
30-gallon insulated, agitated tank where temperature varia
tions were blended out. Under conditions of extreme flow 
rate changes, the output temperature was observed to drift 
slowly and uniformly less than 1/2°F per hour.

The glycol-water solution was maintained at constant 
temperature in a refrigerated cooler with a capacity of 
approximately 25 gallons. The glycol solution was agitated 
by a Mixing Equipment Co. 1/4 h.p. "Lightning" mixer Model 
CV-4 with an adjustable stirring rate of 100 to 1800 RPM.
The cooler contained freon coils in which the temperature was 
controlled by cycling the operation of the freon compressor.
A Fenwal thermoswitch (Catalog Number 17552-0), having a 
temperature range of -100 to 600°F, and a series of relays 
started the freon compressor whenever the temperature rose 
above the setpoint of the Fenwal thermoswitch.

A 5 gallon section of the coolant container was 
baffled away from the main portion and separately agitated 
by a 20 watt laboratory type mixer. Coolant flow to the 
reactor was withdrawn from this section with the resulting 
blending action virtually eliminating temperature variation 
in this flow.
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Plow Systems

The oil was circulated by a California bronze gear 
pump (1/4 inch pipe connections) driven by a Goulds Number 2 
electric motor (3/4 horsepower). The pump discharge pressure 
was set at 40 psi by a valve on the bypass line. The glycol 
solution was circulated by a 1/4 horsepower gear pump operat
ing at 40 to 60 psi.

Flow Controllers and Transducers
The reactor inlet flows of both oil and coolant were 

controlled by a flow splitter arrangement. In each stream 
the flow was divided so that the fluid passed through an air- 
to-open control valve into the reactor and through an air-to- 
close control valve to the constant temperature feed tanks.
All four valves were 1/4 inch. Type 75, Research control 
valves with 3 to 15-pound range springs. The valves each 
had a C of 0.2 for the oil and 0.08 for the coolant.V

The pneumatic signal to the valves originated in the 
Taylor Transet electro-pneumatic transducers 701T which had 
a range of 3 to 15 psi. The input signals to the transducers 
were generated at the analog computer usually from a DC 
amplifier output. Feedback loops were built around both 
valves to give positive flow control since the valves were 
sluggish in action and contained considerable hysteresis.
Simple proportional control with a small amount of integration 
to reduce setpoint error was used for these loops. The control 
was not highly critical; it was simply necessary that the flow 
rates follow the setpoints if the resulting data was to be 
meaningfully analyzed. The time constants involved in these 
systems were 0.1% to 2% of the dominant system 
characteristics.
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Flow Measurements and Transducers 

The oil flow rate sensor was a Waugh turbine flow
meter, Model FL-6SB-1, rated at 0.15 to 1.0 gallons per 
minute. The pulses from this pickup were converted to a 
continuous voltage by a Waugh, Model FR-111, pulse rate con
verter. The output of the pulse rate converter was a voltage 
of 250 millivolts maximum, which was available at the analog 
computer where it could be amplified.

The coolant flow rate was detected by measuring the 
pressure drop caused by flow through a 15 ft. length of 1/4" 
polyethylene tubing partially restricted by #12 copper wire 
running through it. This arrangement was not only less 
susceptible to plugging than an orifice giving comparable 
pressure drop but also yielded a linear flow - AP relation
ship which improved measurement accuracy at lower flow rates. 
Even so, some difficulties with plugging and air bubble 
blockage occurred until an automobile oil filter with air 
bleed on the top was installed. The pressure drop was meas
ured with a strain cell from a Beckman Model 112 Data Logger 
giving a -3 to 12 mv output for 0 to 15 psi pressure drop. 
This signal was amplified directly in the analog computer.

Temperature Measurement 
The preamplifier for the wall temperature, controlled 

variable, was a Sanborn, Model 350-1500, low-level DC pre
amplifier with a Model 350-2 plug-in unit. This instrument 
allowed an adjustable gain up to 50,000 and an input suppres
sion of ±. 100 millivolts.

Dynamic Mathematic Model 
The theoretical dynamic mathematical model of this 

system is derived in Appendix C. The transfer functions
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predicted by this derivation are

_ .24(1 + 0.32s)D + .048(1 + 0.38s)M , ,.
(1 + 1.03s)(1 + 0.42s)(1 + 0.22s) ' ^

where C is wall temperature in °F, D is coolant flow rate and 
M is oil flow rate both in Ib/min. This equation could have 
been used to design the optimal control systems but the 
experience of Haskins [H3] indicated that relatively large 
error factors would be required.

To avoid large error factors which would result in 
optimal controllers consisting primarily of feedback, direct 
experimental evaluation of the dynamic parameters was made 
using an identification technique originated by M. Heymann [H5] 
and currently being developed by R. A. Sims at the University 
of Oklahoma Process Dynamics and Control Laboratory. The 
technique is based on determination of system natural 
frequencies by time domain integrations of the relaxing 
response of the system disturbed by sets of linearly inde
pendent initial conditions. System response to sets of 
orthogonal forcing functions is used to evaluate the zeros 
by time domain integrations using the previously determined 
homogeneous weighting functions. Complete explanation of 
both the identification technique and details of the partic
ular identification can be found elsewhere [H5,H6,Si].

The results of the identification were

K^(l + 1.33s)D + K^(l + 0.33s)M
^ (1 + 0.60s) (1 + 1.38s) ' (6-2)

where the unit of time for the time constants is minutes.
This system was then activated by a random disturbance formed 
by filtration of noise from the signal generator previously
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described. The generated noise had a mean frequency of 1.0 
radians per second and was filtered down to a frequency of 
1.5 radians per minute. That is,

2
-----^-----  (6-3)

“  1.5= - s=

For estimation of pole error, the system natural frequency 
nearest this disturbance frequency was chosen as the in
accurate pole. Relatively good reproducibility of pole and 
zero locations was indicated in the experimental identifica
tion where the accuracy of pole and zero locations appear to 
be about ± 10%. For optimal controller design purposes, pole 
mean square error corresponding to twice this error was 
chosen.

Numerical values for the gain factors are not listed 
in (6-2) since these quantities have little inate signifi
cance, and they depend on amplification factors, temperature- 
to-voltage conversions, flow meter and valve calibrations, 
etc. The gain of the various experimental controller were 
set as a percentage of feedforward gain necessary to return 
steady state offsets to the control point. The identification 
studies did indicate, however, that plant gains varied con
siderably as a function of disturbance sign and magnitude.
This variation results from the product nonlinearities that 
appear in the theoretical describing equation (C-1). However, 
inherent partial compensation of this effect occurred with 
the controllers because the control objective of constant 
wall temperature meant that low coolant flow rates were 
matched by low hot oil flow rates and vice versa. Although 
the effect of flow rate on gain was the same for both flows, 
the cancellation is not complete. For example, a flow rate
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change of ±20% of the steady state caused the gain to change 
by a factor of nearly two; for the same variation of flows, 
the ratio of gains changed by approximately 30%. These facts 
were noted in the computations by assuming gain error of 35% 
in both gains but assuming also a convariance between them 
of 50%.

Results during identification tests indicated that 
noise in the output was about 1 to 3% of the uncontrolled 
output. For controller design purposes a mean square error 
corresponding to about 4% of the uncontrolled output was 
assumed. In addition dead times of 0.035 minutes were assumed 
in both the controller and feedback circuits. The error 
assumed in these dead times was approximately equal to their 
magnitude.

Controller Results 
A complete control effort-output diagram, shown in 

Figure 5-3, was prepared on the basis of (6-2) and the above 
mentioned side conditions. Control laws which were selected 
to be tested are defined implicitly by the conditions at the 
three starred points in Figure 6-3. The characteristics of 
these controllers are listed in Table 6-1.

In the presence of control effort constraints, an 
optimal control law similar to that of system "A" would be 
desired. This control law approaches ideal feedforward con
trol because of the low model error although some feedback 
is present to reduce long term steady state drift. Good 
control performance is indicated by this control law. If 
greater long term drift could be expected, along with control 
effort constraint, the optimal control design could be made 
on the basis lower model error output. This would cause
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TABLE 6-1

OPTIMAL CONTROLLER TRANSFER FUNCTIONS FOR EXPERIMENTAL MODEL:

(1 + 0.338)e~*°^°D + (1 + 1.33»)e~-°% 
(1.68 + s)(1 + 1.368)

Controller

Nominal

Nominal

Overall control Function - T_

(1 + 0.33s)
^DN (1.68 + s)(l + 1.38s)

'D - 1̂ : S I X  (̂.N)

( X S a X S ' ('BN)

Feedforward Controller Function - Q.

„ _ (1 +. p. 33s), 
DN (1 + 1.33s)

°d “ "DN
1 - Tc • Qch • e

— .07s

Overall Feedback Control Function - T„

Tg » 0.558

T^ » 0.905

Tg - 0.939

(1 + r.457 1 .1331]s)'
(1 + .033s)(1 + .496s)(1 + [.561 ± .383]]s)'

(1 + [.380 ± .119i]s)‘
(1 + .160s)(1 + .356s)(1 + [.183 ± .200j]s)"

(1 + r.347 - .10611s)'
(1 + .0004s) (1 + .359s) (1 + [.194 ± .180j]s)'

Feedback Controller Function - Q_

CN
(1 + 1.38s)(1.68 + s) 

(1 + 1.33s)

K » 0.937 

K - 1.52 
K - 1.57

Qc - K 'c * °CN
1 - Tc • °CN“

-.07s

*(1 + [a ± bj]s)^ indicates a pair of complex conjugate roots where a is the real part and b is the Imaginary part.

W
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controller "B" to be specified but at significant cost in 
output attenuation.

In the absence of strong control effort constraints, 
an optimal control law similar to system "C" would be se
lected. Because of the relatively small dead times, this 
optimal controller approaches ideal feedforward with propor
tional feedback. High performance would be expected of this 
controller from the standpoint of attenuation of both nominal 
output and model error output.

A preliminary examination of these controllers was 
made using analog computer simulations of the plant. These 
results, shown in Figure 6-4, were obtained from the idealized 
plant, that is, the plant without deliberately added noise 
and model error ; hence they must be interpreted with the 
results of the previous chapter in mind. The disturbance 
and manipulative variable are shown in this figure along 
with the controlled and uncontrolled output so that later 
comparison is possible since it is not possible to record 
controlled and uncontrolled response of a real system 
simultaneously.

The best control shown is that with controller A 
which approaches ideal feedforward control since only the 
small dead times produce significant output. Although 
controller C does not approach ideal feedforward control 
as closely as does controller A, it possesses a steady state 
feedback gain of 25.4 compared to only 2.1 for controller A.
Thus idealized analog computer performance of controller C
is slightly inferior to that of A but C can be expected to
perform better in the presence of model error. Controller B
has almost no feedforward control and achieves imperfect 
output attenuation with a feedback controller having a steady
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state gain of 16.0. Ttie results of control effort constraints 
for A and B appear to have produced only marginal results but 
the idealized results fail to include any effect of feedback 
noise.

The experimental plant responses shown in Figures 
6-5, 6-6 and 6-7 demonstrate first of all that extensive 
efforts extended to stabilize and define the system bore 
fruit in terms of plant controllability - the real plant 
results were nearly as good as analog computer data. Such 
efforts can be expected to be rewarding in any difficult 
control problem.

The steady state, open loop plant without measurable 
disturbance or control is seen in Figure 6-5A to be quite 
stable with very little drift and a moderate output noise 
level. In Figure 6-5B, system response to step functions 
is shown. It is clear that an accurate system identification 
has been obtained since ideal feedforward control eliminates 
93% of the absolute value of the uncontrolled step response 
(Table 6-2). Figure 6-5C shows the uncontrolled system 
response to a typical disturbance for later comparison with 
controlled system response to a similar disturbance.

Optimal control of the physical system is shown in 
Figure 6-6. Quantitative results are presented in Table 6-2. 
Because of the extended real system operating time, accuracy 
of continuous integration of system output is limited. 
Therefore graphical integration of the absolute value of 
response deviation from nominal steady state values was made. 
The ratio of the integrated absolute value of the output to 
that of the disturbance for various controllers was compared 
to a similar ratio for the uncontrolled system. Control 
efficiency based on this ratio is defined as
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TABLE 6-2
EFFECTIVENESS OF CONTROLLERS FOR EXPERIMENTAL SYSTEM

Type of Controller

Controller Efficiency
r  ̂ Icldt .

Relative Control Effort
A  Im|dt

^ |d|dt controlled ^ |d|dt controlled

^  |m|dt

 ̂ |d|dt uncontrolled  ̂ |d|dt optimal C

Random Disturbance:
Optimal A 0.922 0.89
Optimal B 0.815 0.72
Optimal C 0.963 1.00
Ideal Feedforward 0.916 0.75
Proportional Feedback 0.843 0.94
Ideal F.F. plus

Proportional F.B. 0.973 1.06

Step Input:
Ideal Feedforward 0.926

(J\
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^ J c l ^

^ |d|dt controlled 
Control efficiency = 1 - —  ---------------------  * (6-4)

^ |d|dt uncontrolled

Similar quantities were computed for relative control effort 
except that the standard for comparison was the value of 
control effort required by the optimal controller C. Thus, 
relative control effort is defined as

^ |m|dt

^ |d|dt controlled 
Relative control effort = —  -------------------- . (6-5)

^ Imldt

^ |d|dt optimal C

These quantities are given in Table 6-2 for various 
controllers.

Earlier results shown in Figures 5-7 and 5-13 caution 
against drawing quantitative conclusions based on short dura
tion, randomly driven tests. However the striking nature of 
the results in Figure 6-6 leaves little doubt as to the high 
effectiveness of the optimal controllers A and C. As pre
dicted by analog computer results, performance of the optimal 
controller B was considerably poorer than that of the other 
two. _ ~

While optimal control performance is encouraging, 
earlier analog tests indicated that composite nominal feed
forward and proportional feedback control is also quite 
effective. In Figure 6-7A it is seen that feedback control



148
alone with a steady state gain equal to 35 produces fairly 
effective control. Higher feedback gains produced oscilla
tions probably caused by small dead times in the system.
Ideal feedforward control, shown in Figure 6-7B, gave better 
performance than with feedback control although it is possible 
that some drift may have occurred if the test had been con
tinued for very long periods of time. The high degree of 
feedforward control efficiency was made possible by the 
accuracy of the model identification. Figure 6-7C illustrates 
the result of ideal feedforward control with the proportional 
feedback such as described above. The control was excellent 
and was virtually indistinguishable from that of the optimal 
composite controller shown in Figure 6-6C.

These results indicate that the design procedures do 
lead to physically realizable controls that perform much as 
expected. For this well stabilized and identified plant, 
these controllers approximated nominal controllers whose 
response is quite similar to that of the optimal. The 
constraint on control effort did not greatly influence re
sults partially because of the low noise level and partially 
because the small dead times prevented extremely high feedback 
gain in the nominal controllers.



CHAPTER VII

SUMMARY AND CONCLUSIONS

The design equations including all of the constraints 
yield physically realizable controls which give real perform
ance that corresponds broadly to the intuitive ideas leading 
to their development. In the absence of significant model 
error and dead times primarily feedforward controllers are 
specified. If the system is assumed to be constrained by 
available control effort magnitude, optimal control laws 
result which attenuate the output somewhat poorer than an 
ideal feedforward controller even under conditions of 
constrained control effort; however the optimal control 
saturates a smaller fraction of the time so that superior 
optimal output attenuation would result if saturation were 
accompanied by other undesirable effects such as hysteresis. 
It would be recommended that in most cases, however, that 
implementation of optimal controls should be based on 
optimistic estimates of available control effort since the 
optimal controller will not use more control effort for out
put attenuation even if it is available. If control satura
tion does not invoke extra penalties, and in the absence of 
control dead time, ideal feedforward is superior to optimal 
feedforward.

For systems containing dead times, significant 
improvements in control performance can be achieved with the 
optimal design. However this controller is a differentiator

149
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which is more sensitive than an ideal controller not only to 
constraints of control effort but also to error in the mathe
matical model. Optimal design for these cases should be made 
with less optimistic estimates of available control effort.

When consideration of model error is included in the 
design equations, feedback control is specified in addition 
to feedforward. In fact, attenuation of output resulting from 
model error can be affected only slightly by modification of 
the feedforward controller and must therefore be achieved 
almost entirely by feedback. If noise associated with the 
feedback system is low and if dead times are absent from the 
output sensing and amplification circuits, the optimal con
troller tends to consist primarily of feedback. There is a 
definite limit, however, to the degree of output attenuation 
with the use of feedback. Amplification of noise and sensing 
error produces more output than is being eliminated when 
extremely low levels of output are sought. Furthermore, 
small dead times in real systems initiate oscillations when 
large feedback gains are employed. These same factors limit 
the degree of sensitivity reduction that can be achieved by 
feedback.

For the carefully stabilized and identified experi
mental system, it was found that either feedforward or feed
back control yielded very good results. However, the marked 
superiority of the composite control was not only indicated 
from the computations, but was also clearly demonstrated by 
the experimental study. When the very best control is 
desired, this form is indicated.

The relative independence of system sensitivity from 
the form of the feedforward control indicates that decoupling 
of the equations is possible. Thus all effects of model
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error can be legitimately deleted from the computations of 
the feedforward control function. This decoupling of design 
equations results in vast simplifications for investigation 
of optimal multivariable control systems.

Recommendations for Future Work

Feedforward Control and System Identification 
Feedforward control and identification of the gain 

and zeros of the process system are completely interdependent - 
any improvement in one also aids the other. During this 
investigation phenomena were observed during use of feed
forward control that would be useful for explicit model 
identification. The manner in which process gains were 
evaluated for control purposes by "tuning" out a steady state 
offset was described in Chapter VI. This same method could 
provide a basis for accurate determination of product non- 
linearities (or first approximations to higher order non- 
linearities) by measurement of process gain as a function of 
disturbance level. This information would be useful for non
linear feedforward control.

Inaccurate determination of system zeros manifests 
itself in feedforward control as overshoot or undershoot of 
the response when steady state gain is accurate. A study of 
the form and magnitude of step response of a system with 
feedforward control could be used to locate the zeros with 
high accuracy.

Optimal Use of Secondary Feedback 
In many process systems, variables are or can be 

continuously monitored which need not be subject to control. 
These variables can be used as a source of process information
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to aid in control of critical output variables. The question 
occurs as to what form the controller should assume for 
optimal use of this information. The goal of the control 
problem would be to develop another control function to be 
used to determine the value of the manipulative variable.
Such control would be useful where large dead times prevent 
use of feedback control. Methods similar to those discussed 
in the present work should be useful in approaching this 
problem especially since decoupling of feedback and feed
forward equations can be used to simplify the algebriac 
detail. The suggested approach is to form the correlation 
functions between the output and the model error outputs of 
the other state variables and then to find the proper com
bination of state variables that minimizes the model error 
output.
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APPENDIX A

MATHEMATICAL PROOFS

Proof of (2-1)
The transformation of quadratic time functions from 

the time domain to the Laplace domain is made hy the use of 
(2-1):

^ c*(t)^dt = ^ C*(s)C*(-s)ds , (2-1)
O  ̂ _joo

where c*(t) is an arbitrary piecewise continuous function of
time which (i) is zero for all t < 0; (ii) approaches zero
at least as fast as e for all e > 0 as t and (iii) is
bounded for all t; and C*(s) is the Laplace transform of c*(t) 
The proof is straight-forward. By definition

00

C*(s) =  ̂c*(t)e ^^dt , (A-1)
o

and
Y+jeo

c* (t) = \ C* (s)e^^ds . (A-2)
Y-j»

In (A-1) the lower limit on the integral may be ex
tended to -® because by hypothesis (i) c*(t) is zero for 
t < 0. Furthermore, since c*(t) is also bounded for all t,
C*(s) may not have r.h.p. poles allowing the convergence

159
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factor. Y, in (A-2) to be taken as zero. Thus from (A-2) and 
(2-1),

-,oo

^ c*(t)^dt = " ̂ c* (t) ^ C*(s)e®^ds dt . (A-3)
o o _ j «

Under conditions of the hypothesis, the order of integration 
may be reversed:

joo
CO - * 0 0

^ c * ( t ) ^ d t  = 2 '̂~  ^  C*(s) ^ c *  (t) e ^ ^ d t  ds , (A-4)
°  _jco °

which by virtue of (A-1), is just a restatement of (2-1).

Proof of (2-6)
In order to transform the mean square value of random 

signals from the time domain into the Laplace domain, first 
consider two signals a*(t) and b*(t) which are identical with 
piecewise continuous functions a*(t) and b*(t) respectively 
in the interval 0 ^ t T but which are zero elsewhere. If 
a* (t) and b*(t) are bounded, a*(t) and b*(t) are Laplace 
transformable. Denote these transforms by A*(s) and B*(s) 
respectively. Then it follows that

T — 00 

^ ^ a* ( t ) b * ( t + T ) d t  = ^  ^ a* ( t ) b * ( t + T ) d t  ,

o

joo

S A*(-s)B^(s)e^'"as . (A-5)
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Taking the mean value of this last equation yields

S i  <A^(-s)B;(s)>e='"as , (A-6)
_  joo

since (a*(t)b*(t+T)) is a constant equal to (^)' where
indicates mean value (cf (2-4)).
The spectral density ^^*(s) , of a random signal is

defined

T > • (2-5)•p—*00

By letting T approach infinity, (A-6) becomes
joo

^A*B* ' ' ' 2rr j

Equation (2-6) shows that the spectral density is the Fourier 
transform of the correlation function.

