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SELF-ASSOCIATION AND HYDRATION OF PHENOL IN ORGANIC SOLVENTS

CHAPTER I 

INTRODUCTION

The hydrogen bonding of hydroxyl-containing molecules has been of
1 2interest for several decades. ’ Considerable effort has been expended 

in attempts to deduce and predict the structure and stoichiometry of hydro­
gen bonded complexes. Numerous techniques have been developed and employed 
over the years with the objective of elucidating further the nature of 
the hydrogen bond. Phenol has been subjected to these techniques by many 
workers in their course of study. Due to the vast amount of literature 
available on the hydrogen bonding of phenol, a special section (APPENDIX 
a ) has been added listing numerous references.

Although the association of phenol has been studied using a number 
of media, there is still no agreement among various investigators as to 
its molecular complexity in dilute solutions. Many investigators have 
postulated a monomer-dimer equilibrium, while others have proposed the 
existence of trimers and higher polymers to explain their experimental 
data. To resolve this confusion a detailed study was made of the solute 
properties of phenol in several solvents of varying dielectric constant 
using partition and water solubility techniques.

1



2
Historically, the cryoscopic and boiling point elevation methods 

were among the first techniques used to study the degree of association 
of phenol. However, these methods do not permit measurements to be made 
over an arbitrary temperature range, nor do they allow a series of deter­
minations to be made at constant temperature. Available cryoscopic data 
must be interpreted carefully because phenol forms a solid solution with

3benzene, the solvent commonly employed. Therefore, the results cannot 
be interpreted meaningfully without some type of adjustment. A summary

ij.of cryoscopic data for phenol up to the year 1937 was given by Lassettre.
The partition method has been used extensively to determine the 

degree of association of hydrogen-bonding molecules. The departure of the 
distribution ratio from that expected for an ideal solution is usually 
attributed to the formation of molecular complexes. Rothmund and 
Wilsmore^ and Vaubel^ were among the first to study phenol by distributing 
it between water and organic solvents. They noted that the concentration 
of phenol in the non-aqueous phases, benzene and carbon tetrachloride, 
increases more rapidly than the concentration in water, indicating that

7 8 9partial polymerization occurs in the non-aqueous phase. Herz, et. al., ’
al_so attributed irregularities in the distribution ratios of phenol and
other substances between water and organic solvents to polymerization
and solvation in the non-aqueous phase. Hirobe^^ and Endo^^ concluded
that phenol exists as of two types of species, monomers and trimers, in

12both chlorobenzene and benzene. Endo also distributed phenol between 
benzene and aqueous salt solutions and concluded that when appropriate 
phenol activity corrections were made, the data indicated trimer equilibrium 
in the benzene phase.



13 l4Philip, et. al., ’ concluded from partition studies that phenol is
monomeric in benzene up to 0.02 molar. However, they found at higher 
concentrations that in addition to a dimer they needed to assume the 
presence of some higher polymer, such as the trimer, to explain their 
data. Philbrick,^^ in a careful study of dilute solutions, determined 
dimerization constants for phenol in several solvents. The dimerization 
constants for phenol in toluene, chlorobenzene, benzene, and nitrobenzene 
that he obtained were O.8U3, 0.648, 0.575 and O.196 1/mole, respectively. 
For concentrations of phenol up to 0.1 molar in carbon tetrachloride he 
could not detect any change in the distribution ratio. He also noted 
some abrupt changes in the distribution ratios for the nitrobenzene and 
toluene.Systems, which he could not explain. More recently Badger and 
Greenough^^ have reported that the association of phenol in carbon tetra­
chloride is greatly promoted by the presence of water. They have concluded 
from combined partition and infrared studies that in addition to the 
phenol dimer the predominant hydrated polymer up to 0.3 molar in carbon
tetrachloride is a phenol hemihydrate.

17Lindenberg and Massin determined the partition coefficients for
phenol, m-cresol and p-ethylphenol between water and several solvents.
They correlated the change of the coefficients with the concentration 
in the organic phase and obtained an empirical relation by which they 
could express the change of the distribution ratio as a linear function 
of the formal concentration of phenol in the organic phase.

The most common method for determining the association of hydrogen- 
bonding solutes has been the spectrophotometric measurement of monomer 
concentration as a function of the total concentration. Since the



development of solution infrared techniques in the early 1930’s, numerous
18studies have been made with phenol. Fox and Martin in 1937 concluded 

that at moderate concentrations of phenol in carbon tetrachloride an 
equilibrium exists between single and double molecules.

19Wulf and Jones, who studied phenol and its halogen derivatives in
the second overtone region, reported a phenol dimerization constant of
I08 1/mole in carbon tetrachloride at 25°- The equilibrium constants for
the higher polymers were represented by a power series. Kempter and 

20 21Mecke ’ have proposed a dissociation equilibrium scheme for equilibria
of the type

where n and n+1 refer to complexes of the nth and (n+l)th order. They 
assumed that the successive dissociation constants were equal for all 
orders of complexes and thereby obtained

= aC/(l-/ôT)
where is the general dissociation constant applicable to each order
complex, a is the fraction of unassociated hydroxylated molecules and C
is the molar concentration. Their data appeared to support this theory.

22Later, Coggeshall and Saier rejected Kempter and Mecke’s hypothesis on 
the basis of a reinvestigation of phenol in carbon tetrachloride at 25°.
They used a separate, distinct constant for dissociation of dimer com­
plexes and a general constant for the dissociation of higher complexes.

23Moccia and Califano determined dimer dissociation constants for 
phenol and several phenol derivatives in carbon tetrachloride by measur­
ing the integrated intensities of the 0-H vibration. A value of 0.8 moles/1 
was obtained for phenol, which compared well with 0.72 moles/1 obtained



2h 25by Coggeshall and Saier. West, et. al., ’ also concluded from an
infrared study of phenol and some phenol derivatives at several tempera­
tures that the monomeric phenol was in equilibrium with cyclic dimers, 
rn preference to trimers, up to a concentration of 0.2 molar in carbon 
tetrachloride. They obtained a AH of association for the cyclic dimer 
of 5-12 0.1 Kcal/mole dimer. However, Rea^^ in a similar study reported
trimer constants for association of phenol in carbon tetrachloride at 
several temperatures.

27The ultraviolet spectrum of phenol has been employed by Ito and
28Rao to study the association of phenol. From their data they concluded

uhat the associated aggregates of phenol in n-hexane, cyclohexane and carbon
tetrachloride were cyclic dimers in equilibrium with the monomeric form.

29However, Dearden concluded that either monomer-trimer or monomer-polymer
equilibrium provided a better explanation for the ultraviolet spectra of
solutions of phenol in cyclohexane and he reported a trimer constant of
15.4 (1/mole)^ at 25°.

Recently nuclear magnetic resonance (NMR) spectroscopy has been used
30to study hydrogen bonding phenomena. Higgins, et. al., have suggested a

monomer-dimer equilibrium to explain their HMR data of phenol in carbon tetra-
31chloride. Saunders and Hyne have obtained NMR spectra of phenol at 

much lower concentrations than Higgins, et al., and proposed a monomer-trimer
32model to explain their chemical shift data. Martin and Quiloeut have 

studied the association of phenol in carbon tetrachloride and chloroform 
and concluded that the association constants for the formation of the 
successive phenol polymers are all the same.

33Using isopiestic measurements Lassettre and Dickinson have obtained



an anhydrous dimerization constant for phneol in benzene at two tempera­
tures i.e. 0.5T0 and O.U16 1/mole at 25 and 50°, respectively. Bono,^^’̂ ^ 
Delvalle^^ and Chevalley^^ have determined the vapor pressure lowering of 
phenol-carbon tetrachloride solutions and have interpreted their data in 
terms of the degree of association of phenol, although no equilibrium 
constants were deduced from the data. A differential vapor pressure

38technique has been employed by Coetzee and Lok to study the associa­
tion of certain acids and bases in several non-hydrogen bonding solvents. 
They have calculated a dimerization constant of 40 1/mole for the associa­
tion of phenol in 1 ,2-dichloroethane at 37°.

Obviously there must be some explanation for the discrepancies in 
the results obtained by the different investigators for the association 
of phenol. The lack of sensitivity in the techniques employed undoubtedly 
is responsible for part of the disagreement. However, a major source of
error may well arise from neglecting the formation of hydrates. As long

39ago as 1897j Bodtker concluded that the increase in solubility of water 
in ether containing oxalic acid could best be explained by the formation

UOof a compound between the acid and water in the ethereal solution. Rozsa 
in 1911 used cryoscopic data to support the conclusion that strong associ­
ation occurred in benzene between water and other molecules having a
hydroxyl group such as phenol, ethanol and trichloroacetic acid. Lewis 

Uland Burrows determined the solubility of urea in ethyl acetate contain­
ing various percentages of water. They noted that the presence of water 
affected the solubility of urea and the increase in solubility was roughly

h2.proportional to the amount of water present. Horiba, in a water-phenol- 
benzene phase equilibrium study, noted that the presence of phenol



increases the solubility of water in the benzene phase. Staveley, Jeffes 
1̂ 3and Mov also observed an increase in water solubility caused by the

Ii.l4.k5presence of a third substance. Cohen, et al., showed that minute
traces of water increased the solubility of salicyclic acid in benzene
and chloroform and of nitrobenzoic acid in chloroform. However, they
found no influence of water on the solubility of salicyclic acid in

k6carbon tetrachloride. Szyszkowski, et al., also demonstrated the
effect of water on the solubility of benzoic acid in benzene. These
investigators interpreted the increase in solubility of acids in terms of

klhydration. Bell, et al., used cryoscopic data to demonstrate that the
mono-, di-, and trichloroacetic acids formed hydrates in benzene.

U8Hildebrand proposed that the high solubility of alcohols in water,
as compared with organic chlorides and iodides, may be attributed to
formation of a water bridge between two alcohol molecules. In review

h9 50articles on hydrogen bonding Lassettre and Huggins indicated that the
presence of water may affect the equilibrium of hydrogen bonding molecules.

Arshid, Giles and Jain^^ have proposed the existance of monomer
monohydrates and dimer monohydrates to explain refractive index data for
both aqueous and non-aqueous solutions of alcohols, aldehydes, carbohydrates,

52ketones, phenols and quinones. Hardy, Greenfield and Scargill concluded 
from infrared and partition data that two nitric acid molecules are bridged
by a water molecule to form a dimer monohydrate in benzene, toluene and

53 54a number of other organic solvents. Siderov and Thompson have
studied the formation of pyridine hydrates in carbon tetrachloride. They
concluded from infrared studies that pyridine monomer monohydrates and
dimer monohydrates exist in these solutions. Brode, et al., have



8
studied the hydration of dyes in alcoholic solutions and attribute 
the appearance of a new band in the visible region to the formation of 
a hydrogen bond between the azo group and water. Recently Mohr, Wild 
and Barrow^^ have studied water-base and water-alkylamine halide systems 
in carbon tetrachloride in the 3u region. They report a 1:1 complex at 
low base concentrations; however, at higher base concentrations, bridged 
complexes involving one water and two base molecules were postulated.

Before hydration constants can be determined from water solubility 
data, the molecular complexity of water as a solute much be known. Rela­
tively few studies have been reported of the variation of the apparent
molecular weight of dissolved water as a function of its formal concen-

57tration in dilute solution. Nernst in 1892 concluded from partial
pressure measurements of aqueous ether solutions that water exists pre-
dominantly as single molecules in these solutions. Bruni and Amadroi
conducted a series of cryoscopic experiments to determine the average
molecular weight of water in a number of solvents including bromoform,
ethyl bromide and dimethyl aniline. They concluded that the water tends

59to associate at higher water concentrations. Roberts and Bury conducted 
cryoscopic experiments in which they determined the average molecular 
weight of water in nitrobenzene at different water activities. They 
concluded that the data could be explained by assuming approximately 
15 per cent association at the saturation concentration. However, using 
cryoscopic data Peterson and Rodebush^^ showed that water is primarily 
monomeric in benzene.

Recently Gordon, et a l . concluded from specific volume and 
viscosity data that water is highly polymerized in benzene and toluene at



9
temperatures above 60°. They calculated that dissolved water has an 
average molecular weight of approximately 2.5 times that of the monomer at 
90 per cent of saturation at 67°. Ackermann,^^ in an infrared study in 
the same temperature range » also concluded that water is highly polymer­
ized in benzene, toluene and m-xylene at higher water concentrations.
From Raman spectral studied Kipling concluded that water dimerizes in

6kacetic acid. Hogfeldt and Bolander in a study of the extraction of 
nitric acid and water from aromatic solvents concluded that the water 
is primarily monomeric in benzene and nitrobenzene.

