
{

EFFICACY OF B-TREES IN AN INFORMATION STORAGE

AND RETRIEVAL ENVIRONMENT

By

ARTHUR DOUGLAS ~OTZER

Bachelor of Science

Austin Peay State University

Clarksville, Tenness·ee

1973

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE

July, 1975

Thes1.s
I Cf 70-

C 9sle..

C-6-f·~

. -,,

..

. ' • 1_·_. .r

EFFICACY OF B-TREES IN AN INFORMATION STORAGE

AND RETRIEVAL ENVIRONMENT

Thesis Approved:

Dean of te Gra uate College

923485
ii

Or:LAt-10.'AA
STATE UNIVERSITY

LIP..RARY

OCT 23 1875

PREFACE

This study investigates the efficacy of B-trees in an information

storage and retrieval environment. A practical information storage

and retrieval system is developed and used to test the performance of

B-trees.

I would first like to thank my parents for their tmderstanding

and encouragement. Without them, neither my education nor I would

have been possible.

A special note of thanks is due to my typist, Mrs. Jane Van Wye.

We both successfully struggled through our first thesis. I wish her

well on many more and thank her for her diligence and superior work.

I owe a great deal to my thesis adviser, Dr.· G. E. Hedrick, and

to the other faculty members of the Computing and Information Sciences

Department. I thank Dr. D. D. Fisher and Dr. D. W. Grace for their

assistance and suggestions and Dr. J. A. Van Doren for his help both

in and out of class. It has truly been an enjoyable two years. I

wish each of you the very best.

Among many others, it has been my privilege to become acquainted

\.dth two true gentlemen. I want to thank you for your friendship

and wish each of you, Mr. William S. Davis and Mr. Alan D. Eyler,

all of the success and happiness you deserve.

A final word goes to a very special yotmg lady with a mischievous

gleam in her eye. I thank you Reta, for the incentive you have given

me to go ahead and complete this project.

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

II. OVERVIEW OF DATA STRUCTURES

Introduction ..

Why Use Data Structures? •
Why So Many Different Types
Selection Considerations •
Classes of Data Structures

Computed Addresses

Vectors
Multidimensional Arrays
Scatter Storage • . • . • • • .
Direct Access to Secondary Storage

Linked Addresses .•.

Digraphs • • • •
Chains . • • •
Trees • • . • • •
Multilinked Lists

III. CHARACTERISTICS OF B-TREES

IV. OPERATIONS ON B-TREES

Searching .
Insertion

Basic
Two Way Split
Overflow .

Deletion

Basic
Catenation
Underflow

. . . "

. . . .

iv

Page

1

4

4

4
6
6
7

8

8
11
12
14

15

16
18
25
38

44

53

53
55

SS
56
58

59

59
62
63

V. DESIGNING AN ISRS .. , .

System Objectives
Files • . • . • .
Software • . • .

VI. SUMMARY AND RECOMMENDATIONS

SELECTED BIBLIOGRAPHY

APPENDIX A - USER'S GUIDE

APPENDIX B PROGRAM LOGIC FLOWCHARTS

APPENDIX C - SAMPLE REPORT PROGRAM OUTPUTS

APPENDIX D - SAMPLE JCL LISTINGS . . • . .

v

66

66
68
74

77

83

86

99

113

118

LIST OF FIGURES

Figure Page

1. A Digraph and Corresponding Connection Matrix • • 17

2. Sample Chains 20

3. Insertion and Deletion in a Simple Chain . 21

4. A Circular Doubly-Linked Chain Containing One Node 24

5. A Tree 26

6. Representations of General Trees 28

7. Binary Tree Representing an Arithmetic Expression • • 30

8. A Binary Search Tree . . • 31

9. An AVL Tree 34

10. A Schematic Representation of an Indexed Sequential
File . • •• 36

11. A Multilist File • 40

12. Inverted . 41

13. A B-tree of Order 4 • . 46

14. An Order Three B-tree Illustrating the Basic
Insertion Process . 55

15. An Order Three B-tree Illustrating a Split 57

16. An Order Three B-tree Illustrating Overflow 58

17. An Order Three B-tree Illustrating Deletion from a
Non-Leaf Node . • . • . • . . • . • . . • • . . . 60

18. An Order Five B-tree Illustrating the Basic Deletion
Process .. . 61

19. An Order Five B-tree Illustrating Catenation • 62

vi

20. An Order Five B-tree Illustrating Underflow . . 64

21. Article File Record Layout 71

22. Key File Record Layout 73

23. Sample File Updating Requests 92

24. Input/Output Schematic Diagrams . . 95

25. File Names and Descriptions 97

vii

CHAPTER I

INTRODUCTION

Certain applications of computer systems require the processing

of large amounts of information. This can place a heavy burden on

the system to be used. One solution to the data handling proLlem is

to use an extremely large main store. This has never been a feasible

solution primarily due to the cost of main storage units. Through

advanced technology it may someday be that main storage will be in

expensive enough to satisfy all demands placed on it (3) but the

reality of today is that large amounts of data must be placed on

secondary storage devices. Furthermore, if ready access is desired

for any item of data, only particular secondary storage devices can

be used. The use of secondary storage, however, introduces additional

time delays which can be significant.

This project has two major objectives. They are:

(1) To investigate the performance of B-trees in a secondary

storage environment; and,

(2) To develop an information storage and retrieval system

in which the performance of B-trees can be tested.

B-trees are a generalization of other tree-like data structures

and should be viewed in relation to the other data structures against

which they compete. A data structure is a collection of data items

which have some discernible, explicit or implicit, relationship.

both physical and logical considerations are involved when a data

1

2

3

REPORT program and sample JCL listings for all programs respectively.

CbAPTER II

OVERVIEW OF DATA STRUCTURES

Introduction

Why ~ Data Structures?

The simplest and probably most understandable way to store values

in a computer memory is to have a unique name for each value to be

stored. There would seem, however, to be certain times when the use

of single cell data structures is inappropriate. Wilde (23) presents

a complete discussion of the appropriateness of single-cell data

structures.

ll'liat factors cause single cell data structures to be unworkable

at times? An obviou5 response is the fact that certain sets of values

have intrinsic relationships which should be exploited. Other sets of

values may contain records of variable size, complexity, or number

w1lic11 resist the single cell structure approach. For other applica

tions, ~rogramming considerations may dictate that.single cell data

structures are inappropriate. Even the novice programner soon

realizes that certain programs require special handling.

Evidently there needs to be something that can bridge the gap

between what the user of a computer system or program wants to

accomplish and the manner in which the computer or programmer can

accomplish it. Data structures are one means of helping to bridge

4

this gap. A data structure is taken here to be the manner in which

the data for a program or system is stored. Data struci:ures may

contain mu,ch or little data and be complex or simple depending on

the environment. Data store<l in other than main memory generally is

called a data set, data base, or data uank. A data set usually

represents a.physical data structure, whereas a data Lase or data

bank generally represents a more complex logical-physical structure.

In this paper, several types of data structures are considered

in varying degrees of detail. This chapter is intended to give an

overview of the major classifications of data structures.

5

The aim is to present a framework in which i:he features of

different data structures can be viewed and compared and to define a

major portion of the terminology used later in the paper. Data

structure categories do not have strict boundaries with some satisfy

ing several definitions. The data structures are viewed as thvy

might be used in an information storage and retrieval system.

An information storage and retrieval system essentially entails

two types of operations. Data storage involves the insertion and

deletion of records or parts of records; data retrieval involves the

accessing of single or groups of records or partial records. Of

course other processes may take place but the above are of major

concern in this paper. One additional consideration is the physical

location of the data, in either main core storage or on a secondary

storage device. This topi~ is discussed at various times throughout

this chapter because the use of large systems involving large amounts

of data which need to be retrieved quickly for on-line applications

is increasingly important.

6

Why So Many Different Types?

There seems to be an endless number of completely different types

of data structures, arrays, linked chains, queues, AVL trees, etc.

All of these different types are useful due to the many and varied

applications of computers. A particular type may be appropriate to

several applications but others may work more efficiently or be

easier to program. A generally applicable rule is that for a partic

ular problem, a highly tailored data structure may be more efficient

than a generalized data structure. The variability in uses of data

structures.is a major catalyst in developing new data structures and

hybrid data.structures.

Data structures have many common features artd are not really as

different as the names imply.

Selection Considerations

Since the application does not dictate which data structure

to use, the user must use his own judgment in making a choice.

Several factors influencing the choice are mentioned below.

Harrison (10) suggests that to a large degree the efficiency

attributed to a data structure determines its applicability to a

particular problem. This efficiency may be either of the utilization

of storage or of the time necessary to complete the tasks required.

Constraints on one or the other may cause a trade-off to be necessary,

Again it is the responsibility of the programmer/analyst to define his

problem clearly and choose the proper method of solution.

Another consideration might be the ease with which the program-

ming can be accomplished. A program to be used only bnce may not need

a sophisticated scheme. Production programs, on the other hand, would

be better candidates for detailed analyses of their data retention

requirements.

When considering programs that might be subject to later change,

possibly by other programmers, it is well to keep in mind the com-

plexity of the data structures, and how understandable their function

will be to another programmer. A strong case might be made for a

data structure that is slightly less efficient but much clearer or

simpler.

Classes of Data Structures

The overall division of data structures adopted in this chapter

7

is based on the way in which individual data elements of the structure

are addressed. The two classes are distinguished as having a computed

address or a link address. Rough interpretations would say that an

element of the first class is addressed according to a mechanism

external to the data elements themselves and an element of the second

class is addressed according to information contained within one or

more of the data elements. The single cell data structure implicitly

defined above comes from the first class. These classifications,

slightly altered, came from Harrison (10).

Computed Addresses

Vectors

As a first step in developing data structures more involved than·

single cells, one could collect several single cells into contiguous

storage cells and call this a vector or one-dimensional array. This

implies that there exists some single relationship between the

elements comprising the vector. This collection of storage locations

is given a name representing all the locations in the vector. Indi

vidual locations are referenced by a single subscript indicating a

positional relationship in the vector. Note that the subscript is

not a portion of the contents of a data element as a key generally

is but simply implies positional value. Although there is no explicit

indication that element N + 1 immediately follows element N in the

vector, it is implicit in the definition of a vector. Depending on

the language used in implementing a vector data structure, there are

different regulations on the size of the vector (nwnber of elements)

and upper and lower bounds. The elements of a vector are in order by

subscript but the values stored therein may be in any order whatever.

8

A search for a particular value stored in a vector is most simply

programmed:-,by. 5llccessively comparing each element in the vector with

the one to be located untd.l a match is found or the end of the vector

is reached. This technique, known as a linear search, is likely suf

ficient for small size vectors (10 or fewer elements) but is not for

larger vectors. The nwnber of operations to be performed in a linear

search grows directly with the nwnber of elements in the vector.

9

Another technique for searching exists, though, in which the

number of operations grows as the base two logarithm of the number of

elements. This technique, commonly referred to as a binary search,

iteratively reduces the domain of· search by a factor of two. This

homes in on the value to be located rather quickly. An important

point is that a binary search on a vector can only be performed if

the elements of the vector are in order by value. This places an

extra regulation that must be provided for if a binary search is

desired.

The term binary search implies a method by which a search can be

performed. As is shown later, the same principles guiding a binary

search on a vector can be used in searching other data structures.

Note that any form of search perfonned on a vector attempts to deter

mine the position at which a known value is located whereas a

subscript reference does just the reverse, attempts to determine the

value at a known location.

Vectors generally are static data structures, i.e., subject to

few insertions or deletions. This is apparent when one remembers

that the elements of a vector must be contiguous in storage and an

insertion or deletion necessitates an amount of data movement in order

to make room for an inserted element or squeeze out the hole left by

a deleted element.

Several specialized vectors which only allow insertions and

deletions at the ends are quite useful in many applications. These

vectors can be called stacks, queues, and deques although vectors

are not the only means by which stacks, queues. and d,eques can be

implemented.

10

Stacks. A vector in which single items are entered and removed

from a single end of the vector is termed a stack. No data movement

is involved in a stack since the insertion or deletion·is always at

one end, and only the size of the stack changes.
.,
A stack is con-

structed such that the last item "pushed" onto the stack is the first

item "popped" from the stack, such as cafeteria trays. "Push" means

to add a single item to the stack and "pop" means to remove a single

item from the stack. Since all operations take place on a single end,

the stack grows or shrinks only in one direction and is only con-

strained by the size of the containing vector.

Queues. Queues are similar tq stacks in that single values are

entered or removed from the queue but are different in that the insert

and delete operations are made on opposite ends of the structure.

This causes the first item to be entered into a queue to be the first

item removed from the queue, such as cafeteria customers in a checkout

line. Two addresses, pointers, references, etc., indicating the head

and tail of the queue are used in order to maintain the positions for

removal and entry. In a stack only the top of the stack varies, but

in a queue, both the head and tail may move, such as cafeteria cus-

tomers, creating a problem if the end of the containing vector is

reached but storage is actually available.

Stacks and queues are quite useful in a wide range of applica-

tions and are rather easy to use and understand. They can be

generalized into a double-ended queue or deque (dequeue according to

Stone (2 IJ)) •

11

Deques. With a deque,single values can be entered or removed

from either end. Thus both stacks and queues are restricted deques.

Rarely are the full facilities of a deque required; usually some re

stricted and hence, easier to program, version is used. Knuth (13)

uses the terms "left" and "right" for referring to the ends of a deque.

Multidimensional Arrays

If a set of data items are related in more than one way, a vector

may not be sufficient to describe all the relationships involved. In

these cases a multidimensional array may be appropriate. One might

view a multidimensional array as a collection of several vectors, each

vector having all but one of the relationships held constant and the

single non-constant one varying throughout its possible values. An

array of this type is stored in contiguous locations as is a vector,

and has its individual elements identified by subscripts (one subscript

for each relationship or dimension). Since the array represents a

multidimensional space but is stored in a one-dimensional memory space,

there must be an address calculation which determines which element

of the array corresponds to a particular subscript reference. Knuth

(13) presents a discussion of this calculation and also discusses some

additional related topics, particularly triangular arrays. Just like

vectors, which are a special case of multidimensional arrays, inser

tions and deletions are rather ill-advised. The principal use of

arrays is when a static table of data is to be referenced not by con

tents but by positional relations in order to find a value.

12

Scatter Storage

In the above types of data structures, the value to be referenced

is located by calculating its address from a value or set of values

denoting its positional property in the structure. In scatter storage

techniques,a key, often a part of the record to be located, is manip-

ulated in order to obtain the address of the desired item. This
1

manipulation may involve either a logical or arithmetic transformation

of the key or a combination of the two.

Scatter storage techniques generally involve a vector of loca-

tions which contains the values to be stored. As each key value is

encountered it is transformed by the hashing function into an address

of one of the elements in the vector and the data item is stored at

that point. The technique thus promises very quick insertion per-

formance. A problem arises if an item is already stored at the cal-

culated hash address. This is called a collision and can be dealt

with in many ways.

There seem to be as many collision-handling techniques as there

are people with imaginations. A simple scheme is to search linearly

through the vector until an opening is found for the new item. This

could be a long search if the vector is more than partially filled or

the keys are not randomly distributed in the vector. Another scheme

is to successively generate new addresses at random until an opening

is found. This necessitates the same sequence of addresses to be

generated for a search request. Several methods utilizing linked

lists including overflow areas are in use. Morris (17) describes

13

many of these techniques.

One way to reduce collisions is by using a good hashing function

or transfonn. Aside from producing addresses \~ithin the specified

range of addresses, the function should ideally spread the number of

address occurences uniformly over the address space. It is assumed

that the possible keys outntunber the possible addresses. This is not

the case with vectors or arrays which might be considered as special

ized cases of scatter storage. Much work has teen done on the

development of useful hashing functions. Maurer and Lewis (16)

review several common types of hashing functions in addition to other

scatter storage related topics.

Even though the problem of collisions prevents the achievement

of perfect retrieval performance, scatter storage is still a very

quick means of accessing a data item. Insertion is also rather good

involving little data movement with most collision-handling techniques.

JJeletions are a bit more troublesome. With many collision-handling

techniques, an item to Le deleted cannot simply be removed from the

set of items. If it were just removed, a hole would be created which

would isolate any following items. If a search routine came upon the

hole, it would conclude incorrectly that the item was not found even

though it might be in the isolated items. A solution is to tag

deleted items with a special code indicating that the position is now

available for insertion but should not terminate a search. ~orris

(17) notes that a deletion handled in this way has no beneficial

effect on later searches.

