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PREFACE

This study presents a refined approach to the analysis
and design of rectangular tied reinforced concrete columns
subjected to axial thrust and biaxial bending. One of the
several techniques for the design of concrete columns cur-
rently in use is thoroughly examined, organized into a log-
ical procedure and converted into graphical form to be used
as design aids. Due to the character of the resulting charts
the scope of this study is limited to the construction and
illustration of design charts only so far as to convey the
process by which they were formulated. It is ‘intended for
the future that a complete set of design charts be construct-
ed for use over a large range of design parameters to serve
as functionai design aids for the structural engineer.

I wish to express my appreciation to my principal ad-
viser, Professor Louis O. Bass, for his guidance, advice,
and assistance during this study.

And in special recognition, sincere gratitude is ex-
tended to my wife, Janet, for her encouragement, respect, and

many sacrifices.
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CHAPTER I
INTRODUCTION

A column is defined as an upright compression member
with a iength of at least three times its least lateral di-
mension.l Columns may be short or long in which case the
study of column behavior becomes necessary. A short concrete
column subjected to an axial load will unaergo a longitudin-
al deflection which is more or less uniform. And if failure
occurs, it will be by shearing action on a plane of maximum
shear. Any lateral deflections which may occur are usually
very small in comparison to the longitudinal deflections and
can practically be ignored as far as failure is concerned.
Most columns in reinforced cbncrete.structures are longer in
comparison with their lateral dimensions than are the short
columns mentioned above. The slenderness of‘a ¢column is de-
termined by its slenderness ratio which is defined as the
ratio of its length to the radius of gyration of its cross
sectional area with respect to the principal bending axis of
the column.?2 Due to the column's length, as an axial load

is introduced and increased in magnitude, some lateral

lBuildinq Code Requirements for Reinforced Concrete
- (ACcI 318-71) (Michigan, 1973), p. 6.

21pid.



deflection will occur in the column if not réstraiped. This
lateral'deflection is normally caused by an eccentricity
(loads not concentric), an initial curvature in the column
or imperfections in the material. If lateral deflections
such as these are ignored, appreciable errors will occur in
the analysis.

The failure of a slender column does not usually involve
shearing action as in the case of.short columns, but rather a
bending action. As an éxial load is applied a lateral de-
flection occurs and increases as addifional load is applied.
While in this state of elastic deformation,‘the strain in the
compression fibers increases to some critical value where
sufficient yielding occurs to suddenly reduce the column's
strength and cause it to collapse or buckle. It is this
failure that necessitates a method of predicting a column's
behavior under the influence of a given load.

For Very simplé cases in which only axial load is con-
sidered, several relationships have been found to predict
accurately enough the behavior of slender rectangular col-
umns. However, accuracy is lost when a bending moment is
taken into consideration. And column analysis becomes even
more complicated with the presence of two bending moments,
one about each of the centroidal axes of the cross section.
Séveral methods of analysis and design for these loading
conditions have been introduced‘in recent years, for the
most part as a result of testing and §mpirical data, and

most give satisfactory results. Only those methods more



commonly in use today will be discussed in this study. Other
methods of analysis and a more detailed study of column be-
havior may be found in most texts dealing with the design of
-concrete columns.

The use of design aids has been exploited over theipast
several years and many have been introduced for a variety of
 situations. Conditions may arise such as in the case of a
multistory building that requires long and time consuming
calculations to determine the dimensions of all the columns
in a structure. This involves numerous repetitive proce-
dures working through the same set of compétations many
times. By presenting the relationships of column behavior
in graphical or tabular form, the effort required to analyze
and design a number of columns is signifiéantly reduced. Al-
though the design aids are somewhat limited in scope and
application, those situations fhat commonly occur are ade-
quately represented and only those rare and unique conditions
are left to calculations.

The ideal design aid for reinforced concrete columns
would yield an economical and adequate set of dimensions with
minimum calculations in only a short time. Due to the many
factors which influence column behavior the construction and
use of design aids will remain limited by the various combi-
nations of the parameters. It appears that any progress in
the formulation of design aids will require that existing re-
lationships be manipulated and combined into simpler and more

compact forms which account for as wide an application as is



possible. As the design aids become more refined, the analy-
sis and design become simpler, faster and more efficient.

Due to the large volume of work encountered by design-
ers today, it is imperative that efficient methods be
utilized in the analysis and desigﬁ of structures. But such
efficiency must not be substituted or mistaken for éccuracy
and, to a certain extent, economy of design. Design aids
must be simple and quick, but they must also maintain some

degree of accuracy.



CHAPTER II
STATEMENT AND PURPOSE

The analysis.and‘design of reinforced concrete columns
require only simple assumptions and calculations in order to
determine a safe capacity for axial loads. Since a condition
of pure thrust is unlikely, the preéence of bending moments
must also be considered in the analysis. Such moments may
arise from an eccentricity of the thrust with respect to the
centroid of the column or from end restraints in monolithic
frémes. The relationships necessary to introduce bending
moments into the analyses become complex and require time
consuming calculations, especially for large numbers of col-
umns subjected to a variety of loads. There exist a number
of design aids in the form of tables and charts, such as
interaction diagrams, which reduce the repetitive efforts
required for the selection of adequate column cross sections.
However, the applications of these design aids are either
limited to specified loads, dimensions, and reinforcing, or
they require a series of unique calculations in order to use
them. Once a cross section has been selected, it must be
further analyzed for the influences of slenderness and side-
sway. A few design aids do account for these effects but

considerable computations are required and some trial and



error techniques must be used.l Another complication arises
with the presence of bending moments about two axes of a
square or rectanguiar cross section. Design aids are also
available for biaxial bending, but these charts also are of
limited application in that they do not account for slender-
ness or sidesway effects.?2 Even with the number of design
aids available to increase the efficiency of column design,
considerable repetitive efforts are still required to con-
-siderAall the significant factors which influence column
behavior.

It is, therefore, the purpose of this thesis to assemble
the assumptioné and relationships of current column design
methods into a cdmpact system of graphical design aids which
will enable the engineer to efficiently select with minimum
calculations column cross sections which will meet the re-
quirements for strength, slenderness, creep, sidesway and
biaxial bending. Although these design aids will still have
some limitations on their application, they are not as strict
as most. The techniques may easily be applied to increase
the ranges of the parameters and include column sizes and

material strengths not given in this study.

LlThe most complete of these design aids are presented by
Richard W. Furlong, "Column Slenderness and Charts for
Design," ACI Journal (1971), pp. 9-17.

. 2L. O. Bass, J. S. Ford, and R. L. Pinc, Design-Analysis
Graphs for USD Tied Columns With Biaxial Bending (Stillwater,
Oklahoma, 1971). :




The relationships necessary to construcf the sharts will
be initiated by first accounting for all éssumptions to be
made regarding the materials and their behavior. Most gen-
eral assumptions applied in this thesis are given in
Chapter III along with the major provisions and requirements
of the current edition of the "Building Code Requirements-
for Reinforced Concrete (ACI 318-71)" pertaining to compres-
sion members. Other assumptions and reférences to the code
will be given throughout the text whenever necessary.

The discussion in Chapter IV deals with slenderness
effects on reinforced concrete columns. A column is intended
to support axial loads but since concrete p}operties may not
be consistent within the same member and since cross sections
of reinforced concrete members are not homogeneous, the
length of the column and inaccuracies in constfuction and
loading significantly affect a column's ability to withstand
an axial load. The theory of buckling is investigated and
applied to rectangular columns. Since concrete structures
are subject to the effects of long term deformations, creep
and its effects on concrete strength and behavior are also
treated. If a column is but one of a series of columns in
one story of a building, the stiffness of the column will
affect the behavior of the other columns. Some consideration
must be giveﬁ to the effect of sidesway on the column's
strength. This is also discussed in Chapter IV and forms

the basis for the design aids presented in the appendix.



The ability of a column to withstand bending moment as
well as axial load is a major consideratidn in analysis and
design since almost all columns encountered will be subject
to some form of bending moment. Chapter V presents the de-
sign considerations and formulas for uniaxial bending of
.rectangﬁlar concrete columns. The material will prepare for
the construction of the familiar load-moment interaction
diagram. The application of the relationships from
Chapter IV dealing with slenderness e€ffects will be incor-
porated into the uniaxial design equations yielding a thor-
ough design procedure for uniaxial bending.

Because bending is not necessarily limited to only one
axis, consideration must be given to the possibility of bend-
ing about two different axes simultaneously. The discussion
in Chapter VI illustrates the theory of biaxial bending and
presents the more common methods for designing columns sub-
jected to axial load and biaxial bending. A simple method is
adopted for use in the design aids and is combined with the
relationships of previous chaptérs into a complete design
procedure for biaxial bending. This procedure will determine
the capacity of a given column for axial load and bending
moments abput both axes and will ensure that the column will
withstand the effects of slenderness and sidesway. The set
of equations presented here form the foundation for the de-
sign aids discussed in Chapter VII.

If all relationships necessary for the design of rec-

tangular reinforced concrete columns are given and related to



one another by a set of common parameters, many of the cal-
culations required to solve the group of equations can be
eliminated by transforming the equations into graphical re-
lationships that can be solved visually. And since many of
the variables in the equations are dependent on each other
the iteration required to determine an eccnomical cross sec-
tion becomes less of a task. Chapter VII outlines the pro-
cedures involved in reducing the given equations and
relationships into a set of graphical design aids which are
presented in the appendix. Example problemsvare given in
Chapter VIII to prove the validity of the graphs and a guide
for the use of the charts is also included. The examples
presented in Chapter VIII cover common situations to be
encountered.

