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PREFACE 

This study presents a refined approach to the analysis 

and design of rectangular tied reinforced concrete columns 

subjected to axial thrust and biaxial bending. One of the 

several techniques for the·design of' concrete columns cur­

rently in use is thoroughly examined, organized into a log­

ical procedure and converted into graphical form to be used 

as design aids. Due to the character of the resulting charts 

the scope of this study is limited to the construction and 

illustration of design charts only so far as to convey the 

process by which they were formulated. It is ·intended for 

the future that a complete set of design charts be construct­

ed for use over a large range of design parameters to serve 

as functional design aids for the structural engineer. 

I wish to express my appreciation to my principal ad­

viser, Professor Louis 0. Bass, for his guidance, advice, 

and assistance during this study. 

And in special recognition, sincere gr~titude is ex­

tended to my wife, Janet, for her encou.ragement, respect, and 

many sacrifices. 
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CHAPTER I 

INTRODUCTION 

A column is defined as an upright compression member 

with a length Of at least three times its least lateral di­

mension. l Columns may be short or long in which case the 

study of column behavior becomes necessar~. A short concrete 

column subjected to an axial load will undergo a longitudin-

al deflection which is more or less uniform. And if failure 

occurs, it will be by shearing action on a plane of maximum 

shear. Any lateral deflections which may occur are usually 

very small in comparison to the longitudinal deflections and 

can practically be ignored as far as failure is concerned. 

Most columns in reinforced concrete structures are longer in 

comparison with their lateral dimensions than are the short 

columns mentioned above. The slenderness of a column is de-

termined by its slenderness ratio which is defined as the 

ratio of its length to the radius of gyration of its cross 

sectional area with respect to the principal bending axis of 

the column.2 Due to the column's length, as an axial load 

is introduced and increased in magnitude, some lateral 

1Building Code Requirements for Reinforced Concrete 
(ACI 318-71) · (Michigan, 1973), p. 6. 

2Ibid. 

1 



2 

deflection will occur in the column if not r€istrained. This 

lateral deflection is normally caused by an eccentricity 

(loads not concentric), an initial curvature in the column 

or imperfections in.the material. If lateral deflections 

such as these. are ignored, appreciable errors will occur in 

the analysis. 

The failure of a slender column does not usually involve 

shearing action as in the case of short columns, but rather a 

bending action. As an axial load is applied a lateral de-

flection occurs and increases as additional load is applied. 

While in this state of elastic deformation,. the strain in the 

compression fibers increases to some critical value where 

sufficient yielding occurs to suddenly reduce the column's 

strength and cause it to collapse or buckle. It is this 

failure that necessitates a method of pred.icting a column 1 s 

behavior under the influence of·a given load. 

For very simple cases in which only axial load is con-

sidered, several relationships have been found to predict 

accurately enough the behavior of slender rectangular col-

umns. However, accuracy is lost when a bending moment is 

taken into consideration. And column analysis becomes even 

more complicated with the presence of two bending moments, 

one about each of the centroidal axes of the cross section. 

Several methods of analysis and design for these loading 

conditions have been introduced in recent years, for the 

most part as a result of testing and empirical data, and 
. ( 

most give satisfactory results. Only those methods more 
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commonly in use today will be discussed in this study~ Other 

methods of analysis and a more detailed study of column be-

havior may be found in most texts d~aling with the design of 

·concrete columns. 

The use of design aids has been exploited over the: past 

several years and many have been introduced for a variety of 

situations. Conditions may arise such as in the case of a 

multistory building that requires long and time consuming 

calculations to determine the dimensions of all the columns 

in a structure. This involves numerous repetitive proce-
1 

dures working through the same set of computations many 

times. By presenting the relationships of column behavior 

in graphical or tabular form, the effort required to analyze 

.and design a number of columns is sign if ic~antly reduced. Al­

though the design aids are somewhat limited in scope and 

application, those situations that commonly occur are ade-

quately represented and only those rare and unique qonditions 

are left to calculations. 

The ideal design aid for reinforced concrete columns 

would yield an economical and adequate set of dimensions with 

minimum calculations in only a short time. Due to the many 

factors which influence column behavior the construction and 

use of design aids will remain limited by the various combi-

nations of the parameters. It appears that any progress in 

the formulation of design aids will require that existing re-

lationships ~e manipulated and combined into simpler and more 

compact forms which account for as wide an application as is 
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possible. As the design aids become more refined, the analy­

sis and design become simpler, faster and more efficient. 

Due to the large volume of work encountered by design­

ers today, it is imperative that efficient methods be 

utilized in the analysis and design of structures. But such 

efficiency must not be substituted or mistaken for accuracy 

and, to a certain extent, economy of design. Design aids 

must be simple and quick, but they must also maintain some 

degree of accuracy. 



CHAPTER II 

STATEMENT AND PURPOSE 

The analysis and design of reinforced concrete columns 

require only simple assumptions and calculations in order to 

determine a safe capacity for axial loads. Since a condition 

of pure thrust is unlikely, the presence of bending moments 

must also be considered in the analysis. Such moments may 

arise from an eccentricity of the thrust with respect to the 

centroid of the column or from end restraints in monolithic 

frames. The relationships necessary to introduce bending 

moments into the analyses become complex and require time 

consuming calculations, especially for large numbers of col­

umns subjected to a variety of loads. There exist a number 

of design aids in the form of tables and charts, such as 

interaction diagrams, which reduce the repetitive efforts 

required for the selection of adequate column cross sections. 

However, the applications of these design aids are either 

limited to specified loads, dimensions, and reinforcing, or 

they require a series of unique calculations in order to use 

them. Once a cross section has been selected, it must be 

further analyzed for the influences of slenderness and side­

sway. A few design aids do account for these effects but 

considerable computations are required and some trial and 

5 
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error techniques must be used.l Another complication arises 

with the presence of bending moments about two axes of a 

square or rectangular cross section. Design aids are also 

available for biaxial bending, but these charts also are of 

limited application in that they do not account for slender­

ness or sidesway effects.2 Even with the number of design 

aids available to increase the efficiency of column design, 

considerable repetitive efforts are still required to con-

·sider all the significant factors which influence column 

behavior. 

It is, therefore, the purpose of this thesis to assemble 

the assumptions and relationships of current column design 

methods into a compact system of graphical d~sign aids which 

will enable the engineer to efficiently select with minimum 

calculations column cross sections which will meet the re-

quirements for strength, slenderness, creep, sidesway and 

biaxial bending. Although these design aids will still have 

some limitations on their application, they are not as strict 

as most. The techniques may easily be applied to increase 

the ranges of the parameters and include column sizes and 

material strengths not given in this study. 

1The most complete of these design aids are presented by 
Richard W. Furlong, "Column Slenderness and Charts for 
Design," ACI Journal (1971), pp. 9-17. 

2L. o. Bass, J. S. Ford, and R. L. Pinc, Design-Analysis 
Graphs for USD Tied Columns With Biaxial Bending (Stillwater, 
Oklahoma, 1971). ' 
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The relationships necessary to construct the charts will 

be initiated by first accounting for all assumptions to be 

made regarding the materials and their behavior.. Most gen­

eral assumptions applied in this thesis are given in 

Chapter III along with the major provisions and requirements 

of the current edition of the "Building Code Requirements­

for Reinforced Concrete (ACI 318-71)" pertaining to compres­

s.ion members. Other assumptions and references to the code 

will be given throughout the text whenever necessary. 

The discussion in Chapter IV deals with slenderness 

effects on reinforced concrete columns. A column is intended 

to support axial loads but since concrete properties may not 

be consistent within the same member and since cross sections 

of reinforced concrete member.s are not homogeneous, the 

length of the column and inaccuracies in construction and 

loading significantly affect a column's ability to withstand 

an axial load. The theory of buckling is investigated and 

applied to rectangular columns. Since concrete structures 

are subject to the effects of long term deformations, creep 

and its effects on concrete strength and behavior are also 

treated. If a column is but one of a series of columns in 

one story of a building, the stiffness of the column will 

affect the behavior of the other columns •. Some consideration 

must be given to the effect of sidesway on the column's 

strength. This is also discussed in Chapter IV and forms 

the basis for the design aids presented in the appendix. 



The ability of a column to withstand bending moment as 

well as axial load is a major consideraticin in analysis and 

design since almost all columns encountered will be subject 

8 

• to some form of bending moment. Chapter V presents the de­

sign considerations and formulas for uniaxiai bending of 

rectangular concrete columns. The material will prepare for 

the construction of the familiar load-moment interaction 

diagram. The application of the relationships from 

Chapter IV dealing with slenderness effects will be incor­

porated into the uniaxial design equations yielding a thor­

ough design procedure for uniaxial bending. 

Because bending is not necessarily limited to only one 

axis, cons~deration must be given to the possibility of bend­

ing about two different axes simultaneously. The discussion 

in Chapter VI illustrates the theory of biaxial bending and 

presents the more common methods for designing columns sub­

jected to axial load and biaxial bending. A simple method is 

adopted for use in the design aids and is combined with the 

relationships of previous chapters into a complete design 

procedure for biaxial bending. This procedure will determine 

the capacity of a given column for axial load and bending 

moments about both axes and will ensure that the column will 

withstand the effects of slenderness and sidesway. The set 

of equations presented here form the foundation for the de­

sign aids discussed in Chapter VII. 

If all relationships necessary for the design of rec­

tangular reinforced co'ncrete columns are given and related to 
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one another by a set of common parameters~ many of the cal­

culations required to solve the group of equations can be 

eliminated by transforming the equations .into graphical re­

lationships that can be solved visually. And since many of 

the variables in the equations are dependent on each other 

the iteration required to determine an ecdnomical cross sec­

tion becomes less of a task. Chapter VII outlines the pro­

cedures involved in reducing the given equations and 

relationships into a set of graphical design aids which are 

presented in the appendix. Example problems are given in 

Chapter VIII to prove the validity of the graphs and a guide 

for the use of the charts is also included. The examples 

presented in Chapter VIII cover common situations to be 

encountered. 