It would thus seem that scatter storage is a reasonable way to

go. This may well be the case if the only type of retrieval to be

performed is for a single item. The problem is that no scatter

storage technique preserves or creates order in the keys. If a par

ticular application needs to access all the stored entries in key

value order, they must first be sorted or some additional mechanism

must be attached to the scatter storage technique.

Direct Access to Secondary Storage

14

For a great many applications the amount of data in a data set

may be too large to be contained entirely in main storage. In these

cases some secondary storage device must be used as an additional

store for data. Programs still may need to retrieve, insert, or

delete items from the data set even though it now resides outside of

main memory. The notion of scatter storage can be extended to cover

these needs. Now instead of developing a main memory address, the

hashing transform develops an address of the item on the secondary

storage device. This requires the secondary storage device to have

direct access capabilities. Thus tape units which must be processed

se(;uentially are not suitable, whereas disk or drum units are.

The hashing or randomizing transform may come in several forms

(11). The actual physical device address may be used in certain

settings, or a numeric value indicating an offset from the physical

beginning of the data set might be appropriate, or a separate cross

reference list may be retained which is first consulted and provides

the address to be used. In any case, many of the same objectives

such as ease and speed of calculation and even distribution of keys

stated for scatter storage also apply here. An additional consider

ation in accessing secondary storage is the time delay resulting

15

between the issue of a command and the realization of the actual

transfer of data. Electronic switching and mechanical movement

delays contribute to thiS additional consideration. Thus secondary

storage deviCes are actually only pseudo-random access devices.

Attempts to reduce this time delay may influence the choice of method

and placement of overflow records.

Computer manufacturers generally supply at least one direct

access retrieval method with their software packages and some hav~

several slightly differing techniques from which the user may choose

(4, 11) . It is v1orth emphasizing that direct access techniques, just

like scatter storage, do not preserve any logical order to the keys

or records and hence are unsuitable if it is important to retrieve

more than a single record at a time.

Linked Addresses

The data structures discussed above are sufficient to satisfy

the processing needs for a significant percentage of computing appli

cations but are rather rigid. The structures discussed in this

section provide the programmer with the option of choosing data

structures which are more flexible and hence can be tailored more

easily to a particular application. The structures have the com~on

characteristic that the relationships they imply between the data

items are not dependent on physical placement of the items but are

explicitly stated within the structure itself. This divorcing of the

logical relationship from the physical relationship is what contrib

utes to their flexibility. The term "linked list" is used often

throughout the literature and is here taken to mean any data structure

16

which internally contains information describing the data item rela-

tionships.

There is a close association between the data structures dis-

cussed as linked lists and the notion of a directed graph (2, 8).

This association may help to exhibit the similarities and differences

of the types of linked lists to be presented.

Digraphs

Berztiss (2, p. 103) defines a digraph as follows:

A directed graph (digraph, oriented graph) is the
ordered pair D= (A, R), where A is a set of nodes (points,
vertices) and Risa relation in A, i.e., Risa set of
ordered pairs, whic~1 are called arcs (lines, pointers).

Only finite digraphs (A is finite) will.be considered in this paper.

The relation R can be illustrated with a set of arrows connecting

the nodes in a planar representation of a digraph. In Figure 1,

the set of nodes is {A, B, C, D, E, F} and the relation is illustrated

by the directed arrows in the figure. The circles used to represent

nodes do not imply the internal composition of the node. In different

linked lists a node may itself be a complex digraph. Nodes are points

of reference but generally do correspond to the information content

of a data structure. Arcs, on the other hand, may be indexes or

actual addresses or offsets from a specified address or perhaps some

other means of indicating the position at which the corresponding

arrow is to terminate.

The second part of Figure 1 displays a connection matrix for

for the digraph to its left. Each ~· (I, J) entry in the connection

matrix represents the nl.Dllber of connections (arcs) emanating from

17

A B c D E F

A 0 0 0 1 0 1

B 1 0 1 0 1 0

c 0 0 0 0 0 0

D 0 0 1 1 0 0

E 0 0 0 0 0 0

F 0 0 1 0 0 0

Figure 1. A Digraph and Corresponding Connection Matrix

node I and terminating at node T. If an arc <x, Y) connects node X

to node Y, then Xis said to be the initial node and Y is said to be

the terminal node. The connection matrix displays several useful

pieces of information about the digraph. Ti1c sum of the elements in

a rm·; tells how many arcs have that node as an initial node and the

sum of the elements in a column tells how many arcs have that node

as a terminal node. These sums for each node are called the out

degree and indegree of the node, respectively. Thus node A has

indegree of one and outdegree of two, and node C has indegree of

three and outdegree of zero. A 1 on the diagonal of the matrix

indicates that an arc exists from a node to itself (called a loop).

The connection matrix and closely related indegree and outdegree

18

information are referred to often both for consistency and clarity in

the development of the data structures.

Some other useful terms relating to digraphs are path, path

length, and cycle. A path is said to exist from node X to node Y if

a sequence of arcs can be found which connect node X to node Y. The

number of arcs in this path is called the path length. Thus there is

a pati1 of length one from B to E in Figure 1 and two paths of length

two from A to C. A path from a node to itself is termed a cycle.

Note that a loop is a cycle of length one. A more detailed discussion

of digraphs relating to linked lists can be found in several books

including ones by Berztiss (2), Iverson (12), and Knuth (13). The

book by Harary, Norman, and Cartwright (9) presents a thorough dis

cussion of directed graphs.

Chains

It is not uncomnnn to find a restricted definition of linked

lists to include only chains. Chains can be viewed as vector elements

v.hich have been uprooted from their contiguous physical locations and

made to reside in locations not necessarily contiguous. The rela

tionship formerly manifested in physical proximity is now represented

by links within each data item (node) indicating the location of the

next node. These links may take many forms but always indicate the

terminal node of the arc represented by the link. This arrangement

provides for much easier insertion and deletion of list items. Con

trast this vdth vectors which require much data movement when an

item is to be inserted or deleted other than at an end of the vector.

Simple Chains. In the most elementary setting, a node may con-

sist of some information and a single link. The link indicates the

next node of the chain. Figure 2 (a.) illustrates a chain containing

three nodes. Note that the symbol 0 is the link of the last node in

the chain. This represents some special signal that no more nodes

are to follow.

In terms of a connection matrix for a simple chain we can say
J

that the outdegree of every node but one is exactly one and the inde-

gree of every node but one is exactly one. The special nodes are the

first and last (head and tail) nodes in the list which have indegree

of zero, outdegree of one and indegree of one, outdegree of zero,

respectively. The list is thus accessible in one direction, from

head to tail passing through each node until the one desired is en-

19

countered. This is in contrast with the direct referencing capability

vectors.

Stacks, queues, and deques discussed as vectors can be implement-

ed easily as simple chains with each insertion or deletion altering

the list length by one and changing either a head or tail pointer.

The insertion and deletion operations on simple chains are not as

restricted by data movement as ·those· on vectors, however, implying

that chains can be more flexible than vectors when insertions and

deletions are considered. These operations are illustrated in Figure

3. For an insertion only two links need to be changed, and for a

deletion only one link needs to be changed. The algorithms to accorn-

plish insertions and deletions are slightly more complicated when the

special cases of an empty list and changing head or tail nodes are

included, but are still quite clear and concise.

a.) Simple Chain

I ;p
b.) Circular Chain

c.) Doubly-Linked Chain

d.) Circular Doubly-Linked Chain

Figure 2. Sample Chains

20

21

I I ~-~''
a.) Original Chain

b.) After an Insertion

I+
c.) After a Deletion

Figure 3. Insertion and Deletion in a Simple Chain

22

Circular Chains. One difficulty with simple chains is that only

those nodes following a given node can be reached. A slight modifi

cation is to change the 0 link in the tail node to link to the head

node. This creates a circular chain, sometimes called a ring. The

term ring is ambiguous (Knuth (13)) and is not used in this paper.

Figure 2 (b.) illustrates the change needed to create a circular chain.

This modification simplifies the connection matrix relation, :

causing each node to have indegree and outdegree of one. An interest

ing characteristic of a circular chain is that the ends of the chain

essentially meet and one address can indicate the location of both the

head and tail of the chain. This can have beneficial implications in

implementing a queue or deque with a circular chain. Additionally,

algorithms to insert and delete nodes can be simplified somewhat

using circular lists.

Doubly-Linked Chains. For certain applications it is helpful to

be able to scan the list of nodes both forward and backward from a

specific node. This can be accomplished by installing another set

of links in the nodes as illustrated in Figure 2 (c.). Now a node

contains information indicating both its successor and predecessor in

the list. This is essentially superimposing one simple chain onto a

mirror-image simple chain. This view is supported by the connection

matrix for a doubly-linked chain which is a symmetric matrix with each

node other than the head and tail having indegree and outdegree of two.

The extra linkage is quite beneficial when a deletion is to be

performed. With a simple chain the predecessor of the node to be

deleted must be known usually be tracing through the list for the node

to. be deleted recording the predecessor at each step. With doubly

linked chains, the predecessor is immediately known and no search is

required. This can be rather helpful time-wise, if the list is long.

The additional benefits of two-way linking do not come without a

cost, however. The extra set of links take storage, either reducing

the useful portion of a node or increasing the size of a node. The

insertion and deletion algorithlns also are complicated to a certain

extent due to the additional links which must be set or changed.

Circular Doubly-Linked Chain.s. Just as circular chains are a

logical extension to simple chains, circular doubly-linked chains can

be easily constructed from doubly-linked chains. The change required

is to set the forward link of the tail node to point to the head node,

and the backward link of the head node to point to the tail node.

With this arrangement any type of pass through the nodes can be made

beginning from any point in the chain. Figure 2 (d.) illustrates the

appearance of a ciJ:cular doubly-linked chain. The connection matrix

for a circular doubly-linked chain has each row sum and each column

sum equal to two. Note that this is true even if the list only has

one element. Both the forward and ba~kward links point to the single

node and its indegree and outdegree are two. Figure 4 illustrates

this.

Circularly linking a doubly-linked chain can simplify somewhat

the insertion and deletion algorithms associated with this type of

structure. The requirements of the particular application snould be

studied before deciding to 'use double linking and its associated

higher storage requirements.

Figure 4. A Circular Doubly~Linked Chain
Containing One Node

A subject not yet directly addressed is the manner in which the

chain itself is referenced. Two approaches seem to be popular. In

one, separate locations are kept which point to the head or tail or

some intermediate node in the chain. In the second approach, these

separate pointers are incorporated in the chain itself but always

kept available. This second approach has the added benefit that the

list is never completely empty but always has at least the fixed

pointer.

In review, chains are flexible structures, with the ability to

24

accommodate insertions and deletions efficiently. They also are easy

to program and understand. The major disadvantage is the inability to

reference directly elements contained in the list. To find the nth

node, the links must be traced until the nth node is found. This

tracing of links may be a strong deterrent when large lists are con-

sidered. It may not be important, however, if the nodes need to be

referenced sequentially.

Storage Management. It has been assumed in the discussion of

chains that when a node is needed for insertion it will be available

or when one is deleted it will be reclaimed properly. These features

are not automatic but must be provided for by the programmer or by

25

the programming language if it has the power to do so. Several

storage management schemes exist for the selective disbursement and

reclanation of storage locations. Knuth (13) and Sherman (19) present

discussions on this subject.

The subject of chains is treated to some extent by a great many

authors. Notable among these are Knuth (13), Harrison (10), and Stone

(20).

Trees

A large number of natural p~ysical relationships require struc

tural representations other than chains. For example, a chart

illustrating the managerial levels in a large corporation cannot be

depicted easily or clearly using one of the chain structures discussed

above. The hierarchical nature of the relationships contains connec

tions which cannot be accommodated with even a doubly-linked chain.

This type of data arrangement necessitates a new data structure which

is called a tree and is specifically designed to accommodate hier-

archical data relationships.

General Trees. An example of a tree is illustrated in Figure 5,

along with indications of th~ meanings of certain special terms

associated with trees. In terms of the digraph analogy used in des-

26

cribing other linked lists, the indegree for each node in a tree is

exactly one except for one special node called the root which has in

degree of zero. Further, all nodes having outdegr~e of zero are

Level 2

Level 3

Leaves
Level 4

Figure 5. A Tree

called leaves (terminal nodes or twigs by other authors). The out~

degree for all non-leaf nodes in a general tree can be any positive

integer. The restriction on the indegree of all non-root nodes re

sults in there being a single path from the root to any node. The

nodes are divided into levels (1-origin numbering) according to their

path length from the root node. Finally, an important point is that

in a general tree, no order between the branches from a node is to be

27

inferred. This last point will be expanded in a later discussion. In

Figure 5., node C is said to be a successor of node A; node C is said

to be the predecessor of nodes F and G; nodes B and D are said to be

siblings of node C; and node B is said to be the root of a subtree

consisting of nodes B, E, and H.

There are several methods which can be used to represent general

trees within a computer. Three of these are illustrated in Figure 6.

The tree represented is that in Figure 5.

The first type is an explicit linking representation. Each node

contains the linking information necessary to point to its successors.

Only as many links are needed as there are successors. This represen

tation is a logical extension to chains with the 6ne-way linking of a

simple chain being expanded to include possibly several successors.

The backward linking of doubly-linked chains can be approached in trees

using threads (Knuth (13)), but that subject is not discussed here.

A vector representation of a tree is designed essentially for

static trees. A node vector in a particular order (Iverson (12))

and an associated degree vector are entirely sufficient to describe a

tree. This type of representation is not as easy to update as the

explicitly linked, but is more conservative of storage since the links

are not required.

The third type of representation uses a bifurcating node: it is

one which contains exactly two links. Through an ingenious mapping,

any general tree can be represented by a tree constructed from bi

furcating nodes. The links in the nodes of such a tree are designated

as left and right. This is a more important premise than might seem

obvious. An order is placed on the branches from a node. This pre-

28

a.) Explicit Linking Representation

Node Vector Degree Vector

A 3
B 1
E 1
B 0
c 2
F 0
G 0
D 0

b.) Vector Representation

A

c D

E 0 F G 0 0

H I !ITI
c.) Binary Tree Representation

Figure 6. Representations of General Trees

29

vents such a tree structure from being represented as a digraph and

hence is not a ~ree in the strict mathematical sertse. Rather, it is

an or<lere<l tree, an<l subtrees are referred to as left an<l right sub

trees. The mapping then takes the form of using the left link of a

binary tree node (taken from the two link appearance) to point to a

successor of the node in question and the right link to point to a

sibling. The hierarchical relationship obvious in the original tree.

is not quite so obvious in the ordered tree but can be recovered by

using the knowledge of how the binary tree representation of the tree

was constructed. Note that there are several links which are marked

as null (~) in the binary tree representation (Figure~ c.)). A

point worth considering is that the right link of the root is alwa~s

null when representing a single tree. This can be utilized where

several trees--a forest of trees--is to be represented by linking

this root node to the root node of the next tree in the forest.

The necessity of precisely defining the structure of a tree when

represented in a computer makes ordered trees of great importance

since they have a very predictable form.

Binary Trees. Although binary trees can be used to represent

general trees, their usefulness is not so restricted. For instance,

Figure 7 illustrates a binary tree representing the arithmetic

expression A* (B + C). This representation obviates the need for

parentheses to denote priority of operators since the hierarchial

nature of the tree does that automatically.

Another use for binary trees is to represent a set of data such

that the operations of searching, insertions, and deletions can be

Figure 7. Binary Tree Representing an
Arithmetic Expression

executed most efficiently. A binary search on a vector of sorted

items has excellent search characteristics but rather poor update

performance and linked lists (chains) have the opposite properties.

Binary trees can serve to combine the two techniques and produce an

30

all-around efficient data structure which achieves the best properties

of each.

Figure 8 illustrates a small binary search tree, as it will be

called here. The values in the circles indicate the values of the

keys for which a search will be made. The node may contain additional

information but only the key is shown. Note that the keys in the

left subtree for any node are lexicographically smaller than the key

in the node and that the keys in the right subtree for the node are

all lexicographically larger than the key in the node. Thus if o~e is

searching for a key value of X, and is at a node with key value Y, the

31

Figure 8. A Binary Search Tree

left subtree should be searched if X < Y and the right subtree should

be searched if X > Y. If X = Y, the search is complete. If the tree

is perfectly balanced, i.e., the path length from the root to the

farthest leaf node is not more than one greater than the path length

to the nearest leaf node, then the tree should have search character

istics near those of a binary search (on the order of log 2N, where

the tree has N nodes). The tree also has the advantage of requiring

no data movement when an insertion is to occur--only the changing

of a few pointers.

