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CHAPTER I 

INTRODUCTION 

Enzymes, proteins, carbohydrates, lipids, cations and anions com

prise the many constituents of milk and they make it a good source of 

nourishment for the young of many species. For a short period of time 

milk can even serve as the sole source of nourishment for the young. 

Lactose is the major carbohydrate constituent of most milks, and 

lactose synthetase is the enzyme system responsible for the biosynthesis 

of lactose. Lactose synthesis requires two proteins, a galactosyltrans

ferase and a-lactalbumin (l,2,3,4). a-Lactalbumin was suggested by Hill 

et~· (51 to act as a specifier protein because it could alter the 

galactosyl acceptor specificity of the galactosyltransferase from N-ace

tylglucosamine to glucose (6}. · However, it was shown later that a-lact

albumin is best described as a modifier protein because it lowers the 

apparent Km for glucose in the galactosyltransferase reaction so that 

glucose becomes a good substrate. 

Studies made on the chemical and physical properties of a-lactal

bumin have shown that a-lactalbumin's from different species are closely 

related. For example, the amino acid composition, molecular weights, and 

structure of a.-lactalbumins are similar (7,8,9,10}. There are apparent 

differences between various a-lactalbumins which can be detected by im

munological methods. a-Lactalbumin from ruminant species will not cross 

react with antibodies made to a~lactalbumin from non-ruminant species. 

1 



However, bovine galactosyltransferase will react with a-lactalbumin from 

non-ruminants to form lactose suggesting that the modifier regions on 

a-lactalbumins are similar. 

2 

The amino acid sequence of bovine a-lactalbumin and hen's egg lyso

zyme are very similar as shown by Hill et 9.l_. (J). However, antibodies. 

to bovine lactalbumin will not react with lysozyme (11}. It appears that 

the antibody determinant groups involved in antibody binding are differ

ent between the a-lactalbumin's from various species and bovine a-lactal

bumin and lysozyme. 

To date a-lactalbumin from rat milk has not been isolated in pure 

form although McFarland (121 has made some initial studies. The purpose 

of this study was to isolate a-lactalbumin from rat milk and to charac

terize some of its chemical and physical properties. Rat a-lactalbumin 

would be useful for making antibodies to be used in future studies on the 

biosynthesis of a-lactalbumin in isolated normal and tumor cell suspens

ions. 



CHAPTER I I 

LITERATURE REVIEW 

Lactose Biosynthesis in Mammary Tissue 

a-Lactalbumin has received a great deal of attention because of its 

fundamental role in lactose biosynthesis. a-Lactalbumin found in bovine 

skim milk contains approximately 70-150 mg per 100 mls of skim milk, and 

is considered a major component of the whey proteins of milk (13}. 

The biological function of a-lactalbumin was first described by 

Ebner and Brodbeck (1,3,4,14,15). Lactose synthetase (E.C. 2.4.1.22.) 

is the enzyme system responsible for the biosynthesis of lactose, a car-

bohydrate that makes up half the dry weight of milk. The sequence of 

reactions of the enzymes (16) that catalyzes the formation of lactose 

from glucose-I-phosphate are listed below. 

1. 

2. 

3. 

UTP + glucose-1-P t UDP - glucose + PPi 
+ UDP - glucose + UDP - galactose 

UDP - galactose + glucosee + lactose+ UDP 

Reaction 1. is catalyzed by UDP-glucose pyrophosphaylase (UTP: a-D

glucose-1-phosphate uridyl transferase, E.C. 2.7.7.9}, reaction 2, by 

UDP-galactose-4-epimerase (E.C. 5.1.3.2) and the last reaction by 

lactose synthetase (UDP-galactose; D-glucose-1-galactosyltransferase). 

Lactose synthetase was first shown to exist in lactating mammary glands 

of cows and guinea pigs (17} and in bovine milk (18}. Lactose synthe

tase was separated from bovine milk into two protein fractions by Ebner 

3 



and Brodbeck (1,2,3). They designated the two protein fractions as A 

and B proteins according to their separation by gel filtration. The A 

and B proteins did not have lactose synthesis activity when assayed 

separately, but when the two proteins were combined, lactose synthesis 

occurred. It was shown by Hill et~· (19) that the A protein catalyzes 

the transfer of galactose to N-acetylglucosamine to form N-acetyllacto

samine, and that a-lactalbumin inhibited this reaction. They proposed 

that a-lactalbumin changed the galactosyl acceptor specificity of the 

A protein from N-acetyl gl ucosamine in its absence to glucose in its 

presence. They reported no separate enzymatic activity for a-lactal

bumin. 

Fitzgerald et ~· (20) showed that galactosyltransferase catalyzed 

slowly the formation of lactose (reaction 3} in the absence of a-lactal

bumin. a-Lactalbumin reduced the apparent Km for glucose from 1.5 Min 

its absence to 1 mM in its presence. Klee and Klee (21) reported 

similar results, and have stated that a-lactalbumin also slightly low

ered the Km for N-acetylglucosamine. It should be noted that galacto

syltransferase activity is important in the formation of secreted 

glycoproteins in that it transfers N-acetylglucosamine to galactosyl 

residues (22). 

4 

The steady state kinetics of the lactose synthetase reaction has 

been studied in detail by Morrison and Ebner (3,4,6,23,24) and they 

demonstrated that a-lactalbumin participates in the reaction. Morrison 

and Ebner demonstrated that Mn++, UDP-galactose. and the carbohydrate 

acceptor of the galactosyl group add to the enzyme in an ordered manner, 

and a-lactalbumin adds after the substrates and dissociates before pro

duct is released. Mn++ reacts with the free enzyme under conditions of 

thermodynamic equilibrium and does not dissociate after each turn of the 



catalytic cycle. At high concentrations, carbohydrate can add randomly 

to all enzyme forms, but an active complex is not formed unless Mn++ 

and UDP-galactose have been added previously. 

The galactosyltransferase readily reacts with N-acetylglucosamine 

as the carbohydrate acceptor in the absence of a-lactalbumin as shown 

in the linear pathway {_Figure 1). Where a-lactalbumin is added in 
, 

increasing amounts, the reaction will proceed along the branched path-

5 

way until a lower limiting maximum velocity is reached at an indefinite 

a-lactalbumin concentration. If glucose is the substrate, and a-lactal

bumin is not present, the reaction will proceed along the linear path

way if the glucose concentration is in the range of 1 to 2 molar. If 

a-lactalbumin is present, the reaction can proceed more rapidly along 

the branched pathway and results in a reduction of the apparent Km of 

glucose. It is postulated that the release of UDP is the rate limiting 

step. 

Under maximum conditions of product formation, Schanbacher and 

Ebner (25) were not able to demonstrate the formation of the a-lactal-

bumin-galactosyltransferase complex by sucrose gradient centrifugation, 

equilibrium dialysis, fluorescence quenching, and gel filtration 

techniques. However, Morrison and Ebner (3,.4,24) have shown that 

a-lactalbumin dissociates from the enzyme prior to product release and 

suggested that this may be the reason why Schanbacher and Ebner {_25) 

could not demonstrate the a-lactalbumin-galactosyltransferase complex. 

Brodbeck and Ebner (4,26) have determined the subcellular distri

bution of galactosyltransferase and a-lactalbumin. These studies 

indicated that the B protein (a-lactalbuminn) was found in both the 

microsomal and soluble fraction, whereas the A protein (galactosyl

transferase) was primarily associated with a crude microsomal fraction 
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(3,4,26). a-Lactalbumin is synth.esized on the ribosomes of the rough 

endoplasmic reticulum (22) and travels through the lumen of the endo

plasmic reticulum to the golgi region where it may come in contact with 

galactosyltransferase to synthesize lactose (4,26). a-Lactalbumin is 

eventually secreted from the golgi into the milk after its reaction with 

galactosyltransferase (3}. 

Brew (2.7) has proposed that a-lactalbumin may be involved in the 

control of lactose synthesis because it is released into milk. The 

rate of a-lactalbumin synthesis could therefore regulate the synthesis 

of lactose. For example, Schmidt et.!}_. {_28} have shown in northern 

fur seal milk where lactose and a-lactalbumin levels are low that a-lac

talbumin and lactose synthetase activity are directly related to the 

levels of lactose in milk. 

Physical and Chemical Properties of 

a-Lactalbumin from Various Species 

Bovine a-lactalbumin is the most thoroughly studied a-lactalbumin. 

Studies of a-lactalbumin isolated from other species have been completed 

to varying degrees. Bovine a-lactalbumin is a folded globular protein 

and possesses about 40% helical structure (29,30} and contains four 

tryptophanyl residues (31}. 

It was .shown by Robbins et .!}_. (32) that the four tyrosyl residues 

will ionize under normal conditions, and it has been reported by 

Gorbunoff (33} that they will react with N-acetylimadazole and cyano

fluoride. Denton and Ebner (34) demonstrated that all the tyrosyls are 

modified by iodination and nitration in a random manner. 
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Figure 1. Schematic Representation of Order of Addition of Substrated and Release of Products 
of the Galactosyltransferase Reaction. 

a-Lactalbumin is represented by a-LA, UDP-galactose by UDP-gal, and carbohydrate by CHO. 



Zitt1e (35) and Kronman (361 have shown that bovine a~1actalbumin 

has an absorbtivity of (E~~0 ) of 20.9 and 20.l respectively. 

Heterogenity of a-Lacta1bumin 

Severa1 investigators have reported that a-lacta1bumin is hetero

genious. A so1ub1e and insolub1e form of a-lactalbumin was reported by 

little and De1la-Monica (35} using Gordon and Semmett's (36} procedure 

for iso1ation. Kronman et~· (36,37,38,39-43} has studied extensive1y 

the heterogeneity of bovine a-lactalbumin at acid and basic pH's. The 

acid denatured form of a-lactalbumin shows alterat"ion of the tryptophan 

residues which was reflected as changes in emission (36} and absorbtion 

spectra (41,42). Also, acid denatured a-lactalbumin shows a marked 

tendency to associate and aggregate (42,43). 

Titration (32) and optical rotary dispersion (38) measurements 

indicate a comparable structural change above pH 10. The denaturation 

process at the alkaline pH results in a swol1en molecu1e, but appears 

less complete when denatured by the acid process. a-Lacta1bumin at the 

a1kaline pH shows only a tendency to associate (43), whereas the acid 

denatured molecule shows low solubility, exhibits time dependent aggre

gation, and an enhanced tendency to associate (42,43). Differences 

between the two forms in hydrophobic and hydrophilic groups on the 

molecular surface may account for the absence of aggregation at the 

alkaline pH. Optical rotary dispersion spectra indicate the molecule 

is less disrupted at a higher pH than the lower pH values. 

Barman (44) reported that bovine milk contains two a-lactalbumin 

components that can be separated by anion exchange chromatography. 

The major a-lactalbumin peak has a molecular weight of 14,437 (5). The 

minor peak is glyco-a-lactalbumin, a glycoprotein with a molecular 

8 
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weight of 16,800 and contains 11 to 12 sugar residues per mole of protein. 

The glyco-a-lactalburnin represents about 15% of the total and it is as 

active with galactosyltransferase as the a-lactalburnin found in the major 

peak ( 44). 

Two genetic types of bovine a-1acta1bumin have been identified, 

a-1actalbumin A and a-lactalbumin B. These two types of a.-lactalbumins 

have been classified as genetic variants A and B respectively (45). The 

A gene is responsible for a.-lactalbumin A synthesis and the B gene syn

thesizes a.-lactalbumin B. Blumberg and Tombs (46) have shown by paper 

electrophoresis that two types of a.-lactalbumin occur in Fulani cattle. 

a.-A is the fastest moving band and a.-B is the slower moving band. These 

two types of a.-lactalbumins are found in a number of other cattle and 

Gordon et~· (10) have shown that the two variants are identical in 

amino acid composition, except for the absence of an arginine residue of 

a.-B which is replaced by an arginine residue or by a glutamic acid in a.-A. 

The two genetic variants are indistinguishable in their enzymatic activity 

with respect to the lactose synthetase reaction (47). 

Schmidt and Ebner (8} have made a detailed study of goat, pig, human 

and sheep a-lactalburnins. They found that the a.-lactalbumins of pig, 

sheep, and goat separate into two bands of 7% disc gels at pH 7.5, where

as human a-lactalbumin did not. 