With the assistance of these design aids, column design 

can be expedited and more economic de~ign can be realized. 

It is intended for the future that the scope of these charts 

be extended to include a larger range of parameters not given 

by this study. 



CHAPTER III 

ASS.UMPTIONS AND CODE PROVIS IONS 

Before useful relationships can be constructed some 

general assumptions must be made with respect to the proper-

ties and behavior of reinforced concrete when subjected to 

various stress conditions: (1) For any strain produced in.a 

reinforcing bar, the surrounding concrete will undergo an 

equal strain. In other words, it is assumed that the con-

crete and reinforcing steel produce a perfect bond and any 

deformation in one material must be accompanied by an iden-

tical deformation of the other material. (2) Cross sections 

that are plane before loading remain plane .after loading. 

Although this is not actually true, when ~ section is loaded 

to nea~ failure the error is insignificant.l (3) Concrete 

offers no resistance to tension stresses. When using ulti-

mate strength design methods the concrete section is cracked 

throughout the area of. tension stresses and the tension rein-

forcement carries all of the tension stresses. (4) The. re-

sisting stresses of the concrete at its ultimate strength is 

a function of the stress-strain relationship for a slow rate 

of loading. This has been shown to be reliable since during 

1Phil M. Ferguson, Reinforced Concrete Fundamentals 
(New York, 1973), pp. 32-33. 

10 



11 

construction most loads are ~ither sustained loads or accumu­

lated at a slow rate over the duration of cohstruction.2 

(5) The Whitney Stress Block will define the compressive 

stress distribution over the cross section of a member. 

Other assumptions dealing with specific relationships will 

be introduced as necessary throughout the text. 

Since the design procedures and equations must comply 

with the provisions of the code, a summary of these require-

ments is given here. Those provisions dealing with rein-

forcing steel are not included in the summary. The discus-

sion is limited to the requirements for the design and anal-

ysis of the column itself. References to the ACI Code 

(318-71) are by a decimal system. The first number indicates 

the chapter, the second number indicates the section, the 

third number indicates the paragraph and so on. 

According to Section 9.2.1 the capacity of a compres-

sion member must be reduced by a factor ~ given as 0.7 for 

tied rectangular columns. For reinforcement with a yield 

strength of 60,000 psi or less, ~ may be increased linearly 

to 0.9 as the axial design load Pu decreases from O.lf~Ag 

to zero providing the reinforcement is symmetrical and the 

quantity (h - d' - ds}/h is not less than 0.7. The term ds 

is the distance between centroids of the outer rows of rein-

forcement. 

2George Winter and Arthur H. Nilson, Design of Concrete 
Structures (New York, 1972), p. 41. 
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Section 10.3.1 requires that the cross section be de­

signed on the basis of the assumption that strain in the 

steel and concrete is proport_ional to the distance from the 

neutral axis. If reinforcing steel with a yield stress 

greater than 60,000 psi is used, the maximum percentage of 

reinforcement is limited by Section 10.3.2 to 75 percent of 

the steel requir~d to produce balanced loading under flexure 

without axial load. The design loads for columns must in­

clude an accompanying moment, Section 10.3.4; and the result­

ing eccentricity e, Section 10.3.6, which must be at least 

one inch or one-tenth of the depth of the column. Slender­

ness effects must also be considered. Section 10.9.l permits 

from one to eight percent reinforcement with a minimum of 

four bars. 

The guidelines for evaluation of slende~ness effects 

are given in Section 10.11. The provisions are applicable 

in lieu of the structural analysis of Section 10.10.l and 

are the basis of procedures used in this study. The unsup­

ported length of a column lu is defined as the clear distance 

between lateral supports. If a column is braced against 

sidesway, slenderness effects may be neglected when klu/r is 

less than (34 - 12M1/M2} where k is an effective length fac­

tor, r is the radius of gyration, M1 is the smaller of the 

two end design moments on the column and M2 is the larger. 

The code permits r to be taken as 0.3 times the overall di­

mension perpendicular to the axis of bending. The effective 

length factor k may be taken as one unless an analysis, which 
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is discussed in Chapter IV, yields a smaller value. If the 

column is not braced against sidesway, slenderness effects 

may be neglected when klu/r is less than 22, where k is to 

be determined by analysis. For any column with klu/r greater 

than 100, the analysis of Section 10.10.l must be made. 

The actual design of columns is controlled by Section 

10.11.5. The design loads are to consist of the design axial 

load from a conventional frame analysis and a moment that is 

magnified by a factor o. The magnification factor is a 

function of the two design end moments on the column and the 

ratio of design axial load to the critical buckling load. 

These relationships are discussed in Chapter VI. 



CHAPTER IV 

SLENDERNESS EFFECTS 

When considering only the axial load capacity of a col-

umn, for a given length the column will have some critical 

value of concentric axial load above which the column will 

undergo inelastic buckling. This critical load is given by 

the Euler formula: 

Per = ( 4 .1) 

where Per is the buckling load, E is the modulus of elastic­

ity at buckling, I is the moment of inertia of the cross sec-

tion about its centroid, and klu is the effective length of 

the column. Since concrete columns contain reinforcing steel 

the section is not homogeneous. Creep and tension cracks 

also affect the rigidity EI of the section. Therefore, EI 

cannot simply be determined from Young's Modulus. The code 

provides two empirical equations for EI:l 

EI = (l/S)Ecig + Esis 
1 + Sa 

1section 10.11.5, p. 32. 

14 

( 4. 2) 



15 

E.I = 
2.5(1 + Sa) 

(4. 3) 

where Ee is the modulus of elasticity of concrete in psi, Ig 

is the moment of inertia of the gross cross section of the 

column in in.4, Es is the modulus of elasticity of steel, Is 

is the moment of inertia of the reinforcing steel about the 

centroid of the cross section in in.4, and Sa is the ratio of 

maximum design dead load moment to maximum design total load 

moment. This ratio is always positive. 

Since a fixed ratio of stress to strain does not neces-

sarily exist during initial loading of concrete members and 

because linear stresses are assumed, an exact modulus of 

elasticity cannot be defined.2 Therefore, an approximate 

value for Ee is given by the. code as3 

(4 .4) 

where w is the weight of the concrete in pcf for those 

weights between 90 and 155 pcf, and f~ is the 28 day cylin­

der strength. Ee represents the secant modulus of elastic­

ity which is the slope of a chord from z.ero to about f~/2 

on the stress-strain diagram.4 The term Sa in equations 

(4.2) and (4.3) accounts in part for the effect of creep. 

Creep deformations and curvature become larger as the 

2 Ferguson, p. 9. 

3section 8.3.1, p. 22. 

4Ferguson, pp. 9-10. 
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moments from sustained loads increase and the rigidity of 

the member decreases. To correct the stiffness of the col-

umn, the sum of the stiffnesses for the concrete and steel 

is reduced by (1 + 6d) • 5 

Both equations (4~2} and (4.3) give conservative values 

for rigidity. The proximity of each to the actual rigidity 

depends primarily upon the percentage of reinforcing steel P 

contained in the section. Comparison of the theoretical 

EI's obtained from tests to the EI's computed by equations 

(4.2) and (4.3) show that equation (4.3) is economical over 

only a small range at low values of p.6,7 Equation (4.2) is 

somewhat more conservative in this same range but for larger 

percentages of steel yields a more economical value for EI. 

In order to avoid complicating the relationships, only the 

equation (4.2) will be used to determine column stiffnesses. 

The Euler formula (4.1) is valid for a concentric load 

Per applied to a column with unsupported length lu and an 

effective length klu. In frames that are braced against 

sidesway, the coefficient k will vary from 0.5 to 1.0 and for 

frames that are not laterally braced against sidesway, k 

varies from 1.0 to ~. The coefficient k is a function of 

the rotational end restraints at each end of the column. The 

5commentary 2!2 Building Code Requirements for Reinforced 
Concrete (ACI 318-71) (Michigan, 1971), Section-rD.11.5, 
p. 42. 

6J. G. MacGregor, J. E. Breen, and E. o. Pfrang, "Design 
of Slender Columns," ACI Journal (1970), p. 6. 

7commentary, Section 10.11.5, p. 41. 
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effect of k on the design of columns may be illustrated by 

dividing structures into three classes. 8 First are the very 

tall buildings, the lateral movements of which require lat-

eral bracing or shear walls to restrict sidesway. Slender-

ness effects become critical in structures of this type. The 

second class includes those buildings that are tall enough to 

be subject to considerable lateral movement but not to the 

extent that lateral bracing is required. Slenderness ef-

fects require attention but do not dominate the design of 

columns. Most buildings fall into a third category. They 

are short enough that lateral movements are minor. In this 

case slenderness effects are usually of minor concern and the 

approximations for k given by the code are sufficient. The 

first two classes usually require analyses to determine k. 

Several charts are available for determining the effec-

tive·length factor k. The simplest of these, published by 

Jackson and Moreland, use an end restraint coefficient ~ for 

each end of the column.9 The coefficient ~ is the ratio of 

the sum of the stiffnesses EI/Lc of the columns at the joint 

in the plane of bending to the sum of the stiffnesses EI/Lb 

of the beams at the joint, where Lc is the column length and 

Lb is the beam length. A coefficient is found.for each end 

of the column and plotted on a nomograph. The factor k is 

read directly from the nomograph. 

8Paul F. Rice and Edward s. Hoffman, Structural Design 
Guide to the ACI Building Code (New York, 1972), pp. 291-297. 