With the assistance of these design aids, column design
can be expedited and more economic design can be realized.
It is intended for the future that the scope of these charts
be extended to include a larger range of parameters not given

by this study.



CHAPTER III
ASSUMPTIONS AND CODE PROVISIONS

Before useful relationships can be constructed some
géneral assumptions must be made with respect to the proper-
ties and behavior of reinforced concrete when subjected to
various stress conditions: (1) For any strain produced in-a
reinforcing bar, the surrounding concrete will undergo an
equal strain. In other words, it is assumed that the con-
crete and reinforcing steel produce a perfect bond and any
deformation in one material must be accompanied by an iden—
tical deformation of the other material. (2) Cross sections
that are plane before loading remain plane after loading.
Although this is not actually true, when a section is loaded
to neaf failure the error is insignificant.l (3) Concrete
offers no resistance to tension stresses. When using ulti-
mate strength design methods the concrete section is cracked
throughout the area'of_tension stresses and the tension rein-
forcement carries all of the tension stresses. (4) The re-
sisting stresses of the concrete at its ultimate strength is
a function of the stress-strain relationship for a slow rate

of loading. This has been shown to be reliable since during

lPhil M. Ferguson, Reinforced Concrete Fundamentals
(New York, 1973), pp. 32-33.

10



11
conetruction most loads are either sustained loads or accumu-
lated at a slow rate over the duration of construction.?

(5) The Whitney Stress Block will define the compressive
stfess distribution over the cross section of a member.
Other assumptions dealing with specific relationships will
be introduced as necessary throughout the text.

Since the design procedures and equations must comply
with the provisions of the code, a summary of these require-
ments is given here. Those provisions dealing with rein-
forcing steel are not included in the summary; The discus-
sion is limited to the requirements for the design and anal-
ysis of the column itself. References to the ACI Code
(318-71) are by a decimal system. The first number indicates
the Chapter, the second number indicates the section, the
third number indicates the paragraph and so on.

Accordiﬁg to Section 9.2.1 the capacity of a compres-
sion member must be reduced by a factor ¢ given as 0.7 for
tied rectangular columns. For reinforcement With a yield
strength of 60,000 psi or less, ¢ may be increased linearly
to 0.9 as the axial design load P, decreases from O.lféAg
to zero providing the reinforcement is symmetrical and the
quantity (h - 4' - ds)/h is not less than 0.7. The term dS
is the distance between centroids of the outer rows of rein-

forcement.

_ 2George Winter and Arthur H. Nilson, Design of Concrete
Structures (New York, 1972), p. 41.
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‘Section.10.3.1 requires that the cross section be de-
signed on the basis of the assumption that strain in the
steel and concrete is proportional to the distance from the
neutral axis. If reinforcing steel with a yield stress
greater than 60,000 psi is used, the maximum percentage of
reinforcement is limited by Section 10.3.2 to 75 percent of
the steel réquired to produce balanced loading under flexure
without axial load. -The design loads for columns must in-
clude an accompanying moment, Section 10.3.4, and the result-
ing eccentricity e, Section 10.3.6, which must be at least
one inch or one-tenth of the depth of the column. Slender-
ness effects must also be considered. ‘Section 10.9.1 permits
from one to eight percent reinforcement with a minimum of
four bars.

The guidelines for evaluation of slendeﬁness effects
are given in Section 10.1ll. The provisions are applicable
in lieu of the structural analysis of Section 10.10.1 and
are the basis of procedures used in this study. The unsup-
ported length of a column 1, is defined as the clear distance
between lateral supports. If a column is braced against
sidesway, slenderness effects may be neglected when klu/r is
less than (34 - 12M1/M2) where k is an effective length fac-
tor, r is the radius of gyration, M; is the smaller of the
two end design moments on the column and M, is the larger.
The code permits r to be taken as 0.3 times the overall di-
mension perpendicular to the axis of bending. The effective

length factor k may be taken as one unless an analysis, which
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is discussed in Chapter IV, yields a smaller value. If the
column is not braced against sidesway, slendérness effects
may be neglected when klu/r is less than 22, where k is to

be determined by analysis. For any column with klu/r greater
than 100, the analysis of Section 10.10.1 must be made.

The actual design of columns is controlled by Section
10.11.5. The design loads are to consist of the design axial
load from a conventional frame analysis and a moment that is
magnified by a factor 6. The magnification factor is a
function of the two design end moments on the column and the
ratio of design axial load to the critical buckling load.

These relationships are discussed in Chapter VI.



CHAPTER IV
SLENDERNESS EFFECTS

When considering only the axial load capacity of a col-
umn, for a given length the column will have some critical
value of concentric axial load above which the column will
undergo inelastic buckling. This critical load is given by

the Euler formula:

Poy = _iiﬂ%? (4.1)
(k1y)
where P, is the buckling load, E is the modulus of elastic-
ity at buckling, I is the moment of inertia of the cross sec-
tion about its centroid, and k1, is the effective length of
the column. Since concrete columns contain reinforcing steel
the section is not hbmogeneous. Creep and tension cracks
also affect the rigidity EI of the section. Therefore, EI

cannot simply be determined from Young's Modulus. The code

provides two empirical equations for ET:L
ET = (1/5)Eili ; Egls (4.2)
d

lsection 10.11.5, p. 32.

14
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Ecly

2.5(1L + By) (4.3)

EI =

where E, is the ﬁodulus of elaSticity‘of concrete in psi, Ig
is the moment of inertia of the gross cross section of the
column in in.4, Eg is the modulus of elasticity of steel, IS
is the moment of inertia of the reinforcing steel about the
centrqid‘of the cross section in iﬁ.4, and By is the ratio of
maximumvdesign dead load moment to maximum design total load
moment. This ratio is always positive.

Since a fixed ratio of stress to strain does not neces-
sarily exist during initial loading of concrete members and
because linear stresses are assumed, an exact modulus of
elasticity cannot be defined.? Therefore, an approximate

value for E, is given by the code as3

E, = wl+d 33 VE] (4.4)

where w is the weight of the concrete in pcf for those
weights between 90 and 155 pcf, and fé is the 28 day cylin-

der strength. E_ represents the secant modulus of elastic-

c
ity which is the slope of a chord from zero to about fé/2
on the stress-strain diagram.4 The term By in equations

(4.2) and (4.3) accounts in part for the effect of creep.

Creep deformations and curvature become larger as the

2Ferguson, p. 9.

3section 8.3.1, p. 22.

4Ferguson, pp. 9-10.
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- moments from sustained loads increase and the rigidity of
the member decreases. To correct the stiffness of the col-
umn, the sum of the stiffnesses for the concrete and steel
is reduced by (1 + Bd).s

Both equations (4.2) and (4.3) give conservativé values
for rigidity. The proximity of each to the actual rigidity
depends primarily upon the percentage of reinforcing steel p
contained in the section. Comparison of the theoretical
EI's obtained from tests to the EI's computed by equations
(4.2) and (4.3) show that equation (4.3) is economical over
only a small range at low values of p.6'7 Equation (4.2) is
somewhat more conservative in this same range but for larger
percentages of steel yields a more economical value for EI.
In order to avoid complicating the relationships, only the
equation (4.2) will be used to deﬁermine column stiffnesses.

The Euler formula (4.1) is valid for a concentric load
Poy applied to a column with unsupported length 1, and an
effective length kl,- In frames that are braced against
sidesway, the coefficient k will vary from 0.5 to 1.0 and for
frames that are not laterally braced against sidesway, k
varies from 1.0 to ». The coefficient k is a function of

the rotational end restraints at each end of the column. The

5CommentaryAgg Building Code Requirements for Reinforced
Concrete (ACI 318-71) (Michigan, 1971), Section 10.11l.5,
p. 42.

65. G. MacGregor, J. E. Breen, and E. O. Pfrang, "Design
of Slender Columns," ACI Journal (1970), p. 6.

7Commentary, Section 10.11.5, p. 41.
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effect of k on the design of columns may be illustrated by
dividing structures into three classes.8 First are the very
tall buildings, the lateral movements of which require lat-
eral bracing or shear walls to restrict sidesway. Slender-
ness effects become critical in structures of this type. The
second class includes those buildings that are tall enough to
be subject to considerable lateral movement but not to the
extent that lateral bracing is required. Slenderness ef-
fecﬁs require attention but do not dominate the design of
columns. Most buildings fall into a third category. They
are short énough that lateral movements are minor. In this
case slenderness effects are usually of minor concern and the
approximations for k given by the code are sufficient. Tﬁe
first two classes usqally require analyses to determine k.
Several charts are available for determining the effec-
tive ‘length factor k. The simplest of these, published by
‘Jackson and‘Moreland, use an end restraint coefficient V¥ for
each end of the column.? The coefficient Y is the ratio of.
the sum of the stiffnesses EI/LC of the columns at the joint
in the plane of bending to the sum of the stiffnesses EI/Lb
of the beams at the joint, where L, is the column length and
Ly is the beam length. A coefficient is found for each end
of the column and plotted on a nomograph. The factor k is

read directly from the nomograph.

8Paul F. Rice and Edward S. Hoffman, Structural Design
Guide to the ACI Building Code (New York, 1972), pp. 291-297.