Structural Similarities Between Bovine 

and Other a.-Lactalbumins 

The structure of bovine a.-lactalbumin is known to a great extent, 

and it is possible to compare it with other species. It was found from 



the detailed study made by Schmidt and Ebner (8} that goat, pig, sheep 

and human a.-lactalbumins have similar ultraviolet spectra, as well as 

similar molecular weights of 14,500 ± 500. Hill and his co-workers (7) 

have completed the amino acid sequence of bovine a.-lactalbumin as well 

10 

as the location of the disulfide bonds (7,48}. Figure 2 shows the 

location of the disulfide bonds and covalent structure of bovine a.-lac

tal bumin. Yasunabu and Wilcox (9} demonstrated that bovine a.-lactalbumin 

was a single peptide chain, and the N-terminal residue was glutamic acid 

and the C-terminal residue was leucine. 

Brew, et tl· (19) suggested that the a.- lactal bumins 'from other 

species possess amino acid compositions similar to bovine a.-lactalbumin. 

Human, goat, sheep, dog, guinea pig, and kangaroo a.-lactalbumins differ 

slightly from bovine a.-lactalbumin in their amino acid composition 

(Table 1). Gordon (10) has analyzed the amino acid composition of 

a.-lactalbumin A prepared from milks of Indian Zebu cows and a.-lactalbu

mins from water buffalo and found only minor differences. 

The various a.-lactalbumins have similar amino compositions, loca

tions of disulfide bonds, molecular weights (7,8,9,10,48), and similar 

activities with the same galactosyltransferase (47) which indicates 

very little gross structural differences. However, peptide mapping (49) 

and immunological cross reactivity (47,50,51) have indicated some dif

ferences in tertiary structure. 

Purification of ~-Lactalbumin 

· In 1936 Pederson (52) described a slow moving peak in the sedimen

tation velocity experiments of whey proteins as the 110.-peak, 11 and in the 

same year Kekwick (53) isolated and crystallized the protein that 



appeared to be responsible for this peak. Svedberg and Pederson (52} 

stated that the slow moving 11 0:-peak 11 was a-lactalbumin. 

Zwieg and Block (54) isolated a-lactalbumin by ferric chloride 

precipitation of the whey proteins and subsequently isolated o:-lactal

bumin from this precipitate (36). This method was not used frequently 

because it required that the solution must be adjusted to pH 1.3. 

11 

Gordon and Ziegler (36,55,56) used several methods for isolating a-lac

talbumin that are the basis for some of the current procedures. Their 

procedure requires that the casein be precipitated from skim milk by 

lowering the pH of the solution to 4.6. The whey proteins are precipi

tated with ammonium sulfate, and then a-lactalbumin, s-lactoglobulin and 

other proteins beside the crude globulins are precipitated at 80% sat

uration. The crude a-lactalbumin is precipitated from a 30% ammonium 

sulfate fractionation and subsequently crystallized by ammonium sulfate. 

Brodbeck and Ebner (1,2} used column chromatography such as DEAE 

Cellulose and Bio-gel P-30 to remove minor protein contaminants and were 

able to prepare highly purified o:-lactalbumin. 



Figure 2. Covalent Structure of Bovine ~-Lactal
bu~n 
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Ba LA 
GP a LA 
HaLA 
Ka LA 
H Ly 
C Ly 

Ba LA 
GPaLA 
Ha LA 
KaLA 
H Ly 
C Ly 

TABLE I 

AMINO ACID SEQUENCE OF BOVINE, GUINEA PIG, HUMAN AND KANGAROO (PARTIAL) 
a-LACTALBUMINS COMPARED TO HUMAN LEUKEMIC AND CHICKEN L YSOZYMES 

1 5 10 15 

Glu-Gln-Leu-Thr-Lys-Cys-Glu-Val-Phe-Arg-Glu-Leu-Lys- -Asp-Leu-
Lys-Gln-Leu-Thr-Lys-Cys-Ala-Leu-Ser-His-Glu-Leu-Asn- -Asp-Leu-
Lys-Gln-Phe-Thr-Lys-Cys-Glu-Leu-Ser-Gln-Leu-Leu-Lys- -Asp-Ile-
Ile-Asp-Tyr-Arg-Lys-Cys-Gln-Ala-Ser-Gln-Ile-Leu-Lys-Glu-His-Gly-Met
Lys-Val-Phe-Glu-Arg-Cys-Glu-Leu-Ala-Arg-Thr-Leu-Lys-Arg-Leu-Gly-Met
Lys-Val-Phe-Gly-Arg-Cys-Glu-Leu-Ala-Ala-Ala-Met-Lys-Arg-His-Gly-Leu-

1 5 10 15 

20 25 30 

Lys-Gly-Tyr-Gly-Gly-Val-Ser-Leu-Pro-Glu-Trp-Val-Cys-Thr-Thr-Phe-His
Ala-Gly-Tyr-Arg-Asp-Ile-Thr-Leu-Pro-Glu-Trp-Leu-Cys-Ile-Ile-Phe-His
Asp-Gly-Tyr-Gly-Gly-Ile-Ala-Leu-Pro-Glu-Leu-Ile-Cys-Thr-Met-Phe-His
Asp-Lys-Val- -Ile-Pro-Leu-Pro-Glu-Leu-Val-Cys-Thr-Met-Phe-His
Asp-Gly-Tyr-Arg-Gly-Ile-Ser-Leu-Ala-Asn-Trp-Met-Cys-Leµ-Ala-Lys-Trp
Asp-Asn-Tyr-Arg-Gly-Tyr-Ser-Leu-Gly-Asn-Trp-Val-Cys-Ala-Ala-Lys-Phe-

20 25 30 

....... 
w 



Ba LA 
GPaLA 
HaLA 
KaLA 
H Ly 
C Ly 

Ba LA 
GP a LA 
HaLA 
H Ly 
C Ly 

Ba LA 
GP a LA 
HaLA 
H Ly 
C Ly 

TABLE I (Continued) 

Thr-Ser-Gly-Tyr-Asp-Thr-Glu-Ala-Ile-Val-Glu-Asn
Ile-Ser-Gly-Tyr-Asp-Thr-Gl n-A la-Ile-Va 1-Lys-Asn
Thr-Ser-Gly-Tyr-As p-Thr-Gl n-A la-Ile-Val -Gl u-Asn

-Asn-Gln-Ser-Thr-
-Ser-Asn-Hi s-Lys-
-Asn-Gln-Ser-Thr-

Ile-Ser-Gly-Leu-Ser-Pro-Gln-Ala-Glu-Val
Glu-Ser-Gly-Tyr-Asn-Thr-Arg-Ala-Thr-Asn-Tyr-Asn-Ala-Gly-Asp-Arg-Ser-Thr
Glu-Ser-Asn-Phe-Asn-Thr-Gln-Ala-Thr-Asn-Arg-Asn-Tyr- -Asp-Gly-Ser-Thr-

35 40 45 50 

50 55 60 65 

Asp-Tyr-Gly-Leu-Phe-Gln-Ile-Asn-Asn-Lys-Ile-Trp-Cys-Lys-Asn-Asp-Gln-Asp
Glu-Tyr-Gly-Leu-Phe-Gln-Ile-Asn-Asn-Lys-Asp-Phe-Cys-Glu-Ser-Ser-Thr-Thr
Glu-Tyr-Gly-Leu-Phe-Gln-Ile-Ser-Asn-Lys-Leu-Trp-Cys-Lys-Ser-Ser-Gln-Val
Asp-Tyr-Gly-Ile-Phe-Gln-Ile-Asn-Ser-Arg-Tyr-Trp-Cys-Asn-Asp-Gly-Lys-Thr
Asp-Tyr-Gly-Ile-Leu-Gln-Ile-Asn-Ser-Arg-Trp-Trp-Cys-Asn-Asp-Gly-Arg-Thr-

55 60 65 

70 75 80 

Pro-His-Ser-Ser-Asn-Ile-Cys-Asn-Ile-Ser-Cys-Asp-Lys-Phe-Leu-Asn-Asn-Asp
Val-Gln-Ser-Arg-Asp-Ile-Cys-Asp-Ile-Ser-Cys-Asp-Lys-Leu-Leu-Asn-Asp-Asn
Pro-Gln-Ser-Arg-Asn-Ile-Cys-Asp-Ile-Ser-Cys-Asp-Lys-Phe-Leu-Asn-Asp-Asn
Pro-Gly-Ala-Val-Asn-Ala-Cys-His-Leu-Ser-Cys-Ser-Ala-Leu-Leu-Gln-Asp-Asn
Pro-Gly-Ser-Arg-Asn-Leu-Cys-Asn-Ile-Pro-Cys-Ser-Ala-Leu-Leu-Ser-Ser-Asp-
70 75 80 85 



Ba LA 
GP a LA 
HaLA 
H Ly 
C Ly 

Ba LA 
GPaLA 
HaLA 
H Ly 
C Ly 

BaLA 
GP<XLA 
HaLA 
H Ly 
C Ly 

TABLE I (Continued) 
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Leu-Thr-Asn.,.Asn;_ Il e-Met-Cys-Va l -Lys-Lys-11 e-Leu~ -Asp.;.Lys-Va 1-
Leu-Thr-Asn-Asn-I 1 e-Met-Cys-Va l-Lys-Lys-Il e-Leu- -Asp-I l e-Lys
I le-Thr-Asn-Asn-I l e-Met-Cys-A l a-Lys-Lys-I le-Leu- -Asp-Ile-Lys-
11e-A1a-Asp-A1a-Va1-A l a-Cys-A l a-Lys-Arg-Va 1-Arg- -As p-Pro-Gl n
I le-Thr-A la-Ser-Val -Asn-Cys-A l a-Lys-Lys-I le-Val -Ser-Asn-Gly-Asp-

90 95 100 

100 105 110 115 

Gly-Ile-Asn-Tyr-Trp-Leu-Ala-His-Lys-Ala-Leu-Cys-Ser-Glu-Lys-Leu-Asp
Gly-Ile-Asn-Tyr-Trp-Leu-Ala-His-Lys-Pro-Leu-Cys-Ser-Asp-Lys-Leu-Glu
Gly-Ile-Asn-Tyr-Trp-Leu-Ala-His-Lys-Ala-Leu-Cys-Thr-Glu-Lys-Leu-Glu
Gly-Ile-Arg-Ala-Trp-Val-Ala-Trp-Arg-Asn-Arg-Cys-Gln-Asn-Arg-Asp-Val
Gly-Met-Asn-Ala-Trp-Val-Ala-Trp-Arg-Asn-Arg-Cys-Lys-Gly-Thr-Asp-Val-

105 110 115 120 

120 

Gln-Trp-Leu- -Cys-Glu-Lys-Leu 
Gln-Trp-Tyr- -Cys-Glu-Ala-Gln 
Gln-Trp-Leu- -Cys-Glu-Lys-Leu 
Arg-Gln-Tyr-Val-Gln-Gly-Cys- -Gly-Val 
Gln-Ala-Trp-Ile-Arg-Gly-Cys- -Arg-Leu 

125 



TABLE I (Continued) 

BaLA (bovine a-lactalbumin) (11); GPaLA (guinea pig a-lactalbumin} (14); HaLA (human a

lactalbumin) (13); KaLA (Kangaroo a-lactalbumin) (15); H Ly (human Leukemic lysozyme) (13) 

and C Ly (chicken lysozyme) (13}. The top numbers refer to the sequence of amino acids 

in bovine a-lactalbumin and the bottom numbers are the sequence of amino acids in chicken 

lysozyme. The sequences are aligned to give the highest degree of homology. 



Comparison of a-Lactalbumin and Hen's Eggwhite 

Lysozyme 

a-Lactalbumin and lysozyme have many characteristics that are 

similar. It has been reported by Yasunobu and Wilcox (9) that the two 

proteins have similar molecular weights, the same number of disulfide 

bonds, similar amino acid composition, and identical or similar amino 

and carboxy terminal residues. They also reported that a-lactalbumin 

is readily oxidized by tyrosinase while lysozyme is not oxidized even 

after treatment with urea. Table 1 presents the amino acid sequences 

of bovine a-lactalbumin and hens egg lysozyme. Forty-nine residues are 

the same at corresponding positions and twenty-three are conservative 

replacements. It has been shown when a a-lactalbumin is theoretically 

folded into a three dimensional structure, its structure is similar to 

that of lysozyme {_3, 4, 31}. 