Christian, Affsprung and Taylor^^ have demonstrated the effect of 
dissolved water on the association of acetic acid in benzene and have 
presented a general method for calculating the hydration and association 
constants from partition and water solubility data. The hydration of 
trifluoroacetic acid in the vapor phase has been studied by Christian, 
Affsprung and Lirg^^ using a vapor density apparatus. They concluded 
that trifluoroacetic acid forms monomer dihydrates in addition to acid 
dimers in the vapor phase. Lin, Christian and Affsprung, who have 
studied the hydration of acetone in 1,2-dichloroethane at 25 and 35°, 
concluded that acetone forms a 1:1 complex with water over the concen­
tration range investigated.

Techniques developed by Christian, Affsprung, et al.,^^’̂ ^ make it 
possible to study the hydration of hydrogen-bonding molecules at various 
water activities. These techniques have been employed to study the nature 
of the phenol and phenol-water aggregates in several non-aqueous media.



CHAPTER II

OBJECTIVES

The objectives of this research were:
1. To determine the extent of self-association of phenol in several 

solvents.
2. To develop a method, involving measurement of water solubilities 

at reduced water activities, for investigating hydration equilibria of 
polar solutes in non-aqueous media.

3. To determine hydration parameters of phenol in several solvents 
of varying dielectric constant.

4. To determine the molecular complexity of water as a solute in a 
number of solvents.

10



CHAPTER III

EXPERIMENTAL

The phenol was a crystalline product of Allied Chemical Corporation.
It was purified by two distillations at reduced pressure; the middle two- 
thirds being collected each time. To reduce the probability that the 
phenol might decompose on standing all samples were stored in an evacuated 
desiccator in the dark and were used within two weeks following preparation.

The solvents, carbon tetrachloride, cyclohexane, toluene, benzene,
1,1,2,2-tetrachloroethane and 1,2-dichlorethane, were purified by dis­
tillation through a 30-plate Oldershaw column, using a reflux-ratio of 
10:1.

Fisher Certified Reagent Grade Calcium Chloride and Baker and 
Adamson C.P. Grade Sulfuric Acid were used to prepare solutions of con­
stant water activity.

The partition and water solubility samples were allowed to reach 
equilibrium in a well-stirred water bath, maintained at a temperature of
25.0 ^  0.1°. The bath had auxiliary heating and cooling sources; a 200- 
watt light bulb activitated by a mercury regulator-electronic relay circuit 
was used as the fine temperature control. Partition samples were con­
tained in 500 ml. glass-stoppered Erlenmeyer flasks; the aqueous phase 
had a volume of about 100 ml. and the volume of the organic phase was

11



12
about 200 ml. Phenol was added from an aqueous stock-solution. The
samples were shaken several times during the first 24 hours and then
allowed to equilibrate for 2 or 3 days.

All phenol solutions were analyzed spectrophotometrically for total
phenol using a Beckman DU Spectrophotometer. The silica cells employed
were obtained from the Beckman Corporation. Absorbances were measured
at a peak wavelength of 268 my, with a slit width of 0.1 mm, for all but
the phenol-benzene system, for which a peak wavelength of 274 my was used.
Figure 1 shows that Beer's law was followed throughout the concentration
range lO”^ to 10  ̂moles/I. The molar absorptivities obtained were l4l4
1/mole-cm at 268 my and 1250 1/mole-cm at 274 my. The phenol solutions
used for standardization were obtained by diluting two standard solutions
which had been prepared separately by weight from purified crystalline
phenol. Several of the standards were analyzed independently by bromi-

70nation titrations. Concentrations of phenol determined by bromination 
differed less than 0.2 per cent from those calculated from weight of 
pure phenol.

In order to analyze the aqueous solutions for total phenol, the
-4samples were diluted with water to a concentration within the range 10 

to 10~ mole/1. To analyze the organic phase for total phenol, aliquots 
were extracted with sufficient water to give a concentration of phenol 
within the range needed for ultraviolet analysis. In systems where the 
distribution ratio is much greater than one it is sometimes necessary to 
correct for the phenol remaining in the organic phase after water extraction. 
In the partition experiments, samples were withdrawn from the denser 
phase in an unique manner. Approximately 30 minutes before sampling a



12
about 200 ml. Phenol was added from an aqueous stock-solution. The
samples were shaken several times during the first 2h hours and then
allowed to equilibrate for 2 or 3 days.

All phenol solutions were analyzed spectrophotometrically for total
phenol using a Beckman DU Spectrophotometer. The silica cells employed
were obtained from the Beckman Corporation. Absorbances were measured
at a peak wavelength of 268 my, with a slit width of 0.1 mm, for all but
the phenol-benzene system, for which a peak wavelength of 2Tk my was used.
Figure 1 shows that Beer's law was followed throughout the concentration 

“3range 10 to 10 moles/1. The molar absorptivities obtained were l4l4
1/mole-cm at 268 my and 1250 1/mole-cm at 2jk my. The phenol solutions
used for standardization were obtained by diluting two standard solutions
which had been prepared separately by weight from purified crystalline
phenol. Several of the standards were analyzed independently by bromi-

70nation titrations. Concentrations of phenol determined by bromination 
differed less than 0.2 per cent from those calculated from weight of 
pure phenol.

In order to analyze the aqueous solutions for total phenol, the 
samples were diluted with water to a concentration within the range 10~^ 
to 10 ^ mole/1. To analyze the organic phase for total phenol, aliquots 
were extracted with sufficient water to give a concentration of phenol 
within the range needed for ultraviolet analysis. In systems where the 
distribution ratio is much greater than one it is sometimes necessary to 
correct for the phenol remaining in the organic phase after water extraction. 
In the partition experiments, samples were withdrawn from the denser 
phase in an unique manner. Approximately 30 minutes before sampling a



13
glass tube with a thin bulb on one end was introduced into denser phase 
of the partition system. To obtain a sample of this phase, the bulb was 
broken from the inside of the tube with a glass rod; a pipet was then 
inserted through the tube.

The solute isopiestic apparatus which was developed for performing 
the hydration studies is shown in Figure 2. It consists of a wide-mouth 
jar of approximately one liter capacity to which a test tube or a glass 
tube is attached. The glass tube fits over a vertical rod attached in 
a constant temperature water bath, so that the jar will float in an 
upright position and be agitated by the circulation of water. The I50 ml. 
beaker. A, resting on the bottom of the jar or suspended from the lid, 
contains a solution or solid of known water activity. Solution B is the 
phase to be equilibrated at a constant, known water activity. In some 
cases it may be desirable to interchange the position of the activity 
solution and the phase to be equilibrated, depending on the expected up­
take of water. If the uptake of water will be large the phase to be 
equilibrated should be placed in the beaker. This allows a large quantity 
of the activity solution to be used, so that the loss of water to the 
phase being equilibrated will not affect the constancy of the water 
activity in the system. The system is closed from the atmosphere with 
layers of Saran Wrap and aluminum foil. The jar lid, which has a small 
hole in the top, is placed over the Saran Wrap and aluminum foil. To 
withdraw a sample, a hole is made through the layers of Saran Wrap and 
aluminum foil and the pipet is inserted. A piece of tape is temporarily 
placed over the hole after each sampling to maintain equilibrium until 
sampling is completed.



Ik

Aqueous calcium chloride or sulfuric acid solutions were used as
constant water activity sources. A water activity range of 0.3 to 1.0
can he obtained with aqueous calcium chloride, while a range of 0.05 to
1.0 can be obtained with aqueous sulfuric acid at 25°. The choice of
water activity source depends upon the nature of the solute which is being
studied. For example, sulfuric acid cannot be used if a volatile basic
compound is being studied, since a salt will form. Density measurements
of the calcium chloride and sulfuric acid solutions were compared with

71available data to determine the water activity of each solution. The 
densities were determined using a Westphal density balance standardized 
with distilled water, taking the specific gravity of water to be 0.9971 at 
25°. The reliability of the density measurements were checked by acid and 
chloride analyses; results indicated that water activities could be deter­
mined from density values to within 0.5 per cent.

Water analyses were made primarily with a Beckman KF-3 Aquameter 
which uses Karl Fischer reagent, a solution of iodine, sulfur dioxide and 
pyridine in methanol. A stock solution was prepared by dissolving 300 
grams of iodine in 9^6 ml. (2 pt.) of dry pyridine in a 4 liter bottle,

T22300 ml. of dry methanol (less than 0.05 per cent water) was then added. 
The freshly prepared stock solution was allowed to set for at least one 
day before any sulfur dioxide was added.

To prepare the reagent for the water analyses, one liter of the 
stock solution was transferred to the buret reservoir bottle and chilled 
by placing in a mixture of ice and water. At the same time, 6o ml. of 
sulfur dioxide was condensed in a cold trap immersed in a carbon dioxide- 
methanol solution. The liquid sulfur dioxide was then added quickly but
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carefully to the chilled stock solution. The buret reservoir bottle con­
taining the active reagent was then stoppered and allowed to come to room 
temperature after which the pressure was released on the system. The 
active reagent prepared in this way has a titer of approximately 3.5 milli­
grams of water per milliliter of reagent. The reagent may be diluted with 
dry methanol to approximately the desired titer, after which it should be 
allowed to stand for one day before use.

The Karl Fischer reagent was standardized ordinarily by weighing 
200-milligram samples of Fisher Certified Reagent Grade sodium tartrate 
dihydrate into the titrating vessel and titrating the water present. From 
the weight per cent of water in the salt the titer was calculated in terms 
of milligrams of water per milliliter c reagent. The purity of the sodium 
tartrate dihydrate was checked by measuring the loss of weight of water on 
heating to 120°; results deviated less than 0.2 per cent from the theoret­
ical weight loss predicted from the formula, N a ^ C - 2HgO.

The reagent was also standardized occasionally be titrating a 
methanol solution of knwon water content. The water-in-methanol-standard 
solution was prepared in a 250 ml. glass-stoppered volumetric flask. Water 
was weighed quantitatively into the flask using a weight buret so that the 
concentration would be 2 to 3 milligrams of water per milliliter of methanol. 
The volume was then adjusted with methanol obtained from a stock solution. 
Samples from the stock reservoir were titrated to determine the amount of 
water initially present. The titer was calculated after making a correction 
for the initial water present.

Experiments were conducted to determine the solubility of water in 
organic solvent as a function of the water activity. Approximately 100
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to 200 ml. of the solvent was placed in the solute isopiestic cells at 
various water activities and then allowed to equilibrate. The time 
required for equilibration depends upon the amount of water which must 
be transferred by diffusion through the vapor phase. Figure 3 shows a 
rate study of the uptake of water in benzene and 1,2-dichloroethane.
Note that the time required for equilibration in benzene with a water 
activity of 0.905 was approximately 8 hours. 1,2-dichloroethane, which 
dissolves considerably more water, required about 36 hours. Thus, the 
experimental samples were usually allowed to equilibrate for two or more 
days.

The dependence of water solubility on the water activity was also 
studied by distributing water directly between the organic solvents and 
aqueous calcium chloride solutions. No detectable amount of calcium 
chloride was extracted into the organic solvents, as determined by silver 
nitrate tests.

Water analyses were obtained simultaneously with phenol analyses.
The sample sizes used for analysis varied depending upon the concentration
of water present. 50 ml., 25 ml., and 10 ml. samples were used in the
water determinations in carbon tetrachloride and cyclohexane, benzene and
toluene, and 1,1,2,2-tetrachloroethane and 1,2-dichloroethane, respectively.

Spectra in the 0-H first overtone region of phenol were recorded
on a Beckman Model DK-1 Spectrophotometer. The cells employed were Beckman
cells with 1 and 2 centimeter pathlengths. The techniques employed were

73similar to those used by Worley. Absorbances were recorded for phenol 
concentrations of 0.05 to 0.5 mole/1 is carbon tetrachloride, benzene,
1,1,2,2-tetrachloroethane and 1,2-dichloroethane. The solutions were dried
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in 50 ml. volumetric flasks using a drying cap filled with P^O^. 
Approximately one day was allowed for equilibration.

The instrument was readjusted each time before the phenol solutions 
were scanned. The reference and sample cells were filled with dry solvent 
and the zero and 100^ transmittance adjustments were made at the wave­
length of the 0-H absorption (approximately l.U mp). The sample cell was 
then filled with dry phenol solution using great care to minimize the 
exposure time to water vapor. Approximately 10 to 15 minutes were allowed 
for temperature equilibration before each spectrum was recorded. The 
sensitivity was maximized to give the smallest possible slit width. Each 
solution was analyzed for total phenol using procedures described earlier.