9MacGregor, Breen, and Pfrang, p. E. 
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In determining the effective length factor k the code 

requires that the effects of cracking and reinforcement on 

the relative .stiffness must be considered.lo Since the mem-

bers are designed and dimensioned according to their ultimate 

strengths, as the members approach faiiure, tension cracks 

form, deflections and curvatures increase, reinforcement 

yields and the rigidities of the members change. Therefore, 

the question arises as to what constitutes acceptable rigid-

ities £or the beams and columns at a joint. Since k must be 

known to properly dimension a column, and since k also de-

pends on the rigidity of the column, an iterative process 

must be used. Member sizes must be assumed, k values com-

puted and.member sizes adjusted with the k values to find new 

k values, and so on. But again, even if member sizes are as-

sumed, what should be used for a member's rigidity? Several 

approaches are presented of which the simplest is to use one-

half of the gross moment of inertia on the column cross sec­

tion in order tp determine an initial relative stiffness ~. 11 

Other methods present more accurate results but since charts 

will be used for the iteration process, little extra time 

should be required for a less accurate initial guess. 

The above procedure was given for a single column. But 

usually in a frame not braced against sidesway, there will 

exist more than one column in a given frame or story of a 

10section 10.11.3, p. 32. 

11Ferguson, pp. 523-525. 
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building. When this is the case any sidesway will involve 

the simultaneous lateral deflection of all the columns in 

that story. Assuming no torsional loading is introduced, all 

columns will deflect an equal amount and the shear and mo~ 

ments distributed among them will be functions of each col-

umn's stiffness relative to the total stiffness of all the 

columns. Whereas the stiffness analysis for a single column 

is used to find an appropriate factor o by which the design 

moment is increased, when all columns in a story are consid-

ered, a o. will be found which, if greater than that o for any 

of the individual columns, will be applied to all columns in 

the story. 

Once Per is found for all the columns to be considered, 

the moment magnifier & may be found from 

0 = (4. 5) 

where P/~Pcr is lP/l~Pcr for all the columns in the story or 

P/~Pcr if only a single column is being considered. Cm is 

given as 

(4. 6) 

where M1/M2 is the ratio of end moments, M2 qeing the larger 

of the two and M1 the smaller. When actual eccentricities 

are less than the minimum specified by the code, M2 must be 

based on the minimum eccentricity. If no eccentricity is 

present at either end, M1/M2 must be taken as one. Where 
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eccentricities are present but less than the minimum, the 

actual moments should be used to calculate cm. The ratio 

M1/M2 is positive in the case of single curvature of the col­

umn and negative for double curvature. If M 1 = M2 then Cm= 1 

and the maximum moment will occur at mid-height of the 

column. 12 

If the column is in an unbraced frame and has a length 

to thickness ratio of klu/r ~ 22, it is a short column and 

the code allows Cm to be taken as one. 13 For braced frames 

a short column is one with a klu/r ~ (34 - 12M1/M2 ) and Cm 

may again be taken as one. The ratio M1/M2 represents the 

same ratio as in equation (4.6). 

Once 0 has been computed for both an individual column 

and that column as one in a story (if applicable) the larger 

o shall be used. The design moment shall be determined by 

where M2 is the larger of the two end moments. The column 

is then designed for an axial load of P and a moment of Mc. 

Size and reinforcement are determined and the design 

procedure is repeated using a new stiffness based on the new 

dimensions. The procedure is iterated until the changes in 

size and reinforcement are small enough to be satisfactory. 

12Rice and Hoffman, p. 294. 

13section 10.11.4, p. 32. 



CHAPTER V 

UNIAXIAL BENDING 

If a column were loaded axially with a force acting at 

the centroid of the column's cross section, some determinate 

strength would be available to resist the force. Using the 

assumptions made in Chapter III and assuming that the stress 

is uniformly distributed over the cross sectional area, it is 

possible to predict the value of load at which the column 

would fail. This failure due to strength should not be con-

fused with failure due to buckling discussed in the last 

chapter. Since the load is concentric, all the steel in the 

section will yield at the same value of load. The load will 

be resisted by the stress developed in the steel and the 

stress developed in the concrete. See 

in the steel at failure is given by f y' 

the reinforcing steel. Since f y is the 

F = f _ _A I sl y s and 

The resisting force of the concrete is 
;. 

Fe = 0.85 f~ 

Summing the vertical forces, 

21 

Figure 1. The stress 

the yield stress of 

same for all bars, 

= f A y s ( 5 .1) 
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or p I = 0 85 f I bh + f (A + A I ) 
0 • c y s s ( 5. 2) 

The term P~ represents the theoretical failure load for pure 

axial load with no bending. But since the code requires that 

Figure 1. Resisting Forces of Column Section 
Under Pure Thrust. 

columns be designed for some moment capacity at a minimum 

eccentricity, if the applied force is moved to one side, the 

magnitudes of the resisting forces are changed as shown in 

Figure 2. Since an eccentricity is present, the section must 

resist a moment in addition to the axial load. Again summing 

forces, if the maximum strain in the concrete is assumed to 

be 0.003 in/in, and since a linear stress distribution was 

assumed, a triangle can be used to illustrate the strain of 

the section. 1 Point N represents the neutral axis. From 

1ACI Code, Section 10.2.3, p. 30. 



Figure 2b, 

Esl 

es2 

= (.003}{c - d 'l. and Fsl = A~Es (. 003} { c - a I} 
c c 

= (.003)(c - d) and Fs2 As Es (.003)(c - d) = c c 

e c 

(a~ (b) 

Figure 2. Resisting Forces of Column Section 
Under Eccentric Load. 

Then with Fe we have 
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( 5. 3) 

(5.4) 

Pu' = (.85fc') {.85)An + A'E (.003) (c - d'} +A E (.003) (c - d) 
s s c s s c 

or P~ = 0.7225f~Anc + .00 3Es (A~(c - d') + As(c 
c 

d)) (5.5) 

The maximum resisting moment of the section is given by sum-

ming moments about the center of the section: 
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(. 0 0 3 ) ( C - d I ) 

- A E ld - hl s s 2 
(.003){c - d) 

c 

c 

( 5. 6) 

In the above equations the distance to the neutral axis c 

is not known but can be determined by simple statics. A 

trial and error method may be used by assuming a value for c 

and calculating the capacity of the column then comparing 

the eccentricity obtained with the actual eccentricity. If 

they differ, a new value is selected for c and the process 

repeated until they agree. 

Equations {5.3) through {5.6) are valid for the range 

d/.85 < c < h/.85. As the eccentricity becomes larger, the 

neutral axis moves toward the load and c decreases. For the 

range cb < c < d/.85 the following equations should be used. 

The distance to the neutral axis under a balanced loading 

condition is represented by cb. Figure 3 shows that Fs 2 is 

now a tension force. 

= {.003) {c - d') 
c 

= (.003) (d - c) 
c 

and 

and 

The resisting moment is then: 

= A ' E L_Q""'""0""-3 ,_) .._{ c _____ d_' ..... ) 
s s c (5.8) 

Fs2 = A E (. 003) {d - c) 
s s c ( 5. 9) 

(5.10) 



,. M' = P'e = 0.36125 f~ An c (h - .85c) u u 

+ A~Es[~ d ·] {.003){c - d I) 
c 

AsEs[d - ~1 {.003}{d - 1) 
c 

e 

I 

Pu. 

~" ~ 

~ , , II 
1 I 

Fc 
11 

I I 11 
I I. 11 

Fs.t Fs1 

Figure 3. Resisting Forces of Column Section 
Under Eccentric Load. 
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(5 .11) 

The balanced loading condition exists when the maximum 

compressive strain in the concrete occurs at the same time 

the tension reinforcing steel begins yielding. 2 This con-

dition is given by equations (5.12a) and (5.12b). 

P' b (5.12a) 

2ACI Code, Section 10.3.3, p. 30. 



I . . . I [h .85Cbl = 0. 85 f c ( • 85b~ - As) '2 - 2 

+ A'E s $ l~ -d ·] 
(. 003) (cb- d I) 

Cb 

- A .f [d - h] s y . 2 

.003 d 
Cb = .003 + .00207 

For all values of c smaller than Cb the 

steel is fy and Fs 2 = Asfy. With this 

tuted into equations (5.10) and (5.11), 

stress in 

value for 

they will 

failure loads P~ and M' u for the range C < Cb. 
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( 5 .12b) 

the tension 

Fs2 subs ti-

yield the 

Over the first range from the minimum eccentricity to 

the point where balanced loading exists, failure in the sec-

tion is controlled by compressive stress. As the eccentric-

i ty increases beyond balanced loading, fa ilute is controlle.d 

by tension. Also, as e increases, P~ decreases and M~ in­

creases up to some maximum value and then decreases. This is 

best illustrated in a load moment-interaction diagram as in 

Figure 4. 

If P~ is plotted versus M~ (or P~e), the curve will 

represent the locus of the maximum theoretical allowable 

axial loads and moments P~ and M~ for any eccentricity e as 

shown in Figure 4. This curve is unique for some percentage 

and configuration of reinforcement. Normally the diagram is 

a family of curves for various percentages of steel. This 

type of diagram is to be used as the basis for the design 

aids in the appendix. Its application will be discussed in 

greater detail in Chapters VII and VIII and can be found in 



most texts dealing with the design of reinforced concrete 

columns. 

I t'.>I Mu.., ru. 

Figure 4. Load-Moment Interaction 
Diagram. 

27 

Another method of design better suited to longhand cal-

culations is to construct a portion of an ipteraction dia­

gram with several values of c giving allowable loads near 

the design loads. 3 The capacity of the column can then be 

taken directly from the curve. 

3Rice and Hoffman, pp. 265-274. 



CHAPTER VI 

BIAXIAL BENDING 

In comparison to bending about one axis of a reinforced 

concrete column, biaxial bending presents an entirely differ-

ent and more complex situation. As a second bending moment 

is introduced, the neutral axes are no longer parallel to the 

centroidal axes of the section, but lie at some angle e from 

them. Due to the rectangular shape of the cross section, as 

e increases, the area of the cross section unc;ier compression 

y 

• .___ __ -t~~~~- Fe ~l!T5 AT 
~E.~\£tl. Of' 
4RR/rr(. 