Although a-lactalbumin does not act upon lysozyme substrates and 

lysozyme does not participate in lactose biosynthesis; they do act on 

the same carbohydrate linkage (3,4,19,31). Lysozyme cleaves a-1-4-

glucopyranosyl linkages, whereas a-lactalbumin acts with galactosyl

transferase which forms these linkages. 

a-Lacta'lbumin and lysozyme have many physical properties in 
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common. Kronman (36) has shown that the circular dichroic spectra and 

optical rotary dispersion spectra (57,58} were similar for both pro

teins. However, the overall charge of the two proteins differs markedly 

since lysozyme has an isoelectric point at pH 10.5 as compared to 

a-lactalbumin's isoelectric point at pH 4.8. 



The Evolution of a-Lactalbumin and Lysozyme 

Due to the fact that a-lactalbumin and lysozyme have similar 

structures, a hypothesis has been made that they arose from a common 

ancestral origin. After millions of years of mutational changes in 

genes, natural selection has produced enzymes with most amino acids 

unchanged. Two reasons for this phenomena must be the requirement to 

define the overall shape and dynamic properties of the molecule, and 

the requirement for the enzyme to be resistant to denaturation under 

the range of normal conditions for that organism (59). 
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The a-lactalbumin gene and lysozyme gene could have evolved by 

convergence of two separate origins, or they could have evolved from a 

common ancestral gene (3-5). It is currently believed that they 

evolved from a common ancestral gene. A possibility would be when the 

milk producing system evolved, a gene mutation occurred. The gene res

ponsible for the carbohydrate degrading enzyme, lysozyme, could have 

mutated to form the gene which produces a-lactalbumin. 

InJ11unological Studies 

Only limited studies have been made on the immunological proper

ties of a-lactalbumin. It was shown by Tanahashi et tl· (47,50,51} and 

others that no cross reaction occurred between antisera to a-lactalbumin 

of ruminant and non-ruminant species. Antisera from bovine a-lactal

bumin does not react with pig, guinea pig, and human a-lactalbumins. 

However, the ruminant a-lactalbumins (bovine, buffalo, sheep, and goat) 

all reacted with antibodies to bovine a-lactalbumin (47}. Sen et al. 

(60) reported similar results with bovine A and B, water buffalo, and 

goat a-lactalbumin. 
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The a-lactalbumin antibody binding site is not known. Tanahashi 

et tl· (47} suggested that the immunological sites and active sites are 

different because ruminant and non-ruminant a-lacta1bumin both react 

with galactosy1transferase in the 1actose synthetase reaction but they 

do not immunological1y cross react. Atassi and Habeeb (61} reported a 

decrease in antibody and enzymatic activity when tyrosine 20 and 23 of 

lysozyme were nitrated with tetranitromethane. The antigencity returned 

when the (N02)2 - lysozyme was reduced to (NH2)2 - lysozyme by sodium 

hydrosulfite. However, the enzymatic activity did not return even 

though (N02)2 - lysozyme and (NH2)2 - 1ysozyme appear to have simi1ar 

conformation states. Atassi and Habeeb (61) postulated that the anti

body binds at tyrosines 20 and 23, and these tyrosyl residues are not 

located at the active site. It a1 so has shown with 1ysozyme that N

acetyl-glucosamine, an inhibitor of lysozyme, does not bind at the tyro

sines 20 and 23 (62). However, Denton and Ebner (34) have shown in 

bovine a-lacta1bumin that trytophan and histidine residues may a1so be 

destroyed by nitration and if this occurs in lysozyme, then the anti

bodies may be binding at these residues. Antibodies to a-lactalbumin 

do not cross react with lysozyme, nor do antibodies to lysozyme cross 

react with a-lacta1bumin (11,63). 

Disu1fide Bonds in a-Lactalbumin 

a-Lacta1bumin has four disu1fide bonds as shown in Figure 2 (31,50, 

64}. Iyer and Klee {.65) have reported evidence that al1 four disulfide 

bonds of a-lactalbumin are readily reduced with dithiothreitol in 

aqueous buffer at room temperature in the absence of denaturing reagents, 

but the disulfides of lysozymes react much more slowly. Dalrymp1e (66) 
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has reported that the disulfide bonds in a-lactalbumin under go alkaline 

hydrolysis upon incubation above pH 10, and the rate of hydrolysis 

increases as the pH increases with a concomitant loss of activity. 

Dalrymple (66) also reported that peptic and tryptic digests of the re

duced and alkylated a-lactalbumins gave evidence that disulfide 6-120 

was the only disulfide reduced with 10 molar excess of dithiothreitol at 

0°C in 0.1 M tris pH 7.5. Schechter et~· (67) reported that disulfide 

6-120 was reduced by dethioerethreitol at room temperature faster than 

the other disulfides in a-lactalbumin. 



CHAPTER I I I 

ISOLATION AND CHARACTERISTICS OF a-LACTALBUMIN 

FROM RAT MILK 

Experimental Procedure 

Materials and Reagents 

Rat milk was obtained from Fischer Rats. Oxytocin, Tris (trishydro

xymethylaminomethane}, glycine, glycylglycine, pyruvate kinase (rabbit 

muscle type I), SOS (sodium dodecylsulfate} and mercaptoethanol were ob

tained from Sigma. 

Sodium pentobarbital was purchased from Haver-Lockhart Laboratories. 

Glucose was obtained from Fisher Scientific Products. Terned, acrylamide, 

bis-acrylanide, and ammonium persulfate used for gel electrophoresis and 

the Bio-gel P molecular sieves were purchased from Bio-Rad Laboratories. 

DEAE cellulose 32 was obtained from Whatman. Sucrose was purchased from 

Mallinkrodt, and dialysis tubing was obtained from National Scientific 

(Spectrophor Number 3). Ammonium sulfate was obtained from Schwarz/Mann. 

Methods 

Enzymatic Assays for a-Lactalbumin. The assay used for the detection 

of a-lactalbumin from rat milk was the same as the method described by 

Fitzgerald et ~· (201 for the determination of bovine a-lactalbumin. a

Lactalbumin was assayed in the presence of saturating amounts of bovine 
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galactosyltransferase provided by Dr. S. Magee or Dr. C. Geren. One unit 

of enzymatic activity was defined as the amount of enzyme required to 

form one nanomole of UTP per minute which was an A340 change/min/ml of 

.0062 under the conditions of the assay. The reaction rate was followed 

by coupling the formation of UDP to NADH oxidation by adding PEP and pyr

uvate kinase to the reaction mixture. The rates of reaction were measured 

on a Gil ford 240 spectrophotometer at room temperature. Assay mixtures 

contained 1.0 mM PEP, 60 µl of a 1 to 10 dilution of pyruvate kinase (type 

I containing lactic dehydrogenase, 25 mg/ml with 2.4 I.U. per mg pyruvate 

kinase), 50 mM glycylglycine pH 8.5, and approximately 25 units of bovine 

galactosyltransferase. One hundred microliters of effluents off columns 

were added to the assay, and the final volume of the assay solution was 

brought to one ml with water. An endogeneous rate was determined for each 

assay and subtracted from the total rate to give the true rate of reac

tion. 

Milking Procedures. Female Fischer rats were milked at approximately 

14 days after parturition. Before milking, the animal was first injected 

intraperitoneally with sodium pentobarbital (.05 mg/gm wt}. After the rat 

had become unconscious, 0.2 ml of oxytocin was injected intraperitoneal

ly. Approximately four or five minutes later the teats were rubbed with 

warm water (70°C) and the suction apparatus was applied to the teats. The 

collection apparatus consisted of a small vaccine bottle with two lines of 

PE-200 tubing running out of the top. One top was connected to a small 

soft latex rubber hose, and the other tubing piece was connected to a 

water aspirator. Low levels of suction were used to prevent hemorrhaging 

the tissues. 



Approximately 5 ml of milk were obtained from each rat. The milk 

was kept at 4°C during milk, and frozen after collection. 
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Extinction Coefficient of a-Lactalbumin Isolated from Rat Milk. 

a-Lactalbumin isolated from rat milk by Scheme VI was used to determine 

the extinction coefficient. The purified a-lactalbumin was dialyzed ex

haustively against water, lyophilized and placed in a 5 ml volumetric 

flask which had been dried overnight and weighed to four decimal places. 

The volumetric flask containing the lyophilized a-lactalbumin was placed 

in a vacuum oven and dried under vacuum at 40°C at 1 mm Hg for 24 hours. 

The volumetric flask containing the dried a-lactalbumin was placed in a 

dried dessicato_r containing drierite and ultimately weighed to determine 

the weight of the a-lactalbumin. De-ionized water was added to the volu

metric flask to make a final volume of 5 ml. A 0.5 ml aliquoit from the 

flask was diluted with a solution containing 200 mM KCl and 40 mM Tris, 

pH 7.5 and the absorbance was read at A280 on a Cary 14 spectrophotometer. 

The final salt concentration of the aliquot was 20 mM Tris and 100 rnM KCl. 

All subsequent concentration calculations of rat a-lactalbumin were based 

on this absorbance reading. 

Discontinuous Gel Electrophoresis. The procedure used for 7.5 % 

disc gels was the same as that described by Brewer and Ashworth (70). 

Proteins in the gel were stained with 0.007 % coomassie blue in 40 % met

hanol and 7.5 % acetic acid. 

Disc gels were also stained for carbohydrate. Twelve percent disc 

gels were prepared by the method of Hedrick and Smith (69} and 100 to 

300 Jlg of sample were applied per gel. After the tracking dye had migrat

ed to the end of the gel; it was marked with a stainless steel pin~ and 
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the gel was stained for glycoproteins by the method of Neveil le (70} with 

the following modifications. The gels did not contain SDS and therefore 

did not require the 3-4 day wash. Instead, the gels were fixed in 40 % 

methanol and J.5 % acetic acid for 24 hours. 

To check for the possibilities of impurities, aggregates, and charg

ed isomers, the procedure by Hedrick and Smith (69) was followed. No 

stacking gel was employed and the gels were stained with coomassie blue. 

In all the electrophoresis procedures, the gels were poured in 0.5 

cm x 9.5 cm tubes. The tracking dye used was always bromophenol blue, 

and the gels were ran on a Canalco electrophoresis apparatus. All Disc 

gels were run in a Tris-glycine buffer at pH 8.9. 

Sodium Dodecyl Sulfate Gel Electrophoresis. The ten percent acryla

mide gels and samples were prepared and run by the procedure described by 

Weber and Osborn (711. Both the gel buffer and the reservoir buffer were 

55 mM in sodium phosphate pH 7.2-7.4. 

Electrophoresis was performed on a Canalco apparatus at 10 milliam

peres per gel and the proteins were stained with 0.007 % coomassie blue .. 

The standards used for molecular weight determinations were bovine serum 

albumin, bovine a-lactalbumin, catalase, human a-globulin, glyceraldehyde 

dehydrogenase, myoglobin and lysozyme. SOS gels were also stained for 

carbohydrate by the method of Neville (70). 

Enzymatic Activity Measured from Gel Slice. Protein samples were 

run on 7.5 % acrylamide disc gels as described by Brewer and Ashworth 

(681. Fo"llowing electrophoresis, the gel was removed from the gel tube 

and sliced either in one or two millimeter slices by a Bio-Rad Model 190 

gel slicer. The slices were placed in test tubes and frozen at -20°c. 
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Before thawing the frozen acrylamide gel slices, 100 ~l of a solution 

consisting of 100 mM KCl and 20 mM Tris, pH 7.5, were added to the test 

tubes containing the gel slices. Th.e acrylamide gel slices were allowed 

to thaw at room temperature, and 100 -µ l samples were assayed for a.-1 ac

tal bumin activity. 

Gel Filtration Cnromatography. Gel filtration chromatography was 

accomplished with various acrylamide sizes from the Bio-Rad (P) series. 