Conditions for Minimum of (2-14)
To define a physically realizeable optimum transfer 

function B that minimizes the following equation,
joo

J(BP^ + ?g) =  ̂ + ? 2)ds , (2-14)
_joo

assume that the optimum exists and denote it by B^.
Let B^ be any other transfer function belonging to 

the same class. Then the minimum value of J[(Bq + GB^)P^ ̂  ̂ 2  ̂
where e is any real number, will occur at e = 0 and therefore 
•“  J[(Bq + + P^] vanishes at e = 0- To find this
derivative, expand (2-14) to give
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J[(Bq + GB^)P^ + P^] = J(BqPĵ + Pg) + e^J(B^P^) +
j*

2nj
-j“
1,00

By substitution of -a for s as the variable of integra
tion, the last two integrals of this equation are proved 
equal; hence,

J[(Bq + SB^)P^ + P^] = J(Bq P^ + P^) + e^j(B^P^) + 2ei, (A-8)

D®
"here I = ^ + ''2>'*® ' <^-9)

- T O O■T

After differentiation of (A-8) and setting e equal
to zero

^ [ ( B  + eB )P + P ]. = 21 . (A-10)
dt 'e=0

Thus, a necessary condition that B^ provide a minimum for 
J(BP^ + P^) is the vanishing of the integral (A-9) or

jco

■àï I ^ < V l  + P2'ds = 0 . (2-15)
-joo

where B̂  ̂ is an arbitrary member of the family of admissible 
functions, B.

Other standard conditions from the calculus of varia
tions showing necessity or sufficiency that a function, Bq ,
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satisfying (2-15) provides a minimum cannot easily be applied. 
Instead an oblique approach is used to prove sufficiency.
Let B be any function in the admissible class and define a

such that:

B = Bq + B^ . (A-11)

Then from an equation similar to (A-8),

J(BP^ + P^) - J(B^P^) = J(BqP ĵ + P^) + 21 . (A-12)

Since B contains much arbitrariness within the admissible 
class, so does B^ and the term I of (A-12) is not essentially 
different from that of (A-9).

By making the substitution of juu for s in an integral 
of the form of (2-17), it is found that

^  ^ Q(s)Q(-s)ds = ^  ^ lQ(j<i)) l̂ dU) > 0 . (A-13)
_jœ

Hence J(B^Pj^) is never negative and it is seen from (A-11)
that therefore J(Bq Pĵ + Pg) < J(BP^ + P^) if I = 0. Thus 
I = 0 is also a sufl 
optimizing function,
I = 0 is also a sufficient condition for Bq to be an

Conditions for Satisfaction of (2-15)
The integral along the imaginary axis in (2-15),

joo

jco

may be considered as the difference between the contour 
integral which encircles the l.h.p. including the imaginary
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axis as a bound and the line integral along the semi-circle
only (Figure A-1). The condition imposed for the convergence
of the integrals of (2-3) and (2-8) show that each of the
factors in (2-15) approach zero as s -• ® . This condition

2implies that s times the integrand of (2—15) is a bounded 
number as s -* ™ which is sufficient to ensure that the 
integral on the line integral on the semi—circle around the 
l.h.p. is equal to zero [H7]. Therefore

joo

^  ^ = - à î  I
_ja> °

where ^ indicates the contour described above. Thus condi— 
c

tions for the vanishing of the contour integral are also 
conditions for the vanishing of (2-15).

By Cauchy's residue theorem, the value of the contour 
integral is 2nj times the sum of residues at the poles in the 
l.h.p. Since is arbitrary except that it must have poles 
in the l.h.p. only, B^ must have poles only in the r.h.p.. 
From this requirement it follows that a sufficient condition 
for that (2-15) be satisfied is that (B^P^ + P^) have poles 
in the r.h.p. only. This condition is also necessary. Since 
Bĵ  is arbitrary except for pole locations, it contributes 
arbitrary values to residues at the poles of the function 
P^(BqP^ + Pg). Thus if P^( 0̂ ^ 1  + P^) has any l.h.p. poles, 
a B^ could be selected so that the sum of residues does not 
vanish.

To summarize ; necessary and sufficient conditions 
that Bq satisfy the condition of (2-15) where Bq and 
belong to a class of linear operators free of poles in the
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Figure A-1.— Evolution of Integral (2-15) in Co m p l e x  Plane
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r.ln.p., is that P^(BgP^ + P^) he equal to some function 
having r.h.p. poles only; that is,

^ ( B qPi + Pg) = X (2-16)

where X is a function with only r.h.p. poles.



APPENDIX B

DETAILED SOLUTION OP DESIGN EQUATIONS— THIRD ORDER SYSTEM

Extensive difficulties were generated by numerical 
solution of the equations in Chapter III. An initial attempt 
was made to solve a general system where the plant transfer 
functions were each fifth degree in the numerator and denomin
ator. Dead times were assumed present along with error in 
all parameters except three time constants in the numerator 
and denominator. This attempt was abandonned when it was 
found that the factor multiplying T^ in (3-99) was a ratio 
of 30th degree polynomials. Even the solution for the simple 
example system that was developed near the beginning of 
Chapter III is not trivial. In this Appendix, control design 
equations are developed in detail for a higher order gen
eralization of that system. Digital computer programs written 
for solution of these equations in the Osage Algol compiler 
language* are listed in Appendix D. The programs follow gen
erally the format and nomenclature presented here.

The general system of (1-2) will be developed in de
tail here for transfer functions of the form

-Ed S
K g d  + RoS)e 

^D “ (s + a)(1 + R^s)(1 + RgS) ' (B-1)

*The Osage Algol language is a slightly modified 
version of the Algol 60 language [Nl,W3] used on the Osage 
high speed computer at the University of Oklahoma Computer 
Center.
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M (s +_a) (1 + R^s) (1 + RgS) *

There is a threefold reason for this form. First,
it illustrates the method; second, the specific results are 
useful since most chemical processes can be represented 
satisfactorily by equations of this form; and third, it re
duces simply to the system described in Chapter III by making 
the coefficient R's equal to zero.

Several assumptions needed later in the solution are 
listed here for convenience:

(1) It is assumed that a relatively "good" overall
transfer function will be found and a y = 1 is
selected for (3-94). Since the denominator of
P and P., are equal, one term in the factor D M

AP AP
( ——  - Y ) of (3-94) is eliminated;

D M
(2) The noise associated with the threshold level

of the feedback system is assumed to be "white”
2noise whose spectral density is a constant, 6 ;

(3) The errors in a, K^, K^, and are assumed 
to be large enough so that all others may be 
neglected. Thus :

AK
4*0 = ( -1^ - ' (B-3)

^
(4) The variance and covariance of the errors are 

displayed in the 5 x 5  triangular matrix:



K.

AK.
K. Aa
D

AK

■Sd

AK^
I T  “ m
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Aa"

Aa AE.

Aa

Aa AEM

Ae !

AK.
AE M

° 'Si 'S i

"Si
AEM AEM

(B-5)

(5)
where all matrix elements are mean values, 

of (3-42) is assumed to be one, i.e., the
control effort constraint is on the magnitude 
of the manipulative variable only.

The factors in YY of (3-97) will be calculated first, 
With Y = 1 and AP defined as in (B-4)

AP AP
- Y M AKD AK.M

M K. (B-6)

The term arising from Aa does not appear in this difference. 
Continuing from (B-5)

AP. AP
- Y M AP. AP

) ( - Y M ) =
M M ®44

- = < ' = 3 3 - 2 B 5 3  + E3 5 ) ,
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"“d
^^M A 2 
P^ ) - Bo - Ek ® •M

Now define
0 0

 ̂ 2 i S 9 (-s^)z z A A A i=0
*■1 + ^2 P P 1 t>2 2 ' M M 1 - R^ s

so that = ^ 2  ^3 / 4  '

= "2 ^2 / 4  '

= ^ 2 ^ / 4  + 4 4  -

Bo = 4 v 4  + 4  •

and ^0 A ,

Yl A 1  + a^(R^ + Rj) ,

^2 A (R^ + R^) + a^R^R^ ,

"̂3 A R^Rg .

(B-7)

(B—8 )

so that the denominator of P„P., or P_P_ isM M  D D
O ' ?  0 0 0 0 2 4 5(a - s^) ( 1 - R^s^) ( 1 - RgS^) = Yq - + YgS - Y3 S .

(B-9)

Using (B-7), (B-8) and (B-9) with (3-96) and (3-97), let

Z / 2. iZ yy^(-s )
^  ^ — r s ------- —  ' (B-io)(a^ - s^) (1 - R̂ s"=) (1 - R^s^)
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where the coefficients yy^ result from adding the rational 
functions

.2 2 _2 ,, _2 2, ,, _2 2, 
yo- - s~ KI (1 - R^s )(1 - R^s )

In order to factor (B-10) into functions with r.h.p.
and l.h.p. poles and zeros, a dummy variable was substituted 

2for s and the seven roots of the numerator were found. This 
root finding step proved to be a very troublesome one. A 
digital computer program based on the Bairstow-Hitchcock 
method of polynomial factorization was employed [G3] but 
more than half of the cases considered failed to converge.
The difficulty was caused by a combination of "ill-conditioned" 
polynomials [W4] and very small roots. Modifications were 
made to this program (which are listed in Appendix D) so that 
about only 5% of the cases of interest did not converge. 
However, polynomial factorization remains a very important 
and critical problem in these design procedures.

The factors of Y were the square root of the factors 
of (B-10) if the factorization was successful. Thus, Y could 
be reconstructed: ^

yyo z
Y = (O + s) (1 + RgS) (1 + R^s)

 ̂YYg(1 + yr^s)(1 + yr^s) ... (1 + yr^s)
" (a + s) (1 + R^s) (1 + R^s) '

where y^ = 1. The factor yy^ may be arbitrarily distributed 
between Y and Y. The arrangement of (B-11)is chosen for 
later convenience.

Following (3-96), (3-97) and definition (B-7)
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E s
e K (1 + R s) (E - E s )H 

Z = ---------B------ e---- B---- K— ---- —  . (b -12)
(a + s) (1 + R^s) (1 + RgS) (a - s )

(1 - Rgs^ (1 - .( Ep - Exs:)*: ___  _
Y (s + a) (s + a) (1 + R^s) (1 + RgS) (1 - yr^s) ------ (1 - yr^s)

(B-13)
Then it follows that

| Z  I A _____________1=0   f .L Ÿ  J + (s + a) (s + a) (1 + R^s) (1 + R^s) '
where the result from evaluation of the principal parts
of (B-13) at each of the l.h.p. poles and addition of the 
four resulting fractions in s.

From (3-98), (B-11) and (B-14) the overall feedback
function is found:

3 i(1 + R^s)(1 + R^s)( S g^s )
= -------------------------    7 ■ (B-15)

yy^(s + a ) (1 + R^s)(1 + R^s)( Z y^s^)

All constants on the right hand side of (B-15) are
known except the multipliers and X^ which were introduced 
in (B-8). Treating T^ as a known function (which it would 
be if values for X^ and X^ have been chosen), solution of 
(3-100) can now be achieved.

Let = 0 for the present. Later the solutions
can be explored for different values of It will be
found that there is not much change in the solution as these
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parameters vary. This result is as it should b'_ of course; 
the control system should attentuate all reasonable disturb
ances well even though tuned to one type considered most 
probable.

Several other factors of (3-99) must be computed.

° < I ^1=^ >

In what follows, it will be desirable to be able to 
combine all of the factors of U including the function of 
(B-15) into one rational function containing only powers of 
s. If the exponential time delay is non-zero, this will 
not be possible. In these cases, a simplifying approximation 
has been introduced:

From the power series expansions.

M

and

... ,3-19,

There is only a 50% error in the cubic term for the approxima
tion for values of s less than one. For larger values of s 
the expansion (B-19) is not even valid and the two sides of
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(B-17) approach different limits. From Laplace inversion
theorems, the values of s are large for small values of t
(i.e., lim f(t) = lim sF(s)); hence the optimum amount of 

t“*0 S"*“
detuning of because of probable errors in the mathematical 
model will not be correct for high frequency components of 
the signal. Since these components generally damp rapidly 
in chemical processes anyway, this inaccuracy is not serious.
(An optimum predictive filter design using the approximation 
(B-17) is shown in [N2].) Using the approximation changes 
(B-16) to 3 . E

B B ^ 9i=^ ) (1 - ^  s)
1 - = 1 - ------------------  Ë---  ' (G-20)

° K ( Z y s^ ) (1 + s)
^ 0

The high order of (B-20) seriously complicates sub
sequent computations for T^ so that an investigation of the 
first term of (3-89), the progenitor of (B-20), is in order. 
This term represents the output produced because the model 
is in error. Some of this output is attenuated by the feed
back portion of the "erroneous" design. The entire quantity 
of (3-89) as it affects (3-96) and subsequent developments 
has the effect of "detuning" the overall control so that 
large errors will not occur even if the model is partially 
wrong but at the expense of best performance if the model is 
exactly right.

Numerical calculations show that in the absence of 
feedback, i.e., where T^ is zero, very little change in the 
model error output is possible with T^. Therefore the factor, 
(B-20), which has the effect of "detuning" T^ to compensate 
for model error, is of only minor importance. For this reason, 
(B-20) could be approximated by a lower order rational
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function. The computer program was written so that zeros
would cancel poles until the degree of the denominator was 
no greater than four. A maximum degree of four was chosen 
as criteria because this required no cancellation in the case 
of first order systems with dead times as developed in 
Chapter III. The individual cancellations were made on pairs 
of roots as close as possible in magnitude. In cases where 
complex roots were present in both the numerator and denomin
ator of (B-20), a pair was cancelled on the basis of nearness 
of absolute value. More frequently complex roots were present 
only in the denominator. In such cases, the complex root was 
approximated by two real roots - one equal to the real part 
and one equal to the absolute value of the complex root.

Thus (B-20) becomes

E
. ®m V c . . 9o(l - ^  s) (1 + gr*s) ... (1 + gr*s) ^
1 - z = 1 - r— — n : ... \ n : m mpD •** + yr*s) (B-21)

where gr* and yr* are the uncancelled roots discussed above. 1 1
This is expanded to define ^

1 - à I • (B-22)

”

and

(1 - ) (1 - ) A    (B-23)
° ° S HH (-ŝ )""

0
The other factors in (3-99) will now be computed. 

From (B-4)



176

M
AK

( -J- a - Aa) + ( —  - 01AE^)s - AE_s

and

a + s

24P ( —  = - 4») + ( —  - 04E^)s - 4E^s
 D _  D_______________ D________________

P d  a  +  s

where

(B-24)

(B-25)

J'Use (B-5) and (B-23) to define

' S '  •

^0 = ^22 - 2*^42 + “^=44 '

= ®44 - 2^52 + “^^55 ■

^2 = ®55 '
APĵ'Sp^

A similar expression can be computed for ---— and
from (B-24) and (B-25)

a - s

where w^ = E^^ - + E^^) + a^E^^^ ,

''l = =̂ 42 - ^21 + a (=32 - =52> + *^(=51 ' =43> '
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"̂ 2 = ®52 + ^32 - - “^^53 '
"̂3 = ®43 - ^51 '
^4 = ®53 •

Now using (3-22), (3-99), (B-8), (B-23) and (B-26) to
calculate UU of (3-100) ;

^ 2 1 ^  2 1 ^  2 1( S HH. . (-s'")"-) ( S a. (-ŝ )"-) Z 0. (-s*")̂
___ü_____ [ __Q___  Q__2  . 0 1 ,

(ZHH ^ . ( - s ^ ) S ( a ^ - s ^ )  ^ - 4 = '

Z UU. (-ŝ )"- 
0 "■

UU =

(â - s^) (a^ - s^) (1 - R^s^) ( Z HH (-ŝ )"-)M 0

(B-28)

This expression UU must now be divided into functions with
r.h.p. and l.h.p. poles and zeros only. The roots of U were

2found by factorization of the numerator of (B-28) with s 
replaced by dummy variable. The l.h.p. roots of U are the 
negative square roots of these eigenvalues. Although the 
order of the numerator of (B-28) was usually greater than 
that of (B-10), fewer difficulties were experienced in the 
factorization of (B-28). Thus U is expressed 

2uu_n (1 + ur.s)-(l + ur_s) ... (1 + ur s)
U :----2--------- i---------- 2   8 _  , (B-29)

aa(l + g  ) (1 + J ) (1 + + Hr^s)

where the ur. and Hr. are the roots of the numerator of
X  X

(B-28) and denominator of (B-23) respectively.
Using the same equations with (B-27) to calculate W 

of (3-100):
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M D D D

(a + s) (a + s)^(l + R^s) (1 + R^s) (a - s)

^ i ^ 2 i( S w.s^) ( Z HH, , (-s^)"")
0 ^ 0 ___________

^ 2 i(a - s) Z HH_ . (-s"')'"0

] • (B-30)

The l.h.p. singularities of this equation are the
4 2 iplant poles and the negative eigenvalues of Z .(-s ) . 

Let the evaluation of the principal parts at the poles of 
(B-30) be

2 ® i|i Z EE . s
0 ^r ^ 1  A ---------------------

L u J +  (1 + T s)^(l 4- &(1 + ~  s)‘̂(l + ~ s ) ( l  + RtS)(1 + Ros)n^ (1 + Hr. s)U O X X 1
(B-31)

It should be mentioned, perhaps, that such steps as arriving 
at (B-31) are extremely complicated because of the high order 
of the system and because of the occurrence of complex roots. 
Using (3-100) and (B-31)

8

T_ =
^ uu^ (1 + ^ s) (1 + R^s) (1 + R 2 s)tt® ( 1  + ur^s) 

0 *̂ 021®
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The desired result at last! As before, T_ is ex-D

pressed as a function of the parameters and X. . It will
2 2be necessary to evaluate (c ) and (a. ) to determine these

2parameters; then (Ac ) can be calculated. From (3-90)

V m ^dV c^ c
*cc = < V d  + < V d  + '■d>*dd + ---- ^ ----  *66-

The first term in this expression can be expanded

< V d + D̂>*DD = '®mV d^D + V d D̂ + ®mV d +
+ ^d V * D D  • (B-34)

As indicated by (3-23), this expression must be 
integrated to calculate the mean square output. Since the 
only type of non-minimum phase element considered in this 
example is the exponential time delay, = 1 so that the
first and the last terms of the right hand expression are 
polynomials which can be integrated directly by finding 
residues or by using specially calculated equations for 
rational functions [Nl,Si,Cl]. By substitution for the dummy 
variable of integration

GO GO

Therefore the integral of one of these terms may be evaluated
and then doubled. Contour integration of B„T_P_$__ is theM D D DD
simplest as there are only four l.h.p. poles - three from Pjj 
and one from D. The contour integration may be made directly 
by finding residues at each of the l.h.p. poles. The integra
tion of the last term of (B-33) is routine since non-minimum 
phase elements cancel. T^ is given by (B-15) and $^^ is
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assumed to be "white" noise with a constant spectral density

The value of the mean square control effort is evalu- 
ilarly. 

from (3-91) that
ated similarly. Since and BB both equal one, it follows

This is evaluated using (B-2) and (B-32):

ua
P* a ., . s X ,, . _ X _8 (B-37)
M (1 + —  ) (1 + R^s) TT̂  (1 + ur^s)

and from (B-1), (B-2) and (B-15)

3 i
(a + s) (1 + R s) (1 + R s) ( S g s ) 

• ^ c _________   0 (B-38)

Contour integration of these rational functions is also 
routine.

Computation of the error caused by faulty model 
identification is accomplished by the use of (3-89).

■ <V. ̂  • W .  ̂  ‘V  » - ̂  ^  ■M M D L>
(B-39)

This expression was integrated by the same method described 
for (B-34)- The equation was expanded by multiplication into 
the sum of rational functions and rational functions
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multiplied by exponential factors. The former were integrated 
by polynomial integration formulas while direct evaluation 
of residues at l.h.p. poles was utilized for the latter.

Having evaluated the error terms, the control func
tions may now be found explicitly. Referring to (3-102) and 
defining

A ^0*^0

the feedback controller is determined

L

^

(B-40)

M

Similarly, using (3-98) gives

- E s  _ -2E s
= —  (1 + Le + L e  +...P.

(B-41)

M D__________

T_ - E s  -E^s „ -2E s
= -^ ( -^ - Le )(1 + Le + L e  + ...). (B-42)

As mentioned earlier, the actual computations were
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made by assuming values for X.̂ and Then both control
functions, and T^, were calculated and from these the 
various outputs evaluated. In principle, it would be possible 
to adjust values for X^ and X^ successively until the values 
of the outputs and constraints corresponded to those desired 
for the plant. In actual fact, the programs necessary for 
these calculations exceeded the memory capacity of the 
computer so that the computation was divided into three 
portions - part I computed and T^; part II evaluated the 
integrals and part III computed the explicit control func
tions, and Q^. Cross plots of various outputs and 
constraints were constructed so that the values of X^ and X^ 
giving the desired performance were found by graphical 
interpolation. The result of this method of computation was 
superior to direct calculation of the final values since the 
answer was found in terms of a family of solutions indicating 
the effect that a variation in the parametric values would 
have on the desired control.