_9MacGregor, Breen, and Pfrang, p. €.
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In determining the effective length factor k the code
requires that the effects of cracking and reinforcement on
the relative stiffnesé must be considered.l? Since the mem-
bers are designed and dimensioned according to their ultimate
strengths, as the members approach failure, tension cracks
form,ideflections and curvatures increase, reinforcement
yields and the rigidities of the members change. Therefore,
the question arises as to what constitutes acceptable rigid-
ities for the beams and columns at a joint. Since k must be
known to properly dimension a column, and since k also de-
pends on the rigidity of the column, an iterative process
must be used. Member sizes must be‘assumed, k values com-
puted and member sizes adjusted with the k values to find new
k values, and so on. But again, even if member sizes are as-
sumed, what should be used for a member's rigidity? Several
approaches are presented of which the simplest is to use one-
half of the gross moment of inertia on the column croﬁs sec-
tion in order to determine an initial relative stiffness w.ll
Other methods present more accurate results but since charts
will be used for the iteration process, little extra time
should be required for a less accurate initial guess.

The above procedure was given for a single column. But
usually in a frame not braced against sidesway, there will

exist more than one column in a given frame or story of a

lOSection 10.11.3, p. 32.

Mlrerguson, pp. 523-525.
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building. When this is the case any sidesway will involve
the simultaneous lateral deflection of all the columns in
that story. Assuming no torsional loading is introduced, all
columns will deflect an equal amount and the shear and mo-
ments distributed among them will be functions of each col-
umn's stiffness relative to the total stiffness of all the
columns. Whereas the stiffness analysis for a single column
is used to find an appropriate factor § by which the design:
moment ié increased, when all columns in a story are consid-
ered, a § will be found which, if greater than that § for any
of the iﬁdividual columns, will be appliéd to all columns in
the story.

Once Pcr is found for all the columné to be consideféd,

the moment magnifier § may be found from

s = — B — (4.5)
1 -
d’Pcr

where P/¢PCr is EP/2¢Pcr for all the columns in the story or
P/¢P.y if only a single column is being considered. Ch is

given as

My
Cp=0.6 +0.4 L = 0.4 (4.6)

where Ml/M2 is the ratio of end moments, M, being the larger
of the two and M, the smaller. When actual eccentricities
are less than the minimum specified by the code, M2 must be
based on the minimum eccentricity. If no eccentricity is

present at either end, Ml/M2 must be taken as one. Where
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eccentricities are present but less than the minimum, the_
actual moments should be used to calculate Chn- The ratio
Ml/Mz is positive in the case of single curvature of the col-
umn and negative for double curvature. If M; = M, then Cph=1
and the maximum moment will occur at mid-height of the .
column.12

If the columh is in an unbraced frame and has a length
to thickness ratio of kl,/r =< 22, it is a short column and

13 For braced frames

- the code allows C to be taken as one.
a short column is one with a klu/r < (34 - 12M1/M2) and C,
may again be taken as one. The ratio Ml/M2 represents the
same ratio as in equation (4.6).

Once § has been computed for both an individual column

and that column as one in a story (if applicable) the larger

§ shall be used. The design moment shall be determined by

M, = M

c 2 (4'7)

where M2 is the larger of the two end moments. The column
is then designed for an axial load of P and a moment of M,.

| Size and reinforcement are determined and the design
procedure is repeated using a new stiffness based on the new
dimensions. The procedure is iterated until the changes in

size and reinforcement are small enough to be satisfactory.

12Rice and Hoffman, p. 294.

13section 10.11.4, p. 32.



CHAPTER V
UNIAXTAL BENDING

If a column were loaded axially with a force acting at
the centroid of the column's cross section, some determinate
strength would be available to resist the force. Using the
assumptions made in Chapter III and assuming that the stress
is uniformly distributed over the cross sectional area, it is
possible to predict the value of load at which the column
would fail. This failure due to strength should not be coﬁ—
fused with failure due to buckling discussed in the 1as£
chapter. Since the load is concentric, all the steel in the
section will yield at the same value of load. The load will
be resiéted by the stress developed in the steel and the
stress developed in the concrete. See Figure 1. The stress
in the steel at failure is given by fy’ the yield stress of

the reinforcing steel. Since fy is the same for all bars,

Fg1 = fYAé and Fs2 = fyAs (5.1)

The resisting force of the concrete is

Fo = 0.85 £

Summing the vertical forces,

Py = 0.85 £bh + AL + £A_

21
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or Pé = 0.85 fébh + fy(As +'As) (5.2)

The term Pé represents the theoretical failure load for pure

axial load with no bending. But since the code requires that

855]

oo o —1°
o
A

ol
00

]
]
|
T | T
Fez Fse
Figure 1. Resisting Forces of Column Section
Under Pure Thrust.

columns be designed for some moment capacity at a minimum
eccentricity, if the applied force is moved to one side,.the
magnitudes of the resisting forces are changed as shown in
Figure 2. Since an eccentricity is present, the section must
resist a moment in addition to the axial load. Again summing
forces, if the maximum strain in the concrete is assumed to
be 0.003 in/in, and since a linear stress distribution was
assumed, a triangle can be used to illustrate the strain of

1

the section. Point N represents the neutral axis. From

lacI code, section 10.2.3, p. 30.
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Figure 2D,
esl — (.OO3)£C '-‘ d'L and Fsl — ASI’ES(;OO:;)éC - d') (5.3)
€., = 14003)éc =d)  ana Fg, = ASES('OO3)éC = d) (5.4)
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e = >
_ 85¢c| d .
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Figure 2. Resisting Forces of Column Section
Under Eccentric Load.

Then with FC we have

P, = (.85£) (.85)A, + AéES(’OO3)éC =d’) +a_E_(.003) (c - d)

C

- ' .003E ' '
or PJj = 0.7225chnc + ___E_é As(c -d4") + As(c - d)] (5.5)

The maximum resisting moment of the section is given by sum-

ming moments about the center of the section:
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_ [ .85¢c W h
e—-Fc[-z-— 2] +Fsl[-2-—d] _.Fsz[d‘Z]

- - [ h_ ' j.003)(c—dj
or M; 0.36125féAnC(h .85¢c) + ASES[Z d ] =

_ AsEs[§ _ %] (.oo3l(c - d) (5.6)

In the above equations the distance to the neutral axis c

is not known but can be determined by simple statics. A
trial and error method may be used by assuming a value for c
and calculating the capacity of the column then comparing
the eccentricity obtained with the actual eccentricity. If
they differ, a new value is selected for c and the process
repeated until they agree.

Equatioﬁs (5.3) through (5.6) are valid for the range
a/.85 <c< h/.85. As the eccentricity becomes larger, the
neutral axis moves toward the load and c decreases. For the
range ¢, < ¢ < d/.85 the following equations shouid be used.
The distance to the neutral axis under a balanced loading
condition is represented by Cy, - Figure 3 shows that Foo is

now a tension force.

(.003) (¢ = d")

= = At .00 - d'
€1 = and Fgqy = ASESL—' B)éc ) (5.8)
= (.003)(d - ¢) . -
€s2 S and F,, = A g A:0030d a5 g
.003E
[ — ' S ' -d" - -
Then Pu 0.7225 chnc + —_— As(c a') As(d cﬂ (5.10)

The resisting moment is then:
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e = 0.36125 fé A, c (h - .85c)

. AéEs[% 3 d.] (.003) (e = a')

- v - hl (.003)(d - 1)
ASES[d 2] c (5.11)

®
O
e
'
[

.85%
!

=
=

|Ez Iﬁn
Figure 3. Resisting Forces of Column Section
Under Eccentric Load.

The balanced loading condition exists when the maximum
compressive strain in the concrete occurs at the same time
the tension reinforcing steel begins yielding.2 This con-

dition is given by equations (5.12a) and (5.12b).

.o . : C003Eg [41/. _auy] _
P/ = 0.85 £.(.85bcy - Al) + = al(ey-d')| - A, (5.12a)

?ACT Code, Section 10.3.3, p. 30.
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v v . h .85Cb
My = 0.85 £!(.85bcy - AS)[E - ]

2
.00 -
+ ALE, [% - d] (-0 B)écb )
b
h
- Agf, [d - 5] (5.12b)
_ __.0034

C
b ~003 + .00207

For all values of ¢ smaller than Cp the stress in the tension
steel is fy and Fgy = Asfy' With this value for Feo substi-
tuted into equations (5.10) and (5.11), they will yield the
failure loads P, and M for the range c < c¢y.

Over the first range from the minimum eccentricity to
the point where balanced lbading eXists, failure in the sec-
tion is controlled by compressive stress. As the eccentric-
ity increases beyond balanced loading, failure is controlled
by tension. Also, as e increases, P/, decreases and Mﬁ in-
creases up to some maximum value and then decreases. This is
best illustrated in a 1qad momentfinteraction diagram as in
Figure 4.

If Pﬁ is plotted versus M} (or Pﬁe), the curve will
represent the locus of the maximum theoretical allowable
axial loads and moments P/ and MG for any eccentricity e as
shown in Figure 4. This curve is unique for some percentage
and configuration of reinforcement. Normally the diagram is
a family of curves for various percentages of steel. This
type of diagram is to be used as the basis for the design
aids in the appendix.; Its application will be discussed in

greater detail in Chapters VII and VIII and can be found in
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most texts dealing with the design of reinforced concrete

columns.

Figure 4. Load-Moment Interaction
Diagram.

Another method of design better suited to longhand cal-
culations is to construct a portion of an interaction dia-
gram with several values of ¢ giving‘allowéble loads near
the design loads.3 The capacity of the column can then be

taken directly from the curve.

3Rice and Hoffman, pp. 265-274.



