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CHAPTER 1
INTRODUCTION

Certain applications of computer systems require the processing
of large amounts of information. This can place a heavy burden on
the system to be used. One solution to the data handling problem is
to use an extremely large main store. This has never been a feasible
solution primarily due to the cost of main storage units. Through
advanced technology it may someday be that main storage will be in-
expensive enough to satisfy all demands placed on it (3) but the
“reality of today is that large amounts of data must be placed on
secondary storage devices. Furthermore, if ready access is desired
for any item of data, only particular secondary storage devices can
be used. The use of secondary storage, however, introduces additional
time delays which can be significant.

This project has two major objectives. They are:

(1) To investigate the performance of B-trees in a secondary
storage environment; and,

(2) To develop an information storage and retrieval system
in which the performance of B-trées can be tested.

B-trees are a generalization of other tree-like data structures
and should be viewed in relation to the other data structures against
which they compete. A data structure is a collection of data items
which have some discernible, explicit or implicit, relationship.

both physical and logical considerations are involved when a data



structure is discussed in this paper. Chapter I; presents an overview
nf data structures. This background material deée10ps a framework

in which B-trees can be viewed. A data‘structure is useful only if

it is understood. A large portion of understanding something is
'knowing how it is different. It is hoped thafbcnapter ITI shows how
B—frees differ from other data structures and why they should be use-
ful in systems using secondary storage.

Chapters III and>IV'deve10p further the motion of B-trees with
Chapter III emphasizing the definitioms, implications, and programming
‘considerations of B-trees and Chapter IV emphasizing the methods by
which B-trees are maintained. |

Chapter V describes the design considerations involved in imple-
menting the information storage and retrieval system developed as a
part of this project. The chaptef provides a detailed discussion of
the design of the file structures used by the information storage and
retrieval system. One of the files is organized as a B-tree and is.
the basis of the evaluation of B-trees.

Both the system in general and B-trees in particular are reviewed
in Chapter VI. The performance of the B-tree used in the system is
summarized.and recomnendations are presented for extensions of the in-
fofmation storage and retrieval system and for further study of
B-trees.

Four appendices are included to aid the user in working with the
system implemented in the project. Appendix A, a User's Guide,
illustrates proper ways to communicate with the several programs in
the system. Appendix B contains program logic flowcharts for the

programs with Appendices C and D showing sample outputs from the






CLAPTER II

OVERVIEW OF DATA STRUCTURES

Introduction

Why Use Data Structures?

The simplest and probably most understandable way to store values
in a computer memory is to have a unique name for each value to be
stored. There would seem, however, to be certain times when the use
of single cell data structures is inappropriate. Wilde (23) presents
a complete discussion of the appropriateness of single-cell data
structures.

What factors cause single cell data structures to be unworkable
at times? An obvious response is the fact that certain sets of values
have intrinsic relationships which should be exploited. Other sets of
values may contain records of variable size, complexity, or number
wnicn resist the single cell structure approach. For other applica-
tions, programming considerations may dictate that single cell data
structures are inappropriate. Even the novice programrer soon
realizes that certain programs require special handling.

Evidently there needs to be something that can bridge the gap
between what the user of a computer system or program wants to
accomplish and the manner in which the computer or programmer can

accomplish it. Data structures are one means of helping to bridge



this gap. A data structure is taken here to be the manner in which
the data for a program or system is stored. Data structures may
contain much or little data and be complex or simple depending on
the environment. Data stored in other than main meméry generally is
called a data set, data base, or data vank., A data set usually
represents a physical data structure, whereas a data base or data
bank generally represents a more complex logical-physical structure.

In this paper, several types of data structures are considered
in varying degrees of detail. This chapter is intended to give an
overview of the major classifications of data structures.

The aim is to present a framework in which the features of
different data structures can be viewed and compared and to define a
major portion of the terminology used later in the paper. Data
structure categories do not have strict boundaries with some satisfy-
ing several definitions. The data structures are viewed as thcy
might be used in an information storage and retrieval system.

An information storage and retrieval system essentially entails
two types of operations. Data storage involves the insertion and
delction of records or parts of records; data retrieval involves the
accessing of single or groups of records or partial records. Of
course other processes may take place but the above are of major
concern in this paper. One additional consideration is the physical
location of the data, in either main core storage or on a secondary
storage device. This topic is discussed at various times throughout
this chapter because the use of large systems involving large amounts
of data which need to be retrieved quickly for on-line applications

is increasingly important.



Why So Many Different Types?

There seems to be an endless number of completely different types
of data structures, arrays, linked chains, queues, AVL trees, etc.
All of these different types are useful due to the many and varied
applications of tomputers. A particular type may be appropriate to
seﬁeral applications But others may work more efficiently or be
easier to program. A generally applicable rule is that for a partic-
ular problem, a highly tailored data structure may be more efficient
than a generalized daté_structurel The variability in uses of data
structures‘is a major catalyst in developing new data structures and
hybrid data.structures.

Data sfructures have many common featurés and are not really as

different as the names imply.

Selection Considerations

Since the application does not dictate which data sfructure
to use, £he user must use his own judgment in making a choice.
Several factors influencing the choice are mentioned below.

Harrison (10) suggests that to a large degree the efficiency
attributed to a data structure determines its applicability to a
particular problem. This efficiency may be either of the utilization
of storage or of the time necessary to complete the tasks required.

Constraints on one or the other may cause a trade-off to be necessary,



Again it is the responsibility of the programmer/analyst to define his
problem clearly and choose the proper method of solution.

Another consideration might be the ease with which the program-
ming can be accomplished. A program to be used only bnce may not need
a sophisticated scheme. Produétion programs, on the other hand, would
be better candidates for detailed analyses of their data retention
requirements.

When considering programs that might be subject to later change,
possibly by other programmers, it is well to keep in mind the com-
plexity of the data structures, and how understandable their function
will be to aﬁother programmer. A strong case mig%t be made for a
data structure that is slightly less efficient but much clearer or

simpler.

Classes g£ Data Structures

The overall division of data structures adopted in this chapter
is based on the way in which individual data elements of the structure
are addressed. The two classes are distinguished as having a computed
address or a link address. Rough interpretations would say that an
element of the first class is addressed according to a mechanism
externalito the data elements themselves and an element of the second
class is addressed according to information contained within one or
more of the data elements. The single cell data structure implicitly
defined above comes from the first class. These classifications,

slightly altered, came from Harrison (10).



Computed Addresses
Vectors

As a first step in developing data structures more involved than
single cells, one could collect several single cells into contiguous
storage cells and call this a vector or one-dimensional array. This
implies that there exists some single relationship>between the
elements comprising the vector. This collection of storage locations
is given a name representing all the locations in the vector. Indi-
vidual locations are referenced by a single subscript indicating a
positional relationship in the vector. Note that the subscript is
not a portion of the contents of a data element as a key generally
is but simply implies positional value. Although there is no explicit
indication that element N + 1 immediately follows element N in the
vector, it is implicit in the definition of a vector. Depending onf
the language used in implementing a vector data structure, there are
different regulations on the size of the vector (number of elements)
and upper and lower bounds. The elements of a vector are in order by
subscript but the values stored therein may be in any order whatever,

A search for a particular value stored in a vector is most simply
programmed-by.-successively comparing each element in the vector with
the one to be located until a match is found or the end of the vector
is reached. This technique, known as a linear search, is likely suf-
ficient for small size vectors (10 or fewer elements) but is not for
larger vectors. The number of operations to be performed in a linear

search grows directly with the number of elements in the vector.



Another technique for searching exists, though, in which the
nﬁmber of operations grows as the base two logarithm of the number of
elements. This technique, commonly referred to as a binary search,
iteratively reduces the domain of search by a factor of two. This
homes in on the value to be located rather quickly. An important
point is that a binary search on a vector can only be performed if
the elements of the vector are in order by value. This places an
extra regulation that must be provided for if a binary search is
desired.

The term bLinary search implies a method by which a search can be
performed. As ié shown later, the same principles guiding a binary
search on a vector can be used in searching other data structures.
Note that any form of Search performed on a vector attempts to deter-
mine the position at which a known value is located Whereas a
subscript reference does just the reverse, attempts to determine the
value at a known location.

Vectors generally are static ddata structures, i.e., subject to
few insertions or deletions. This is apparent when one remembers
that the elements of a vector must be contiguous in storage and an
insertion or deletion necessitates an amount of data movement in order
to make room for an inserted element or sqﬁeeze out the hole left by
a deleted element.

Several specialized vectors which only allow insertions and
deletions at the ends are quite useful in many applications. These
vectors can be called stacks, queues, and deques although vectors
are not the only means by which stacks, queues and chues can be

implemented.
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Stacks. A vector in which single items are. entered and removed
from a single end of the vector is termed a stack. No data movement
is involved in a stack since the insertion or deletion is always at
one end, and only the size of the stack changes. A stack is con-
structed such that the last item 'pushed" onto the stack is the first
item '"popped" from the stack, such as cafeteria trays. 'Push" means
to add a single item to the stack and '"pop' means to remove a single
item from the sfack. Since all operations take place on a single end,
the stack grows or shrinks only in one direction and is only con-

strained by the size of the containing vector.

Queues. Queues are similar to stacks in that single values are
entered or removed from the queue but arevdifférent in that the insert
and delete operations are made on opposite ends of the structure.

This causes the first item to be entered into a queue to be the first
item removed from the queue, such as cafeteria customers in a checkout
line. Two addresses, pointers, references, etc., indicating the head
and tail of the queue are used in order to maintain the positions for
removal and entry. In a stack only the top of the stack varies, but
in a queue, both the head and tail may move, such as cafeteria cus-
tomers, creating a problem if the eﬁd of the containing vector is
reached but storage is actually available.

Stacks and queues are quite useful in a wide range of applica-
tions and are rather easy to use and understand. They can be
generalized into a double-ended queue or deque (dequeue according to

Stone (21)).
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Deques. With a deque, single values can be ehtered or removed
from either end. Thus both stacks and queues are restricted deques.
Rarely are the full facilities‘of a deque required; usually some re-
stricted and hence, easier to program, version is_used. Knuth (13)

uses the terms "left" and '"right" for referring to the ends of a deque.

Multidimensional Arrays

If a set of déta items are related in more than one Way, a vector
may not be sufficient to describe all the relationships involved. 1In
these cases a multidimenéional array may be appropriate. One might
view a multidimensional array as a collection of severél vectors, each
vector having all but one of the relationships held constant and the
single non-constant one varying throughout its possible values. An
array of this type is stored in contiguous locations as is a vector,
and has its individual elements identified by subscripts (one subscript
for each relationship or dimension). Since the array repfesents a
multidimensional space but is stored in a one-dimensional memory space,
there must be an address calculation which determines which element
of the array corresponds to a particular subscript reference. Knuth
(13) presents a discussion of this calculation and also discusses some
additional related topics, particularly triangular arrays. Just like
vectors, which are a special case of multidimensional arrays, inser-
tions and deletions are rather ill-advised. The principal use of
arrays is when a static table of data is to be referenced not by con-

tents but by positional relations in order to find a value.



12

Scatter Storage

In the above types of data structures, the value to be referenced
is located by calculating its address from a value or set of values
denoting its positional property in the structure. In scatter storage
techniques,a key, often a part of the record to be located, is manip-
ulated in order to cbtain the address of the desired item. This
manipulation may involve either a logical or ari%hmetic transformation
of the key or a combination of the two.

Scatter storage techniques generally involve a vector of loca-
tions which contains the values to be stored. As each key value is
encountered it is transformed by the hashing function into an address
of one of the elements in the vector and the data item is stored at
that point. The technique thus promises very quick insertion per-
formance. A problem arises if an item is already stored at the cal-
culated hash address. This is called a collision and can be dealt
with in many ways.

There seem to be as many collision-handling techniques as there
are people with imaginations. A simple scheme is to search linearly
through the vector until an opening is found for the new item. This
could be a long search if the vector is more than partially filled or
the keys are not randomly distributed in the vector. Another scheme
is to successively generate new addresses at random until an opening
is found. This necessitates the same sequence of addresses to be
generated for a search request. Several methods utilizing linked

lists including overflow areas are in use. Morris (17) describes
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many of these techniques.

One way to reduce collisions is by using a good hashing function
or transform. Aside from producing addresses within the specified
range of addresses, the function should ideally spread the number of
address occurences uniformly over the address space. It is assumed
that the possible keys outnumber the possible addresses. This is not
the case with vectors or arrays which might be considered as special-
ized cases of scatter storage. Much work has been done on the
development of ﬁseful hashing functions. Maurer and Lewis (16)
review several commoh fypes of hashing functions in addition to other
scatter storage related topics.