A binary search tree can have undesirable search characteristics,

however, if the tree is not built randomly. For instance, if the tree

is constructed with keys· being input already in order, then the tree

degenerates to a linked list with order N probes needed to search the

32

list. This may or may not be a possibility in a certain application

but should be realized. Nievcrgel t (18) presents a comparison of

IJinary search trees with some other common data structures and Knuth

(14), presents detailed analyses and observations on the performance

of binary search trees.

Traversals. F:or a particular application it may be necessary

to retrieve a part or all of the information contained in a binary

search tree. Since the nodes are not necessarily stored in contiguous

locations, a sequential pass through memory does not suffice. Some

means of systematically tracing the left and right links is needed

to effectively recover the information.

A binary tree essentially can be divided into three parts--a

left subtree, a root, and a right subtree. Notice that this division

applies not just to entire trees but to subtrees as well. Tliree

general approaches to the traversal question are most often applied.

Tl1ey are described and named below: (these definitions correspond

to those given in Knuth Volume 1. Second Edition)

Inorder Traversal
Traverse the left subtree in inorder
Visit the root
Traverse the right subtree in inorder

Preorder Traversal
Visit the root
Traverse the left subtree in preorder
Traverse the right subtree in preorder

Postorder Traversal
Traverse the left subtree in postorder
Traverse the right subtree in postorder
Visit the root

Here visit means to accomplish whatever is to be done with the

information in a node once it is accessed.

33

The traversal schemes indicate where to go next when a node is

encountered. The definitions apply recursively throughout a tree and

hence require a stack or recursion in order to be able to back out of

the tree from some internal node. The traversal names used here

caJne from Knuth (13) who changed terminology in the second edition.

The reader is warned to check his tenninology before reading and

comparing traversal schemes in order to avoid confusion. Wilde (23)

also presents a readable discussion of traversals, as does Stone (20).

AVL Trees. AVL trees amount to binary search trees which are

restricted from becoming out of balance. This guarantees an

efficiency of searching which cannot be guaranteed with binary search

trees.

Balance tags in each node of an AVL tree are maintained to

indicate the degree to which the subtrees of each node are out of

balance. If an insertion or deletion causes a node's subtrees to

become out of balance by more than one level, the balance tags detect

this and signal that corrective action is needed·. This corrective

action involves "rotating" the tree locally to produce a tree that

is in balance. Although these rotations may need to be propagated

upward through the tree, Van Doren and Gray (22) have shown empir

ically that the average number of transfonnations necessary after an

insertion or deletion are approximately 0.5 and 0.23, respectively.

The guaranteed upper bound on the number of probes into an AVL tree

has been established to be about 1.5 log 2N (14, 22) but empirical

evidence indicates it is lower (22).

34

According to the algorithms discussed in thtii paper by Van Doren

and Gray (22), if the key 45 were inserted into the tree in Figure 8,

the node 10 would be out of balance by more than one level and would

require restructuring. After restructuring, the tree would appear as

in Figure 9.

Figure 9. An AVL Tree

AVL trees then, both in theory and by empirical evidence, seem

to be useful data structures for searching and for updating. It

seems, however, that AVL trees are most useful when used in internal

memory. A tree with only 10 levels when stored on secondary storage

might require 10 separate secondary storage accesses. Due to the

extreme difference in speeds of internal processing and secondary

storage retrieval, this would very likely be prohibitive.

,,

If a set of data is to reside on secondary storage but needs to

be accessed randomly, the di;rect accessing method ~iscussed along

with hashing would be a likely candidate, but when it is desirable

to retain logical ordering, another approach is needed. If the

restriction on the number of branches from a node is relaxed, the

number of keys and the size of a node can increase and the number of

levels in the tree can decrease. The fewer levels there are, the

35

fewer secondary storage accesses are required. This is the rationale

behind the next two data structures.

Indexed Sequential. Chapin (4) cites six computer manufacturers

as having available indexed sequential software for accessing sets of

data stored on secondary storage. An indexed sequential file

(a logical file is generally used to refer to a physical data set on

secondary storage) usually is a tree structure having three levels.

The first two levels are indexes subdividing the file into smaller

pieces for searching. The third level contains the actual information

to be referenced. In IBM tenninology (11), the first level is termed

the cylinder index and contains the highest key on each cylinder

containing a part of the file and a pointer to that cylinder. Each

cylinder, in turn, has a track index which indicates the highest key

on each track of that cylinder. Finally the track is searched to

retrieve the desired record. Sometimes there are more or fewer than

two levels of indexing but two is generally the case, although one

is required. The nu~ber of cylinders and nurnber of tracks per

cylinder are set prior to creating the file so there is an upper

limit on the size of each "node". This arrangement makes it possible

36

to find a record in a nwnber of probes equal to the nwnber of levels

of indexing.

The major problem with indexed sequential files concerns the

handling of insertions. A static file is most efficient both for

direct and sequential processing. Consider the schematic layout of

a disk pack containing an indexed sequential file in Figure 10. the

prime data area contains the original file. If an attempt is made

to insert a record into a full track, the later records on the track

are moved up in order to make room for the new record and the one

bwnped off the track is placed in an overflow area for that cylinder.

Tracks

Cylinders ~

TrE ck Inc ex

Prj tme Oat~
>< Indepe
Cl> Area "C
~ Overf t-1

1-1
Cl>

"C
~

•ri
f""4.
>.
u

Cyli nder C ~erflo~

Figure 10. A Schematic Representation of an Indexed
Sequential File

ndent

[ow

Another insertioo into that cylinder bwnps another record into the

overflow area and, in order to retain logical order, the records are

linked together. If a cylinder overflow area becomes full, an

independent overflow area can be used with all the overflow records

being 1 inked together. Then wl1en a search is called for, it may Le

necessary to trace through a chain of pointers to find the record.

This can degrade the performance of a program using an indexed

sequential file greatly. This method of overflow insertion can be

likened to unbalancing a binary search tree.

Deletions from an indexed sequential file are only marked and

the holes created are only filled when the file is restructured. A

restructuring involves rebuilding the file, usually a time-consuming

process .. It is unfortunate but true that the most active files are

usually the largest and hence take the most time to restructure.

In addition to the references cited above, Flores (8) presents an

entire chapter on the subject of indexed sequential access.

37

B-Trees. The multiway branching structure known as a B-tree (1)

can be used to retain sets of data on secondary storage with a guar

anteed efficiency on storage utilization and a guaranteed fewer

number of accesses than the AVL trees discussed previously. The

structure also is quite efficient in handling insertions and deletions

with no degradation of search characteristics as with indexed

sequential files.

Each B-tree node consists of a set of keys and links, with there

being one more link than key. The number of links in any node is

guaranteed to be more than about half a predetermined maximum for

the node. This maximum is called the o:r;der of the B-tree.

b-trees were first discussed by Bayer and Mccreight (1) and

are treated in later chapters of this paper.

Mul tili11ked ~ists

38

Lists. Knuth (13) discusses a linked structure he calls a List

(the capital is u~ed to distinguish it from the more general term

list). The significance of a List is that it allows the full range

of connections possible with a digraph. In other words, overlapping

lists and even recursive lists are possible. Overlapping lists

(trees with common subtrees) can be usefully applied· to some appli

cations to reduce the redundancy of data necessary if separate trees

with separate subtrees are constructed. Recursive lists, lists

involving paths closing on themselves, should·be used with great

care or endless operations might occur. For instance, if a search

operation expecting to find a null link enters a cycle, it will not

terminate. Likewise, a copy operation may run into the same problem.

Trees are a restricted case of Lists and cai1 always be represent

ed as Lists. The reverse, however, is not true; not all Lists can

be represented as trees. Trees are a proper subset of Lists. Knuth

(13) discusses the programming implications of Lists and several

approaches to their implementation.

Large and complex data sets are often located on secondary

storage, making the time for each secondary storage access important.

Although there may be an index to the data set, it is not necessarily

a hierarchical one as in indexed sequential files.

39

Multilist. A multilist file (6, 15) consists of a set of records

which are interconnected with several one-way chairls. A multilist

file with only one chain of links active amounts to a simple chain

discussed earlier. As an exan~le, consider records~containing an

employee name, a job title, and his number of deductions. If it is

important to retrieve all records of a specific job title or of a

specific nuinber of deductions, links corresponding to these fields

can be placed into the records and an index containing the possible

common field types can be established. Figure 11 illustrates this

type of data structure. In order to find all lawyers, first the

title index is searched for lawyer and then the links are followed

to locate record numbers 50 and 20 until a ~ link in the title link

field is encountered. A similar approach would be used to serve a

request for a number of deductions. To find all lawyers with 0

deductions, both chains have to be followed looking for common records.

Since the records are probably stored on disk, each record retrieval

necessitates a disk access. This is the major disadvantage with

multilists. A large file may require many disk accesses--too many

to be useful.

The approach does have some desirable features, however. New

records can be inserted into or deleted from the file with relative

ease due to the linked nature of the relationships. The simplicity

of the approach is also a factor in its favor. If the number of

disk accesses could be reduced, the data structure would be much

more attractive.

40

Record No.

10 Tyrone Shulace

Title Index

Plumber Sally Mander

Lawyer

Deduction Index May Tag

0

1

2

Bill "B-tree" Davis

Figure 11. A Multilist File

41

Inverted List. Using an inverted list (6, 15) approach can help

to solve the searching problem encountered with multilists. In an

inverted list, the links contained in the records are removed from

the records and placed into the indexes. Thus the indexes for the

proLlem in Figure 11. taken as an inverted list would appear as in

Figure 12. It is readily apparent from this information that there is

Title Index

Plumber 10 30 40

Lawyer so 20

Deduction Index

0 20

1 40 30 10

2 50

Figure 12. Inverted List Indexes

a single lawyer with zero deductions. This can be determined solely

from the indexes and the only time the record file need be accessed

is to retrieve the requested records. In fact, if the entries in the

index are kept in a consistent order, only one pass of the indexes

need be made.

Although the disk retrieval characteristics have been much im

proved, this approacl1 leads to other difficulties. the indexes are

much more difficult to update .. The index entries must be variable

in length to contain the variable number of inverted list record

references. If the logic to maintain variable blocks is not used

but, instead a large bloc!: is allocated for each index term, much

space will be wasted. A second consideration is that, if the ref

erences are to be kept in collating order, they must be inserted

in the proper place, magnifying the updating difficulty.

A file is said to be partially inverted if only a portion of

the fields in each record are inverted whereas the file is said to

42

be totally inverted if all fields are inverted. Tl1e idea of inverted

or multilist files can be applied to other uses than simply connect

ing like attributes. For instance a separate chain or inverted

index entry could be used to retain alphabetical order for the names.

Controlled List Length Multilist. A connection between the

multilist and inverted list approaches can be achieved through a

multilist with controlled list length (15). This essentially means

that some upper limit is placed on the number of records that can be

contained in each multilist chain. A limit of five would say that a

file containing 15 lawyers would have three chains corresponding to

lawyer and hence three index entries.

An advantage to this approach is that, under certain circum

stances, the accessing of records can be overlapped. In other words,

when a record from one chain is coming in, a record from another

chain may also be coming in. Unfortunately, the ability to process

intersection and union requests in the index itself as is done with

the inverted list, cannot be done with this approach. The approach

may, hoKever, be faster than a straight multilist and the ability

to vary the upper limit on the list length from index generation to

index generation may be an advantage.

The mul tilist with controlled list length bridges mul tilists

and inverted lists. Note that an upper limit on the list length of

one produces an inverted list and no upper limit pro'duces a straight

multilist.

43.

Cellular Multilist. Since a secondary storage unit is modular

Ly nature, it is reasonable to take advantage of this modularity. A

cellular multilist (15) is based on this premise. The controlling

factor on the length of a chain is taken to be the number of records

in a given cell of the secondary storage device. Each list contains

records wholly contained in the same cell. This promotes the over

lapping of accesses only achieved by coincidence with the multilist

with controlled list length. A programmer or system designer should

be very familiar with not only his programming requirements but the

features of the equipment he is to use if he wants to speed up his

execution.

CHAPTER III

CHARACTERISTICS OF B-TRcES

In 1972 Bayer and Mccreight (1) reported development of a new

data structure termed a B-tree. The nev: data structure was designed

to serve the user in organizing and maintaining an index to a large

dynamically changing random access file. An index is some means of

retaining keys to the records in a file. The indexes considered

were ones so large that they could not be kept in main storage but

had to reside on secondary storage (typically a movable head disk

unit). The data structure used reduced effects of disk storage time

delays by reducing the mr:ber of disk accesses r~quired. Additionally

E-trees 'llere found to gua~~antee a reasonable percentage of storage

utilization and to be acceptably easy to update.

A B-tree is a tree structure in which each node can have multiple

branches. The maximum number of branches possible from each node is

termed the order of the node. It may be possible that the order

varies from level to level, 1ut usually is the same for each node in

the tree. If the order is the same for each node, it is called the

order of ti1e tree, otherwise the order of the tree is not constant

and not specified. Thus a B-tree of order 11 has a maximum of 11

branches per node.

A data structure is a B-tree if and only if it satisfies the

following conditions:

44

1). Every node has at most M successors (Mis the order of the

L-tree).

2). Every node, except the root and the leaves has at least

r M/2 l successors (r x 1 indicates the smallest integer that is

greater than or equal to X).

3). The root node has at least two successors unless it is a

leaf, in which case it is the only node in the tre~.

4). All leaves have null pointers and are on the same level,

v:hich in fact is the bottom level of the tree.

5). A non-leaf node with K successors has K - 1 keys. The

above conditions will be referred to as properties of a B-tree.

The above properties imply several things about B-trees.

Properties 1, 2, and 5 tc.~ether imply that every node of the tree

contains between M/2 - 1 and M - 1 keys. This says that each

node is at least half full or there is at least 50% storage utiliza

tion. It is shmm later that the storage utilization is actually

much higher than 50%. Property 4 indicates that all leaves are

on the same level, the Lottom level of the tree. This forces the

tree to be in constant balance, guaranteeing searching efficiency.

A side implication is that since all leaves appe~r at the bottom

level, the tree must grow upward and not downward as all other tree

structures have. This is illustrated in the next chapter.

45

Figure 13. illustrates a B-tree of order 4. The root node for

the B-tree contains the key SO and there are three levels in the tree.

The convention is used here that any link field which is blank

should be taken to be null. It is of critical importance when

sequential lookup is desired that the keys within a node be in their

46

proper collating sequence. As a referencing convehience, the links

within a node are numbered sequentially beginning with zero and the

keys are numbered sequentially beginning at one. Thus key 100 is

47

the second key in that node and the node containing key 90 is pointed

to by the link numbered one in its predecessor. Analogous meanings

of successor, predecessor, left and right sibling, and subtree used

for binary trees are used when referring to B-trees.

The number of levels in a particular B-tree is important

because it affects the number of disk accesses necessary to retrieve

a record. Bayer and Mccreight (l} and Knuth (14) have shown that

an upper bound on the number of levels, 1, in a B-tree of order M

containing N keys is given by:

1~ l+logfM/ 21 ((N+l)/2) (1)

This states that the number of levels is not just a function of N as

with other trees, but is also strongly affected by the order of the

tree. The order, however, determines how large each node is. Thus

there is a trade-off between the size of each node and the number

of levels in the tree. For this discussion, it is assumed that the

order is held constant throughout the tree. For a large order, the

number of levels is small, indicating good access qualities but the

search within a node is increased. Since the keys in a node are in

sequence, a binary search or even some tree structure could be used

to lessen the search time but it still should be considered. For a

small order, the node size is small causing a short in-node search

but the small order generates many levels causing many disk accesses.

It thus seems that the choice of M can be an important one on the

48

performance of the B-tree. This choice affects: (1.) the node

occupancy ratio of the number of keys in a node to the maximum number

of keys possible per node, (2) the reorganization required within a

node, and (3) the reorganization required among rtodes (7).