CHAPTER VI
BIAXTIAL BENDING

In comparisoh to bending about one axis of a reinforced
concrete column, biaxial bending presents an entirely differ-
ent and more complex situation. As a second bending moment
is introduced, the neutral axes are no longer parallel to the
centroidal axes of the section, but lie at some angle 6 from
them. Due to the rectangular shape of the cross section, as

® increases, the area of the cross section under compression

Y Y
» ex L eﬂ
a
]
4, > ]
J
0 0 o
—@- - X
. 0
Fe RCTS AT
CENTER OF
4RAVITY.
Figure 5. Compression Area Figure 6. Compression Area
of Rectangular of Circular
Section Under ' Section Under
Biaxial Bending. Biaxial Bending.

28
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becomes triangular as shown in Figure 5. If this area main-
tained the same shape as 6 changed, as in the case of a cir-
cular cross section, it would be a simple matter to find thé
relationship of one moment to the other, as illustrated in
Figure 6. However, the shape of thevcross section does vary
with 6, but no siﬁple and exact relationship is to be found
between 6 and the load capacity of the column. It is there-
fore necessary to rely on empirical relationships developed
from biaxial bending tests on rectangular concrete columns.
In recent years several methods for designing biaxially
loaded columns have been published. Most methods have in
common some form of an interaction surface as shown in
Figure 7. The curve ABCD represents the load-moment inﬁer—
action.diagram for the X axis of the column and the curve
DEFG represents the load-moment interaction diagram for the
Y axis. For any given value of axial load P a horizontal
plane may be passed through the interaction surface defining
the maximum allowable moment the column will’withstand when
applied simultaneously with Pﬁ. For example we shall assume
that point H in Figure 7 represents a value of axial load to
be applied to a column. A horizontal plane passed through
this point is represented by plane BHF. If this plane were
to be removed from the diagram and viewed in plan it would
appear as in Figure 8. For this value of P, if a moment
occurred about only the X axis, the maximum allowable moment
the columﬁ could withstand would be represented by point Méx'

Likewise, if a moment occurred only about the Y axis, the
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Figure 7. Biaxial Load-Moment Interaction
Diagram.

maximum moment capacity would be given by point MJ How-

v*
ever, if the resultant moment applied to the column is about
an axis at some angle o from the Y axis, its maximum allow-
able value is given by Mj. Ideally, point M) would lie on
the dashed elliptical curve, but in the case of rectangular

columns, the fact that the compression area becomes triangu-

lar, as in Figure 5, alters the boundary similar to the solid
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Figure‘8. Section Through Biaxial
Load-Moment Interaction Diagram
at Constant Load P.

(N

Figure 9. Relation of Uniaxial Capacities
to Biaxial Load-Moment
Interaction Diagram.
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curve in Figure 8. If the maximum allowable moment M| is

divided into X and Y components M;y and Mﬁy' it becomes a

simpler matter to formulate a relationship between the axial
load P} and each of the moment components.

This problem is expanded in Figure 9 where P} is the
ultimate concentric load with no eccentricity. At points

Mix and Mﬁy, an equivalent moment may be produced by the

axial load P/ acting at eccentricities e, and ey from the

X and Y axes, respectively. If the eccentricity e, were
fixed and the load allowed to vary, the maximum allowable
axial load would be Péx‘ If no bending occurred about the Y

axis, the maximum axial load would be P/ If the analysis

oy*
of Figure 9 is approached from the opposite direction, that

is if P/ are known, a relationship can be

ox'! P! e, and e

oy' X y

found between PJ., Péy and Pﬁ.’ One of the simplest relation-
ships was developed by Bresler.l\ Tests and investigations of
biaxial bending have shown his equation to be satisfactorily
accurate under most of the range of axial load and bending
moments. If a given cross section as in Figure 10 is sub-
jected to bending moments M|, and Mﬁy and an axial load P

as shown, the system of forces can be reduced to a single

load acting at equivalent eccentricities obtained from

o = Mux o = Muy
X Pq y Pqd

lBoris Bresler, "Design Criteria For Reinforced Columns
Under Axial Load and Biaxial Bending," ACI Journal (1970),
pp. 481-490.
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Figure 10. Equivalent Eccentricities of
' Axial Load.

Bresler's equation is

PI - Pé (6.1)

where P/| is the ultimate axial capacity of the cross section
and PJ is the ultimate axial capacity under a concentric
load, P, is the ultimate axial capacity if moment occurs
only about the X axis and'P(')y is the ultimate axial capacity

if moment occurs only about the Y axis. P} can of course be

found by simple statics once a column size and reinforcement
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is assumed. The capaéity Péx is determined by considering
the column subjected only to P/ and Mﬁx’ and accounting for
slenderness effects if applicable. Then Péx can be similarly
determined. Finally, a value is obtained for P} and compared
with the actual load applied to the column.

The origin of Bresler's equation stems from a failure
surface obtained by plotting the failure load P as a func-
tion of eccentricities x and y as shown in Figure 11l. The
values of x and y also serve to illustrate the relationship
of P and the bending moment components M/, and Mﬁy' As can

be seen in the diagram as the eccentricities increase,

FRILURE
SURFACE

P
———

Figure 11l. Failure Surface for Load vs
Eccentricity'.
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bending moments increase and the failure load P/ decreases to
some limit at‘the bottom of the curve where axial load be-
comes negligible and the section is considered to be in pure
bending. If the reciprocal of the failure load is plotted

as a function of the eccentricities, a surface such as that
in Figure 12 will be obtained. It is this surface from which
Bresler's equation is actually derived. The surface being

somewhét flat resembles a slightly warped plane. For a given

Figure 12. Failure Surface for Reciprocal
of Load vs Eccentricity.
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column, at least three points on the surface are known for
some particular value of Pd and are coordinates for the fail-
ure load for pure axial load Pj, the e, corresponding to the

failure load P), were moment to occur only about the Y axis,

and the ey similarly corresponding to the failure load Péy.
These points can be plotted as (l/Pé, 0,0), (l/PéX, eX,O)
and (1/p/! e 0) as shown in Figure 13. If a plane were

oy’ v’
passed through the three points, any point on the failure

-
@®
x
(]
&
\ \

Figure 13. Bresler's Approximation of the Failure
Plane 1/P vs e.
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surface (1/P{, e ey) can be approximated by a point

<!
(L/PY, ex ey) on the vertical projection to the plane. If
some point l/Pé were defined by the three coordinates
(l/Pé, e ey), see Figure 13, the location of l/Pé falls
very near the intersection of the failure surface and the
plane where the error in approximation is éero.

Since the plane is unique in that each value of /Py
and l/P(')y will yield unique values for e, and ey, the error
in the approximations will very nearly be'the same for all
positions of the plane. The error will increase slightly,
however, for very large values of l/Pc')x and l/Péy. Results
of the approximation were compared with theoretical results
in Bresler's paper and found to be in excellent agreement,
the average error being 3.3 percent.

In order to apply the approximation the plane must be

defined by the three known points. The equation of the plane

for some eccentricities e! and e! is

X Y
o 1/pl 1 /Pl e, 1 e, 0 1
] ] + lPI [] + I =
ey l/POy 1 el / oy o 1 ey 0 ey 1 l/Pu
0 l/Pé 1 l/Pé 0o 1 0 0 1

ey 0 1/P5x

0 ey l/POy

0 0 1/P}

where (1/P! el are the coordinates of the failure load

Oyl XI e&)

for biaxial bending. Simplifying the equation we obtain:
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YA 1) e\'/ex<l 1) (1 1)_
xlg— ~" 5 ) 7 — — 5 ) tex [g— -5 =0
'x<Po Pox ex \Fo Poy * \Py P

For biaxial bending the eccentricities will be the same as
those for uniaxial bending, see Figure 10. Therefore, if

el = e, and e! = e then

X X Y y'

1 - L .1 _ 1
P Poy PO

] ]
u Pox
which is Bresler's formula. It is perhaps the simplest and

most widely applicable relationship that has been developed.

Another method introduced by Bresler is of the form

where My = Puy, Mgy = Py, when x = M, = 0; and M,, = P;x,

y y

Moy = Pyx, when y = My = 0. Looking at the failure surface
formed by the load-moment interaction diagram, Figure 14, the
surface is formed by a family of cufves at constant values of
P, Bresler refers to these curves as load contours. If a
plan bounded by a load contour at some P, is examined as in
Figure 15, and if the load contour is assumed to be a
straight line, the equation_of the load contour is given by

M

- — O
M, = Mg, - M, (M_.‘L)
[0)74

The equation can be written as
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If the load contour is curved instead of straight its equa-
tion is approximated by

() ) -
Mox 'Moy /

in which o and B are dependent on the dimension of the col-
umn, steel reinforcing, stress-strain behavior of the mate-
rials, the concrete cover and lateral ties. Tests showed
that this equation provided good approximations of analytical
results but no one value of o or B can be assigned to accur-

2 Therefore,

ately represent the load contour for all cases.
the determination of o and B8 would add undesired complexity
to the design procedure.

Other approximations have been derived, among them a
method by Pannell based on a failure surface as in Figure
14.3 These methods are either less accurate or require addi-
tional functions making the design procedure more complex.
For this reason the first method by Bresler will be used in
the désign charts to be constructed here.

The one limitation of Bresler;s equation is its appli-
cable range. For small axial loads tension has more influ-

ence on a column's capacity. The relationships on which

Bresler's equation is based are no longer valid due to the

21pid.

3F. N. Pénnell, "Biaxially Loaded Reinforced Concrete
Columns, " Proceedings, ASCE, Vol. 85, ST6 (June, 1959),
pp. 47-54.
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absence of the failure surface, Figure 13, in this range.
Therefore, the equation will not be used for values of Py

4 Another equation must be used for this

less than P_/10.
lower range of axial loads.