Even though the problem of collisions prevents the achievement
of perfect retrieval performance, séatter storage 1is still a very
quick means of accessing a data item. Insertion is also rather good
involving little data movement with most collision-handling technigues.
Ueletions‘are a bit more troublesome. With many collision-handling
techniques, an item to e deleted cannot simply be removed from the
set of items. If it were just removed, a iole would be created which
would isolate any following items. If a search routine came upon the
hole, it would conclude incorrectly that the item was not found even
though it might be in the isolated items. A solution is to tag
deleted items with a special code indicating that the position is now
available for insertion but should not terminate a search. Morris
(17) notes that a deletion handled in this way has no beneficial
effect on later searches.

It would thus seem that scatter storage is a reasonable way to

go. This may well be the case if the only type of retrieval to be
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performed is for a single item. The problem is that no scatter
storage technique preserves or creates order in the keys. If a par-
ticular application negds to access all the stored entries in key
value order, they muét first be sorfed or some additional mechanism

must be attached to the scatter storage technique.

Direct Access to Secondary Storage

For a great many applications the amount of data in a data set
may be too large to be contained entirely in main storage. In these
cases some secondary storage device must be used as an additional
store for daté. Programs still may need to retrieve, insert, or
delete items from the data set even though it now resides outside of
main memory. The notion of scatter stdrage can be extended to cover
these needs. Now instead of developing a main memory address, the
hashing transform develops an address of the item on the secondary
storage device. This requires the secondary storage device to have
direct access capabilities. Thus tape units which must be processed
sequentially are not suitable, whereas disk or drum units are.

The hashing or randomizing transform may come in several forms
(11). The actual physical device address may be used in certain
settings, or a numeric value indicating an offset from the physical
beginning of the data set might be appropriate, or a separate cross
reference list may be retained which is first consulted and provides
the address to be used. In any case, many of the same objectives
such as ease and speed of calculation and even distribution of keys
stated for scatter storage also apply here. An additional consider-

ation in accessing secondary storage is the time delay resulting
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between the issue of a command and the realization of the actual
transfer of data. Electronic switching and mechanical movement
delays contribute to this additional consideration. Thus secondary
storage devices are actually only pseudo-random éccess devices.
Attempts to reduce this time delay may influence the choice of method
and placement of overflow records.

Computer manufacturers generally supply at least one direct
access retrieval method with their software packages and some havé
several slightly differing techniques from which the ﬁser may choose
(4, 11). It is worth empﬁasiiing that direct access‘techniques, just
like scatter storage; do not preserﬁe any logical order to the keys
or records and hence are unsuitable if it is important to retrieve

more than a single record at a time.
Linked Addresses

The data structures discussed above are sufficient to satisfy
the processing needs for a significant percentage of computing appli-
cations but are rather rigid. The structures discussed in this
section provide the programmer with the option of choosing data
structures which are more flexible and hence can be tailored more
easily to a particuiar application. The structures have the common
characteristic that the relationships they imply between the data
items are not dependent on physical placement of the items but are
explicitly stated within the structurevitself. This divorcing of the
logical relationship from the physical relationship is what contrib-
utes to their flexibility. The term '"linked list" is used often

tiiroughout the literature and is here taken to mean any data structure
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which internally contains information describing the data item rela-
tionships.

There is a close association between the data structures dis-
cussed as linked lists and the notion of a directed graph (2, 8).
This association may help to exhibit the similarities and differences

of the types of linked lists to be presented.

Digraghs

Berztiss (2, p. 103)’defines a digraph as follows:
A directed graph (digraph, oriented graph) is the

ordered pair D=fA, R}, where A is a set of nodes (points,

vertices) and R is a relation in A, i.e., R is a set of

ordered pairs, wiich are called arcs (lines, pointers).
Only finite digraphs (A is finite) will be considered in this paper.
The relation R can be illustrated with a set of arrows connecting
the nodes in a planar representation of a digraph. In Figure 1,
the set of nodes is {A, B, C, D, E, F} and the relation is illustrated
by the directed arrows in the figure. The circles used to represent
nodes do not imply the internal composition of the node. In differenf
linked lists a node may itself be a compiex digraph. Nodes are points
of reference but generally do correspond to the information content
of a data structure. Arcs, on the other hand, may be indexes or
actual addresses or offsets from a specified address or perhaps some
other means of indicating the position at which the corresponding
arrow is to terminate.

The second part of Figure 1 displays a connection matrix for

for the digraph to its left. Each M (I, J) entry in the connection

matrix represents the number of connections (arcs) emanating from
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Figure 1. A Digraph and Corresponding Connection Matrix

node I and terminating at node T. If an arc <X, YD connects node X
to node Y, then X is said to be the initial node and Y is said to be
the terminal node. The connection matrix displays several useful
pieces of information about the digraph. The sum of the elements in
a row tells how many arcs have that node as an initial node and the
sum of the elements in a column tells how many arcs have that node
as a terminal node. These sums for each node are called the out-
degree and indegree of the node, respectively. Thus node A has
indegree of one and outdegree of two, and node C has indegree of
three and outdegree of zero. A 1 on the diagonal of the matrix
indicates that an arc exists from a node to itself (called a loop).

The connection matrix and closely related indegree and outdegree
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information are feferred to often both for consistency and clarity in
the de&elopment of the data structures.

Some other useful terms relating to digraphs are path, path
length, and cycle. A path is said to exist from node X to node Y if
a sequence of arcs can be found which connect node X to node Y. The
nunber of arcs in this path is called the path length. Thus there is
a path of length one from B to E in Figure 1 and two paths of length
two from A to C. A path from a node to itself is termed a cycle.
Note that a loop is a cycle of length one. A more detailed discussion
of digraphs relating to linked lists can be found in several books
including ones by Berztiss (2), Iverson (12), and Knuth (13). The
book by Harary, Norman, and Cartwright (9) presents a thorough dis-

cussion of directed graphs.
Chains

It is not uncommon to find a restricted definition of linked
‘lists to include only chains. Chains can be viewed as vector elements
which have been uprooted from their contiguous physical locations and
made to reside. in locations not necessarily contiguous. The rela-
tionship formerly manifested in physical proximity is now represented
by links within each data item (node) indicating the location of the
next node. These links may take many forms but always indicafe the
terminal node of the arc represented by the link. This arrangement
provides for much easier insertion and deletion of list items. Con-
trast this with vectors which require much data movement when an

item is to be inserted or deleted other than at an end of the vector.
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Simple Chains. In the most elementary setting, a node may con-

sist of some information and a single link. The link indicates the
next node of thé chain. Figure 2 (a.) illustrates a chain containing
three nodes. Note that the éymbol P is the link of the last node in
the chain. This represents some special signal that no more nodes
are to follow.

In terms of a connection matrix for a simple chain we can say
that the outdegree of every node but one is exact1; one and the inde-
gree of every node but one is exactly one. The special nodes are the
first and last (head and tail) nodes in the list which have indegree
of zero, outdegree of one and indegree of one, outdegree of zero,
respectively. The list is thus accessible in one difection, from
head to tail passing through each node until the one desired is en-
countered. This is in contrast with the direct referencing capability
vectors.

Stacks, queues, and deques discussed as vectors can be implement-
ed easily as simple chains with each insertion or deletion altering
the list length by one and changing either a head or tail pointer.
The insertion and deletion operations on simple chains are not as
restricted bybdata movement as those on vectors, however, implying
that chains can be more flexible than vectors when insertions and
deletions are considered. These operations are iliustrated in Figure
3. For an insertion only two links need to be changed, and for a
deletion only one link needs to be changed. The algorithms to accom-
plish insertions and deletions are slightly more complicated when the

special cases of an empty list and changing head or tail nodes are



included, but are still quite clear and concise.

a.) Simple Chain

b.) Circular Chain

p e __:— | ¢|

c.) Doubly-Linked Chain

T [

d.) Circular Doubly-Linked Chain

Figure 2. Sample Chains

o D),
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a.) Original Chain

>l 1o .

b.) After an Insertion

==

c.) After a Deletion

Figure 3. Insertion and Deletion in a Simple Chain



22

Circular Chains. One difficulty with simple chains is that only

those nodes following a given node can be reached. A slight modifi-
cation is to change the § link in the tail node to link to the head
node. This créates a circular‘chain, sometimes called a ring. The
term ring is ambiguous (Knuth (13)) and is not used in this paper.
Figure 2 (b.) illustrates the change needed to create a circular chain.
This modification simplifies the connection matrix relation,
causing each node to have indegree and outdegree of one. An interest-
ing characteristic of a circular chain is that the ends of the chain
essentially meet and one address can indicate the location of both the
head and tail of the chain. This can have beneficial implications in
implementing a queue or deque with a circular chain. Additionally,
algorithms to insert and delete nodes can be simplified somewhat

using circular lists.

Doubly-Linked Chains. For certain applications it is helpful to

be able to scan the list of nodes both forward and backward from a
specific node. This can be accomplished by installing another set

of links in the nodes as illustrated in Figure 2 (c.). Now a node
contains information indicating both its successor and predecessor in
the list. This is essentially superimposing one simple chain onto a
mirror-image simple chain. This view is supported by the connection
matrix for a doubly-linked chain which is a symmetric matrix with each
node other than the head and tail having indegree and outdegree of two.

The extra linkage is quite beneficial when a deletion is to be

performed. With a simple chain the predecessor of the node to be
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deleted must be known usually be tracing through the list for the node
to be deleted recording the predecessor at each step. With doubly-
linked chains, the predecessor is immediately known énd no search is
required. This can be rather helpful time-wise, if the list is long.
The additional benefits of two-way linking do not come without a
cost, however. The extra sét of links take storage, either reducing
the useful portion of a node or increasing the size of a node. The
insertion and deletion algorithms also are complicated to a certain

extent due to the additional links which must be set or changed.

Circular Doubly-Linked Chains. Just as circular chains are a

logical extension to simple chains, circular doubly-linked chains can
be easily constructed from doubiy-linked chains. The change required
is to set the forward link of the tail node to point to the head node,
and the backward link of the head node to point to the tail node.
With this arrangement any type of pass through the nodes can be made
beginning from any point in the chain. Figure 2 (d.) illustrates the
éppearance of a cizcular doubly-linked chain. The connection matrix
for a circular doubly-linked chain has each row sum and each column
sum equal to two. Note that this is true even if the list only has
one element. Both the forward and backward links point to the single
node and its indegree and outdegree are two. Figure 4 illustrates
this.

Circularly linking a doubly-linked chain can simplify somewhat
the insertion and deletion algorithms associated Qith this type of
structure. The requirements of the particular application should be

studied before deciding to use double linking and its associated
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higher storage requirements.

Figure 4. A Circular Doubly-Linked Chain
: Containing One Node

A subject not yetvdirectly addressed is the manner in which the
chain itself is referenced. Two approaches seem to be popular. In
one, separate locations are kept which point to the head or tail or
some intermediate node in the chain. In the second approach, these
separate pointers are incorporated in the chain itself but always
kept available. This second approach has the added benefit that the
list is never completely empty but always has at least the fixed
pointer.

In review, chains are flexible structures, with the ability to
accommodate insertions and deletions efficiently. They also are easy
to program and understand. The major disadvantage is the inability to
reference directly elements contained in the list. To find the nth
node, the links must be traced until the nth node is found. This
tracing of links may be a strong deterrent when large lists are con-
sidered. It may not be important, however, if the nodes need to be

referenced sequentially.
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Storage Management. It has been assumed in the discussion of

chains that when a node is needed for insertion i{ will be available
or when one is deleted it will be reclaimed properly. These features
are not automatic but must be provided for by the programmer or by
the programming language if it has the power to do so. Several
storage management schemes exist for the selective disbursement and
reclanation of storage locations. Knuth (13) and Sherman (19) present
discussions on this subject.

The subject of chains is treated to some extent by a great many
. authors. Notable among these are Knuth (13), Harrison (10), and Stone

(20). .
Trees

A large number of natural physical relationships require struc-
tural representations other than chains. For example, a chart
illustrating the managerial levels in a large corporation cannot be
depicted easily or clearly using one of the chain structures discussed
above. The hierarchical nature of the relationships contains connec-
tions which cannot be aécommodated with even a doubly-linked chain.
This type of data arrangement necessitates a new data structure which
is called a tree and is épecifically designed to accommodate hier-

archical data relationships.