Figure 5. Compression Area 
of Rectangular 
Section Under 
Biaxial Bending. 
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Figure 6. Compression Area 
of Circular 
Section Under 
Biaxial Bending. 
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becomes triangular as shown in Figure 5. If this area main-

tained the same shape as e changed, as in the case of a cir-

cular cross section, it would be a simple matter to find the 

relationship of one moment to the other, as illustrated in 

Figure 6. However, the shape of the cross section does vary 

with e, but no simple and exact relationship is to be found 

between e and the load capacity of the column. It is there-

fore necessary to rely on empirical relationships developed 

from biaxial bending tests on rectangular concrete columns. 

In recent years several methods for designing biaxially 

loaded columns have been published. Most methods have in 

common some form of an interaction surface as shown in 

' Figure 7. The curve ABCD represents the load-moment inter-

action diagram for the X axis of the column and the curve 

DEFG represents the lC?ad-moment interaction diagram for the 

Y axis. For any given value of axial load P~ a horizontal 

plane may be passed through the interaction surface defining 

the maximum allowable moment the column will withstand when 

applied simultaneously with P~. For example we shall assume 

that point H in Figure 7 represents a value of axial load to 

be applied to a column. A horizontal plane passed through 

this point is represented by plane BHF. If this plane were 

to be removed from the diagram and viewed in plan it would 

appear as in Figure 8. For this value of P~, if a moment 

occurred about only the X axis, the maximum allowable moment 

the column could withstand would be represented by point M~x· 

Likewise, if a moment occurred only about the Y axis, the 



c 

I 

~ 

I 
M~ 

Figure 7. Biaxial Load-Moment Interaction 
Diagram. 
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maximum moment capacity would be given by point M~y· How­

ever, if the resultant moment applied to the column is about 

an axis at some angle a from the Y axis, its maximum allow-

able value is given by M~. Ideally, point M~ would lie on 

the dashed elliptical curve, but in the case of rectangular 

columns, the fact that the compression area becomes triangu-

lar, as in Figure 5, alters the boundary similar to the solid 
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Figure 8. Section Through Biaxial 
Load-Moment Interaction Diagram 
at Constant Load P. 

Figure 9. Relation of Uniaxial Capacities 
to Biaxial Load-Moment 
Interaction Diagram. 
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curve in Figure 8. If the maximum allowable moment M~ is 

divided into X and Y components M~x and M~y' it becomes a 

simpler matter to formulate a relationship between the axial 

load P~ and each of the moment components. 

This problem is expanded in Figure 9 where P~ is the 

ultimate concentric load with no eccentricity. At points 

M~x and M~Y' an equivalent momen~ may be produced by the 

axial load P~ acting at eccentricities ex and ey from the 

X and Y axes, respectively. If the eccentricity ex were 

fixed and the load allowed to vary, the maximum allowable 

axial load would be P~x· If no bending occurred about the Y 

axis, the maximum axial load would be P~y· If the analysis 

of Figure 9 is approached from the opposite direction, that 

is if P~x' P~y' ex and ey are known, a relationship can be 

found between P~x' P~y and P~. · One of the simplest relation­

ships was developed by Bresler. 1 ' Tests·and investigations of 

biaxial bending have shown his equation to be satisfactorily 

accurate under most of the range of axial load and bending 

moments. If a given cross section as in Figure 10 is sub-

jected to bending moments M~x and M~y and an axial load P~ 

as shown, the system of forces can be reduced to a single 

load acting at equivalent eccentricities obtained from 

= M~x = M~y Pu Pu 

1 . 1 Boris Br es er, 
Under Axial Load and 
pp. 481-490. 

"Design Criteria For Reinforced Columns 
Biaxial Bending," ACI Journal (1970), 
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Figure 10. Equivalent Eccentricities of 
Axial Load. 

Bresler's equation is 

_l_ 
P' u 

= 1 + 1 
P~x p~y 

1 
~ 

0 
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(6.1) 

where P~ is the ultimate axial capacity of the cross section 

and P~ is the ultimate axial capacity under a concentric 

load, P~x is the ultimate axial capacity if moment occurs 

only about the X axis and P~y is the ultimate axial capacity 

if moment occurs only about the Y axis. P~ can of course be 

found by simple statics once a column size and reinforcement 
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is assumed. The capacity P~x is determined by considering 

the column subjected only to P~ and M~x' and·accounting for 

slenderness effects if applicable. Then P~x can be similarly 

determined. Finally, a value is obtained for Pu and compared 

with the actual load applied to the column. 

The origin of Bresler's equation stems from a failure 

surface obtained by plotting the failure load P~ as a func­

tion of eccentricities x and y as shown in Figure 11. The 

values of.x and y also serve to illustrate the relationship 

of P~ and the bending moment components M~x and M~y· As can 

be seen in the diagram as the eccentricities increase, 

p 

..--- F ~ll L UR..E.. 
SUtl..FRC.E. 

Figure 11. Failure Surface for Load vs 
Eccentricity". 
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bending moments increase and the failure. load P~ decreases to 

some limit at the bottom of the curve where axial load be-

comes negligible and the section is considered to be in pure 

bending. If the reciprocal of the failure load is plotted 

as a function of the eccentricities, a surface such as that 

in Figure 12 will be obtained. It is this surface from which 

Bresler's equation is actually derived. The surface being 

somewhat flat resembles a slightly warped plane. For a given 

/ 
/ 

/ 
/ 

/ 

' p 

I 
I 
I 
I 
I 
I 
! y 

-----FJ:itLUtz..E. 
6 L>R.fRCE. 

Figure 12. Faiiure Surface for Reciprocal 
of Load vs Eccentricity. 
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column, at least three points on the surface are known for 

some particular value of P~ and are coordinates for the fail­

ure load for pure axial load P~, the ex corresponding to the 

failure load P~x were moment to occur only about the Y axis, 

and the ey similarly corresponding to the failure .load P 1 • oy 

These points can be plotted as (l/P~, 0,0), (l/P~x' ex,O) 

and (l/P~Y' ey, 0) as shown in Figure 13. If a plane were 

passed through the three points, any point on the failure 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 

I 

~ 

l // 
_____ \v' 

/ _________ _/ 

/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

Figure 13. Bresler's Approximation of the Failure 
Plane l/P vs e. 
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surface (l/P~, ex, ey) can be approximated by a point 

(l/P~, ex, ey) on the vertical projection to the plane. If 

some point l/P~ were defined by the three coordinates 

(l/P~, ex, ey), see Figure 13, the location of l/P~ falls 

very near the intersection of the failure surface and the 

plane where the error in approximation is 2ero. 

Since the plane is unique in that each value of l/Pbx 

and l/P~y will yield unique values for ex and ey, the error 

in the approximations will very nearly be the same for all 

positions of the plane. The error will increase slightly, 

however, for very large values of l/P~x and l/Pby· Results 

of the approximation were compared with theoretical results 

in Bresler's paper and found to be in excellent agreement, 

the ·average error being 3 •. 3 percent. 

In order to apply the approximation the plane must be 

defined by the three known points. The equation of the plane 

for some eccentricities e~ and e' is y 

0 l/P' ox 1 l/P' ox 

e l/P' 1 e' + l/P' y oy x oy 

0 l/P I 
0 

1 l/P' 
0 

0 1 

ex o l/Pbx 

0 ey l/P~y 

0 0 l/P~ 

e' + y 

0 

0 

0 0 

1 

1 

l/P' = u 

where (l/P~Y' e~, ey.) are the coordinates of the failure load 

for biaxial bending. Simplifying the equation we obtain: 



e'(-1 __ l)+ X p I p I 

0 ox 

e' e y x 
ex ( 1 1 ) . ( 1 1 ) -i?'-P' +ex F-P' -0 

o oy u o 

For biaxial bending the eccentricities will be the same as 

those for uniaxial bending, see Figure 10. Therefore, if 

e '· = e and e ' e then x x y ' Y' 

1 
P' u 

= 1 1 1 
pi-+ pi--pi-

ox oy o 
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which is Bresler's formula. It is perhaps the simplest and 

most widely applicable relationship that has been developed. 

Another method introduced by Bresler is of the form 

where Mx = Puy, Mox = PuYo when x =My = O; and My = Pux, 

M0 y = Puxo when y = Mx = 0. Looking at the failure surface 

formed by the load-moment interaction diagram,_ Figure 14, the 

surface is formed by a family of curves at constant values of 

Pu. Bresler refers to these curves as load contours. If a 

plan bounded by a load contour at some Pu is examined as in 

Figure 15, and if the load contour is assumed to be a 

straight line, the equation of the load contour is given by 

The equation can be written as 

l 



Figure 14. Load Contour of Biaxial Interaction 
Surface. 

Mox 

(a) (bJ 

Figure 15. Approximation of Load Contour From 
Biaxial Interaction Surface. 

39 
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If the load contour is curved instead of straight its equa-

tion is approximated by 

(~)a. + (~)s = 1 
Mox Moy . 

in which ·a. and S are dependent on the dimension of the col-

umn, steel reinforcing, stress-strain behavior of the mate-

rials, the concrete cover and lateral ties. Tests showed 

that this equation provided good approximations of analytical 

results but no one value of a. or S can be assigned to accur­

ately represent the load contour for all cases.2 Therefore, 

the determination of a. and S would add undesired complexity 

to the design procedure. 

Other approximations have been derived, among them a 

method by Pannell based on a failure surfac·e as in Figure 

14. 3 These methods are either less accurate or require addi-

tional functions making the design procedure more complex. 

For this reason the first method by Bresler will be used in 

the design charts to be constructed here. 

The one limitation of Bresler's equation is its appli-

cable range. For small axial loads tension has more influ-

ence on a column's capacity. The relationships on which 

Bresler's equation is based are no longer valid due to the 

3F. N. Pannell, "Biaxially Loaded Reinforced Concrete 
Columns, 11 Proceedings, ASCE, Vol. 85, ST6 (June, 1959), 
pp. 47-54. 



absence of the failure surface, Figure 13, in this range. 