If a load contour of Figure 14 is examined for a séuaré
column with equal steel in all faces at some P,s the biaxial

load-moment capacity will be represented by a near circular

curve, Figure 1l6a, where MOx and Moy are the uniaxial moment

Muy. Max Mux Mox

M

MO” ‘ Moa 1

(3)  (b)

Figure 16. Load Contour for Square Section With
Equal Reinforcement in All Faces.

capacities for the X and Y axes, respectively, and are equal.
The design moments M., and Muy are bounded by their inter-
section with the load contour M,. An approximation of this

limit can be made by assuming a straight line between Mox

4Rice and Hoffman, p. 290.
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and M, as in Figure 16b. Then M, will lie on the line and

y
inside the curve for any combination of M,  and Muy giving a
more conservative solution. The design moment M, is simply
the vector sum of M;,, and Muy but should not be larger than

M This equation is suitable

oxX*®

My = My, + My S Mo, (6.2)

for a square column with equal reinforcement in all faces.
However, if the reinforcement is not symmetrical or the col-

umn is rectangular, M and Mo are not equal and the load

ox
contour will resemble Figure l1l7a. A similar approximation

can be made in this case as shown in Figure 17b. If equation

Mux Mox Mux Mox

Y Ma

Mu

Moy o Mey
(3) (b)

Figure 17. Load Contour for Rectangular Section
With Symmetrical Reinforcement.

5Ipid., pp. 286-289.
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(6.2) is written as

Ilzl
»
=+
Ik?l
IA
I—I

u (6.3)
Mox Moy

where M, and Moy are assumed equal to M, the relationship

also represents the approximation in Figure 17b. Since ﬁgx
was the upper limit of equation (6.2), when the equation is
divided by Mox' one is the upper bound of equation (6.3).
This equation was given by the previous code (ACI 318-63,
Section 1407c, Egn. 14-14) and limited to situations where
tension controls the design.

Because of its simplicity, equation (6.3) will be used
to determine biaxial capacity for the design charts to be
presented here. Although the conservative error is signifi-
cant, simplicity is considered to be important and since most
columns encountered are not controlled by tension, the use of
equation (6.3) should not provide unreasonable design as far
as economy is concerned. Further discussion of the errors

involved may be found in Paul F. Rice and Edward S. Hoffman,

Structural Design Guide to the ACI Building Code, New York,

1972, Chapter 10.



CHAPTER VII
TRANSFORMATION INTO GRAPHICAL FORM

The preceding chapters have presented all the equations
and procedures necessary for the complete design of a common
reinforced concrete column. In those areas having several
accepted techniques and theories, one method was selected for
use in constructing the design aids. The equations used in
this chapter will be repeated and referenced to their intro-
duction in the text.

An outline of the series of operations required to de-
sign a column is given in Figure 18. The flow chart follows
the column‘design procedure from the initial assumptions to
final sizing. This procedure represents the fundamental ap-
proach to column design. Numerous short cuts and approxima-
tions have been introduced in many texts for preliminary
checks to make the trial and error process less cumbersome.

The reader is referred to Phil M. Ferguson, Reinforced

Concrete Fundamentals, New York, 1973, for some of the more

common methods of approximating column design.

Any method of column design requires some initial as-
sumptions as to column size, reinforcement, or loading condi-
tions. The procedure used here requires the selection of a

trial size and percentage of reinforcement for a column. The

44
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capaciﬁy of the column is then determined and compared to the
given load. Once the dimensions have been selected, the re-
maining unknown parameters lend themselves very well to
graphical presentation. As can be seen from Figure 18 the
section is first checked for uniaxial_load—m@ment capacity.
Then slenderness effects are checked for each axis and final-
ly the biaxial capacity is determined. The general form of
the design charts in the appendix follows. these three steps.
Design charts for column slenderness have been presented
based on the previous code (ACI 318-63) and are assembled in
terms of dimensionless parameters.l This requires that sev-
eral preliminary calculations be made prior to using the
charts. The sections of the charts dealing with slenderness
effects also fequire more than simple calculations. The
charts to be constructed here will follow a similar pattern
except that relationships will conform to the current code
and the parameters will be separated so that only simple cal-
culations will be necessary. Dimensionless parameters will
not be used, but rather a chart for each given column size.
Also the relationships within the charts will be extended to
include biaxial relationships. It is possible that since the
exactness of the equations is to be sacrificed for the con-
venience of graphical solutions, some accuracy will be lost.
However, the equations themselves are but empirical approxi-~

mations and any errors in the solution will depend primarily

lRichard w. Furlong, "Column Slenderness and Charts for
Design, " ACI Journal (1971), pp. 9-17.




48

on judgement and accuracy of plotting. A simple check by
statics at the end of the design process should be suffi-
cient to identify any significant errors made during the de-
sign procedure.

The basis of the design aids is the load-moment inter-
action diagram as shown ih Figure 4. With the equations
given in Chapter V, a diagram may be constructed for each
axié of a given column size and percentage of‘steel. If the
dimensions, reinforcing, load and properties are known and if
an interaction diagram is available, it will be obvious
whether failure is controlled by tension or compression and
the column's capacity for any combination of load and moment
may be found instantly. The»upper boundary of the diag;am,
point Pé, is the capacity of the section under pure axial

load and from statics is given by equation (5.2).
P = 0.85 £& By + f,(Ag + AY) (5.2)

As moment is introdﬁced the position of the neutral axis,
distance c¢ from the compression edge of the column, shifts
toward the compression edge. As the eccentricity increases,
c decreases. The capacity for axial load also decreases, but
the moment resisting capacity increases. This curve between

P, and Py is defined by

Py = 0.7225£2A ¢ + =0038s (a4 (c-ga') - As(d—l)] (5.10)
c '
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My = 0.36125fAnc(h- .85c) + ALE.(h/2 —d')‘003éc'd')

- AsEs(d" h/2).003c!d-l! (5.11)
When the neutral axis falls outside the section on the ten-
sioh side (.85c > h), equations (5.5) and (5;6) must be used.

As the balanced loading condition Py is‘passea, the mo-
ment capacity begins to decrease. This portion of the curve
is given by

Py = 0.7225£LAnc + ALf, - Agf, | (7.1)

M} = 0.36125f/Ajc(h- .85c) + ALf,(h/2 -d')

i

Agf, (d- h/2) (7.2)

The code provides that when the load capacity P} is less than
fibh/10 the safety factor ¢ may be increased from 0.7 to 0.9
as P| decreases to zero.? This puts an outward bend in the
bottom of the‘interaction curve.

Since any column may contain several configurations and
percentages of steel, a family of interaction curves may be
drawn, one for each size bar group possible within the same
size column. This will eliminate interpolation between per-
centages found on other diagrams. Lines of constant eccen-
tricity are also plotted on the charts to aid in the

selection of reinforcement. The uppermost line on the

2Section 9.2.1.2, p. 26.
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interaction diagram represents the minimum eccentricity al-
lowed by the code, h/10.

The family of interaction cﬁrves is located in the upper
right quadrant on each design chart. Another curve is super-
imposed on the graph and will be explained later in the chap-
~ter. The upper left quadrant consists of three families of
curves. These three groups determine the ratio of applied
load to critical load P/¢Pcr. In order to determine this
ratio, P must be found from equation (4.l). This equation

cr

can be'separated into a product of two terms in which the

2 2
p.,. = R°EL - X7 (ET) {4.1)
T (k1) 2 (K1) 2

term EI is given by equation (4;2). If the equation for EI

is separated into two terms, then the term (ECIC/S + ESIS)

EI = 1/5 ECIC + ESIS ’ (4.2)
1 + Ba

has a unique value for each bar size group in a given size
column. This term becomes one of the three slenderness par-
ameters for equation (4.1). The second term 1/(1 + Bg) is
the second parameter since its value is independent of the
column properties and is a function of loading. The third
slenderness parameter is xz/(klu)2 from equation (4.1). The
product of these three parameters will yield P.,, but P/¢Pcr
is required to find the moment magnifier § given by equation

(4.5). In order to obtain the ratio of P to ¢P the param-

cr’

eters given above may be combined as shown in equation (7.3).
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C
§ = —To— (4.5)
L- $Per
2. P (1 + Bg) Gelw)® (7.3)
$Por  $(BLIL/5 + EIY) > a2 '

Each of the three families of curves in the upper left quad-
rant of the design charts is the graphical representation of
one of the three terms in equation (7.3). The lower left
guadrant is a plot of P/¢Pcr vs §. for several values of Cm
which is obtained from equation (4.6). In order to eliminate
the calculation of C the actual parameter used will be

Mj/M; and the family of curves is then defined by equation
(7.4). Of course the code requires that Cm must not be less

than 0.4 and that § must not be less than 1.0.

M
Cp = 0.6 + 0.4 (_l.) > 0.4 (4.6)
M2
M
0.6 + 0.4 (M—l)
2
6 = ——TT7p = 1.0 (7.4)
¢Pcr

The lower right quadrant corrects the initial design
moment My, by the moment magnifier § and gives a new design
moment M, from equation (4.7). M. can be projected vertical-
ly to intercept the line of constant eccentricity initially
used and outward to the interaction curve and then a value
of Py can be.read directly from the vertical axis of the

interaction diagram. This value of P, represents the fail-

ure load for the column axis under consideration and is the
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same as POX or P in the biaxial bending equation (6.2).

oy
If this value is more than or equal to the initial P the de-
sign may be checked further for biaxialbadequacy. If not, a
new column size or reinforcement must be selécted and the
proceéses repeated.