General Trees. An example of a tree is illustrated in Figure 5,

along with indications of the meanings of certain special terms

associated with trees. In terms of the digraph analogy used in des-
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cribing other linked lists, the indegree for each node in a tree is
exactly one except for one special node called the root which has in-

degree of zero. Further, all nodes having outdegree of zero are

Level 1
Level 2

Level 3

0 é‘/// Leaves

Figure 5. A Tree

Level 4

called leaves (terminal nodes or twigs by other authors). The out-
degree for all non-leaf nodes in a general tree can be any positive
integer. The restriction on the indegree of all non-root nodes re-
sults in there being a single path'from the root to any node. The
nodes are divided into levels (l-origin numbering) according to their
path length from the root node. Finally, an important point is that

in a general tree, no order between the branches from a node is to be
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inferred. This last point will be expanded in a iater discussion. In
Figure 5., node C is said to be a successor of node A; node C is said
to be the predecessor of nodes F and G; nodes B and D are said to be
siblings of ﬁode C; and node B is said to be the root of a subtree
consisting of nodes B, E, and H. i

There are several methods which can be used to represent general
trees within a computer. Three of these are illustrated in Figure 6.
The tree represented is that in Figure 5.

The first type is an explicit linking representation. Each node
contains the linking information necessary to point to its successors.
Only -as hany links are needed as there are successors. This represen-
tation is a logical extension to chains with the 6ne—way linking of a
simple chain being expanded to include possibly several successors.
The backward linking of doubly-linked chains can be approached in trees
using threads (Knuth (13)), but that subject is not discussed here.

A vector representation of a tree is designed essentially for
static trees. A node vector in a particular order (Iverson (12))
and an associated degree vector are entirely sufficient to describe a
tree. This type of representation is not as easy to update as the
explicitly linked, but is more conservative of storage since the links
are not required.

The third type of representation uses a bifurcating node: it is
one which contains exactly two links. Through an ingenious mapping,
any general tree can be represented by a tree constructed from bi-
furcating nodes. The links in the nodes of such a tree are designated
as left and right. This is a more important premise than might seem

obvious. An order is placed on the branches from a node. This pre-
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vents such a tree structure from being represented as a digraph and
hence is not a tree in the strict mathematical sense. Rather, it is
an ordered tree, and subtrees are referred to as left and right sub-
trees. The mapping then takes the form of using the left link of a
binary tree node (taken from the two link appearance) to point to a
successor of the node in question and the right link to point to a
sibling. The hierarchical relationship obvious in the original tree.
is not quite so obvious in the ordered tree but can be recovered by
using the knowledge of how the binary tree representation of the tree
was constructed. Note that there are several links which are marked
as null (@) in the binary tree representation (Figure 6 c.)). A
point worth considering is that the right link of the root is always
null when representing a single tree; This can be utilized where
several trees--a forest of trees--is to be represented by linking
this root node to the root node of the next tree in the forest.

The necessity of precisely defining the structure of a tree when
represented in a computer makes ordered trees of great importance

since they have a very predictable form.

Binary Trees. Although binary trees can be used to represent

general trees, their usefulnéss is not so restricted. For instance,
Figure 7 illustrates a binary tree representing the arithmetic
expression A * (B + C). This representation obviates the need for
parentheses to denote priority of operators since the hierarchial
nature of the tree does that automatically. |

Another use for binary trees is to represent a set of data such

that the operations of searching, insertions, and deletions can be
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Figure 7. Binary Tree Representing an
Arithmetic Expression

executed most efficiently. A binary search on a vector of sorted
items has excellent search characteristics but rather poor update
performance and linked lists (chains) have the opposite properties.
Binary trees can serve to combine the two techniques and produce an
all-around efficient data structure which achieves the best properties
of each.

Figure 8 illustrates a small binary search tree, as it will be
called here. The values in the circles indicate the values of the
keys for which a search will be made. The node may contain additional
information but only the key is shown. Note that the keys in the
left subtree for any node are lexicographically smaller than the key
in the node and that the keys in the right subtree for the node are
all lexicographically larger than the key in the node. Thus if oné is

searching for a key value of X, and is at a node with key value Y, the
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Figure 8. A Binary Search Tree

left subtree should be searched if X <Y and the right subtree should
be searched if X > Y. If X = Y, the search is complete. If the tree
is perfectly balanced, i.e., the path length from the root to the
farthest leaf node is not more than one greater than the path length
to the nearest leaf node, then the tree should have search character-
istics near those of a binary search {(on the order of log,N, where
the tree has N nodes). The tree also has the advantage of requiring
no data movement when an insertion is to occur--only the changing
of a few pointers.

A binary search tree can have undesirable search characteristics,
however, if the tree is not built randomly. For instance, if the tree
is constructed with keys being input already in order, then the tree

degenerates to a linked list with order N probes needed to search the
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list. This may or may not be a possibility in a certain application
but should be realized. Nievergelt (18) presents a comparison of

binary search trees with some other common data structures and Knuth
(14), presents detailed analyses and observations on the performance

of binary search trees.

Traversals. For a particular application it may be necessary
to retrieve a part or all of the information contained in a binary
search tree. <Sfince the nodes are not necessarily stored in contiguous
locations, a sequential pass through memory does not suffice. CSome
means of‘systematically tracing the left and right links is needed
to effectively recover the information.

A binary tree essentially can be divided into three parts--a
left subtree, a root, and a right subtree. Notice that this division
appliés not just to entire trees but to subtrees as well. Three
general approaches to the traversal question are most often applied.
They are described and named below: (these definitions correspond

to those given in Knuth Volume 1. Second Edition)

Inorder Traversal
Traverse the left subtree in inorder
Visit the root
Traverse the right subtree in inorder

Preorder Traversal
Visit the root
Traverse the left subtree in preorder
Traverse the right subtree in preorder

Postorder Traversal
Traverse the left subtree in postorder
Traverse the right subtree in postorder
Visit the root

Here visit means to accomplish whatever is to be done with the

information in a node once it is accessed.
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The traversal schemes indicate where to go next when a node is
encountered. The definitions apply recursively throughout a tree and
hence require a stack or recursion in order to be able to back out of
the tree from some internal node. The traversal names used here
came from Knuth (13) who changed terminology in the second edition.
The'reader is warned to check his terminology before reading and
comparing traversal schemes in order to avoid confusion. Wilde (23)

also presents a readable discussion of traversals, as does Stone (20).

AVL Trees. AVL trees amount to binary search trees which are
restricted from becoming out of balance. This guarantees an
efficiency of searching which cannot be guaranteed with binary search
trees.

Balance tags in each node of an AVL tree are maintained to
indicate the degree to which the subtrees of each node are out of
balance. If an insertion or deletion causes a node's subtrees to
become out of balance by more than one level, the balance tags detect
this aﬁd signal that corrective action is needed. This corrective
action involves ''rotating' the tree locally to produce a tree that
is in balance. Although these rotations may need to be propagated
upward through the tree, Van Doren and Gray (22) have shown empir-
ically that the average number of transformations necesgary after an
insertion or deletion are approximately 0.5 and 0.23, respectively.
The guaranteed upper bound on the number of probes into an AVL tree
has been estéblished to be about 1.5 logZN {14, 22) but empirical

evidence indicates it is lower (22).
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According to the algorithms discussed in thé paper by Van Doren
and Gray (22), if the key 45 were inserted into the tree in Figure 8,
the node 10 wouid be out of balance by more than one level and would
require restructuring. After restructuring, the tree would appear as

in Figure 9.

Figure 9. An AVL Tree

AVL trees then, both in theory and by empirical evidence, seem
to be useful data structures for searching and for updating. It
seems, however, that AVL trees are most useful when used in internal
memory. A tree with only 10 levels when stored on secondary storage
might require 10 separate secondary storage accesses. Due to the
extreme difference in speeds of internal processing and secondary

storage retrieval, this would very likely be prohibitive.
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If a set of data is to reside on secondary st@rage but needs to
be accessed randomly, the direct accessing method éiscussed along
with hashing would be a likely candidate, but when it is desirable
to retain logical ordering, another approach is needed. If the
restriction on the number of branches from a node is relaxed, the
number of keys and the size of a node can increase and the number of
levels in the tree can decrease. The fewer levels there are, the
fewer secondary storage accesses are required. This is the rationale

behind the next two data structures.

Indexed Sequential. Chapin (4) cites six computer manufacturers

as having available indexed Sequential software for accessing sets of
data stored on secondary storage. An iﬁdexed sequential file

(a logical file is generally used to refer to a physical data set on
secondary storage) usually is a tree structure having three levels.
The first two levels are indexes subdividing the file into smaller
pieces for searching. The third level contains the actual information
to be referenced. In IBM teminology (11), the first level is termed
the cylinder index and contains the highest key on each cylinder
containing a part of the file and a pointer to that cylinder. Each
cylinder, in turn, has a track index which indicates the highest key
on each track of that cylinder. Finally the track is searched to
retfieve the desired record. Sometimes there are more or fewer than
two levels of indexing but two is generally the case, although one

is required. The nurber of cylinders and number of tracks per
cylinder are set prior to creating the file so there is an upper

limit on the size of each "node". This arrangement makes it possible
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to find a record in a number of probes equal to the number of levels
of inde*ing.

The major problem with indexed sequential files concerns the
handling ofAinsertions. A static file is most efficient both for
direct and sequentiai processing. Consider the schematic layout of
a disk pack containing an indexed sequential file in Figure 10. The
prime data érea contains the original file. If an attempt is made
to insert a record into a full track, the later records on the track
are moved up in order to make room for the new record and the one

bumped off the track is placed in an overflow area for that cylinder.

Cylinders —>

Track Index

]

Tracks P?ﬂme Dat

J

Independent

Area
Overfilow

Cylinder Index

Cylijnder Overflop

Figure 10. A Schematic Representation of an Indexed
Sequential File
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Another insertion into that cylinder bumps another record into the
overflow area and, in order to retain logical order, the records are
linked together. If a cylinder overflow area becomes full, an
independent overflow area can be used with all the overflow records
being linked together. Then when a search is. called for, it may be
necessary to trace through a chain of pointers to find the record.
This can degrade the performance of a program using an indexed
sequential file greatly. This method of overflow insertion can be
likened to unbalancing a binary search tree.

Deletions from an indexed Sequential file are only marked and
the holes created arelonly filled when the file i; restructured. A
restfucturing involves rebuilding the file, usually a time-consuming
~ process. It is unfortunate but true that the most‘actiVe files are
usually the largest and hence take the most time to restructure.
In addition to the references cited above, Flores (8) presents an

entire chapter on the subject of indexed sequential access.

B-Trees. The multiway branching structure known as a B-tree (1)

can be used to retain sets of data on seéondary storage with a guar-
anteed efficiency on storage utilization and a guaranteed fewer
number of accesses than the AVL trees discussed previously. The
structure also is quite efficient in handling insertions and deletions
with no degradation of search characteristics as with indexed
sequential files.

Each B-tree node consists of a set of keys and links, with there
being one more link than key. The number of links in any node is

guaranteed to be more than about half a predetermined maximum for
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the node. This maximum is called the order of the B-tree.
E-trees were first discussed by Bayer and McCreight (1) and

are treated in later chapters of this paper.

Multiliiked Lists

Lists. Knuth (13) discusses a linked structure he calls a List
(the capital is used to distinguish it from the more general term
list). The significance of a List is that it allows the full range
of connections possible with a digraph. In other words, overlapping
lists and even recursive lists are possible. Overlapping lists
(trees with common subtrees) can be usefully applied:to some appli-
cations to reduce the redundancy of data necessary if separate trees
with separate subtrees are constructed. Recursive lists, lists
involving paths closing on themselves, should be used with great
care or endless operations might occur. For instance, if a search
operation expecting to find a null link enters a cycle, it will not
terminate. Likewise, a copy operation may run into the same problem.

Trees are a restricted case of Lists and can always be represent-
ed as Lists. The reverse, however, is not true; not all Lists can
be represented as trees. Trees are a proper subset of Lists. Knuth
(13) discusses the programming imblications of Lists and several
approaches to their implementation.

Large and complex data sets are often located on secondary
storage, making the time for each secondary storage access important.
Although there may be an index to the data set, it is not necessarily

a hierarchical one as in indexed sequential files.
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Multilist. A multilist file (6, 15) consists of a set of records
which are ihterconnected with several one-way chains. A multiligt
file with only one chain of links active amounts to a simple chain
discussed earlier. As an example, consider records.containing an
employee name, a job title, and his number of deductions. If it is
important to retrieve all records of a specific job title or of a
specific number of deductions, links corresponding to tliese fields
can be placed into the records and an index containing the possible
common field types can be established. Figure 11 illustrates this
type of data structure. In order to find all lawyers, first the
title index is searched for lawyef and then the links are followed
to locate record numbers 50 and 20 until a @ link in the title link
field is encountered. A similar’approach would be used to serve a

: ‘ .
request for a number of deductions. To find all lawyers with 0
deductions, both chains have to‘be followed looking for common records.
Since the records are probably stored on disk, eack record retrieval
necessitates a disk access. This is the major disadvantage with
multilists. A large file may require many disk accesses--too many
to be usefgl.