The solubility of benzene, carbon tetrachloride and 1,2-dichloro­
ethane in water was determined using a vapor pressure measuring device

7U 75similar to the one described by Grigsby and Taha. A 200-gram sample of 
pure water is placed in a flask serving as a reservoir. The apparatus is 

' then evacuated through a Teflon vacuum stop-cock to approximately the 
vapor pressure of water. Samples of the organic compounds are added 
through a mercury-sealed sintered-glass, disc, using a micro-pipet or a 
micro-syringe. After equilibrium is attained, which varies from a few 
minutes to several hours, the total pressure of the solution is read from 
the manometer with the aid of a cathetometer. Samples of the organic 
compounds are added up to and beyond the saturation concentration. An 
abrupt break appears in a plot of organic concentration versus pressure 
at the concentration corresponding to the limiting solubility of the 
organic compound. The micro-pipet or micro-syringe is calibrated by 
delivering the organic samples into an evacuated weighing bottle which
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incorporates the mercury-sealed, sintered-glass disc used in the vapor

, ■ 76pressure measuring device.



CHAPTER IV

THEORY

The partition method is a convenient technique for studying the 
association of phenol. This method involves distributing a solute 
between water and a second immiscible solvent.

Phase I
Solute

Phase II
Solute

The chemical potential of the solute in phase I may be written as
= y° + RT In a^ ... (l)

and in phase II as
^2 = ^ 2 + RT In ag ...(2 )

where a^ and a^ are the activities of the solute in the two phases. At
equilibrium the chemical potential of the solute in phase I must be equal 
to the chemical potential of the solute in phase II and since and
are constants at a definite temperature and pressure, then

^1—  = Constant ...(3 )
Furthermore, if the solutions behave ideally, in that Henry's and Raoult's 
laws are obeyed, the activities may be replaced by the respective mole

19
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fractions so that

Xi Constant ...(I;)
2

In dilute solutions, solute mole fractions are nearly proportional to 
concentrations; hence Equation k can be written

C.—  = Constant ...(5)
77which is the distribution law derived by Nerst in I891.

When the solute is assumed to exist in various associated and hydrated 
forms, it is necessary to relate the formal concentrations of water and 
the polar solute to the monomer concentrations and various equilibrium 
constants. In other words, one assumes that the observed deviations from 
ideality in dilute solutions are due solely to molecular interactions 
which can be accounted for by appropriate equilibrium constants. One 
normally works in a solute c oncentration range in which the solute activ­
ity coefficients are equal to unity.

Assuming that the phenol species present in the organic phase are 
monomer(P), monomer dihydrate(PW^)» dimer monhydrate(P^W) and trimer(P^), 
the formal concentration of phenol can be written as

fo = C° + C° + 2C° + 3C° ...(6)P P PVg PgW p
where C°, C° , C° , and C° represent the respective molarities of the P PWg PgW P3
species. If the phenol exists solely as a monomer in the aqueous phase, 
then the formal concentration is the monomer concentration in that phase. 
The ratio of the concentration of the monomer in the organic phase to the 
monomer concentration in the aqueous phase at infinite dilution is the 
distribution coefficient, K^, which can be expressed as
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K ^ = C » / 0" ...(7)

Where is the molar monomer concentration in the aq.ueous phase.
The reactions and equilihrium constants for the formation of the 

hydrogen bonded species PW^, P^W and P^ can be written as
a) P . 2M Î PW^; ...(8 )

b) 2P . W Î PgW; • • • '®>

c) 3P Z P_; K = C° /C°^ ...(10) ̂ P3 P3 P
where is the monomer concentration of water. Substituting into
Equation 6 the formation constants and K,C^ for the monomer concentrationd p
of phenol in the organic phase, the following expression is obtained 

= V p  +

Rearranging and dividing through by gives

If only monomers and dimers of phenol were present, a plot of f°/C^ vs.
would yield a straight line with K,(l + K C°^) as the intercept and P a pWg w

2K^K C° as the slope, d PgW w ^
If in addition to the phenol hydrates, one assumes the presence of 

monomers (W) and trimers (W^) of water, the formal water concentration 
in the organic phase can be written as

where C° and C° are the molar concentrations of the monomer and trimer,W3
respectively. Substituting in the appropriate formation constants for
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C . C and C , Equation 13 becomesW3’ pvg PgW

2
f° = C° + 3K C°^+ 2K,K C°^C* + K?K C°C* ...(lU)V w w d pwg w p d PgW w p

Subtracting the terms arising from only monomers and trimers of water from
wboth sides of Equation 14 and dividing by C yieldsP

<  - K  * 3K 4^0
 ^ —   - f  = "

P P
_3

where Af° = f° - (C° + K C ) is the concentration of water in the w w w w^ w
phenol hydrates.

Subtracting Equation 15 from Equation 11, the following is obtained 
f° - Af° 2

Again, if only monomeric and dimeric phenol were present, a plot of 
f° - Af®
—^---- —  vs. C would yield a straight line with K, (l - K C° ) asC* P d' pwg w

2the intercept and K,K C° as the slope. K, and K could then bed PgW w d pwg
calculated by determing the first terms in Equations 12 and 16 and 
solving for the constants simultaneously. The slope of Equation 16 should 
be one-half the slope of Equation 12 if was the only hydrated polymer 
of phenol.

Unfortunately, it is not possible to deduce the number of water 
molecules in the phenol monomer hydrate from distribution studies at 
constant water activity; furthermore, the molecular complexity of the 
free water in the organic solvents cannot be deduced from these experiments.
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The solute isopiestic technique provides a method hy which the water 
concentration in the solvent can he determined as a function of water 
activity. The water monomer concentration at a definite water activity 
can be expressed as

-"(IT)
where is a proportionality constant equal to the monomer water concen­
tration at saturation and a^ is the water activity. The activity of water
is defined by the relation

= p/p° ...(18)
where p is the partial pressure of water and p° is the vapor pressure of 
pure water at the designated temperature. Assuming that monomer-trimer 
equilibrium is established, the formal concentration at a particular 
water activity can be expressed as

However, if only monomers of water are present then the formal concentra­
tion of water will equal C^a^. If the solute species present are P, PW^, 
PgW, P^, W arid the formal concentration of water in a non-aqueous 
medium can be expressed as

and the formal concentration of phenol as
o f  Kp . 20JK ... (2 1 )

‘= 2 3
The constants obtained from the partition data can be used in Equations
20 and 21 to determine the consistency of the postulated species with data
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obtained at reduced water activities. It could be argued that the water 
unit in the organic phase is a cluster, rather than the monomer. For 
example, suppose that the equilibrium

W^(organic) X  nW(vapor) 
exists, where is a cluster of n water molecules in the organic phase 
and W is the monomer in the vapor phase. The equilibrium constant might 
then be written

^n
where a and a are the monomer and cluster activities, respectively, w w^
In dilute solutions

and the equilibrium constant becomes
K = (a%)"/(fVn) ...(24)w W

or f° = n(ap“/K ...(25)
It can be seen then that if f^ varies linearly as a^ then n must equal 
unity. The logarithmic form of Equation 25 is

log f® = log ^  + n log a^ ...(26)

A plot of log f^ versus log a^ should yield a straight line with the 
slope equal to the number of water molecules per cluster, provided that 
a single type of cluster is present.



CHAPTER V 

RESULTS AHD CALCULATIONS

The water solubility data at various water activities in carbon
tetrachloride and cyclohexane at 25° are given in Tables 2 and 4 and are
plotted versus water activity in Figure U. Based on the linearity of the
plot, f° vs. a , the data support the conclusion that water dissolves w w
primarily as monomeric units in carbon tetrachloride and cyclohexane. 
Water solubility data in carbon tetrachloride were obtained by vapor 
equilibration at different water activities using the solute isopiestic 
technique and by partitioning water directly between aqueous calcium 
chloride solutions and carbon tetrachloride. Silver nitrate tests showed 
that no detectable amount of calcium chloride extracted into the organic 
phase. Good agreement was obtained by both methods. The limiting solu­
bility at unit activity (saturation) is 0.008? +_ 0.0003 moles/1. The 
limiting solubility of water in cyclohexane at unit activity is 0.0024 
0.0003 moles/1. Considerable difficulty was encountered in titrating the 
cyclohexane samples for water, since cyclohexane is not sufficiently 
miscible with methanol, the solvent employed.

The water solubility data at various water activities in benzene and 
toluene at 25° are given in Tables 5 to 8 and are plotted versus water 
activity in Figure 5« Earlier solubility for benzene solutions analyzed 
by manual Karl Fischer titrations are included along with data obtained

.25
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with the Beckman KF-3 Aquameter. The aquameter yielded better precision 
than the manual titration, which employed a dead-stop indication. The 
water solubilities in benzene solutions were obtained by using both the 
vapor equilibration and partition techniques. Again good agreement was 
found for the two methods employed. The data support the conclusion that 
water dissolves primarily as monomeric units in benzene and toluene; the 
limiting solubilities at unit water activity are 0.0349 + 0.0005 and 
0.0274 +_ 0.0005 moles/I, respectively.

The water solubility data at various water activités in 1,2- 
dichloroethane at 25® and 10° and in 1,1,2,2-tetrachloroethane at 25° are 
given in Tables 9 to 11 and are plotted versus water activity in Figure 
6. The plots show positive, curvature, indicating some polymerization of 
water in the organic phases. The data were subjected to least squares 
analysis in which the formal water solubility was fitted as a function of 
the water activity. It was found that in all cases that the assumption of 
monomer-dimer equilibrium gave a poorer fit of the data than the assumption 
of monomer-trimer or monomer-tetramer equilibrium. The monomer-dimer 
assumption gave a root mean square deviation 5 to 25% larger than the 
monomer-trimer equilibrium and 1.5 to 70% larger than the monomer-tetramer 
equilibrium. While the data are not sufficiently accurate to distinguish 
between monomer-trimer or monomer-tetramer equilibrium it is believed that 
the data cannot be explained to within estimated experimental error by 
assuming monomer-dimer equilibrium. Various combination of three species 
were also tried, but little improvement in the fit of data was noted. In 
considering the various combinations of three species in which one of these 
species was a dimer, the least squares parameter for the dimer was negative
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in all cases. Again, this gives support to the conclusion that the dimer 
is not a major species. A summary of the parameters and root mean square 
deviations for the various combinations of species considered are given 
in Table 12. The solid lines in Figure 6 have been calculated using the 
trimer equilibrium constants obtained from the least squares analysis.
The formal water solubility in 1,2-dichloroethane at 25° and 10° and in
1.1.2.2-t etrachloroethane at 25° are 0.1262 0.0014, 0.0029 +. 0.0010 
and 0.1010 ^  0.0012 moles/1, respectively. A summary of the formal water 
solubilities and equilibrium parameters are given in Table 13 for the 
organic solvents studied. The tetramer formation constants of water in
1.2-dichloroethane and 1,1,2,2-tetrachloroethane are also given for comparison.

Log-log plots of f° vs. a are given in Figure T for the solventsw w
studied. Assuming that water is essentially monomeric in the vapor phase,
the dàta indicate that the basic water units in the organic phases are
monomers. The slope of the solid lines in Figure 7 are unity and the
curvature noted in the systems, 1,2-dichloroethane and 1,1,2,2-tetra-
chloroethane at the higher water activities is interpreted as evidence
for the existence of monomer-trimer or monomer-tetramer equilibrium.

The partition data for phenol distributed between 1,2-dichloroethane
and water at 25° are given in Table l4. The ratio of the concentration
of phenol in the organic phase to the concentration of phenol in the
aqueous phase is plotted versus the concentration of phenol in the aqueous
phase in Figure 8. The data were subjected to least squares analysis in
which the ratio, f°/C^ was fitted as a function of C^. The assumption ofP P P
monomer-dimer equilibrium fitted the data better than the monomer-trimer 
equilibrium and the assumption of monomer-dimer-trimer equilibrium did
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not improve the fit significantly. The root mean square deviations and 
parameters for the assumed species are given in Table 23. Water solubility 
data were obtained in conjunction with the partition studies and are 
given in Table 15* The increase in water solubility resulting from the 
presence of phenol in 1,2-dichloroethane was assumed to be due to the 
formation of hydrates. The ratio of the difference between the total 
organic phenol concentration and the bound-water concentration, Af^, to 
the concentration of phenol in the aqueous phase is plotted versus the 
concentration of phenol in the aqueous phase in Figure 8. Water solubility 
data at various water activities for phenol solutions are given in Table 
15* The total concentration of water, f^, is plotted versus the total 
concentration, f°, in the organic phase in Figure 9* The solid lines in 
Figures 8 and 9 are calculated using the best set of constants obtained 
from the least squares analyses and error calculations, assuming the 
species to be phenol monomer, monomer dihydrates, dimer monohydrates and 
water monomers and trimers. It was not necessary to assume any self­
association of phenol in 1,2-dichloroethane to explain the partition and 
water solubility data. The partition and water solubility parameters are 
given in Table 20.