Assuming the section is so far satisfactory, the addi-
tional curve superimposed on the interaction diagram is now
used to invert the design load P, to obtain the appropriate

3

terms of the biaxial equation. Having completed the design

1 = _¢ (7.5)

for one axis of the column,'the entire procedure is repeated
'fbr the other axis.- If the columﬁ is square with the same
reinforcement in all four faces the same chart may bé used
for both axes. If, however, the column is rectangular or
square with unequal reinforcement the interaction diagram

for moment about the minor axis will be of a smaller scale
than that for the major axis. In order to avoid the confu-
-sion of additional curves on the charts and to maintain the
accuracy of the larger scaled chart, a separate chart with an
expanded moment scale has been constructed for the minor
axis. The design procedure is identical except that the pre-
liminary column siée and reinforcement has already been de-

termined by the design about the other axis. Upon obtaining

3If P < P,/10, ecquation (6.3) must be used to determine
biaxial capacity. :
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v the reciprocal of Péy is found

and the reciprocal of PS and by simple addition and subtrac-

a satisfactory value for P,

tion the value of l/Pﬁ is obtained from equation (6.2). By
reversing the procedure for téking reciprocals, a value for
P, is found. If this P, is greater than the actual load P
used initially, the design is satisfactory. If the differ-
ence is too great a more economical section may be found
quickly by adjusting the reinforcement or if necessary
changing the column size. Note that if when repeating the
design procedure for the minor axis a change is necessary in
the siée or reinforcement of the column, the major axis must
be redesigned for the new conditions.

Once a graphical procedure is established, a method of
converting the equations into graphical form must be deter-
mined and reasonable limits must be imposed on the range of
values obtained from each equation. Obviously, without the
use of a calculator or computer with plotting capabilities,
an attempt to construct such numerous graphs would be time
consuming to say the least. The charts in the appendix were
drawn by a Hewlett-Packard 9830A calculator and a 9862A
calculator plotter. A general program was written for most
common condition to be encountered in the design of square
and rectangular concrete columns. The compressive strength
of the concrete is limited to 4000 psi, although the program
will accept other strengths, and is assumed to be of normal
weight, 145 pcf. The yield strength of the reinforcing steel

is taken as 60,000 psi and its modulus of elasticity 1is
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29,000,000 psi. The patterns of reinfércement are limited
to square or rectangular patterns with a symmetrical arrange-
ment of equal size bafs:on any two opposite faces. Lateral
ties complying with the code provisions were used in all
cases. A constant concrete cover of one and one-half inches
is used in determining dimensions. These specifications are
repeatéd in the appendix for reference.

Since a large range of column sizes is used, the capac-
ities will also vary over a large range. If the same scale
were used for all sizes, the interaction curves for the
smaller sections would be too small to be used effectively.
It was necessary to divide the scale into six ranges giving
all diagrams approximately the same size. On any one chart
for any one arrangement of reinforcement, all possible bar
sizes are considered and an interaction curve plotted for
each size, the largest plotted first to set the scale. The
lines of constant eccentricity are plotted for the minimum
eccentricity allowed by the code and at one inch intervals
to four inches, a six inch eccentricity, and then at eight
inch intervals to about one and one-fourth times the depth of
the section. All units are in inches and kips.

The graphical conversion of equation (7.3) requires
three steps. The first step deals with the first term

P
$(E.I/5 + EgL,) (7.6)

Since the scale of P is determined by the interaction dia-

gram, the scales of the upper left quadrant will depend on
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P. Since P is known, I, and Ig must be calculated over their

c
effective ranges. Since the size of the column is constant,
I. is constant and Ig is the only variable. An example graph

is shown in Figure 19. The equation of a line can be calcu-

BAR IZE: #1109 8 7 & 5
p—

(148,) BElyq : (1+@4) Llys

Figure 19. Graphical Representation
of P/(E.Io/5 + ESIg).

lated for each size bar used in the interaction diagram and
can be plotted as a function of P. The upper limit of ex-
pression (7.6) will be a function of the upper limit of P for
the diagram under consideration. If expression (7.6) is
evaluated for the minimum stiffness possible within the given
sizes of steel bars, a conservative upper bound will be ob-

tained by using the upper limit on the vertical axis for P,
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which will be designated as Pyp-. This‘will plot a line;from
the lower left corner to the upper right corner of the éraph,
establishing the upper bound of the scale for this graph.
Then using P, @ line may be constructed for each size bar
given by the interaction diagram; If for any particular bar
size a horizontal line is drawn from the design load P to
intersect the appropriate bar size line, the vertical pro-
jection of this point to the horizontal axis gives the value
of expression (7.6). The scale'bn this axis depends on the
scale of P, and the stiffnesses of the column. Since it will
be different for each graph and since it is not necessary to
know the value of expression (7.6), the axis is not scaled
for this graph on the design charts.

The second step of the conversion is the multiplication
by the term (L + sd). The maximum value of B3 is one if dead
load is-thevOnly load present. The lower limit of Bg ap-
proaches zero for a very small dead load moment compared to
the total load moment. Therefore,b(l + Bd) can vary from one
to two. The lower bound of expression (7.7) is equal to that

Pum(l + Bg)
3 (EcIo/5 + EgL,)

(7.7)

of expression (7.6) while the upper bound doubles. Since the
lowér end of the scale for P/(ECIC/S + ESIS)¢ is zero, the
lines for the (1 + By) graph must originate at the upper left
corner. The lines terminate within the lower half of the

right side of the graph. As shown on the inverted vertical
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A
I Pam
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|
& ZFRum
R Eles

(LD EI

Figure 20. Graphical Representation
of (1 +83) x P/(EI/5 + ESI).

scale of Figure 20, the lines are plotted at intervals of
Bg of 0.2. As is the case with the previous graph no scale
will be required since only a relative value is necessary
when plotting a solution.

The last step in the conversion multiplies the previous

result by expression (7.8). Theoretically, k can vary from

(k1) 2

22 (7.8)

0.5 to infinity. The shortest column to be considered is
eight feet giving a minimum effective length kl, of four
feet. 1In order to give the charts a practical range, a max-
imum effective length of 100 feet will be used as the upper
limit. A family of curves similar to Figure 20 is shown in

Figure 21 for expression (7.8). The result will give a value
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25

Py oY
046 VLA”'I
¢ Ry

Figure 21. Graphical Repre—'
sentation of

(kl,/7)2P (1 + gg)
3 (ELI/5 + EI)

for P/¢PCr which is scaled on the horizontal axis. Since

any value of P/¢P greater than one means that the critical

cr
buckling load has been exceeded; a practical range of 0.0 to
0.8 is used. Unlike the first two graphs, the scale for this
quantity will remain constant and is given on each chart.

In order to obtain the moment magnifier §, equation
(7.4), the range of Ml/M2 must be established. Its maximum
value will be +1.0 when Mq is equal to M, . The minimum is
zero when M; is zero. However, when M; is negative, the
minimum value of M]_/M2 is -1.0. The corresponding range for
Cm is from 0.2 to 1.0, but the code requireé that Cn is not

to be less than 0.4. Therefore, the lower limit for Ml/M2

must be -0.5. The code gives a lower boundary for § as 1.0.
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A reasonable upper limit for & seems to be 3.0 since the
curves in Figure 22 begin to apprQach a constant value near

a § of 3.0.

~ 3.0

Figure 22. Graphical Representation of
§ = Cp/(1 - P/¢P,,) and M, = M.

Once the moment magnifier is determined, the curves in
the right side of Figure 22 simply multiply the initial de-
sign moment M by §. If the value obtained for § is projected
horizontally to intersecﬁ the line originating at the design
moment M, the vertical projection of this point is the new
design moment M, of equation (4.7).

The last part of the chart presents an awkward situa-
tion. In order that Ehe values for P,, and P, be compatible

with Bresler's equation (6.2) they must be divided by 0.7 to
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obtain PJ, and P} and then the reciprocal of each found.
Multipliqation and inversion are relatively simple graphiéal
procedures. But in Figure 23 it can be seen that in the
lower range of values for P,, an accurate intersection bf the
reciprocal curve becomes almost impossible due to its de-
creasing slope. If when the curve becomes too flat the scale
is increased over a short range until that curve becomes flat
then the scale increased again. A curve such as in Figure 23
is formed where in this case three separate scales are used
to define the curve. This procedure serves to eliminate the

flatter part of the curve and increase the accuracy. Since

AR
R
SCALE 1 SCALE2 %CnLE3
1
R
1000 ' 1000
R P
o e o
Mw | M\*

Figure 23. Gfaphical Representation of ¢/P.
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the curve is a reciprocal function, the léwer end will ap-
proach infinity. However, for §alues of Pox less than PO/lO
the curve is not valid so it is not necessary tp carry the
curve beyond this point. In programhing the calculator to
plot this curve, six possible scales are used for the P:axis
and each scale has a unique reciprocal curve with its oWn set

of scales.



CHAPTER VIII
APPLICATION AND USE OF GRAPHS

The use of the design charts in the appendix requires
only simple assumptions and calculations, the most difficult
of which is the determination of the effective length factor
k and the calculation of the moment magnification factor for
one of several columns in a frame. A flow chart is given in
Figure 28‘which outlines the steps of procedure for using the
charts. Though the flow chart appears complex and lengthy,
the entire procedure is really quite simple and brief. An
example problem will be given in the following paragraph to
illustrate the use of the charts. Additional problems are
given later dealing with uncommon situations which may re-
quire special procedures not given in Figure 28.