Therefore, the equation will not be used for values. of Pu 

less than P 0 /lo. 4 Another equation must be used for this 

lower range of axial loads. 
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If a load contour of Figure 14 is examined for a square 

column with equal steel in all faces at some Pu, the biaxial 

load-moment capacity will be represented by a ne_ar circular 

curve, Figure 16a, where M0 x and M0 y are the uniaxial moment 

Mo~· 

(a.) (b) 

Figure 16. Load Contour for Square Section With 
Equal Reinforcement in All Faces. 

capacities for the X and Y axes, respectively, and are equal. 

The design moments Mux and Muy are bounded by their inter­

section with the load contour Mu. An approximation of this 

limit can be made by assuming a straight line between M0 x 

. 4Rice and Eoffman, p. 290. 
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and M0 y as in Figure 16b. Then Mu will lie on the line and 

inside the curve for any combination of Mux and Muy giving a 

more conservative solution. The design moment Mu is simply 

the vector sum of Mux and Muy but should not be larger than 

5 
Mox· This equation is suitable 

(6.2) 

for a square column with equal reinforcement in all faces. 

However, if the reinforcement is not symmetrical or the col-

umn is rectangular, M0 x and M0 y are not equal and the load 

contour will resemble Figure 17a. A similar approximation 

can be made in this case as shown in Figure 17b. If equation 

(a) (b) 

Figure 17. Load Contour for Rectangular Section 
With Symmetrical Reinforcement. 

5Ibid., pp. 286-289. 
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(6.2) is written as 

'$ 1 (6.3) 

where M0 x and M0 y are assumed equal to Mu, the relationship 

also represents the approximation in Figure 17b. Since M0 x 

was the upper limit of equation (6.2), when the equation is 

divided by Mox' one is the upper bound of equation (6.3). 

This equation was given by the previous code (ACI 318-63, 

Section 1407c, Eqn. 14-14) and limited to situations where 

tension controls the design. 

Because of its simplicity, equation (6.3) will be used 

to determine biaxial capacity for the design charts to be 

presented here. Although the conservative error is signifi-

cant, simplicity is considered to be important and since most 

columns encountered are not controlled by tension, the use of 

equation .(6.3) $hould not provide unreasonable design as far 

as economy is concerned. Further discussion of the errors 

involved may be found .in Paul F. Rice and Edward S. Hoffman, 

Structural Design Guide to the ACI Building Code, New York, 

1972, Chapter 10. 



CHAPTER VII 

TRANSFORMATION INTO GRAPHICAL FORM 

The preceding chapters have presented all the equations 

and procedures necessary· for the complete design of a common 

reinforced concrete column. In those areas having several 

accepted techniques and theories, one method was selected for 

use in constructing the design aids. The equations used in 

this chapter will be repeated and referenced to their intro­

duction in the text. 

An outline of the series of operations :irequired to de­

sign a column is given in Figure 18. The flow chart follows 

the column design procedure from the initial assumptions to 

final sizing. This procedure represents the fundamental ap­

proach to column design. Numerous short cuts and approxima­

tions have been introduced in many texts for preliminary 

checks to make the trial and error process less cumbersome. 

The reader is referred to Phil M. Ferguson, Reinforced 

Concrete Fundamentals, New York, 1973, for some of the more 

common methods of approximating column design. 

Any method of column design requires some initial as­

sumptions as to column size, reinforcement, or loading condi­

tions. The procedure used here requires the selection of a 

trial size and percentage of reinforcement for a column. The 

44 
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Figure 18. Flow Chart for Conventional Design 
of Reinforced Concrete Columns. 
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capacity of the column is then determined and compared to the 

given load. Once the dimensions have been selected, the re-

maining unknown parameters lend themselves very well to 

graphical preseiitation. As can be seen from Figure 18 the 

section is first checked for uniaxial load-moment capacity. 

Then slenderness effects are checked for each axis and final-

ly the biaxial capacity is determined. The general form of 

the design charts in the appendix follows these three steps. 

Design charts for column slenderness have been presented 

based on the previous code (ACI 318-63) and are assembled in 

terms of dimensionless parameters. 1 This requires that sev-

eral preliminary calculations be made prior to using the 

charts. The sections of the charts dealing with slenderness 

effects also require more than simple calculations. The 

charts to be constructed here will follow a similar pattern 

except that relationships will conform to the current code 

and the parameters w'ill be separated so that only simple cal-

culations will be necessary. Dimensionless parameters will 

not be used, but rather a chart for each given column size. 

Also the relationships within the charts will be extended to 

include biaxial relationships. It is possible that since the 

exactness of the equations is to be sacrificed for the con-

venience of graphical solutions, some accuracy will be lost. 

However, the equations themselves are but empirical approxi-

mations and any errors in the solution will depend primarily 

lRichard W. Furlong, "Column Slenderness and Charts for 
Design," ACI Journal (1971), pp. 9-17. 
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on judgement and accuracy of plotting. A siri1ple check by 

statics at the end of the design process should be suffi­

cient to identify any significant errors made during the de~ 

sign procedure. 

The basis of the design aids is the load-moment inter­

action diagram as shown in Figure 4. With the equations 

given in Chapter V, a diagram may be constructed for each 

axis of a given column size and percentage of steel. If the 

dimensions, reinforcing, load and properties are known and if 

an interaction diagram is available, it will be obvious 

whether failure is controlled by tension or compression and 

the column's capacity for any combination of load and moment 

may be found instantly. The upper boundary of the diag+am, 

point P~, is the capacity of the section under pure axi~l 

load and from statics is given by equation (5.2). 

As moment is introduced the position of the neutral axis, 

distance c from the compression edge of the column, shifts 

toward the compression edge. As the eccentricity increases, 

c decreases. The capacity for axial load also decreases, but 

the moment resisting capacity increases. This curve between 

P~ and Pb is defined by 

(5.10) 



M' u 

- A E (d- h/2) .003(d-l) 
s s c 
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(5.11) 

When the neutral a~is falls outside the section on the ten-

sion side (.85c > h), equations (5.5) and (5;6) must be used. 

As the balanced loading condition Pb is passed, the mo­

ment capacity begins to decrease. This portion of the curve 

is given by 

M' u 

(7.1) 

(7.2) 

The code provides that when the load capacity P~ is less than 

f~bh/10 the safety factor ~may be increased from 0.7 to 0.9 

as P~ decreases to zero.2 This puts an outward bend in the 

bottom of the interaction curve. 

Since any column may contain several configurations and 

percentages of steel, a family of interaction curves may be 

drawn, one for each size bar group possible within the same 

size column. This will eliminate interpolation between per-

centages found on other diagrams. Lines of constant eccen-

tricity are also plotted on the charts to aid in the 

selection of reinforcement. The uppermost line on the 

2 Section 9.2.1.2, p. 26. 
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interaction diagram represents the minimum eccentricity al-

lowed by the code, h/10. 

The family of interaction curves is located in the upper 

right quadrant on each design chart. Another curve is super-

imposed on the graph and will be explained later in the chap­

ter. The upper left quadrant consists of three families of 

• curves. These three groups determine the ratio of applied 

load to critical load P/cf>Pcr· In order to determine this 

ratio, Per must be found from equation (4.1). This equation 

cart be separated into a product of two terms in which the 

Per = = " 2 {EI) 
{klu)2 

( 4 .1) 

term EI is given by equation {4.2). If the equation for EI 

is separated into two terms, then the term {Ecic/5 + Esis) 

EI = 1/5 Ecic + Esis 
1 + Ba 

{ 4. 2) 

has a unique value for each bar size group in a given size 

column. This term becomes one of the three slenderness par-

ameters for equation (4.1). The second term 1/(1 + Ba) is 

the second parameter since its value is independent of the 

column properties and is a function of loading. The third 

slenderness parameter is n 2/{klu) 2 from equation (4.1). The 

product of these three parameters will yield Per' but P/cf>P . er 

is required to find the moment magnifier o given by equation 

(4.5). In order to obtain the ratio of P to cf>Pcr' the param­

eters given above may be combined as shown in equation (7.3). 



0 = 

p 

1 - p 
cj>P er 

( 1 + Ba) 
(klu) 2 

n2 
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(4. 5) 

( 7. 3) 

Each of the three families of curves in the upper left quad-

rant of the design charts is the graphical representation of 

one of the three terms in equation (7.3). The lower left 

quadrant is a plot of P/$Pcr vs o for several values of Cm 

which is obtained from equation (4.6). In order to eliminate 

the calculation of Cm the actual parameter used will be 

M1/M2 and the family of curves is then defined by equation 

(7.4). Of course the code requires that Cm must not be less 

than 0.4 and that o must not be less than 1.0. 

cm = 0.6 + 0.4 (:~) ~ 0.4 (4. 6) 

a = 
0.6 + 0.4 (:~) 

1.0 p ~ 
1 - --

( 7 .4) 

$Per 

The lower right quadrant corrects the initial design 

moment Mx by the moment magnifier a and gives a new design 

moment Mc from equation (4.7). Mc can be projected vertical­

ly to intercept the line of constant eccentricity initially 

used and outward to the interaction curve and then a value 

of Pu can be.read directly from the vertical axis of the 

interaction diagram. This value of Pu represents the fail­

ure load for the column axis under consideration and is the 



52 

same as P 0 x or P 0 y in the biaxial bending equation (6.2). 

If this value is more than or equ_al to the initial P the de-

sign may be checked .further for biaxial adequacy. !f not, a 

new column size or reinforcement must be selected and the 

processes repeated. 