The gels were swollen, deaerated and packed in columns as described in the 

Bio-Rad gel filtration manual (721. Two methods were used to apply the 

sample on to the column. The first was by adding ten percent sucrose to 

the sample, and the second method utilized draining the buffer down to the 

top of the gel and then carefully layering on the sample (72}. Blue dex

tran (10 mg/ml) was used to determine the void volume and uniformity of 

packing of the columns. All molecular sieve columns were run at 4°C. 

Ion Exchange Chromatography. All ion exchange chromatography was 

performed with microgranular DEAE 32 purchased from Whatman. The resins 

were pre-cycled, packed and equilibrated according to the manual published 

by Reeve Angel and Co. (731. Samples were also equilibrated to the same 

pH and ionic strength as the starting buffer. Flow rates were obtained by 

utilizing a peristaltic pump. All ion-exchange columns were run at 4°C. 

Spectral Determinations of Rat a.-Lactalbumin. Circular dichroism 

spectra of a.-lactalbumin from rat milk were obtained at 24°C with a Cary 

model 61 spectropolarimeter. The final concentration of the sample solu

tion was calculated from the extinction coefficient of a-lactalbumin from 

rat milk. All samples were dissolved in a solution consisting of 100 mM 

KCl and 20 mM Tris, pH 7.5. The far circular dichroism spectra.were 
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scanned from 200 nm to 250 nm at pathlength of 1 mm. The near circular 

dichroism spectra were run from 245 nm to 330 nm at a pathlength of 2 cm. 

The data are expressed as mean residue molar ellipticity Ie]. A mean 

residue weight of 118 was used for calculating the percentage of a-helix, 

according to the method described by Chen and Yang (74). 

Ultraviolet spectra of a-lactalbumin isolated from rat milk were 

obtained with a Cary 14 spectrophotometer and appropriate base line cor

rections were made. A sample concentration was used to give an A280 

reading of approximately 0.8. The spectra were run from 320 nm to 240 

nm. The sample was placed in a solution containing 20 mM Tris and 100 

mM KCl at pH 7 .5 . 

. Amino Acid Composition. Amino acid analyses were determined on 

a-lactalbumin isolated from rat milk as purified by Scheme V. The amino 

acid analyses of the rat a-lactalbumin were determined by hydrolyzing 

the samples in 6 N HCl containing 4 percent thioglycollic acid under 

reduced pressure for 24 and 48 hours by the method of Matsubara and Saski 

(75}. The analyses were performed on a Beckman 120 Camino acid analyzer 

by the method of Spackman et~· (76). The data are reported as the 

average of two 24 and 48 hour hydrolyzates, respectively. These analyses 

were conducted under the direction of Dr. B. G. Hudson at Oklahoma State 

University. 

Carbohydrate Analysis. The total neutral sugars were determined on 

the intact protein with the antrone reagent of Roe {77}. The standard 

sugars were a mixture of galactose and mannose in a molar ration of 1:1. 

The neutral sugars and hexosamines were released from the protein by 

hydrolysis in l and 2 N sulfuric acid for 4 hours at 100°C in sealed 



+ tubes. The hydrolysate was passed through a column of Dowex 50-X4 (H ) 
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(200-400 mesh) following the procedure of Spiro (78). Lyophilzation was 

used to take the effluent and wash to dryness. The Technicon automatic 

sugar chromatography system described by Lee et~· (79) was used to 

quantitate the amount of neutral sugars present in the effluent. 

The thiobarbituric assay method of Warren (80) was used to deter

mine sialic acid following the hydrolysis of protein with 0.1 N HCl for 

l hr. The carbohydrate analysis was done under the direction of Dr. B. 

G. Hudson at Oklahoma State University. 

Molecular Weight Determination. Sodium dodecyl sulfate electropho

resis described by Weber and Osborn (71) was used to determine molecular 

weights. The standards used were bovine serum albumin, catalase, human 

y-globulin, ova]bumin, glyceraldehyde dehydrogenase, myoglobin, bovine 

a.-lactalbumin .and lysozyme. It should be noted that the leading edge of 

the.tracking dye and protein were marked for determination of relative 

mobilities. 

A molecular weight for rat a.-lactalbumin was also determined by gel 

filtration on Bio-Rad 0.5 m agarose. A 1 cm x 96 cm column was packed 

with 0.5 m agarose gel in 5 mM phosphate, 1 mM mercaptpethanol, pH 7.6. 

Three mg each of s-lactoglobulin, bovine serum albumin, myoglobin, and 

ovalbumin were used to standardize the column and blue dextran was used 

to determine the void volume. A plot of elution volume versus molecular 

weight of these proteins gave a straight line. Fractions, 1.5 ml, were 

collected at a flow rate of 13.6 ml/hr. 

Two mg of rat a.-lactalbumin purified by Scheme VI was chromatograph

ed on this column to determine its molecular weight. 



General Scheme 

Isolation of Rat a-Lactalbumin 

from Rat Milk 
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Disc gel electrophoresis of whole rat milk, Figure 3, shows a num

ber of proteins. Two general methods were used to remove the caseins 

from rat milk. The first method generally followed the procedure out

lined by Schmidt et _tl. (.28} and in the second method, acid precipitation 

was used to remove the caseins. 

In the first method, the cream was separated by centrifugation for 

20 minutes at 15,000 x g. The casein fraction was precipitated by cen

trifugation at 1000,000 x g for l hour at 4° C. A typical standard disc 

gel pattern of the 100,000 x g supernant solution is shown in Figure 4. 

The supernatant solution was saved and passed through a 0.4 u millipore 

filter and clarified further by passage through a 0.22 u millipore. An 

80 % ammonium sulfate precipitation (561 g/1000 ml} was performed on the 

supernatant solution from the last step. The salt solution was centri

fuged at 40,000 x g for 20 minutes. The pellet was redissolved in a 

minimum volume of 20 mM Tris and 100 mM KCl at pH 7.5. The disc gel 

patterns are shown by the gel scans in Figure 5. The redissolved pellet 

of whey proteins was used for subsequent column chromatrographY. 

In the second method, a 15,000 x g centrifugation for 20 minutes 

was used to remove the cream. The cream was removed with a spatula and 

the pH of the rat skim milk was lowered to approximately 4.6. The acid

ified rat skim milk was centrifuged at 20,000 x g for 20 minutes to 

remove the precipitated caseins. The pH of the supernatant solution was 

raised to 7.4 with 0.5 M KOH. The supernatant solution was decanted, 



and a scan of a typical disc gel of the decanted supernatant solution 

is shown in Figure 4. An ams ammonium precipitation was performed on 
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the supernatant solution. The solution was centrifuged at 40,000 x g for 

20 minutes, and the pellet was redissolved in a minimum volume of 20 mM 

Tris and 100 mM KCl at pH 7.5. The redissolved pellet had enough protein 

removed so that it could be used for column chromatography. 

There were several observations that were made from the patterns of 

the disc acrylamide gels. The first was that the casein fraction of pro

teins found in whole rat milk could be removed by either centrifugation 

at 100,000 x g or by acid precipitation as shown in Figure 3 and 4. The 

second observation was that a single major protein was observed after the 

removal of the caseins by a 100,000 x g centrifugation or acid precipita

tion of the whey proteins as shown by disc electrophoresis (Figure 4). 

The third and most important observation was that the disc gel patterns 

of the 100,000 x g supernatant and the supernatant of the acid precipita

tion (Figure 4) were very similar. This meant that either method could 

be used to remove the casein fraction in order to prepare the rat milk 

for column chromatography. 

Scheme I 

The first purification scheme is outlined as follows. Sixty-five 

mls of whole rat milk and water were diluted with normal saline (0.89% 

NaCl in water} to a final volume of 85 mls. The general purification 

scheme utilizing the 100,000 x g centrifugation was used with the diluted 

rat milk except that cheese cloth was used instead of millipores for 

filtering the rat milk after the removal of the caseins. Following the 

100,000 x g centrifugation, the amount of protein remaining in the super-
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Figure 3. Disc Gel Electrophoresis of Whole Rat 
Milk at pH 8.9. 

Scans of 7.5 percent polyacrylamide disc gels. 
The scan of the gel is from whole rat milk (5 µl) 
The number 1.0 is the tracking dye. 
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Figure 4. Disc Gel Electrophoresis of Whey Proteins from 
Rat Milk. 

Gel scans of 7.5 percent polyacrylamide disc gels. The gel 
scans are from (bottom), 100,000 x g centrifugation of rat 
skim milk., and (top}, acid precipitation of rat skim milk. 
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Figure 5. Disc Gel Electrophoresis of a Redissolved 
A11111onium Sulfate Pellet from Rat Whey Milk. 

Scan of 7.5 percent polyacrylamide disc gels. The gel 
scan is from a redissolved 80 % arrunonium sulfate 
pellet (100 µgs). 
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natant solution as measured by absorbance at 280 nm (assuming one absor

bance unit equals one mg of protein l was 471 mg. Approximately 250 mg 

of protein from the original 471 mg of protein remained in the 80% ammo

nium sulfate pellet. The pellet was redissolved in 9.3 ml of 50 mM 

potassium phosphate and 100 mM KCl at pH 7.4. The redissolved pellet 

was layered on a 5.0 x 100 cm Bio-Gel P-30 (100-200 mesh) column equi

librated with potassium phosphate and 100 mM KCl, pH 7.4. Ten ml frac

tions were tollected at a flow rate of 60 ml per hour, and the A280 was 

read for each tube. One protein peak was observed, (Figure 6), and 

various tubes were assayed spectrophotometrically for a-lactalbumin 

activity. It was observed that the a-lactalbumin activity was slightly 

shifted toward the trailing edge of the void peak. This result was 

unusual since with most milks, two major whey proteins peaks are observed 

and a-lactalbumin is in the lower molecular weight peak. Disc and sodium 

dodecyl sulfate acrylamide gels of the trailing middle and leading edge 

of the void protein peak of the P~30 column in Figure 6 are shown in 

Figures 7 and 8 respectively. It is clear that a number of proteins were 

present and that the P-30 column was not separating a-lactalbumin from 

other proteins. 

Scheme II 

In this scheme a Bio-Gel P-60 column was used in an attempt to sep

arate a-lactalbumin from other proteins. Approximately 60 ml of rat milk 

were diluted to 12 ml with normal saline and purified as outlined in 

Scheme I. Following the 80% ammonium s.ulfate precipitation and redis

solving the pellet in two ml of column buffer, approximately 67 mg of 

protein were obtained. Twenty-eight mg of the redissolved pellet in one 
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Figure 6. Typical P-30 Molecular Sieve Chro
matography of Whey Proteins in 
Rat Milk 

Resolution of rat whey proteins over a 3.15 
x 90 cm Bio-Gel (100-200 mesh) column equi
librated with 20 mM Tris, 100 mM KCl, pH 7.5. 
Ten ml fractions were collected and measured 
at 280 nm (o-o). a-Lactalbumin activity 
was measured spectrophotometrically at 340 nm 
(e-e). 
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Figure 7. Disc Gel Electrophoresis of Rat Whey 
Milk Proteins Separated on P-30 Column 

The disc gels were operated at 1.5 ma per 7.5 % gel 
and the tracking dye marked with a pin. The gel 
scans are labeled from bottom to top as (bottom) 
leading edge of P-30 peak (41 µg) (middle) trailing 
edge of P-30 peak (50 µg) (top) middle area of P-30 
peak(50µg). 
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Figure 8. Sodium Dodecyl Sulfate Electrophoresis of 
Rat Whey Milk over a P-30 Column. 

The 11 percent sodium dodecyl sulfate acrylamide gels 
were operated at 10 ma per gel. The gel scans are 
labeled from top to bottom as (top) leading edge of 
P-30 peak (middle) middle area of P-30 peak (bottom) 
trailing edge of P-30 peak. 
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. ml of column buffer was layered on a 1.0 x 100 cm Bio-Gel P-60 (100-200 

mesh} column equilibrated with 20 mM Tris and 100 mM KCl at pH 7.5. 0.96 

ml fractions were collected and each tube was read at 280 nm and measured 

for a-lactalbumin activity. These results are presented in Figure 9. 

