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CHAPTER I 

INTRO DUCT ION 

Recently, the use of ESR and nitroxide-bearing spin labels has 

found wide applicability in examination of biological systems. While 

this method of examination is still essentially in its infancy, there 

are several excellent reviews of the area (l-10). The phenomemon of 

ESR is based upon the following fundamental properties of the electron: 

l . Mass. 

2. Charge. 

3. Spin or intrinsic angular momentum. 

When an electron is introduced into a uniform magnetic field of strength 

H, the electron magnetic dipole produced by the spinning of the electron 

will precess about the axis of the field (Larmour precession). This pre-

cession has a finite frequency, omega, given by 

w = yH ( 1) 

where y is the gyromagnetic ratio of the dipole, or more specifically, 

the ratio of the magnetic moment to the angular momentum. The magnetic 

energy of this interaction, E, is given by 

E = µs H cose (2) 

where µs is the magnetic dipole, H is the external field, and e is the 

angle between the axis of the dipole and the field. Since an electron 
1 possesses a spin, S, of 2 there can be only two values of e. These 

angles are 35° 15 11 and 144° 45 11 (11). If one has two electrons 

1 
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spinning in the same orbit, according to the Pauli exclusion principle, 

the spins would be opposed, and therefore the magnetic moments will 

cancel one another out. In the case of a free radical, which is de

fined in general for spectroscopic examination as a species containing 

a net spin, there can be two degenerate energy levels of +i and -i . 
When a magnetic field is applied, these energy levels are split into 

Zeeman lines with two energy states. The higher energy state is that in 

which the electron has aligned itself antiparallel to the field and has 

an energy given by -geSH, where ge is the g-matrix (discussed later) 

for a single electron, and has a value of 2.0023, s is the Bohr magneton 

and H is the applied field strength in Gauss. 

The relationship between magnetic field, H, and required frequen-

cy, v, for a given resonance condition is: 

where ~E is the difference in energy levels, and v is the frequency of 

incident radiation. During an ESR experiment, microwave energy is 

absorbed by the sample. Many factors influence the character of the 

absorption giving detail to the spectrum recorded. The absorption is 

basically due to electrons contained within the sample, and the most 

simple sample which could be considered is an infinite potential well 

1t1hich encloses an electron. However, a macroscopically detectable 

absorption could occur only if many electrons were considered. In 

order to achieve this, the macroscopic sample could be considered to 

be composed of many such potential wells. Each of the electronic 

charges has an internal motion similar to the rotation of a macroscopic 



body about some axis; this motion is the basis for the energy absorp-

ti on. 

If a magnet is exposed to a magnetic field with magnetic induc

tion R, its energy can be described through the magnetic momentµ 

associated with it. If the energy of the interaction is W, then 
-+ -+ 

W = -µ • H (4) 

and the energy varies with the orientation of the magnet with respect 
-+ 

to the field H. Indeed, this may be related to anisotropic motion 

within a molecule (orientation dependent) in that the magnitude of the 

induced field depends on the orientation of the molecule itself with 

respect to the applied field. 

The magnetic moment of a charged rotating body is proportional to 

its rotational angular momentum A: 
-+ -+ 
µ = yA ( 5) 

where y is again the gyromagnetic ratio. Equation (4) can be combined 

with Equation (5) using some rules of quantum mechanics for free elec-
-+ 

trons. In quantum mechanics, angular momentum A is expressed in units 

3 

of Planck 1 s constant hover 2TI, designated as n, which has a value of 

1.05 x lo-34 Joule-sec. Magnetic moment is expressed in units of the 

Bohr magneton, s, which has a value of 9.27 x lo-28 Joule/Gauss. Also, 

a free electron is known to assume only two orientations in a magnetic 

field, as previously indicated; therefore: 

-+ -+ l 
A·H=+-1'1H -2 

The gyromagnetic ratio can be expressed in terms of S and~ as 

where ge is dimensionless in the case of a free electron, and has a 

(6) 

(7) 



measured value of 2.00232. The energy can now be written as 

g SH 
W = + e (8) 

2 

When the energy of the incident microwave photons is equal to the 

difference in energy between the two orientations, the magnetic field 

component of the photon can induce a change in the spin orientation. 

In the process the photon is either absorbed, as in the transition 

from low to high energy, or it stimulates the emission of a second 

photon, as in the transition from high to low energy. The energy of 

the incident photons of frequency v is hv, and the separation in elec

tron energy levels is ge sH. Therefore, free electrons can interact 

with the microwave radiation field when the equation 

is satisfied. 