The partition data of phenol distributed between benzene and water 
at 25° are given in Table l6. The water solubility at unit water activity

"W* f O __ Aand partition data are plotted in Figure 10 as f°/C versus C and p wP P P y---

vs. Cp. For comparison the phenol data of Philbrick are also included in 
the plot. The data of Philbrick agree very well with the present data.
It appears that his data scattered somewhat less than the present data.
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The larger errors reported here might he attributed to the problem 
encountered in the analysis of phenol in the benzene phase. Normally 
a small aliquot of the organic phase was diluted with water and the aqueous 
phase was analyzed for the total phenol extracted. However, water satu­
rated with benzene absorbs significantly at 268 my, which is the wave­
length used for the analysis. Therefore, the partition samples were 
prepared in such a way that the total phenol concentrations were known. 
After equilibrium had been attained the aqueous phases were analyzed in 
the usual manner and the concentration in the benzene phases were deter­
mined by difference. It was found later that one could analyze for the 
phenol in water saturated with benzene by using the peak wavelength 2Th 
my, since benzene does not seem to absorb significantly at this wave­
length. This wavelength was used to analyze for the total phenol present 
in later experiments. The water solubility data are given in Table IT 
and the data are plotted as f^, the total concentration of water, versus 
f°, the total phenol concentration, in Figure 11. It was necessary to 
assume the presence of phenol trimers in addition to phenol monomers, 
monomer dihydrates and dimer monohydrates and water monomers to explain 
the partition and water solubility data. The solid lines in Figures 10 
and 11 are calculated using the best constants for the assumed species 
obtained from the least squares analyses and error calculations given in 
Table 20.

The partition data for phenol distributed between 1,1,2,2-t etrachloro­
ethane and water at 25° are given in Table l8. The water solubility data 
at unit water activity and the partition data are plotted in Figure 12 as
f°/C* vs. and " ^^w vs. C^. The water solubility data at various P P P ---  P
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water activities are given in Table 19, and are plotted in Figure 13 as 

versus f°. It was found from the least squares analyses and error 
calculations that the data could best be explained by assuming phenol 
monomers, monomer dihydrates, dimer monohydrates, trimers and water 
monomers and trimers. The solid lines in Figures 12 and 13 are calculated 
using the constants given in Table 20.

The partition data of phenol distributed between carbon tetrachloride 
and water at 25° are given in Table 21. The data are plotted as ^p/^p 
vs. Op in Figure lU. The partition data of Badger and Greenough at 28° 
and Herz and Rathmann at 25° are also included in the plot. The positive 
curvature of the plot f°/Cp vs. indicated that associated species 
having higher molecular weights than the dimer are present in the carbon 
tetrachloride phase. Judging from the limiting slope, the concentration 
of the dimeric units is not very great. While it is not possible to say 
that the limiting slope is zero, as it would be if the dimeric units were 
absent, it is worth noting that Philbrick could not detect any systematic 
change of the ratio ^p/^p over the organic concentration range of 0.02 to 
0.1 molar. Least square analyses assuming various combinations of two and 
three parameters were obtained and are given in Table 23. The partition 
data could be fitted quite well over the concentration range by assuming 
phenol monomers, trimers, and hexamers. The water solubility data are 
given in Table 22 and are plotted versus the formal phenol concentration 
in Figure 5- In fitting the water solubility data it was necessary to 
assume the presence of phenol monomer monohydrates and trimer monohydrates 
to explain the data up to phenol concentrations less than 0.15 molar for 
all activities. However, it was necessary to postulate hydrated species
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having more than three phenol molecules to explain all the solubility 
data at all water activities. The data could be explained by assuming the 
important hydrate species to be either (a) PW, P^W and PgW^ or (b) PW,
PgW, P^Wg and P^W^. Although combination (a) has one less hydrated species 
than combination (b), the latter was chosen as being physically more 
plausible. The lines in Figures l4 and 15 are calculated using the 
constants given in Table 2h.

The partition data for phenol at 35° distributed between carbon 
tetrachloride and water are given in Table 25. Least squares analyses of 
the plot shows that the assumption of phenol monomer-trimer-hexamer fitted 
the data as well as any of the other combinations. No water solubility 
data were obtained for the phenol solutions in carbon tetrachloride at 35° «

The infrared peak absorbances for the 0-H first overtone for anhydrous 
phenol solution- in 1,2-dichloroethane, benzene, 1,1,2,2-tetrachloroethane 
and carbon tetrachloride are given in Tables 26 to 29. The free hydroxyl 
stretching frequencies in the first overtone region occur approximately 
at 1.380y for benzene, at 1.375y for 1,2-dichloroethane, at 1.360y for
1.1.2.2-tetrachloroethane and at 1.357w for carbon tetrachloride. It was 
noted that the 0-H peak for phenol in benzene has a split peak; this has 
been interpreted by Mecke, et. al., as arising from intermolecular hydrogen 
bonding of the 0-H group with benzene molecules.

The absorbance data are plotted versus the formal phenol concentration 
in Figure l6. The infrared data in the 0-H overtone region indicate that 
phenol associates little, if any at all in 1,2-dichloroethane, benzene and
1.1.2.2-tetraohlorethane for concentrations up to 0.5 molar ; however, the 
data indicate that phenol is highly associated in carbon tetrachloride.
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It was possible to fit the absorbance data using the self-association 
constants obtained from partition studies and a single unknown parameter, 
the extinction coefficient (equal to 0.332 1/mole-cm).

Solubility data for 1,2-dichloroethane, benzene and carbon tetrachloride 
in water at 25° are given in Table 30 to 32. These data, obtained using 
the vapor pressure-measuring device, are plotted as a function of the 
partial pressure of the organic compound in Figures 17 to 19. The limiting 
solubility of 1,2-dichloroethane, benzene and carbon tetrachloroethane 
in water at 25° are 0.0895, 0.022 and 0.0051 moles/1, respectively.
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Figure 1. Beer's law plot for phenol in water at 268mp and 27kmu
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TABLE 1

BEER'S LAW DATA FOR PHENOL IN WATER AT 268m and 2Tkm

Cp X 10  ̂ (moles/liter) A ( 268m ) A (274m )

0.643 0.092 0.078
1.286 0.182 0.162
1.929 0.274 0.236
2.572 0.367 0.321
3.215 0.456 0.398
3.858 0.549 0.487
4.501 0.638 0,563
5.144 0.728 0.647
5.787 0,820 0,728
6.430 0.908 0,796
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Figure 2. Solute isopiestic apparatuso



0.10

0.08

0.06

0.04

O O

0.02

lé 2k 3628k 8 12 20 32

a = Or 8o8, w

Time (hours)
Figure 3̂  Equilibration rate data at 25°; 0» Benzene at a^ = 0.9, A, 1,2-Dichloroethane at

U)o\



37

TABLE 2
FORMAL SOLUBILITIES OF WATER AT VARIOUS WATER ACTIVITIES IN 
CARBON TETRACHLORIDE AT 25°, USING SOLUTE lOSPIESTIC METHOD.

f° (moles/liter) w

0.0021 0.26
0.0024
0.0022
0.0039 0.47
0.0041
0.0041
0.0062 0.69
0.0063
0.0083 0.89
0.0083
0.0085 0.945
0.0085
0.0087 1.0
0.0091
0.0084
0.0088
0.0088



38

TABLE 3
FORMAL SOLUBILITIES OF WATER AT VARIOUS WATER ACTIVITIES IN 

CARBON TETRACHLORIDE AT 25°, USING PARTITION METHOD.

f° (moles/liter) w %

0.001+6 0.52
0.0058 0.65
0.0069 0.78
0.0075 0.85
0.0082 0.95
0.0092 1.0
0.0090
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TABLE 4
FORMAL SOLUBILITIES OF WATER AT VARIOUS WATER ACTIVITIES 
IN CYCLOHEXANE AT 25°, USING SOLUTE ISOPIESTIC METHOD.

f° (moles/liter) v %

0,0009 0.434
0.0009
0.0016 0.616
0.0015
0.0022 0.85
0.0020
0.0023 1.0
0.0022
0.0024
0.0024
0.0022
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Figure 4. Formai solubility of water at 25° in:A» carbon 
tetrachloride, using the partition method; 0» carbon tetrachloride, 
using solute isopiestic method; #, cyclohexane, using the solute iso­
piestic method.



TABLE 5
FORMAL SOLUBILITIES OF WATER AT VARIOUS WATER ACTIVITIES 

IN BENZENE AT 25°, USING SOLUTE ISOPIESTIC METHOD.

f° (moles/liter) aV w

0.0062 0.175
0.0065
0.0066
0.0091 0.256
o .oiLt 0.434
0.0150
0.0154
0.0208 0.616
0.0212
0,0212
0.0263 0.756
0.0261
0.0279 0.808
0,0280
0.0309 0.89
0.0317
0,0349 1.0
0.0350
0.0349
0.0349
0.0351
0.0352
0.0352
0.0351
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TABLE 6
FORMAL SOLUBILITIES OF WATER AT VARIOUS WATER ACTIVITIES 

IN BENZENE AT 25°, USING PARTITION METHOD.

f° (moles/liter) w

0.0179 0.52
0.0181
0.0226 0.65
0.0224
0.0271 0.78
0.0272
0.0300 0,85
0.0299
0.0330 0.95
0,0333
0.0350 1.0
0.0354
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TABLE 7
FORMAL SOLUBILITIES OF WATER AT VARIOUS WATER ACTIVITIES IN 
BENZENE, AT 25° USING THE MANUAL KARL FISCHER TITRATION.

c aw w

0.0331 0.94
0.0298 0.84
0.0242 0.695
0.0184 0.60
0.0083 0.225
0.0321 0.94
0.0288 0.84
0.0249 0.695
0.0199 0.60
0.0331 0.96
0.0285 0.798
0.0213 0.605
0.0127 0.375
0.0071 0.181
0.0348 1.0
0.0345 0.96
0.0283 0.798
0.0209 0.605
0.0117 0.375
0.0078 0.181
0.0350 1.0
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TABLE 8
FORMAL SOLUBILITIES OF WATER AT VARIOUS WATER ACTIVITIES 

IN TOLUENE AT 25°, USING SOLUTE ISOPIESTIC METHOD.

(moles/liter)w %

0.0048 0.175
0.0044
0.0043
0.0070 0.256
0.0068
0.0075
0.0117 0.434
0.0114
0.0167 0. 616
0.0165
0.0204 0.756
0.0205
0.0219 0.808
0.0219
0.0246 0.89
0.0246
0.0276 1.0
0.0274
0.0276
0.0276
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Figure 5* Formal solubility of water at 25° in: •, benzene 
using the solute isopiestic method; ▲, benzene using the partition method; 
O, benzene, earlier data; O, toluene using the solute isopiestic method.
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TABLE 9
FORMAL SOLUBILITIES OF WATER AT VARIOUS WATER ACTIVITIES IN
1,2-DICHLOROETHANE AT 25°, USING SOLUTE ISOPIESTIC METHOD.

(moles/liter) aw w

0.0193 0.175
0.0193 
0.0201 
0.0185 
0.0186
0.0280 0.250
0.0279
0.0283
0.0280
0.0280
o.o4o4 0.35
0.0397
0.0397
0.0452 0.395
0.0447
0.0438
0.0485 0.434
0.0491
0.0489
0.0516 0.47
0.0516
0,0517
0.0532
0.0520
0.0515
0.0610 0.54
0.0607
0.0607
0.0625 0.55
0.0625
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TABLE 9 • ■> o continued

f° (moles/liter) aw w

0.0715 0.615
0.0709
0.0707
0.0717 0.616
0.0720
0.08l4 0.693
0.0807
0.079k
0.0806
0.0800
0.087k 0.7k
0.0876
0.087k
0.0885 0.756
0.0895
0.0890
0.0981 0.808
0.0981
0.0981
0.09k0
0.09k6
0.0986
0,0978
0.10k8 0.85
0.10k7
0.1055 0.89
0.1063 
0.1057 
0.1100 
0.1110
0.1139 0.90
0.1118 
0.1111
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TABLE 9 o . . coTitinued

f° (moles/liter) aw w

0.1129 0.94
0.1136
0.1133
0.1127
0.1160 0.945
0.1158
0.1147
0.1175 0.950.1162
0.1165
0.1168
0.1265 1.0
0.1267
0.1268
0.1261
0.1264
0.1266
0.1274
0.1268
0.1270
0.1285
0.1279
0.1261
0.1276
0.1267
0.1273
0.1262
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TABLE 10
FORMAL SOLUBILITIES OF WATER AT VARIOUS WATER ACTIVITIES IN 
1,2-DICHLOROETHANE AT 10°, USING SOLUTE ISOPIESTIC METHOD.