Three protein peaks were observed but only the second peak contained 

a-lactalbumin activity. Samples from the peak tubes were prepared and 

run on 7.5 % acrylamide disc gels and 11 % phosphate sodium dodecyl sul

fate gels as shown in Figure 10 and 11 respectively. 

It should be noted that the first or void peak had a very large 

band which migrated at a molecular weight of approximately 68,000 on 

sodium dodecyl sulfate gels. The second peak which contained the a-lac

talbumin activity had a large protein band which migrated at about 24,000 

on sodium dodecyl sulfate acrylamide gels, and no band was observed at 

14,500 which is the molecular weight of a-lactalbumin from other species. 

The molecular weight standardization curve is shown in Figure 12. 

Scheme III 

This scheme followed the general procedure which utilized acid precipita

tion instead of centrifugation to remove the caseins. Following the 

removal of the caseins, an 80 % ammonium sulfate precipitation was per

formed on the supernatant solution. After centrifugation at 40,000 x g 

for 20 minutes, the pellet was redissolved in 20 nm and assayed for 

a-lactalbumin activity. 

It was observed that rat whey milk which had been prepared by the 

acid precipitation method had a similar protein and a-lactalbumin activ

ity profile on a Bio-Gel P-60 column as rat whey milk prepared by the 

100,000 x g. centrifugation method and eluted on a Bio-Gel P-60 column 
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Figure 9. Molecular Sieve Chromatography (Bio-Gel 
P-60) of Whey Proteins in Rat Milk. 

Resolution of rat whey proteins over a 1.0 x 100 cm 
P~60 column equilibrated with 20 mM Tris and 100 
mM KCl, pH 7.5. 0.96 ml fractions were collected 
and measured at 280 nm(()--{)). a-Lactalbumin 
activity was measured at 340 nm (e--e). 
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Figure 10. Disc Electrophoresis of Rat Whey Proteins Separated 
on a P-60 Column. 

Scans of 7.5 percent polyacrylamide disc gels. The samples are 
from rat whey proteins passed over a P-60 column. The gel 
scans are (top) Void peak of rat whey proteins off P-60 column 
(bottom) a-Lactalbumin peak from skimmed rat milk off P-60 
column. 
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Figure 11. Sodium Dodecyl Sulfate Electrophoresis of Rat Whey 
Off P-60 Column. 

Scans of 11 percent polyacrylamide sodium dodecyl sulfate gels 
of rat whey proteins. The gel scans are from (top) void peak 
of skim rat milk off P-60 column (50 µg) (bottom) a-lactalbu
min peak of skim rat milk off P-60 column (50 µg). 



9 

7 

tj- 5 
I 
0 
~ 

>< 
1-

25 3 ,_. 
w 
:;;:: 

0::: 
c:( _. 
::;:, 
u 
w 
...J 

~ 

1------------""-------..L-~----...1-------..L..--....J 
0.1 0.3 0.5 

RELATIVE MIGRATION 

0.7 0.9 

Figure 12. Molecular Weight Standardization Curve of Proteins on 
Sodium Dodecyl Sulfate Acrylamide Gels. 
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Protein standardization curve for sodium dodecyl sulfate acrylamide 
gels of whey proteins chromatographed on a P-60 column. Standards 
( e) were bovine a-lactalbumin (1), glyceraldehyde dehydrogenase 
(2), catalase (3), ovalbumin (4), myoglobin (5), lysozyme (6), and 
human y-globulin (7). The protein bands from the void peak are de
noted by ( • ) , and the a- lactalbumin peak is denoted by ( 4). 
Bovine serum albumin was denoted by (8}. 
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(Figure 9). Gel scans from the first and second peaks of rat whey milk 

prepared by acid precipitation and eluted on a Bio-Gel P-60 column were 

similar to gel scan of the first and second peaks of rat whey milk pre

pared by centrifugation at 100,000 x g and eluted on a Bio-Gel P-60 

column (Figures 10 and 11). From these observations it was concluded 

that either method of casein removal gave the same results. However, 

the 100,000 x g centrifugation was the preferred method of casein removal 

because it reduced the possibility of denaturation of protein by lowering 

the pH. 

Scheme IV 

The previous purification schemes did not separate a-lactalbumin 

from the other low molecular weight proteins and accordingly the whey 

proteins were separated on a Bio-Gel P-150 column. Approximately 6.0 ml 

of rat milk were diluted to 12 ml with a normal saline solution (0.89 % 

NaCl in H20). The rat milk-normal saline solution was centrifuged at 

15,000 x g for 20 minutes. 8.4 ml of the supernatant solution remained 

after removal of the cream. The supernatant solution was diluted to a 

total volumn of 10 ml with normal saline. The supernatant solution was 

centrifuged at 114,000 x g to remove the caseins. After decanting and 

passing the supernatant solution through a millipore filter, approxi

mately 5.8 ml of the supernatant solution were recovered and it contained 

133.1 mg of protein. The supernatant solution was precipitated with 80 % 

ammonium sulfate, (56.1 g/100 ml), and the precipitate was centrifuged at 

40,000 x g for 20 minutes. The pellet was redissolved in 2.5 ml of 20 mM 

Tris and 100 mM KCl at pH 7.5 and contained 67.2 mg (28 mg/ml) of protein 

(A280 ). 0.5 ml (14 mg} were layered on a 0.6 x 110 cm Bio-Gel P-150 



(100-200 mesh) column equilibrated with 100 mM KCl and 20 mM Tris at 

pH 7.5. Approximately 0.48 ml fractions were collected. The tubes 
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were measured at 280 nm and assayed spectrophotometrically for a-lactal

bumin activity. 

The elution profile of the column is shown in Figure 13. Four pro

tein peaks were present but only the third peak contained a-lactalbumin 

activity. Sodium dodecyl sulfate acrylamide gels of the first three 

peaks are shown in Figure 14. The first peak contained numerous large 

molecular weight proteins. The second peak contained one major protein 

which marked on sodium dodecyl sulfate gels at a molecular weight of 

68,000. It was thought this protein was serum albumin since it appears 

to be the prominant protein in whey (81}. The peak containing the a-lac

talbumin activity also contained a small amount of the 68,000 band, but 

the predominant band had a molecular weight of 22,500 as determined by 

sodium dodecyl sulfate electrophoresis. 

Scheme V 

From the results of previous column elution profiles of the whey 

proteins from rat milk, it was concluded that the best molecular sieve 

column was Bio-Gel P-150 (100-200 mesh). The tubes (34-48} which con

tained the a•lactalbumin activity from rat whey milk which had been pre

viously eluted on the P-30 column (Figure 6) were pooled, precipitated 

with 80 % (NH4)2so4 (56.1 g/100 ml) at 4° C, and the pellet redissolved 

in 5 ml of 20 mM Tris, and 100 mM KCl at pH 7.5. The redissolved pellet 

contained 100 mg of protein and 10 % (w/v) sucrose was added to the solu

tion. The sucrose-redissolved pellet solution was layered on a 3.15 x 

90 cm Bio-Gel P-150 column (100-200 mesh) equilibrated with 20 mM Tris 
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Figure 13. Typical P-150 Molecular Sieve Chromatography of Whey 
Proteins of Rat Milk. 

Resolution of whey proteins of rat milk by a 0.6 x 110 cm P-150 
column equilibrated with 20 mM Tris and 100 mM KCl, pH 7.5. 
0.48 ml fractions were collected and measured at 280 nm (o--o). 
a-Lactalbumin activity was measured spectrophotometrically at 
340 nm(~). 
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Sodium Dodecyl Sulfate Electrophoresis of 
Whey Proteins from Rat Milk Off P-15a 
Column. 

Scans of eleven percent polyacrylamide sodium dodecyl 
sulfate gels. The samples are from skim rat milk 
passed over a P-150 column with the caseins removed 
by centrifugation. The gel scans are from (top) void 
peak from skim rat milk off P-150 column (50 µg} 
(middle} 6a K peak from skim rat milk off P-150 column 
(50 µg) (bottom) a-lactalbumin peak from skimmed rat 
milk off P-150 column (30 µg). 
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and 100 mM KCl, pH J. 5. Approximately 4 ml fractions were collected, 

and the elution profile of the column was similar to the P-150 column 

shown in Figure .13 as were the sodium dodecyl sulfate gel patterns. 
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It should be noted that the major protein band from the a-lactalbu

min peak migrated on sodium dodecyl sulfate acrylamide gels at an approx

imate .molecular weight of 23,000. Rat whey milk passed over the P-30 

column and then over the Bio-Gel P-150 column had the same elution pro

file as the rat whey milk passed only over the P-150 column. 

A sample taken from the fourth peak or lowest molecular weight peak 

(see Figure 13) gave two predominant protein bands in sodium dodecyl sul

fate electrophoresis (Figure 15}. One protein had a molecular weight of 

22,500, presumably a-lactalbumin, and the second protein band migrated 

at 17,500. 

Tubes containing the a-lactalbumin activity were pooled and dialyzed 

against 4 l of 20 mM Tris, pH 7.65 at 4° C for 48 hours. The absorbance 

was read at 280 nm and 18.5 mg in 55 ml of 20 mM Tris, pH 7.65 at 4° C 

(.calculated from the correct extinction coefficient of rat a-lactalbumin, 

1.624 absorbance units equals 1 mg of rat a-lactalbumin) was placed over 

a 1 .x 24 cm DEAE 32 cellulose ion-exchange column equilibrated with 20 mM 

Tris at pH J .65 at 4° C. A linear gradient was run from 0 M KCl and 20 

mM Tris, pH 7.68 (75 mls) 4° C to 0.3 M KCl and 20 mM Tris pH 7.68 (75 

mls). The second gradient was run from 0.3 M KCl and 20 mM Tris, pH 7.68 

(75 mls) at 4° C to 1.0 M KCl and 20 mM Tris pH 7.68 (]5 mls} at 4° C. 

Approximately, 1.5 ml fractions were collected. The elution profile of 

the column is shown in Figure 16. Samples were taken for disc and sodium 

dodecyl sulfate acrylamide electrophoresis from the peak tube containing 

the a-lactalbumin activity and lyophilized after the samples had been 
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dialyzed against 4 l of water and changed every 6 hours for a total of 3 

changes. The scans of the disc and acrylamide gels are shown in Figure 

17 and 18 respectively. The major protein band marked at 23,000 and a 

minor band marked at 68,000 on sodium dodecyl sulfate acrylamide gels. 

The peak areas of both proteins from the gel scan were cut out and 

weighed to four decimal places, and the minor band ~8,000) represented 

less than 2 % of the total area of the large band. 

Two 100 vg samples of rat a-lactalbumin from the peak tubes off the 

DEAE 32 cellulose were prepared for disc electrophoresis by the procedure 

of Brewer and Ashworth (68}. Two 100 µg samples of bovine a-lactalbumin 

were prepared by the same procedure. 7.5 % disc acrylamide gels with 

100 µg of the four samples were run. One gel of the bovine a-lactalbumin 

and one gel of the rat a-lactalbumin were cut into 1 mm slices and as

sayed spectrophotometrically for a-lactalbumin activity. The results are 

shown in Figures 19 and 20 respectively. It was evident that the major 

protein contained almost all the a-lactalbumin activity. The molecular 

weight of rat a-lactalbumin was determined to be 23,000 by sodium dodecyl 

sulfate acrylamide gel electrophoresis. 