APPENDIX C

DERIVATION OF THEORETICAL DYNAMIC MATHEMATICAL 
MODEL OF EXPERIMENTAL SYSTEM

The theoretical mathematical model for the experi
mental system described in Chapter VI was derived following 
Haskins [H3] from energy balances on the oil, coolant and 
wall :

dT,
f it
dT
ii

W  _

^ in

(hAH>i(T^ - V  - - T^) . (C-1)

dT
itcm _ - ■'em» + <V^c<'"o. - ■'co> 'in

where p = density,
V = volume,
Cp = specific heat,
T = temperature, 
t =- time,
h = film heat transfer coefficient, 
Ajj = heat transfer area, 
g = heat losses 
W = bulk flow rate, 

and subscripts,
f = hot fluid or oil flow,

183
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c = cool fluid or coolant mixture, 
w = wall metal properties, 
i = inside wall, 
o = outside wall,
CO = coolant effluent out of jacket,
cm = arithmetic mean coolant temperature, i.e.,

T + T 
^in

^cm = 2 * (C-2)

This describing equation contains product nonlinearities
since the oil flow rate, W^, multiplies oil temperature, T^,
and coolant flow rate, W , multiplies coolant temperature,c
T . The "non-linear perturbation model" which results fromCO
subtraction of the steady state from (C-1) may be converted 
to the "linear perturbation model" by Taylor series expansion 
eliminating the cross-product terms. Thus (C-1) becomes

dT
3Î---- [ (hA) . + + (hA).T^ + [Cp(T^„- Tsa)]fWf.
dT

C(hA) . 4. (hA)^]T^+
dT

(PC V) cm
p c dt = (hA) T - C(hA)„+2(W_ C )„]T +[C (T. - T  )] W ,o w ss p c cm p xn m c c

where subscript ss refers to steady state values and all other 
symbols are same as before except the various temperatures 
which now refer to unsteady state perturbations. In order to 
abbreviate some of the subsequent algebra, (C-3) is rewritten 
with implicit definitions as follows
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dT,

<=f âî '
dTw

w dt “i^f '“i ' “o'*w ' “o*cm 'C TT^ = H_.T̂  - (H_. + H_)T_ + H_T 

dT

(C-4)

c*in - -: - ■ ■■ = H T  - f T  + A T Wc dt o w c cm c c

The overall transfer function relating the output,
T^, to the independent variables, and W^, is obtained by 
Laplace transformation of (C-4) followed by substitution of 
the first and third into the second giving

t c ^ C f C c S ^  +  [ C ^ C j f ^  f  +  C ^ C ^ (H ^  +  H . ) ] s 2  4.

+ C V f - c  + <=f*£ + =c*o> <“o + «i> - <=c“i + Cf»o)]= + 
+ [(H. + - (H^ff + H^£^)])T^ =

= H At (C-S + f_)W_ + H.AT_(C s + f )W o c  f f f i f  c c c (C-5)

Haskins evaluated these constants by steady state measurements 
and his results were used to estimate similar values for the
altered reactor dimensions and different flow rates used in
this experiment. The values, shown in Table C-1, when 
substituted into (C-5) give

_ .24(1 + 0.32s)D + .048(1 + 0.38s)M .
 ̂~ " (1 + 1.03s) (1 + 0.42s) (1 + 0.22s) ' ' *

where C is T^ (®F),
D is W (Ibs/min), and c
M is Wg (Ibs/min).



table c-1
LIST OF SYSTEM CONSTANTS: NOMENCLATURE, VALUES, UNITS, AND SOURCES

Symbol Nomenclature Value Units Source

CPc Coolant heat capacity 0.763 BTU/lb°F Hemdbook data
CPf Oil heat capacity 0.538 BTU/lb"F Lab. measurement [H3]

% Wall metal heat capacity 0.042 BTU/lb°F Handbook data
Oil side heat transfer coefficient 25 BTU/hr-ft^-"F Estimate from lab and handbook data
Coolant side heat transfer coefficient 100 BTU/hr-ft^-®F Estimate from lab euid handbook data

h Inside area 0.32 ft^ Lab. measurement

Ao Outside area 0.44 ft^ Lab. measurement
Coolant inlet temperature 21.5 ®F Steady-state data

Tin Reactor oil inlet temperature 165 ®F Steady-state data
Steady-state wall temperature 73 «F Steady-state data

g Heat loss term 250 BTU/hr Steady-state data
Reactor coolant volume .0102 cu.ft Lab. measurement
Reactor oil volume .0170 cu.ft L2Üt>. measurement
Reactor wall volume .0162 cu.ft Lab. measurement

’'«88 Steady-state oil flow rate 140 lb/hr Steady-state data

"c.. Steady-state coolant flow rate 30 lb/hr Steady-state data

Pc Coolant density 67.1 Ib/cu.ft Hemdbook data
pf Oil density 52.3 Ib/cu.ft Lab. measuranent [H3]

Pw Wall metal density 603 Ib/cu. ft Handbook data

00m



APPENDIX D

NOMENCLATURE

A, A (s)

A*,A*(s)
a (t )
a .

1
a* (t)
B

^ 0

B*,B*(s) 
b* (t)
b .
3

C,C(s) 
c (t)

D, D (s)

= Laplace transform of a(t) (3-42)*
= heat transfer area (3-1),(C-1)
= Laplace transform of a*(t)
= linear function of manipulative variable (3-42)
= constant (1-1),(4-4),(B-26)
= continuous random time function (2-4)
= general unknown transfer function (2 -1 2 )
= non-minimum phase portion of disturbance transfer 

function (3-74)
= non-minimum phase portion of manipulative variable 

transfer function (3-15)
= arbitrary member of a class of general unknown 

transfer functions (2-15)
= general control transfer function yielding optimal 

control (2-15)
= Laplace transform of b(t) (2-4)
= continuous random time function (2-4)
= constant in system describing equation (1-1), (4—4)
= Laplace transform of c(t) (1-2),(2-1)
= output or controlled variable (1 -1 )
= specific heat (3-1),(C-1)
= Laplace transform of d(t) (1-2)

*The numbers in parentheses at the end of the defini
tions refer to the equation number where the symbol was 
defined or first appeared.
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d(t)
E

^D'^K

EE .1
F
F (A,X)
g,-

gr!

Hn,in

HTi
U
I

j
J[
K

L

n,m

= minimum phase portion of spectral density of 
random disturbance (2-17)

= disturbance or load variable (1 -1 )
= dead time in plant transfer function (3-67)
= dead time in disturbance transfer function (B-1)
= dead time in manipulative variable transfer 

function (B-2)
= constants defined by (B-7)
= element of error covariance matrix (B-5)
= coefficients in (B-31)
= flow rate (3-1)
= sum of integrals to be minimized (2-25)
= constant in system describing equation (1 -1 )
= coefficients of (B-14)
= roots defined by (B-21)
= film heat transfer coefficient (C-1)
= coefficients defined by (B-22)
= coefficients of (B-23)
= roots of denominator of (B-23)
= maximum value of mean square output (3-78)
= integral defined by (A-9)
= imaginary number / - 1  (2 -1 )
= integral function of argument (2 -1 2 )
= gain factor of general plant transfer function 

(3-67)
= gain factor for disturbance transfer function 

(3-3), (3—4)/ (B-1)
= gain factor for manipulative variable transfer 

function (3-3),(3-4),(B-2)
= transfer function defined by (B-40)

for p, = C,D,M = linear operator in controller 
equation (3-2)
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£* = maximum allowable value of a general system state

variable (2-24)
<£ = maximum value of mean square control effort (3-77)
M,M(s) = Laplace transform of m(t) (1-2)
m(t) = manipulative or control variable (1 -1 )
P = general plant transfer function (3-65)
P^,P^(s) = linear operator on manipulative variable to deter

mine constraining conditions (3-42)
Pĵ (s) = transfer function of disturbance in system Laplace 

domain equation (1 -2 )
P* = minimum phase portion of disturbance transfer

function (3-7)
P^(s) = transfer function of manipulative variable in

system Laplace domain equation (1-2)
P* = minimum phase portion of manipulative variableM transfer function (3-8)

= general given or known transfer functions (2 -1 2 )

p^ = pole of plant transfer function (3-67)
Q/Q(s) = general transfer function (2-13)
Q^(s) = transfer function of feedback controller (1-3)
Q^(s) = transfer function of feedforward controller (1-3)

= general given or known transfer functions (2-24) 
q = heat losses (C-1)
R = time constant of zero of disturbance transfer
^ function (B-1)

= time constant of zero of manipulative variable 
transfer function (B-2)

R ,R = time constants of poles of plant transfer function
(B-1),(B-2)

s = Laplace transform variable (1-2)
T = upper limit on an interval for definition of time

functions (2-5)
T = temperature (C-1)
T^,T^(s) = feedback control function (3-74)
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(s) = overall control function (3-12), (3-16)

T = coefficients in overall transfer function (3-38),
n (3-55)

T = general coefficients in overall control function
n,m (5-2)

T* = a form of the overall control transfer functionD
= control transfer functions (3-18), (3-19) 

t = time (1 -1 )
U = transfer function with l.h.p. poles and zeros only

(3-99),(3-100),(B-28)
U = overall heat transfer coefficient (3-1)H
ur^ = roots of numerator of (B-28)
V = tank volume (3-1),(C-1)
W  = transfer function defined by (3-99),(3-100),(B-30)
W  = bulk flow rates (C-1)
w^ = constants in (B-27)
X,X^,X = general transfer functions having poles in the 

r.h.p. only (2-17)
X  = time function (4-4)
Y = a function that is equal to a given transfer func

tion except that r.h.p. zeros are replaced by l.h.p. 
zeros of the same magnitude and exponential factors 
are absent (2-18), (3-82), (B-11)

y = time function (4-5)
yy^ = coefficients of YY (B-10)
y^ = coefficients of Y (B-11)
yr^ = roots of Y (B-11)
Z = transfer function defined by (3-96), (3-97), (B-12)
z^ = zero of plant transfer function (3-67)

Greek Letters
a = system natural frequency or pole of transfer

function (3-3),(3-4),(B-1)
P = factor defined in (3-53)
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P. = coefficients in (B-8 )

1
Y = weighting factor (3-94)

= coefficients in (B-8 )
Aa = error in system natural frequency (B-3)
Ac = model error output or increment in output due to

parameter variation (3-58)
AD = error in evaluation of disturbance (3-58)
AE = error in exponential dead time of general plant

transfer function (3-67)
AE = error in dead time of disturbance transfer function

(B-3)
AE^ = error in dead time of manipulative variable trans

fer function (B-4)
AK = error in gain of general plant transfer function

(3-67)
AK^ = error in gain of disturbance transfer function (B-3)
AKĵ  = error in gain of manipulative variable transfer

function (B-4)
AP^ = error in disturbance transfer function (3-58),(B-3)
AP = error in manipulative variable transfer function

(B-4)
Ap. = error in i^^ pole of general plant transfer

1

D
: . 
1

function (3-67)
AT* = error in overall control transfer function (3-58)
Az_, = error in i^^ zero of general plant transfer

function (3-67)
6 = random noise in feedback circuit (3-84)
e = arbitrary real number (A-7)

= Lagrange multiplier or weighting factors (2-25), 
(3-79)

|i = magnitude factor of disturbance (3-9)
*|l = magnitude factor in generated random noise (4-2)
5 = vector of parameter errors (3-65),(3-67)
p = density (3-1),(C-1)
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o = mean frequency of disturbance (3-9)
a* = mean frequency of generated random noise (4-2)
T  = time difference (t̂  ̂ - t^) (2-6)

= dead time in output circuit (1 -1 )
= dead time in controller (1 -1 )

4 (s) = cross spectral density of random time functions,
a(t) and b(t) (2-5)

cp (t ,t ) = correlation function of random functions a(t) 
and b(t) (2-4)

<...> = mean value (2-4)



APPENDIX E

COMPUTER PROGRAM FOR CONTROLLER DESIGN EQUATIONS

In this appendix, the listing is presented of com
puter programs which were used to compute optimal control 
laws examined in this work. These programs result directly 
from the equations developed in Appendix B and the general 
nomenclature is similar in both developments.

The three principal programs are listed first: In
program 2 0 1 , the overall control functions, T^ and T^, are 
computed. The output from program 201 is punched paper tape 
containing (in machine language) the initial data along with 
various intermediate data including the control functions.
This tape is reintroduced to program 253 where various values 
of mean square output are computed and printed. The same 
intermediate tape is used again as data for program 265 where 
values for the specific controller functions, and Q^, are 
computed. All of the control functions are factored and 
listed by this program to facilitate their use. The remainder 
of the listed program are subroutines required by one or more 
of these three principal programs.

Explanation of input variables and computational 
procedures is given in comments throughout all of the 
programs. A sample of input data for program 201 is given 
at the end of the program listings.
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Program 201;
Comment Th is program c a lc u la te s  ootlmum feedback and 

feedforward components o f a c o n tr o l le r  f o r  a 
syf.tem described by C-P^DfP^M, where 

C Is  output,
D Is  d isturbance,
M Is  c o n tro l,
Pjj 13 EKD»EX?f-EDS)(l+BdSV(1+R1SUl+R2S){S+ALP), 

is  EKM»EXP(-EMS1( >+RmSl/('+B1S ) ( i +B2S1(S+ALP), 
and where these elements arm sub ject to  
v a r ia tio n s  disp layed in  the E [3 ,5 ]  covariance m atrix :

(EEKD/EKD)2 -  -  -  -
EALP*EEKD/EKD EALP® -  -  -
EED*EEKD/EKD E^D'EALP EED®
EEKD»EEKM/EKD»EKM EALP«EEK/EKM EED»EEKM/EKM (EEKM/EKM)2 
EEM»EEKD/EKD EEM»EALP EEM*EED EEM«EEKM/EKM EEM^

and where the l im i t  o f  measurement o f C^ls EPS.
The disturbance has the  s p e c tra l de n s ity :
D (s )D ( -a ) -EMUS/(SIQ^-s®) .
S p e c ific  inputs are described a t  th e  BEAD statem ent.
Output from th is  program is  punched pare tape o f  HEXADS data  to  
be used in  Program 263 fo r  In te g ra t ln  o f  s ta te  v a riab le s  and in  
in  Program 263 fo r  detezm ination and l i s t i n g  o f  the c o n tro l functions  

and Tg as w ell as the s p e c if ic  c o n tro l le r  functions and Qj).
PART I :  PROCEDURES AND FORMATS;

Begin
In te g e r  N T l,N T 2,IN ,N A ,N B ,I,J ,JA ,k ,LL ,LP ,M M ,K ,

2M ,K1,K2,K3,K^,K5,K6,PR,PM,PT,PI;
R eal ALP,EKM,EKD,EMUS,SIG,AKB1,AMB2,ECK«,ECKD,EPS,BBr,EE0,EEK,YK,DY2, 

DY1,Y11,Y12,E M ,TC K,TC N,ÏY l2,ÏY lU ,LIMIT,LAMBA1,LAMBA2,WK,TCKS, 
FACTl,FACT2,ED,HK,HKK,T0T,X,UK,EL,ALPS,BETS,

RM.RD.R1,R2,R1S,R2S,RDS,RMS,
AMB1S,AMB2S,EKMS,EKDS,SIQS,FF,PS,PA,EF2,EF1,EF0,TDK,TDS,PDS,IP,EI,

RAT,epsO,eps1,eps2,eos3,BOS,dex,
CSQ,ASQ,SAZ0 ,SAZl,SAZ2 ,DELCS,RSQ,ES(l,TDKS,ESS,ES,UK,aSCl;

A rray  E[ 1: 3 ,1 : 5 ] ,W ,a lg [0 : 10],A Z ,B Z [0 :4 ];
In te g e r  A rray  e x (0 :8 ] ,  n a t[0 :8 ];
McProcedure p ro d u c t(175 ,1 , tOl ;
MeProcedure Reduce(276,1,1 2 i ;
MeProcedure C a n c e l(2 0 2 ,l,2 0 );
McProcedure C ance lp (S 06,1 ,3 ):

McProcedure O rder(2 0 0 ,1 ,3 );
McProcedure ZoverY(2 7 1 . 1, 2 6 );
MeProcedure F a c to r (2 0 3 ,1 ,1 5 ) î 
McProcedure P o ly (2 0 3 ,1 ,3 );
McProcedure b a lrs to fS O ? ,1, 12 );
McProcedure W overU(275,1, 2 1 ) ;
Format T l ( 2 ( J l ) ,S 9 , 'T O ' ,3 1 2 ,*T1' ,S 12, * T 2 ',S 1 2 , 'T 3 ',S 1 2 , 'T 4 * ,S 1 2 , 'T 5 ',S l2 ,* T 6 ' ) ,  

O i(J 1 ,6 (S 2 ,r 6 ) ) ,  0 6 (J 1 ) ,
0 3 (2 (J i ) ,6 (S 2 ,r6 ) ) ,  0 7 (J 1 ,S 9 ,’ H 0 ',S 1 2 ,'H 1 ',S 1 2 ,'H 2 * ,S 1 2 ,*H 3 ',S 1 2 ,*H 4 M ,
0 4 (J 1 ,7 (S 2 ,r6 ) ) ,  0 8 (J 4 ) , 0 9 (J 7 ) ,
0 3 (2 (J 1 ) ,S 1 0 ,5 (S 2 , I4 ) ) ,
P 1 (3 (J 1 ),S 1 2 ,*K M ',S 1 2 ,'K D ',S 1 2 ,'A L P ',S 1 2 ,'R D ',S 1 2 ,
'R M ',J 1 ,S U ,5 (S 2 .R 6 ),J 1 ,S 1 2 ,*R 1 ',S 1 2 ,'R 2 ‘ ,
S I2 ,'E M ',S 1 3 ,'E D ',S 1 2 ,'E P S * ,J 1 ,5 (S a ,R 6 ) ,2 (J l) ,S A ,
•A Z :* ,3 (S U ,R 6 ),J 1 ,S U ,'W :',5 (S 4 ,R 6 ),J 1 ,
S2, 'EEO-' ,r 6 ,S 2 , 'EEK-i* ,B6 ,  J l  ) ,
P 5 (J 1 ,S 1 0 ,*0 8 - ',r6 ,J 1 ) ,
P 2 (J 1 ,S 2 ,'S IO - ',R 6 ,S 4 ,*M U -',r6 ,J 1 ) ,
P3(3(J1),S2,'LAMBDA I , r 8 ,S U ,* LAMBDA 2 -> ,r 8 ,J 1 ) ;

Comment 201, PART I I ;  CALCULATION OF TO; 
rep:
READPT(DECIMAL,E[ 1,1 E ( 5 ,5 l ,

EKD,EKM,RD,RM,R1 ,R2,EM,ED,
ALP,SI0,ECKM,ECKD,K2,EPS. 
k,dex»RAT,epsO,eps1,eps2,eps3.
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S lg t1 J , . • , ,s ls (U ) ,P T ,
LAMBA1, LAKEA2. NT 1, NT2, FACT 1, FACTS ) ;

Corm-pnt E [1 ,1 j , , , . ,E [5 ,5 ]  are values o f the covnrlunce m atrix  o f  e rro rs  and 
EKD,EkM,PD,RK,Bl,R2,EK,ED,ALP a re  system parameters shown above. 
Various values o f  the distu rbance frequency may be te s te d  so th a t SIQ 
la  SIG^/BCKD,
ECKM la  the am plitude o f  the d is tu rb an ce , l , e * , EMUS»2*SI0*ECKM,
ECKD is  the above stepp ing  fa c to r  fo r  SIO,
K2 i s  th e  number o f  d isturbance frequencies to  be te s te d ,
EPS Is  th e  noise le v e l in  the feedback, 
k Is  th e  number o f  I te r a t io n s  In  BAZnSTO 207,
dex Is  the  sm a lles t nonzero c o e f f ic ie n t  accepted In  FACTOR 203, 
ep s 'a  a re  convergence fa c to rs  In  BAZRSTO 207# 
s lg 's  1 - 3  are convergence fa c to rs  in  CANCEL 202 and 
s lg [4 j  I s  convergence fa c to r  In  ZoverY 271,
PT la  an unused In te g e r ,
LAKBA's are s ta r t in g  values o f Lagrange m u lt ip l ie r s ,

NT's a re  number o f  Increm ents o f  the  Lagrange m u lt ip l ie r s ,
FACT'S a re  the values fo r  Increments o f  Lagrange m u lt ip lie rs ;  

ALPS-ALp2;
eek- E [ 3 ,3 ) - 2 . 0 * e [5 ,3 ]+ e [5 ,5 1 :
EEO-E[ 1. 1 ] -2 .0 » E ['t , 1 1:
A ZlO 3-A LPS»E['t,U ]-2.0»A LP»E[4.SJ+E[2,2]!
B Z[0]-ALPS*E[1,1 ]-2 .0 *A L P « E [1 ,2 l+ E [2 .2 ):
A Z [1 ]— E [4 ,4 )+ 2 .0 » E [5 ,2 )-A L P S *E [5 ,5 ):
B Z [1 ]— E I1 ,1 ]+ 2 .0 ‘ E [3 ,2 ]-A L P S «E [3.31;
A Z [S ]-E [5 ,5 ];
b z C 2 ]-e (3 ,3 1 :
w [ '* ] -E [5 ,3 ] :  
w i3 ] -E rA ,3 3 -E (5 .1 );
w[2 l — E[A , 1 ]+E (3,2J+E[5,21-A LPS«E[5.3J:
W[1 ]— E t2 ,I)+ E tU ,2 ]+ A L P S *(E [5 . 1 ] -E [ 'l ,3 l)+ A L P * (E [3 .2 1 -E t5 .2 ] ) ;  
W [0]-A LP S *E (4 ,1]-A LP *(E [2 ,1  ]+E [‘4 .2 ] )+ E [2 ,2 ] ;  

PFINT(P1,EKM,EKD,ALP,RD,RM,B1,B2,EH,ED,
EPS.
A Z [ 0 ] , . . . ,A Z [ 2 ] ,  W [ 0 ] . . . . .W [ 4 ] ,  EEO.EEK);