0.0168 0.242
0.0318 0.461
0.0501 0.682
0.0677 0.882
0.0734 0.944
0.0829 1.00
0.0105 0.160
0.0163 0.238
0.0292 0.4l8
0.0422 0.603
0.0589 0.800
0.0819 1.0
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TABLE 11
FORMAL SOLUBILITIES OF WATER AT 

1,1,2,2-TETRA.CHLOROETHAWE AT 25°,
VARIOUS WATER ACTIVITIES IN 
USING SOLUTE ISOPIESTIC METHOD.

f° (moles/liter) w aw

0.0187 0.1750.0194
0.0178
0.0252 0,256
0.0250
0.0250
0.0410 0.434
0.0410
0.0588 0.616
0.0588
0.0660 0.693
0.0660
0.0720 0.756
0.0720
0.0786 0.808
0.0787
0.0883 0.890.0884
0.0945 0.945
0.0945
0.1010 1.0
0.1014
0.1020
0.1020
0.1014
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Figure 6. Formai solubility of water in: O, 1,2-dichloroethane 
at 25°; A» 1 ,1,2,2-tetrachloroethane at 25°; #, 1,2-dichloroethane at 10°, 
Each point represents an average of 2 or 3 measurements.



TABLE 12

LEAST SQUARE PARAMETER FOR = aa + gaw w
m

w

SOLVENT POSTULATED SPECIES m n a 6
ROOT MEAN SQUARE 

Y DEVIATION

1,2-dichloroethane (25°) monomer-dlmer 2 0.102 0,0224 _ 0-00139
monomer-trlmer 3 - 0.109 0,0161 - 0.00132
monomer-tetramer k - 0,112 0.0141 - 0,00137
monomer-dimer-trimer 2 3 0.1095 -0.0006 0.0164 0,00135
monomer-dimer-t et ramer 2 It 0-1070 -0.0102 0,00784 0.00136
monomer-trimer-hexamer 3 6 0,1088 0,0172 -0,00101 0,00135

1,2-dichloroethane (10°) monomer-dimer 2 0.0584 0,0222 0,00149
monomer-trlmer 3 - 0.0650 0.0162 — 0,00110
monomer-tetramer k - 0,0675 0,0142 - 0.00087
monomer-dimer-trlmer 2 3 0,0740 -0,028 0,0353 0,00089
monomer-dimer-tetramer 2 It 0.0708 -0,0076 0.0186 0.00061
monomer-trimer-hexamer 3 6 0.0689 0.0024 0.01067 0.00080

1,1,2,2,-tetrachloro- monomer-dlmer 2 0.0897 0.0109 0,00143
ethane (25°) monomer-trimer 3 - 0.0925 0.00848 - 0 - 00120

monomer-t et ramer k - 0.0937 0.00755 - 0,00105
monomer-dimer-trimer 2 3 0.1088 -0.0473 o.o4o4 0,00059
monomer-dlmer-tetramer 2 It 0.104 -0.0224 0.0198 0.00065
monomer-trimer-hexamer 3 6 0.0978 -0.0082 0.0121 0.00083

vnru



TABLE 13

SOLUBILITIES AND ASSOCIATION CONSTANTS OF WATER IN ORGANIC SOLVENTS

SOLVENT f° (mole/1) c° (mole/1) K_(1/mole)‘W W o (mole/I) K̂ (̂ 1/mole)'

1.1.2.2-Tetrachloroethane(25°) 0.1010 + 0.0012 0.0925 + 0.0009 3-6 + 0.6

1.2-Dichloroethane (25°) 0.1262 + 0.0014 0.1083 + 0.000% 4.6 + 0.3

0.0812 + 0.0010 0.0650 + 0.0006 2 0 + 31,2-Dichloroethane (10°) 

Benzene (25°)

Toluene (25°)

Carbon Tetrachloride (25°) 

Cyclohexane (25°)

0.0349 + 0.0005 
0.0274 + 0.0005 
0 .0 0 8 7 + 0 .0 0 0 3  

0.0024 + 0 .0 0 0 3

0 .0 9 3 7 i 0 .0 0 0 7 2 4 .5 + 3 .5  

0 .1 1 1 3 + 0 .0 0 0 5 24.5+1.5 

0 .0 6 7 0 + 0 .0 0 0 5 172 +24

\J1U)
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Figure 7. Formal solubility of water at 25^̂ in: O, 1,2-dichloroethane; 

□, 1,1,2,2-tetrachloroethane; A, Benzene; O, Toluene; #, 
Carbon tetrachloride and A, cyclohexane at various water 
activities.
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TABLE lU
PARTITION DATA FOR THE SYSTEM 1,2-DICHLOROETHANE-WATER-PHENOL AT 25°.

f° (moles/liter) Cp (moles/liter)

0.0084 0.0020 4.211
0.0259 0.0060 4.332
0.0495 0.0115 4.315
0.1026 0.0230 4.457
0.1574 0.0350 4.500
0.2077 0.0443 4.694
0.2562 0 . 0 5 3 6 4.779
0.3176 0.0657 4.836
0.3904 0.0781 5.000
0.4483 0.0877 5.116
0.4854 0.0934 5.199
0.0813 0.0182 4.463
0.0904 0.0202 4.486
0.0867 0 . 0 1 9 5 4.448
0.1314 0.0286 4.554
0.2421 0.0510 4.747
0.2782 0.0582 4.779
0.3125 0 . 0 6 3 9 4.888
0.3835 0.0767 4.999
0.3785 0.0760 4.980
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TABLE 15
WATER SOLUBILITY DATA FOR THE PHENOL-1,2-DICHLOROETHANE 

SYSTEM AT VARIOUS WATER ACTIVITIES AT 25°.

(moles/liter) (moles/liter) ap w w
0.0084 0.1319 1.0

0.1312
0.1300
0.1314

0.0259 0.1367 1.0
0.1355
0.1352

0.0495 0.1407 1.0
0.l4ll 
0.1407

0.1026 0.1556 1.0
0.1559
0.1556

0.1574 0.1686 1.0
0.1698
0.1690

0.2077 0.1834 1.0
0.1846
0.1846

0.2562 0.2007 1.0
0.1995
0.1995

0.3176 0.2206 1.0
0.2194
0.2194

0.3904 0.2427 1.0
0.2446
0.2443

0.4483 0.2673 1.0
0.2681
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TABLE 15 continued

f° (moles/liter) (moles/liter) ap w w

O.U85U 0.2810 1.0
0.2817

0.1146 0.1251 0.85
0.1218
0.1229

0.2546 0.1580 0.85
0.1575

0.3472 0.1846 0.85
0.1852

0.3946 0.1931 0.85
0.1931

0.00 0.1031 0.85
0.1031

0.1174 0.0974 0.70
0.0986

0.2546 0.1246 0.70
0.1234

0.3593 0.1439 0.70
0.1444

0.3982 0.1507 0.70
0.1504

0.00 0.0819 0.70
0.0821

0.1253 0.1025 0.70
0.1018

0.2458 0.1272 0.70
0.1257

0.3642 0.1487 0.70
0.1484

0.4887 0.1755 0.70
0.1757
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TABLE 15 ...continued

f° (moles/liter) f° (mole s/liter)V

0.00 0.0819 0.70
0.0822

0.1167 0.0753 0.55
0.0758

0.2546 0.0945 0.55
0.0938

0.3564 0.1074 0.55
0.1085

0.3904 0.1153 0.55
0.1150

0.00 0.0617 0.55
0.0612
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Figure 8. Partition data for system 1,2-dichloroethane-water- 
phenol at 25®. Curve is calculated; points are experimental.
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Figure 9- Formai solubility of water in solutions of phenol in 1,2-dichloroethane at various
water activities. Curves are calculated, points are experimental. Data at: A: a = 1.0; B: a = 0.85;
C: a = 0.70; D: a = 0.55* ^ ^w w



6l

TABLE 16
PARTITION DATA FOR THE SYSTEM BENZENE-WATER-PHENOL AT 25°.

f® (moles/liter) (moles/liter)

0.0254 0.0111 2.286
0.0541 0.0228 2.373
0.1109 0.0446 2.487
0.1357 0.0535 2.536
0.2077 0.0785 2.647
0.2473 0.0899 2.751
0.2297 0.1050 2.854
0.3469 0.1190 2.899
0.3895 0.1304 2.987
0.4455 0.l4l8 3.143
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TABLE 17
WATER SOLUBILITY DATA FOR THE PHENOL-BENZENE 
SYSTEM AT VARIOUS WATER ACTIVITIES AT 25°.

f° (moles/liter) f° (moles/liter) ap w w

0.025% 0.0392 1.0
0.0382

0.05%1 0.0412 1.0
0.0%3%
0.04l6

0.1109 0.0519 1.0
0.0516

0.1357 0.0555 1.0
0.05%9

0.2077 0.0695 1.0
0.0669

0.2%73  ̂ 0.0769 1.0
0.0767
0.0766

0.2997 0.0882 1.0
0.0879

0.3469 0.0983 1.0
0.0981

0.3895 0.1088 1.0
0.1085

0.4455 0.1220 1.0
0.1217

0.0909 0.0367 0.750.0364
0.1939 0.0498 0.75

0.0490
0.0498
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TABLE 17 ...continued

f° (moles/liter) f° (moles/liter) ap w w

0.2744 0.0629 0.75
0.0634

0.384 0.0801 0.75
0.0803

0.00 0.0263 0.75
0.0271
0.0279
0.0263

0.1022 0.0350 0.70
0.0350

0.2064 0.0474 0.70
0.0477

0.3024 0.0615 0.70
0.0620

0.4o64 0.0777 0.70
0.0782

0.00 0.0245 0.70
0.0252
0.0240
0.0245

0.1040 0.0332 0.69
0.0340
0.0335

0.2060 0.0452 0.69
0.0465
0.0457

0.3040 0.0585 0.69
0.0585

0.4070 0.0739 0.69
0.0742

0.00 0.0244 0.69
0.0249
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TABLE 17 ... continued

f° (moles/liter) P f° (moles/liter) w w
0.1024

0.2036

0.3064

0.4088

0.00

0.0900

0.1939

0.2816

0.3888

0.00

0.1030

0.2060

0.3160

0.4070

0.00

0.0272
0.0273
0.0367
0.0367
0.0479
0.0474
0.0608
0.0598
0.0194
0.0192
0.0214
0.0208
0.0282
0.0281
0.0354
0.0354
0.0445
0.0445
0.0156
0.0158
0.0153
0.0205
0.0207
0.0260
0.0257
0.0334
0.0325
0.0431
0.0429
0.0124
0.0127
0.0135

0.55

0.55

0.55

0.55

0.55

0.434

0.434

0.434

0.434

0.434

0.39

0.39

0.39

0.39

0.39
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Figure 10. Partition data for system Benzene-water-phenol at 
25°. Curves are calculated; points are experimental. ▲, Philbrick.
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Figure 11. Formal solubility of water in solutions of phenol 
in benzene at various water activities. Curves are calculated; points 
are experimental. Data at: A: a = 1.0; B: a = 0.75; C: a = 0.70;
D: a^ = 0.69; E: = 0.55; F: a^ = 0.434; gY a^ = 0-39. w
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TABLE 18
PARTITION DATA FOR THE SYSTEM 

1,1,2,2-TETRACHLORETHANE-WATER-PHENOL AT 25o

(moles/liter) (moles/liter)

0.0163 0.0058 2.817
0.0536 0.0186 2.888
0.0816 0.0275 2.967
0.1129 0.0364 3.106
O.1U82 0.0468 3.165
0.1800 0.0562 3.206
0.2185 0.0661 3.308
0.2599 0.0757 3.425
0.3006 0.0839 3.584
0.3479 0.0938 3.710
0.3911 0.1035 3.779
0.4441 0.1137 3.906
0.0148 0.0054 2.740
0.0146 0.0054 2.700
0.0513 0.0176 2.910
0.0782 0.0256 3.059
0.1081 0.0349 3.100
0.l4l4 0.0444 3.184
0.1743 0.0535 3.260
0.2129 0.0632 3.368
0.2521 0.0726 3.474
0.2912 0.0818 3.565
0.1828 0.0559 3.272
0.2196 0.0659 3.332
0.2606 0.0761 3.424
0.3423 0.0929 3.685
0.3840 0.1023 3.754
0.4385 0.1122 3.908
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TABLE 19

WATER SOLUBILITY DATA FOR THE PHENOL-1,1,2,2-TETRACHLOROETHANE 
SYSTEM AT VARIOUS WATER ACTIVITIES AT 25°.