Assuming the section is so far satisfactory, the addi-

tional curve superimposed on the interaction diagram is now 

used to invert the design load P0 x to obtain the appropriate 

terms of the biaxial equation. 3 Having completed the design 

1 
P~x 

( 7. 5) 

for one axis of the column, the entire procedure is repeated 

for the other axis. If the column is square with the same 

reinforcement in all four faces the same chart may be used 

for both axes. If, however, the column is rectangular or 

square with unequal reinforcement the interaction diagram 

for moment about the minor axis will be of a smaller scale 

than that for the major axis. In order to avoid the confu-

-sion of additional curves on the charts and to maintain the 

accuracy of the larger scaled chart, a separate chart .with an 

expanded moment scale has been constructed for the minor 

axis. The design procedure is identical except that the pre-

liminary column size and reinforcement has already been de-

termined by the design about the other axis. Upon obtaining 

3If P < P0 /10, equation (6.3) must be used to determine 
biaxial capacity. 
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a satisfactory value for P0 y the reciprocal of P~y is found 

and the reciprocal of P0 and by simple addition and subtrac­

tion the value of l/Pu is obtained from equation (6.2). By 

reversing the procedure for taking reciprocals, a value for 

Pu is found. If this Pu is greater than the actual load P 

used initially, the design is satisfactory. If the differ­

ence is too great a more economical section may be found 

quickly by adjusting the reinforcement or if necessary 

changing the column size. Note that if when repeating the 

design procedure for the minor axis a change is necessary in 

the size or reinforcement of the column, the major axis must 

be redesigned for the new conditions. 

Once a graphical procedure is established, a method of 

converting the equations into graphical form must be deter­

mined and reasonable limits must be imposed on the range of 

values obtained from each equation. Obviousiy, without the 

use of a calculator or computer with plotting capabilities, 

an attempt to construct such numerous graphs would be time 

consuming to say the least. The charts in the appendix were 

drawn by a Hewlett-Packard 9830A calculator and a 9862A 

calculator plotter. A general program was written for most 

common condition to be encountered in the design of square 

and rectangular concrete columns. The compressive strength 

of the concrete is limited to 4000 psi, although the program 

will accept other strengths, and is assumed to be of normal 

weight, 145 pcf. The yield strength of the reinforcing steel 

is taken as 60,000 psi and its modulus of elasticity is 
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. 
29,000,000 psi. The patterns of reinforcement are limited 

to square or rectangular patterns with a symmetrical arrange-

ment of equal size bars on any two opposite faces. Lateral 

ties complying with the code provisions were used in all 

cases. A. constant concrete cover of one and one-half inches 

is used in determining dimensions. These specifications are 

repeated in the appendix for reference. 

Since a large range of column sizes is used, the capac-

ities will also vary over a large range. If the same scale 

were used for all sizes, the interaction curves for the 

smaller sections would be too small to be used effectively. 

It was necessary to divide the scale into six ranges giving 

all diagrams approximately the same size. On any one chart 

for any one arrangement of reinforcement, all possible bar 

sizes are considered and an interaction curve plotted for 

each size, the largest plotted first to set the scale~ The 

lines of constant eccentricity are plotted for the minimum 

eccentricity allowed by the code and at one inch intervals 

to four inches, a six inch eccentricity, and then at eight 

inch intervals to about one and one-fourth times the depth of 

the section. All units are in inches and kips. 

The graphical conversion of equation (7.3) requires 

three steps. .The first step deals with the first term 

p 
( 7. 6) 

Since the scale of P is determined by the interaction dia­

gram, the scales of the upper left quadrant will depend on 



55 

P. Since P is known, Ic and Is must be calculated over their 

effective ranges. Since the size of the column is constant, 

Ic is constant and Is is the only variable. An example graph 

is shown in Figure 19. The equation of a line can be calcu-

BRR. ~IZE. ! #11 10 9 d 7 

Figure 19. Graphical Representation 
of P/(Ecic/5 + ESIS). 

lated for each size bar used in the interaction diagram and 

can be plotted as a function of P. The upper limit of ex-

pression (7.6) will be a function of the upper limit of P for 

the diagram under consideration. If expression (7.6) is 

evaluated for the minimum stiffness possible within the given 

sizes of steel bars, a conservative upper bound will be ob-

tuined by using the upper limit on the verticcil axis for P, 
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which will be designated as Pum· This will plot a line· from 

the lower left corner to the upper right corner of the ~raph, 

establishing the upper bound of the scale for this graph. 

Then using Pum a line may be constructed for each size bar 

given by the interaction diagram. If for any particular bar 

size. a horizontal line is drawn from the design load P to 

intersect the appropriate bar size line, the vertical pro-

jection of this point to the horizontal axis gives the value 

of expression (7.6). The scale on this axis depends on the 

scale of Pu and the stiffnesses of the column. Since it will 

be different for each graph and since it is not n~cessary to 

know the value of expression (7.6), the axis is not scaled 

for this graph on the design charts. 

The second. step of the conversion is the multiplication 

by the term (1 + Ba) • The maximum value of Sa is one if dead 

load is· the only load present. The lower limit of Sa ap­

proaches zero for a very small dead load moment compared to 

the total load moment. Therefore, (1 + Sa) can vary from one 

to two. The lower bound of expression (7.7) is equal to that 

( 7. 7) 

of expression (7.6) while the upper bound doubles. Since the 

lower end of the scale for P/(Ecic/5 + Esis)¢ is zero, the 

lines for the (1 + Sa) graph must originate at the upper left 

corner. The lines terminate within the lower half of the 

right side of the graph. As shown on the inverted vertical 
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Figure ,20. Graphical Representation 
of (1 +Sa) x P/(Ecic/5 + Esis). 

scale of Figure 20, the lines are plotted at intervals of 

Sa of 0.2. As is the case with the previous graph no scale 

will be required since only a relative value is necessary 

when plotting a solution. 

The last step in the conversion multiplies the previous 

result by expression (7.8). Theoretically, k can vary from 

( 7. 8) 

0.5 to infinity. The shortest column to be considered is 

eight feet giving a minimum effective length klu of four 

feet. In order to give the charts a practical range, a max-

imum effective length of 100 feet will be used as the upper 

limit. A family of curves similar to Figure 20 is shown in 

Figure 21 for expression (7.8). The result will give a value 



Figure 21. Graphical Repre­
sentation of 

(klu/.1d 2P (1 + sa) 
~ (Ecic/5 + ESIS) 

for P/~P er which is scaled on· the horizontal axis. Since 
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any value of P/~Pcr greater than one means that the critical 

buckling load has been exceeded, ~ practical range of 0.0 to· 

0.8 is used. Unlike the first two graphs, the scale for this 

quantity will remain constant and is given on each chart. 

In order to obtain the moment magnifier o, equation 

(7.4), the range of M1/M2 must be established. Its maximum 

value will be +l.O when M1 is equal to M2 . The minimum is 

zero when M1 is zero. However, when M1 is negative, the 

minimum value of M1/M2 is -1.0. The corresponding range ·for 

Cm is from 0.2 to 1.0, but the code requires that cm is not 

to be less than 0.4. Therefore, the lower limit for M1/M2 

must be -0.5. The code gives a lower boundary for o as 1.0. 
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A reasonable upper limit for o seems to be 3.0 since the 

curves in Figure 22 begin to app~oach a constant value near 

a o of 3.0. 

Figure 22. Graphical Representation of 
o = Cm/(l - P/~Pcr) and Mc = oM. 

Once the moment magnifier is determined, the curves in 

the right side of Figure 22 simply multiply the initial de-

sign moment M by o. If the value obtained for o is projected 

horizontally to intersect the line originating at the design 

moment M, the vertical projection of this point is the new 

design moment Mc of equation (4.7). 

The last part of the chart presents an awkward situa-

tion. In order that the values for P0 x and P0 be compatible 

with Ilrcsler's equation (6.2) they must be divided by 0.7 to 
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obtain P~x and P~ and then the reciprocal of each found. 

Multiplication and inversion are relatively simple graphical 

procedures. But in Figure 23 it can be seen that in the 

lower range of values for P0 x an accurate intersection of the 

reciprocal curve becomes almost impossible due to its de-

creasing slope. If when the curve becomes too flat the scale 

is increased over a short range until that curve becomes flat 

then the scale increased again. A curve such as in Figure 23 

is formed where in this case three separate scales are used 

to define the curve. This procedure serves to eliminate the 

flatter part of the curve and increase the accuracy. Since 

1 
R. 

SC)'.:llt 1 

" .. 
( )( ) woo.-----------.. 

o._ ______________________ ...., 

Figure 23. Graphical Representation of ~/P. 
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the curve is a reciprocal function, the lower end will ap­

proach infinity. However, for values of P0 x less than P0 /10 

the curve is not valid so it is not necessary to carry the 

curve beyond this point. In programming the calculator to 

plot this curve, six possible scales are used for the P axis 

and each scale has a unique reciprocal curve with its ovm set 

of scales. 



.CHAPTER VIII 

APPLICATION AND USE OF GRAPHS 

The use of the design charts in the appendix requires 

only simple assumptions and calculations, the most difficult 
. . . 

of which is the determination of the effective length factor 

k and the calculation of the moment magnification factor for 

one of several columns in a frame. A flow chart is given in 

Figure 28 which outlines the steps of procedure for using the 

charts.. Though the flow chart appears complex and lengthy, 

the entire procedure is really quite.simple and brief. An 

example problem will be given in the following paragraph to 

illustrate the use of the charts. Additiona1 problems are 

given later dealing with uncommon situations which may re-

quire special procedures not given in Figure 28. 

As an example, consider the problem where it is desired 

to design a column to carry the following design loads ob-

tained from a structural analysis: the axial load is 400k, 

the moments about the major axis are 1100 "k and 780 "k at 

the top and bottom, respectively, and the moments about the 

minor axis are 775 "k and 310 "k at the top and bottom. 

Assume the effective length factor k is 0.75, and the un-

supported length is 14 feet. Also, the ratio of dead load 

moment to total moment is b.6 for both axes. Due to space 

62 
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requirements, the width of the c9lumn must be limited to 12 

inches. The story 5 will be considered to be insignificant 

for this problem and the column assumed to act individually. 