As an example, consider the problem where it is desired
to’design a column to carry the following design loads ob-
tained from a structural analysis: the axial load is 400k,
the moments about the major axis are 1100 "k and 780 "k at
the top and bottom, respectively, and the moments about the
minor axis are 775 "k and 310 "k at the top and bottom.
Assume the effective length factor k is 0.75, and the un-
supported length is 14 feet. Also, the ratio of dead load

moment to total moment is 0.6 for both axes. Due to space

62
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requirements, the width of the column must be limited to 12
inches. The story § will be considered to be insignificant
for this problem and the column assumed to act’individually.
| As a trial size, a 12" x 18" section was selected as
shown in Figure 24. The reinforcing will consist of eight
number eight bars, two on each of the short sides of the col-
umn and four on each long side. Referring to Figure 29a if
the applied load and moment about the major axis are plotted
on the interaction diagram, the point falls well within the
curve for number eight bars. Hdwever, slenderness effects
and biaxial bending will reduce’the allowable loads to the
extent that even this section may not be adequate. With the
applied load of 400 k, a line is projected from the 400 mark
on the "P" scale to intercept the line representing a number
eight bar size as shown in the upper left section of the
chart. From this intersection a line is drawn vertically to
the 8 = 0.6 line and from there horizontally to an imaginary
line half-way between the two lines representing effective
lengths k1, of 10 and 11 feet for an effective length of
0.75 x 14 or 10.5 feet. Then a line drawn vertically to the
P/¢PcrAscéle gives a value of 0.17 for P/¢Pcr. The line is
continued across the axis to meet a line between 0.6 and 0.8
for Ml/MZ of 0.71. From there a horizontal line yields the
moment magnifier § of 1.06. The line is continued horizon-
tally to intercept the diagonal line originating at M equal
to 1100 "k. This point is projected vertically across the M

axis giving a new design moment M, of 1170 "k and when
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carried up to P equal to 400 k, a new eccentricity is defined
as 2.9 inches. The point is still within the boundary of the
interaction curve for number eight bars. Therefore, the sec-
tion will satisfy uniaxial bending about its major axis. If
the point just plotted is extended to the interaction curve
along the line of constant eccentricity, the maximum allow-
able axial load is found. This value is Pg,. From this
point on the interaction curve a line is drawn horizontally
to the reciprocal curve and then vertically for a value of
1/PSy of 0.00137.

The entire procedure is now repeated for the minor axis
using Figure 29b. The values obtained are: P/¢P.,. = 0.34,
6§ =1.15, Mg = 890 "k, e = 2.2 ", and l/PC')y = 0.00139. From
the table in the lower left gquadrant of Figure 29a, for num-

ber eight bars, 1/P} is given as 0.00092. Then
0.00137 + 0.00139 - 0.00092 = 0.00184

which is Bresler's formula and the 0.00184 is the value of
1/P§- The allowable load P, is found by locating 0.00184

on the top scale and projecting the point down to the recip-
rocal curve and then left to the load scale. The intersec-
tion with this scale gives a value of P, of 390 k which is
less than the applied load of 400k. Even though the section
is satisfactory for an applied moment about either axis, the
presence of both moments simultaneously produces stresses in
the section which it cannot safely resist. Therefore, ei-

ther a new section must be selected or the rginforcement
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increased. Since theballowable load is exceeded by only a
small améunt, an increase in the section's dimensions would
most likely result in an excess. of capacity which is not
needed. An increase of the size of reinforcing to number
nine bars will be tried. Again progressing through the
graphical design procedure_the following values are obtained
from the major axis: P/¢Pcr = 0.15, § = 1.05, M, = 1140 "k,
e = 2.9", and 1/P,, = 0.0013. Then about the minor axis,
P/¢Poy = 0.3, 6§ = l.l? M, = 865 "k, e = 2.1", and l/P(')y =
0.0013. From the table at the lower left, 1/P! = 0.00084.

Then

0.0013 + 0.0013 - 0.00084 = 0.0018

Projecting this value through the reciprocal scale, a vdlue
of 400 k is obtained for P,; which is equal to the design

load.

,zll

anm

Figure 24. Column Section,
Example 1.
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To check the capacity of the column selected with the
charts, a conventional analysis will be made using statics.
An approximate method would be quicker, but greater accuracy

is desired to check the results. From Figure 18 the first

steps are to determine b, h, Ag, P, Mx, My, e, and ey-
b = 12" M,7 = 780 "k My = 310 "k
h = 18" My, = 1100 "k Mgp = 775 "k
Ag = 8 #9 bars e, = 2.75" ey = 1.94"
P =400 k

Also, £l = 4 ksi, f, = 60 ksi, Eg = 29 x 103 ksi and

Ec = wi+2 33 f£L = (145pcf)l-3(33) Aksi
Eo = 3.64 x 103 ksi

The section is shown in Figure 25 with dimensions with re-
spect to bending about the major axis. In order to determine
if compression or tension controls, the balanced condition
will be analyzed. From equations (5.12), €p 'is determined
for one row of reinforcing on either side of the center line.
This problem presents four rows and requires additional terms
in the equation. The distance to the neutral axis is

o = (.003)(15.58)
b .003 + .00207

9.22"
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Figure 25. Column Section,
Major Axis,

Example 1.
Then: Py = Fe + Fgy + Fgp + Fg3 + Fgy
Fo = 0.85f% (0.85 bcp - Ag)
Fo = (.85)(4) |(.85)(12)(9.22) - 4| = 306 k

_ (.003) (cp- d') Ag
FS]‘ - Cb 2_ ES

= (.003)(9.22 - 2.44) (4) 3
Fop CRAANED) (29x107)

Fgp = 128 k > 2f, .. Use F; = 120 k

(.003) (¢, = d' = s) éé.
Cp 2

Eg
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Fs2 = 2D ()

Fog = (.003)(ib- s - Cp) %? B,

Fs3 = 1,003)(15.%8.51?zg; - 9,22)(4)(29x103)
Fg3 = =38 k

Fgq = -120 k

Py, = 301 + 120 + 45 - 120 = 313 k

my = e [3 - 5] e [B-a] e rfg]

“resfe] e 5o
My, = (306) [%? - i-85L§9-22)] + (120) [%? - 2.44]

+ (45)[£§§l] - (-38) [ééél] - (-120) [%? - 2.44]

My = 3311 "k
= 3311 - "
op =331 10.57

Since the balanced ecéentricity is greater than the actual
eccentricity, compression controls the design. Now the ca-
pacity of the column in compression must be found. The dis-
tance to the neutral axis must be found by trial and error.
As shown in Figure 26 the reactive force of the concrete is
assumed to act between P and the center line of the column.
The neutral axis is assumed to lie as shown. Since the
strains in the steel caused by Fg; and FS4 may exceed the

maximum steel strain of .00207 in/in, a check may be made to
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Figure 26. Resisting Forces
of Section,
Example 1.

determine whether the forces given below are valid. Since

Feo

Fs1

Fs1

Fg1

FsZ

.85£.(.85cy - 3A.)

(.85) (4) V.SS)(lZ)cz— 6] = 34.68c - 20.4

i,oos)éc = d)a &,

(.003) (c = 2.44) (2) (29x103)
C

174 - 424.56
C

.003 - s -4
( )ip = s lAArES

(.003) (¢ = 4.37 = 2.44) (3) (20x103)
C

174 - 1184.94
C
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p .= {.003)(c=d+s) g
s3 c r's
F_y = {:003) (¢ - 12.58 + 4.37) (9) (20x10°)
- 1950.54
Fg3 =174 - -
- .003) (d_ - ¢
Fgq = - ( )é’ = A Eg
F, = - {:003)(15.58 = o) (2) (20x10°%)
C
- _ 2710.92

Fgq is close to the neutral axis, it will not be critical.

The ¢ required for Fg, to produce a strain of 0.00207 is

given by’
o= g _ 2.44  _ ’
c —0.00207 1 _ -00207 7-87
0.003 -003

Since c is assumed to be greater than 7.87", F q will produce
a strain greater than .00207 and the maximum stress in the

steel is 60 ksi. Therefore,
Fsl = fyAr = (60) (12) = 120 k

Assuming a trial value for c of 15 inches,

Fc = 500 k
Fgqg = 120 k
Fgo = 95 k
Fgy = 44 k

FS4=_7k
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and P!

bx = 762 k

- |n _ .85c h _ 4 s|
Mox Fe [2 ‘7?‘] + Fsl[g d ] + FsZ [2]
_r 8] - h _ »
FsB[ﬁ] Fsq [5 d']

(500) (9 - 6.38) + (120)(9 - 2.44) + (95) (2.19)

Mox =
- (44) (2.19) - (=7)(9 - 2.44) = 2278 "k
2278

€ T 7562 = 2.96"

The e obtained from c = 15" is larger than e, so a larger c

will be tried. With ¢ = 15.49", e = 2.75" which is correct.

517 + 120 + 98 + 48 - 1 = 782 k

1
POX

Poy = 0.7 Pl = 547 k

Mox 517(9 - 6.49) + 120(9 - 2.44) + 98(2.19)

- 48(2.19) + (9 - 2.44) = 2152 "k

Il

Mog = 0.7 My, = 1506 "k

Pox and Mgy represeﬁt the maximum design loads that may be
applied to the column with an eccentricity of 2.75".

The next step in the problem is to determine the moment
of inertia of the section with respect to the major axis.
From equation (4.2)

1
5EBcIc * Eglg

l+3d

EI = c
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3 3
I, = %% = 121218 = 5832 in%

I, = 4 [;igi§§é14 + (1) (9 - 2.44)2]‘

4 , 2
+ 4 [ﬂigigggL + (1)C£3§1) l = 191.86 in?