f° (moles/liter) (moles/liter) ap w  V

0.0163 0.1053 1.0
0.10370.1040

0.0536 0.1125 1.0
0.1125

0.0816 0.1192 1.0
0.1173
0.1174

0.1129 0.1260 1.0
0.1264

0.1482 0.1326 1.0
0.1332
0.1340

0.1800 0.1449 1.0
0.1432
0.1436

0.2185 0.1532 1.0
0.1557
0.1544

0.2599 0.1663 1.0
0.1651

0.3006 0.1763 1.0
0.1766

0.3479 0.1939 1.0
0.1923

0.3911 0.2066 1.0
0.2073

0.4441 0.2282 1.0
0.2234
0.2237
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TABLE 19 ...continued

f° (moles/liter) f° (moles/liter) ap w w

O.OlL 0.1051 1.0
0.1046

0.0513 0.1124 1.0
0.1136

0.0782 0.1187 1.0
0.1186

0.1081 0.1260 1.0
0.1254

0.l4l4 0.1345 1.0
0.1348

0.1743 0.l44l 1.0
o.i44o

0.2129 0.1542 1.0
0.1534

0.2521 0.1646 1.0
0.1650

0.2914 0.1765 1.0
0.1767

0.1188 0.0847 0.70
0.0860
0.0855

0.2426 0.1067 0.70
0.1062
0.1057

0.3656 0.1305 0.70
0.12870.1284

0.4123 0.1337 0.70
0.1342

0.00 0.0679 0.70
0.0682
0.0674
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TABLE 19 ...continued

f° (moles/liter) f° (moles/liter)W w

0.1188
0.2426

0.3656

0.4123

0.00

0.1136

0.2132

0.3359

0.3939

0.00

0.1188

0.2426

0.3656

0.4123

0.00

0.0857
0.1046
0.1047
0.1254
0.1256
0.1363
0.1367
0.0675
0.0677
0.0826
0.0828
0.0966
0.0962
0.1178
0.1170
0.1233
0.1242
0.0667 
0.0668
0.0602
0.0596
0.0601
0.0751
0.0751
0.0922
0.0912
0.0969
0.0979
0.0483
0.048i
0.0486

0.70
0.70

0.70

0.70

0.70

0.69

0.69

0.69

0.69

0.69

0.51

0.51

0.51

0.51

0.51
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TABLE 19 ...continued

f° (moles/liter) f° (moles/liter) w

0.1188 0.0592 
0.0601

0.51

0.2426 0.0738
0.0742

0.51

0.3656 0.08990.0904 0.51

0.4123 0.0970 
0.0966 0.51

0.00 0.0492
0.0483

0.51

0.1072 0.0439
0.0435

0.39

0.2192 0.0567
0.0580
0.0542
0.0542

0.39

0.3359 0.0633
0.0633

0.39

0.3939 0.0713
0.0706

0.39

0.00 0.0350
0.0350

0.39
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Figure 12. Partition data for system 1,1,2 ,2-tetrachloro- 
ethane-water-phenol at 25°. Curves are calculated; points are experi­
mental.
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Figure 13. Formal solubility of water in solutions of phenol 
in 1,1,2,2-tetrachloroethane at various water activities. Curves are 
calculated; points are experimental. Data at: A: â  ̂= 1.0; B:
0.70; C: a = 0.69; D: a = 0.51; E: a = 0.39.W W W
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TABLE 20

SELF-ASSOCIATION AND HYDRATION CONSTANTS FOR PHENOL IN 
1,2-DICHLOROETHANE, 1,1,2,2-TETRACHLOROETHANE AND BENZENE AT 25°.

SOLVENT Kp Kp^ (1/mole)^ {l/molef (l/mole)^ C°(mole/1) (1/mole)'

1,2-dichloro-
ethane*

3.68 + 0.01 12.97 + 0.12 3.37 + 0.10

2.L6 + 0.01cnloroethane —
Benzene

0.1083 + 0.0007 ^’6 + 0.3
3.68 + 0,01 12.97 + 0.23 3.31 + 0.l4 0.002 + 0.029 0.1083 + 0.0007 *̂ -6 + 0.3

13.79 ± 0.43 6.99 + 0.26 O.I477 + 0.060 0.0925 + 0.0009 3.6+ 0.6
2.11 + 0.01 50.03 + 1.86 15.7k + 0.26 0.263 + 0.0k3 0.03k9 + O.OOO5

* Best fit assuming monomer-dimer-trimer equilibrium.
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TABLE 21
PARTITION DATA FOR THE SYSTEM CARBON TETRACHLORIDE-WATER-PHENOL AT 25°.

f° (moles/liter) C^ (moles/liter) P

0.0217 0.0448 0.4849
0.0218 0.0445 0.4902
0.0335 0.0684 0.4900
0.0337 0.0680 0.4958
0.0475 0.0945 0.5023
0.0473 0.0935 0.5061
0.0797 0.1458 0.5464
0.0797 0.l460 0.5457
0.1181 0.2013 0.5867
0.1178 0.1991 0.5916
0.1703 0.2527 0.6739
0.1709 0.2509 0.6811
0.0068 0.0142 0.4775
0.0137 0.0283 0.4824
0.0219 0.0440 0.4968
0.0335 0.0675 0.4968
0.0463 0.0925 0.5007
0.0770 0.1428 0.5389
0.1147 0.1970 0.5822
0.1683 0.2477 0.6795
0.0069 0.0146 0.4718
0.0068 0.0146 0.4669
0.0136 0.0282 0.4810
0.0136 0.0282 0.4817
0.0201 0.04l8 0.4796
0.0202 0.0420 0.4810
0.0486 0.0959 0.5066
0.0484 0.0959 0.5060
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TABLE 21 ...continued

f° (moles/liter) (moles/liter)

0.0718 0.1331 0.5395
0.0726 0.1331 0.5453
0.1127 0.1916 0.5882
0.1132 0.1920 0.5896
0.1583 o.24i6 0.6552
0.1583 0.2405 0.6582
0.0069 0.0146 0.4733
0.0136 0.0283 0.4816
0.0205 0.0422 0.4848
0.0353 0.0718 0.4909
0.0495 0.0971 0.5100
0.0732 0.1360 0.5385
0.1143 0.1984 0.5890
0.1653 0.2463 0.6711
0.1156 0.1920 0.6050
0.1563 0.2316 0.6748
0.2869 0.3144 0.9125
0.1598 0.2355 0.6786
0.1598 0.2366 0.6754
0.2912 0.3194 0.9117
0.2912 0.3176 0.9168



77
TABLE 22

WATER SOLUBILITY DATA FOR THE PHENOL-CARBON TETRACHLORIDE 
SYSTEM AT VARIOUS WATER ACTIVITIES AT 25°.

f° (moles/liter) f° (moles/liter) ap w w

0.0199 0.0095 1.0
0.0095

0.0495 0.0114 1.0
0.0114

0.0702 0.0153 1.0
0.0152

0.1156 0.0183 1.0
0.0184

0.1563 0.0249 1.0
0.0247

0.2912 0.0496 1.0
0.0497

0.0205 0.0095 1.0
0.0096

0.0495 0.0111 1.0
0.0112

0.0732 0.0144 1.0
0.0146
0.0132
0.0135

0.1143 0.0180 1.0
0.0179

0.1653 0.0249 1.0
0.0246

0.0258 0.0095 0.97
0.0094
0.0094
0.0096
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TABLE 22 ... continued

f° (moles/liter) f° (moles/liter)w V

0.0502

0.0908

0.1552

0.2066

0.3062

0.00

0.1525

0.3001

0.00

0.0217
0.0534

0.1050

0.2110

0.2982

0.0110
0.0111
0.0109
0.0153
0.0150
0.0150
0.0233
0.0234
0.0314
0.0315
0.0505
0.0505
0.0081
0.0081
0.0228
0.0226
0.0229
0.0482
0.0482
0.0085
0.0085
0.0095
0.0119
0.0106
0.0168
0.0165
0.0288
0.0290
0.0438
0.0433

0.97

0.97

0.97

0.97

0.97

0.97

0.945

0.945

0.945

0.90
0.90

0.90

0.90

0.90



79
TABLE 22 ... continued

f° (moles/liter) f° (moles/liter)W W

0.1525

0.3001

0.311+0 

0.00 

0.1525

0.3001

O.31UI

0.00

0.1525

0.3001

0.00

0.0256

0.0520

0.1030

0.0166
0.0161
0.0162
0.0321
0.0320
0.0337 
0.0336
0.0062
0.0069
0.0107
0.0109
0.0108
0.0205
0.0205
0.0215
0.0216
0.0039O.OOUl
o.ooUo
0.0218
0.0215
0.04350.04-34
0.0083
0.0083
0.0055
0.0054
0.0069
0.0067
0.0071
0.0086
0.0086

0.69

0.69

0.69

0.69

0.47

0.47

0.47

0.47

0.89

0.89

0.89

0.52

0.52

0.52
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TABLE 22 ... continued

f'̂  'moles/liter) f° (moles/liter)V aw

0.2033 0.0149
0.0153
0.0152

0.52

0.2639 0.0211
0.0206
0.0207

0.52

0 .3l4l 0.0254
0.0257
0.0255

0.52

0.00 0.0051
0.0051
0.0048
0.0046

0.52

0.1525 0.0063
0.0061
0.0061

0.26

0.3001 0.0114
0.0113
0.0114

0.26

0.00 0.0021
0.0024
0.0022

0.26
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Figure l4. Partition data for the system carbon tetrachloride- 
water-phenol. Curve is calculated; points are experimental. #, Badger 
and Greenough; □, Herz and Rathmann; , Philbrick.
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Figure 15= Formai solubility of water in solutions of phenol 
in carbon tetrachloride at various water activities. Curves are calcu­
lated, A; a = 1,0; B: a = 0.97; C: a = 0.9^5; D: a = 0.89; E: 
a = 0.69; ^F: a = 0,52; ^G: a = 0.4%; a =0.26. Bata of Badger
and Greenough: spectral,#; turbidity measurement, V,



TABLE 23

LEAST SQUARES PARAMETERS FOR = a + + Y(c^)P P p P
WnH-1

SOLVENT POSTULATED SPECIES m n a ROOT MEAN SQUARE 
 ̂ DEVIATION

1j 2-dichloroethane monomer-dimer 2 k.237 9.91 0.0366
(25°) monomer-trimer 3 - k.402 100.26 — 0.07k9

monomer-dimer-trimer 2 3 k.2ka 9.19 7.69 0.0372
Benzene* (25°) monomer-dimer 2 2.218 6.02 0.0232
*(includes Philbrick's monomer-t r imer 3 - 2.350 ko. 89 - 0.0552
data (j. Am. Chem. 
Soc. 2581 (193k))

monomer-dimer-trimer 2 3 2.2k2 k.85 8.3k 0.0198

1,1,2,2-tetrachloro- monomer-dimer 2 2.TOI 10,37 0.0k23
ethane (25°) monomer-trimer 3 - 2.930 8k.3k — 0.0899

monomer-dimer-trimer 2 3 2.728 9.009 11.78 0.0kl3
Carbon tetrachloride monomer-dimer 2 0.kl6 1.15 O.OkôT

(25°) monomer-trimer 3 - 0.k67 3.89 - 0.0226
monomer-tetramer k - 0.0k89 13.25 - 0.0131
monomer-pent amer 5 - 0.50k k3.6 - 0.0232
monomer-dimer-t r imer 2 3 0.k99 -0.60 5.7k 0.017k
monomer-dimer-tetramer 2 k 0.k79 1.27 12.0 0.012k
monomer-trimer-tetramer 3 k 0.k85 0.62k 11.2 0.0126
monomer-trimer-pentamer 3 5 0.k83 2.03 22.0 O.Ollk
monomer-trimer-hexamer 3 6 0.k8l 2.53 55.2 0.0109

ODW



TABLE 23 .•"continued

SOLVENT POSTULATED SPECIES m n a ROOT MEAN SQUARE 
^ DEVIATION

Carbon Tetrachloride monomer-dimer 2 0.519 l.l40 0.0444
(35°) monomer-trimer 3 — 0.564 3 .7 1 — 0.0148

monomer-tetramer k - 0.583 1 1 .7 7 — 0 .0 1 8 8
monomer-dimer-trimer 2 3 0.576 -0 .2 5 4.46 0 .0 1 2 8
monomer-dimer-tetramer 2 k 0 .5 6 3 0 .3 1 8 .9 8 0.0104
monomer-trimer-tetramer 3 k 0 .5 7 1 2,22 4 .8 0 0,0113
monomer-trimer-hexamer 3 6 0 .5 6 7 3 .0 2 2 3 .3 3 0.0110