RDS-RD®; RMS-Rh2; R1S-R l2[R2S-R22;
For K1-1 Step 1 Until K2 Do Begin SIO-SIO»ECKD; 
SI0S-Sia®;EKDS-EKD2;EKMS-EKM2;EMUS-ECKM»2.O»SI0;
PRINT( P2,SIO,EMUS) ; AMBI-LAMBAI ;
Foy NA-1 Step 1 Until (ffl Do 
Begin AMB1-PACT1*AMB1; AMBlS^AMBl^.
AMB2*-LAMBA2;
For NB—1 S tep I Unt 11 NT2 Do
Begin A rray  H ,0 [1 :2 ,0 :  1 0 ],U .U R .Y [0 : 12] ,DS[ 1 :6 ,0 : A] ,

H P ,U U ,E E ,ÏR ,x ,D T D ,D I,C I ,8 ,6 t [0 : 10],TD ,Q [ 1 : A ,0: 12];
ÏB [1 0 ] - b t [A]-RM ;
AMB2-AMB2»FACT2; AMBSS-AMBB^;
I f  NB-PT*(NB$PT)+I>T$PT Then PM-1 Else PH-0;
Comn.ent |DelPd/Pd-DeJPin/Pm|2.EE0-EEK«s8;
PRIW (P3,AMBI,AMB2);
ZoverY(slgIA],AMBlS,AMB2S,ALP,SI0,RD,BM,EE0,EEK,
K3.DS.UR,
R1,R2,EMUS,EKD,EM .EPS,epsO,eps1,eps2,ep»3,k,dex,RAT,Y,YR,g,gr,J,EKM ): 
i f  J — A Then Begin K-J; Oo to  PL End:

Comment 210 , PART I I I :  CALCULATION OF Td;
PRINT(P5,s [ 8 ] ) :
H K -s [0 ]/(E K D *e t8J );
Reduce ( K3 .  J ,  DS ,  g r, YR, H, EM, L IM IT , a lg , HX, HR ) ;

If PM-1 Then Begin
PRIMr(0 7);PRINT(0 3,H(1,0 ],..,,H[l,A]);

P R IM T (0 1 ,H [2 ,0 ] , . . . ,H [2 ,A ] ) ;
PRIffT(01 ,HK, LIM IT,sC 8 ] )  ;
End;
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Comment 1-T c /P d .(s"+ H [ 1 . 3 ]s3+ . . .+H[ 1 , 0 ] ) / ( s \H [ 2 ,3 ] 5 3 + .  . .+ H [2 ,0 ]  );
Ear £ a  Begin
For J - 0 .1 ,2 ,3 ,4  Do U I [ J ] - ( - l ) J * H [ I . J ] :  
p r o d u c t ( I ,4 ,H ,U ,0 ,4 ,E ,D I , I ,0 ,U ) ;
Ear J - o , i , 2 , 3 , 4  Da o [ i .J l* ^ [ i .a » J ltE n d .-
Comment | 1-Tc /Pd |2 - (0 [  1, 8 ]s8_ 0 ] 1, 6 ]S®+. ..-tO f 1, 0 ] ) / ( 0 [ 2 .8 )s 8 -O t2 ,6 )s 6 + . .  .+ Q I2 ,0 )  ) ;  
Coimient |DelPm/Pm12-( CAZA)s'*-(AZ2)s2+AZ0)/(ALPHa2-S2];
Comment ( ( DelPm/Pm) (DelPd/Pd) (V4s'*+W3S3+.. .+ W 0)/( AIPHA^-sS) ;
C I[0 ]-A L P S :C I(1 ]— 1 :3 c tO ]-1 ;* [1 ]— EMS; 
product (0 , 2 , B,AZ, 1 ,4 ,0 ,U ,0 ,E ,D T D ];  
p ro d u c t(0 , I . E .C l , 2 ,4 , 0 ,U ,0 ,E ,D I) :
DB[1]— U E [l]:U B [3 ]* -U H t3 ];p ro d u c t(0 ,6 ,E ,W D ,0 , 1 ,E ,x ,0 ,E ,U ) ;  
p ro d u c t(0 ,5 ,E ,D I,0 ,3 ,E ,U B ,o ,E ,m j) i
I I  PM-1 Then P R IN T (0 1 ,0 [0 ] ,U U [0 ].U R [0 ] ,I)T D [0 ] ,D I[0 ] ,C I[0 ] ,x [0 ]  ) ;
For 1 - 0 , 1 ,2 ,3 ,4 ,5 ,6 ,7  Ea U U lI] -U [ I]+ U U [ I) ;
K-8 ; 0 (0 ]-U U [0 ];
Comment D*UBAR.{UU[12]S ’ 2 .m j[  1 0 ] s '° + . .  .+ U U tO ])/((s '*+ H [2 ,3 ]s 3 + . . .H (2 ,0])(S l-A LPH A )*  

(same b a r ) ] , To f in d  U, I t  la  necessary to  fa c to r  num erator In to  
(D [0 ] ]  (UR[ 1 ]2 s 2 _ i) , .  .(U R [6 ] 2s2 - 1) .  The fa c to re d  numerator o f  U Is  then  
(U [ 0 ] ) l/2 (U B t1 ]S - 1) . . .(U R (6 ]S -1 );  

Facto r(K ,in ;,ep sO ,eps1 ,eps2 ,eps3 ,lc ,dex ,R A T ,U E ,n at,ex ,C l,O TD ,I);
I f  K --4  Then Qo to  PL;
For IM -1 Step 1 U n t i l  I  Do UR[IM ]-SQ R T(UB [IH ])l 
E at IM -im -1 step 1 U n t i l  8  Ea UB(IM ]-0 ;
I f  PM-1 Then Begin Ear U - 1 , 2  Do 
P R IN r (0 1 ,0 [L P ,0 ] , . . . ,0 [L P ,4 ] ) :
god:
w [ 0 > 1; Ear KS- 1  step 1 U n t i l  K Ea Begin 
MM-( l+ 2 *K 5 t 1 )$2;Q [K 5,2]-1 /SQ R T( CI[MM] ) ;
Q [K 5 ,1 ]-SQRT{2*Q[K5,2]+DTD[M H]/CI[M H]):
« [ K 5 ,0 ] - l ;
I :  PM-1 Then Begin  
PRINT(05,MM):
P R IN T (0 3 ,Q [K 5 ,0 ],. . .  ,q [K 5 ,2  ] ) l End!
End:
I f  K -t Then Begin
£ ac  K5- i , 2  Ea w [ K 5 ] - a [ i ,K 5 ]  Eod:
I f  2<K Then product(1 ,2 ,Q ,D I,2 ,2 ,Q ,C I,0 ,E ,Y R ) : 
i f  K I3  Then p ro d u c t(3 ,2 ,Q ,I> I,0 ,4 ,E ,ÏR ,0 ,E ,'Y R ) ;
YE[10]-RM;
Ear 1 - 0 .1 .2 .3 .4  Do Begin D T D [I]-H [2 . I ] :  C 1 [ I ] - 0 [ 2 , I ] ;  D I [ I ] - 0 [ 1, I ]  End: 
WoverU(W,DTD,DI,CI,UR,YR,K,HR,AMB1S,Sla,ALP,RD,R1,R2,EKD,EM,ED,EE,x);
HK— 0 [ 2 , O ] «ALP'S IG/UU [ O ] :
For MM-0, 1 ,2 ,3 ,4 ,5 ,6 , r , 8  Da TD[ 1,MM]-EE[MM]«HK;
P R IN T(T l): P R IW r (0 4 ,T D [1 ,0 ] , . . . ,T D [1 ,8 ] ) ;
O T f9 ] -D I[ l ] - l /A L P ;  U R [1 0 l-D I[2 )-R 1 ; UR[ 11 ] -D I(3 ] -H 2 ;
U R £ l? }-i/S IO ; P o ly (D I,3 ,C I ) ;  Poly(U R ,8 ,U );
Ear LP-2 , 3  Es Begin p ro d u c t(0 ,3 ,E ,C I,0 ,8 ,T D ,U ,L F ,T D ,U R );
For K5-1 Step 1 U n t i l  K Do Begin  
pro d u c tiL P .9 .T D .D I.K S .2 .a .D I.L P .T D .U );E n d ;
C r£0J-1; C lf lJ - l/S IO fR M ; C I(2 ]-R M /S I0 ; CIC3J-0,- 
PB IM T(04,TD [LP ,0], . .  .  ,TD[LP , 11 ]);E od :
For 1 - 1 ,2 ,3 .4 ,5 ,6 ,7 ,8 ,9 ,1 0 ,1 1 ,1 2  Do T D [4 ,1 ]-U E [I] ;
P R IW (0 4 ,T D [4 ,1  ] , . . . , TD [4 , 1 2 ]);
Comment TD[1,6]S®+TDt 1 ,5 ]s 5 + . . .+TD( 1 ,0 ] ls  numerator o f  Td and TdD/Pm 

U [0] A L P (T D [2 ,7 ]s 7 + td [2 ,6 ]s 6 + ...+ i)  Is  the  num erator o f TD.
U [0] SIO E K M (T D [3 ,7 ls7+ T D t3 ,6 ]s6+ ...+ 1 ) Is  th e  denominator o f TpD/pM.
END OF PART I I I ;

Comment 210 , PART IV : CALCULATION OF MEAN ERRORS;
PL: PUNCH(HEXADS,AMB1, AMB2,NA,NB,K) ;
I f  NA-ldNB-l Then PUNCH(HEXADS,ALP,ALPS,SIO,SIOS,R1 ,R2,RD,RM, 

EKDS,EKD,EPS,EMUS,EKMS,NT1,MT2,EM,BD,EE0,EEK, 
W [ 0 ] , . . . ,W [ 4 ] ,A Z [ 0 ] , . . . ,A Z [ 2 ] ,B Z [ 0 ] , . . . ,B Z [ 2 ] ) ;

I f  K --4  Then Qa t a  ML;
For 1 -1 ,2  ^  P U N C N (H E X A D S ,H [I,0 ] ,. ..,H [I,4 ]);
P U NC H (HEXA D S,TD [1,0],...,TD[4, 1 2 ] , s t O ] , . . . ,B C 3 1 ,8 [ 8 ] ,Y [ 0 ] , . . . ,Y [ 7 ] ) l  
E a r  1 -1  s tep  1 U n t i l  K Ea PUNCR(HEXADS,a[I,0 ] , . . . , Q [ I , 2 ] ) i

HL:PRINP(08);End E d  End: PRINT(09) :0o ta  rep :god: .0
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Promraw 263;
Comment S pec ia l purpose program. Th is  program In te g ra te s  expressions to  f in d  the

mean square values o f  output from systems w ith  c o n tro l laws from  Program 2 0 | .
The In p u t to  th is  program Is  th e  punched HEXADS from 201 and a re  defined  
th e re . The p r in te d  output Is  as fo llo w s:
ASQ^nean souare c o n tro l e f f o r t  ■ RSQ+ESQ,
CSQ^nean sauare output -  TD8+PDS+EI+IP#
DELCS-estImate o f  mean suqare e rro r  output using  T^ — P^,
DELMsean square e r r o r  output.
O ther in term ed ia te  da ta  may be obtained by  th e  use o f  sense l ig h t s  i4 ,  o r  15;

Bggin
Real ALP,ALPS,SI0,R1,R2,RD,RH,EKDS,E!a>,EPS,EM,ED,EKMS,EE0, 
r i , r 2 , r 3 . r 4 , r 5 * r 6 , r 7 » r 8 , r 9 # a ,
EEK,SIGS,TDS,PDS,IP,EI,CSQ,RSQ,ESq,ASQ,DELCS,AMB1,AMB2,EMUS;
A rray  T D [1; 4 , 0 : 1 2 ],H [ 1 :3 ,0 :4 ] ,a ,b t  1 s 2 ,0 :2 ],Q ,E [ 1 ;3*0 : l2 3 ,R ,A ,B ,C ,D ,0 .y [0 t  151; 
In te g e r  K*NA, NB^NTl *M T 2 ,I,1 , J * k , l ;

McProcedure Product(1 7 5 *1 ,1 3 );
McProcedure P o ly (2 0 5 ,1,3 ) ;
B eal Mg Procedure In te g l(2 0 4 ^ 1 ,3 ):
McProcedure O rder(2 0 0 ,1 ,3 ) ;
Switch L -L 1,L 2 ;
Format O l(J l,S 1 2 ,'R S Q ',S 1 2 ,'E S Q ',S l2 ,'T D S ',S 1 2 ,» P D S ',3 1 2 ,

'IP S S 1 2 , > E I* ,J 1 ,S 3 ,6 (S 3 ,R 6 ),2 (J 1 ),S 3 , 'A S Q -',
BB,S 3 ,* e s q -' , RB,S 3 , 'DELCS-* , RB,S 3 , ’ DEL-■,RB,U(J1) ) ,

0 2 (2 (J i ),S3,'LAM BDA1-*,R6,S3,'LAM BDA2-*,r6 ,S 3 , * K - M 4 ) ,

0 6(4 ( J l  ) ,S 6 ,  'ALP' ,3 9 *  'S IO ' ,3 9 ,  'R 1 ',S 1 0 , *R2*,S 10, 'R M ',310 . 'RD' , 
J 1 ,6 (S 2 ,R 4 ) ,2 (J i) ,S 6 , 'K D ',3 1 0 , 'E P S ',S 9 * 'M U ',S 1 0 ,'E B O ',3 1 0 , 'E M ', 
S 1 0 ,'E D ',J 1 ,6 (S 2 ,R 4 ) ,2 (J 1 ) ) ,

0 4 (2 (J O ,S 1 0 , 'TEST OUTPUT',3(5(S4,r6 ) , J i ) 3*

0 5 (J 1 *7 (S 2 ,b6 ) U

G 3(J7);
Real Procedure Residue:

Begin
B [6 ]-0 ;
far j - 9 , 10 .11 ,12  Do Begin

I f  TD[J(,JJ-0 Then R tJ j-O  Elae Begin 
a -1 /rD [4 ,
Ear 1- 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10, 11 ,1 2  Do Begin 

B [P .]-R t8 ]» { l+ T D [4 .1 ].a )!  aaSj 
far 1- 0 , 1 . 2 . 3 , 4 , 5 , 6 , 7 ,8  Do

R [7 ]-R t7 J + T D tl,l3 » « ^ -R f7 ]-R [7 ]» f l-RD»o)'j 
For 1 -9 ,1 0 ,1 1 .1 2  Ea Begin

1£ - .(1 -J )  Then R [8 ) -R [8 ]» ( 1-TD[4.11»b)
E l.e  R [8]-R [8]«TD[4.l3»En»H

For lc-1 Step 1 U n t i l  K Dp
R f B 3 - B [ 8 F ( m i i t ,  1 1's-iacic.a]»»®);
R tJ ]-« l7 ]*E X P ((E D -E M )»o1 /R t8 ] E o ij 

R[61-R[6]+RCJ] God;
Re8 ld u e -R [6 ] ;  End;

Procedure D e lta ;
Begin
For 1 -1 ,8  Do Begin b [ l ,0 ] -8 Q R T (a [ l ,0 ] ) ;  b [ l , 8 ] -a « R T (a t l ,8 l ) j  

■ b [ l , l ] -S (5 H T (2 * h [ l ,0 ]» 1 > [ l ,2 j -a [ l , l I ) !  E M  I j  
I f  1 -0  Then Begin

For 1- 8 . 7 , 6 , 5 , 4 , 3 . 2 .  1 .0  Bg, C I l ] - T D [ 1, l )  E Ü  I j  
B [8 ]-0 ;  Ear 1 -7 .6 .5 .4 ,3 .8 ,1 .0  Do Begin
B [ l ] - C C t l+ l l - B I l+ l l ) » * L P ;  C [ l+ 1 ] -B [ l+ 1 ] ;  S qSJ B [0 ]-C [o 1j .
I f  0<HM Then Begin A [l5 ]- l/R M ; B (10 ] - 0 ;

For 1 - 9 ,8 ,7 ,6 ,5 ,4 ,3 ,8 ,1 ,0  D j B t lW T D [3 .1 + 0 -B [ l+ 1  J ) . * [ 1 5 ] j End 
E l.e  For 1 - 0 ,1 ,2 ,3 ,4 ,5 ,6 .7 ,8  Do B [ l] * J n > [3 , l l ;  P ro d u c t(0 .7 ,B ,B ,2 ,4 ,a .B ,0 .B ,D )j  
A CO l-U  A[1]-1/ALP+R1+R2: At8l-(R1+R8VALP+R1«R8(
A[3)-R1»B2/nLP; P ro d u c t(0 ,1 i ,E ,D ,0 ,3 ,E ,A ,0 .E ,D l;
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P ro d U c t(0 ,3 .E ,C ,1 ,i( ,H ,A ,0 ,E ,0 );  P ro d u c t(0 ,7 ,E ,C , 1 ,S ,b ,A ,0 ,E ,0 )  ;
Î I  Tlien C [9 l-0 j
F t6 ]-E « U S *In tB 8 l( 10,D,C)/(ALPS*SIQ®):
A [lJ-1.02»A LP ; A [2]-0 .98»A LP; A r3 )“ l / m ;  A [4J -l/R S ; A [5 ] -S I0 j A (6 J - l /H [2 .  IJ ;
A[ 151-1; Ear 1 - 3 , ' t , 6 Do I f  0<A[1] Then A [15 ]-A [15 ]« A [1 ];
B [9 l-R [1 0 ]-B [ 121-0;
For 1 - 1 ,2 ,3 ,4 ,5 ,6  gg Benin 1 £  0<A[1] Then Begin '

For J -1 ,2 ,3 ,4  Ss R fJ l*« ;  B [5J -1 ;
E ar J-8,7,6,5,4,3,2,1,0 Bo. Blll-TDt1,3l+A[ll*BIl);
For J - '» ,  1 0 ,9 ,8 ,7 ,6 ,5 ,4 ,3 ,2 ,  1 ,0  ^  B l2 l-T D [2 ,J ]+ A [ll» B (2 l;
For J - 4 , 3 ,2 ,1 ,0  Do B [3 l -H [3 ,J ] -A [ l]« R [3 l:
B C 4 1 -2 * ( l-R D *A tin « < H [1 .0 ]-H t l,l l*A [ l]^ *E X P (-A ti]« E M V ((A U 4 -A tlll« (S I0 » -A [lJ )> ;

B [4 1 -R C 4 ]* (H [1 ,O l+ H [1 ,1 ]*A [ i) ) / (H [2 ,O l+ H [2 ,1 ]*A [ ll) ;
For j - 1  Step 1 U n t i l  1-1 ,1+1 Step 1 U n t i l  6 Dg, J£ .0<A tJ ] Then B [ 5 1 -B l5 ]» (A l j ] -A ( l ] ) ;  

B [6 + l]-E M U S *A C l5 l*B [l]« B [3 l*B [4 1 /(R [2 l*R (5 l);  End End l l  
A [ 0 l - b [ 2 ,0 l ;  A [ l] -B D + h [2 ,0 ]+ b [2 , l l ;  A [2 l-R D « b [2 ,1 ]+ b [2 ,2 l:  A [3J-R D »b[2 ,2 ]; 
P ro d u c t(0 ,3 ,E ,A , 1 ,4 ,H ,A ,0 ,E ,C ):  0 [8 ]-O ;
A [ll-A (2 ]-1 /A L P ; A [3 l-B 1 ; A [4 ]-R 2 ; A [ 5 l - l /S I0 ;
P o ly (A ,5 ,A ); Product( 2 ,4 ,H ,B ,0 ,5 ,E ,A ,0 ,E ,D );
B [ 141-EHUS+ In te g l ( 9 , D, C ) / (  ALPS'SIQ 12;
B( 13l-fl(61+R [7]+B [81+R t9l+B [ 10]+B[ 1 11+B[ 12l+B[ 14];
I f  SLON(15) Then 
P B IM r (0 5 ,R [6 1 ,. . . ,R [ l4 1 ) :

End D e lta ;
rep: READPT( HEXADS ,  AHB1, AMB2 ,  NA, MB, K) :

I f  NA-1AMB-1 Then READPT(HEXADS,ALP,ALPS,SIO,S10S,R1,B2,RD,RM, 
EKDS,EKD,EPS,EMUS,EKHS,Nri,NT2,EH,ED,ZE0,EEK,
H [ 3 , 0 l , . . . , H [ 3 , 4 1 , a t l , 0 ] , . . . , a [ 2 , 2 ] ) :

I f  NB-1 Then PBINT(O6,ALP,SI0,R1,B2,B«,RD,EKD,EPS,EMUS,EEO,EM,ED);
PRIMT( 02 , AHB1, AMB2 , K) :

I f  K --4  Then Oo t o  PL;
BEADPT(HEXADS,H[ 1 ,0 1 , . . .  ,H I2 ,4 1 ,T D [ 1 ,01 , . . .’ ,'t d I4 ,  1 2 ),

0 C 0 ] , . . . , 0 [ 3 ] , a [ 8 l , Y [ 0 l , . . . , y i 7 l ) ;
For 1-1  Step 1 U n t i l  K Do BEAOPT(REXAOS,Q[I,0],. .  . , Q [ I , 2 l  ) ;
I f  SL0N(14) Then PHINT(05,TD[ 1 ,0 ) ,  . .  . ,T D [4 , 12) );
I f  0<TD[2, lO l Then Begin

For 1 - 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8  Do A [1 ]-T D [4 ,1 ];
O rd e r(8 ,A ,B );
3 -8; 1 -9 ; Ear 1 -1 -1  While B [ l l - 0  Dg 3 -3 -1 :
For 1—1 Step 1 U n t i l  K ^
I f  < i i l ,2 ] < B t 3 l* B [ 3 - l l  V 3<2 Then Begin 
Ear k -1 ,2 ,3  Ca Begin
For 1 -0 ,1+1  W hile - i (T D tk ,l+ 3 l-0 )  Do Begin

T D [k ,l+ 1  l-O T [k ,l+ 1  ]-< J [l, 1 )*T D C k ,ll;
T D [k ,l+ 2 l-T D [k ,l+ 2 1 -Q [ l,2 ]« T D [k , l l  End:

T D [k ,l+ 2 j*0 ;
T D [ k , l+ l ] - 0  E j i :  Q [ l ,  l l - « [ l , ? l - 0 ;  3 -3+1; Oo to  LIO End:

L9 : E ar k - 1 ,2 ,3  Sa.
For 1 -1 ,1+1  W hile - .(T D [k ,l+ 1 1 -0 ) Do

T D [ k , l l ,J r D [ k , l ] - B [ 3 l* T D [ k , l - l ) ;
T D [ k , l l - 0 ;
For 1-1 S tep 1 U n t i l  3-1 Do T D [4 ,1 ]-B [1 ];
For 1 -3  Step I U n t i l  8 Dg T D [ 4 , l l - 0 ;

LIO: I f  0<TD[2, 10] a  1<3 Then Begin 3 -3 -1 ; Og tg  L9 End:

I f  SL0N(13) Then P R IW rtO S .TD tl.O l T D [4 .1 2 l) ;
C [11-1 ; C [0 ]-S I0 ;  P ro d u c t(0 ,1 ,B ,C ,2 ,1 1 ,T D ,B ,0 ,E ,D );

Far I - 0 ,1 , 2 , 3 , 4 , 5 , 6 ,7 .8 ,9  Ba 0 [ I ) - T D [ 1 , I l ;
TDS-EHUS+Integl( IO ,D ,C ):

D e lta ;
D [0]-A LP+SI0;D [ I )-A LP + S I0 ;D [2 ]-1  ;
C [0 l-1 ;C (1 ]-R I+ R 2 |C [2 ]-R 1+ R 2 ;
r ro d u c t(0 ,2 ,B ,D ,0 ,2 ,B ,C ,0 ,B ,B );
S [0 ] -1 |  C [1]-RD; C [2 ],< J [3 l-0 ;
FDS-BMU8>EKDS*InteSl(4,B,C);
IP-2»EHUS»Realdue»EKD/( ALP»SIOS ) ;
D tO j-1 ; D ll)-B H ;Product(0,1,B,D,0,3,E,0,0,E,C);C[51-C[6J-0;
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E I-E P S /( O f 8 J2*EKDS ) * In te g l ( 7 . y . C ) :
CSQ-TDS4-PDS+IP+EI :
Ear 1 *0 . 1 .2 .3 , '» .5 .6 ,7 .8 ,9 ,1 0  Do Begin 
G [l]*< rD [1 .1 J : D [1 ]^ D [3 .1 ]  End;
RSQ-EMUS»ALPS/( EKMS»SIQS )* In te g X (lO ,D .O );  
B [0j-A L P ;B [l]-1+A LP »(R 1+n 2); 
B[2 )-ALP»R 1 *R2+R2+R 1 ;B [ 3 J-B1 «R2;
P ro d u c t(0 .3 .E ,B .O ,3 ,E .O .O .B .C )î
Lt:LS: ESQ-EPS/( O[BJ^*EKMS»EKLS) » In to g l (7 . Y .C );

ASa-RSQ+ESQ;

E tl.0]-S Q R T(E E 01: E[ 1. 1 ]-SQRT(EEK) ;
E [ 1, 2 ] - E [ 1 .1 ]*RD: E [1 .1 ] - E [ 1 .1 ]+E[1,0]»RDj
A [0 ] -S I0 ;  A [1 ]-1 ;  P p o d u c t(0 ,1 .E ,A ,0 .3 ,E .B .a ,E .C );  
P ro d u c t(1 ,2 .E .D . 1 .1 t.H .B ,0 ,E .C ); 
P ro d u c t(2 .4 ,E ,C .2 .4 .H .C .0 ,E .D );  
DELCS-EKD8»EMUS«Integl ( 8, D.C ) ;

PRINT(01.RS<J.ESa.TIIS.PDS.IP.EI.ASa.CSQ.DELCS.R[l3)): 
P L : I f  HA-NT1ANB~NT2 Then PRINT(03):
2a &a rep: End:0000

Program 265;
Coament Th is program computes and fa c to rs  Tg, Tg, Qp, and Qg from In pu t o f  

punched HEXADS from 201.
I f  SLON( 10) Then procedure w i l l  a ttem pt to  fa c to r  t r a n s fe r  functions  
u n t i l  convergence c r i t e r i a  In  BAIRSTO 207 Is  0 .0 0 1 .
I f  SLONfS) Then procedure w i l l  d iv id e  ro o t a t  ALP out from a l l  T D l, 
I f  SL0N(9) Then procedure w i l l  d iv id e  ro o t a t  I/AM out from a l l  T D l, 
I f  SLON( 12) Then procedure w i l l  not fa c to r  tD  and TO,
I f  SLON( i t )  Then procedure w i l l  not f in d  o r fa c to r  QD.QC and LC;

B«gi"
Real ALP.ALPS,SI0.SlaS,R1.R2.RD.RM.KDS.KD.EPS.EMUS.P. 

KMS,EM.ED,EE0.EEK.AKB1,AMB2,KD08,KM08,KMA, 
KM,eps,eeO,em,ed,amh1,amh2;

In te g e r  NA,NB,K,NT 1 .H T 2 , t o t a l , l , j ,k ;
A rray  W ,A Z ,B Z [0 :t) ,a [1 :2 ,0 : 2 ] , e {0 ;8 ] ;  In te g e r  I ;
A rray  T D [1 : t ,0 :1 2 ) ,H [ l :3 ,0 : t ] ,Q ,E [ l :3 ,0 :1 2 ] .Y ,0 ,A .B .L C N .

ODD 1, QDN2 , QDN1, aCN. ODD, QDN. qCD [ O : 20 ] , 
anps,aeeO,anm.aed,aamh1 ,aamh2 [0 : 3 0 ) ;

McProcedure B a lrs to (2 0 7 ,1,1 2 ) ;
Format 00( J l ,S 9 ,'E P S ',S 1 5 , 'E E O '.S IS , 'E M '.S IS .

'ED ',S it.'LAM B D A  1 ' .  SIO.'LAMBDA 2 '.J 1 .6 (S 3 .R 8 ) ,J 1 ) ,
Ol(J7).
P 1 (2 (J 1 ) . '  T D '. I1 .J 1 ,7 (S 2 .H 7 ) .J 1 .S 1 5 .6 (S 2 .R 7 )) .
P 2 (2 (J 1 ) , '  0 '.J 1 ,S 1 0 .t (S 2 ,R 7 ) ) .
P 3 (2 (J 1 ) . '  Y '.J 1 .8 (S 1 .R 6 )) ;

McProcedure P ro d u c tf1 7 5 .1 .1 );
McProcedure P o ly (2 0 5 . 1 ,3 ):
Format 0Q1(J1,S20,'O'.SIt, '1',S1t.'2',8lt,'3',S1t,'t',S1t.'5', 

2(J1).St.'aDN1',St.6(S2,R7),J1,S27,3(S2,R7).
2(J1),St,'aDD1',St,6(S2.R7),J1,S27.t(S2,R7).
2(Jl).St,'aDN2',St,5(S2.R7).
2(J1),St.'aDD2',St,6(S2.R7),J1,S27,2(S2.R7).
2 ( -n ) ,S t . 'a C N ',S 5 ,6 (S 2 ,R 7 ).J 1 ,5 2 7 ,R 7 ,
2 (J 1 ) .S t. 'a 0 D '.S 5 ,6 (S 2 .R 7 ) .J 1 ,S 2 7 ,2 (S 2 .R 7 ) .
2(J1).St,'LCN',S5,5(S2,R7),J7),

0 0 2 ( J 1 . S 2 0 , '0 ' . S l t . '1 ' , S 1 t , '2 ' . S 1 t . ' 3 ' . S 1 t . ' t ' , S 1 t . '5 ' .
2 (J 1 ) ,S t, 'a D N ',S 5 ,6 (S 2 .R 7 ),J 1 .2 (S 2 7 .5 (S 2 .R 7 ),J 1 ) ,  
J 1.S t . 'a D D ',S 5 , 6 (S2 .R7 ) , J 1, 2 (S2 7 , 5 (S2 .R7 ) . J l ) , S 2 7 ,S 2 ,R7 , 
2 ( J 1) ,S t , 'a O N '.S 5 ,6 (S 2 .R 7 ),J 1 .S 2 9 .R 7 . 
2(J1).St,'aCD',S5,6(S2.R7),J1.S27.2{S2.R7). 
2 (J 1 ) ,S t . 'L 0 N '.S 5 ,5 (S 2 ,R 7 ) ,J 7 ) ;



2 0 0

Procedure B o ot(A ,L );
A rray  A; In te K e rL;
Begin Beal eps ,q ; In te g e r  1 , J ,I,n ,m ,K ; A rray  e .f tO i  101;

In te g e r  A rray  g ,h [0 ; 10];
Format P l ( 2 ( J lK '  E X IT : ’ ,S 9 ,5 ( I t i S l8 ) ) ,

P 2 (J 1 ,' N A T U B E :',S 9 ,5 (I1 ,S i 8 ) ) ,
P 3 (J 1 ,’ R O O T S :'.5 (S 2 ,B IO )),
P 4 (2 (J D ) :

k -L ; For q - |A [k ] |  While q< I D - 3 0 ^  k - k - l ;
eps^lD -10; K—50;
k*- I f  1<k Then k E lae 1;

AGAIN; B a irs to ( k> A, epa, epa » eps »eps« K, n , e , f ,  h« ;
P H Iw r ( P l ,g [ l ] ^ , . . ,g [ n ] ) ;
PRIWT( P 2 , h [ l l , . . . , h [ n ] ) ;
P R l N T ( P 3 , e [ 1 e [ n ] ) ;
P R I N T ( P 3 , f [ l ] , . . . , f [ n l ) ;  PRINT(P4);
I f  g [n ]»4  A epa<0.001 A - i(  SL0N(10)) Then Begin ep8«>1CX)*eps;
Per 1^1 Step 1 U n t i l  n-1 Do Begin

k - 2 * ( (k + l)$ 2 ) -2 ;
I f  s t u — 1 Then Begin B) 1 ]— 2 *e f 11 ; B [2 l« -e [ l ]2 | - f t l l2  Bag 

E lae  Begin B [ l 1 ~ e [ l ] - f [ l l ;  B [ 2 ] - e [ l ) » f [ l )  End;
For j-O  Step 1 U n t i l  k  E& Begin

A [J + 1 ] -A tJ + lJ -B [ l l* A [ j ] ;  A [ j+ 2 ] -A [ j+ 2 ] -B [2 ]« A [ j]  BBA B A  I :
Go to  AGAIN End ex;
End o f  Root; 

rep : BEADPT(HEXADS, AMB1 ,AMB2,NA,NB.K) ;
I f  NA-1 d  NB-1 Then READPTf HEXADS ■ ALP .ALPS. SIG. SIGS.R1 .B2.HP.BM,

KDS,KD,EPS,ErrUS,KMS,NT1 ,NI2,EM,ED,EE0,EEK,
H [ 3 , 0 ) , . . . , H [ 3 , 4 ] , a [ 1 , 0 ) , . . . , a [ 2 , 2 ) ) ;
I f  K— 4 Then Og i a  rep; READPT(HEXADS,

H [ 1 , 0 ) , . . . ,H [ 2 , 4 ) , T D [ 1 , 0 ) , . . . ,T D [ 4 ,1 2 ] ,
Q [ 0 3 , . . . ,Q [ 3 ] ,G [ 8 ] ,Y [ 0 ] , . . . , y C 7 ] ) ;

For 1-1 Step 1 U n t i l  K Ea READPT(HEXADS,Q[I,0], .  .  . , « [ 1 ,2 ] ) ;
I t  SLONf 15) Then Begin
BEADPT(HEXADS,A[1 A [ 4 ] , K , E [ 1 , 0 ] , . . . ,E [ 3 .  1 2 ],

E [ 1 ,0 ] , , , » ,E [ 3 : 1 2 J ,E [ 1 ,0 ] , , , , ,E C 3 jOJ);
For 1-1 Step 1 U n t i l  K Do R E A D P T (H E X A D S ,E [I,0 ],. ..,E [I,2 ]);
a id ;
FBI NTf 0 0 , EPS ,  EEO, EM, ED, AMB1, AHB2 ) ;

I f  SL0N(9) V SL0N(8) U joD Begin
F - I f  SL0N(8) Then ALP Elae 1/RM;

NOW: Fop k -1 ,2 ,3  2a Begin
For 1 -1 1 ,1 -1  W hile  K 1  2 2  Begin 
A [ l - l ] - ( T D [ k , l ] - A [ l ] ) * F ;
T D [ k , l ] - A [ i ]  find; T D fk .0 ]-A [0 1  End;
I f  S L 0N (9 ) d  F-ALP  Then  B e g in  p i- l /B H ;  g g  t g  NOW B u i  E nd:

I f  SL0N(12) Then Begin I f  SL0N{13) Then EXHLT(777); 2a i a  REPEAT B id:
Per 1 -1 ,2  ^  Begin k - -1 ;
Fo r j-O ,  j+1 W hile - ,{ T D [ l,J ] -0 )  Eg

Begin A f.11-T D [1 .J ]; k -k t1  .Eng;
P B IN T (F 1 ,l ,T D [ i,0 ] , . .  . ,T D [ l ,k )  ) ;
R oo t(A ,k ) End 1;
Par 1 -0 , 1 ,2 ,3  Do Begin A [ l ] - 0 [ 1 ] ;

A [ l ] - A [ l ] /Q [ 8 )  Ena l !
P B IN r (P 2 ,A [0 ] , . . . ,A [3 ] ) ;  
k - T f  G[3 ]<  ID -30 Then 2 Elae 3;
R o o t(A ,k );
For 1 -7 ,1 -1  W hile Y [ l ) < 1D- 3 0  Da k -1 -1 ;
For 1 -k  S tep -1  U n t i l  O Ea A I lJ - Y [ l ] ;
P R IO T (F 3 ,Y t0 ],. ,  .,Y [k+ 1  ] ) ;
B o o t(A ,k );

REPEAT: I f  SL0N(14) Then Begin PR INT(O I); flg  t g  pop End:
PRINT!0 0 ,EPS,EB0,EM,ED,AMB1,AMB2);

KM-SQRT(KMS);KD08-KD»a[8]; EM08-KMeG[8]; KMA-ALP/KM;
A [0 ]-l/k D G 8 ; A [l]-A (0 ]*R H ; P rodu ot(0 , 1 ,E ,A ,0 ,3 ,E ,0 ,0 ,E ,L C N ); Oeeeyefc B q .16-42; 
AtOj-l/KMOS; A[1J-AtO]»RD; ProduotfO, 1 ,E ,A ,0 ,3 ,E ,0 ,0 ,B ,Q D N 2 ); Coanent Ea. 16- 4 4 ;
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QDDU91-0; Ear 1 - 8 .7 .6 .5 , '» ,3 .2 .1 .0  Do Begin I3s  
QDD1 [1 ]-(T D [3 .1 + 1  1-5DD1 [ l+ l  ])«S IO ; 
QEN1[1]-TD[1,1]»KMA; BIJ4I.3! Coiwwint Eq. 16-44; 

A [1 ) - 1/ALP; A [S j-B l;  A t3]-R S; P o ly (A ,3 .B ); 
P ro d u c t(0 .3 ,E .B ,0 ,3 ,E ,a ,0 ,E .« C N ); P-kMA/KDOS;
For 1—0 . 1 .2 ,3 .4 .5 .6  Dg Q C N fl]—f * qcn£1 ] ;  Comnant Eq. l6 -4 4 ;

I f  1D-3<ED Then Begin L4:
Hoot(QDN1,9); Root C W D I.9 ) ;
Boot(QDN2,7): B o o t(Y ,7 );

R oot(5C N,7): R oot(LCN.7):
PRINT(001,QDN i [0 ],.. .,Q D M 1 [8 J .(1 D D 1 IO ],... ,Q D D 1 [9 ].i3DNato].....QDN2[4],y(o],...,y[7l.

QCMCOJ, . .  ..aC M [6 ]. Yfo], . .  . .  YC7 J.
L C N [0 ] , .. . ,L C N (4 ]) ;

3a rep  End L4;
Ppoduct(0,9,E .Q DD 1,0,4,E ,(JD N 2,O ,E ,A ); A[ 14]-A [ 15]*0 ;
Product ( 0 .8 ,K ,qdN 1 ,0 ,7 ,E ,Y ,O .E .B );
E ar 1 - 0 .1 .2 .3 .4 .5 .6 ,7 .8 ,9 ,1 0 ,1 1 ,1 2 .1 3 .1 4 ,1 5  Ea QDN[1 ] - A [ l ] + B [ l ] ;  Comment Eq. 17-16 and l8 ; 
I f  1D-3<EM Then Begin L5:

P roduet(0 .9 .E ,Q D D 1 ,0 ,7 ,E ,Y ,0 ,E ,Q D D ) ;
R oot(C D N .l6): Boot(Q DD ,l6):
Root(QCN,7): B o o t(Y ,7 );
H ootfLCN.7):
PRINT(002,QDN[0], . . . ,QDN[ 15].Q D D[0], . . . ,QDD[ l 6 ] ,

« C N [0 ] , . . . ,Q C N [ 6 ) ,Y [ 0 ] , . . . ,Y [7 ] ,U : N [ 0 3 , . , . ,L C N [ 4 ] ) ;
End L5 E lse Begin l 6;

P ar l - 0 , 1 , 2 , 3 . t . 5 . 6 . 7  Da Q C D [1]-Y [1]-LC N [1];
Product (0 ,7 .E ,< iO D ,0 ,9 ,E ,Q D D 1,0,E ,aD D )l 
Boot(aDN, 16); R oat(Q D D,l6);
Root(QCN,7): Fo ot(Q 0D ,7):
PR IN r(002,Q D N [0], . . .  ,QDN[ 1 5],0D D [0 ], . .  .  ,QDD[ 16],

QCN[0 ] , . . . ,  C0NI6 ] ,«CD(0 ,QCDt7 ) )  ;
End l6; Og tg  rep  End o f  265;
0

Proa*am 175;
Procedure p ro d u c t(p ,n ,U ,X ,q ,m *V ,Y ,r ,W ,Z );
Cofffnent Th is  procedure m u lt i lp le s  polynom ial I f  p ^  Then X [ l ]  E lse U [p , l ]  

w ith  po lynom ial I f  q *0  Then Y [ l ]  E lse V [ q , l ]  to  g ive  the  
polynom ial I f  r - 0  Then Z [ i ]  Else W [ r , i ]+  In  a l l  cases, the  
lowest index  c o e f f ic ie n t  rep resents  the constant term ;

Value p ,n ,q ,D ,r ,X ,y ;
A rray  U ,V ,W ,X ,Y ,Z;
In te g e r  n ,m ,p » q ,r;
Begin

Real A rra y  x [0 : I5 ] ,y [ 0 : 1 5 ] , z [ 0 : 15];
In te g e r i , j , k , a , b , c ;  a**p;b̂;c-r;

I f  0<a Then Begin For l«-0 Step 1 U n t i l  n Dq, x f l ] * - U [ a , l ]  god 
Else For 1*0 Step 1 U n t i l  n Do x [ l ] * - X [ i ] ;

I f  0<h Then Begin For i * 0  Step 1 U n t i l  m D o .y [ l ] * 'V [h , l ]  Bad 
Else For 1*0 Step 1 U n t i l  ra ^  y [ i ] * Y [ l ] ;

For k *0  Step 1 U n t i l  n+m D2  z [k ] * 0 ;
For i« 0  Step 1 U n t i l  n Ea Begin
For J*0 Step 1 U n t i l  m Qp Begin
k * i+ j ;  z [ k ] * x t i ] » y [ J ] + 2 [ k ] ; B ià  Eod:
^  0<c Then Begin EST 1*0  1 U n t i l  iH-n Bg, W [c ,i ] * z [ l ] ;B a &

Else F a r 1 *0  Step 1 U n t i l  ivfrn Z [ i ] « z [ i ] ;  End:
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D [0 ]» M [3 ]) /D t6 ];  D E L 6 -(D [l]» M [5 ]-D t3 ]*« ['» ]+ D (5 ]» M [3 l)*D [0 ]j 
In to 8 l-(C [5 ]2 *M (0 ]+ (C [4 ]2 -2 .Ù » C [3 )*C [5 ])*M [l]+ {0 [3 }® -2 .O » 0 l2 ]» C [4 ]+  

2 .O *C tl3 » 0 t5 ])» M [2 ]+ (C t2 ]2 -2 .O » C tl]*0 [3 )+ 2 .O » O [O ]« C [4 ])« M t3 ]+  
(C [1 ]® -S *0 [0 )» C (2 ])*M [4 ]+ 0 [0 ]2 *M [5 ]) /(2 *D E L 6 ): fla
L7: «[ 1 ]— (D [ 1 ]"D lU )-D tO )»D [5 ) (D [0 ]*D [31 -D [ 1 l*D [2 ] ) * fD [0 ]» D [7 ] -D [  1 ]»D [6]

+ D C 2 ]*D [5 ]-D t3 ]*D [U ));
M f2 M D r0 3 * D [7 3 -D ft3 » B [6 ])* r -D [0 3 » D f5 ]+ D [l3 * D [4 ])+ (D l0 j«

D [3 ] -D [ ) ] * D [2 ] ) f (D [2 ]« D [7 ] -D [3 ]» D [6 ] ) ;
H [3 ]— (D [0 ]» D t7 )-D [ 1 ]«D [6  J )e f(D [0 ]# D [3 ]-D [ 1 3*D [S ] )» (D [4 ]« D [7 3 -D [5 3 *D [6 3 ):
m [ 0 3 - ( d [53»h [ i 3-d [3 ]» h [2 ]+ d [ i 3»m [ 3 3 ) / d [7 3 s