The rat a-lactalbumin was stained for carbohydrate as described by 

Neville (70}. Samples of rat a-lactalbumin were from the peak tubes of 

the DEAE 32 cellulose column and were dialyzed against 18 1 of H20, lyo

philyzed and then prepared for electrophoresis by following the general 

scheme of Weber and Osborn (71). Bovine a-1acta1 bumi n and ova 1 bumi n were 

used as controls. Two hundred µg samples of each protein were run on 11 

% sodium dodecyl sulfate acrylamide gels and stained for carbohydrate by 

Neville's procedure (70}. The gels were scanned at 550 nm and the re

sults are shown in Figure 21. The results indicated that the rat 

a-lactalbumin contained carbohydrate. 
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Approximately 10 mg of rat a-lactalbumin isolated utilizing this 

isolation scheme was given to Dr. B. G. Hudson at Oklahoma State Univer

sity for amino acid carbohydrate analysis. It should be noted that this 

material contained a 68,000 molecular weight protein contaminant less 

than 2 %) • 

Scheme VI 

Based on the results of Scheme V it was concluded that a Bio-Gel 

P-30 molecular sieve column was unsatisfactory and unnecessary. Scheme 

VI utilized the general purification scheme involving the removal of the 

caseins by a 100,000 x g centrifugation. Forty-one mls of whole rat were 

diluted with 41 ml of normal saline (0.89 gm of NaCl in 100 ml of deion

ized water) to make a total volume of 82 ml. A 15,000 x g centrifugation 

for 20 minutes was used to remove the cream. The caseins were removed 

by centrifuging at 100,000 x g for 1 hour. The supernatant solution was 

decanted and passed through a 0.45 µ millipore filter followed by a 0.22 

µ filtration. Approximately 56 ml of the supernatant solution remained 

after the last filtration and contained 740.5 mg of protein (A280). The 

proteins from the filtrate were precipitated by 80 % ammonium sulfate 

(56.1 gm/100 ml) and the solution centrifuged for 20 minutes at 40,000 x 

g, and the supernatant solution was decanted. The pellet was redissolved 

in 9.9 ml of 20 mM Tris and 100 mM KCl at pH 7.76 at 4° C, and contained 

591 mg of protein. The solution was divided into three parts, the first 

contained 200 mg of protein, the second contained 269 mg of protein, and 

the third part contained the remainder. Both the first and second part 

were processed separately by the procedure described below. The first 

part was dissolved in 3.34 ml of 20 mM Tris and 100 mM KCl, pH 7.5 at 

4° C, and the second part was dissolved in 8 ml of the same solution. 
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Figure 15. Sodium Dodecyl Sulfate Electrophoresis of the Fourth 
Peak of a Pooled a-Lactalbumin Peak from a Bio-Gel 
P-30 Column Rechromatographed on a Bio-Gel P-150 
Column. 

Scan of an eleven percent polyacrylamide sodium dodecyl sulfate 
gel. The sample (100 µg} was from a pooled a-lactalbumin peak 
from a Bio-Gel P-30 column which was rechromatographed on a 
Bio-Gel P-150 column. The caseins were removed by centrifuga
tion. The scan is from the gel run on the fourth peak of the 
P-150 column. 
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Figure 16. Typical DEAE 32 Cellulose Chromatography Profile of Rat 
a-Lactalbumin Isolated Utilizing Scheme V. 

Typical resolution of a pooled rat a-lactalbumin peak from a Bio-Gel 
P-30 column followed by chromatography on a Bio~Gel P-150 column. 
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The a-lactalbumin peak was pooled and rechromatographed on a 1 x 24 
cm DEAE 32 Cellulose ion exchange column (see text}. 1.5 ml fractions 
were collected and measured at 280 nm (o-o). The a-lactalbumin 
activity was measured spectrophotometrically at 340 nm (1--e}. The 
gradient was measured by conductivity (&--A}. 
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Figure 11. Disc Electrophoresis of Pooled Rat a-Lactalbumin from a 
Typical DEAE 32 Cellulose Column Utilized in Isolation 
Scheme V. 

Scan of a 7.5 percent polyacrylamide disc gel. The sample was from 
a lyophilized pooled rat a-lactalbumin peak from a DEAE 32 cellulose 
column used in isolation Scheme V. Approximately 50 µg of sample 
were applied to the gel. 
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Sodium Dodecyl Sulfate Electrophoresis of Rat a-Lactal
bumi n from a Typi ca 1 DEAE 32 Ce 11 ul ose Co 1 utnn Uti 1 i zed 
in Isolation Scheme V. 

Scan of an eleven percent polyacrylamide sodium dodecyl sulfate gel. 
The sample is from a lyophilized pooled rat a-lactalbumin peak off 
a DEAE 32 cellulose column used in isolation Scheme V. Approxima
tely 200 µg of sample were applied to the gel. 
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figure 19. Activity of Bovine a-Lactalbumin Extracted from a Disc Gel. 

Bovine a-lactalbumin (100 µg) was run on a 7.5 % disc gel. The gel was 
sliced into a 1 mm sections and the a-lactalbumin was extracted (see 
methods) and assayed spectrophotometrically at 340 nm for a-lactalbu
.mi.n activity. 
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Figure 20. Activity of Rat a-Lactalbumin Extracted from a Disc Gel. 

Rat a-lactalbumin (100 µg} isolated by Scheme V was run on a 7.5 % 
disc gel .. The gel was sliced into 1 mm sections, and the protein 
was extracted (see methods} and assayed spectrophotometrically at 
340 nm for a-lactalbumin activity. At the top of the figure is a 
scan of a duplicate gel, but stained with co11111assie blue. 
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Figure 21. Carbohydrate Stain of Rat a-Lactalbumin Isolated 
from Scheme V. 

Scans of eleven percent sodium dodecyl sulfate polyacrylamide 
gels. The samples were stained for carbohydrate by the pro
cedure described by Neville (?a). The gel scans are (top} 
ovalbumin positive control standard (middle) bovine a-lactal
bumin negative control standard (bottom) rat a-lactalbumin 
isolated from Scheme V. 2aa µg of sample were applied to 
each gel. 



Both the first and second part were layered separately on a 3.5 x 90 cm 

Bio-Gel P-150 (100-200 mesh) molecular sieve column equilibrated with 
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20 rnM Tris and 100 mM KCl, pH 7.76 at 4° C. Approximately 3.65 ml frac

tions were collected. The tubes were read at 280 nm for proteins and 

a-lactalbumin activity was assayed spectrophotometrically. All the 

a-lactalbumin activity was in the third peak. The elution profile of the 

first part passed over the P-150 column is shown in Figure 22. Galacto

syltransferase was also assayed spectrophotometrica1ly. It should be 

noted that the galactosyltransferase activity marked ahead of the second 

peak on the P-150 column. The predominant protein of the second peak 

marked at 68,000 on sodium dodecyl sulfate gels. This is unusual because 

galactosyltransferase from bovine milk has an apparent molecular weight 

of 55,000, whereas the galactosyltransferase from rat milk has an appar

ent molecular weight of greater than 80,000 on a P-150 column. 

The tubes containing the a-lactalbumin activity (90-180 and 90-110 

respectively) were pooled from both columns and dialyzed against 4 l of 

20 mM Tris, pH 7.25 at 4° C and changed every six hours for a total of 4 

changes. The absorbance at 280 nm was read and 120 mg of protein (by 1 

mg/ml of protein equals 1 absorbance unit at 280 nm) were present in 

138.7 ml of solution. The dialyzed solution containing the a-lactalbumin 

activity was layered on a 1.0 x 24 cm DEAE 32 cellulose ion exchange 

column equilibrated with 20 mM Tris at pH 7.1. The linear gradient was 

run from 0 M KCl and 20 mM Tris, pH 7.1. Each portion of the gradient 

contained 150 ml for a total of 300 ml. Approximately 1.4 ml fractions 

were collected and the absorbance at 280 nm was read. The fractions were 

assayed spectrophotometrically for a-lactalbumin activity. The elution 

profile of the column is shown in Figure 23. The major peak contained 
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most of the a-lactalbumin activity, but a small side peak also contained 

some a-lactalbumin activity. It should also be noted that the activity 

profile of the major peak was not symmetrical, indicating that charge 

forms may be present. 

The tubes (189-211) under the major peak containing the a-lactal

bumin activity were pooled and lyophilized. The lyophilized material 

was redissolved in 5 ml of deionized water and the absorbance at 280 nm 

was determined. Approximately 52.3 mg of protein in 5 ml of 20 mM Tris 

and 100 mM KCl at pH 7.5 at 4° C were layered on a 3.15 x 90 cm Bio-Gel 

P-150 column equilibrated with 20 mM Tris and 100 mM KCl at pH 7.5. 

Approximately 5.1 ml fractions were collected, and the peak tube from 

the major peak was assayed spectrophotometrically for a-lactalbumin. It 

was found that the peak tube contained a-lactalbumin activity. The elu

tion profile of the column is shown in Figure 24. Tubes 68-90 were 

pooled and exhaustively dialyzed against 6 1 of deionized water with 

changes every twelve hours for a total of 4 changes. The exhaustively 

dialyzed solution was lyophilized and used for circular dichroism studies, 

ultraviolet spectroscopy studies and the determination of the extinction 

coefficient of a-lactalbumin isolated from rat milk. These results are 

presented in the section of the properties of rat a-lactalbumin. 

The purity of the rat a-lactlalbumin was examined by disc and sod

ium dodecyl sulfate acrylamide gel electrophoresis. The gel patterns 

from twelve percent disc acrylamide gels with 25 µg of rat a-lactalbumin 

off the last P-150 column gave 4 protein bands (Figure 25}. On 11 % 

phosphate sodium dodecyl sulfate acrylamide gels only one band was ob

served as shown by the gel scan in Figure 26. These results indicated 

that charge forms were present in rat a-lactalbumin. 
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Varying percent disc acrylamide gels prepared by the procedure of 

Hedrick and Smith (69} were used to determine if the four bands pre

sent on 12 % disc electrophoresis were charge forms, aggregates, or 

impurities. Approximately 25 µg of rat a-lactalbumin isolated off the 

last P-150 column was layered on each gel. Duplicate gels of seven, 

eight, nine, ten, and eleven percent acrylamide gels were run. The re

sults are shown in Figure 27. The results indicate that the four bands 

observed on twelve percent disc gels were probably charge forms of rat 

a-lactalburnin (Figure 27). 

Two 100 µg samples of rat a-lactalbumin were prepared for electro

phoresis by the procedure of Brew and Ashworth (68). Both 100 µg sam

ples were layered on twelve percent disc gels and run at 3 milliamperes 

per gel. Following electrophoresis, one gel was cut into 2 mm slices 

and assayed for a-lactalbumin activity spectrophotometrically and the 

second gel was stained with 0.007 % coomassie blue. The results are 

shown in Figure 28. The results indicate that all four protein bands 

observed on twelve percent disc gels possess a-lactalbumin activity. 

Properties of a-Lactalbumin Isolated from 

Rat Milk 

Amino Acid Analysis 

The amino acid analysis was carried out on rat a-lactalbumin iso

lated from Scheme V. The method of analysis has been previously des

cribed in the Methods section. The results of the amino acid analyses 

are shown in Table 2. Duplicate runs were made on both the 24 hour and 

48 hour hydrolysates and 0.4772 mg samples were used for each hydroly

sates. A minimum molecular weight was calculated based on methionine. 



2 

1 

0 -

40 60 80 

FRACTION NUMBER 

0.03 

, c 

0.01 

0.00 

100 120 

Figure 22. Typical Molecular Sieve Chromatography Profile of Hhey 
Proteins from Rat Milk Chromatographed on a Bio-Gel 
P-150 Column. 

Resolution of the whey proteins of skimmed rat milk chromatographed 
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on a 3.15 x 90 cm Bio-Gel P-150 (100-200 mesh} column equilibrated 
with 20 m~ Tris and 100 mM KCl, pH 7.5. The sample contained 200 mg 
in 3.34 ml of 20 mM Tris and 100 mM KCl, pH 7.5 (first part}. 
Approximately 3.65 ml fractions were collected and measured for 
absorbance at 280 nm (o-o}. a-Lactalbumin activity (t-e} and 
galactosyltransferase activity (11-t1) were measured spectrophotomet
rically at 340 nm. 
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Figure 23. Typical DEAE 32 Cellulose Chromatography Profile of Rat 
a-Lactalbumin Utilizing Isolation Scheme VI. 