00-p-
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TABLE 2k
SELF-ASSOCIATION AND HYDRATION CONSTANTS FOR PHENOL IN CARBON TETRACHLORIDE

REACTION EQUILIBRIUM CONSTANT

P (aqueous phase) = P (CClĵ  phase) = 0.458
P + W (CClĵ  phase) Kp^ = 5.75 (l./mole)
3P (CClĵ  phase) = P^ (CC1|̂ phase) Kp = 4.1 (l./mole)^
3P + W (CCl̂  ̂phase ) = P^W (CClĵ  phase) Kp ^ = 443 (l./mole)^
3P + 2W (CClĵ  phase) = P^Wg (CCl^ phase) Kp „ = 9900 (l./mole)^ 

3*̂ 2
6p (CClĵ  phase) = P^ (OCl̂  ̂phase) IC = 432 (l./mole)^
6p + 3W (CClĵ  phase) = PgW^ (CCl̂  ̂phase) 6 fl ft Kp „ = 8.6 x 10 (1./mole) 

6^3
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TABLE 25
PARTITION DATA FOR THE SYSTEM 

CARBON TETRACHLORIDE-WATER-PHENOL AT 35o

f° (moles/liter) (moles/liter)

0.0071 0.0126 0.5634
0.0126 0.0222 0.5663
0.0228 0,0394 0.5794
0.0232 0.0405 0.5732
0.0553 0.0929 0.5952
0.0790 0.1262 0.6260
0.1275 0.1915 0.6658
0.1748 0.2336 0.7483
0.3085 0.3242 0.9515
0.0070 0.0125 0.5627
0.0127 0.0219 0.5772
0.0224 0.0387 0.5783
0.0229 0.0399 0.5741
0.0546 0.0914 0.5966
0.0780 0.1236 0.6313
0.1252 0.1847 0.6778
0.1705 0.2282 0.7470
0.3049 0.3156 0.9661



87

TABLE 26

ABSORBANCE OF PHENOL-1 ,2-DICHLOROETHANE AT 
THE 0-H PEAK WAVELENGTH OF 1.3T5P AT 25®.

f° (moles/liter) A/1 (Absorbance per cm pathlength)

O.OU6T 0.030
0.0945 0.071
0.1420 0.115
0.1916 0.153
0.2405 0.193
0.2850 0.231
0.3310 0.266
0.3798 0.300
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TABLE 27

ABSORBANCE OF PHENOL-1,1,2,2-TETRACHLORETHANE AT 
THE O-H PEAK WAVELENGTH OF 1.385y AT 25®.

f® (moles/liter) P A/l (Absorbance per cm pathlength)

0.0426 0.047
0.0054 0.100
0.1296 0.155
0.1722 0.211
0.2192 0.258
0.2595 0.316
0.3034 0.360
0.3458 0.410
0.3910 0.450
0.4321 0.510
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TABLE 28

ABSORBANCE OF PHENOL-BENZENE SOLUTIONS AT 
THE O-H PEAK WAVELENGTH OF 1.380p AT 25°.

f° (moles/liter) A/l (Absorbance per cm pathlength)

0.0069 0.004
O.OI2L 0.009
0.0247 0.017
0.0692 0.042
0.0346 0.024
0.0692 0.048
0.1038 0.071
0.1522 0.104
0.2076 0.137
0.2420 0.172
0.2760 0.190
0.3460 0.232
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TABLE 29
ABSORBANCE OF PHENOL-CARBON TETRACHLORIDE SOLUTIONS 

AT THE O-H PEAK WAVELENGTH OF 1.357; AT 25®.

f® (moles/liter) P A/1 (Absorbance per cm pathlength)

0.0561+ 0.163
0.1123 0.288
0.1676 0.386
0.2238 0.1+56
0.2822 0.515
0.3373 0.550

O.5I+5
0.3981 0.593 ?

0.572
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Figure l6. Absorbance of phenol solutions: O, Benzene at 1.380p; A, 1,2-dichloroethane 
at lc3T5u;û, 1,1,2,2-tetraehloroethane at 1.360u; and#. Carbon tetrachloride at 1.357p.



TABLE 30

SOLUBILITY DATA OF CARBON TETRACHLORIDE IN WATER AT 25°, USING VAPOR PRESSURE MEASURING DEVICE.

Total grams AP(mm) Grams in Vapor Grams in Solution (moles/liter)

0.0 26.61 — — ——— — —— —

0.0382 k5.12 18.51 0.0135 0.02k7 0.0008
0.076k 63.50 36.89 0.0269 0.0k85 0.0016
0.1146 82.10 5k. k9 0.0397 0.07k9 0.0025
0.1528 99.08 72. k7 0.0528 0.1000 0.0033
0.1910 117.ko 90.79 0.0662 0.12k8 O.OOkl
0.2292 135.66 109.05 0.0795 0.lk97 0.00k9

0.267k iko.oo 113.39 0.0826 0.l8k8 0.0060
0.3820 lk0.7k Ilk. 13 0.0832 0.2988 0.0097

VOtV)
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Figure IT. Formal solubility of carbon tetrachloride in water at 25°, using 
vapor pressure measuring device.



TABLE 31
SOLUBILITY DATA OF 1,2-DICHLOROETHANE IN WATER AT 25°, USING VAPOR PRESSURE MEASURING DEVICE.

Total Grams P^(mm) AP(mm) Grams in Vapor Grams in Solution f^(moles/liter)

0.0 26.28 --- — — — — — —  — ------

0.1207 31.77 5.49 0.0005 0.1152 0.0058
0.3017 39.24 12.96 0.0013 0.3004 0.0152
0.4827 47.91 21.63 0.0022 0.4805 0.0243
0.6637 55.99 29.71 0.0030 0.6607 0.0334
0.8447 63.84 37.56 0.0038 0.8409 0.0425
1.0257 71.82 44.54 0.0044 1.0213 0.0516
1.2067 79.82 53.54 0.0053 1.2014 0.0607
1.3877 87.67 61.39 0.0061 1.3816 0.0698
1.5687 95.48 69.20 0.0069 1.5618 0.0789
1.7497 103.35 77.07 0.0077 1.7420 0.0880
1.9307 105.01 78.73 0.0079 1.9228 0.0971
2.1117 105.73 79.45. 0.0079 2.1038 0.1063
2.2927 105.67 79.39 0.0079 2.2848 0.1154
2.4737 105.75 79.47 0.0079 2.4658 0.1246
2.6547 105.88 79.60 0.0080 2.6467 0.1337

VO
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Figure 18. Formal solubility of 1,2-dichloroethane in water at 25°, using vapor
pressure measuring device.



TABLE 32
SOLUBILITY DATA OF BENZENE IN WATER AT 25°, USING VAPOR PRESSURE MEASURING DEVICE.

Total Grains P^(mm) AP(mm) Grams in Vapor Grams in Solution f^(moles/liter)

0.0 25.05 I—  M  — —

o.o4i6 35.98 10.92 0.0045 0.0371 0.0025
0.0832 46.87 21.82 0.0090 0.0742 0.0050
0.1248 57.80 32.75 0.0014 0.1113 0.0075
0.1664 69.60 44.55 0.0018 0.1480 0.0100

0.2080 79.32 54.21 0.0022 0.1857 0.0125
0.2496 90.29 65.24 0.0027 0.2227 0.0150
0.2912 100.95 75.90 0.0031 0.2599 0.0175
0.3328 111.63 86.58 0.0036 0.2971 0.0200

0.3744 119.72 94.67 0.0039 0.3354 0.0226
0.4l60 120.00 94.95 0.0039 0.3769 0.0254
0.4576 120.11 95.06 0.0039 0.4i8l 0.0282
0.4992 120.18 95.13 0.0039 0.4601 0.0310
0.5824 120.44 95.39 0.0039 0.5432 0.0366
0.7072 120.66 95.61 0.0039 0.6679 0.0450

VOos

■1
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Figure 19. Formal solubility of benzene in water at 25°, using the vapor pressure measuring device.



CHAPTER VI 

DISCUSSION AND CONCLUSIONS

a) Water complexity
The molecular complexity of water as a solute in non-aqueous media 

must be known in order to determine the stoichiometry and equilibrium 
constants for polar hydrates. The apparent linear dependence of concen­
tration f^, on activity, a^, supports the conclusion that water dissolves
primarily as monomeric units in carbon tetrachloride, cyclohexane, toluene 
and benzene at 25®. Peterson and Rodebush^^ using cryoscopic data also
showed that water was primarily monomeric in benzene. However, Grodon, 
et al.,^^ using specific volume and viscosity data calculated the average 
molecular weight of dissolved water in benzene to be 2.5 times that of 
the monomer at 90 per cent of the saturation concentration at 67°. 
Ackermann^^ also concluded from near-infrared spectral data that water 
was highly associated in benzene, toluene and m-xylene at temperatures 
above 60°. It is not obvious why one should observe molecular association 
of water in benzene at high temperatures but not at low temperatures 
since normally one would expect larger degrees of association and higher 
numerical values for the equilibrium constants at the lower temperatures. 
However, the mass action phenomenon is working for the association at 
the higher temperatures since considerably more water dissolves. Thus,

98
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the net effect may be towards increased association because of the pre­
dominance of mass action at higher temperatures. On the other hand, it 
is possible that the model Gordon, et al., used may lead to considerable 
error in calculating the degree of association from specific-volume data 
since they assumed that benzene and toluene are "inert" solvents. The 
data obtained "by Ackermann using differentail spectral techniques are 
difficult to interpret quantitatively because of the high absorbance of 
these aromatic solvents.

The departure from linearity of plots of f^ vs. a^ supports the 
conclusion that water is polymerizing in 1,2-dichloroethane and 1,1,2,2- 
tetrachloroethane at activities above 0.6. While the data are not suf­
ficiently accurate to distinguish between monomer-trimer or monomer- 
tetramer equilibrium, it is shown that the assumption of monomer-dimer 
equilibrium does not fit the experimental data to within estimated errors. 
That is, based on least squares analysis of the data, it appears that the 
dimer is not an important species, since in considering various combina­
tions of assumed species the dimer did not improve the fit of the data 
significantly. Thus, it might be argued that the important polymerized 
solute species are cyclic. For, if chain polymers were forming, signif­
icant concentrations of the dimers should exist along with trimers and

79tetramers. In conjunction with this. Holmes, Kevelson and Drinkard have 
used a cyclic trimer model to explain a proton exchange mechanism in a 
number of organic solvents.

From the trimerization constants determined for water in 1,2-dichloro­
ethane at 10 and 25° an enthalpy of association of approximately -l6 Kcal/ 
mole is calculated. Assuming the water trimer to be cyclic, an individual
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hydrogen bond enthalpy of approximately -5 Kcal/mole is obtained, 
which is comparable with values for association found for similar 
molecules.

An explanation for the tendency of water to associate in the 
chlorinated solvents while existing primarily as the monomer in the four 
solvents of lower dielectric constant, is in order. One might attribute 
this effect to the lower solubility of water in cyclohexane, carbon tetra­
chloride, toluene and benzene. Thus, even if the trimer formation constant

2had a volue of 100 (1/mole) in carbon tetrachloride, the f° vs. a curvew w
would not differ detectably from linearity. Similarly, in benzene, a trimer

2constant as large as 20 (1/mole) would produce only a slight departure
from linearity. In other words, mass action is more important in promoting
the association of water in these chlorinated solvents than in solvation
effective in preventing it.

It might be argued that the basic unit of water dissolved in organic
solvents is a cluster having a definite number of water molecules and
that the association noted in 1,2-dichloroethane and 1,1,2,2-tetrachloro-
ethane is an association of these clusters. If it is assumed that water
is monomeric in the vapor phase, which is a reasonably good assumption,
the number of water molecules per cluster can be determined from the
slope of a log-log plot of f^ vs. a^. The slope obtained from such plots
for the six systems studied (Figure 7) is unity; thus, the basic water
unit in the organic phase is a monomer.

A number of water solubilities found in the literature are compared
with results obtained from the present studied in Table 33. HSgfeldt 

6kand Bolander determined the solubility of water in a number of aromatic 
solvents and also tabulated available literature values. They used 
density measurements to convert the solubilities to a common unit of



101
molarity; a number of these values are given in Table 33. The water 
solubilities obtained in the present work are in general somewhat larger 
than those given in the literature. It is interesting to note that the 
ratio of the solubility values reported here for water in benzene and 
toluene is essentially the same as that reported by Hogfeldt and Bolander. 
They claimed that due to their technique of adding the samples to the 
Karl Fischer apparatus, a small correction for the water coming from the 
air, adsorbed on the pipet, etc., was needed and was obtained from 
blank determinations. In the present work no such corrections were made 
since the water-in-methanol standardization (where blanks were determined) 
and the sodium tartrate dihydrate method both gave essentially the same 
titer for the Karl Fischer reagent used.