M [43-(D [2  3‘ M [33-D [4 3»M [21+Dt63*M [l3)/D t03:
M [53-(D t23*M [43-D [43*M [33+D [63*M [23)/D [0 ]i 
M [63-(D t2  3‘ MC53-Dr43»M[43+D[63*Mt33)/D[03s 
d e l7 -d [0 3 * (d [iB "m :6 3 -d C 3 3 ’ M [53+d [53*m I43-d [73«m [33); 
In tes l*-(0 [632»M [03+ (C [53® -2 .0*0 [43«C [63 )*M [1]+ (C [432 .2 .0»0 [33»C [53+ 2 .0«  

0[23*O [63)*M [23+(C[33®-2.0*C[23«C[43+2.O»CCt3*C[5]-2.O»OCO3* 0 ( 6 ] ) *
M [33+(C[23^-2 V *C [1 3 *C [3 3 + 2 .0 *C [0 ]*C [4 3 )*M [4 ]+ (C [1 3 ^ -2 .0 *0 (0 3 *  
C [23 )*M (53 + 0 [0 ]2 *M [6 3 )/(2 .0 *D E L 7 ); Oat a L11 ; 

L 8 :M (l3 -(D (0 ]*D [7 3 + D [2 3 *D [5 ])» (-D [0 ]*D [1 ]*D [7 ]+ D [0 ]*D t3 3 *D [5 ]+ 2 .0 *
D [13^ *D (63 )+ (d [33*d (7 3 -d (53® )»(d (032*d [53+d [ i3 * b [2 ]2 )+ d ( i ] * d [33*d (8 3 * (d (03*

D(3 ]-D (  1 ]*D [2 3  )-D ( I 32 *D (8 ]*{D [0 ]*D (53 -I> ( 13*D£4] )+ (-D (2 ]* r [7 3 + D (3 3 » D (6 ]-  
D (4 )*D (5 3 )* (D (0 3 *D [3 )® + D [l3 2 *D [4 ])-D [l3 *D [6 3 *(D (l3 2 *D (6 ]+ 3 .O *D [O l*  
D [3 )*D (5 3 )-D [1 3 *D [2 ]*D (3 3 * (D [3 )*D (6 3 -D [4 ]*D [5 3 )+ 2 .0 *D (0 )*D (1 3 *D (4 ]*D (5 ]2 :

M (2 3 -(D [0 3 *D [3 ]-D (1 3*0(23 )*C D [03*D C 73® -D [1 )*D (53*b [8 ]-D [1]*D [6]*D (73+  
D [2 ]*D [5 3 *D [7 3 )+ (D [3 3 *D (8 ]-D [4 3 *D (7 3 )* (-D (0 )*D [1 ]*D [5 ]+ D (0 ]*D (3 ]2  
-D [l]*D [2 3 *D (3 3 + D [l3 ® *D [4 ])-D [0 ]*D t5 3 *D [7 )* (D [0 3 *D [5 3 -  
d [ i 3*d [4 3 )+ d ( i 3®*d [8 3 * (d [o ] * d [7 3 -d [ i 3*d (6 3 ):

M[33— D [l) * (D [ l]* D [8 ]-D [2 3 * D t7 ])® + (-D [5 ]*D [B 3 + D [6 3 » D (7 ]) *
(D (0  3*D[ 1 ]«D(5]-D [03*D[33^+D [ 1 3 *D (2 ]*D (33 -D [ 1 ]®*D[4] )+
D [0]*D [73® *(-D [03*D [53+ D [1]*D (4 ]+ D [2 ]*D (33  3 -2 .0 *0 (0 3 *  
d ( i 3*o (3 3 *o ( 7 ) * d (83:

m ( 4 3 - ( - d (5 3 *o (83+o (6 3 *o ( 7 3 ) * ( 2 .o* o (o ] * o ( i 3*d (7 3 -d (o ) * o ( 3 ) * d (53
+ 0 (1 3 *D (2 ]*D (5 3 -D (1 ]2 *D [6 3 U (-D (3 3 *D (8 ]+ 0 (4 ]*D (7 ])* (D (0 3 *D (3 )
*D (7 3 -D (1 3 *0 (2 3 *0 (7 3 + 0 (1 3 ^ * o (8 ])_ o (o ]2 *o (7 ]3 ;

M (0 3 -(D (6 3 *M (1 3 -D (4 ]*M (2 ]+ 0 (2 3 *M (3 3 -D (0 ]*M (4 ])/0 (8 ];

M (53*-(D (23*M (43 -0 (4 ]*M (33+ 0(63*H (23 -D (8 ]*M (1])/D (03 ;
M (6 3 -(D (2 3 *M (5 ]-0 (4 ]*H (4 ]+ D (6 3 *M (3 3 -D (8 ]*M (2 ]) /D (0 ];
M (73-(D (23*M (6]-0(43*M (53+D [63*M (4]-D (83*M (3] 3 /0 (0 ];  
D E L8-0(0 ]*(D (l3 *M (73 -0 (33*M [63+ D (53*M (53 -D (7 ]*M (4 ]3 ;  
In te B l-(C (7 3 2 *« (0 3 + (0 (6 3 ® -2 .0 *0 (5 3 *0 (7 3 3 *M (1 ]+ (0 (5 ]2 -2 .0 *0 (4 3 *

C (6 ]+ 2 .0 *0 (3 3 *0 (7 ]  )*H (2 ]+ (C [4 3 2 -2 .O *C (3 ]*0 (5 3 + 2 .0 * 0 (2 3 *0 (6 ] -  
2 .0 *C ( 1 3*0(73 )*M (3 3 + (C (3 ]® -2 .0 *0 (2 3 *0 (4 ]+ 2 .0 *C ( 1 3 *0 (5 3 -2 .0  
* 0 (0 3 * 0 (6 ]3*m (4 ]+ (o (2 3® -2 .o* c ( 1 3 *0 (3 3 + 2 .0 *0 (0 3 *0 (4 ]) * m (53+
( o ( i ] 2 - 2 .0 *0 (0 3 *0 (2 )  3*m(63+c (o 32*m(7 3 3 / ( 2 .o* o e i83;

Qate L11;
LL9: A1-D1*D2-00*03:
*2 -0 1 *0 4 -0 0 *0 5 ;
*3 -0 3 *0 4 -0 2 *0 5 ;
*4 -0 1 *0 6 -0 0 *0 7 ;
*5-03*06-02*07;
*6 -0 5 *0 6 -0 4 *0 7 ;
*7-01*08-00*09;
*8 -0 3 *0 8 -0 2 *0 9 :
*9 -0 5 *0 8 -0 4 *0 9 ;
*1  .-0 7 *0 8 -0 6 *0 9 ;
M l-*1 *(*1 **1 0 -*2 **9 + A 3 **6 + *3 **8 + 2 .*A 4 **6 -*5 *A 5 -*5 *A 7 -A 7 **7 )+ A 2 *(-*2 **6 -*3 **7 + A 4 **5 + 2 *A 4 **7 )-A 4 *A 4 **4 j 
M2-A1* ( *3 **9 + A 4 **9 -*5 **8 + *6 *  A 7-*7 * a 8 )+ *2 * (  -A 2* A 9+*4**8+*7*A 7 ) - * 4 * * 4 *  A7; 
M3-A1*(A3**10-v*4*A 1O +*7**9 -*8 *A 83+*2*(-A 2*A 1O +*7**83 -*4 *A 7**7 ;
M 4-* 1* ( A5*A 10+2. »*7*A  1 0 - *8 * * 9  3+A2* ( *7*A9-A4*A 10 3 -A 7* A7*A7;
M5-(02»M4-04*M3+06*M2-08*M1 3/00;
M6-(02*M5-04*M4+06*M3-08*M23/BC;
K 7-( 02*M6-04*M5+06*M4-o8*M3 3/00;
H 8 -( 02*H 7-d4*M6+06*K5-08*M4 3/DO;
0EL9-(01 *M8-0? ’ M7+05*M6-07*M5+09*M43 *00 ;
M0-(D7*M1-05*M2+D3*M3-01*M4)/D9:
I 9 - Û  C8*08*MO+ ( C 7*C7-2. * c6*C8 3 *M 1+( C6*C6-2. *05 *07+ 2 . *C4*o8 ) * M ^  ( 0 5 *0 5 -2 . *C4*C6+2. *C 3*C 7-2 .*C 2*08)*H 3  

+ (0 4 *0 4 -2 .*0 3 *0 5 + 2 . *0 2 *0 6 -2 .*01*07+2 .*00*08)*M 4+(C 3*C 3-2.*02*C 4+2 .*C 1*05-2 .*C O *C 6)*H 5
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+(0S*C2-2.«O1»C34-2.»OO»C4)»M6t(O1»C1-2.*OO«C2)*«7+OO»CO»M8))/(2.»DEl,9)s 
Integl-I9: Ooto L11 ;
LL10: A1-D1*D2-D0«D3;
A2-D1«D4-D0«D5:
A3-D3»D4-D2*D5:
AJ4-D1<D6-D0»D7;
A5>D3»d6-D2»D7:
a6<-D5»e6-d4«D7:
A7-D1*D8-D0*D9;
A8>D3»D8-C2*D9;
A9-D5*D8-D1»«D9;
A10-D7*D8-D6*M:
B1-D1»D10;
B2-D3»D10;
B3-D5*D10:
B't-D7»D10;
B5-D9*D10;
M1-A1*( (D1*(-A2«B5+AU»B4-A5»A10-A6»B2-2.*A7»A10+A8»A9+A9»B1 )

+D3* ( A1 •B5+A3* A1 (X-A4*A 10-A4»B3+A5*B2tA7*A9-A8*A8-A8»B 1-BI«B1) 
+D5»(-/il»Bit+A2«B3-A3»A9-A3»B2-AJt»A9<-A5»A8-A6»A7+A7»A8tA7»B1)
+B7»( A1 *A 10-A2»A94-A3*A6f A3»A8tA3»Bl+2.• A4»A6+A4*B 1-A5»A5-A5»A7-A7»A7) ) )
+A2*( (D1»( Alt«A10tA6*B1-A7»A9tB1«B1 )+D3*(-A2»A10-A5*B1+A7*A8tA7»Bl )
+D5» ( A2«A9^A3»B 1 -A4*A8-A»«B 1 -A7»A7 )+D7« ( -A2»A6-A2«B 1 -A3»A7+A4»A5«.2. »A4»A7 ) ) )
+A4«( ( A7»(-D3»A7+D5»AU-2.»D1»B1 )+A4*(D3»B1-D7»A4) ) )+D1«A7»A7*A7: 

K2-A1*((D1»(-A5»B4-A7*B4fA8»B3-A10»Bt+B1»B3)+D3»(A3»B4tAJ|»B4-A8»B2+A9»BI-Bl»B2) 
+D5»(-A3«B3-A4*B3»A5»B2-A6*B1+A7»B2 )
+D9» ( A1 »A 10-A2*A9<-A3* A6tA3*ABtA3»B 1+2. *A4«A6+A4»B 1-A5» AS-A5» A7-A7*A7) ) )
+A2»( (D1»(A4*B4-A7»B3)+D3»(-A2*B4+A7»BS+B1»B1 )+D5»(A2»B3-A4»B2-A7»S1-> 
+D9*(-A2»A6-A2»B1-A3*A7+A4»A5+2.*A4»A7) ) )
+A4*( (B1 *( -D3*A7+D5*A4-D1 *B1 )-D9»A4*Al) )+D1»A7»A7»B1 ;

M3-A1 • ( ( D1 * (-A5»B5-A7»B5-B 1 »B4+B2»B3 )+D3* ( A3»BS+A4»B5+B1 »B3-B2»B2 )
+D7» ( - A3*B3-A4»B3+A5»B2-A6»B 1+ A7*B2 )
+D9»( A1»B4-A2»B3+A3»BS+A3*A9+A4*A9-A5»a8+A6»A7-A7*a8-A7»B1 ) ) )
+A2»( ( D1 • ( A4»B5-B 1 »B3)+D3*(-A2*BS+B 1 »B2)+D7*( A2»B3-A4»B2-A7»B 1 )
+D9*(-A2*A9-A3»B1+A4»A&.A4»B 1+A7»A7) ) )+A4*( (A4»(D7»B1-D9*A7)-B1»B1»D3) )+A7»B1»B1»D1 ;

M4-A1 * ( ( D1 • ( - A8»B5-2 . *B 1 »B5+B2»B4 )+D5» ( A3»B5+A4»B5+B 1 »B3-B2»B2 )
+D7» ( - A3»B4-A4»b4+a8»B2-A9»B 1+B1 »B2 )
+D9» ( A1 *BS+A3*A 1 0+a4»A 1 0-A4»B3+A5»B2+A7»A9-A8»AB-a8»B 1 -B 1 »E 1 ) ) ) 
+A2»((D1*(A7»B5-B1»B4)+D5»(B1»B2-A2»B5)+D7»(A2»B4-A7*B2-B1»B1)
+D9»(-A2»A10-A5»B1+A7*A6+A7»B1 ) ) )+a4»( (D9»(-A7»A7+A4»B1 )+B1«(B7«A7-D5»B1 ) ) )+D1»Bl»B1»B1; 

M5-A1»((D3»(-a8»B5-2.»B1 •B5+B2*B4 ) +D5» ( A5»B5+A7»B5+B 1 »B4-B2»B3 )
+D7» ( - A5»B4-A7»B4+a8»B3-A10»B 1+B1 *B3)
+D9» ( A2»B5-A4»B4+A5»A 10t A6»B2f 2 . »A7»A1 0-A8»A9-A9»B 1 ) ) 1 
+A2* ( ( D3» { A7»B5-B 1 «B4 ) +D5* ( B1 »B3-A4»B5 )+B7» ( A4»B4-A7»B3 )
+D9*(-A4»A10-A6»B1+A7*A9-B1»B1 ) ) )+A7»( (D9»(2.»A4»B1-A7»A7)+B1»(D7»A7-D5»B1 ) ) )
+B1»B1•(D3»B1-D7*A4);

M6-(D2»M5-I>4»M4+D6»M3-D8»M2+D10»M1 )/D0;
M7-(D2»M6-r)4»M5+B6»M4-D8»M3+D10«M2)/D0:
m8-(D2»M7-D4»m6+d6»M5-e8»m4+di0»«3)/D0:
M9-(D2»m8-D4»M7+d6»H6-D8»MS+d10»M4)/D0;
DEL 10-DO* ( D1 *M9-D3»MS+D5»M7_D7«M6+D9»M5 ) ;
MO-( D8»M 1 -D6»H2+D4»M3-D2»M4+D0»M5) /I) 10;
I1O-((C9»09»MO+(C8»08-2.»C7»C9)*M1+(C7»C7-2.»C6»0a+2.»05»09)«Ma+(c6»06-2.»05»C7+2.»04»c8-2.»C3»C9)»M3

+(C5»C5-2.»C4»06+2.»03»C7-2.»02»OSt2.»C1»C9)»M4+(04*C4-2.»C3»05+2.»C2»C6-2.»C1»C7+2.»CO»c8)»l15
+(03»C3-2.»C2»C4+2.*C1«C5-2.»00»C6)»M6+(02»C2-2.»01«03+2.»CO»C4)»M7+(C1»C1-2.»00»02)»M8+CO»CO»M9))/(

2.»DEL10);
Intogl—110; goto L11;
UliEnd!

Program 205;
Proeeduro Poly(D B ,JJ,TD );
Conmant Poly m u lt ip lie s  fac to red  polynom ials to  produce an 

un fa c to re d  polynom ial o f order up to  10 JJ)
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l e . (  1+a[ 1 ] j [ ) . . .  ( i+ a [J J ]x ) -  TD[0] + . . .  +
Value UR.JJ; Real A rray  UR.TD; In te g e r JJ;
Begin In te g e r  I,J ,L L ,M M ,J A ,IM ,IA ,IB ,IC ;  Real A rray  DTDfO: 101:

Ear I - Ï  W hile |UR[JJ] |<1D-20 Dn Begin T D [J J ]-0 ; JJ~JJ-1  End! 
Far I~l Step 1 U n t i l  JJ Do T D [ l) -0 .0 ;
TD [0 ]> 1 .0 ; T D [1 0 ]-1 .0 ;
Ear 1-1 step 1 U n t i l  JJ Do Begin TD[ 1 l-JTDi; 1 ]+UH[IJ;

T D [1 0 ]-T D [1 0 ]»U B [I];
Ear J - I+ I  S îfiP  1 U n til JJ Do Begin D T O [2 j-U R [I]«U B [J ];
For LL-J+I S te p  I U n til JJ Do Begin DTD[3]-Un[DL]»DTD[2];

For JA-MMfl S tep  
For IM-JA+1 S tep  
For IA*-lMf 1 S tep  
For IB -IA+J S tep

U n til JJ Do Begin DTD[ 4 ]i^UR [ MM 3 *DTD [ 3 3
U n til JJ Do Begin EfTD [ 5 1-UR C JA 1*DTD [ 4 3
U n til JJ Da. Begin DTD[63-UR[IMJ*DTD[5]
U n til JJ Do Begin DTD [7 3-ÜR [ lA  J *DTD [ 6 3
U n til JJ Do Begin D TD [83-^(lB 3*D TD f7J
U n t il JJ Ba Begin DTD[9 ]-UR [ 10 3*d tdC8 3
End:
End;
End:
End;
Eod:
End:
End;
End;End:

TD [9]-^D [9 l+D TD [9] End 
TD [8]-TD [8]+D TD t8] End: 
TD [7]-TD [7)+D TD [7] End! 
TD[6]-TDf6J+DTDf6J End 
TD [51-TD[5]+DTD[5] End; 
TD [H]-dD[U]+DTD[«l End; 
TD[3]-TD[3]+DTDC31 End! 
TD[2]-JTD[2]+I 
EndEnd;

Program 207;
Procedure b a lr5 to (n ,a ,e p 8 0 ,e p s l,e p s 2 ,e p 8 3 » K ,m ,x ,y ,n a t,e x );
Value n; In te g e r  n,K,m ; Real epsO,eps1»ep82,epa3;
In te g e r  A rray  ex«nat; Real Array a ,x ,y ;
Comment Th is  B alrstow  Hitchcock i t e r a t io n  Is  used to  f in d

s u ccess ive ly  p a irs  o f roo ts  o f  a polynom ial equation  
o f  degree n w ith  c o e ff ic ie n ts  a [ l ]  ( 1 = 0 * 1 , . . , #n) 
where a [n ] I s  th e  constant term . On e x i t  from the  
procedure* m is  the number o f  p a irs  o f roo ts  found* 
x t l ]  and y [ l3  ( l« l * » . . * m )  are a p a ir  o f r e a l roo ts  
I f  n a t [ i } - 1 *  th e  r e a l and Im aginary parts  o f  a complex 
p a ir  i f  n a t [ l ] « - l *  and e x [ l ]  In d ic a tes  which o f the  
fo llo w in g  c o n d itio n s  was met to  e x i t  from the I te r a t io n  
loop In  f in d in g  th is  p a ir

( 1 ) Remainders r î , r O ,  become a b s o lu te ly  le s s  than  e p s l.
(2 )  C orrec tion s* in crp * In erq * become a b s o lu te ly  less  

than eps2
(3 )  The r a t io s *  In c rp /p * In c rq /a *  become a b s o lu te ly  

less th a n  eps3
(4) The number o f I te r a t io n s  become K . In  th e  la s t  case* 

the p a ir  o f  roots found Is  not r e l ia b le  and no fu r th e r  
e f f o r t  to  f in d  a d d it io n a l ro o ts  Is  made. The q u a n tity  
epsO Is  used as a low er bound fm r the  denominator in  
the expressions from which In crp  and In crq  a re  found;

Begin In te g e r  1* j*k *n l*n 2 *m 1 ;
A rray  b .c [0 :n + 1 ]: R e a l p *Q ,rO ,r1 ,s O ,s l,v O ,v l,d e tO ,d e t1 *d e t2 * ln c rp , 

In c rq ,S ,T ;
I f  a [0 ]" 0  Then Oo t o  f in a l ;
For 1 ^ 0  Step 1 U n t i l  n Do
b C l] -a C l3 /a [0 ] ;  b [n + tJ -O j n 2 -(n + l)$ 2 ; nl**2*n2;
For ml •  1 Step 1 U n t i l  n2 Do Begin
I f  n l< 3  Then Begin e x [m l] - l ;  p*-b[l3* o*-b[2]; Oo to next B id ;
p — 0; a •• 0;
For k  •  t Step 1 U n t i l  K Do Begin
step: For 1 •  O Step 1 U n t il n l Do
c [ l ]  -  btl3;
For j  •• n1-2* n1-4 Do Begin
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Per 1 ^ 0  Step 1 U n t i l  j  Do Begin
d l + l ]  — c [l+ 1  ] - p * c [ i ] ;  c [l+ 2 3  — c [ l+ 2 ] - q * c [ i ]  End End: 
rO -  d m ];  r1 c [ n 1 - l ] ;  sO -  c [n 1 -2 } ;  s i cCn1-3]; 
vO,** -Q *s1; v1 •• s O -8 l*p j detO — v1*sO-vO*a1;
I f  IdetO* < epsO Then ^ g i n  p ^  p ^ l;  q ~ - ÿ f l ;
Ooto s tep  Ends
d e tl •  s O *r1 -8 l*rO ; do t2 •• pO *v1-r1*vO ; in crp  •• d e tl/d e tO ;  
in crq  •  d e t2 /d e t0 ; p •• p4-lncrp; q -  o+incrq ;
I f  irO* < eps l Then Begin
I f  |r1 *  < eps l Then Begin e xtm l] •• 1; Ooto next End End;
I f  I in c rp * < eps2 Then Begin
^  I in c rq * < eps2 Then Begin e x [m l] — 2; Goto next End End;