£(3.64 x 10%) (5832) + (29 x 10) (191.87)
1 + 0.6

ET = 6.131 x 102 #-in?

The critical buckling load is then

_ EIZ®  _ (6.131 x 107)x2 - 3811 k

(k1,) 2 (1000) [(.75) (14) (12) 2

PCI'

The moment magnifier is computed from equations (4.5) and

(4.6).
Cp = 0.6 + 0.4(%%%6) = 0.88
5 = I—:SEE—— - — 0-88 - 1.04
: $Poy (.7) (3811)
The design moment then becomes
M, = (1L.04) (1100) = 1144 "k < 1506 "k

C

The new design moment is still within the allowable range of
1506 "k. With an increased design moment, the eccentricity

must also increase.

e = 2~ = 2.86"

Then since the eccentricity has changed, a new value of c
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must be determined to find the capacity of the section. It
was found that ¢ = 15.25" satisfied the condition giving

e = 2.87" and

766 k . P

Pox 536 k

M, = 2202 "k

Moy = 1541 "k

The applied loads are still within the allowable range.
Before the analysis for.biaxial bending is started, the
column's capacity with‘respect to its minor axis should be

checked. Repeating the procedure for the minor axis,

ey, (.003) (9.56) = 5_g6"
.00507

Il

el
o'-
I

Fc + Fsl.+ Fgo

F, = 0.85£,(0.85c, - AL)
Fo = (.85)(4) k.ss)(ls)(s.ee) - 4] = 281 k
~ (.003) (¢, - @")
Fs1 = p ArEg
Fo = (.003) (5.66 = 2.44) (4) (29 x 103) = 198 k
5.66
Fgp = A f, = -(4) (60) = -240 k
Py, = 281 + 198 - 240 = 239 k
v - |0 _ .85¢ ho_oq] - ho_ g
My = (239) {6 - 1-85l§5-66l] + (198) (6 - 2.44)

- (-240) (6 - 2.44) = 2418 "k
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ep = 2218 = 19,127 > 2.13"

Compression will control the design. Figure 27 shows the

assumed locations and directions of the resisting forces.

C .l
° °
er
Y [ ]
%
N L
T I ® e
¥ q
AL [E ® o
| 3‘_1_‘-"0
2.56"
Fs2 Fs b
'2” -

(3) (v)

Figure 27. Resisting Forces, Minor
Axis, Example 1.

Another trial and error procedure is required to determine
the distance to the neutral axis. Having been illustrated
once, the iteration is not given here. A value for c of

10.52" was found to be correct.

Py, = (.85) (4) (-85) (18) (10.52) - 8] + 240

(.003) (10.52 - 9.56) 3
+ R (4?(29 x 107)



Poy

oy

Ml

oy

oy

EI

EI

520 + 240 + 32 = 792 k
0.7 Péy = 554 k.

(520) (6 - 4.48) + (240) (6 - 2.44)

+ (-32) (6 - 2.44) = 1535 "k

1075 "k
1535 _ n
792 1.9
bh> _ (18) (12)° 4
= = 2592 in

12 12
4
8 ﬂi*%éél— + (1) (6 - 2.44)23 = 102.2 in?

%(3.64 x 10°) (2592) + (102.02) (29 x 109
1 + 0.6

3.028 x 102 #-in2

The critical buckling load is then

PCI‘

Mo

Il

x2(3.029 x 109)

= 1883 k
(1000) [(.75) (14) (12)] 2
310\ -
0.6 + o.4<77§> 0.76
0.77 o111
L - Tasen
sM, = (775) (1.11) = 860 "k

Again a new eccentricity is calculated as

oy = 2.15"

75
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It was found that a ¢ of 10.13" satisfied the eccentricity

of 2.15" and

oy = 532 k

= 760 k P |
1631 "k Moy, = 1142 "k

Péy

Moy

Both values are greater than the design loais.
Biaxial bending will now be considered. The values

required are summarized below.

P =400 k, Pgy = 766 k, P, = 760 k

The third term in Bresler's biaxial equation is the recipro-
cal of the axial capacity of the column in the absence of

bending. From equation (5.2)

PS5 = (.85) (4) (12) (18) - 8 + (60)(8) = 1187 k

1o, .1 1 _ 1
Pox  Poy P By

1,1 _ 1 - _ _1
766 ' 760 ~ 1187 562

Py, = 0.7 (562) = 393 k = 400 k

The P, obtained from Bresler's equation is just less than the

design load, but the error is less than two percent:

400 - 393 _ o
353 0.018 or 1.8%

This is close enough to be satisfactory and verifies the

results of the design conducted with the design charts.
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As a second example, assume the loads are a 300 k axial
load, moments about'one axis at either end are €40 "k and
430 "k, and moments about the other axis are 500 "k and
-125 "k. The eccéntricity for the larger moment will be
2.13". The eccentricity for the other axis is 1.67". For
the first case B = 0.9 and B = 0.4 for the second.

A square section 14 inches deep will be tried, with
four number eight bars in the corners. Assume k1,6 is 11 feet
for both axes. The ratios of end moments are 0.67 for the
larger moments and -0.25 for the smaller moments. Using
FigureVBO connect 300 on the load scale to the "bar size 8"
line, then up to a point midway between the g = 0.8 and the
B = 1.0 lines, then right to the "kl, = 11" line and finally
down to the "P/¢P.," scale reading 0.305. Interpolating
between Ml/M2 = 0.6 and 0.8, connect the previous point on
the P/¢P., scale to M;/M, = 0.67 then right to find a ¢ of
1.26. Neglecting the story § for the present and continuing
to the right to meet the moment line of 640 "k then up
through M, = 800 "k to P = 300 k, an eccentricity of about
2.7" is defined and the point is still within the interaction
boundary. Moving from the last point along a constant eccen-
tricity of 2.7 to the interaction curve for number eight
bars, then left to the reciprocal curve and up to the top
scale, a value of 0.0018 is obtained for l/PéX. For the
other direction, since the section is square the same chart
may be used. The first plot from P = 300 to "bar size 8"

gives the same point, but from there to B8 = 0.4, then right
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to k1, = 11, and down gives P/q)PCr as 0.235. With the ratio
Mj/M, equal to -0.25 it is impossible to intercept this curve
so a value of one is assumed for § and the deéign moment re-
mains unchanged. Actually, were the Ml/M2 curve of -0.25 to
“be continued above the P/¢PCr axis, the interception with
P/d)Pcr of 0.235 lies at a 8§ less than one. Since the code
requires a § of at least one or greater, § = 1 must be used
for the design. Since the design moment remains the same,
the point at P = 300 and M = 500 lies within the interaction
bound with an eccentricity of 1.67". This point projected to
the interaction curve, right to the reciprocal curve and up
gives l/P(')y as 0.0015. From the table in the léWer left

quadrant, 1/P§ is 0.00118. Then
0.0018 + 0.0015 - 0.00118 = 0.00212

and from this point down to the reciprocal curve and left to
the load scale gives an allowable axial load of 335 k which
is adequate. However, if k were to be determined from dif—‘
ferent dimensions than those of the final section, a new
value for k must be obtained and the section checked again.
So far the story § has not been considered in the ex-
amples. As an illustration of its effect, assume that in the
previous example an analysis of the frame acting in the di-
rection of the minor axis (least moments) showed that for the
story in which the column is located § is equal to 1.9.
Since this is larger than the 6§ of 1.0 used in the example,

1.9 must be used to give a design moment of 960 "k. The
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eccentricity is theh about 3.2" and 1/P5y becomes 0.00205.

Then
0.0018 + 0.00205 - 0.00118 = 0.002¢7

This gives an alloWable axial load of 267 k in which case
the section is inadequate for biaxial bending. Therefofe,
either the area of the section must be increased or larger
bars may be tried in a new analysis.

For a third example a problem has been selected in which
the axial loéd is less than the minimum required for applica-
tion of the reciproéal curve on the design‘charts. Consider
an axial load of 125 k acting with moments gf 2275 "k and
1700 "k about the major axis and 2025 "k and 1215 "k about
the minor axis. Assume the effective length in the direction
of the major axis is 60 feet and 12.5 feet in the direction
of the minor axis. The value of B is taken as one for both
axes.

A rectangular section 20 inches by 24 inches will be
tried with eight number nine bars, four bars in each short
face. Mj/M, for the major axis is 0.75 and for the minor
axis 0.6. Using Figure 3la, for number nine bars, 0.lP} is
given as 192 k in the table in the lower left quadrant.

Since the design load is only 125 k, the reciprocal curve may
not be used for a biaxial analysis. Instead, equation (€.3)
must be used. For this equation the required values are

Moy Moy, and My which is the vector sum of Mg, and Moy -

For the major axis, P/¢P,,. is found to be 0.36, § is
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1.42, and Moy is 3250 "k. From the interaction curve for
number nine bars, Mox is 4940 "k. Then for the minor axis
P/¢P.y is 0.03, & is 1 since the M;/M, curve is to the left
of P/¢Por, and Moy is 2025 "k. Mgy is then read from the

interaction curve as 3660 "k.

€150 "k

M, = V(492002 + (3660)2

Then from equation (6.3)

3250 . 2025

6150 6150 ~ 0-86 = 1.0

Any valué of this equation less than one indicates a safe
section for the given loads and conditions. The closer to
one, the more efficient the section is. Since the equation
is conservatively in error anyway, it may be desired to re-
design for a smaller section or less reinforcing steel to

obtain a value closer to one.
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Figure 28. Flow Chart for Design of
Reinforced Concrete Columns
Using Design Charts.
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Biaxial Design Chart, Column: Size 20" x 2",
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