If the tree is stored on disk or drum, a likely choice for a

node size is the size of a track. This is due to the nodularity with

which the information on a track can be transmitted. Evidence

indicates that when secondary storage timing considerations are

analyzed, there is a broad minimum ov values of M which will give

nearly optional performance (1, 14, 21). Another constraint on the

node size arises if the data structure is to be used in a virtual

storage environment. In such a case, a single virtual page might be

a good choice for a node size. This would prevent excessive paging

to occur as might happen if the node were several pages in size and

a binary search within the page were implemented. A side note to the

virtual storage question, is that one version of the Virtual Storage

Access Method (VSAM) by IBM contains a good many of the ideas and

terms associated with B-trees (11).

All is not perfect with B-trees, unfortunately. There is a

trade-off between the size of each node and the amount of processing

it implies. A tree with small order (approaching an AVL tree) has

many levels and more frequent maintainence transformations; however,

the transformations are relatively simple. Trees with large orders

(as exemplified in this paper) require few levels and less frequent

maintainence transformations but each transformation is more complex

and more time consuming. In a large node, the retention of order

within the node is a major factor. An insertion may cause much data

movement and hence be quite eXpensive.

The problem of data movement in large nodes is a result of two

timing considerations; the time needed to move data \11i thin main

storage and the time needed to transfer information to and from

secondary storage.

Paging and gather writing are two approaches to reducing this

data movement problem. Paging, as used by Bayer and Mccreight (1),

involves retaining a number of pages (nodes) of the B-tree within

main memory and attempting to do as much processing as possible

49

within main memory. This reduces the number of actual I/O operations

to secondary storage since many of the transfers can be entirely

within main memory. With this scheme the only time a node is actually

read is if it is called for but is not presently in one of the pages

in main memory and the only time an actual write is required is when

a page is to be actually read and no page area is available for it.

In such a case the least recently released (written) node is actuaily

written to secondary storage. Using 10 internal pages and an order

of 121, Mccreight found that the number of actual reads and writes

required when randomly building a B-tree with 5000 keys was only

50% of the total nwnber of reads and writes called for.

A closer inspection of paging reveals that its effectiveness

decreases as the number of active nodes becomes larger. For a tree

with order greater than 300, if three pages are kept in main storage

until the fourth node is activated in the tree, no actual writes or

reads (less the three to fill the pages) are required. This means

that over 900 keys could be inserted with three actual reads and no

actual writes.

so

\
Assuming two levels and permanent retention of the root node,

if there are 10 leaf nodes, then there are two chances in 10 that the

node to be read in a search is already in main storage but if the

tree has 100 leaf nodes, then there are only two chances out of 100

that the requested node is already present. This means that percent-

age-wise more actual data transfers are required as the tree becomes

larger. This scheme has a great benefit, however, if the keys to be

inserted are already in order since the proper nodes are in .main

storage more often (1).

Gather writing involves the collecting of data taken from several

noncontiguous locations in main storage during a writing operation.

This eliminates the need for the data to be moved within memory to

a buffer before transfer to the secondary storage device. By under-

taking gather writing (through the use of channel programming in IBM

terminology), the time and data movements required for each write to

secondary storage are reduced.

One wonders whether the benefits of gather writing and paging

could be collected in a single implementation. There seems to be a

drawback to this, however. When a node is to be written in a paging

scheme, it simply replaces the current copy of the node in one of the

internal pages. Only when an actual read is needed and no page is

available does an actual write take place. In such a case the inter-

nal node least recently written is transferred intact to secondary

storage. The data to be written comes from only one source and

hence does not require or benefit from gather writing. It seems that

to a large extent, paging and gather writing are mutually exclusive.

Paging attacks the problem by attempting to reduce the number of

actual writes and reads whereas gather writing attempts to reduce

the requirements placed on each write operation.

A final topic for this chapter concerns the different ways in

which information can be stored in a B-tree. There are three basic

classes of B-trees: those that contain information only in the leaf

nodes, those that contain information directly in All levels of the

tree, and those that contain only pointers to the records which are

stored in another file.

51

The first of these classes is similar to the indexed sequential

organization discussed earlier. However, B-trees possess much better

insertion and deletion characteristics since they do not degrade to a

linear search as can happen with indexed sequential files. Since

there is duplication of some keys, the tree may have more levels.

An inorder traversal of the tree is probably faster since fewer

nodes containing information are retrieved, however, the approach

causes slightly more complex programming problems since the order of

the tree would vary at the bottom level.

The second class is probably more straightforward but not

necessarily more efficient than the first. Since the information is

contained in each node, t!'ce order for each node is reduced, increasing

the number of levels in the tree.

The third class removes the information from each node, placing

it in a separate file and planting a link to it in the B-tree node.

This allows the order to increase and the number of levels to decrease.

Note that separating the information from the keys as in this class

is most beneficial if there is a likelihood of multiple keys per

piece of information. The other two methods allow redundancy of

data. This approach is somewhat like causing the B-tree to be the

index to a multilist file.

52

In any of these classes, there are a great many links in the leaf

nodes which are of no value. For certain applications, it might be

advantageous to cause the leaf nodes to have a different structure

and remove the unnecessary links and pack more information into

the leaf nodes.

CHAPTER IV

OPERATIONS ON B-TREES

This chapter is intended to provide the reader with an intro

duction to the searching, inserting, and deleting functions as they

apply to B-trees. Not all possible variations are cbvered. For a

further disc;:u.ssion, refer to the in depth report by Davis (5).

Searching

As with any tree structure, a search for a random key should

begin at the root node if no special information is a priori known

about the tree. For this reason, it Kould Le advisable, if possihle,

always to retain the root node in main storage to reduce disk accesses.

A search in a binary tree involves tracing through perhaps several

links until the key is found or a null link is encountered. .A search

in a B-tree is a Lit more complicated. Since each node may contain

several keys, an additional search within the node is required. A

node itself mav be structured as a vector, allowing a linear or binary

search or as a tree providing for a tree search. In anv case, there

is a link on either side of each key and the subtree pointed to by

this link contains keys less than or greater than the key depending

on whether the link is to the left or right of the key.

A search proceeds from level to next lower level attempting to

locate the search key in each node. If the key is in a node, the

53

searc!1 terminates; otl1erwise the link between the two keys less than

and greater than the search kev is followed to the next lower level.

Thus tv•o pieces of information about each node encountered in the

search are of prime importance--the identification of the node and

the position in the node at which the key is or should be located.

Consider the order bur B-tree in Figure 13. If key 80 is to

54

be found, the root node L examined and the search key is found to be

greater than the lar£est key in the node so the rightmost link is

followed. In the next node to be searched, the search key is found

at k~y position 1 so the search terminates. Noi·· consider a search

for key 85. The link designated as being in link position 1 of the

root is followed since 85 is greater than 50. The search key of 85

falls between 80 and 100 in the node at level two so the second link

is followed to the next level. The smallest key in this node is 90

so link zero should be followed to the next level, except that this

link is null; thus the search terminates without finding the key

Lut with an indication that the key should be in position 1 of the

particular leaf node.

Two observations are appropriate at this point. In order to

determine that a key is not in the tree, it is necessary to search

through the entire height of the tree. Also, when a new key is to

be placed into the tree, it will be placed into a leaf node, but when

a key is to be deleted it may come from some node other than a leaf

node.

55

Insertion

Basic

As noted above, when a Ley is to be inserted into a B-tree, it

v.ill be placed into a leaf node. This is in contrast to a binary

tree in which an insertion always causes the crea.tion of a new node

and possibly a new level. Fi2ure 14. illustrates the basic insertion

30

20

a.) Before Inserting 35

b.) After Inserting 35

Figure 14. An Order Three B-tree Illustr·ating the
Basic Insertion Process

56

process. Note that as the key 35 is inserted, key 40 had tr be moved

to provide room for the new key. This problem o-F data movement c~m

be rather troublesome if done often and this should be kept in mind

when the structure of the B-tree is leing: designed.

Ti-.o i•.'ay Split

If a basic insertion causes the node to becom~ overfull, i.e.,

t!1ere are more keys than are allowed for the particular order, some

metl1od of processing the overfull node must be found such that the

properties of a B-tree are not violated. One such rnethod is called

a t'vo vay split (called simply a split) . In a split, the overfull

node is broken into three parts, the middle key of the node and the

two resulting sets of keys. An additional node is obtained and one

of the two resulting strings is placed into it with the other string

remaining in the original node. The node is thus split. To.finish

the process, the middle key and a pointer to the new node are

propagated (inserted) into the predecessor of the original node.

This process adds one node to the tree, and causes the original and

neiv nodes to each be approximately half full. Since the process

caused another insertion to occur in the next level up, the entire

tree does not stabilize until the propagated key and link fit into

a node without causing it to become overfull. A split is caused

if key 25 is inserted into the tree of Figure 0.4 a.). The resulting

tree is shown in Figure 15. In this case, kev 20 is the propagated

key and the node containing key 25 is the newly created node.

If the splitting propagates to the root node, and the root node

is overfull, not only is a new node created to contain half of the

57

20 30

10 25

Figure 15. An Ord~r Three B-tre Illustrating a Split

split node but an additional node is created to contain the propagated

key. Thus a new root has been formed and the tree is one level

higher. The veracity of the statement that a B-tree grows upward is

thus demonstrated.

Storage utilization was mentioned earlier as a general term.

It is now planned to specify exactly what is meant by utilization.

The ratio of keys in a tree to the possible number of positions

available in the nodes currently active in a tree is taken to be the

utilization of the tree. Since, by definition, each node but the

root is at least half full, one would expect the utilization to be

at least 50%; it turns out that it is actually much larger. Van Doren

(21) has shown that the asymptotic storage utilization of a B-tree

with a large degree of branching will be log 2 or about 69.3%.
e

This assumes splitting for insertions.

Overflow

Another possible way to handle the problem of overfull nodes is

called overflow. OverfloN involves a redistribution of keys between

the overfull node, its le~t or right sibling and the intervening

key in the predecessor node for the two. The redistribution

essentially requires one or more keys from the overfull node to be

moved through the predecessor key slot into the sibling. The nuITber

of keys that are moved is a function of the programmers intuition

since no empirical or theoretical work gives a sound base for a

decision. Figure 16 shows the results if overflow is performed when

key 25 is inserted into the tree in Figure 14 (a.). In this example

25

10

Figure 16. An Order Three B-tree Illustrating Overflow

58

the rightmost key is the overfull node, key 25 moved up to the prede

cessor node forcin2 key 30 to the sibling node. An overflow can

only be accomplished if the sibling node is not full, however, both

siblings can be checked before a split must be performed. In the

last two examples the same key was inserted into the same tree but

a split caused a new node to be used whereas an overflow did not.

Overflows do not propagate. Once an overflow is performed, no

more revision to the tree is necessary. Empirical evidence by Davis

(5) indicates that overflow greatly increases the utilization that

can be expected. On tree1 of order 48 a storage utilization of 85%

was achieved.

Overflow is a supplement to splitting. Overflow alone cannot

be used to preserve the properties of a B-tree, but splitting can.

Overflow is not necessary but since splits propagate and overflows

do not and storage utilization is appreciably increased, overflow is

recommended (1, 5, 14).

Deletion

Basic

59

Deletion from a B-tree involves removing a key and necessarily

one link from some node of the tree. Note that a deletion may come

from some non-leaf node although for trees pf large order most of the

keys and hence most of the deletions will be from a leaf node. If

the key is in a leaf, the normal deletion process is followed. If,

however, the key is in a non-leaf node, deleting the key and a. link

(a link must be deleted or there will be two more links than keys in

in the node) will also delete a subtree from the tree. Since this

subtree may contain valuable information, this should be avoided.

A solution is to exchange the key to be deleted with the next larger

or next smaller key in the tree. This lexicographically larger or

smaller key would come from a leaf node found by following the

60

leftmost or rightmost links, respectively, of the subtrees to the

right and left of the kev to be deleted. It really does not matter

which key is chosen; the point is that after the exchan~e is made

the tree is still in order and a deletion from a leaf node can be

made. For an illustration of this, refer to Figure 17.

10

a.) Before Deletion of Key· 60

so

b.) After Deletion of Key 60

Figure 17. An Order Three B-Tree Illustrating Deletion from
a Non-Leaf Node

61

The basic deletion process involves removing a key and link from

a leaf node and squeezing out the hole created by the deletion.

Fi,gure 18 illustrates the basic deletion process. Note that key 60

had to be moved over in order to close the ranks in that node.

a.) Before Deleting Key 50

70

60

b.) After Deleting Key 50

Figure 18. An Order Five B-Tree Illustrating the Basic
Deletion Proce~s

100

62

Catenation

If, when a deletion is to be completed, the node becomes under-

full, i.e., it contains fewer than the minimum number of keys allowed
1

per node, special actions must be taken to again make the tree follow

the guidelines for B-trees. One such action is called catenation.

A catenation is essentially the reverse of a split. In a catenation,

the underfull node and a sibling and the intervening key from the

predecessor node are combined into one node. Thi$ reduces the number

' of nodes in the tree. Figure 19 illustrates the results when the

key 20 is deleted from the B-tree in Figure 18 (b.). Note that in

Figure 19. An Order Five B-tree Illustrating Catenation

order for catenation to be possible, the sum of the number of keys in

the underfull node, the number of kevs in the sibling, and the single

key from the predecessor node must be strictly less than or equal

to the maximum number of keys allowed per node. If this is not the

case, then an overfull node 'results.

Just as with splits, catenations can propagate upward through

the tree. Since one key from the predecessor node is removed for

63

the catenation, the predecessor node may become underfull and require

attention. However, unlike splitting, a choice can be made with

catenations as to which sibling to catenate with. In the cases in

which only one sibling ex'1.sts or when only one sibling satisfies the

number of key requirements there is no choice.

If the catenation process reaches all the way to the root node

and the root only has one element, the catenation will cause a new

root to be determined and two nodes to be returned to the available

unused pool of nodes. When this happens, the number of levels in

the tree is reduced bv one. Again, this shows that the tree grows

and shrinks at the root level.

Underflm;

What can be done if the number of keys in the siblings of an

underfull node are all too large to allow a catenation? In such a

case, another action called underflow takes place., Underflow in

practice if not in theory, is completely synunetric with overflow.

The keys in the underfull node, the keys in the sibling, and the

intervening key from the predecessor node are redistributed to pro

duce an arrangement consistent with the definition of a B-tree. The

analogy is so complete in fact that a single equalizing routine can

Le constructed to accomplish the redistribution in both cases.

Figure 20 indicates the resulting tree configuration if key 10 is

deleted from the tree in Figure 18 ~.). Note that key 30 has moved

from the predecessor node to the underfull node and that key 40 has

64

moved up to the predecessor node. Underflow or overflow can be viewed

as a step-by-step movement of single keys through the predecessor

node until the desired distribution is reached. One would be ill

advised to actually implement the method as a stepwise approach,

however.

Figure 20. An Order Five B-tree Illustrating Underflow

In comparing the different updating techniques. one can readily

see that catenation and underflow must both be implemented if the

properties of B-trees are to be maintained. They are mutually

exclusive operations with the number of keys in the siblings deter

mining which method must be used. It is not quite the same storv

with splitting and overflow, however. Any overfull node can be

properly handled with splitting whereas only certain situations

allow overflow. When inserting, if there is a choice as to method

of handling an overfull node, overflow should be used since it does

not add to the number of nodes and wi 11 not be propagated . \'! i th

deletions on the other hand, catenation is beneficial because it

65

reduces the number of nodes in the tree and can be propagated whereas

underflow cannot be propagated. The programmer thus has some minor

freedom in choosing combinations of techniques.

The methods presented here do not exhaust the possible ways to

maintain B-trees. Three and four-way splitting, overflowing and

underflowing to non-sibling peer nodes, and the use of variable

length keys are some other possible factors to be considered when

designing a B-tree scheme.

CHAPTER V

DESIGNING AN ISRS

System Objectives

This chapter presents the analysis and design considerations

involved in one information storage and retrieval system. A great

many of the data structures previously presented are contained in

this system either directly as discussed or indirectly in hybrid

data structures. It is hoped that the reader's understanding of some

of the concepts discussed in the preceding chapters will be solidified

by his following the example presented in this chapter.

Today's world is saturated with data. In a scientific field,

so many new and valuable articles and books are published each year

that an individual would be sorely pressed to keep up with new

developments in his field and still have time for any productive work.

The need to be aware of the state-of-the-art is, however, an important

one. There must be some way to relieve the person from being required

to use his own time and effort in researching information relevant to

his interests. The speed and accuracy of a computer should be of

great value in this effort. It is precisely this problem that the

information storage and retrieval system presented here addresses.