The valve of 0.0220 moles/1 for the solubility of benzene in water 
at 25° obtained using the vapor pressure-measuring device agrees well
with the values, 0.0223 and 0.0229 moles/1 reported by Andrews and

90 91Keefer and Bohon and Claussen, respectively. The values, 0.0895 and
0.0051 moles/I obtained for the solubility of 1,2-dichloroethane and
carbon tetrachloride in water at 25° also compare favorably with the
values, 0 .0 8 9 5  and O.OO5I moles/1 reported in the literature. The
technique described here is convenient for determining the solubility of
volatile organic compounds in water.
b) Phenol complexity

The partition and water solubility data for solutions of phenol in
1,2-dichloroethane, benzene and 1,1,2,2-t etrachloroethane have been
interpreted in terms of phenol and phenol-water aggregates. The phenol
data can be expalined by assuming the existence of phenol monomers.
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TABLE 33
SOLUBILITY OF WATER IN SEVERAL ORGANIC SOL^/ENTS AT 25°.

SOLVENTS C° (1/mole)W REFERENCE EXPERIMENTAL WORK

Benzene

Cyclohexane

Carbon

ethane
1,1,2,2-Tetra-

chloroethane
Toluene

0 .0 2 6 80 Water displaced by air 
and absorbed in CaClg

0.03^3 81 Cloud point
0.0350 82 Solubility of AgClO, 

Karl Fischer0.032 + 0.001 64
0.025 83 Tritium tracer
0.0240 84 Vapor pressure
0.033 85 Gasometric with CaHg
0.033 43 Cloud point
0.031 86 Cloud point
0 .0 3 6 5+0 .0 0 2 87 Karl Fischer
0.031 88 Tritium tracer
0 .0 3 4 9+0 .0 0 0 5 This work Karl Fischer
0.0043 (20°) 86 Cloud point
0.0043 (20°) 89 Tritium tracer
0.0024+0.0003 This work Karl Fischer

0 .0 0 8 7  (24°) 88 Water displaced by air 
and absorbed in CaCl-

0 .0 0 7 0  (20°) 85 Gasometric with CaHp
0.0087+0.0003 This work Karl Fischer
0 .1 2 6 2+0 .0 0 1 4 This work Karl Fischer

[0.1010+0.0012 This work Karl Fischer
0 .0 2 6 0+0 .0 0 1 64 Karl Fischer
0.0240 85 Gasometric with CaHg
0.022 86 Cloud point
0 .0 1 9 88 Tritium tracer
0 .0 2 7 4+0 .0 0 0 5 This work Karl Fischer
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monomer dihydrates, dimer monohydrates and a small amount of trimers in 
the organic phase. The values for the phenol monomer dihydrate constants, 
50.03 + 1.86, 13.79 ±  0.1+3 and 12.97 ±  0.12 (l/mole)^ in henzene, 1,1,2,2- 
tetrachloroethane and 1,2-dichloroethane, respectively, at 2 5° are com­
patible with the solvent order (inertness) based on their dielectric 
constant. Similarly, the values for the dimer monohydrate constans,
1 5 .7k i  0 .2 6 , 6.99 + 0 .2 6  and 3.37 + 0.1 (l/mole)^ in benzene, 1,1,2,2- 
tetrachloroethane and 1,2-dichloroethane, respectively, follow the same 
criterion. However, the values for the trimerization constants,
0 .2 6 3  i O.Ok and 0.1+77 +, O.O6 (1/mole)^ for phenol in benzene and 1,1,2,2- 
tetrachloroethane, respectively, are in the reverse order from the
expected. The "best" trimerization constant obtained for the association

2of phenol in 1,2-dichloroethane was 0.002 + 0 .0 2 9  (l/mole) , i.e., the 
value of the constant is over-shadowed by the probable error in its 
determination. Thus, in this solvent the data can be explained by 
assuming only the existance of hydrated aggregates. Using differential

Q  O
pressure techniques, Coetzee and Lok obtained a dimerization constant 
of 1+0 1/mole in 1,2-dichloroethane at 37° but did not mention the drying 
procedures employed or the water content of their reagents.

While it is not possible to determine the exact nature of the 
structure of these phenol and phenol-water aggregates, plausible 
structures can be postulated. Since these aggregates are composed of 
three monomer units, a cyclic model is proposed to explain the stability 
of the aggregates ^

where R can be either a hydrogen atom or a phenol group.
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9kCohen and Reid have suggested that the cyclic trimer or tetramer

is more stable than the dimer. They argued that the polarization of the
"unshared pair" electrons of 0^ as it approaches allows the 0-H bond
of molecule c_ to become much more polar than in the isolated state. This
means that because of the increased electron density on 0^ its unshared
pair of electrons becomes more polarizable and c_ can form a stronger
hydrogen bond with molecule ja than was present in the dimer.

R

c

It is argued that if one of the hydrogen bonds is broken, the cyclic
95trimer or tetramer will tend to break up completely. Thomas has also

proposed the cyclic trimer model for the association of alcohols and
phenol to explain the observed entropy changes for several systems.

96 97Behringer, et al., * have studied the structure of crystalline
phenol using x-ray techniques and found that phenol crystallizes in the 
monoclinic system (Cg - P2^, a = 6.05, b ■ 9*2l+, c = 15-29A* Y = 90°) 
with 6 molecules per unit cell. The phenol molecules are connected in 
infinite chains by hydrogen bonds with cyclic phenol trimers in a screw­
like position in the chains. While it is dangerous to draw conclusions 
concerning the structure of phenol aggregates in solution from their 
structure in the crystalline state, a qualitative correlation may be 
suggested.

The partition data for phenol distributed between benzene and water 
agree quite"well with the data of Philbrick.^^ He calculated a dimer-
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zation constant of 0.575 1/mole; however, his interpretation did not
include the formation of hydrates. There is no obvious explanation for

33the discrepancy between the results of Lassettre and Dickinson and 
those of the present work. They calculated a dimerization constant of
0 .5 7 0  1/mole at 25° for phenol in anhydrous benzene solutions using 
isopiestic measurements. The partition study of Endo^^ was conducted 
over a larger concentration range (up to 1 molar in the organic phase) 
and he interpreted the data in terms of a monomer-trimer equilibrium 
without considering the formation of hydrates.

It was not possible to fit the data for phenol in carbon tetra­
chloride using the same species assumed in benzene, 1,2-dichloroethane 
and 1,1,2,2-tetrachloroethane. Phenol appears to polymerize to a 
greater extent in carbon tetrachloride ; the data could be explained by 
assuming monomers, trimers and hexamers. However, the data could also 
be explained assuming tetramers instead of hexamers. Since least squares 
analysis indicated that the total formal dimer concentration is less 
then 5 per cent of the total throughout the concentration range studied, 
the dimer does not seem to be an important species.

2The value of the trimerization constant, 4.1 (l/mole) , obtained in
2the present work agrees reasonably well with 4.78 (l/mole) at 21° re-

31 2ported by Saunders and Hyne and with 13.6 and 8.9 (l/mole) at 20 and
3 0°, respectively, given by Rea.^^ Hoffman^^ and Raczy^^ calculated for
phenol in carbon tetrachloride trimerization constants of 5*31 and 0.6
(l/mole)^ at 25 and 21.5°» respectively, in addition to 1.13 and 1.1
l/mole given for the dimerization constants. The general interpretation
given by the investigations above is that the phenol trimer is cyclic.
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The partition and water solubility data of Badger and Greenough^^ do not 
agree with the present work. There is no obvious explanation for the 
discrepancy; however, their water solubility data are not of sufficient 
accuracy to justify a detailed analysis.

The infrared data for phenol in the first overtone region in 
anhydrous benzene, 1,2-dichloroethane and 1,1,2,2-tetrachloroethane 
indicate that phenol is not associated to a very large extent in these 
solvents at 25°. On the other hand, the data indicate that phenol is 
highly polymerized in carbon tetrachloride.

From the present work it is concluded that the association of phenol 
in organic solvents is greatly affected by the presence of water. The 
interaction of phenol with water in 1,2-dichloroethane, 1,1,2,2-tetra­
chloroethane and benzene could be explained by the formation of monomer 
dihydrates and dimer monohydrates. It is to be emphasized that the 
partition method is inadequate for determining equilibrium constants for 
self-association of polar molecules without accompanying water solubility 
data. However, it is believed that meaningful results can be obtained 
using a combination of partition and water solubility techniques,
c) Error Calculations

The error calculation for water in 1,2-dichloroethane and 1,1,2,2- 
tetrachloroethane is a two-parameter problem. The data were fitted using 
the function

where f^ is formal concentration of water, is a proportionality
constant equal to monomer concentration at saturation, a is the waterw
activity, n is the number of water molecules per aggregate, and is 
the association constant. Since the water activity is known more
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accurately than the water concentration, the error was placed in the 
concentration variable rather than the activity. The root mean square 
deviations were obtained using

f(0“ , K^) =
N-2

where f° , is the observed value for the formal concentration of water w,i
for the ith data set and N represents the number of measured values.

The standard errors in the parameters were obtained with the aid of
a computer using a graphical least squares method. From a plot of
C® vs. K , the errors can be obtained from the location of the horizontal w n
and vertical tangents drawn to the error contour,

where r is the standard error and r is minimum error, s m
The error calculations for data on solutions of phenol in 1,2- 

dichloroethane, 1,1,2,2-tetrachloroethane and benzene were obtained using 
the weighted average root mean square deviations of partition and water 
solubility data. The partition data were fitted using the equation 

f ; / c "  = 4. a f  ) 4  4

The error was placed in the ratio of the phenol concentration in the 
organic phase to the concentration in the aqueous phase, since it is 
believed that the relative errors in the determined phenol concentrations 
in the two phases are approximately equal. The water solubility data 
were fitted using the equation

Af° = 2K C®^a°^C° + K C®a C®^ w pWg w w p PgW w w p
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Again it vas assumed, that all the error resides in the water concentration. 
The "best" constants were obtained, from partition data and independently 
from Water solubility data. By combining the errors obtained from both sets 
of data, a weighted average was used to obtain the errors in the constants.

No error calculations were performed for the phenol in carbon tetra­
chloride due to the large number of parameters used. Except for the phenol 
monomer-monohydrate and trimerization constants, the equilibrium constants 
reported, for this system should be considered as order of magnitude 
values.
d) Suggested studies

Several experiments might be proposed for extending the present 
study of the molecular complexity of water and phenol in dilute solutions.

The accurate determination of the solubility of water in benzene and 
the other solvents as a function of water activity at higher and lower 
temperatures than 25° would provide much needed information concerning 
its molecular complexity as a solute. Also water solubility studies are 
needed in solvents which dissolve much more water than 1,2-dichloroethane 
to determine whether monomer-trimer or monomer-tetramer equilibrium is 
favored. The vapor pressure-measuring device offers a convenient method 
to determine the solubility of water as a function of its partial pressure 
or activity in organic solvents, especially in solvents which have low 
volatility.

To gain more information on the molecular complexity of phenol in 
organic solvents, especially in carbon tetrachloride, partition experi­
ment in which phenol is distributed between aqueous salt solutions and
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the organic solvents would be most useful. It is believed that one can 
obtain the distribution ratios with greater accuracy than the water 
solubility measurements and thus, with appropriate equations the constants 
of association can be calculated. Preliminary experiments indicate some 
difficulty arising in using calcium chloride as the salt in the aqueous 
phase. It is possible that some type of interaction occurs between 
phenol and calcium ions; thus a salt is needed which will not interact 
with phenol and which will at the same time give a large range of water 
activity.

Many investigators have given evidence for the association of solutes 
12 102in aqueous phase. * The association of phenol in the aqueous phase 

can be studied by measuring the absorbance in the ultraviolet region 
(268 my) of phenol vapor in equilibrium with the aqueous solutions. 
Preliminary experiments, indicate that such a study is feasible at 25® 
using 10 cm. cells. By observing the absorbance of phenol vapor as a 
function of phenol concentration in the aqueous phase, the complexity 
can be determined, provided it is assumed that the phenol vapors are 
not significantly associated.
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APPENDIX A

Introduction
This section contains a list of references encountered during the 

course of a literature survey on the hydrogen bonding properties of phenol. 
The survey was conducted by using Chemical Abstracts and by cross-referencing 
articles dealing with hydrogen bonding. This list is reasonably complete 
through the year 196k.

The arrangement is alphabetical according to first author. The title 
of the article is included so that a Judgment can be made on the context.

11'5
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APPENDIX B
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Vapor Pressure-measuring apparatus.