The approach does have some desirable features, however. New
records can be inserted into or deleted from the file with relative
ease due to the linked nature of the relationships. The simplicity
of the approach is also a factor in its favor. If the number of
disk acceéses could be reduced, the data structure would be much

more attractive.
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Figure 11. A Multilist File
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Inverted List. Using an inverted list (6, 15) approach can help

to solve the searching problem encountered with multilists. In an
inverted list, the links contained in the records are removed from
the records and placed into the indexes. Thus the indexes for the
problem in Figure 11. taken as an inverted list would appear as in

Figure 12, It is readily apparent from this information that there is

Title Index

Plumber 10 30 40
Lawyer 50 20

Deduction Index

0 |20

1 |40 30 10

2 |50

Figure 12. Inverted List Indexes

a single lawyer with zero deductions. This can be determined solely
from the indexes and the only time the record file need be accessed
is to retrieve the requested records. In fact, if the entries in the

index are kept in a consistent order, only one pass of the indexes

need be made.
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Although the disk retrieval characteristics have been much im-
proved, this approach leads to other difficulties. The indexes are
much more difficult to update. The index entries must be variable
~in length to contain the variable number of inverted list record
references. If the logic to maintain variable blocks.'is not used
but: instéad a iarge_block is allocated for each index term, much
space will be wasted. A second consideration is that, if the ref-
erences are to be kept in collating order, they must be inserted
in the proper place, magnifying the updating difficulty.

A file is said to be partially inverted if only a portion of
the fields in each record are inverted whereas the file is said to
be‘totally inverted if all fields are inverted. The idea of inverted
or multilist files can be applied to other uses than simply connect-

ing like attributes. For instance a separate chain or inverted

index entry could be used to retain alphabetical order for the names.

Controlled List Length Multilist. A connection between the

multilist and inverted list approaches can be achieved through a
multilist with controlled 1list length (15). This essentially means
that some upper limit is placed on the number of records that can be
contained in each multilist chain. A limit of five would say that a
file containing 15 lawyers would have three chains corresponding to
lawyer and hence three index entries.

An advantage to this approach is that, under certain circum-
stances, the accessing of records can be overlapped. In other words,
when a record from one chain is coming in, a record from another
chain may also be coming in. Unfortunately, the ability to process

intersection and union requests in the index itself as is done with
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the inverted list, cannot be done with this approach. The approach
may, however, be faster than a straight multilist and the ability
to vary the upper limit on the list length from indéx generation to
index generatibn may be an advantage.

The multilist with controlled list length bridges multilists
and inverted lists. Note that an upper limit on the list length of
one produces an inverted list and no upper limit produces a straight

multilist.

Cellular Multilist. Since a secondary storage unit is modular
Ly nature, it is reasoﬁablé to take advantage of this modularity. A
cellular multilist (15) is based on this premise. The controlling
factor on the length of a chain is taken to be the number of records
in a given cell of the secondary st;rage device. Each list contains
records wholly contained in the same cell. This promotes the over-
lapping of accesses on;y achieved by coincidence;with the multilist
with controlled list length. A programmer or system designer should
be very familiar with not only his programming requirements but the
features of the equipment he is to use if he wants to speed up his

execution.



CHAPTER III
CHARACTERISTICS OF B-TREES

In 1972 Bayer and McCreight (1) reported development of a new
data structure termed a B-tree. The new data structure was designed
to serve the user in organizing and maintaining an index to a large
dynamically changing random access file. An index is some means of
retaining keys to the records in a file. The indexes considered
were ones so large that they could not be kept in main storage but
had to reside on secondary storage'(typically a movable head disk
unit). The data structure used reduced effects of disk storage time
delays by reducing the nunber of disk accesses réquired. Additionally
b-trees were found to guarantee a reasonable percentage of storage
utilization and to be acceptably easy to update.

A B-tree is a tree structure in which each node can have multiple
branches. The maximum numbér of branches possible from each node is
termed the order of the node. It may be possible that the order
varies from level to level, but usually is the same for each node in
the tree. If the order is the same for each node, it is called the
order of tiie tree, otherwise the order of the tree is not constant
and not specified. Thus a B-tree of order 11 has a maximum of 11
branches per node.

A data structure is a B-tree if and only if it satisfies the

following conditions:

44
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1). Every nbde has at most M successors (M is the order of thé
B-tree).

2). Every node, except the root and the leaves has at least
f'M/27 successors ( l.x'] indicates the smallest integer that is
greater than or equal to X). |

3). The rcot node ﬁas at least two successors unless it is a
‘leaf, in which case it is the only node in the treé.

4). All leaves have null pointers and are on the same level,
vhich in fact is the bottom level of the tree.

5). A non-leaf node with K successors has K - 1 keys. The
above conditions will be referred to as properties of a B-tree.

The above properties imply several things about B-trees.
Properties 1, 2, and 5 tcgzether imply that every node of the tree
contains between M/2 - 1 and M - 1 keys. This says that each
node is at least half full or there is at least 50% storage utiliza-
tion. It is shown later that the storage utilization is actually
~much higher than 50%. Property 4 indicates that ali leaves are
on the same level, the Lottom level of the tree. This forces the
tree to be in constant balance, guaranteeing searching efficiency.
A side implication is that since all léaves appear at the bottom
level, the tree must grow upward and not downward as all other tree
structures have. This is illustrated in the next chapter.

Figure 13. illustrates a B-tree of order 4. The root node for
the B-tree contains the key 50 and there are three levels in the tree.
The convention is used here that any link field which is blank
should be taken to be null. It is of critical importance when

sequential lookup is desired that the keys within a node be in their
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proper collating sequence. As a referencing convehience, the links
within a node are numbered sequentially beginning with zero and the
keys are numbered sequentially beginning at one. Thus key 100 is

the second key in that node and the node containing key 90 is pointed
to by the link numbered one in its predecessor. Analogous meanings
of successor, predecessor, left and right sibling, and subtree used
for binary trees are used when referring to B-trees.

The number of levels in a particular B-tree is important
because it affects the number of disk accesses necessary to retrieve
a record. Bayer and McCreight (1) and Knuth (145 have shown.that
an upper bound on the number of levels, 1, in a B-tree of order M

containing N keys is given by:
151+long/2~, ((N+1)/2) (n

This states that the number of levels is not just a function of N as
with other trees, but is also strongly affected by the order of the
tree. The order, however, determines how large each node is. Thus
there is a trade-off between the size of each node and the number

of levels in the tree. For this discussion, it is assumed that the
order is held constant throughout the tree. For a large order, the
number of levels is small, indicating good access qualities but the
search within a node is increased. Since the keys in a node are in
sequence, a binary search or even some tree structure could be used
to lessen the search time but it still should be considered. For a
small order, the node size is small causing a short in-node search
but the small order generates many levels causing many disk accesses.

It thus seems that the choice of M can be an important one on the
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performance of the B-tree. This choice affects: (1) the node
occupancy ratio of thé number of keys in a node to the maximum number
of keys possible per node, (2) the reorganization required within a
node, and (3) the reorganization required among nodes (7).

If the tree is stored on disk or drum, a likely choice for a
node size is the size of a track. This is due to the nodularity with
which the information on a track can be transmitted. Evidence
indicates that when secondary storage timing considerations are
analyzed, there is a broad minimum ov values of M which will give
nearly optional performance (1, 14, 21). Another constraint on the
node size ariées if the data structure is to be used in a virtual
storage environment. In such a case, a single virtual page might be
a good choice for a node size. This would prevent excessive paging
to occur as might happen if the node were several pages in size and
a binary search within the page were implemented. A side note to the
virtual storage question, is that one version of the Virtual Storage
Access Method (VSAM) by IBM contains a good many of the ideas and
terms associated with B-trees (11).

All is not perfect with B-trees, unfortunately. There is a
trade-off between the size of each node and the amount of processing
it implies. A tree with small order (approaching an AVL tree) has
many levels and more frequent maintainence transformations; however,
the transformations are relatively simple. Trees with large orders
(as exemplified in this paper) require few levels and less frequent
maintainence transformations but each transformation is more complex
and more time consuming. In a large node, the retention of order

within the node is a major factor. An insertion may cause much data
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movement and hence be quite eXpensive.

The problem of data movement in large nodes is a result of two
timing considerations; the time needed to move data Wwithin main
storage and the time needed to transfer information to and from
sécondary storage.

Paging and gather writing are two approaches to reducing this
data movement problem. Paging, as used by Bayer and McCreight (1),
involves retaining a number of pages (nodes) of the B-tree within
main membry aﬁd at£empting to do as much processing as possible
within main memory. This reduces the number of actual I/O operations
to secondary storage since many of the transfers‘can be entirely
within main memory. With this scheme the only time a node is actually
read is if it is called for but is not presently in one of the pages
in main memory and the only time an actual write is required is when
a page is to be actually read and no page area is available for it.
In such a case the least recently released (written) node is actually
written to secondary storage. Using 10 internal pages and an order
of 121, McCreight found that the number of actual reads and writes
required when randomly building a B-tree with 5000 keys was only
50% of the total number of reads and writes called for.

A closer inspection of paging reveals that its effectiveness
decreases as the number of active nodes becomes larger. For a tree
with order greater than 300, if three pages are kept in main storage
until the fourth node is activated in the tree, no actual writes or
reads (less the three to fill the pages) are required. This means
that over 900 keys could be inserted with three actual reads and no

actual writes.
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Assuming two levels and permanent retention of %he root node,
if there are 10 leaf nodes, then there are two chances in 10 that the
node to be read in a'search is already in main storage but if the
tree has 100 leaf nodes, then there are only two chances out of 100
that the requested node is already present. This means that percent-
age-wise more actual data transfers are required as the tree becomes
larger. This scheme has a great benefit, however, if the keys to be
inserted are already in order since the proper nodes are in main
storage more often (1). |

Gather writing involves the collecting of data taken from several
noncontiguous locations in main storage during a writing operation.
This eliminates the need for the data to be moved within memory to
a buffer before transfer to the secondary storage device. By under-
taking gather writing (through the use of channel programming in IBM
terminology), the time and data movements required for each write to
secondary storage are reduced.

One wonders whether the benefits of gather writing and paging
could be collected in a single implementation. There seems to be a
drawback to this, however. Whenva node is to be written in a paging
scheme, it simply replaces the current copy of the node in one of the
internal pages. Only when an actual read is needed and no page is
available does an actual write take place. In such a case the inter-
nal node least recently written is transferred intact to secondary
storage. The data to be written comes from only one source and
hence does not require or benefit from gather writing. It seems that
to a large extent, paging and gather writing are mutually exclusive.

Paging attacks the problem by attempting to reduce the number of
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actual writes and reads whereas gather writing attempts to reduce
the requirements placed on each write operation.

A final topic for this chapter concerns the different ways in
which information can be stored in a B-tree. There are three basic
classes of B-trees: those thaf contain informati&h only in the leaf
nodes, those that contain information directly in éll levels of the
tree, and those that contain only pointers to the records which are
stored in another file.

The first of these classes is similar to the indexed sequehtial
organization discussed earlier. However, B-trees possess much better
insertion and deletion characteristics since they do not degrade to a
linear search as can happen with indexed sequential files. Since
there is duplication of some keys, the tfee may have more levels.

An inorder traversal of the tree is probably faster since fewer
nodes containing information are retrieved, however, the approach
causes slightly more complex programming problems since the order of
the tree would vary at the bottom level.

The second class is probably more straightforward but not
necessarily more efficient than the first. Since thé information is
contained in each node, tle order for each node is reduced, increasing
the number of levels in the tree.

The third class removes the information from each node, placing
it in a separate file and planting a link to it in the B-tree node.
This allows the order to increase and the number of levels to decrease.
Note that separating the information from the keys as in this class
is most beneficial if there is a likelihood of multiple keys per

piece of information. The other two methods allow redundancy of
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data. This appfdach:is somewhat like causing the B-tree to Ee the
- index to a multilist file.

in any of these classes, there are a great ﬁany links in the leaf
nodes which are‘of no value. For certain applications, it might bé
advantageous to cause the leaf nodes to have a different structure
and remove the unnecessary links and pack more information into

the leaf nodes.