There are thus two objectives for the information storage and

retrieval system (abbreviated ISRS) in this chapter. It should serve

66

as an example of many types of data structures and it should be of

some practical use in servin2 as an automated way of referencing

desired pieces of infonnation.

This ISRS pertains to articles taken from journals, magazines,

etc. The articles have the common attributes of author, title, and

journal. Journal is here taken to mean the source of the article,

i.e., publication, volume, date, etc. There may be some articles

which have several authors or perhaps an unknown author. Together

the attributes serve to provide both an indication of the contents

of the article and a guideline to locating the article. Although in

manv cases it would be helpful, an abstract of the content of an

article is not considered here.

67

If put to general use this ISRS cou.ld contain many thousands of

articles, too many for an individual to manually scan. The objective

of the svstem is to structure the information such that particular

suhsets can be retrieved easily. The data structures used in the

implementation of the system will serve as a major determining factor

in the success of the system.

A reasonable idea as to the content of articles can often be

deduced from the title of the articles. Although titles rarely give

a complete view of the material contained within the article, they

do serve to identify its major thrusts. This ISRS uses the keywords

in the title of an article as the means of semantically differen

tiating between articles. Keyword means a word that is more

intrinsically descriptive than widely used adjectives, prepositions,

or nouns. Thus one matter the system must attend to is determining

\'/hat words in the titles are indeed keywords. This can be a complex

problem (15) when one considers plurals, synonyms, and multiple

occurrences of keywords. The approach taken here is to have a list

of nonkeywords against which each word in a title is compared. If

no match is found, the word is a keyword. Another point about this

system is that as keywords are extracted from the tit'les, their

position in the title is ~etained so that on later analysis the

context of the keyword is available. This is termed KWIC (Keyword

In Context) indexing and is opposed to KWOC (Keyword Out of Context)

indexing.

One possible way to structure the data to allow for retrieval

68

is to simply keep each article in a sequential file and search through

the file completely for each request. Thus in order to locate all

articles with the term "hashing" in the title would require a linear

search of the entire file. This is entirely unreasonable. if the

file is large. It thus seems that some more complex, yet 100re

efficient scheme should be devised.

The scheme chosen for this ISRS involves essentially two sets of

interrelated data. One set, called an article file, contains the

articles contained in the system. The second set of data, called a

key file, serves as an iniex or directory to the article file. The

key file does not have the extra information from the articles

clogging up the data set so a more efficient search for particular

values can be achieved. These two files are central to the ISRS and

are discussed at length below.

Files

The article file serves as a repository for the articles in the

69

system. Certain properties of the data and the ISRS cause the file

to be structured in a certain fashion. It is hoped that the following

discussion gives both a description and rationale for the design

chosen.

The article file is large. The sample set of data used to test

the system contains about 7000 articles with provisions to allow for

considerably more articles. Although the sample data contains

articles primarily covering the computer science field, the system

is not limited to such articles. The large number of articles and

hence large storage requirement indicates that the file should reside

on secondary storage. A further consideration is that the secondary

storage should have direct access capabilities. This is a result of

desiring to access any article in the file directly. Thus the file

must be on secondary storage having direct access capabilities, in

other words a disk.

Since this system is written in PL/l, the most useful file

organization available is Regional (1). This allows for direct

access based on a numeric relative record number which the system

translates into an actual physical device address. A problem arises,

however, in that Regional (1) data sets must have fixed length records,

but the attributes of the articles are highly variable in length.

A possible solution is to store each attribute in a different

record with the record size being large enough to contain the largest

attribute in the whole file. This would encourage much wasted space

and many records. An alternative is to catenate the attributes into

one record and store it in a record with the record size being large

enough to contain the largest catenated article. This has some

beneficial effects in lessening the variability in length since a

long title may be matched with a short author attribute. There will

still be much wasted space if the maximum size record is provided.

The solution chosen is to provide a record size less than the

maximum and if the catenated attributes cannot be stored in a single

record to store the exces;, in another record and link it to the

original. In this way any length article can be handled with less

wasted space.

70

The size record chosen should be a compromise between requiring

overflow records and the attendant extra disk accesses, and wasting

space by making the records longer. Based on an observed mean of

about 100 characters and standard deviation of around 25 characters,

the percentage of overflow records can be calculated. An additional

consideration is the optimal use of secondary storage taking into

account interrecord gaps. Based on the above considerations, a record

size of 139 characters (5 of which are used for an identifier, a tag,

and a link) was chosen which corresponds to a 6% overflow rate.

Figure 21 displays a view of the article file records. ID represents

the identifier of the particular record. Regional (1) data sets

contain records numbered sequentially from zero. LINK is the link

to an overflow record (also used for storage management). TAG

identifies the record as being the first record in a chain of records

or as being an overflow record. INFO contains the catenated

attributes stored in this record. The values in parentheses indicate

the size in bytes (characters) of the particular field.

The second major file in this ISRS is termed the key file. It

is actually a secondary key directory (the primary key is the iden-

71

tifier for the article in the article file). It is to this file that

particular search requests are first directed. After it is determined

what, if any, articles satisfy the search request, then the article

file is consulted.

ID
(2)

LINK TAG
(2) (1)

INFO
(134)

Figure .21. Article File Record Layout

Several factors enter into the design considerations for the key

file. First, the file is large (approximately 25000 keyword

references). This implies that secondary storage should be used.

Second, there is a high likelihood of multiple keywords per article.

In fact, experience shows that there are between three and four key-

words in each title. There is also a great likelihood of many

nonunique keywords. Lastly, in order to allow for the most efficient

processing of intersection and union keyword requests, the keyword

references associated with each distinct keyword must be kept in

order by reference number (the identifier of the containing article

record). If the references are not in order, several passes may be

required to process a request; otherwise a simple match or merge can

handle the request. These constraints present two approaches:

1) Retain unique keywords in some tree structure and have each

entry point to an entry in another file. This extra file is an

72

inverted list for each keyword.

2) Retain all keyword references in a B-tree.

In the first approach, the tree structure is necessary to allow

for dynamic maintainence and still have reasonable search character

istics. The tree should be a B-tree because even retaining unique

keys results in a tree too large to contain in main memory and any

binary tree form (regular binary tree, AVL tree, etc.) would degrade

if placed on secondary storage. This approach necessitates another

file to contain the inverted lists. This presents additional problems

in dealing with insertions and deletions from the inverted lists in

addition to the inconvenience of an additional file. One alternative

to this would be to cause the B-tree to have variable length nodes.

This would irivolve more programming effort but might be profitable.

The second approach has the drawback of having multiple occur

rences of some keywords. There are advantages, however. If the

key for the B-tree is taken to be a keyword catenated with the

article reference number, then an insertion automatically provides

for the retention of proper order for intersection and union requests.

The B-tree should have excellent search characteristics and will

perform well in handling insertions and deletions. Another advantage

is that no other file is needed. For these reasons approach 2 was

selected. Figure 22 illustrates the layout for a node (record)

of the key file.

The values in parentheses are the sizes in bytes of the fields.

The maximum length for any keyword was chosen after examining many

keywords and determining a length which would promote a high percen

tage of unique words. The other major choice is in the order of the

73

tree. One track on a 2314 can contain 7294 bytes of information.

Therefore when allowing for a keyword of 18 characters, the maximum

number of links (and hence order) would be 304. It turns out that

the insertion and deletion algorithms are benefited if one link and

key position are left unused. This means that the true usable order

is 303 with 302 keys per node.

Node ID Avail Current B-tree Article Position

Link Length Link Keyword Ref. in
No. Title

(2) (2) (2) (2) (18) (2) (2)

304 times 303 times

Where:

Node ID - Identifier for the record (node)
- Link used in storage management Avail Link

Current Length
Keyword

- The number of keys currently in this node

Article Ref. No.
Position in Title

Figure 22.

- A keyword extracted ftom a title
- The article from which the keyword came
- The position in the title of the keyword

Key File Record Layout

The type of B-tree used in this system is one in which the keys

contain pointers to another file. Note that since there are multiple

keywords per title, storing the article in the B-tree would create

much redundancy of data and that the order would necessarily decrease.

The values illustrated in the record layouts are the values

used in the actual testing of the system. The length of the informa-

tion portion of the article records and the keyword length and order

of the key file are set when the fi1es are created and can be changed

from system to system as discussed in the User's Guide in Appendix A.

Two additional permanent files are needed by the system. They

are a count file and a nonkeyword file. The nonkeyword file contains

all the words determined to be nonkeywords and against which all

prospective keywords are -compared. The count file contains the

parameters necessary to allow the software to begin processing a new

set of data at the point where the previous execution terminated.

The count file contains the order of the tree, keyword length, etc.,

storage management information, and statistical values for the article

f~le and keyword file.

Software

In order for the file structures to be effectively used there

must be software to manipulate the files properly. There are four

major programs in the software associated with this ISRS. They

pertain to creation of files, editing of the articles, updating the

article and key files, and reporting results of various retrieval

requests.

There are actually two separate file creation routines. One

makes use of the operating system sort and file creation utility to

create the nonkeyword file. The result of this routine is a sequen

tial file of the nonkeywords in alphabetical order. This file is

used by the updating program to select keywords. The other file

creation routine develops the frameworks for the article and key

files and sets several values in the count file.

75

The edit program accepts card images describing the articles to

be entered into the system and checks them for completeness and order.

Articles passing the editing conditions are written onto a tape file

for later use by the updating program. Articles not passing the

editing conditiohs can be punched into cards for later· correction

and resubmittal to the editing program.

The update program performs four functions. The program can

delete specific keywords, delete· entire articles, insert entire

articles, or insert specific keywords. In cases two and three, deal

ing with entire articles, the article file is altered and in all four

the key file is altered. The B-tree maintainence algorithms utilize

two:-way splitting and il!etil and right overflow for insertion and

catenation and underflow, both checking left and right siblings, for

deletions. As stated earlier the B-tree file is kept in order by

keyword by article reference nwnber.

The report program can produce reports of four forms:

1) A complete listing by article reference nwnber of the

contents of the article file.

2) A complete listing in alphabetical order of the keywords in

the key file showing the frequency of occurrence of each keyword.

3) A complete listing in alphabetical order by keyword showing

the permuted titles of the articles in the article file.

4) Listings of subsets of the article file which satisfy

intersection and/or union keywords requests. The requests can be

of an arbitrary nwnber of keywords separated by and's and or's of

arbitrary order.

Appendix A specifies details for conununicating with the several

programs in this ISRS. For the user who desires a more detailed

illustration of the logic of the programs, Appendix B is included,

displaying program flowcharts. Appendix C, which contains sample

outputs from the report program, can be consulted for examples of

what to expect from the system.

76

CHAPTER VI

SUMMARY AND RECOMMENDATIONS

This project was undertaken with two major objectives in mind:

one objective was to implement successfully and effectively an .

information storage and retrieval system which would provide access

to relevant articles on particular subjects; the second objective was

to investigate the use of B-trees in such a system.

The first obiective has been accomplished through the file

structures and software described in the previous chapter. The ISRS

implemented provides the user both with the means to satisfy inquiries

relatively easily and with a degree of control. There are, however,

several improvements and .additions to the system which would make

the system have greater value or wider applicability.

One improvement to the existing system would change the method

by which keywords are identified. With the present system, a pros

pective keyword is found to be a keyword only if it does not match

any existing nonkeyword. This means that a copy of each form of a

word regarded as a nonkeyword must be retained in the nonkeyword

file. Much room in the nonkeyword file, and more importantly, much

more effective keyword searches could be expected if basic stems of

words were used. Thus "multilist", "multilists", and "multilisted"

would be classified as having the same stem. Another improvement

to the existing system would be to include a com~1and which could

77

78

delete all occurrences of a keyword rather than tequire each occurrence

to be deleted individually.

Another addition of possible value would be to retain counts of

the occurrences of each nonkeyword. This facility in conjunction

with the Frequency of Keyword Occurrences listing might point out

beneficial changes of classification for certain words.

One problem which does not exist now but would need to be

accounted for in a system of constantly and rapidly growing type

is the expandability of files. The storage provided in the present

system is sufficient for the foreseeable future in its current environ

ment, but other implementations may not be so predictable. Protective

features should be included to insure the integrity of data; to

prevent the overrunning of current allocations, and to preserve data

in the case of machine malfunctions.

The present systems provides for a secondary key directory

based exclusively on the keywords extracted from the titles of the

articles in the system. A system which would retain secondary key

directories based on author or journal information would promote much

greater freedom in locating specific information. An additional

attribute.which might be considered in a system of this type would

be the physical location of a copy of the article. Thus one would

know to look in Room 103 on shelf A4 for a specific article rather

than having to search for the article. Other ca~didates for a

secondary key directory would be references to abstracts or selected

keywords and phrases contained in the text of articles. Keywords

contained in titles are a convenient means of semantically defining

the intent of an article but are not always all-inclusive.

79

It is anticipated that requests for listings of subsets of the

total set of articles will be rather limited in complexity. Based on

this assumption, the handling of Boolean intersection and union key

word requests on a lef-to-right priority basis should prove more

than sufficient. In a more extensive system, possibly including

several types of key directories, proper handling of more complex

search requests would be imperative.

A final recommendation is that the ISRS reporting system would

be very profitably. implemented in an on-line environment. The easier

access and quicker response of an on-line system should greatly in

crease the attractiveness of the system to a prospective user. The

author would suggest the on-line implementation as a next step in

creating an information storage and retrieval system which would be

widely used.

The second objective, to investigate the use of B-trees in an

ISRS, answered some old questions and posed some new ones.

The report by Davis (5) indicates that insertion using overflow

into a B-tree of order 49 resulted in a utilization of approximately

85%. In this ISRS using a B-tree of order 303, a utilization of

86.9% for all nodes and of 87.4% for leaf nodes was obtained. This

far exceeds the guaranteed utilization of 69.3% deserved by Van Doren

(21) for large order B-trees using only two-way splitting. High

utilization of active space is not the only advantage of B-trees,

however. The tree produced by the test data contains over 27,000

key entries but requires on~y two levels and hence.only two disk

accesses as a maximum in order to reference any element. This should

be contras.ted with the same number of keys stored in an AVL tree which

80

would require a minimum of 15 levels and a corresponding number of

disk accesses. An indexed sequential file with two levels of indexing

on the other hand would require a minimum of three disk accesses

per reference with additional accesses required for overflow records.

Furthermore, the number of local transformations in the tree needed

to maintain proper B-tree properties is relatively small in comparison

with the number necessarr for AVL trees. During the insertion of

27,299 keys only 91 two-way splits and 1632 overflows were required,

an average of 0.063 transformations per insertion. An AVL tree will

require an average of 0.45 transformations per insertion for a tree

with 6400 keys (22). An indexed sequential file will require a trans

formation whenever a record is written in any overflow area.

The scheme to reduce data movement in maintaining a B-tree which

was chosen for this ISRS is to retain permanently the root node of the

tree. Since the tree only has two levels, transfers to or from

secondary storage would involve only leaf nodes. In this implementa

tion, the number of actual reads was reduced by almost 50% (from 59,

167 to 29,683) and the number of actual writes by qver 2000 (from

31,073 to'28,885). By using gather writing exclusively, the number

of actual reads is not reduced whereas in this simple scheme, the

number of actual reads was halved.

The study of B-trees is quite open for investigation into the

benefits of these techniques. It may be possible to strike effectively

a compromise between paging and gather writing which would be of

greater value than either alone. The present system could be used as

a test vehicle to this end since the UPDATE program captures_ all calls

for reads and writes and the appropriate routines could be written

81

and substituted directly into the UPDATE program. Additionally, a

framework is established in the present system in which gather writing

could be implemented by simply substituting a routine· for the WRITE

NODE routine.

Even though it is necessary to manipulate an article by stripping

the keywords out before insertions can occur, the system is still able

to perform 3.25 keyword insertions per second on the average. The

principal time effectiveness of the system shows up, however, in the

retrieving of subsets of articles. Keyword retrieval requests are

satisfied, including system overhead time, in an average of less than

0.5 seconds. This is certainly adequate for a batch system and would

quite likely serve well in an on-line system.

As a helpful warning to other programmers using IBM's PL/l

compiler, the author would like to mention several restrictions and

unimplemented features which were found to be troublesome during the

implementation of this system. These conditions are listed below:

1) A READ operation cannot have an array element as its destin-

ation field.

2) Pointer qualifiers cannot be elements of a based structure.

3) Assignments of cross sections of arrays are disallowed.

4) A cross section of an array of structures cannot be passed

as an argument to a subprogram.