_J 

~ ........_ 
V) 
I-,_., 
z 
:::::> 

0.04 

0.00 

Resolution of pooled rat a-lactalbumin peaks from two Bio-Gel P-150 
columns rechromatographed on a 1 x 24 cm DEAE 32 Cellulose ion ex
change column equilibrated with 20 mM Tris, pH 7.68 at 4° C. The 
protein was eluted with a linear gradient of 0 rrM KCl to 300 mM KCl, 
20 rnM Tris, pH 7.68 at 4° C (150 ml each). Approximately 1.4 ml 
fractions were collected and measured for absorbance at 280 nm 
(o--o). a-Lactalbumin activity was measured spectrophotometrically 
at 340 nm (t-e}. The gradient was measured by conductivity (a-a). 
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Figure 24. Molecular Sieve Chromatography Profile of Rat 
a-Lactalbumin over Final P-150 Column 
Utilizing Isolation Scheme VI. 
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Resolution of pooled rat a-lactalbumin peaks from two Bio-Gel 
P-150 columns followed by chromatography on a DEAE 32 ion 
exchanged column. The a-lactalbumin peak was pooled and 
rechromatographed on a 3.15 x 90 cm Bio-Gel P-150 (100-200 
mesh) equilibrated with 20 mM Tris and 100 mM KCl, pH 7.5 
at 4° C. Approximately 5.1 ml fractions were collected and 
measured for absorbance at 280 nm (o~} and 220 nm (1-1}. 
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Figure 25. Disc Electrophoresis of Pooled a-Lactalbumin from the 
Final P-150 Column Utilized in Isolation Scheme VI. 

Scan of a 12 percent polyacrylamide disc gel is shown in the figure. 
The samples are from the pooled rat a-lactalbumin peak from the 
final P-150 column utilized in isolation Scheme VI. A 25 µg sam
ple was applied to the gel. 
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Figure 26. Eleven Percent Sodium Dodecyl Sulfate Acrylamide 
Electrophoresis of Pooled a-Lactalbumin from the 
Final P-150 Column Utilized in Isolation Scheme VI.' 

Scans of 11 percent polyacrylamide sodium dodecyl sulfate gels 
are shown in the figure. The samples are from the pooled rat 
a-lactalbumin peak from the final P-150 column utilized in 
isolation Scheme VI. The scans of the gels are (top) 25 µg of 
rat a-lactalbumin (bottom) 50 µg of rat a-lactalbumin. 
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Figure 27. Graph of Various Percent Disc Gels of Rat a-Lactalbumins. 

A graph of the various percent disc gel electrophoresis of rat 
a-lactalbumin. From top to bottom the protein bands are listed 
as (l} the fastest moving band (0) (2) the second or next to 
fastest moving band (0) (3) the third band (II) (4) the slow
est protein band (0). 
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Figure 28. Activity of Rat a-Lactalbumin Extracted from Disc Gel~ 

Rat a~lactalbumin (100 µg} isolated by Scheme VI was run on 12 per
cent disc gels. One gel was sliced into 1 mm sections, and the 
protein extracted and assayed spectrophotometrically at 340 nm 
for a-lactalbumin activity. At the top of the figure is a drawing 
of a duplicate gel run simultaneously and stained with commassie 
blue. 



TABLE II 

AMINO ACID ANALYSIS OF RAT a-LACTALBUMIN 
ISOLATED FROM RAT MILK 

Minimum Minimum 
µmole Molecular Number of 

Amino Acid µmoles 100 mg Mg/100 mg Residues/1000 Weight Residues 

Lysine 0.3061 64.14 8.222 84.2 769.2 6 
Histidine 0.08585 17.99 2.468 23.6 274.4 2 
Arginine 0.09415 19.73 3.082 25.9 312.4 2 
Aspartic Acid 0 .4230 88.64 10. 202 116.9 920.8 8 
Threonine 0 .1836 38.47 3.889 50. 5 404.4 4 
Serine 0. 3177 66.51 5.798 87.4 522.6 6 
Glutamic Acid 0.4875 102.15 13.188 134.1 1161. 9 9 
Praline 0.1944 40.73 3.955 53.5 388.4 4 
Glycine 0 .1989 41.68 2.380 54.7 228.4 4 
Alanine 0.2413 50.56 3.595 66.4 355.5 5 
Half Cystine 0.1547 32.41 3.345 42.5 309.6 3 
Valine 0.1759 36.86 3.653 48.4 297 .3 3 
Methionine 0.05171 10.84 1.422 14.2 131.2 1 
Isoleucine 0.2337 48.97 5.543 64.3 566.00 5 
Leuci ne 0.2373 49.72 5.628 65.3 566.0 5 
Tyrosine 0.1013 21.22 3.463 27.8 326.4 2 
Phen~lalanine 0.1461 30.61 4.506 40.2 441.60 3 
Total 84.3391 7976.1 72 

Carbohydrate (mg/100 mg} 10.61 

Recovery 94.949 % 

24 hour hydrolysis of rat a-lactalbumin .. Each amino acid analysis represents an average of duplicate 
analysis. 



Amino Acid 

Lysine 
Histidine 
Arginine 
Aspartic Acid 
Threonine 
Serine 
Glutamic Acid 
Pro line 
Glycine 
Alanine 
Half Cystine 
Valine 
Methionine 
Isoleucine 
Leuci ne 
Tyrosine 
Phen.)'.'.lalanine 
Total 

Carbohydrate (mg/100 mg) 

Recovery 

µmoles 

0.2985 
0.08369 
0.08949 
0.3801 
0.1578 
0.2693 
0.4765 
0.2064 
0.1911 
0.2333 
0.1343 
0 .1927 
0.4738 
0.2427 
0.2252 

TABLE III 

AMINO ACID ANALYSIS OF RAT a-LACTALBUMIN 
ISOLATED FROM RAT MILK 

µmole 
100 mg Mg/100 mg Residues/1000 

62.55 8.019 86.10 
17.54 2.406 24.1 
18.73 2.926 25.86 
79.65 9.168 .109. 7 
33.06 3.342 45.5 
56.43 4.915 77 .7 
99.85 12.891 137.5 
43.25 4.200 59.5 . 
40.04 2.286 55.1 
4-8. 88 3.475 67.3 
28.14 2.904 38.7 
40.38 4.002 55.6 
9.928 1.303 13 .6 

50.85 5.756 70.0 
47.19 5.342 65.0 

o. 09172. 19.22 3.137 26.4 
0.1443 30.23 4.450 41.6 

80.522 

10.61 

91.132 % 

Minimum 
Molecular 
Weight 

769.2 
274.40 
312.40 
808.8 
310.10 
609. 7 

.1291.00 
388.40 
228.40 
355 .50 
309 .60 
396.40 
131.2 
566.2 
566.2 
326.40 
441.60 

8085. 50 

48 hour hydrolysis of rat a-lactalbumin. Each determination represents an average of duplicate 
analysis. 

Minimum 
Number of 
Residues 

6 
2 
2 
8 
3 
6 

10 
4 
4 
5 
3 
4 
1 
5 
5 
2 
3 
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Carbohydrate Analysis 

The total neutral sugars of rat a-lactalbumin were determined by the 

procedure described by Roe (771. Free sialic acid content of rat a-lac

talbumin was determined by the thiobarbituric assay method of Warren (80). 

Neutral sugars and hexosamines were determined after being released from 

the protein by hydrolysis in 1 and 2 sulfuric acid for 4 hours in sealed 

tubes. The hydrolysate was passed first over a column of Dowex 50- x 

4(H+}(200-400 mesh) as described by Spiro (78}. Neutral sugars in the 

effluent were determined by the method described by Lee e_i a]_. (79}. 

The results of the carbohydrate analysis are shown in Table III. 

Spectroscopic Studies of a-Lactalbumin 

Isolated from Rat Milk 

The rat a-lactalbumin used for spectroscopic studies was obtained 

from isolation Scheme VI. The results of ultraviolet circular dichroism 

studies of both the near and far ultraviolet spectra of rat a-lactalbumin 

are shown in Figures 29 and 30 respectively. The present a-helic of rat 

a-lactalbumin calculated by the method of Chen and Yang (74) at 221 nm 

was 12.36 %. An ultraviolet scan of rat a-lactalbumin from 290 nm to 

320 nm is shown in Figure 31. An extinction coefficient for rat a-lac

talbumin was determined and the l % E280 was 16.24. 

Quantitation of a-Lactalbumin 

Isolated from Rat Milk 

The yield of a-lactalbumin isolated from rat milk utilizing Scheme VI 

was calculated. The yield of rat a-lactalbumin was based on the initial 

volume of whole rat milk and the a-lactalbumin recovered off the last 



TABLE IV 

CARBOHYDRATE DETERMINATION OF RAT a-LACTALBUMIN 

% of 
moles moles mg of a-Lac-

Hexose moles Corrected moles Correct~_d_ Average Carbohydrate talbumin 

Man nose .0593 0.0599 0.0646 0.672 0.0635 0.0103 2.16 

Fucose .0173 0.0174 0.0136 0 .0141 0.0159 0.00232 0.49 

Galactose .0708 0.0715 0.0675 0.0702 0.0708 0.0115 2.40 

Glucose .0228 0.0231 0.0157 0.0160 0.0197 0.00319 0.67 

Total Hexose 5.72 

Total Sialic Acid 4.89 

Total Carbohydrate (%) 10.61 % 

*Total hexose of protein determined by anthrone (77) (6.89) 
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Figure 29. Near Ultraviolet Circular Dichroism Spectrum of Rat a-Lac
talbumin. 

Ultraviolet circular dichroism spectrum from 35a nm to 247.5 nm (near 
spectrum} of rat a-lactalbumin from isolation Scheme VI. a.463 mg 
of rat a-lactalbumin was placed in 2a mM Tris and 1ao mM KCl, pH 7.5. 
The scan was run using a 2 mm pathlength with a range of a.a5 at a 
scanning r~te of 0.2 nm/second. 
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Figure 30. Far Ultraviolet Circular Dichroism Spectrum Scanned from 250 
nm to 200 nm of Rat a-Lactalbumin. 

Ultraviolet circular dichroism spectrum scanned from 250 nm to 200 nm 
(far spectrum) of rat a-lacta1bumin from isolation Scheme VI. 0.-2315 
mg of rat a-lactalbumin was placed in 20 mM Tris and 100 mM KCl, pH 
J.5. The scan was run utilizing a 1 nm pathlength with a range of 0.5 
at a scanning rat of 0.2 nm/second. 
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Figure 31. Ultraviolet Spectrum of Rat a-Lactalbumin. 

An ultraviolet scan of rat a-lactalbumin isolated from rat milk 
utilizing Scheme VI. 0.541 mg was placed in one ml of 20 mM 
Tris and 100 mM KCl, pH 7.5. 



rat milk contained low amounts of water obtained during the milking 

process. Approximately· 0.94 mg of pure rat a.-lactalbumin was obtained 

per ml of whole rat milk. 

Molecular Height Determinations of Rat a.-Lactalbumin 

73 

The molecular weight of rat a-lactalbumin was determined on 10 per

cent sodium dodecyl sulfate acrylamide gels. The rat a-lactalbumin was 

isolated utilizing Scheme VI. The procedure used was outlined in the 

experimental section. Both a 25 µg and 50 µg sample of rat a.-lactalbu

min was used· to determine its molecular weight. The a.-lactalbumin 

marked at 25,500 and 26,000, giving an average molecular weight of 

25,750. 

The molecular weight of rat a.-lactalbumin was also determined by 

gel filtration using a 2.0 x 90 cm Bio-Gel A0.5m. The procedure used is 

outlined in the experimental section. The molecular weight of the rat 

a.-lactalbumin was determined to be 28,500 by gel filt'ration. 
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Figure 32. Molecular Weight Standardization Curve of Rat a.-Lactalbumin 
in Sodium Dodecyl Sulfate Acrylamide Gels. 

A protein standardization curve for sodium dodecyl sulfate acrylamide gels 
of rat a.-lactalbumin. The standards proteins were: 1, bovine serum 
albumin; 2, catalase; 3, y-globulin; 4, ovalbumin; 5, glyceraldehyde 
dehydrogenase; 6, myoglobin; 7, bovine a.-lactalbumin. Duplicate samples 
of rat a.-lactalbumin; 8, were run, 25 and 50 µg of protein respec
tively. Ten µg of each standard protein was used. 
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Figure 33. Molecular Weight Determination of Rat a.-Lactalbumin. 

A Bio-Gel 0.5 m agarose (2 cm x 90 cm) column was equilibrated 
and eluted with 20 mM Tris, 100 mM KCl, 0.02 percent sodium 
azide at pH 7.5. 1.5 ml fractions were collected. The stand
ard proteins were: 1, serum albumin (5mg}; 2, ovalbumin (5mg); 
3, S;..lactoglobulin (5mg}; 4, myoglobin (5mg). Blue dextran 
with ten percent sucrose was used with the standard proteins 
for determination of the void volume. The rat a.-lactalbumin 
(5) was placed on the column separately and run as an individual 
experiment. 