I in c rp /p *  < eps3 P ien  Begin  
I f  | in c rq /q *  < eps3 Then Begin extm l 1 — 3; Goto next End End Ends 
ex[m l] 4 ;
next; S -p /2 ;  T  — S®-q;

-i(T<0) Than Æegln_
T •  SQRT(T); n a t [ml ] — 1; x[m1 ] — S+T; y [m l] — S-T End;
I f  T<0 Then Begin
n a t[m l] *  -1 ;  x[m1 ] — S; y[m M  — SQBT(-T) End;
I f  ex[ml]»#4 Then Goto out;
Per j  ^  0 Step 1 U n t i l  n1 -2  Do Begin  
b [ j + l ]  -  b [J + l] -p * h [J ] ;  b £ j+ 2 ] -  b [ j+ 2 ] - q * h [ j ]  
n l •• n1 -2 ;
JS  n1<1 Then Begin 
out: m «  ml; Goto f in a l  End;
End; f i n a l :  Ends

Program 207;
Procedure b a irs to (n ,a ,e p s O ,e p s 1 ,e p s 2 *e p s 3 ,K # m ,x ,y ,n a t,e x );
Value a ,n ; In te g e r  n#K,m; Real epsO,eps1,eps2,ep83;
In te g e r  A rra y  e x ,n a t;  Real A rra y  a ,x ,y ;
Comment % is  m o d ific a tio n  *SR* o f  b a irs to  adds a  ro o t a t  .001 

to  odd o rd er polynom ials to  e lim in a te  convergence 
problems when thesr polynom ials have a  v ery  sm all 
ro o t .  O ther c « m e n t*  f o r  th e  above b a irs to  apply;

Begin In te g e r  i ,  j ,k ,n 1 ,n 2 ,m 1 ;
A rray  b ,c [0 ;n + l ] ;  Real p ,q ,r 0 ,r 1 ,8 0 ,s i ,v O ,v 1 ,d e tO ,d e t l ,d e t2 , in c r p ,  

in c rq ,S ,T ;
In te g e r  Index; lndex«*0; RETURN;
I f  a [0 ]" 0  Then Go to  f in a l ;  
n 2 -(n + l)$ 2 ;  n1*-2*n2; b [0 ]*-1;
I f  n l-e i Then Por i-1 ,1 + 1  W hile i< n  Do b [ i ] « * £ l ] / a [ 0 ]  E lse  Begin  

las i - 1 , i + l  WMlfl. i< n i Jitt b t i H a I l ] + 0 . 0 0 i * a [ i - l ] ) / a [ O ] ;  
Index-1  End;

Por ml — 1 Step 1 U n t i l  n2 Do Begin
I f  n1<3 XbfiD Begin e x [m l]-1 ;  p - b [ l ] ;  q -b £2]; Og tS  next Ends 
p •  0 ; q — 0;
Pgr k  — 1 Step 1 U n t i l  K £ 2  Begin  
steps Por i  — 0  S tep 1 U n t i l  n l Do 
c l i ]  -  b [ i ] ;
Ear j  m - 2 ,  n 1 -4  Begin  
Por 1 — 0 Step 1 U n t i l  j  _Do Begin
c t l+ 1 ]  -  c [ l+ 1 I - p * c £ i ] ;  c [ i+ 2 )  — c [ l+ 2 ] - q * c [ l ]  End End: 
rO -  c[n1 ];  r1  -  c [ n 1 - l ] ;  sO — c [n 1 -2 ] ;  s i -  c£n 1 -3 ];
vo — -q *s 1 ; V I •  sO-s1*p; detO — v1*eO-vO*s1;
I f  IdetO* < epsO Then Begin p — p f i ;  q -  q+1;
Goto s tep  End;
d e t l — sO *r1 -s1*rO ; d e t2  — rO *v 1 -r l*v O ; in c rp  — d e tl/d e tO ;
In crq  — d e t2 /d e t0 ; p — p fin c rp ; q — q+incrq ;
I f  b [n l3 -0  Then q - ln o r q ^ ;
I f  IrO * < epsl Then Begin
I f  I n  * < epsl Than Begin exfm l ] — 1 ; Goto next End Ends
I f  I in c rp *  < eps2 Then Begin
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1£ I in c rq * < epsS Then Begin ex(m1 ] — 2; Qote next End Ends 
Z f  | ln c r p /p ' < epa3 Then Begin
iX I In c rq /q  ' < opp3 Then Begin e x[m l] 3» Ooto next End End Ends 
ex[m l] •- 4;
next: S -  -p /2 ;  T  •• S^-q:
JX  V T < 0 )  SÙan. Begin
T -  SQRT(T); n a t[m l] -  1; x[m 1] •• S+T; y[m1 ] “  S-T Ends 
IT  T<0 Then Begin
n a t[m l] •  -1 ;  x (m l] •  S; y [in l] -  SQRT(-T) End;
It oxCml J-<4 Then Oota out;
For j  ^  0  Step 1 U n t i l  n l - 2  Do Begin
W j + 1] - b[J+ll-p*b[J]; b[j+2l - b[J+2)-a*bCj] £odî
n l -  n 1- 2 ;
XC nl<1 Then Begin
out; m — ml; Goto f in a l  End^
Ends f in a l :
XC Index-1  Then Begin

Per 1—1 Step 1 U n t i l  m Do Begin 
I f  n a t [ l ] - 1  Then Begin
p -x [ l ]+ 0 -0 0 l;  ^  |p |< 0.0001  Then Begin x [ l l - 0 ;  Oo ^  L i End:
a *7 [ i3 + 0 .0 0 l;  XT )q |<0*0001 Then Begin y [ l ] * 0 ;  Oo ^  L I gQg End Ends L Ix Bnd:

Program 207;
Procedure b a lre to (n ,a ,e p e O ,e p 8 l,e p e 2 ,e p 8 3 # K ,m ,x ,y ,n a t,e x );
Value a#n; In te g e r  n,K,m} Real epaO»epa 1,epaE,ep83s 
In te g e r  A rray  ex#nat; Real A rra y  a ,z ,y ;
Coxmment This m o d ific a tio n  'SS* o f  b a lra to  re tu m a  to  p ic k  a  new 

p and q i f  convergence f a i l a  and ex -  4 ; thua I t  f in d a  
a d i f fe r e n t  s e t o f  ro o ts  and then re tu rn s  to  f in d  the  
sm allest a e t .  Th is  m o d ific a tio n  was th e  moat success
f u l  form  o f  b a ir a to  to  f in d  ro o ts  under d i f f i c u l t  cond itions  
b u t i t  was v e ry  tim e consuming since K ite e ra t io n s  were 
req u ire d  befo re  i t  t r ie d  a  second set o f  ro o ts . The o th er  
coamenta in  th e  above b a irs to  apply;

Begin In te g e r  1 , J ,k ,n 1#n 2 ,m l;
A rra y  b .c tO sn + lls  Real p#q#rO#r1#aO#al#vOjVl#detO#det1#det2#incrp#

in c rq ,S ,T ;
In te g e r  Index; In d e x-0 ; ROTURN:
I f  aCOl-0 Then Oo ^  f in a l ;
P er 1 — 0 Steb 1 U n t i l  n Do
b t i } - a [ l ] / a [ 0 ] ;  b [n + l] -0 ;  n 2 -(n + l)$ 2 ;  n1-2*n2;
Per ml -  1 S tep 1 U n t i l  n2 Do Begin
I f  n1<3 Then Begin ex[m l2—1; p H » [l] ;  q -b [2 ];  Oo to  next Ends 
p -q *0 ; NOW:
Pey k  — 1 Step 1 t t i t i l  K Do Begin  
step: E ar 1 - 0  Step 1 U n t i l  n l
c [ i ]  -  b [ i j ;
Fop J — n 1 -2 , n l -4  gft Begin 
Cos i  -  0  Step 1 U n t i l  J Do Begin
c [ i + l )  — c t i+ 1 3 - p * c [ i ] ;  c [ i+ 2 ]  — c [ i+ 2 ] - q * c t i ]  End End» 
rO — c [ n l ] ;  r1 -  c ( n l - l ] ;  sO — c [n 1 -2 ];  s i -  c [n1-33; 
vO — -q *s 1 ; v1 — sO -a l*p ; detO — v l*a O -v O *s l;
I^  IdetO* < epsO Then Begin p — p+1; q — q+1;
Ooto step End:
d e t l  — sO *r1-s1*rO ; detS  — rO *v1-r1*vO ; in crp  — d e tl/d e tO ;  
in crq  — d e t2 /d e t0 ; p — p+ incrp ; q — q+incrq;
Ij^ |r0 |< e p 8 l A I n  |<epsl Thqp Begin e x [m l]-1 ; gg t a  »oxt End;
I f  I in c rp  I <eps2 a  | in c rq  |<eps2 Then Begin ex[m 13-2; gg next
I f  |in o rp /p |< ep s3  A j in erq /q )< u p s3  Then Begin extml 3-3; t f t  n ex t SoA End;
it lndex»0 Then Begin p - 2 * b t l3 / ( n - 1 ) ;  q - (p /2 )^ ;  In dex-1 ; Og t g  NOW End; 
ex[m l3 -  4;
nex t: 3 — -p /2 ;  T — S^-q;
it ->(T<0) Then Begin
T -  SQRT(T); nat[m l3  -  1; x[m l3 -  B**T; y[m13 -  S-T SoÛJ
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I f  T<0 Then Begin
natCtnl] -  - 1 ;  x[m l3 ^  S; yCmtj •• SQRT(-T) End:
I f  Then Ooto out;
Per j«-0 Step 1 U n t i l  n1-2  Do Begin
M j+ 1 ]  b ( j + l ] - p * b [ j ] ;  bCJ+2] -  b [ j+ 2 ] - q * b [ j ]  S U ;
n 1 -n 1 -2 ; I f  In d e x -1 Then B egin lnJ?x-0 ; p - q ^  End;
I f  nl<1 Then Begin
out: m — m l; Goto f in a l  End;
End ; f in a l :  End:
00

Program 202;
Procedure C a n c e l(N *M ,X ,Y ,p ,a ,a lg ,ta u # m ,n ,a ,k ,u *  j , v ) ;
Comment (S p e c ia l purpose program) Th is  program sets up

c r i t e r i a  fo r  the c a n c e lla tio n  o f  poles and Z9Tos 
fo r  Program 276*
In p u t IB fra c t io n  ( X [ l ] * X [ 2 ] * . . . * X [ N ] ) / ( Y [ l l * Y [ 2 ] * . . . * Y [ M ] .

D esired output Is  ( u [ ) ] * u î2 ] * .  • . * u [ ) c ] ) / ( v [ l  ) * v f 2 j * .  , -« v f j J ) .
In put data:
N ,M ,x [ l:N ] ,y ( l:M ]  are  s e lf-ex p la n a to ry»  (N<M) 
p -d es ire d  (maximum) number o f  output po les,

(C; Q—Index o f a c e r ta in  poles used below,
( 0 .0 1  ) slgMratlo of y[l]/y[q],i-l,• • • ,M for which y[l3 Is small

enough to  be neglected and suzmsed in to  an exp onentia l tim e lag *
(0 .5 )  s lg 2 - f ra c t io n  by which s im ila r  sm all x [ i ]  may exceed y [ l }  and

s t i l l  be cancelled  aga inst them.
C r i t e r ia  on c a n c e lla tio n  la  th a t  the  r a t io  o f  c a n c e llin g  poles  
and zeros be near to  one. The I n i t i a l  a llow ed d e v ia tio n  from  
one Is  s lg 3 . Subseauent c r i t e r i a  are  ( 1+slg3)*mlnlmum r a t io .
Outputs:
ta u -e xp o n e n tla l tim e la g , p o s it iv e  fo r  la g ,
m,n-number o f  poles and zeros a f t e r  com bination o f  sm all time  
constants in to  ta u ,
s-m-p*number o f poles to  be can celled  by same number o f  zeros, 
u [ 1:k ] , v [ 1; j]-n o n -c a n c e lle d  poles and ze ro s - the d es ired  function;

Value N ,N ,X ,Y ,p ,Q ,8 lg ;
In te g e r  m ,n ,p ,q ,s ,N ,M , J ,k ; Real ta u ;
Real A rray  X ,Y ,u ,v ,s lg ;

Begin In te g e r  e , f , g , h , l , l , t ;  In te g e r  A rra y  b e ta fO : l6 ,0 :173;
Rec^l te s t ;  Real A rray  x [0 ;  I5 ] .y [ 0 ;  I5 l,gaa ina[0 : l 6 , 0 :173;
McProcedure 0 rd e r (2 0 0 ,1 ,3 );
McProcedure C an ce lp (206 ,1 ,11 };
Procedure c h e c k (e r lt ) ;
Real c r l t ;  Begin

t e s t -1 D 8 : l -1 :Por g-1 Step 1 U n t i l  m D j Begin  
I f  b e ta [ l ,g ] -1  Then 1-1+1 E lse Begin  
I f  b e t a [ l ,g ] - 0  Then Begin I f  gMo Then Begin
I f  |gam m a(i,g ]|< tes t Then te s t- |g a m m a [l,g ]| End Bid E lse Begin 
I f  - , (b e ta [ l-1 ,g -1  ]-l)A |g am m a [l,g -1  ]|< tes td 2 < g  Then 
tes t-|g am m a[l,g -1  ] | ;
Por f —1 While f<nA -»{bota[f+J,g3"0) Do 1—1+1 ;
If -.(betaCi,g]-l)d|gamma[l,g] Ktest Then 
te8t-|gamma[l,g] I ; 1-1+1;
End; c r l t - t e s t * 0 .99» End;
I f  l<n  Then Else g-ow-l :2nd End;

Ordor( N, X ,x  ) ; Order( M, Y, y ) ;
J-M +1;tau*C;m -p; For k-M Step -1  U n t i l  p f i  D^ Begin 
I f  y [ k ] /y [ q ]  < 8 lg [ l }  Then Begin ta u -ta u + y  [ k  ] ; j - j  -1  End E lse  Begin 

m-k; Goto n e x tt;  End End; 
n e x tl:  t -M ; Por 1—N Step - t  U n t i l  J Do Begin

I f  1<0 Then Begin n*0 ; Goto naxt2: End;
I f  x [ l ] < y [ t ] * (  1+slg[a3) Then B egin n -1 -1 ;  
ta u -ta u -x f  1 ] : t - t - 1 End Else Begin
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n-1 ; Qo to  next2;End End; 
nextS: M-ra;N-n; a-m-p;

e-3;
rep e a t: C an ce lp (N ,x«M «y,s lgC 3]>U fk ,v ,J ,beta ,ga jm a)i

If e<3am-j Then Begin alg[33*’Sls[3]*1 *06» 
e-e+1; Qo to repeat;End; 

î£ J<p Then qo_to out;
If k-O Then Oo to out; check(alg[33);N-k; M-J; 

n-N;m-M;e— 1;
For 1-1 S tep 1 U n til J Do Begin x [ l ] - u [ l ] ; y [ l ] - v [ l ]  End; 
Go to  rep ea t; out:End;

Program 203;
Procedure F a c to r(K *U ,epaO ,ep sl,ep82,ep83*k*d ex,R A T ,U R ,n atfex ,C I,D TD ,I);
Comment (S p e c ia l purpose program fo r  Program 2 0 1 ) .

Th is  procedure fa c to rs  polynomials o f oz*der K w ith  c o e f f ic ie n ta
U where U[K] is  the c o e f lc le n t  o f the  h i^ ie s t  term  and
u [0 ]  Is  the  constant te rm . I t  a u to m a tic a lly  checks
to  see I f  the  highest order term Is  g re a te r  than dex -
otherw ise I t  re tu rn s  a  lower order po lynom ial. I  Is  the
number o f  r e a l  ro o ts . The ans«,ers a re  as (s -a )  e tc .  fo r  OX
and DTD, o r  as (a s -1 ) e t c . f o r  UR. Por r e a l  ro o ts  t h a t  are
near to  one another th e  b a irs to  ro u tin e
o fte n  g ives a  small Im aginary psirt. I f  these are sm all
le .  I f  Iin /R eal < RAT, then these are  e lim in a te d  In  the
procedure fo r  f in d in g  UR.
Complex ro o ts  are  g iven  as c o e ff ic ie n ts  o f  a  Quadratic fa c to r  
l e ,  1+DTD*S+CI*S^ where th e re  are K sets  o f complex ro o ts .
B a irs to  207 is  c a lle d  to  perfonn the  a c tu a l fa c to r iz a t io n ;

Value U ,epsO,eps1,eps2,eps3,RAT,k; Real epsO,eps1,eps2,eps3*RAT,dex;
Real A rra y  CI,DTD,U,UR; In te g e r  K ,k , I ;  In te g e r  A rray n a t,e x ;
Begin Real ESQ; ~ Real A rra y  D I[0 :1 0 ] ;  In te g e r  J,HM ,LP,IM ;

Me Procedure b a irs to (2 0 7 ,1 ,1 2 );
1— 1 ;Par J-K W hile |U [J ]l< d ex  Do Begin K -K -1 ; I f  K<0 Then U[K]-1End;

Per J—K Step -1  U n t i l  O Do Begin I —1+1 : D If  1 3—U f J  J; Bnd; J—K;
I f  I< 0  Then Begin I —O; MM-0;Go to rep ; End; 
b a ir8 to (I,D I,e p s O ,e p s 1 # e p s 2 ,e p s 3 ,k ,K H ,C I,D T D ,n a t,e x );

rep:
Por K -t Step 1 U n t i l  MM Do Begin I f  ex[K ]—4 Then Begin K—- 4 ;Qq t o  PL End End: 
nat[MM»1 ]—2 ;K -0 ;k -1 ;T :Per J -k  Step 1 U n t i l  MM Do Begin 

IT  n a t[J ]  — 1 Then Begin  
I f  RAT<|DTDCJ]/CI[J]| Then Begin
K-K+ 1;CI[mh1 J-O I[ J]®+DTD[ JrjDTOfMMt-1 J-S»C I[ J ]  ; 1 -1 -2 ;
Por IM -J  Step 1 U n t i l  MM 22 Begin
C I[ IM ] -C I[ IM t i  ];DrD[IM]-DTD[IM+1 ] ;n a t[ IM ]-n a t[ IW t1  ] E n d ;W ;Qote T End 
E l.e  D T D [J l -« [J j  End End; ESft-DTD[MM-K];
LP-1;
Pan IM-1 Step 1 U n t i l  MM-K Do Begin I f  IE S 0 '< IC I[ IM ]"Then U [L P l-C I[ IM ]Elee Begin  
U[LP)-ESQ: ESQ-CI[IM ] gn^;
I f  |ESQ'<|DTD[IM ]' Then U[LPt1 ]-DTD[IM3 E l.e  Begin U[Lf+1]-ESQ: ESg-PTDtIM]End;

LP-LP+2 5 ;^ ! U£2*(MM-K)J-ESq; "
For IM-1 Step 1 U n t i l  I  Do U B [IM ]-1 .0 /U [IM ];
Por IM -I+ 1  Step 1 U n t i l  2»MM Do U B [IM l-O .0;
PL: End End:
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Program 206;
Procedure C an ce lp (p ,N «q»D ,crlttnn«  Jn,dd« Jd,beta»ga*sssL)r,

(s p e c ia l purpoae program fo r  Program S C i) .
.T h is  procedure eaneele poles cmd zeroe  fo r  

which the r a t io  o f  |N /D  - 1 |<  c r i t .
N is  th e  l i s t  o f  p z e ro s - D is  the l i s t  o f  
q p o le s: nn is  the  l i s t  o f  not c an ce lled  Jn 
poles and dd Is  th e  l i s t  o f  no t can celled  
jd  po les;

In te g e r  p^q, jn ,  Jd; A rra y  N .D .nn .dd .ganna: Real c r i t ;  In te g e r  A rra y  b e ta :Begin
In te g e r  i , J , k ;  A rra y  n [ l :  l 5 ] . d [ l :  153.alphafO : l 6 , 0 : 171:
McProcedure 0 rd e r (2 0 0 ,1 ,3 );
OrderCp, N ,n ) ;Q rd e r(q *D ,d );
?9T 1 -0  S tep 1 U n t i l  p f2  Do Begin
For j * 0  Step 1 U n t i l  q+2 Do Begin
a lp h a [ i ,j]« -0 ;b e ta [ i ,j] *0 ;g a m m a [i, j]< ^ 1  EoS* End:i«"D%
L I : For j«-q S tep -1  U n t i l  1 Do Begin I f  h s t a [ l + 1 , Thsn Begin 
I f  d [J l< 1D -30  Then a lp h a t l ,  j ] - > n [ i ] / lD - 3 0  E lae  
a lp h a [ i ,  j ] * n C i ] /d [  j];gan iD aC i, j j - a l p h a [ i ,  j ] - l ;
I f  c r i t< g a n n a [ ij j ]  Then b e ta C i, j ] — 1 B egin
I f  Ig an m all, j ]  | < c r l t  Then h e ta [ 1 , j ] - 1  ; 1*^1-1 ;
I f  0 < l Then G& ta . L I Eiao ^  t a  I g sEnd