5) In an array of structures, bound information is not available

except when references are made to elementary items.

6) Based structures do not have sufficient facilities for handl

ing variably dimensioned arrays.

The list, of course, does not contain all difficulties in PL/l but

82

the ones listed were encountered and proved to be troublesome at

best. The sixth restriction is by far the most difficult to surmount.

Based structures are quite useful, but the inability to have them

change in size depending on the environment, as non-based structures

can, places a severe limitation on their usefulness and generality.

The information storage and retrieval system developed as a

portion of this project can be of much value if it is utilized. The

data in the present system describes articles almost exclusively

oriented to the computer science field. This is not at all a system

restriction for the system could handle equally well data from any

discipline. The reader is therefore encouraged to make use of the

system and to possibly add to it. Only if the system is utilized

can it be said that is it truly implemented.

SELECTED BIBLIOGRAPHY

(1) Bayer; R. and E. Mccreight. "Organization and Maintainence of
Large Ordered Indexes." Acta Informatica, 1 (1972), 173-189.

(2) Berztiss, A. T. Data Structures Theory and Practice. New York:
Academic Pre~l971.

(3) Bobeck, Andrew H. and H. E. D. Scovil. "Magnetic Bubbles."
Scientific American, Vol. 224 (June, 1973), 78-90.

(4) Chapin, Ned. Data Structures for Better Programming and Faster
OperationS:--New York: Association for Computing Machinery,
1971.

(5) Davis, William S. "Empirical Behavior of B-Trees." (unpub.
Masters thesis, Oklahoma State University, 1974.)

(6) Dodd, George G. "Elements of Data Management." Computing
Surveys, 1, 2 (June, 1969), 117-133.

(7) Fisher, D. D. Data Structures and Programming Languages (unpub
lished class notes). Stillwater, Oklahoma: Oklahoma
State University, 1974.

(8) Flores, Ivan. Data Structure and Management. Englewood Cliffs:
Prentice-Hall, 1970.

(9) Harary, Frank, Robert Z. Norman and Darwin Cartwright.
Structural Models: An Introduction to the Theory of
Directed Graphs. New York: John Wiley and Sons, 1965.

(10) Harrison, Malcolm C. Data-Structures and Programming. Glenview:
Scott, Foresman and Company, 1973.

(11) Introduction to IBM Direct-Access Storage Devices and Organiza
tion Meth'OdS:-(GC20-1649-6). New York: International
Business Machines Corporation, 1974.

(12) Iverson, Kenneth E. ~Programming Language. New York: John
Wiley and Sons, 1962.

(13) Knuth, D. E. The Art of Computer Progrannning, Vol. 3. Reading:
Addison-Wesley, 1973.

83

84

(14) Knuth, D. E. The Art of Computer Prograrmning, Vol. 3. Reading:
Addison-Wesley, 1973.

(15) Lefkovitz, David. File Structures for On-Line Systems. New York:
Spartan Books, 1969.

(16) Maurer, W. D. and T. G. Lewis. "Hash Table Methods." Computing
Surveys, 7, 1 (March, 1975), 5-19.

(17) Morris R. "Scatter Storage Techniques." Comm. ACM, 11, 1 (Jan.,
1968), 38-43.

(18) Nievergel t, J. "Binary Search Trees and File Organization."

(19)

Computing Surveys, 6, 3 (September, 1974), 195-207.

Sherman, Philip M.
wood Cliffs:

Techniques in Computer Prograrmning.
Prentice-Hall, 1970.

Engle-

(20) Stone, Harold S. Introduction to Computer Organization and
Data Structures. New York-:-McGraw-Hill, 1972.

(21) Van Doren, J. R. Data and Storage Structures (unpublished
class notes). Stillwater, Oklahoma: Oklahoma State
University, 1975.

(22) Van Doren, J. R. and J. L. Gray. "An Algorithm for Maintaining
Dynamic AVL Trees." Information Systems, Vol. 4. New York:
Plenum Press, 1974, 161-180.

(23) Wilde, Daniel U. An Introduction to Computing. Englewood Cliffs:
Prentice-Hall, 1973.

APPENDIX A

USER'S GUIDE

85

APPENDIX A

USER Is GUIDE

This is intended to provide the user with guidelines and specifics

in how to use this ISRS. Throughout the discussions of the programs

it may prove he~pful to refer to the Input/Output Bchematic Diagrams

for the programs, Figure 24, which illustrate the logical relations

of the files associated with each program. The symbols chosen in

Figure 24 to depict the type of file are not absolute. In other

environments the NONKEY file might be on tape, for instance. Figure

25 is also included to help describe the files.

File Creation

This ISRS requires four files to be available during execution

of the file updating and report generation programs. One of these

files is created using operating system utility programs and the

others are created by the PL/l program CREATE.

The first file, NONKEY, consists of the nonkeywords with which

each prospective keyword is to be compared. Input to this sorting

and file creation utility package is a set of card images containing

a single nonkeyword per card beginning in column 1. The programming

presently allows for words of length 18 characters.

The program CREATE generates three files which are of major

importance to the system. These are the count file, COUNT, the key

86

87

directory file, KEY, and the article file, ARTICLE. A single param-

eter card is used to specify the particular implementation attributes

for the KEY and ARTICLE files .. The parameter card has the following

fields:

Columns 1 - 10 The B-tree order

Columns ll 20 Number of records in KEY file

Columns 21 - 30 The maximum keyword length

Columns 31 - 40 The length of article information portion of
each ARTICLE file record

Columns 41 ~ 50 Number of records in ARTICLE file

Parameters 1 and 3 determine the size of each record in the KEY file

and parameter 2 determines the number of records in the KEY file.

Parameters 4 and 5 determine the size and number of records in the

ARTICLE file.

The size of each KEY file record can be determined by the

. following relation:

Size of KEY record = (KL + 6) ORDER + 8 (2)

where KL is parameter 3 and order is parameter 1. Por efficiency it

is suggested that this value be as close to one track in size as

possible. KL, in order to provide for proper boundary alignment,

should be even. The value for ORDER is the order of the B-tree that

is actually used by the algorithms. The program automatically creates

one additional key and link field in each node for working area but

this is not to be included in the parameter value.

The size of each ARTICLE file record can be determined by the

following relation:

Size of ARTICLE record = LAI + 5 (3)

where LAI is parameter 4. This size should be chosen to maximize

the utilization of secondary storage space and to minimize wasted

space in·considering overflow records (articles whose information

content is to large to be stored in one record).

The CREATE program sets all values in the COUNT file to begin

processing immediately and creates the framewords of the KEY and

ARTICLE files. No actual article information is placed into either

the KEY or ARTICLE files bv the CREATE program.

Article Editing

The program, EDIT, accepts card images describing articles and

checks them for completeness, rejecting incomplete ones and passing

complete ones. The card images to be edited can come from either or

both of two source files, ARTCRDS and ERRCRDS. Both files have 80

character records with fields as below:

88

Col 1 Attribute identifier (A-Author, T-Title, J-Journal)

Col 2 Sequence number within attribute

Col 3 - 13 Article identifier consists of

Author's last name - 4 characters

Author's first and middle initials - 2

characters

First letter of each of first three words in

title - 3 characters

Year of publication - 2 digits

Col 14 - 80 Article descripts field

These cards are used as input to this system as thfy were prepared for

another system, and hence the format is as it was specified for that

previous system.

The ARTCRDS file is designed to be primary input to the edit

program with ERRCRDS being corrected cards not passing the edit·

conditions in a previous run and being recycled.

A single parameter card from the file PARM is used to specify

whether all article cards not passing the edit conditions are to be

punched into cards. This option is chosen by punching 'YES' in

columns 8 - 10. Whether the option is chosen or not, a listing is

produced showing all articles found to be incomplete.

The file OKARTS represents all articles which did meet all

conditions for acceptance. It is shown as a tape file however any

medium having variable length record capabilities would suffice.

89

The information describing the articles is taken from the card images

and catenated together to constitute an OKARTS file record. This

file is used as input to the file updating program when articles are

to be added to the system.

File Updating

The program, UPDATE, performs maintainence functions on the KEY

and ARTICLE files. Changes in these files also cause changes in

values of the file, COUNT. The NONKEY file is used by several of

the maintainence functions but is not altered by the UPDATE program.

The NONKEY file can only be changed by changing the source data and

rerunning the create NONKEY file utility routine. The UPDATE program

can perform any number of any or all of the four fµnctions described

below. The order of acceptance of the functions by the program is

as below.

The first two functions provide for the user to delete specific

keyword references or entire articles from the system. A .keyword

reference is taken to mean a single entry in the KEY file.

To delete a specific keyword reference the user should include

in the KEYWDDL file data set a card containing the following:

Columns 1 - 40 Keyword (left-justified)

Columns 41 - SO Article Reference Number

90

Any number of commands will be accepted with unmatched requests being

ignored. The Article Reference Number can most easily be found for

an article by locating it in the Articles File by Reference Number

listing illustrated ih Appendix C and described in the next section

of this appendix.

Entire articles can be deleted by specifying th~ Article

Reference Number of the article to be deleted. This number should

be punched in columns 1 - 10 of a data card in the ARTDL file.

Again any number of articles can be deleted and any not found requests

are ignored. This function deletes the article from the ARTICLE file

and all references to it from the KEY file.

Articles can be added to the system through the ARTIN file.

This file should be the most used one for a growing system and is

usually the output from a run of the program, EDIT. This functions

inserts the article into the ARTICLE file and also inserts all

references to it into the KEY file. Input through this file should

be in variable length records with the author attribute followed by

the title attribute followed by the journal attribute with each

attribute having a terminating 1 $1 •

The last function available to the user is to insert specific

keyword references into the KEY file. A request of this type is as

follows:

Colwnns 1 - 40

Colwnns 41 - 50

Colwnns 51 60

Column 61

Keyword (left-justified)

Article Reference Number

Position of the start of the keyword in the

title

Force insertion code

91

The third value indicates the position in the title of the article of

the specific keyword to be inserted. This is used in the KWIC report

generations. Any nonblank character in coltunn 61 will cause the

keyword reference to be inserted regardless of whether the keyword

is in fact a keyword or not otherwise a keyword detected to be a

nonkeyword will be rejected.

Figure 23 illustrates tYPical requests for functions 1, 2, and

4. Input for function 3 is generated by the program EDIT and is not

shown.

Report Generation

The program, REPORT, can furnish any or all of four possible

reports of the contents of the ISRS. These reports are titled as

follows:

1) Article File by Reference Number

2) Titles in Article File Permuted by Keyword

3) Frequency of Keyword Occurrences

4) Article File Interest Subset Selection

.;

111111111122222222223333333333444444444455555555556666
123456789012345678901234567890123456789012345678901234567890123

(IMPLEMENT 15

~RIMITIVE 91

a.) Keyword Delete Requests

9

23

b.) Article Delete Requests

rINICOMPUTER

(DIGRAPH

c.) Keyword Insert Requests

12

30

Figure 23. Sample File Updating Requests

19

SF

92

Requests for any or all of the listings come from data cards in the

REQUEST file. The first card in the REQUEST file has the following

fields:

Columns 8 - 10

Columns 18 - 20

Columns 28 - 30

Report 1) option

Report 2) option

Report 3) option

93

If 'YES' is specified for any report, that report is generated. All

other cards in the REQUEST file define requests to selectively report

subsets of the ARTICLE file.

The Article File by Reference Number reports lists the entire

contents of the ARTICLE file. The Reference Number is the identifier

of the record in the ARTICLE file containing the first portion of the

article and thus due to overflow records, there may be some gaps in

the sequential listing of reference numbers.

The Titles in the Article File Permuted by Keyword report presents

a KWIC (Keyword in Context) view of each article in the system. There

is one entry in this listing for each entry in the KEY file.

The Frequency of Keyword Occurrences report lists the keywords

contained in the KEY file in alphabetical order showing the number

of occurrences of each keyword.

The fourth report illustrates the real usefulness of the system.

Using this facility an individual can specify his interest by

selecting a set of keywords and let the system find the articles

satisfying that interest. Each request (the program will accommodate

multiple requests) can consist of an arbitrary number of keywords

with each keyword being separated by an 'AND' specifying intersection

of the two adjacent keyword subsets or 'OR' specifying union of the

94

two adjacent keyword subsets. Each request should be terminated by a

'$' but may extend over any number of card boundaries. It is impor

tant that each request begin on a new card, however. As an example,

suppose one wishes to locate all articles containing 'BUSINESS' and

'STATISTICS' in their titles. The following request would be

appropriate:

BUSINESS AND STATISTICS $

Intervening blanks are ignored between debiniters. Likewise, if

desired to locate all articles containing 'STRUCTURES' or 'MACI'.INES'

in their titles, the following request would be appropriate:

STRUCTURES OR MACHINES $

More complex requests can be established, however, they are evaluated

exactly as less complex ones, i.e., the subsets satisfying the previous

left to right subrequest is either merged or match~d with the subset

satisfying the keyword specified. Note that no parentheses are

allowed and hence logically complex requests may need rewriting in

order to be handled properly.

Nonkeywords

PARM

ERRCRDS

ARTCRDS

PARM

Operating
System
Utilities

CREATE

Program

Keypunch

Correction

EDIT

Program

COUNT

KEY

ERRARTS

------·---.. -·------------,

I
ERRMSG _ _J

Figure 24. Input/Output Schematic Diagrams

95

•

96

KEYWDDL

ARTDL

UPDATE

8 Program

MESSAGE

KEYWAIN

~--------· ..

REPORT
--·--·-···-1

LISTING
Program

REQUEST

Figure 24. Continued

File

Nonkeywords

NON KEY

PARM

COUNT

KEY

ARTICLE

ERRCRDS

ARTCRDS

PARM

ERRARTS

ERRMSG

OKARTS

KEYWDDL

ARTDL

ART IN

KEYWDIN

97

Description

Collection of nonkeywords to be included in the
NONKEY file (entered through the SORTIN file
of the sort utility)

File of nonkeywords in alphabetical order

For CREATE program, specifies parameters des
cribing size and number of records in KEY
and ARTICLE files

Set of descriptors identifying the present
status of the KEY and ARTICLE files

Index by keyword to the titles of articles in
the ARTICLE file (organized as a B-tree)

Set of articles available in the system

Set of corrected article descriptor cards
rejected by a previous execution of the EDIT
program

Set of article descriptor cards to be edited

For EDIT program, specifies whether rejected
card images are to be punched

Set of rejected article descriptor cards to
be corrected and resubmitted through the
ERRCRDS file

Listing of rejected articles and causes for
rejection and post editing statistics

Set of articles passed by the EDIT program
(used as the ARTIN file for the UPDATE
program)

Set of keyword deletion requests

Set of article deletion requests

Set of articles to be inserted

Set of keyword insertion requests

MESSAGE

REQUEST

LISTING

Listing of post updating statistics and/or
error messages

Set of requests for particular reports

File containing all reports produced by the
REPORT program

Figure 25. Descriptions of Files

98

APPENDIX B

PROGRAM LOGIC FLOWCHARTS

99

CREATE Program

START

Input

Initialize and
Output COUNT
File Record

Initialize and
Output KEY

File Records

Initialize and
Output ARTICLE
File Records

STOP

100

START

Construct
Next

Article

Catenate
Article

Attributes

EDIT Program

Article

Diagnostics

Counts STOP

Output
Article

Cards

101

Update Program

START

Process All
Keyword Delete

Requests

Process All
Article Delete

Requests

Process All
Article Insert

Requests

Process All
Keyword Insert

Requests

Request
Tallys

STOP

102

START

Locate
Deletion
Position

Retrieve
Node for
Deletion

Delete
from
Node

Keyword Deletion

RETURN

RETURN

Exchange
with next

Smallest Entry

Delete
from
Node

103

RETURN

Retrieve
Predecessor

Node

Underflow
with Sibling

Having the
Most Entries

RETURN

Retrieve
Left

Sibling

Retrieve
Right

Sibling

Establish
New

Root Node

RETURN

Catenate·
with

Left Sibling

Catenate
with

Right Siblin

104

Article Deletion

START

Retrieve
Article from
ARTICLE File

Delete
Article from
ARTICLE File

Extract
Title from

Article

Extract
Next Word

from Title

Attempt
to Delete

Word

105

RETURN

START

Extract
Title

of Article

Establish
Reference Number

for Article

Extract
a Word

from Title

Article Insertion

Yes

Attempt
to Insert

Word

Store
Article into
ARTICLE File

RETURN

106

RETURN

Start

Locate
Insertion
Position

Retrieve
Node for
Insertion

Keyword Insertion

RETURN

RETURN

Create and
Insert into
B-tree Root

Insert
into
Node

107

RETURN

RETURN

Insert
into
Node

Retrieve
Predecessor

Node

... -::- . Split
Node

Ye Insert into
and Split

ld Root Node

Retrieve
Left

Sibling

Retrieve
Right

Sibling

Create and
Insert into

New Root Node
RETURN

Overflow
with

Left Sib ling

RETURN

Overflow
with

ight Sibling

RETURN

108

START

Retrieve
Next
Node

Retain
Search Trail

Retrieve
Next
Node

Retain
Temporary

Search Trail

Yes

109

Search

RETURN

No

RETURN

RETURN

Retrieve
Next
Node

Retain
Temporary

Search Trail

Add Temporary
Search Trail

to Search Trail

RETURN

110

START

Accept
N·ext Subset ..