CHAPTER IV
OPERATIONS ON B-TREES

This chapter is intended to provide the reader with an intro-
duction to the searching, inserting, and deleting functions as they
apply to B-trees. Not all possible variations are chvered. For a

further discussion, refer to the in depth report by Davis (5).
Searching

As with any tree structure, a search for a random key should
begin at the root node if no special information is a priori known
about the tree. For this reason, it would Le advisable, if possible,
alﬁéys to retain the root node in main storage to reduce disk accesses.
A search in a birary tree involves tracing thrdugh perhaps several
links until the key is found or a null link is encountered. A search
in a B-tree is a bit more complicated. Since each node may contain
several keys, an additional search within the node is required. A
node itself mav be structured as a vector, allowing a linear or binary
search or as a tree providing for a tree search. In anv case, thcre
is a link on either side of each key and the subtree pointed to by
this link contains keys less than or greater than the key depending
on whether the link is to the left or right of fhe key.

A search proceeds from level to next lower lével attempting to
locate the search key in each node. If the key is in a node, the
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seaich terﬁinates; otiherwise the link between the two keys less than
and greater than the search key is followed to the next lower level.
Thus tvo pieces of information about each node encountered in the
search are of prime importance--the identification of the node and
the position in the node at which the key is or should be located.

Consider the drder frur B-tree in Figure 13. If key 80 is to
be found, the root node i3 examined and the search key is found to be
greater than the largest key in the node so the rightmost link is
followed. In the next node}to be searched, the search key is found
at key position 1 so the search terminates. Nov consider a search
for key 85. The link designated as being in link position 1 of the
root is followed since 85 is greater than 50. The search key of 85
falls between 80 and 100 in the node at level two so the second link
is followed to the next level. The smallest key in this node is 90
so link zero should be followed.to the next level, except tiat this
link is null; thus the search terminates without finding the key
Lut with an indication that the key should be in position 1 of the
particular leaf node.

Two observations are appropriate at this point. In order to
determine that a key is not in the tree, it is necessary to search
through the entire height of the tree. Also, when a new key is to
be placed into the tree, it will be placed into a leaf node, but when
a key is to be deleted it may come from some node other than a leaf

node.
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Insertion
Basic

As noted above, when a key is to be inserted into a B-tree, it
will be placed into a leaf node. This is in contrast to a binary
tree in which an insertion always causes the creation of a new node

and possibly a new level. TFigure 14. illustrates the basic insertion

10 20 : 40

a.) Before Inserting 35

10 20 _ 35 40

b.) After Inserting 35

Figure 14. An Order Three B-tree Illustrating the
Basic Insertion Process
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process. Note that as the key 35 is inserted, key 40 had tc be moved
to provide room for the new key. This problem of data movement can
Le rather troublesome if done often and this should be kept in mind

when the structure of the B-tree is leing designed.

Two Way Split

If a basic insertion causes the node to becomg overfull, i.e.,
tiiere are more keys than are allowed for the particular order, some
method of processing the overfull node must be found such that the
properties of a B-tree are not violated. One such method is called
a tvo vay split (called simply a split). In a split, the overfull
node is broken into three parts, the middle key of the node and the
two resulting sets of keys. An additional node is obtained and one
of the two resulting strings is placed into it with the other string
remaining in the original node. The node is thus split. To finish
the process, the middle key and‘a pointer to the new node are
propagated (inserted) into the predecessor of the original node.
This process adds one node to the tree, and causes the original and
new nodes to each be approximately half full. Eince the process
caused another insertion to occur in the next level up, the entire
tree does not stabilize until the propagated key and link fit into
a node without causing it to become overfull. A split is caused
if key 25 is inserted into the tree of Figure (4 a.). The resulting
tree is shown iﬁ Figure 15. 1In this case, kev 20 is the propagated
key and the node containing key 25 is the newly created node.

If the splitting propagates to the root node, and the root node

is overfull, not only is a new node created to contain half of the
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20 1/ 30 |Y

/

10 25 || | 40

Figure 15. An Ordesr Three B-tre Illustrating a Split

split node but an additional node is created to contain the propagated
key. Thus a new root has been formed and the tree is one level
higher. The veracity of the statement that a B-tree grows upward is
thus demonstrated.

Storage utilization was mentioned earlier as a general term.
It is now planned to specify exactly what is meant by utilization.
The ratio of keys in a tree to the possible number of positions
available in the nodes currently active in a tree is taken to be the
utilization of the tree. Since, by definition, each node but the
root is at least half full, one would expect the utilization to be
at least 50%; it turns out that it is actually much larger. Van Doren
(21) has shown that the asymptotic storage utilization of a B-tree
with a large degree of branching will be loge2 or about 69.3%.

This assumes splitting for insertions.
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Overflow

Another possible way to handle the problem 6f“6verfu11 nodes is
called overflow. Overflow involves a redistribufion of keys between
fhe overfull node, its le7t or right sibling and the intervening
key in the predecessor node for the two. The redistribution
essentially requires one or more keys from the.oveffull node to be
moved through the predecessor key slot into the sibling. The nurber
of keys that are moved is a function of the programmers intuition
since no empirical or theoretical work gives a sound base for a
decision. Figure 16 shows the results if overflow is performed when

key 25 is inserted into the tree in Figure 14 (a.). In this example

10 20 30 40

Figure 16. An Order Three B-tree Illustrating Overflow

the rightmost key is the overfull node, key 25 moved up to the prede-
cessor node forcing key 30 to the sibling node. An overflow can
only be accomplished if the sibling node is not full, however, both

siblings can be checked before a split must be performed. In the
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last two examples the same key was inserted into tﬁe same tree but
a split caused a new node to be used whereas an overflow did not.

Overflows do not propagate. Once an overflow is performed, no
more revision to the tree is necessary. Empirical evidence by Davis
(5) indicates that overflow greatly increases the utilization that
can be expected. On trees of order 48 a storage utilization of 85%
was achieved.

Overflow 'is a supplement to splitting. Overflow alone cannot
be used to preserve the properties of a B-tree, butt splitting can.
Overflow is not necessary but since splits propagate and overfiows
do not and storage utilization is appreciably inéreased, overflow is

recommended (1, 5, 14).
Deletion
Basic

Deletion from a B-tree involves removing a key and necessarily
one link from some node of the tree. Note that a deletion may come
from some non-leaf node although for trees of large order most of the
keys and hence most of the deletions will be from a leaf node. If
the key is in a leaf, the normal deletion process is followed. If,
however, the key is in a non-leaf node, deleting the key and a link
(a link must be deleted or there will be two more links than keys in
in the node) will also delete a subtree from the tree. Since this
subtree may contain valuable information, this should be avoided.

A solution is to exchange the key to be deléted with the next larger
or next smaller key in the tree. This lexicographically larger or

smaller key would come from a leaf node found by following the
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leftmost or rightmost links, respectively, of the subtrees to the
right and left of the kev to be deleted. It really does not matter
which key is Chosen; the point is that after the exchange is made
the tree is still in order and a deletion from a leaf node can be

made. For an illustration of this, refer to Figure 17.

30 \ : /| 80 \

70 90

10 20 40 50

a.) Before Deletion of Kef 60

i \\\\\\\\\\\\EA
V///// 80
70

90

10 20 40

b.) After Deletion of Key 60

Figure 17. An Order Three B-Tree Illustrating Deletion from
a Non-Leaf Node
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The basic deletion process involves removing a key and link from

a leaf node and squeezing out the hole created by the deletion.

Figure 18 illustrates the basic deletion process.

had to be moved over in order to close the ranks in that node.

Note that key 60

Deletion Process

- { 30 , 70 |~
10 20 40 50 60 80 40 100

Before Deleting Key 50

L1 30 I 70 |9

L
10 20 40 60 80 90 100
After Deleting Key 50
Figure 18. An Order Five B-Tree Illustrating the Basic
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Catenation

If, when a deletion is to be completed, the node becomes under-
full, i.e., it contains fewer than the minimum number of keys allowed
per node, special actions must be taken to again make the tree follow
the guidelines for B-trees. One such action is called catenation.

A caténation is essentially_the reverse of a split. In a cateﬁation,
the underfull node and a sibling and the intervening key from the
predecessor node are combined into one node. Tﬁisireduces the number
of nodes in the tree. Figure 19 illustrates the résults when the

key 20 is deleted from the B-tree in Figure 18 (b.). Note that in

10 30 40 60 80 90 100

Figure 19. An Order Five B-tree Illustrating Catenation

order for catenation to be possible, the sum of the number of keys in
the underfull node, the number of keys in the sibling, and the single
key from the predecessor node must‘be strictly less than or equal

to the maximuﬁ number of keys allowed per node. If this is not the

case, then an overfull node results.
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Just as with splits, catenations can propagate upward through
the tree. Since one key from the predecessor node is removed for
the catenation, the predecessor node may become underfull and require
attention. However, unlike splitting, a choice can be made with
catenations as to which sibling to catenate with. In the cases in
which only one sibling exists or when only one sibling satisfies the
number of key requirements there is no choice.

If the catenation process reaches all the way to the root node
and the root only has one element, the catenation will cause a new
root to be determined and two nodesvto be returned to the available
unused pool of nodes. When this happens, the number of levels in
the tree is reduced by one. Again, this shows that the tree grows

and shrinks at the root level.
Underflow

What can be done if the number of keys in the siblings of an
underfull node are all too large to allow a catenation? In such a
case, another action called underflow takes place.: Underflow in
practice if not in theory, is completely symmetric with overflow.
The keys in the underfull node, the keys in the sibling, and the
intervening key from the predecessor node are redistributed to pro-
duce an arrangement consistent with the definition of a B-tree. The
analogy is so complete in fact that a single equalizing routine can
Le constructed to accomplish the redistribution in both cases.
Figure 20 indicates the resulting tree configuration if key 10 is
deleted from the tree in Figure 18 @.). Note that key 30 has moved

from the predecessor node to the underfull node and that key 40 has
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moved up to the predecessor node. Underflow or overflow can be.viewed
as a step-by-step movement of single keys through the predecessor
node until the desired distribution is reached. One would be ill-
advised to actually implement the method as a stepwise approach,

however.

- 20 30 50 60 80 90 100

Figure 20. An Order Five B-tree Illustrating Underflow

In comparing the different updating techniques., one can readily
see that catenation and underflow must both be implemented if the
properties of B-trees are to be maintained. They are mutually
exclusive operations with the number of keys in the siblings deter-
mining which method must be used. It is not quite the same story
with splitting and overflow, however. Any overfull node can be
properly handled with splitting whereas only certain situations
allow overflow. When inserting, if there is a choice as to method
of handling an overfull node, overflow should be used since it does

not add to the number of nodes and will not be propagated. With

deletions on the other hand, catenation is beneficial because it
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reduces the number of nodes in the tree and can be propagated whereas
underflow cannot be propagated. The programmer thus has some minor
freedom in choosing combinations of techniques.

The methods‘presented here do not exhaust the possible ways to
maintain B-trees. Three snd four-way splitting, overflowing and
underflowing to non-sibling peer nodes, and the use of variable
length keys are some other possible factors to be considered when

designing a B-tree scheme.



CHAPTER V
DESIGNING AN ISRS
Systém Objectives

This chapter presents the analysis and design considerations
involved in one information storage and retrieval system. A great
many of the data structures previously presented are contained in
this system either directly as discussed or indirectly in hybrid
data structures. It is hoped that the reader's understanding of some
of the concepts discussed in the preceding chapters will be solidified
by his following the example presented in this chapter.

Today's world is saturated with data. In a scientific field,
so many new and valuable articles andlbooks are published each year
that an individual would be sorely pressed to keep up with new
developments in his field and still have time for any productive work.
The need to be aware of the state-of-the-art is, however, an important
one. There must be some way to relieve the person from being required
to use his own time and effort in researching information relevant to
his interests. The speed and accuracy of a computer should be of
great value inbthis effort. It is precisely this problem that the
information storage and retrieval system presented here addresses.

There are thus two objéctives for the information storage and

retrieval system (abbreviated ISRS) in this chapter. It should serve
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as an example of many types of data structures and it should be of
.some practical use in serving as an automated way of referenéing
desired pieces of information.

This ISRS pertains to articles taken from journals, magazihes,
etc. The articles have the common attributes of author, title, and
journal. Journal is here taken to mean the source of the article,
i.e., publication, volume, date, etc. There may be some articles
which have several authors or perhaps an unknown author. Together
the attributes serve to provide both an indication of the contents
of the article and a guideline to locating the article. Although in
many cases it would be helpful, an abstract of the content of an
article is not considered here.

If put to general use this ISRS could contain many thousands of
articles, too many for an individual to manually scan. The objective
of the system is to structure the information such that particular
subsets can be retrieved easily. The data structures used in the
implementation of the system will serve as a major determining factor
in the success of the system.