CHAPTER IV 

DISCUSSION AND SUMMARY 

Caseins from whole rat milk could be removed by either centrifuga

tion or acid precipitation (Figure 4), and material obtained by both 

methods gave identical elution profiles on a Bio-Gel P-60 column (Figure 

91. However, the centrifugation method is preferred because it does not 

involve a drastic pH change, though there was no evidence in this study 

to indicate differences in a.-lactalbumin due to isolation method. Rat 

a.-lactalbumin did not separate from the larger protein on a Bio-Gel P-30 

column as does bovine and all other a.-lactalbumin known to date. These 

results suggested that rat a.-lactalbumin may have different properties or 

a different molecular weight than other a.-lactalbumins. Therefore, a 

different isolation scheme was necessary to obtain highly purified a.-lac

talbumin from rat milk. The column of choice was a Bio-Gel P-150 column 

equilibrated and eluted with 20 mM Tris, 100 mM KCl, at pH 7.5 (Figure 22). 

This procedure was particularly useful in separating a protein with a mo

lecular weight of 68,000, and this protein is most likely rat serum albu

min (81). It was also noted that the galactosyltransferase in rat milk 

eluted ahead of this protein on the P-150 column indicating a molecular 

weight greater than 68,000. Another protein chromatographed on the P-150 

column near that of rat a.-lactalbumin activity peak. On sodium dodecyl 

sulfate electrophoresis this protein had a molecular weight of 18,000, 

but it did not have any a.-lactalbumin activity. 
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A Whatman DEAE 32 column separated the 18,000 molecular weight pro

tein from the rat a-lactalbumin. However, an additional P-150 column 

was needed to completely remove the remainder of the 68,000 molecular 

weight protein which usually was 2 percent of the total a-lactalbumin 

after chromatography on DEAE 32. 

The material off the DEAE 32 column gave a positive Schiff-Periodate 

(Figure 21), indicating it contained carbohydrate. This observation was 

unique since the only carbohydrate reported in a-lactalbumin to date was 

glyco-a-lactalbumin found to a small extent in bovine milk (44). Fur

ther carbohydrate analysis was done on rat a-lactalbumin isolated by 

Scheme V utilizing the auto-technicon to determine free hexoses (78), 

the anthrone assay (77) to determine total hexoses on the intact protein, 

and the thiobartituric assay {_80} to determine the free sialic acid. 

The total free hexose was 5.72 %. Mannose, frucose, galactose, and glu

cose, comprised 2.16 %, 0.49 %, 2.40 %, and 0.67 % respectively of the 

total hexose content of rat a-lactalbumin. The total hexose by the an

throne assay was 6.89 % in the intact protein. The sialic acid content 

was 4.89 %. The total carbohydrate content of rat a-lactalbumin was 

J0.61 % based on free hexose and sialicacid content. 

Rat a-lactalbumin isolated by Scheme Von the DEAE 32 column utili

zed a steeper gradient {_Figure 16) than the rat a-lactalbumin isolated 

on the DEAE 32 column in Scheme VI (Figure 23). However, the DEAE 32 

column utilized in Scheme V did show an unsymmetrical a-lactalbumin 

activity which coincided with the A280 profile. This indicated the 

possibility of multiple forms of a-lactalbumin which was verified by 

Scheme VI. Four a-lactalbumin activity peaks were observed. Electro

phoresis of this a-lactalbumin on 7 % polyacrylamide gels yielded 3 
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active bands, whereas electrophoresis of 12 % polyacrylamide disc gels 

yielded 4 bands. On 10 percent polyacrylamide sodium dodecyl sulfate 

gels (Figure 26) the rat a-lactalbumin isolated by Scheme VI migrated as 

one band. It also should be noted that the a-lactalbumin active peak 

off the DEAE 32 column had a symmetrical A280 profile while the a-lactal

bumin activity was unsymmetrical. This was probably due to the inability 

of the DEAE cellulose to resolve completely the charge forms. By varying 

the percent acrylamide of the disc gels by the method of Hedrick and 

Smith (69), it was ascertained that all four bands gave parallel lines 

on varying the percent of acryl amide (Figure 27) i ndi ca ting that they 

were charge isomers. Upon cutting the bands out of a 12 % disc gel and 

assaying the extracted slices for a-lactalbumin activity (Figure 28} all 

four bands were found to be active. Therefore, it was concluded that 

all four bands observed on twelve percent polyacrylamide disc gels were 

charge forms of a-lactalbumin. The charge forms could be due to varying 

amounts of sialic acid content or differences in amino acid composition. 

Circular dichroism experiments were performed on the rat a-lactal

bumin and the results are shown in Figures 29 and 30. The near ultra

violet spectra (250 nm to 340 nm) of rat a-lactalbumin (Figure 29) is 

almost identical to the near ultraviolet spectra of bovine a-lactalbumin 

(82). The far ultraviolet spectra (200 nm to 250 nm) of rat a-lactal

bumin (Figure 30) is slightly different from the far ultraviolet spectra 

of bovine a-lactalbumin (82) in the region of 210 to 221 nm. This dif

ference at 221 nm is reflective of the percent a-helix. The percent 

a-helix calculated by the method of Chen and Yang (74) at 221 nm was 

found to be 12.4 % in rat a-lactalbumin as compared to 40 % in bovine 

a-lactalbumin (29, 30). These results indicate that rat a-lactalbumin 
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may be different than the tightly folded globular bovine a-lactalbumin. 

However, it is realized that calculation of a-helical content from cir-

cular dichroism measurements is at times uncertain. 

The ultraviolet spectrum of rat a-lactalbumin is shown in Figure 31. 

It should be noted that the spectrum shows a pronounced shoulder at 290 

nm which is characteristic of an exposed tryptophanyl residue, as found 

in goat, sheep~ pig, guinea pig, human and bovine a-lactalbumin (6). 

E~~O of rat a-lactalbumin was determined to be 16.24 which is similar to 

other a-lactalbumins. 

The amino acid composition reported by Schmidt (8) was used to com

pare goat, sheep, pig, bovine and human (caucasian) a-lactalbumins to 

the amino acid composition of rat a-lactalbumin. The amino acid compo-

sition of rat a-lactalbumin is difficult to compare to other a-lactal

bumins because the molecular weight of rat a-lactalbumin is considerably 

higher than the molecular weights of other a-lactalbumins. The amino 

acid composition of rat a-lactalbumin was compared to a composite a-lac

talbumin amino acid composition obtained by averaging the residues/1000 

residues of goat, human (caucasian), pig, sheep, and bovine a-lactalbu

mi ns (TABLE V). Rat a-1acta1 bumi n has a higher basic amino acid compo

sition (arginine, lysine and histidine) than found in the composite 

a-lactalbumin. Rat a-lactalbumin contains 85.1 lysine residues/1000 

residues, 23.8 histidine residues/1000 residues and 25.8 arginine resi

dues/1000 residues compared to 87.9 lysine residues/1000 residues, 16.8 

histidine residues/1000 residues and 8.5 arginine residues/1000 residues. 

Rat a-lactalbumin contains more hydrophobic amino acids (praline, ala

nine, valine, leucine, isoleucine, phenylalanine and methionine) than 

found in composite a-lactalbumin. Rat a-lactalbumin contains 56.5 pro-
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line residues/1000 residues, 66.8 alanine residues/1000 residues, 52.0 

valine residues/1000 residues 65.2 leucine/residues/1000 residues, 67.2 

isoleucine residues/1000 residues, 40.9 phenylalanine residues/1000 re

sidues and -13.9 methionine residues/1000 residues as compared to 22.0 

praline residues/1000 residues, 35.8 residues/1000 residues, 30.3 valine 

residues/1000 residues, 98.1 leucine residues/1000 residues, 67.6 iso

leucine residues/1000 residues, 27.0 phenylalanine residues/1000 resi

dues and 10.1 methionine residues/1000 residues found iri the composite 

a-lactalbumin. The high praline content may account for the low per

centage of a-helix in rat a-lactalbumin (12.4 %) as compared to 40 % 

found in bovine a-lactalbumin. Rat a-lactalbumin has slightly less 

acidic amino acids than composite a-lactalbumin. Rat a-lactalbumin con

tains 113.3 aspartic acid residues/1000 residues and 135.8 glutamic acid 

residues/1000 residues compared to 152.0 aspartic acid residues/1000 

residues and 103.2 glutamic acid residues/1000 residues, found in com

posite a-lactalbumin. Rat a-lactalbumin contains more serine than com

posite a-lactalbumin, but approximately the same number of threonine 

residues as found in composite a-lactalbumin. Rat a-lactalbumin con

tains 82.6 serine residues/1000 residues and 48.0 threonine residues/ 

1000 residues compared to 47.3 serine residues/1000 and 47.3 threonine 

residues/1000 residues found in composite a-lactalbumin. The tyrosine 

content of both rat a-lactalbumin and composite a-lactalbumin are appro

ximately equal. Composite a-1actalbumins contains 27.0 tyrosine resi

dues/1000 residues compared to 27.1 tyrosine residues/1000 residues 

found in composite a-lactalbumin. Composite a-lactalbumin has higher 

half cystine content than found in rat a-lactalbumin. Composite a-lac

talbumin contains 67.8 half cystine residues/1000 residues compared to 



40.6 half cystine residues/1000 residues found in rat a-lactalbumin. 

The recovery from the 24 hour hydrolysis was good (9-4.95 %) while the 

48 furnr hydrolysis gave fair recovery (g1.13 %). 

The molecular weight of rat a-lactalbumin isolated from Scheme VI 

was 26,000 as determined by sodium dodecyl sulfate electrophoresis 

(figure 32}.. One gel filtration using 0.5 m agarose, the molecular 

weight was determined to be 28,500 (Figure 33}. From amino acid analy

sis (allowing for 93.04 % recovery} and carbohydrate analysis (10.61 % 

total carbohydrate} the molecular weight was calculated to be 28,965. 

It is apparent from the amino acid analysis, mo1ecular weight 

determinations, and circular dichroism studies that rat a-lactalbumin 

has a different molecular weight, composition and structure and has 

properties that differ from other a-lactalbumins (goat, pig, sheep, 

human and bovine). 
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Amino Acid 

Lysine 
Histidine 
Arginine 
Aspartic Acid 
Threonine 
Serine 
Glutamic Acid 
Prol ine 
Glycine 
Alanine 
Half Cystine 
Valine 
Methionine 
Isoleucine 
Leucine 
Tyrosine 
Phenylalanine 

TABLE V 

AMINO ACID COMPARISON BETWEEN RAT o:-LACTALBUMIN AND GOAT, 
PIG, SHEEP, HUMAN (CAUCASIAN) AND BOVINE 

a-LACTALBUMIN 

*Rat o:-Lactalbumin 
Residues/1000 Residues 

85.1 
23.8 
25.8 

113.3 
48.0 
82.6 

135.8 
56.5 
54.9 
66.85 
40.6 
52.0 
13.9 
67.2 
65.2 
27.1 
40.9 

**Composite 
a-Lactal bumi n 

87.9 
16.8 
8.5 

152.0 
47.3 
47.3 

103.2 
22.0 
42.2 
35.8 
67.8 
30.3 
10.1 
67.6 
98.1 
27.0 
27.0 

Range 

75.0 - 97.6 
8.6 - 24.4 
8.1 - 9.0 

120.7 - 170.3 
41.3 - 56 .9 
33.1 - 56.9 

105.7 - 112.1 
18.0 - 25.9 
33.1 - 48.8 
24.4 - 45.0 
66.1 - 72.0 
8.6 - 41.3 

0 - 25 .o 
54.0 - 86.2 
83 .3 - 105. 7 
24.8 - 32.5 
24.8 - 32.5 

*Represents an average of the 24 hour and 48 hour hydrolysates (not including tryptophan). 

**Represents an average of residues/1000 residues for sheep, pig, goat, human (caucasian} and 
bovine a-lactalbumin (including tryptophan}. 
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