Else h e ta C i . j]# —1:End:L2:
For 1-1 S tep 1 U n t i l  p Do n n ( i ] - n [ i } ;
£S3C j -1  -Step 1 U n t i l  q  Do d d [ j ] - d [ j ] ;

i - 1  Step 1 U n t i l  p 52. Begin Fo r j - 1  Step 1 U n t i l  q £a  Begin
I f  0 < h e tn [ i, j ]  Then Begin

n n [ l ] - 0 jd d [ j ] - 0  gndzEpdigng: 
jn -O j F o r i —1 Step 1 U n t i l  p 5 a  fisSlD I f  n n [ i}« 0  Then E lse  
Begin jn -jrH » 1 ;n n f.1n l-n n ri] EndtEnds
jd -0 ;  Fo r 1—1 Step 1 U n t i l  q Do Begin I f  d d [ i ] - 0  TÔ en E lse  
Begin jd —jd +1;d d [ jd ] - d d [ i ]^;7

Program 271;
Procedure Z  over Y (slg4*AMB1S,AMB2S,ALP,SI0,

RD,RM, EEO, EEK« N, Dj he t ,  R1, R2, EMUS, EKD, EH,
BPS,epsOj eps 1,eps2,eps3,k,de% ,RAT, 
y ,y r ,  gg, gr,J,EKM ) ;

Comment (S p e c ia liz e d  program to  f in d  fu n c tio n  [Z/Y] in  Program 2 01 );  
Value sig4,AMBlS,AMB2S,ALF,SIO,RD,EKM,

RM, EEO, EEK, R 1, R2, EPS, epsO, EMUS, EKD, EM, 
epa1,eps2,eps3,dex,R A T,k;

R eal sig4,AMBl3,AMB2S,ALP,SI0,RD,
RN,EE0,EBIC,R1,R2,EF3,eps0,ep8l,EMUS,EKD,Q1, 

eps2, eps3, dex, RAT, SKM;
A rray  y ,y r ,g g ,g r ,D ,h e t ;
In te g e r  k ,J ,N ;
Begin
A rray  C I,D I,DTD,gnm [Oî 1 5 ] ,X [0 :1 ,0 :1 ];
McProcedure P ro d u ct(1 7 5 ,1 ,1 3 );

In te g e r  A rray  n a t ,e x [ 0 : 10];
Beal ga l,g ig ,gr1 ,gr2 ,a ,A LFS ,S iaS ,R D S ,R M S ,R lS ,R 2S ;
In te g e r  I,H M ,P ;
Real Procedure g (S );

Real 8 ;
Begin Real denom; In te g e r  1; 
denoar*1.0;
For 1—1 Step 1 U n t i l  7  Do denoax-dencm*( 1 - y r [ 1 ]"S ) ;
For 1—1 Step 1 U n t i l  N Do Begin  
dencm -denam *(D [I,2 ]«8^ -D [1 ,1 1 ) End:
yEMOS"EXP(EM*S)*EED»( 1-RBS»S®)«( 1-RM»S)»
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( EEO-EEK»S® ) /denom;
End;

McProcedure P ac to r(303 , 1, IS );
McProcedure Poly( 2 0 5 ,1 ,3 ) ;
ALPS-ALP® ; Sias-SIQ®: RDS-Rt® ; RMS-BM2 ; R : S-R 1 RRS-RRS;
EPS-EPS/EKD®;AMB2S-AMB2S/E».®:
Bsm[0]>ALPS; gam[ 11-1 .0*-ALPS0(R1S+R2S) ; 
se;n[2]-R 1S*R2S<-ALPS*R 1S*R2S; gamtS ]-R1S*.12S; 
bet[0]-AMB2S»Ban[0]+AMB1S;bet (1 ]-AMB2S«g,m[ 1 ]+AMB1S*RHS; 
bet[2]-AM B2S«gpm [2];bet[3]-AMB2S«gem[3];
CasnSQt. I<AMBAlE+LAMBA2^/PaaFm-(betO-l>et1 S ^ b a t2  s'*-l>et3 S ® )/( l-RM^S®);
CiClJ-RMS; C I[2]-HDS; C I[3]-E E K /E E 0; P o ly (0 I ,3 ,C I) ;
P ro d u c t(0 ,3 ,X ,g a m ,0 ,3 ,X ,l> e t,O ,X ,I) I) ;  g e l«1 /S I0S ;
f a r  I - 1 .2 . 3 , 4 , 5 . 6 , 7  r a D [ I ] - D I [ l3 + D I[ I - 1 ] » g a l :  UTDt0j-»DI[0);

gal-EK0S»EE0; gle-SIOS«EPS;
Par I - C .  1 .2 ,3 .4 .5 .6 ,7  ^  y [ I] -g a l» C I[ I]+ g lg » O T D [ I l;
J -7 :g g [8 ] -y [o ] ;
P a c to r(J .y ,ep sO ,e p B l,a p 8 2 ,e p s 3 ,k ,d ex ,R A T ,y r.n a t,e z ,C I,D T D ,tW );
N-J;
Per I.-MMf 1 Step 1 U n t i l  7  Do y r [ I ] * 0 ;
I f  J— 4 Then Ooto PL;
PfflT J” 1 .2 .3 .4 ,5 .6 ,7  Do Begin
I f  < X y r[J ] Then y r l J l - 0 . 00001 E lae  Begin a ^ -y r fJ ] :  yr[J]»SQ RT(a) End End: P o ly (y r .7 .y )J  

Por I-e i S tep 1 U n t i l  N Do Begin 
P-(M M f8»I+1)*2 ; D [ I , 0 ] - 1 ;  g a l - l /C I [ P ] ;
I f  ga l<0  P ie n  Begin D f l ,  1 J -.-D fI,2 ].0  End E la e  Begin  
D [I,2 ]-S Q R T (g a l);  g lg -2 *D [I,2 ]-D T D [P ]« g a l;
I f  0<glg  Then D [1 ,1 ]-SqR T(g lg ) E lae Begin D [ I ,  1]—D [I« 2 ]—O End End: 
F r c d u c t (0 ,7 ,X ,y , I ,2 ,D ,D I ,0 ,X ,y )  End; 

g a l-g (-A L P )/({S IO -A L P )» ( 1-R1*ALP)»( 1-R2»ALP)); 
g lg ~ g (-S IO )/(  ( ALP-S ia)«( I  ,0 -R 1»S IO )«( 1.0 -R 2«S ia ) );
I £  R1<slg4 Then g r1 *0  E lae
Begin a - 1 /h l ;  g r 1 - g f - a ) / (  (A L P -a )* (S IG -a )* (  1-HS»a)) End;
I f  B2<alg4 Then g r2 *0  E lae
Begin a -1 /E 2 ;g r 2 -g (-a ) /( (A L P -a )* (S IQ -a )» ( l-R 1 » a ) )  End;
R1S-R1+R2; R2S-R1«R2; ALPS-ALP*SIO; SICS-ALP+SIG;
SsC 0  ]“gal*SICM'glg»ALP+ ( g r  1+gr2 ) *ALPS;
g8tl)-aal»(SIOaR15M )+glg»(ALP»R1S+1)+gr1«(B2*ALPS+SIOS)+gr2*(R1*ALPS+SlaS); 
eg[2j-gal*(SIO»R2S+H1S)+glg»(ALP»R2S+R1S)+gr1»(R2»SIOS<-1)+gr2«(R1»SIOSl-1); 
g g [3 ]- (g a l+ g lg )  »R2S+gr 1 *R 2tgr2*R  1 ;
I*-3 : PactorfJ .gg,epaO ,epa1,epa2,epa3,k ,de% ,R A T. g r ,n a t ,  
ez.C I.D TD .H M );
Por I."MMf 1 Step 1 U n t i l  3 2 a  g r [ I ] « 0 ;
Por 1 -1 ,2 .3  Da g r [ I J - - g r [ I ] ;  .
I f  J-1 Then Begin D [ 6 , i ] - C I [ 2 j ; D [ 6 ,2 ) - D I [ 2 ] ; a id ;
PL; End;0

Program 275:
Procedure W o ve rU (w ,h 2 .h 3 .b 4 ,u r.y r.rn .h r.la m .a lg ,a lp .r d .r l . r S . ld .e m .e d .e a .z )  ; 
Comment (S p ec ia l purpoae program computea [V /U ]^  f o r  Program 201) 

output:
ee [ 0 :8 ] -c o e f f  Ic  le n t  a o f  numerator polynom ial.
%[ 1 :9 ]—time conatanta o f  denominator, 
re a  [ 1 :9  ]-re a ld u e a  a t  each tlam  cone ta n t:

Value w ,h 2 .h 3 .h 4 ,u r .h r .la m ,B lg .a lp .rd .r1 .r2 ,a m .e d ;
R eal A rra y  w ,h 2 ,h 3 .h 4 ,u r ,h r .e e .x .y r ;
In te g e r  m;
R eal la m .a lg .a lp .rd .r l.rS .e m .e d .lc d ;
Begin R eal A rray v ( 0 ; 9 l , t o t [0 ; 11 ] ,y [ 0 ;  1 0 ] . r e a [ l ; 9 l , z t  119. 0 : 8 ];
R eal B .a q .a ; .
In te g e r  1 . j . k .n ;
MaProeedure P o ly (2 0 5 ,1 .3 ):
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£2? j* -1 * 2 .3 ,4 .5 ,6 .7 .8  Do Begin
I f  1 -9  Then y [ j ] - z [ l , j ] ;

I f  y t j + l ] - 0  Then z [ l , j ] - 0  E lae z [ l , j ] * y [ j ] - x [ l ] * z [ l , j - 1 ]  End End;

£ 2P 1 - 0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8  fia Begin e o [ l ] -^ ;
j - 1 , 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9  Do e e [ l l - « T e f l t j ] * z [ j» l ]+ e o [ l ]  End; 

e e [9 l*^ î I £  “f (y r [  10]»0) Then 
Begin
£2E j- 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9  Dg, f c o t [ j ] - e e t j ] + y r [ lO ] » e e [ j - l ] ;
Por J -1 ,2 ,3 ,4 ,5 ,6,7,8,9 Do e e f.ll* * to tr .l]  End:
End;
0

Program 276;
Procedure R e d u c e (N ,J ,d ,g r ,y r ,H ,E M ,ta u ,a lg ,H K ,h r);
Comment (S p e c ia l purose program ). Th is program reduces the  

order o f  the r a t io n a l  fu n ctio n  1-sum Q1,l/sum 02,j 
so th a t  the order o f  the denominator is  <4. 
Parameters:
fK  No, o f  complex ro o ts  in  denominator,
J"» No, o f complex ro o t sets  In  numerator, 
d -  C o e ffic ie n ts  o f  complex roots  as a quad
r a t i c  term  -  d [ i , 2 )s ^ + d ( l ,1 3s+1 

1 Is  6 fo r  numerator 
1 Is  1 , . . , , 5  fo r  denominator 

g r -  r e a l roo ts  o f  numerator 
y r -  r e a l roo ts  o f  denominator 
H— polynom ial c o e ff ic ie n ts  

1-1 fo r  numerator 
1 -2  fo r  denominator 

EW» tim e la g
tau— added tim e d e lay  from sm all tim e constants  
s lg "  l im its  fo r  Cancel 
HK— constant -  TCK /H [2,0] 
h r -  fa c to rs  o f H [ 2 , l ] ;

Value d ,g r ,y r,E M ;
A rray  d ,g r ,h r ,y r ,H ,s lg ;
Real EM,tau,RK;
In te g e r  N ,J;

Begin A rray D I,X ,u ,v [0 :  1 0 ] ,D [0 :6 ,0 ;2 ];
In te g e r  l , p ,R ,k k ,k , j j , j ,m ,n , s , r , a ;
McProcedure C an ce l(202 ,1 ,2 0 );
McProcedure 0 rd e r (2 0 0 ,1 ,3 );
McProcedure P o ly (2 0 5 ,1 ,3 );
McProcedure product(1 7 5 ,1 ,1 3 );

I f  |HK|<_005 Then Begin Per 1 - 1 ,2 ,3,4 Do 
H [ l , l ] - H [ 2 , l ] - h r [ l ] * 0 ;
Hf 1 ,0 ] -H [2 ,0 ] -1 ;0 2  to  PL;Bnd;

R-0; Pop 1 - 1 ,2 ,3,4,6 Do For p - 0 ,1 ,2  Do D [ l ,p ] - d [ l , p ] ;
J -0 )  Then Begin R -2; J '-0 ;g r[2 ]—g r [4 } ;

Per 1—1 Step 1 U n t i l  N Do 
X t l ) - | l - | D [ l , 2 ] / D [ 6 , 2 ] |  I;  X [0]-1D 6;
Par 1—1 Step 1 U n t i l  N Dg Begin 
I f  X [1 ]< X [1 -1 ] Then q-1,; End: N-N-1;

Par j —q Step 1 U n t i l  N Da Begin
Par lc -1 ,2 Eg B [ j + 1 , k ] ;  End End:

I f  < N ^ )h - (J -0 )  Then g r[2 ]-g r [3 ]-S Q B T (D [6 .2 ]);
D (0 ,2 ]-O ; D t5 ,0 ] -1 ;  p-Oj
Par 1—1 Step 1 U n t i l  N ^  Begin p -2 ;

I f  D [1 -1 ,2 ]< D [1 ,2 ]  Then Begin
D t 5 ,2 ] - D [ l ,2 ] ;  D [5 .1 ] -D [1 .1 ] :  
y r r 9 - l ] * r r [ 8 - l ] - S Q B T ( D [ l - 1 ,2 ] )  End 

Elae x r [ 9 - l ] i r r [ 8 - l ] - 8 Q R T ( D [ l ,2 ] )  End;
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Procedure v l2 3 (v ,8 s ) ;

Real 88Î Real A rra y  v;
Begin
8-88; 8q-s^; t o t [ l ] - 1 ;  t o t [ 2 ] —t o t [ 3 l» t o t ( 4 ] - t o t C 5 ] - t o t t 11

For 1—1 Step 1 U n t i l  8-2*m  Do t o t f 11—to te [ l] * ( 1 - u r [ l ] * 8 ) ;
For 1-m fa Step -1  U n t i l  O Do t o t f 111 - y r f l ] - s * t e t f 1 1]; 
t o t [ 1] - t o t [ 1] * t o t [ 11];

For 1 -4 ,3 ^ 2 , IfO  Do Begin 
t  o t [ 2 ]r-h2 ( 11 -  s * t  o t [2  ] : 
t o t[3l-h3[1 ]+ a q *to t[31; 
to t  [4  ]*-h4 [ 1 3+aq*tot [4  ] ; 
to t  [ 5 ]"^f[ 1 ]+ 5 * to t [5 ] End!
v [ 1 ]—kd *( 1 + rd *a )* (a lp -s )*E X P ( (e m -e d )*a )* to t [2 3 /to tE O ;  
v [ 1]—v [ 1 ] * ( 1 -a * y r [1 0 ]);
v [ 2 ] - t o t [ 3 ] * t o t C 5 ] / ( ( a lp - s ) ) ;  v [ 3 ] - t o t [ 4 ] ;  
v [7 3 - la i iH -v [2 ] /(v [3 ]* (a ljH -s )) ;  SasJî 

Procedure v 4 5 9 {v ,8 s );
Real aa; Real A rray  v;
Begin Real a;
8 -aa ; v [ 4 ] - i ;
v [5 ] - (a + a lp )® * (a le fa ) * (  l+ r 1 * o )* (  1 + r 2 * a ) * to t [2 ] ;
For 1 - 1 .2 ,3 .4  Do

^  " .{ l-n )  Then v [4 )—v [ 4 ] * (  l+ h r [ l ] * a )  End;
Procedure v 6 7 {v ,a s );

Real aa; Real A rray  v;
Begin Beal a ,11;
8 -88 ; 80—8* 8 ; For 1 -1 .6 .7 .6 .9 .1 0  Do t o t [ l ] - 0 ;
For 1—1 Step 1 U n t i l  8-m*2 Do t o t f  11 -to t  Cl l - f u r t l lA  1 * u r f l ] * a ) ;
For l-m *2  Step -1  U n t i l  1 Do t o t [1 0 ]—l * y r [ l ] - 8 * t o t [1 0 ];
t o t [ 1 ] - t o t [1 ]+ to t [ I 0 ] / t o t [1 1 ];
t o t [ 1 ] - t o t [1 ] - r l / ( l + r 1 * a ) - r 2 / (  1 + r 2 * B ) - l / (s l® fa ) ;
For l - 4 , 3 > 2 ,1 Do Begin 
t o t [6 ]—l* h 2 [ l ] - s * t o t f 6 ] ;  
to t  [7  ]*-l*w [ 1 ]+B *to t [7  ] ; 
to t  C 8 ]- l*h 3  E1 ]+ a q *to t [8 ] ;

t o t [ 9 ] - l * h 4 [ 1 ]+ a q * to t [9 ] End!
to t  [ 10]-em -ed+rd /( 1 + r d * 8 ) - l / ( a lp - a ) - y r [  l 0 ] / (  l - y r [1 0 ] * o )  

- t o t [ 6 ] / t o t [ 2 ] + t o t [ l 3; 
t o t [1 1 ] - t o t  C 7 ] / to t [5 ]+ 2 * a * to t [6 3 / to t [33 

+ l / ( a l p - a ) - 2 * a * t o t t 9 ] / t o t [ 4 ] ;  
v [ 6 ] - v [ l  ] * ( la jJ H - { to t [ l0 ]+ to t [1 l ] ) * v [2 ] /v [3 3 ) ;  
v [ 7 ] - (a lg + a ) * (  l+ r 1 * a )* {  l+ r 2 * a ) ;  End; 

v l2 3 { v , - a lg ) ;
. r e 8 [8 ] - v [ 1] * v [ 7 ] / ( ( a lp - 8 l g ) * ( 1 - r l * a lg ) * ( l - r 2 * a l g ) * a l g ) ;
I f  0<r1 Then Begin a— l / r 1 :  v 1 2 3 (v ,a );  
re a [2 3 -v [  1 ] * v [ 7 ] / (  (a lp 4 .a )* (a lg fa )* (  1 -+ r2 *a ) ) ;  gofl 
E lae  ro 8 [2 ]—0;
IX 0<r2  % en  Begin a—  l / r 2 ;  v 1 2 3 (v ,a );  
re s [3 3 *^ [  13 *v [7 3 /(  ( a lp fa ) * (a lg f r a ) * (  1+r1*a))End  
Elae r e a [3 ] -0 ;
I f  h r [3 3 -0  A h r [4 ] -0  Then Begin  
a—h 2 [1 3 *h r[13 ; aq^h2 [2 ] - h r [ 13*a; 
a—8 -h r [2 ] ;  aq—a q -h r (2 ]*8 ;  
h r[3 3 —a /2 ; h r [4 ]—SQRT(gq) End:
For n - 1 ,2 ,3 /4  Do Begin
I f  0 < hr[n ] Then Begin a— i/h r [ n ] ;  v 1 2 3 (v ,a );  v 4 5 9 (v ,a );  
r o a tn + 3 ] -v [ . l ] * v [2 3 /(v [4 ] * v [5 ] ) ;
End E lae re a tn fS ]*^ »  End; 
v l2 3 ( v , - a lp ) ;  v 6 7 (v ,-a lp ) ;  
r e a E 9 3 -v [ l3 *v [2 ] /(v [3 3 *v [7 3 *a lp ® );  
r e a C i] -v [6 ) / (v t7 3 * a lp ) ;
%[l3*^[93-l/alp; x(8]-l/alg; 
x[2]-rl; x [33t 2 ; xI4]**r[l]; 
xi5]**r[2]; x[6]-hr[33; x[73-hr[4];
Poly(x,9,y);
For 1 - 2 ,3 ,4 ,5 ,6 ,7 ,8 , i , 9  Ea B eg in  z [ l , 0 3 - 1 :
IX - i ( r e 8 [ i ] - o )  ib a n  Begin.
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y r[8 -p -R ]-E M /2 ; q-O;
Por 2 ,3 ,4  Do Begin

I f  g r [ l ] < 0  Then Begin  
g r [ l + 5 l - s r [ l ] ;  g r [ l ] - 0 ;  q-q+1 End Else  

g r [ l+ 5 ] * 0 ;  End;
Cancel (4 -R ,8 -p -R ,g r ,y r ,4 -p ,2 ,8 lg ,ta u ,m ,n ,a ,k ,u ,J ,v ) j  
For kk-lof 1 S tep 1 U n t i l  4  Do u [kk]*-0;
For Jd—J+1 S tep 1 U n t i l  4 Do v C j j ] - 0 ;
XCOJ-I; X [1 ]— EM/2;
P o ly (u ,3 ,D I)  ; product ( 0 ,3 ,D ,D I ,0 ,1 ,D ,X ,0 ,D ,X );
Pgr 1—1 Step 1 U n t i l  q Do. Begin g r [ l  ] -g r [  1+5];
C rfO ]—1; product ( 0 , 4 , D ,X ,0 , l ,D ,g r ,0 ,D ,X )  ;End;
IT  P -2  sbea B fis la  v C33-d [ 5 , i ] /2 :  v [ 4 ] - sqrt( d [5 ,2 ] )  E iü  
P o ly (v ,4 ,D I ) ;
Ear 1 -0 ,  1,2 ,3 , 4  Dg Begin h r [ l ] - v [ l ] ;

H [ 2 , l ] -  D I[1 ] ;  H [ l , l ] - H ( 2 , l ] - H K » X [ i ]  PL;End;

Some sample data fo r  Program 201:

0 .2 5 0 .0 0 .0 0 .0
0 .0 0 .2 5 0 .0 0 .0
0 .0 0 .0 0 .2 5 0 .0
0 .0 0 .0 0 .0 0 .2 5
0 .0 0 .0 0 .25 0 .0
1. 1. 0 . 0 .
2 .0 1. 25. 1.5
100 ID -30 .02 ID -8
.001 .5 .05 ir - ‘ io
.01 .0O1 7 5

0.0
0.0
0 .2 5
0.0
0.50
0.
1
id -8
12
4.

o.
ID -4
ID -8

4.

0.0

ID -8

0.0