A reasonable idea as to the content of articles can often be
deduced from the title of the articles. Although titles rarely give
a complete view of the material contained within the article, they
do serve to identify its major thrusts. This ISRS uses the keywords
in the title of an article as the means of semantically differen-
tiating between articles. Keyword means a word that is more
intrinsically descriptive than widely used adjectives, prepositions,
or nouns. Thus one matter the system must attend to is determining

what words in the titles are indeed keywords. This can be a complex
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problem (15) when one considers plurals, synonyms, and multiple
occurrences of keywords. The approach taken here is to have a list
of nonkeywords against which each word in a title is compared. If
no match is found, the word is a keyword. Another point about this
system is that as keywords are extracted from the titles, their
position in the title is wetained so that on later analysis the
context of the keyword is available. This is termed KWIC (Keyword
In Context) indexing and is opposed to KWOC (Keyword Out of Context)
indexing.

One possible way to structure the data to allow for retrieval
is to simply keep each article in a sequential file and search through
the file completely for each request. Thus in order to locate all
articles with the term '"hashing'" in the title would require a linear
search of the entire file. This is entirely unreasonable if the
file is large. It thus seems that some more complex, yet more
efficient scheme should be devised.

The scheme chosen for this ISRS involves essentially two sets of
interrelated data. One set, called an article file, contains the
articles contained in the system. The second set of‘data, called a
key file, serves as an index or directory to the article file. The
key file does not have the extra information from the articles
clogging up the data set so a more efficient search for particular
values can be achieved. These two files are central to the ISRS and

are discussed at length below.
Files

The article file serves as a repository for the articles in the
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system. Certain properties of the data and the ISRS cause the file

to be structured in a certain fashioﬁ. It is hoped that the following
discussion gives both a description and rationale for the design
chosen.

The article file is large. The sample set of data used to test
the system contains about 7000 articles with provisions to allow for
considerably more articles. Although the sample data contains
articles primarily covering the computer sciencevfiéld, the system
is not limited to such articles. The large number of articles and
hence large storage requirement indicates that the file should reside
on secondary storage. A further consideration is that the secondary
'storage should have direct access capabilities. This is a result of
desiring to accéss any article in the file directly. Thus the file
must be on secondary storage having direct access capabilities, in
other words a disk.

Since this system is written in PL/1, the most useful file
organization available is Regional (1). This allows for direct
access based on a numeric relative record number which the system
translates into an actual physical devicg address. A préblem arises,
however, in that Regional (1) data sets must have fixed léngth records,
but the attributes of the articles are highly variable in length.

A possible solution is to store each attribute in a different
record with the record size being large enough to contain the largest
attribute in the whole file. This would encourage much wasted space
and many records. An alternative is to catenate the attributes into
one record and store it in a fecord with the record size being large

enough to contain the largest catenated article. This has some



beneficial effects in lessening the variability in length since a
long title may be matched with a short author attribute. There will
still be much wasted space if the maximum size record is provided.
The solution chosen is to provide a record size less than the
maximum and if the catenated attributes cannot be stored in a single
record to store the excess in another record and link it to the
original. In this way any length article can be handled with less
wasted space.

The size record chosen should be a compromise between requiring
overflow records and the attendant extra disk accesses, and wasting
space by making the records longer. Based on an observed mean of
about 100 characters and standard deviation of around 25 characters,
the percentage of overflow records can be calculated. An additional
consideration is the optimal use of secondary storage taking into
accounf intérrecord gaps. Based on the above considerations, a record
size of 139 characters (5 of which are used for an identifier, a tag,
and a link) was chosen which corresponds to a 6% overflow rate.
Figure 21 displays a view of the article file records. ID represents
the identifier of the particular record. Regional (1) data sets
contain recordé numbered sequentially from zero. LINK is the link
to an overflow record (also used for storage management). TAG
identifies the record as being the first record in a chain of records
or as being an overflow record. INFO contains the catenated
attributes stored in this reéord. The values in parentheses indicate
the size in bytes (charactefs) of the particular field.

The second major file in this ISRS is termed the key file. It

is actually a secondary key difectory (the primary key is the iden-
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tifier for the article in the article file). It is to this file that
particular search requests are first directed. After it is determined
what, if any, articles satisfy the search request, then the article

file is consulted.

ID | LINK| TAG _ INFO
2 | @ | (V) (134)

Figure 21. Article File Record Layout .

Several factors enter into the design considerations for the key
file. First, the file is large (approximately 25000 keyword
references). This implies that secondary storage should be used.
Second, there is a high likelihood of multiple keywords per article.
In fact, experience shows that there are between three and four key-
words in each title, There is also a great likelihood of many
nonunique keywords. Lastly, in order to allow for the most efficient
processing of intersection and union keyword requests, the keyword
references associated with each distinct keyword must be kept in
order by reference number (the identifier of the containing article
record). If the references are not in order, several passes may be
required to process a request; otherwise a simple match or merge can
handle the request. These constraints present two approaches:

1) Retain unique keywords in some tree structure and have each

entry point to an entry in another file. This extra file is an
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inverted list for each keyword.

2). Retain all keyword references in a B-tree.

In the first approach, the tree structure is necessary to allow
for dynamic maintainence and still have reasonable search character-
istics. The tree should be a B-tree because even retaining unique
keys results in a tree too large to contain in main memory and any
binary tree form (regular binary tree, AVL tree, etc.) would degrade
if placed oﬁ secondary storage. This approach necessitates another
file to contain the inverted lists. This presents additional problems
in dealing with insertions and deletions from the inverted lists in
~addition to.the inconvenience of an additional file. One alternative
to this would be to cause the B-tree to have variable length nodes.
This would involve more programming effort but might be profitable.

' The second approach has the drawback of having multiple océur-
rences of some keywords. There are advantages, however. If the
key for the B-tree is taken to be a keyword catenated with the
article reference number, then an insertion automatically provides
for the retention of proper order for intersection and union requests.
The B-tree should have excellent search characteristics and will
perform well in handling insertions and deletions. Another advantage
is that no other file is needed. For these reasons approach 2 was
selected. Figure 22 illustrates the layout for a node (record)
of the key file.

The values in parentheses are the sizes in bytes of the fields.
The maximum length for any Keyword was chosen after examining many
keywords and determining a length which would promote a high percen-

tage of unique words. The other major choice is in the order of the
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trée. One track on a 2314 can contain 7294 bytes of information.
Thérefore when allowing for a keyword of 18 characters, the maximum
number of links (and hence order) would be 304. It turns out that
the insertion and deletion algorithms are benefited if one link and
key position are left unused. This means that the true usable order

is 303 with 302 keys per node.

: Avail | Current |B-tree . ‘Article |Position
Node ID K d £ .
Link Length Link eywor Ref. mn
‘ A No. Title
(2) (2) (2) (2) (18) (2) (2)
\ 7\ J
304 times 303 times
Where:
Node ID - Identifier for the record (node)
Avail Link - Link used in storage management
Current Length - The number of keys cu%rently in this node
Keyword - A keyword extracted ffom a title

The article from which the keyword came
The position in the title of the keyword

Article Ref. No.
Position in Title

Figure 22. Key File Record Layout

The type of B-tree used in this system is one in which the keys
contain pointers to another file. Note that since there are multiple
keywords per title, storing the article in the B-tree woﬁld create
much redundancy of data and that the order would necessarily decrease.

The values illustrated in the record layouts are the values
used in the actual testing of the system. The length of the informa-

tion portion of the article records and the keyword length and order
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of the key fiie are set when the files are creatéd and can be changed
from system to éystem_aé discussed in the User's Guide in Appendix A.
Two additional permanent files are needed by the system. They
are a count file and a nonkeyword file. The nonkeyword file contains
all'fhe'words determined to be nonkeywords and against which all
prospective keywords are compared. The count file contains the
parameters neceSsary to éllow the softwafe to begin processing a new
set of datavat the point Qhere the previous execution ferminated.
The count file contains the order of the tree, keyword length, etc.,
storage management information, and statistical values for the article

file and keyword file.
Software

In order for the file structures to be effectively used there‘
must be software to manipulate the file§ properly. There are four
major pngrams in the software associated with this ISRS. They
pertain to creation of files, editing of the articles, updating the
article and key files, and reporting results of various retrieval
requests.

There are actually two separaté filé creation routines. One
makes use of the operating system sort and file creation utility.to
create-the nonkeyword filep The result of this routine is a sequen-
tial file of the nonkeywor&s in alphabetical order. This file is
used by the updating program to select keywords. The other file
creation routine develops the frameworks for the article and key

files and sets several values in the count file.
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The edit program accepts card images describing the articles to
be entered into the system and checks them for coﬁbleteness and order.
Articles passing the editing conditions are written onto’a tape file
for iater use by the updating program. Articles not paSsing the
editing conditions can be punched into cards for later: correction
and resubmittal to the editing program.

The update program performs four functioﬁs. The program can
delete SPecific keywords, delete entire articles, insert entire
articles, or insert specific keywords. In cases two and three, deal-
ing with entire articles,‘the article file is altered and in all four
the key file is altered. The B-tree maintainence algorithms utilize
two-way splitting and tedt and right overflow for insertion and
catenation and underflow, both checking left énd right.siblings, for
deletions. As stated earlier the B-tree file is kept in brdér by
keyword by érticle reference number,

The report program can produce reports of four forms:

1) A complete listing by article reference number of the
ﬁontents of the articlé file.

2) A complete listing in alphabetical order of the keywords in
the key file showing the frequéncy of occurrence of each keyword.

3) A complete listing in alphabetical order by keyword»showing
the permutedititles of the articles in the article file.

4)v Listings of subsets of the article file which satisfy
intersection and/or union keywords requests. The requests can be
of an arbitrary number of keywords Separated by and's and or's of
arbitrary order.

Appendix A specifies details for communicating with the several
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programs in this ISRS. For the user who desires a more detailed

illustration of the logic of the programs, Appendix B is incluaed,
diséléying program flowcharts. Apéendix C, which céntains sample
outputs ffom the report program, can be consulted for examples of

what to expect from the system.



CHAPTER VI
SUMMARY AND RECOMMENDATIONS

This project was undertaken with two major objectives in mind:
one objective was to implemenf successfully and effectively an
information storage and retrieval system which would provide access
to relevant articles on particular subjects; the second objective was
to investigate the use of B-trees in such a system.

The first objective has been accomplished through the file
structures and software described in the previous chapter. The ISRS
implemented provides the user both with the means to satisfy inquiries
relatively easily and with a degree of control. There are, however,
several improvements and additions to the system which would make
the system have greater value or wider applicability.

One improvement to the existing system would change the method
by which keywords are identified. With the present ;ystem, a pros-
pective keyword is found to be a keyword only if it does not match
any existing nonkeyword. This means that a copy of each form of a
word regarded as a nonkeyword must be retained in the nonkeyword
file. Much room in the nonkeyword file, and more importantly, much
more effective keyword searches could be expected if basic stems of
words were used. Thus "multilist", '"multilists", and "multilisted"
would be classified as having the same stem. Another improvement
to the éxisting system would be to include a command which could

1
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delete all occurrences of a keyword rather than fequire each occurrence
to be deleted individually.

Another addition of possible value would be to retain counts of
the occurrences of each nonkeyword. This facility in conjuncfion
with the Frequency of Keyword Occurrences listing might point out
beneficial changes of élassification for certain.words.

One problem which does not exist now but would need to be
accounted for in a system of constantly and rapidly growing type
is the expandability of files. The storage provided in the present
system is sufficient for the foreseeable future in its current environ-
ment, but other implementations may not be so predictable. Protective
features should be included to insure the integrity of data; to
prevent the overrunning of current allocations, and to preserve data
in the case of machine malfunctions.

The present systems provides for a secondary ke& directory
based exclusively on the keywords extracted from the titles of the
articles in the system. A system which would retain secondary key
directories based on author or journal information would promote much
greater freedom in locating specific information. An additional
attribute which might be considered in a system of this type would
be the physical location of a copy of the article. Thus one would
know to look in Room 103 on shelf A4 for a specific article rather
than having to search for the article. Other candidates for a
secondary key directory would be references to abstracts or selected
keywords and phrases contained in the text of articles. Keywords
contained in titles are a convenient means of semantically defining

the intent of an article but are not always all-inclusive.
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It is anticipated that requests for listings of subsets of the
total set of articles will be rather limited in complexity. Based on
this assumption, the handling of Boolean intersection and union key-
word requests on é lef-td-right priority basis_shouid prove ﬁore
than sufficient. In a more extensive system, possibly including
several typés of key‘directories, proper handling of more complex
search requests would be imperative.

A final recommendation is that the ISRS reporting system would
be very profitably implemented in an on-line environment. The easier
access and quicker response of an on-line system should greatly in-
crease the attractiveness of the systém to a prospective user. The
author would suggest the on-line implementation as a next step in
creating an information storage and retrieval system which would be
widely used.