Request

REPORT Program

Produce
Refe.rence

Nwnber
Listing

Produce
Permuted

Title
Listing

Produce
Keyword

Frequency
Listing

RETURN

111

Establish
irst Keyword

Subset

Error
Message

./

Produce
Subset
Listing

Intersect Old
and New
Subsets

Unite Old
and New
Subsets

112

APPENDIX C

SAMPLE REPORT PROGRAM OUTPUTS

113

P EFERENCE AUTtiOR--->
~UMBH TITLE---->

JCURNAL-->

0 LAPllOUTH,J. S

A•TICLE FILE BY REHRENCE NUMBE~

EACH ATTRIBUTE IS TERMINATED BY As.
IF ANY ATTRIBUTE CANNOT BE PRINTED ON A SINGLE LINt, IT IS CUNTINUED ON TH< ~~XT Ll~r

AFTER AN INDENTATION OF FIVE SPACES.

SCHEDULING FOR A SHARE OF THE MACHINES
SOFTWARE 5 NO.lll9751P.29S

ECKLUND, E. F. •EGGLETON ,R .B • S
PRIME FACTORS OF CONSECUTIVE INTEGERS$
AH. HATH. MONTHLY 79 N0.10ll,721Pol082S

DE LUCENA,C.J.P,•OE ALMEIDA CUNHA,L,F.S
A MODELLING TECHNIQUE IN PROGRAMMINGS
Puc. CENTRO TECNICO CIENTIFICO SEPTEMBER N0.9171119711$

3 $
TbE RIGHT OF EQUAL ACCESS TO GOVER~HEhT INFORMATIONS
COMPUTERS ANO AUTOMATION 20N0.4l1971IP.32S

4 ANDERSON, J ,W .•ATKINSON, M,P .. COLIN ,A .J, T ,•HAIN SWOR fH, D• J,• LI STER ,A.M, S
THE EVOLUTION Of AN OPERATING SYSTEMS
C:OMPUTER 6ULLETlN 15 N0.6(1971IP.212S

b UTGOFF,V.A.•KASt«AP,R.L.~

114

GN BEHAVIOR STRATEGY SOLUTIONS IN TWO-PERSON LERO-SUM FINITE EXTENDED GAMES WITH IMPERFECT INFOPMATIUN, PART
I; A METHOD FOR DETERMINATION OF HINlllALLY COMPLEX BEHAVIOR STRATEGY SOLUTIONS$

SI AH J, APPL. HAT h, 22 NO ,4(1972 IP ,648S

8 $
POCKET CAL CU LA TORS
COMPUTER DECISIONS 4 N0•3ll972JP.42S

9 GYLLS TROH, Hoc. S
A SYNTAX-DIR EC TEO TRANSLATING S VS T EMS
TECHNICAL REPORT, IOWA UNIV. AUGUST N0.01 ll969IS

10 VYSSOTSKv.v.A.$
COMMON SENSE IN CES IGNING TESTABLE SOFTWARES
fECHNICAL REPORT, BELL LABORATORIES ll972JS

11 SAYRE.o.s
IS AUTOMATIC "FOLDING" Of PROGRAMS EFFICIENT EN(](JGH TO lllSPLACE MANUAL?S
COMM. ACM, 12 N0,12ll9b9IP,656$

12 GAUTSCHI,w.:KLEl~.a.J.$
RECURSIVE COMPUTATIO~ Of CE~TA!N DERIVATIVES-A STUDY OF ERROR PROPAGATIONS
COMM. ACM, 13NO.U19701P.7$

13 CHNEY,C,J,$
A N!JNRECURSIVE LIST COMPACTING ALGORITHMS
CCHH. ACM 13 NO.llll9701P.o77S

14 FENG,r.v.s
!~FORMATION SYSTE~S SEARCH ALGORITHMS FOR ASSOCIATIVE MEMORIES$
DEPT OF ELECTRICAL ENGINEERING, PRINCETON, UNIV MARCH (19701$

15 HILLER.w.s
ALGORITHMS COMPUTING ZEROS Of CS
CEPT OF !'LE.CTR !CAL ENGINEERING, PRINCETON, UNIV MARCH (19701$

16 BENNETT,w.s.s
SW ITCHING THEOR y ON OBTAINING BOOLEAN FUNC TIUNS FOR APPROX! HAT! NG BASE Two ALGClRITHMSS
CEPT Of ELECTRICAL ENGINEERING, PRINCETON, UNIV HA~CH 119701$

l~ HSIAO.H.Y.•SELLERS,F.F.:CH!A,o.K.s
SWITCHING THEORY BOOLEAN DlfffRENCE FOR TE ST PATTERN GENE RAT! ONS
CEPT OF ELECTRICAL ENGINEERING, PRINCETON, UNIV MARCH I 1970U

20 MCLANE,P.J.S
STOCHASTIC CONTROL ANO ESTIMATION A LINEAR OPTIMAL ESTIHArlON-CONHOL ALGORITHM FOR LINEAR SYSTEMS •ITH

STATEOEPENDENT DlSTUPBANCESS
CEPT Of ELECTRICAL ENGINEERING, PRINCETON, UNIV MARCH 119701S

22 FENICHEL,R.R.S
A NEW LIST-TRACING ALGORITHMS
TH-19 OCTOBER(19701 AD-714-522$

THE .lRTICLE FILE CCNTAINS 10 ARTICLES.

llS

TITLES IN ARTICLE FIL[PtRHUTED HY t<EYll'liUl="D

: !=t· 0 Ll\L 'lTLE.----"> THE !:NO UF THE TITLE IS OE;~UTEO BY A$.
~U ~ E ER

3 ACCESS TLl GUVcRN~EM l~FCF•AT IONHhE RIGHT uf E\JUAL
16 APPROX!MAT!Ni. BASE Two ALGUklTHMS$SWITCHING THEORY UN OBTAINJ,;G BOOLEAN FJNCTIUNS fl)O

14 ASSOCIATIVE MEHORIESUNFURMATIUN SYSTEMS SEAf<CH ALGORITHMS FOR
16 BASE T»U ·ALGORITHMSSS•ITCHING THEORY ON OBTAINING bOOLEAN FUr4CTIONS FO~ APPROXIMATING
16 BCCLEAN FU~CTIONS FOP 'PP•OX!MATl.NG BASE Two ALGUF.ITHMS$SW!TCHI <G THEOFY UN OBTAINING
18 BOOLEAN CIFFEREl'<Ct FC' TEST PATTERN GENERATluN$SWITCH!NG THEORY
15 CSALGOF ITHHS COMP UT ll<G LCRUS Of

8 CALCULATCR$POCKET
lC CO~HON SENSE IN CES!GN!~.; TESTABLE SOFTWARES
13 CCMPACTING ALGORJTHM$A ,;ONRECURSIVE LIST

COMPLEX BEHAVIOR STPAHGY SULUTIONSSON BEHAVIOI' HRATEGY SOLUT!ONS IN TWO-PHS<IN LERO-SUM f!'ITH rXTl,Ctl
. GAMES k!TH !~PERFECT INFORMATION, PART I: A METHOD FOR IJETE~M!NATTON OF MINl·~ALLY

1 CONSECUTIVE !NTEGERSSP•IME FACTCRS OF
12 DERIVATIVES-A STUOV OF ERRU• PROPAGATIONSRECURS!VE COMPUTATION lF cEqA!N
18 ClffERENCE FOR TEST PATTERN GENERATION$SWIT,HiN~ THEORY BOOLEAN

9 CIHCTEC TRANSLATING SVSTE~U SYNTAX-
11 DISPLACE MANUAL?$1S AUTCMAT!C "FOLDING" OF PROGRAMS EFFICIENT ENOUGH TC
20 DISTURBANCESSSTOCHAST!C CONTROL AND ESTIMATION A LINEAR OPTIMAL ESTIMATION-CONTROL ALGll•ITHM FUR Llo<FeF

SYSTEMS WITH STATEDFPENOENT
11 EFFICIENT ENOUGH TU DISPLACE ~ANUAL?S!S AUTOMATIC •FOLDING• OF PROGRAMS

3 EQUAL ACCESS TO GOVEFNMENT INFOl<MATIDNSTHE RIGHT OF
12 ERROR PROPAGATIONSkECURSIVE COMPUTATION OF CERTAIN DERIVATIVES-A STLIJY OF
20 EST !MAT ION A LINEAR CPT !MAL EST!M AT ION-CONTROL ALGORITHM FOR LI NEAR SYSTEMS W !TH ST ATEDEPENOt'NT

DISTURBANGESSSTOCHASTIC CONTROL AND
4 EVOLUTION OF AN OPERATING SYSTEMSTHE
6 EXTENDED GAMES WITH IMPERFECT INFORMATION. PAKT !: A METHOD FOR DETEFMINATIUN OF MINl~ALcY · r~r1 L• 6ErlAVI~<

STRATEGY SOLUTICNSSON oEHAV!OR STRATEGY SuLUT!ONS IN TWO-PERSON ZERO-SUM F!N!H
FACTORS OF CONS EC UT IVE !NTEGE RS$PRI ME
HNITE EXTENDED GAMES WITH IMPERFECT INFORMAT!UN. PART I: A METHOD FOR OtTEFMINATIUN OF MIN!MALLY COMPL<X

OtHAV!OR STRATEGY SOLUTIONSSON BEHAVIOR !>TRATEGY SOLUTIO~S IN TWO-PERSON lERO-SUM
11 FCLD!NG" CF PROGR~MS EFFICIENT ENlUGH TO DISPLACE MANUAL?S!S AUTOMATIC"
16 FUNCTIUNS FOR APPP.OX!MATING BASE TwO ALGORITHMSSSW!TCHING THEORY ON OBTAINING BOOLEAN

6 GAMES w!TH IMPERFECT INFORMAT !UN. PART t: A METHJO FOR DETERMINATION Of ~!NI MALLY COMPLEX rlEHAV!J' SHAHGY
SOlUT!ONSSON BEHAVIOP STRATEGY SOLUTIOrlS IN nm-PERSON ZERO-SUM FINITE EXTENDED

18 GENERATION SSW ITCHING THEORY BOOLEAN OlffERENCE FOR. TEST PATTERN
3 GOVERNMEl><T !NfORMAT !ONSTHE R !GHT OF EQUAL ACCESS TO
b IMPERFECT INFORMATION, PART I: A METHOD FOR DETERMINATION U~ MINIMALLY COMPLEX BEHAVIOF STUTEGV

SOLUTIONSSON BEHAVIOR STRATEGY SOLUTIC~S IN TWO-PERSON ZERO-SUM FINITE EXTENOEO GAMES WITH
l !NT£GtRSSPR!HE FACTCRS OF CONSECUTIVE

20 LIMAR OPTIMAL ESTIMATION-CONTROL ALGORITHM FOR LINE.AR SYSTEMS o!TH STATEOl'PENOENT UISTURBANCESSSTDCHAST!C
LUNT ROL ANO EST !MAT ION A

11 ,A~UAL?$1S AUTOMATIC •FCLOl~G" CF FRCGR-MS EFFICIENT ENOUGH TO DISPLACE
14 MEMDRIES$1NFORMATION SYSTEMS SEAPCH ALGORITHMS FUR ASSOCIATIVE

b ,ETHOO ~OR OETERMINAT!ON OF MINIMALLY COMPLEX SEHAVIOR STRATEGY SOLUTIUNSSUN BEHAVIOR STRATEGY SOLUTIONS IN
TWO-PERSON ZERC-SUM FINITE EXTENDED GAMES WITH IMPERFECT !NFORMATIUNo PART !: A

,!~!HALLY COMPLEX BE~AV!OR STRATEGY SCLUTICNSSON BEHAVIOR STRATEGY SOLUTIONS IN TWO-PERSON ZEPO-SUr~ FINITE
EXTENDED GAMES WITH IMPERFECT !NFCRHAJION. PART I: A METHOD FOR UETERHINATTON OF

HODELL ING TECHNIQUE IN PROG~AMHINGSA
I> NONRECUPS!VE LIST CC,PACTING ALGORITHM$A
16 OBTAINING BOOLEAN FUNCT!O~S FOR APPROX!MAT ING BASE TWO ALGORITHMSiSWITCHING THEOl<Y ON

4 UPERATING SYSTEMSTHE EVrlLUTION OF AN
JO CPT!MAL EST!MAT!ON-WNTROL ALGORITHM FOR LINEAR SYSTE~S WITH STATEOEPENlENT D!STURBANCESHTOCH~STIC CUNTOOL

ANO ESTIMATION A LINEA'
PART !: A METHOD FOR OE TEP MINA TION OF M!N!MALLV COMPLEX dEHAVIOR STRATEGY SOLUTIONS SON ~EHAVIOR ST,~! EGY

SULUTIO'lS IN TWU-PERSO~ LERO-SUM FINITE txTENDEO GAMES W!Tri !MPEUECT INFORMATION.
18 FAlTERN GrnERATIC~HolTCh!lll<; THECRY ECCLEA~ DIFFERENCE FOR TEST

B POCKET CALCULATORS
I PRIME FACTORS Of CONSECUTIVE INTEGERS$

12 PROPAGAT!D~SRECURSIVE COMPUTATION OF CERTAIN DERIVATIVES-A STUDY OF EP~OR
12 RECURSIVE COMPUTATION OF CERTAIN DERIVATIVES-A STUDY Of ERROR PROPAGATION$

3 P!GHT (Jf EQUAL ACCESS TC GCVERNME~T !HORMHIUNHHE
0 SCHEOUL l,_G FOP A SHARE UF THt MACHINES

14 SEARCH ALGORITHMS FOR ASSOCIATIVE MEMORIESi!NFOR.~AT!DN SYHEMS
10 SENSE IN DESIGNING TESTABLl SOFTWARESCOHMO~

0 SHARE Of THE MACHINE$SCHEOULING FOR A
10 SOFTWAl<ESCUMMUN SENSE IN DESIGNING TESTABLE

6 !CLUTIONS IN ToC-PERSCN ZERC-SUM FINITE EXTENDED GAMES WITH !MPEPHCT INFm•HATION, PART I: A ~ETHUD FU•
OETERM!NAT!UN OF MINIMALLY CCMPLEX BEl-AVl.JR STRATEGY SOLUTIUNS$0N BE>IAVIOR STRATEGY

20 STATEOEPENOENT C!STURnANCES$STOCHASTIC CONTROL AND ESTIMATION A L!NEAP OPTIMAL EST!MAT!ON-CGNTROL AL~OPITHM

FOR LINEAR SYSTEMS olTH
2C STOCHASTIC CONTROL ANO EST!MATICN A l!hEAR CPT!MAL EST!MATION-CONTPOL ALGOP.ITHM FOR LINEAR SYSTEMS wlTH

STATEDEPENDEhl UISTURBANCES$
6 STRATEGY SOLUTIONS IN TwU-PEFSUN LERO-SUM FINITE EXTENDEU GAMES •!TH IMPERFECT INFORMATION. PART !:

METHOD FOR DETERMINATION OF MJIHHALLY COMPLEX BEHAVIJR SHATEGY SOLlJT!ONSSON "EHAVIOP
12 STLOY UF ERROF PRCPAGAT!OhSRECURSIVE COMPUTAT!UN OF CERTAIN DERIVATIVES-A

b SUM HNITE EXTENDED GAMES WITH IMPERFECT I !\FORMATION, PART !: A METHOD FUR DETERM!NAT ION OF MINIMALLY
COMPLEX BEHAV!U~ STRATEGY 5GLUT!UNS$0N BEHAVIOR STRAIEGY SOLUTIONS IN l•O-PERSON ZERO-

lb SolTCH!Nr~ THECRY CN CttTAlh!NG tlCULEAN FUNCT!UNS FOR APPROXIMATING BASE TWU ALGORITHMS$
18 SW!TCHh, IHEURY dOOLEA~ D!FFEkENCE FOR TEST PATTERN GE,ERAT!ON$

9 SYNTAX-Ol•ECTEO TRANSLATING SYSTEMSA
2 TECHNIQUE IN PROGRAHMINGSA HODELL ING

18 TtST PATTERN GENERAT!ONSSk!TCH!NG THECRY BC~lEAN OIFFERtNCE FOR
lC IESTABLE SOFTWARBCC~HOh SE~SE I~ CES!GNING
22 TRACINI> ALGUR ITHHSA NE• LIST-

9 TRANSLATING SYSTEMsA SYNTAX-O!RECTEO
b ZERO-SUH FINITE EXTENDED GAMES WITH IMPERFECT INFORMATION. PART I: A METHOD FOR DETEPHINAT!ON OF MINIMALLY

COMPLEX BEHAVIOR STRATEGY SOLUT!GhS$0~ BEHAVIOR STRATEGY SOLUTIONS IN TWO-PERSON
15 ZEROS OF C$AL GOR ITHMS COMPUTING

Tli! S LISTI NG CONT A I NS 70 PERMUTED TITLES.