As a trial size, a 12" x 18 11 section was selected as 

shown in Figure 24. The reinforcing will consist of eight 

number eight bars, two on each of the short sides of the col­

umn and four on each long side. Referring to Figure 29a if 

the applied load and moment about the major axis are plotted 

on the interaction diagram, the point falls well within the 

curve for number eight bars. However, slenderness effects 

and biaxial bending will reduce the allowable loads to the 

extent that even this section may not be adequate. With the 

applied load of 400 k, a line is projected from the 400 mark 

on the 11 P 11 scale to intercept the line representing a number 

eight bar size as shown in the upper left section of the 

chart. From this intersection a line is drawn vertically to 

the S = 0.6 line and from there horizontally to an imaginary 

line half-way between the two lines representing effective 

lengths klu of 10 and 11 feet for an effective length of 

0.75 x 14 or 10.5 feet. Then a line drawn vertically to the 

P/~Pcr.scale gives a value of 0.17 for P/~Pcr· The line is 

continued across the axis to meet a line between 0.6 and 0.8 

for M1/M2 of 0.71. From there a horizontal line yields the 

moment magnifier 8 of 1.06. The line is continued horizon­

tally to intercept the diagonal line originating at M equal 

to 1100 "k. This point is projected vertically across the M 

axis giving a new design moment Mc of 1170 "k and when 
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carried up to P equal to 400 k, a new eccentricity is defined 

as 2.9 inches. The point is still within the boundary of the 

interaction curve for number eight bars. Therefore, the sec-

tion will satisfy uniaxial bending about it's major axis. If 

the point just plotted is extended to the interaction curve 

along the line of constant eccentricity, the maximum allow-

able axial load is found. This value is Pox· From this 

point on the interaction curve a line is drawn horizontally 

to the reciprocal curve and then vertically for a value of 

l/P~x of 0.00137. 

The entire procedure is now repeated for .the minor axis 

using Figure 29b. The values obtained are: P/~Pcr = 0.34, 

o. = 1.15, Mc = 890 "k, e = 2.2 ", and l/P~y = 0.00139. From 

the table in the lower left quadrant of Figure 29a, for num-

ber eight bars, l/Ph is given as 0.00092. Then 

0.00137 + 0.00139 - 0.00092 = 0.00184 

which is Bresler's formula and the 0.00184 is the value of 

l/Pu· The allowable load Pu is found by locating 0.00184 

on the top scale and projecting the point down to the recip-

rocal curve and then left to the load scale. The intersec-

tion with this scale gives a value of Pu of 390 k which is 

less than the applied load of 400k. Even though the section 

is satisfactory for an applied moment about either axis, the 

presence of both moments simultaneously produces stresses in 

the section which it cannot safely resist. Therefore, ei-

ther a new section must be selected or the reinforcement 
I 
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increased. Since the allowable load is exceeded by only a 

small amount, an increase in the section's dimensions would 

most likely result in an excess.of capacity which is not 

needed. An increase of the size of reinforcing to number 

nine bars will be tried. Again progressing through the 

graphical design procedure. the following values are obtained 

from the major axis: P/~Pcr = 0.15, o = 1.05; Mc = 1140 "k, 

e = 2.9•i, and l/Pbx = 0.0013. Then about the minor axis, 

P/~Pcr = 0~3, o = 1.1, Mc= 865 "k, e = 2.1", and l/P~Y = 

0.0013. From the table at the lower left, l/Pb = 0.00084. 

Then 

0.0013 + 0.0013 - 0.00084 = 0.0018 

Projecting this value through the reciprocal scale, a vctlue 

of 400 k is obtained for Pu which is equal to the design 

load. 

• • • • 

• • 

~- 8-#91' 

Figure 24. Column Section, 
Example 1. 
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To check the capacity of the column selected with the 

charts, a conventional analysis will be m~de using statics. 

An approximate method would be quicker, but greater accuracy 

is desired to check the results. From Figure 18 the first 

steps are to determine b, h, As, P, Mx, My, ex and ey. 

b = 12 II 
h = 18 11 

As = 8 #9 
p = 400 

Mxl 
Mx2 

bars 
k 

ex 

= 
= 
== 

780 11 k 
1100 11 k 
2.75" 

= 310 11 k 
= 775 "k 
= 1.94" 

Also, f~ = 4 ksi, fy = 60 ksi, Es = 29 x 103 ·ksi and 

Ee = w1. 5 33 f~ = (145pcf) 1 • 5 (33) -v'4ksi 

E = 3.64 x 103 ksi c 

The section is shown in Figure 25 with dimensions with re-

spect to bending about the major axis. In order to determine 

if compression or tension controls, the balanced condition 

will be analyzed. From equations (5.12), eb·is determined 

for one row of reinforcing on either side of the center line. 

This problem presents four rows and requires additional terms 

in the equation. The distance to the neutral axis is 

= (.003) (15.58) 
.003 + .00207 = 9.22" 



Then: ·p I = 
b 

• 

• I 

• 

• 

• 

15. 5ftJ" 

18" 

• 

I 

11 
11 
11 

2.44" 

Figure 25. Column Section, 
Major Axis, 
Example 1. 

Fe = 0.85f~ (0.85 bcb - A~) 

Fe = (.85) (4) [ (.85) (12) (9.22) - 4] = 306 k 

(.003) (Cb- d') As = ~ E 
Cb 2 S 

= (.003) (9.22 - 2.44) (4) (29xl03) 
(9.21) (2) 

= 128 k > 2fy.·.use Fsl = 120 k 

Fs2 = 
(.003) (cb - a• - s) 

Cb 

A' 
__.§. E 
2 s 
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= (.003) (9.22 - 2.44 - 4.37) (4)_(29xl03) = 
. (9.21) (2) 

= (.003) (d - s - cb) As 
2 Es 

= (.003) (15.58 - 4.37 - 9.22) (4) (29xl03) 
(9.21) (2) 

= -38 k 

= -120 k 

Pb = 301 + 120 + 45 - 120 = 313 k 

M' b 
= [h _ .852cb1· Fe . 2 + Fsl [ ~ - a'] + F s2 [I] 

[~ - a· J 
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45 k 

Mb = (306) [ 128 - (.85)J9.22)] + (120) [128 - 2.44] 

M' b 

+ (45) [4.237] - (-38) [ 4237] - (-120) [128 - 2.44] 

= 3311 "k 

= 3311 
313 

= 10.57" 

Since the balanced eccentricity is greater than the actual 

eccentricity, compression controls the design. Now the ca-

pacity of the column in compression must be found. The dis-

tance to the neutral axis must be found by trial and error. 

As shown in Figure 26 the reactive force of the concrete is 

assumed to act between P and the center line of the column. 

The neutral axis is assumed to lie as shown. Since the 

strains in the steel caused by Fsl and Fs4 may exceed the 

maximum steel strain of .00207 in/in, a check may be made to 



11 
11 
11 
11 

c 

1 I 
II 
11 

Fc I I 

Figure 26. Resisting Forces 
of Section, 
Example 1. 

determine whether the forces given below are valid. Since 

Fe = .85f~ ( .85cb - 3Ar) 

Fe = (. 85) ( 4) [< .85) (12) c - 61 = 34.68c - 20.4 

Fsl = {.003}{c - d '}A E 
c r s 

Fsl = {.003}{c - 2 •44 ) (2) (29xl0 3) 
c 

Fsl = 174 - 424.56 
c 

Fs2 = {.003} {c - s - d 'l ArEs c 

Fs2 = { .003} {c - 4.37 - 2.44} (2) (29xl03 ) 
c 

Fs2 = 174 - 1184.94 
c 

69 



F = (. 003} (c - d + s} Ar E 
s3 c s 

Fs3 = ( .003) (c - 15.58 + 4 • 3 7 ) ( 2 ) ( 2 9x 1O3 ) 
c 

Fs3 = 174 - 1950.54 
c 

(. 003) (d. - cJ A E 
r s c 

(.003)(15.58 - c) (2)(29xlo 3 ) 
c 

F 174 - 2710.92 
s4 = c 

Fs4 is close to the neutral axis, it will not be critical. 

The c required for Fsl to produce a strain of 0.00207 is 

given by· 

c = d' 
1 - 0.00207 

0.003 

= 2.44 
1 - .00207 

.003 

= 7 .87 11 
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Since c is assumed to be greater than 7.87 11 , Fsl will produce 

a strain greater than .00207 and the maximum stress in the 

steel is 60 ksi. Therefore, 

Fsl = fyAr = (60) (12) = 120 k 

Assuming a trial value for c of 15 inches, 

Fe = 500 k 

Fsl = 120 k 

Fs2 = 95 k 

Fs3 = 44 k 

Fs4 = -7 k 
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and P~x = 762 k 

M~x = Fe [~ - .Sic] + Fs1[~ - d ·] + Fs2 [~] 
- F s3 [I] - F s4 [~ - d '] 

M~x = (500) (9 - 6.38) + (120) (9 - 2 .44) + (95) (2 .19) 

(44) (2.19) - (-7) (9 - 2.44) = 2278 "k 

e = 2278 
762 = 2.96" 

The e obtained from c = 15 11 is larger than ex so a larger c 

will be tried. With c = 15.49", e = 2.75" which is correct. 

P~x = 517 + 120 + 98 + 48 - 1 = 782 k 

P0 x = 0.7 P~x = 547 k 

Mox = 517(9 - 6.49) + 120(9 - 2.44) + 98(2.19) 

- 4 8 ( 2 o 19) + ( 9 - 2 o 44) = 215 2 II k 

M0 x = 0.7 M~x = 1506 "k 

P 0 x and Mox represent the maximum design loads that may be 

applied to the column with an eccentricity of 2.75". 

The next step in the problem is to determine the moment 

of inertia of the section with respect to the major axis. 