The second objective, to investigate the use of B-trees in an
ISRS, answered some old questions and posed some new ones.

The report by Davis (5) indicates that insertion using overflow
into a B-tree of order 49 resulted in a utilization of approximately
85%. In this ISRS using a B-tree of order 303, a utilization of
86.9% for all nodes and of 87.4% for leaf nodes was obtained. This
far exceeds the guaranteed utilization of 69.3% deserved by Van Doren
(21) for large order B-trees using only two-way Splitting. High
utilization of active space is not the only advantage of B-trees,
however. The tree produced by the test data contains over 27,000
key entries but requires only two levels and hence only two disk
accesses as a maximum in order to reference any element. This should

be contrasted with the same number of keys stored in an AVL tree which
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would require a miﬁimum of 15 levels and a correSpoﬁding number of
disk accesses. An indexed'sequential file with two levels of indexing
on the other hand would require a minimum of three disk accesses
per reference with additional accesses réquired for overflow records.
Furthermore, the number of local transformatipns in the tree needed
to maintain proper B-tree properties is relatively small in comparison
with the number necessary for AVL trees. During the insertion of
27,299 keys only 91 two-way splits and 1632 overflows were required,
an ayerage’of 0.063 transformations per insertion. An AVL tree will
require an average of 0.45 transformations per insertion for a tree
with 6400 keys (22). An indexed sequential file will require a trans-
formation whenever a record is written in any overflow area.
iThe‘scheme to reduce déta movement in maintaining a B-tree wHich
was chosen for this ISRS is to retain permanently the root node of the
tree. Since the tree only has two levels, transfers to or from
secondary storage would involve only leaf nodes. In this implementa-
tion, the number of actual reads was reduced by almost 50% (from 59,
167 to 29,683) and the number of actual writes by qver 2000 (from
31,073 to 28,885). By using gather writing exclusively, the number
of actual reads is not reduced whereas in this simple scheme, the
number of actual reads was halved.

The study of B-trees is quite open for investigation into the
benefits of these techniques. It may be possible to strike effectively
a compromise between paging and gather writing which would be of
greater value than either alone. The present system could be used as
a test vehicle to this end since the UPDATE program captures all calls

for reads and writes and the appropriate routines could be written
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and substituted directly into the UPDATE program. Additionally, a
framework is established in the present system in which gather writing
could be implemented by simply substituting a routine for the WRITE_
NODE routine. |

~ Even though it is nécessary tb manipulate ;n article by stripping
the keywords out before insertions can occur, the system is still able
to perform 3.25 keyword insertions per second on the average. The
principal time effectiveness pf the system shows up, however, in the
retrieving of subsets of articles. Keyword retrieval requests are
satisfied, including system overhead time, in an average of less than
0.5 seconds. This is certainly adequate for a batch system and would
quite likely serve well in an on-line system.

As a helpful warning to other programmers using IBM's PL/1
compiler, the author would like to mention several restrictions and
unimplemented features which were found to be troublesome during the
implementation of this system. These conditions are listed below:

1) A READ operation cannot have an array element as its destin-
ation field.

2) Pointer qualifiers cannot be elements of a based structure,

3) Assignments of cross sections of arrays are disallowed.

4) A cross section of an array of structures cannot be passed
as an argument to a subprogram.

5) In an array of structures; bound information is not available
except when references are made to elementary items.

6) Based structures do not have sufficient facilities for handl-
ing variably dimensioned arrays.

The list, of course, does not contain all difficulties in PL/1 but
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the ones listed were encountered and proved to bé troublesome at
best. The sixth restriction is by far the most difficult to surmount.
Based etructures are quite useful, but the inability to have them
change in size depending on the environmment, as non-based structures
can, places a severe limitation on their usefulness and generality.
The information storage and fetrieval system developed as a
portion of this project can be of much value if it is utilized. The
data in the present system describes articles almost exclusively
oriented to the computer science field. This is not at all a system
restriction for the system could handle.equally well data from any
discipline. The reader is therefore encouraged to make use of the.
system and to possibly add to it. Only if the system is utilized

can it be said that is it truly implemented.
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APPENDIX A
USER'S GUIDE

This is intended to provide the user with guidelines and specifics
in how to use this ISRS. Throughout the discussions of the programs
it may prove helpful to refer to the Input/Output Schematic Diagrams
for the programs, Figure 24, which illustrate the iogical relations
of the files associated with each program. The symbols chosen in
Figure 24 to depict the type of file are not absolute. In other

environments the NONKEY file might be on tape, for instance. Figure

25 is also included to help describe the files.
File Creation

This ISRS requires four files to be available during execution
of the file updating aﬁd‘report generation programs. One of these
files is created using operating system utility programs and the
others are created by the PL/1 program CREATE.

The first file, NONKEY, consists of the nonkeywords with which
each prospective keyword is to be compared. Input to this sorting
and file creation utility package is a set of card images containing
a single nonkeyword per card beginning in column 1. The programming
presently allows for words of length 18 characters.

The program CREATE generates three files which are of major

importance to the system. These are the count file, COUNT, the key
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directory file, KEY, and the article file, ARTICLE; A single param-
eter cafd is used to specify the partiéular implementation attributes
for the KEY and ARTICLE files. The farameter card has the following
fields: |
| Columns 1 - 10 The B-tree order
Columns 11 - 20 Number.of records in KEY file
Célumns 21 - 30 The maxiﬁum keyword length

Columns 31 - 40 The length of article information portion of
each ARTICLE file record

Columns 41 - 50 Number of records in ARTICLE file
Parameters 1 and 3 determine the size of each record in the KEY file
and parameter 2 determines the number of records in the KEY file.
Parameters 4 and 5 determine the size and number of records in the
ARTICLE file.

The size of each KEY file record can be determiﬁed by the
. following relation:

Size of KEY record ; (KL + 6) ORDER + 8 (2)
where KL is parameter 3 and order is parameter 1. For efficiency it
is suggested that this value be as close to one track in size as
possible. KL, in order to provide for proper boundary alignment,
should be even. The value for ORDER is the order of the B-tree that
is actually used by the algorithms. The program éutomatically creates
one additional key and link field in each node fér working area but
this is not to be included in the parameter value.

 The size of each ARTICLE file record can be determined by the
following relation:

Size of ARTICLE record = LAI + 5 (3)
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where LAI is parameter 4. This size should be chosen to maximize
the utilization of secondary storage space and to minimize wasted
space in considering overflow records (articles whose information
content is to large to be stored in one record).

The CREATE program sets all values in the COUNT file to begin
processing immediately and creates the framewords of the KEY and
ARTICLE files. No actual article information is placed into either

the KEY or ARTICLE files by the CREATE program.
Article Editing

The program, EDIT; accepts card images describing articles and
checks them for completeness, rejecting incomplete ones and passing
complete ones. The card images to be edited can come from either or
both of two source files, ARTCRDS and ERRCRDS. Both files have 80
character records with fields as below:

Col 1 Attribute identifier (A-Author, T-Title, J-Journal)

Col 2 Sequence number within attribute

Col 3 - 13 Article identifier consists of

Author's last name - 4 characters

Author's first and middle initials - 2
characters

First letter of each of first three words in

title - 3 characters

Year of publication - 2 digits

Col 14 - 80 Article descripts field
These cards are used as input to this system as th?y were prepared for

another system, and hence the format is as it was Specified for that
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previous system.

The ARTCRDS file is designed to be primary'input to the edit
program with ERRCRDS being corrected cards not passing the edit
conditions in a previous run and being recycled.

A single parameter card from the file PARM is used to specify
whether all article cards not passing the edif conditions are to be
punched into cards. This option is chosen by punching 'YES' in
colunns 8 - 10. Whether the option is chosen or not, a listing is
produced showing all articles found to be incomplete.

| The file OKARTS represents all articles which did meet all
conditions for acceptance. It is shown as a tape fiie however any
medium having variable length record capab&lities would suffice.

The information describing the articles is taken froﬁ the card images
and catenated together to constitute an OKARTS file record. This
file is used as input to the file updating program when articles are

to be added to the system.
File Updating

The program, UPDATE, performs maintainence functions on the KEY
and ARTICLE files. Changes in these files also cause changes in
values of the file, COUNT. The NONKEY file is used by several of
the maintainence functions but is not altered by the UPDATE program.
The NONKEY file can only be changed by changing the source data and
rerunning the create NONKEY file utility routine. The UPDATE program
can’perform any number 6f any or all of the four fﬁnctions described
below. The order of acceptance of the functions by the program is

as below.
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The first two functions provide for the user to delete specific
keyword references or entire articles from the system. A keyword
reference is taken to mean a single entry in the KEY file.

To delete a specific keyword reference the user should include
in the KEYwDDL file data set a card pontaining the following:

Columns 1 - 40 Keyword (left-justified)

Columns 41 - 50 Article Reference Number
Any number of commands will be accepted with unmatched requests being
ignored. The Article Reference Number can most easily be found for
an article by locating it in the Articles File by Reference Number
listing illustrated in Appendix C and described in the next section
of this appendix.

Entire articles can be deleted by specifying thg Article
Reference Number of the article to be deleted. This number should
be punched in columns 1 - 10 of a data card in the ARTDL file.

Again any number of articles can be deleted and any not found requests
are ignored. This function deletes the article from the ARTICLE file
and all references to it from: the KEY file.

Articles can be added to the system through the ARTIN file.

This file should be the most used one for a growing system and is
usually the output from a run of the program, EDIT. This functions
inserts the article into the ARTICLE file and also inserts all
references to it into the KEY file. Input through this file should
be in variable length records with the author attribute followed by
the title attribute followed by the journal attribute with each

attribute having a terminating '$'.
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The last function available to the user is to insert specifié
keyword references into the KEY file. A request of this type is as
follows:

Columns ‘1 - 40  Keyword (left-justified)

Columns 41 - 50 Article Reference Number

Columns 51 - 60 Position of the start of the keyword in the

| title |

Column | 61 Force insertion code
The third value indicates the position in the title of the article of
the specific keyword to be inserted. This is used ih the KWIC report
genefations. Any nonblank character in column 61 will cause the |
keyword reference to be inserted regardless of whether the keyword
is in fact a keyword or not otherwise a keyword Qetected to be a
nonkeyword willlbe réjected.

Figure 23 illustrates typical requests‘for functions 1, 2, and
4. Input for function 3 is generated by the program EDIT and is not

shown.
Report Generation

The program, REPORT, can furnish any or all of four poésible_
reports of the contents of the ISRS. These reports are titled as
follows:

1} Article File by Reference Number

2) Titles in Article File Permuted by Keyword

3) Frequency of Keyword Occurrences

4) Article File Interest Subset Selection
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Figure 23. Sample File Updating Requests
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Requests for ény or all of the listings come from data cards in the
REQUEST file. The first card in the REQUEST file has the following
fields:

Columns 8 - 10  Report 1) option

Columns 18 - 20 Report 2) option

Columns 28 - 30 Report 3) option
If 'YES' is specified for any report, that report is generated. All
otﬁer cards iﬁ the REQUEST file define requests to selectively report
subsets of the ARTICLE file.

The Article File By Reference Number reporté lists the entire
coﬁtents of the ARTICLE file. The Reference Number is the identifier
of the record in the ARTICLE file containing the first portion of the
article and thus due to 6verflow reéords, there ﬁay be some gaps in
the sequential listing of reference numbers .

The Titles in the Article File Permuted by Keyword report presents
a KWIC (Keyword in Context) view of each article in the system. There
is one entry in this listing for each entry in the KEY file.

The Frequency of Keyword Occurrences report lists the keywords
‘contained in the KEY file in alphabetical order showing the number
of occurrences of each keyword.