116

FREQUEt-.LY OF KEYoORD OCCURkENCES

THE LISTING IS ALPHABET !CAL oHEN REAU FRCM LEFT TO RIGHT ACRLlSS EACH ROW.

fl<- ... ,f. r-.c , KEYWORD fREQUE l\CY KEYWOqo FREQUENCY KEY WO RU FREQUENCY KFYWURU
I ACCESS 1 APPROXIMATING 1 ASSOCIATIVE 1 BASE
"- BCOLEAN l c 1 CA LC UL ATOR 1 COMMON
1 CCHPACTING l COHPL EX l CONS[CUT!Vf l DERIVATIVES
l DIFFERENCE l DI REC TEO l DIS PLACE l DISTURBANCES
l EFFICIENT I EQUAL 1 ERROR l ESTIMATIUN
1 E~OLUT I ON l EXT END EC 1 FACTORS 1 FINITE
l FOLDING 1 FUNCTIONS l GAMES l GENERATIJ~
1 ~CVERNMENT l IMPERFECT l INTEGERS 1 LI NE AR
1 MANUAL l M EH ORI ES l METHOD l HINIHALLV
1 MCDELLING l NON RECUR SI VE l OBTAINING 1 OPERATING
1 OPTIMAL l PART l PATTERN l POCK ET
l PRIME l PROPAGATION l RECURSIVE l RIGHT
l SCHEDULING l SEARCH 1 SENSE l SHARE
l SOFTWARE l SOLUTIONS 1 STATEOFPENDENT l ST OCH AS TIC
1 snATEGY l ST\JVY 1 SUH 2 SWITCHIN~
l SYNTAX l HCHNIQUE 1 TEST 1 TESTABLE
1 TRACING l TRANSL AT ING 1 ZERO l ZEROS

T ~r KEY DI REC TORY CONTAINS 70 ENTRIES, INCL~DING 68 UNIQUE KEYWORDS.

• EfEH~Lf AUIHOR--->
NU~BEP TITLE---->

JOURNAL-->

ARTICLES SATISFYING THc FOLLOWING SEARCH RFUUEST:

*** :,dfTWA~l ••-o.
EACH ATTRIBUTE I> TERMINATED BY A$.
IF ANY ATTRIBUTE CANNOT BE PR INTEO ON A SINGLE LINE, IT IS CONT INUEO ON THE NEXT LINE

AFTER AN INDENTATION Of FIVE SPACES.

10 VYSSOTSKYoVoAoS
CCMMON SENSE IN CESIGNING TESTABLE SOFTWARES
TECHNICAL REPGRT, BELL LABOR ATOR I ES 119721$

T•EFE ARE 1 ARTlt,ES SATISFYING THIS REQUEST.

FtFERENCE AUTHOR--->
~U~BEP TITLE--~>

JOURNAL-->

ARTICLES SATISFYING THE FOLLOWING SEARCH HQUEST:

*** PA TT ERN ANO GENERATION ***
tACH ATTRlouTE IS TERMINATED BY A s.
If ANY ATH IBUTt CANNOT BE PRINTED ON A SINGLE LINEo IT IS CONTINUED ON THE NEXT LINE

AFTER AN INDENTATION Of FIVE SPACES.

18 hS IAO,M .y.: SHLER~. F.F. :cHI A, o.K. $

~~w~: N~L ~~~~~~A~U~~~~~E~~~~~~ E~~ N~~~O~; S~N ~ ~T~:=~H r,~~~~~~ i• 1~ S

ThtFE ARE l ARTICLES SATISFYING THIS REQUEST.

PE~ERE~CE AUTJo()R--->
NUMBER TITLt--- >

JCURN AL -- >

APT IGLES SATISFYING THE fOLLOWI NG SEARCH REQUEST:

*** SWITCHIN& OR MODELLING •••

EACH AfTRloUTE IS TERHINAfEO BY A S.
IF ANY AfTRIBUTE CANNOT BE PRINTED UN A SINGLE LINE, IT IS CONTINUED ON THE NEXT LINE

AFTER AN INDENTATION Of FIVE SPACES.

OE LUCENA,c.J.P.•DE ALMEIDA CUNHA,L.F.S
A MODELLING TECHNIQUE I~ PROGRAMMINGS
PUC, CENTRO TECNICO CIENTIFICO SEPTEMBER ND.9/7111~111$

lb BENNETT ,w.S.S
Sw!TCHJ~G THECRY lN OBTAINING BOOLEAN FUNCTIONS FOP. APPPOXIMATING BASE TWU ALGORITHMS$
CEPT U~ ELECTRICAL ENGINfERING, PRINCETON, UNIV MARCH U9701S

18 HSIAUoH.Y. :SELLERS,F,F,:CH!A,u,K.S
S•ITCHING THEORY BOOLEAN DIFFERENCE fOR TEST PATTERN GENlRATJ-lNS
lEPT OF ELECTRICAL ENGINEERING, PRINCETON, UNIV MUCH Cl9701>

THEFE AFf 3 ARTICLES SATISfYl~G THIS REQUEST.

hEFERE~CE AUTHOR--->
NU~eEP TITLE---->

JOURNAL-->

0 LARMOUTH,J ••

ARTICLES SATISFYING THE FOLLOWING SEARC" REQUEST:

" BOOLEAN ANO APPROXIMATING OK SCHEDULING •••

EACH ATTRIBUTE IS TERMINATED BY A$,
IF ANY ATTRIBUTE CANNOT BE PRINTED UN A SINGLE LINE, If IS CJNTINUED ON THE NEXT LINE

AFTE~ AN INDENfATIUN OF FIVE SPACES.

SCHEOUL ING FOP A SHARt Of THE MACHINES
SOFTl<ARE 5 NO.ltl9751Po29$

lb l!Ef\NETT.~.s.s
SWITCHIN& THEORY CN OBTAINING BOOLEAN FUNCTIONS FOR APPROXIMATING BASE T•O ALGORITHMSS
DEPT Of ELECTRICAL ENGINltRINGo PRINCETON, UNIV MARCH tl970J$

HHE APE 2 APTICLES SATISFYING THIS REQUEST.

117

APPENDIX D

SAMPLE JCL LISTINGS

118

CREATION OF NONKEYWORD FILE

//STEPl EXEC PGM=SORT
//SYSOLT DO SYSOUT=A
//SCRTLlB OD OSN=SYSl.SORTLIB,OlSP=SHR
//SCRTWKOl 00 UNIT=SYSOA,SPACE=(TRK,(30),,CONTIG>
//SC~T~K02 CC UNIT=SYSOA,SPACE=CTRK,(30),,CGNTIGl
//~CRT~KC3 DC UNIT=S~SDA,SPACE={TRK,(JQ),,CC~TIG)
llSCRTIN DD*
I*
/ISCRTCUT DD OSN=COMSC.SEQ.CRCTZER.NONKYWD,UNIT=2314,
II VOL=(PRIVATE,SER=DISK28),$PACE=(TRK,(2,2)),
II CC8={RECFM=FB,~LKSIZE=l800,LRECL=l8),0ISP=<ULD,PASS)

11 S 't S If\ 00 *
SORT FIELCS=(l,18,CH,At
Ft\C

I*
l/STEP2
l/SYSI!\
//S'tSLJl
//SYSUT2
//SYSPRINT
II

EXEC PGM=IEBGENER
DO DUMMY
DO OSN=*.STEPl.SCRTCUT,DISP=(OLO,KEEPl
DD SYSOUT=A,OCB=(RECFM=F,BLKSIZE=l8,LRECL=l81
DO SYSOUT=A

//CREATE
//STEPLIB
II
//SYSPRINT
//SYS IN
l/P.aRM

I*
I /CCUNT
II
II
//KEY
II

303

II
l/"RTICLE
ll
II
II

CREATE PROGRAM

EXEC PGM=CREATE,REGION=l26K
DD DSN=COMSC.PROG.CROTZER,UNIT=2314,
VOL= (PR I VAT E , S ER= D I SK 2 8) , D I SP= SH R
CC SYSOUT=A
OD DUMMY,OCB=BLKSIZE=BO
DD *

20 18 134 200

DO DSN=COMSC.SEQ.CROTZER.COUNT.SAMPLE,UNIT=2314,
VOL=tPRIVATE,SER=DISK28),SPACE=(TRK,ll,
CCB=(RECFM=F,8LKSIZE=32,LRECL=32t,OISP=(NEW,KEEP)
DO DSN=COMSC.REG.CRUTZER.KEY.SAMPLE,UNIT=2314,
V CL= (P R I V AT E , S ER= D IS K 2 8) , S PACE= (TR K , (l 0 , 5)) ,
CCB=<RECFM=F,BLKSIZf=7280,LRECL=7280),0lSP=<NEW,KEEP)
DO DSN=COMSC.REG.CROTZER.ARTICLE.SA~PLE,U~IT=2314,
V 0 L = (PR I V AT E , S ER= lJ I SK 2 8), SP AC E = (TR K , (l 0 , l Ql J. _,....
CCB=(RECFM=F,BLKSIZE=l39,LRECL=l39),0ISP=lNEw,KEEP)

......
N
0

EDIT PROGRAM

//EDIT EXEC PGM=EOIT,REGICN=l26K
//STEPLIB DD DSN=COMSC.PROG.CROTZER,UNIT=2314,
II VGL=(PRIVATE,SER=OISK28},0lSP=SHR
//SYSPRINT .CC SYSOUT=A
//SYSIN OD DUMMY,DCB=BLKSIZE=BO
//Al<TCRDS 00 *
I*
II ERRCRDS
I*
//CK.ARTS
II
II
//ERR ARTS
//PtRM

YES
I*
//ERRM~G

II

OD *
CC DSN=COMSC.SEQ.CRCTlER.SAMPECTC,UNIT=TAPE,
VOL=SER=T9092,LABEL=(4,SL) ,DI SP=(NEw,KEEPt,
DC8=(RECFM=VB,BLKSIZE=2000,LRECL=750)
OC SYSOUT=B, DCB=BLKSIZE=SO
cc *

DD SYSOUT=A

I-'
N
I-'

//UPDATE
//STEPLIB
II
l/SYSPPINT
/I SYS IN
//CCUNT
II
II
I /NCl\KEY
II
II
//KEYwCCL
I*
llARTDL
I*
II ART IN
II
II
//KEYwCIN
I*
//KEY
II
II
//ARTICLE
II
II
//MESSAGE
II

UPDATE PROGRAM

EXEC PGM=UPOATE,REGION=l~BK
DC DSN=COMSC.PROG.CROTZEP,UNIT=2Jl4,
VCL=(PRIVATE ,SER=OISK28} ,DISP=SHR
00 SYSOUT=A
cc DUMMY,oca=BLKSIZE=BO
DC DSN=COMSC.SEQ.CRCTZER.CCUNT.SAMPLE,UNIT=2314,
VOL=(PRlVATE,SER=OISK28),SPACE=(TkK,l),
CCB=(RECFM=F,BLKSIZE=32,LRECL=32),01SP=(OLD,KEEP)
OD OSN=COMSC.SEQ.CPCTZER.NCNKYWO,UNIT=2314,
VOL=(PRIVATE,SER=OISK2Bl ,SPACE=tTRK,(Z,2l),
CC B= (R EC FM= F B, 8 L KS I l E: = 18 0 0 , LR EC L = 18) , D I S P = { U L D , KEE P)
co *
CD *
00 DSN=COMSC.SEQ.CROTZER.SAMPEOTO,UNIT=TAPE,
VOL=SER=T9092,LA8EL=(4,SL),DISP=(OLO,KEEP),
CCB=(RECFM=VB,BLKSIZE=ZOOO,LRECL=750)
cc *

CC OSN=COMSC.R~G.CROTZE~.KEY.SAMPLE,UN1T=2314,
VOL=(PRIVATE,SER=DISK28>,SPACE=(TRK,(10,5)),
OC8=(PECFM=F.BLKSIZE=7280,LRECL=7280),01SP=(ULD,KEEPJ
OD DSN=COMSC.PEG.CRUTZER.ARTICLE.SAMPLE,UNIT=2314,
VOL=(PR!VATE,SER=DISK28),SPACE=(TRK,(10,10)),
CC8=(RECFM=f,BLKS!lE=l39,LPECL=l39),ClSP=(OLD,KEEPt
DD SYSOUT=A

//'<EPORT
//STEPLIB
II
/IS'tSPRINT
//SYSIN
11 C CUNT
II
II
//KEY
II
II
//ARTICLE
II
II
//LISTING
I /R ECU EST

YES
SLJFThAPE $

REPORT PROGRAM

EXEC PGM=~EPCRT,REGIG~=l2bK

OD OSN=COMSC.PROG.CRCTZEP,UNIT=2314,
VOL= (PRIVATE, S ER=O ISK23) ,DISP=SHR
CC SYSOUT=A
DO DUMMY,DCB=5LKSIZE=80
DO USN=COMSC.SEW.CROTZER.COUNT.SAMPLE,UNIT=2314,
VCL=tPR!VATE,SER=DISK28J,SPACE=(T~K,!),

DCB=<RECFM=F,dLKSIZE=32,LRECL=32),0ISP={OLO,KFEPI
DD DSN=COMSC.REG.CRCTZER.KEY.SAMPLE,UNIT=2314,
VOL=(PRIV-ATE,SER=DISK28) ,SPACE=tTRK ,(10, 5)),
CCB=(RECFM=f,BLKSIZE=7280,LRECL=7280)901SP=<ULO,KEEP)
DO DSN=CG~SC.REG.CRCTZER.ARTICLE.SAMPLE,UNIT=2314,
VOL=(PFil/ATEtSER=DISK2tl),SPACE=(TRK,(10,10)),
CC 8= (R ECFM= F, tiLK S l Z E= 139, LR ECL = 139) tD I.SP= (OLO, KEEP l
CC SY50UT=A,DCB=BLKSIZE=l33
OD *

YES YES

FATTEPN aNo GENfPATION$
Sw ITCH ING UR

JVCCELLii\G f.
bOOLEAN AND APPROXIMATING OF SCHEDULING $

I*
II

-

VITA

Arthur Douglas Crotzer

Candidate for the Degree of

Master of Science

Thesis: EFFICACY OF B-TREES IN AN INFORMATION STORAGE AND RETRIEVAL
ENVIRONMENT

Major Field: Computing and Infonnation Sciences

Biographical:

Personal Data: Born in Clarksville, Tennessee, February 25, 1951,
the son of Mr. and Mrs. A. E. Crotzer.

Education: Graduated from Clarksville High School, Clarksville,
Tennessee, in June, 1969; received Bachelor of Science
degree from Austin Peay State University, Clarksville,
Tennessee, in June; 1973; with majors in Mathematics and
Physics; completed requirements for the Master of Science
degree at Oklahoma State University, Stillwater, Oklahoma,
in July, 1975.

Professional Experience: Application Programmer, Austin Peay
State University Computer Center, Clarksville, Tennessee,
Summer 1971, 72, 73; Graduate Assistant, Oklahoma State
University, Computing and Infonnation Sciences Department,
Stillwater, Oklahoma, August, 1973, to May, 1975.