From equation (4.2) 

1 
EI = SEcic + Esis 

1 + Sa 



Ic = bh3 = (12) (18) 3 = 5832 in4 
12 12 

! s = 4 [ '" 0 4 5 64) 4 + ( 1 ) ( 9 - 2 • 44) 2] 

+ 4 [ n ( 0 4 5 64) 4 + ( 1) ( 4 } 7) 2 l = 191 • 8 6 in 4 

;(3.64 x 106 ) (5832) + (29 :x 106 ) (191.87) 
EI = 

1 + 0.6 

EI = 6.131 x 109 #-in2 

The critical buckling load is then 
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= 
(1000) [(.75)(14)(12)]2 

= 3811 k 

The moment magnifier is computed from equations (4.5) and 

(4.6). 

cm = 0.6 + 0.4(780 ) = 0.88 1100 

0 = cm 
= 0.88 = 1.04 

_E._ 400 
1 - 1 -

~Per (. 7) {3811) 

The design moment then becomes 

Mc = (1. 04) (1100) = 1144 "k < 1506 "k 

The new design moment is still within the allowable range of 

1506 "k. With an increased design moment, the eccentricity 

must also increase. 

e = 1~64 = 2.86" 

Then since the eccentricity has changed, a new value of c 



73 

must be determined to find the capacity of the section. It 

was found that c = 15.25 11 satisfied the condition giving 
• 

e = 2.87 11 and 

p I C: 766 k ox 

Mox = 2202 11 k 

P0 x = 536 k 

Mox = 1541 11 k 

The applied loads are still within the allowable range. 

Before the analysis for, biaxial bending is started, the 

column's capacity with respect to its minor axis should be 

checked~ Repeating the procedure for the minor axis, 

P' b 

Fe 

Fe 

Fsl 

Fsl 

Fs2 

P' b 

M' b 

= (.003) (9.56) = 5.6611 
.00507 

= 0.85f~(0.85cb - A ) r 

= ( • 85) ( 4) [C.85) (18) (5.66) 

= 
(.003) (cb - d') 

Ar Es c 

- 4] = 

= (.003} {5.66 - 2.44} (4) (29 x 103 ) 
5.66 

= -Arfy = -(4) (60) = -240 k 

= 281 + 198 - 240 = 239 k 

281 k 

= 198 k 

=Fe(~ - • 8£c] + Fs1(~ - d'] - Fs2 [~ - a•] 
= (239) [6 - (.8SlJ5 -66) 1 + (198) (6 - 2.44) 

- (-240)(6 - 2.44) = 2418 "k 



eb = 2418 = 10.12" > 2.13" 
239 

Compression will control the design. Figure 27 shows the 

assumed locations and directions of the resisting forces. 

c 
• • 

e 

• • 
• • 

12" 

Figure 27. Resisting Forces, Minor 
Axis, Example 1. 

Another trial and error procedure is required to determine 

the distance to the neutral axis. Having been illustrated 

once, the iteration is not given here. A value for c of 

10.52" was found to be correct. 

P~Y = (.85)(4) [C.85)(18)(10.52) - 8] + 240 

+ (.003) (10.52 - 9.56) (4) (29 x 103) 
10.52 
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P~y = 520 + 240 + 32 = 

poy = o. 7 p ~y = 554 k 

M' = oy (520) (6 - 4.48) + 

+ (-32)(6 - 2.44) 

M0 y = 1075 "k 

e = 1535 = 1.94" 
792 

792 k 

(240) (6 -

= 1535 "k 

- bh3 (18) (12) 3 = 4 - 12 = 12 2592 in 

2.44) 

4 
= 8 [Jt(.~64 ) + (1) (6 - 2.44) 2] = 102.2 in4 

EI 
= t ( 3 • 64 x 10 6 ) ( 2 5 9 2) + ( 10 2 • 0 2) ( 2 9 x 10 6 ) 

1 + 0.6 

EI = 3.028 x 109 #-in2 

The critical buckling load is then 

x 2 (3.029 x 109 ) = 
(1000) [ ( .75) (14) (12)] 2 

= 0.6 + 0.4(310) = 0.76 
775 

0.77 

1 - ( .7) (1883) 
400 = 1.11 

1883 k 

Mc = oMY = (775) (1.11) = 860 "k 

Again a new eccentricity is calculated as 

e 860 2.15" = 400 = 

75 



It was found that a c of 10.13 11 satisfied the eccentricity 

of 2.15 11 and 

P/Jy = 760 k 

Moy = 1631 "k 

P0 y = 532 k 

M0 y = 1142 "k. 

Both values are greater than the design loa)s. 

Biaxial bending will now be considered. The values 

required are summarized below. 

P = 400 k, P~x = 766-k, P/Jy = 760 k 
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The third term in Bresler's biaxial equation is the recipro-

cal of the axial capacity of the column in the absence of 

bending. From equation (5.2) 

p• 
0 = (.85) (4) (12) (18) - 8 + (60) (8) = 1187 k 

_l_ + 1 1 1 
P~x P~y· - p~ = P' u 

_l_ + 1 _l_ = 1 
766 760 - 1187 562 

Pu = 0.7 (562) = 393 k : 400 k 

The Pu obtained from Bresler's equation is just less than the 

design load, but the error is less than two percent: 

400 - 393 
393 

= 0.018 or 1.8% 

This is close enough to be satisfactory and verifies the 

results of the design conducted with the design charts. 
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As a second example, assume the loads are a 300 k axial 

load, moments about one axis at either end are 640 "k and 

430 "k, and moments about the other axis are 500 "k and 

-125 "k. The eccentricity for the larger moment will be 

2.13". The eccentricity for the other axis is 1.67". For 

the first case S = 0.9 and S = 0.4 for the second. 

A square section 14 inches deep will be tried, with 

four number eight bars in the corners. Assume klu is 11 feet 

for both axes. The ratiqs of end moments are 0.67 for the 

larger moments and -0.25 for the smaller moments. Using 

Figure 30 connect 300 on the load scale to the "bar size 8 11 

line, then up to.a point midway between the 6 = 0.8 and the 

B = 1.0 lines, then right to the "klu = 11" line and finally 

down to the "P/<l>Pcr" scale reading 0.305. Interpolating 

between M1/M2 = 0.6 and 0.8, connect the previous point on 

the P/<!>Pcr scale to M1/M2 = 0.67 then right to find a o of 

1.26. Neglecting the story o for the present and continuing 

to the right to meet the moment line of 640 "k then up 

through Mc = 800 "k to P = 300 k, an eccentricity of about 

2.7" is defined and the point is still within the interaction 

boundary. Moving from the last point along a constant eccen­

tricity of 2.7 to the interaction curve for number eight 

bars, then left to the reciprocal curve and up to the top 

scale, a value of 0.0018 is obtained for l/P~x· For the 

other direction, since the section is square the same chart 

may be used. The first plot from P = 300 to "bar size 8" 

gives the same point, but from there to S = 0.4, then right 
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to klu = 11, and down gives P/cl>Pcr as 0.235. With the ratio 

M1/M2 equal to -0.25 it is impossible to intercept this curve 

so a value of one is assumed for o and the design moment re­

mains unchanged. Actually, were the M1/M2 curve of -0.25 to 

. be continued above the PI cl>P er axis, the interception with 

P/cl>Pcr of 0.235 lies at a o less than one. Since the code 

requires a o of at least one ·or greater, o = 1 must be used 

for the design. Since the design moment remains the same, 

the point at P = 300 and M = 500 lies within the interaction 

bound with an eccentricity of 1.67 11 • This point projected to 

the interaction curve, right to the reciprocal curve and up 

gives l/Pc'.,y as 0.0015. From the table in the lower left 

quadrant, l/P& is 0.00118. Then 

0.0018 + 0.0015 - 0.00118 = 0.00212 

and from this point down to the reciprocal curve and left to 

the load scale gives an allowable axial load of 335 k which 

is adequate. However, if k were to be determined from dif­

ferent dimensions than those of the final section, a new 

value for k must be obtained and the section checked again. 

So far the story o has not been considered in the ex­

amples. As an illustration of its effect, assume that in the 

previous example an analysis of the frame acting in the di­

rection of the minor axis (least moments) showed that for the 

story in which the column is located o is equal to 1.9. 

Since this is larger than the o of 1.0 used in the example, 

1.9 must be used to give a design moment of 960 11 k. The 



eccentricity is then about 3.2" and l/P~y becomes 0.00205. 

Then 

0.0018 + 0.00205 - 0.00118 = 0.00267 

This gives an allowable axial load of 267 k in which case 

the section is inadequate for biaxial bending. Therefoi'.-e, 

either the area of the section must be increased or larger 

bars may be tried in a new analysis. 
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For a third example a problem has been selected in which 

the axial load is less than the minimum required for applica­

tion of the reciprocal curve on the design charts. Consider 

an axial load of 125 k acting with moments of 2275 "k and 

1700 "k about the major axis and 2025 "k and 1215 "k about 

the minor axis. Assume the effective length in the direction 

of the major axis is 60 feet and 12. 5 feet in the a·irection 

of the minor axis. The value of B is taken as one for both 

axes. 

A rectangular section 20 inches by 24 inches will be 

tried with eight number nine bars, four bars in each short 

face. M1/M2 for the major axis is 0.75 and for the minor 

axis 0.6. Using Figure 3la, for number nine bars, 0.1P0 is 

given as 192 k in the table in the lower left quadrant. 

Since the design load is only 125 k, the reciprocal curve may 

not be used for a biaxial analysis. Instead, equation (6.3) 

must be used. For this equation the required values are 

Mcx' Mcy1 and Mu which is the vector sum of M0 x and Moy· 

For the major axis, P/~Pcr is found to be 0.36, o is 
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1.42, and Mc:x is 3250 "k. From the interaction curve for 

number nine bars, Mox is·4940 "k. Then for the minor axis 

P/ct>Pcr is 0.03, cS is 1 since the M1/M2 curve is to the left 

of P/¢Pcr• and Mey is 2025 "k. Moy is then read from the 

interaction curve as 3660 "k. 

Mu = VC4940) 2 + (3660) 2 = 6150 "k 

Then from equation (6.3) 

+ 2025 
6150 = 0.86 < 1.0 

Any value of this equation less than one indicates a safe 

section for the given loads and conditions. The closer to 

one, the more efficient the section is. Since the equation 

is conservatively in error anyway, it may be desired to re-

design for a smaller section or less reinforcing steel to 

obtain a value closer to one. 
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