The fourth report illustrates the real usefulness of the system.
Using this facility an individual can specify his interest by
selecting a set of keywords and let the system find the articles
satisfying that interest. Each request (the program will accommodate
multiple requests) can consist of an arbitrary number of keywords
with each keyword being separated by an 'AND' specifying intersection

of the two adjacent keyword subsets or 'OR' specifying union of the
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tno adjacent keyword subsets. Each request should be terminated by a
rg but‘may extend over any number of card boundaries. It is impor-
tant that each reéuest begin on a new card,.hoWever. As an example,
suppose one wishes to'iocate all articles containing 'BUSINESS' and
'STATISTICS' in their titles. The following requeét would be
appropriaté:
BUSINESS AND STATISTICS §
Intervening blanks are ignored between debiniters. Likewise, if
desired to locate all articles containing 'STRUCTURES' or 'MACEINES'
in their titles, the following request would be appropriate:
STRUCTURES OR MACHINES $
. More complex requests can be established, however, they are evaluated
exactly as less complex ones, i.e., the subsets satisfying the previous
left to right subrequest is either merged or matched with the subset
satisfying the keyword specified. Note that no parentheses are
allowed and hence logically cdmplex requests may need rewriting in

order to be handled properly.
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Description
Collection of nonkeywords to be included in the
NONKEY file (entered through the SORTIN file
-of the sort utility)
File of nonkeywords in alphabetical order
For CREATE program, specifies parameters des-
cribing size and number of records in KEY

and ARTICLE files

Set of descriptors identifying the present
status of the KEY and ARTICLE files

Index by keyword to the titles of articles in
the ARTICLE file (organized as a B-tree)

Set of articles available in the system

Set of corrected article descriptor cards
rejected by a previous execution of the EDIT
program

Set of article descriptor cards to be edited

For EDIT program, specifies whether rejected
card images are to be punched

Set of rejected article descriptor cards to
be corrected and resubmitted through the
ERRCRDS file

Listing of rejected articles and causes for
rejection and post editing statistics

Set of articles passed by the EDIT program
(used as the ARTIN file for the UPDATE
program)

Set of keyword deletion requests

Set of article deletion requests

Set of articles to be inserted

Set of keyword insertion requests
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MESSAGE Listing of post updating-statistics and/or
: error messages

REQUEST Set of requests for particular reports

LISTING File containing all reports produced by the

REPORT program

Figure 25. Descriptions of Files
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CREATE Program

START

Input

Parms

Initialize and
Output COUNT
File Record

Initialize and
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Output ARTICLE
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STOP
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Construct
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—
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101

Output
Article
Cards
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Update Program
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Input
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Requests
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v
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Keyword Insert

Requests

Request
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Keyword Deletion

Locate
Deletion
Position

RETURN
RETURN
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with next
Smallest Entry

Retrieve
Node for
Deletion

Delete
from RETURN
Node

Delete
from
Node
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Establish
New
Root Node

Retrieve , RETURN
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, Left | .
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Keyword Insertion
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REPORT Program
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ARTICLE FILE BY REFERENCE NUMBEF

PEFERENCE AUTHOR=--> EACH ATTRIBUTE IS TERMINATED BY A S.
NUMBEFR TITLE--—=> IF ANY ATTRIBUTE CANNOT BE PRINTED ON A SINGLE LINE, IT IS CONTINUED ON THE NEXT LINE
JCURNAL=-> AFTER AN INDENTATION OF FIVE SPACES.

Q LARMOUTHy Jo 8
SCHEDUL ING FOR A SHARE OF THE MACHINES
SOFTWARE 'S5 NO.1(19751P.29%

1 ECKLUNDy E«Fo*EGGL ETONIR B4 $
PRIME FACTORS OF CONSECUT IVE INTEGERS$
AMe MATH. MONTHLY 79 NC.10(1972)P.1082$

2 OE LUCENA)CoJoP.*DE ALMEIDA CUNHAsL.F.$
A MODELLING TECHNIQUE IN PROGRAMMINGS
PUCs CENTRO TECNICO CIENTIFICO SEPTEMBER NO.9/7111371)$

3 $ .
THE RIGHT OF EQUAL ACCESS TGO GOVERNMENT INFORMATIONS
COMPUTERS AND AUTOMATION. 20 NO.4{1971)P.328

4 ANCERSON+J oW o #ATK INSONy MoP . #COL INyAoJ o To*HAINSWOR THyDado* LISTER,ALM.$
THE EVOLUTION OF AN OPERATING SYSTEMS
COMPUTER BULLETIN 15 NO.6(1971)P.2128%

6 UTGOFFs VoA *KASHYAPsR oL o $
CN BEHAVIOR STRATEGY SOLUTIONS IN TWO-PERSON ZERO-SUM FINITE EXTENDED GAMES WITH IMPERFECT INFORMATION, PART
I3 A METHOD FOR DETERMINATION OF MINIMALLY COMPLEX BEHAVIOR STRATEGY SOLUTIONSS
SIAM Jo APPL. MATk., 22 ND.4(1972)P.648%

8 s
POCKET CALCULATORS
COMPUTER DECISIONS 4 NO<3(1972)P.428

9 GYLLSTROMyHeCo $
A SYNTAX-DIRECTED TRANSLATING SYSTEMS
TECHNICAL REPORT, IGWA UNIV. AUGUST NO.OL (1969)%

10 VYSSOTSKYyVeAe$
COMMON SENSE IN CESIGNING TESTABLE SOFTWARES
TECHNICAL REPORT, BELL LABORATORIES (1972)$

11 SAYRE Do $
IS AUTOMATIC ®FOLDING* OF PROGRAMS EFFICIENT ENOUGH TO DISPLACE MANUAL?S
COMM. ACM, 12 NO.12{1969)P.656%

12 GAUTSCHIyWo3KLEINsBoJ.$
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CREATION OF NONKEYWORD FILE

//STEP1 EXEC PGM=SORT

//SYSOUT DD
//SCRTLIB DD
//SCRTWKOL DD
//SCRTWKO2 CC
/75GRTWKC3 ©C
//SCRTIN DD
VA

//SCRTCUT DD

SYSOUT=A

DSN=SYS1.SORTLIB,DISP=SHR
UNIT=SYSODA,SPACE=(TRKs( 30),,CONTIG)
UNIT=SYSDASPACE=(TRK,(30),+CCNTIG)

UNIT=SYSDA,SPACE=(TRK+{30),,CCNTIC)
*

DSN=CGMSC.SEQ.CRCTZER <NONKYWD+UNIT=2314,

// VOL=(PRIVATE,SER=DISK28)sSPACE={ TRKy(24+2) ),
// CCB=(RECFM=FB,BLKSIZE=18C0,LRECL=18),DISP=(ULD,PASS)

//SYSIN - DD

*«

SCRT FIELLCS=(1,18,CHsA)

ENC
/%
//STEP2 EXEC PGM=1EBGENER
//7SYSIN D0 DuMMY

//SYSUTL DD
J7/75YSUT2 oD
//SYSFRINT DD
//

DSN=%eSTEPLeSCRTCUT ¢ DISP= (OLDyKEEP )
SYSOUT=A,DCB=(RECFM=F ,BLKSIZE=18,LRECL=13)
SYSOUT=A

611



//CREATE
//STEPLIB
//
//SYSPRINT
//SYSIN
//PARM

303
/*
//CCUNT
//
17/
//KEY
/7
//
//BARTICLE
//
/7
//

CREATE PROGRAM

EXEC PCM=CREATE,.REGION=126K
DD DSN=COMSC.PROG.CROTZER UNIT=2314,
VCOL=(PRIVATE,SER=DISK28),DISP=SHR

CC SYSGOUT=A
CC DUMMY, DCB=8BLKSIZE=80
Db *
20 18 134 200

DD DSN=COMSCeSEQ.CROTZERCOUNTeSAMPLE yUNI T=2314,
VOL=(PRIVATE+SER=DISK28)+SPACE=(TRK, 11},
CCB=(RECFM=F,BLKSIZE=32yLRECL=32),yCISP=(NEW,KEEP)

DO DSN=COMSCREGeCRUTZEK ¢KEY s SAMPLE sUNIT=2314%,
VCL=(PRIVATEsSER=DISK28)ySPACE=(TRK,(1G+5) ),
CCB=(RECFM=F BLKSIZE=7280,LRECL=7280)+0ISP={NEWsKEEP)
CO DSN=COMSC. REG.CROTZERARTICLE «SAMPLE,UNIT=2314,
VOL=(PRIVATE,SER=DISK28)y SPACE=(TRK y( 10, 1Q))».
CCB=(RECFM=FBLKSIZE=139,LRECL=139) +DISP={NEW,KEEP)
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//EDIT
//STEPLIB
/77
//SYSPRINT
//7SYSIN
//ARTCROS
/*
//ERRCRDS
/*
//CKARTS
//
//
//ERRARTS
//PRRM

YES
/%
//ERRMSG
/7

EDIT PROGRAM

EXEC PGM=EDIT REGICN=126K

DD DSN=COMSC.PROGsCROTZER,UNIT=2314,
VCL=(PRIVATE,SER=DISK28),DISP=SHR

CEC SYSOUT=A

0D DUMMY, DCB=BLKSIZE=80

Lo *

0C *

CC DSN=COMSC +SEQCRCTZERLSAMPECTC+UNIT=TAPE,
VOL=SER=T9092,LABEL=(4+SL)+DISP=(NEWKEEP),
CCB=(R ECFM=VB,B8LKSIZE=2000,LRECL=750)

CC SYSCUT=B,DCB=BLKSIZE=80

CC *

DD SYSGUT=A

- TZ1



//JPDATE
//STEPLIB
i/ .
//S5YSPRINT
//SYSIN
//CCUNT
//

//

7 /INCNKEY
/7

/7
//KEYWCCL
FE
//ARTDL
/%
//ARTIN
//

//
//KEYWLEIN
/%

//KEY

/7

//
//7ARTICLE
//

/7
//MESSAGE
/7

UPDATE PROGRAM

EXEC PGM=UPDATE,REGION=198K

CLC DSN=COMSC .PROG.CROTZER,UNIT=2314,

VEL={ PRIVATE +SER=DISK28) +DISP=SHR

DE SYSQUT=A

CC DUMMY,DC8=BLKSIZE=80

CE DSN=COMSCeSEQeCRUTZERSLLCUNT«SAMPLEUNIT=2314,
VOL=(PRIVATE, SER=DISK28) +SPACE=(TKKs1l)»
CCB=(RECFM=F,BLKSIZE=32,LRECL=32),DISP=(CLDKEEP])
DD DSN=COMSCeSEQCRCTZERNCNKYWDyUNIT=2314,
VOL=(PRIVATE ¢y SER=DISK28) ySPALE=(TRKs(242) 1)
CCB={R ECFM=FByBLKS IZE=1800,LRECL=18),DISP=(ULD,KEEP)
EC *

EC *

CO DSN=COMSC.SEQ.CROTZER.SAMPEDTD,UNIT=TAPE,
VOL=SER=T90924 LABEL=(4,SL),DISP={OLOKEEP ),
£CB=(RECFM=VB,BLKS1ZE=2000,LRECL=750)

cCc *

CC OSN=COMSC eREGeCROTZER oKEY « SAMPLE 4UNIT=231%,
VUL={PRIVATE,SER=DISK28) SPACE=(TRK,(104+51),

CCB=(RECFM=FBLKS[ZE=728C,LRECL=T280),yDISP={ULD,KEEP)

DD DSN=CUOMSC REGZLRUTZERSARTICLE s SAMPLE UNIT=2314%"
VCL=(PRIVATE,SER=DISK28)ySPACE=(TRK(10+,10)),
CCB=(RECFM=F,8LKSTZE=139,LRECL=139)+CISP=(0LD,KEEP)
CD SYSOUT=A

[4Al



//REPORT
//STEPLIB
.
//SYSPRINT
//SYSIN

/ / CCUNT

/7

/1

//KEY

/7

/7 |
//ARTICLE
/7

/7
//LISTING

- //REQUEST

YES
SUFTWAPE &
FATTEFRN

MCCELLING

REPORT PROGRAM

EXEC PGM=REPCRT,REGICN=126K

DD DSN=COMSCPRUOCsCRCTZER,UNIT=2314,
VOL=(PRIVATE,SER=DISK23),JISP=SHR

CC SYSOUT=A '

DD DUMMY, DCB=8BLKSIZE=80

DO DSN=COMSCWSEULROTZER LCOUNTSSAMPLE yUNIT=2314,
VCL={PRIVATE.SER=DISKZ28)+SPACE={(TRKy 1),
CCB=(RECFM=F 8LKSIZE=32,LRECL=32),0ISP=(CLO,KFEP)
DD DSN=COMSC.REG.CRUTZER KEY .SAMPLE yUNIT=2314,
VOL={PKIVATE,ySER=DISK28 )} SPACE={TRK 4{ 10,451},

CCB=({RECFM=F,BLKSIZE=728C,LRECL=7280),DIS5F= (ULD,KEEP)'

DD DSN=CCMSC.KEG.CRCTZERLARTICLE.SAMPLE,UNIT=2314,
VOL=(PRIVATE.SER=DISK28 ), SPACE=(TRK,(10,10)})},
CCB=(RECFM=FyuLKSIZE=139,LRECL=139),DISP={0LD,KEEP)
LC SYSOUT=A,DCB=BLKSIZE=133
DO *

YES YES

AND GENEPATIONS
SWITCHING UR
$

SCGOLEAN AND APPROXIMATING OF SCHEDULING $

1%
7/

XA
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