4 

Real samples differ in many important ways from a collection of 

electrons in potential wells (12-14). First, one must consider pairing 

of electrons. Electrons in atoms and molecules occupy specific spatial 

regions called orbitals. These orbitals are probably more accurately 

described as probability distributions describing where the electron is 

most probably found with respect to a given nucleus. The Pauli exclu-

sion principle, as mentioned before, restricts the number of electrons 

in an orbital to no more than two with opposing spins. This results 

in no net magnetic moment for the pair, and they cannot interact with 

the microwave field. Due to the fact that most, if not all, electrons 

in a sample are paired, only a small fraction of them contribute to 

the energy of the absorption as outlined above. 



Another consideration is power saturation ~nd relaxation times 

(15). Power absorption stops when the two energy levels, separated by 

the action of the magnetic field become equally populated. In this 

case, since the populations of the two states are equal, just as many 

photons will interact with low energy unpaired electrons and be ab

sorbed as interact with high energy electrons and stimulate emission 

of a new photon of the same energy, and no net photons will be absorb

ed. In this case, the sample is said to be power saturated. 

A natural difference in population exists for samples with un-

paired electrons. Such 11 paramagnetic 11 samples have the unpaired elec-

trans distributed as follows: 

+ -
[w - w ] 

e KT (9) 

5 

where N is the number of unpaired electrons in the lower energy level 

and N+ is the number of unpaired electrons in the higher energy level, 

w~ is the energy value, K is the Boltzmann constant, and T is the abso-

lute temperature. 

If this distribution is momentarily disturbed, there is a tendency 

for it to be restored, since the electrons tend to interact with their 

surroundings. It is through the forces of this interaction that the 

energy absorbed by the electrons from the microwave field is dissi-

pated, allowing a continuous absorption of energy by the sample. How

ever, if these forces are weak and the incident power intense, then 

the population difference tends to zero, and the sample is sai~ to be 

power saturated. Partial saturation can occur, and in this case, the 

population difference is smaller than normal at that temperature, and 

the absorption of power is less intense. 



The ESR spectrum of many samples shows a dependence on molecular 

orientation with respect to the applied magnetic field (16). If the 

energy level separation of two spin states is designated by means of 

a 11 g-factor 11 as was done for a free electron, it would be found that 

this effective g-factor would be given by: 

hv 
geff = SHr ( 10) 

6 

where Hr is the field at which the resonance is observed to occur and 

is dependent on the orientation of the molecule absorbing the microwave 

photon, and as a result, no single g-factor could be assigned as 

characteristic of the molecule. 

In order to find something which is characteristic of the mole

cule, the local field at the absorbing electron must be considered. 

As before, the energy W can be written: 

-+ -+ 
W = -µ • H ( 11) 

-+ 
However, in a real sample, H is often not the applied external field 
-+ 
Ha. The orbital in which the electron travels can contain some orbit-

al angular momentum, and due to its motion about the charged nuclear 

core, the electron feels an additional magnetic force. The actual 

field at the electron still depends on the applied field, but only 

through a transformation matrix [T 1] as : 

-+ -+ 
H = [T1J Ha ( 12) 

-+ 
Now if the electron spin angular momentum A is written as 

-+ -+ 
A = S h ( 13) 

the energy levels can be written as 

( 14) 



since µ and H are known from Equations (4), (5) and (12). It is 

customary to drop the 11 applied 11 no ta ti on on the magnetic field, and 

combine -ge and [T1J to obtain what is called the 11 g-tensor 11 ; g: 

[g] = -ge [T1J (15) 

With these modifications, the energy level becomes: 

-7- -7-w = SS • [g] • H ( 16) 

and the quantum mechanical "spin-Hamiltonian" can be written: 

-7- -+ 
Ji = ss0 P • [g] • H ( 17) 

by making the formal substitution: 

-7- -7- -7-

s + s0 P (18) 

The g-tensor can be simplified by a suitable choice of coordi-

nates. If an arbitrary set of axes is defined for a molecule, and all 

the nine components found by means of an ESR experiment, the g-tensor 

would be symmetric. This symmetric tensor can be diagonalized by a 

transformation of axes. The spin Hamiltonian with the g-tensor in 

diagonal form is: 

gxx 0 0 Hx 

H = s(Sxop syop szop) o gyy o HY ( 19) 

0 0 gzz Hz 

The g-factor observed at a particular angle of applied H can be 

found if the three components of the diagonalized g-tensor are known. 

This is done by writing H in terms of its direction cosines relative 

to the diagonalization axes: 

-7- A 

H = H cos a x + H cos S y + H cos y z (20) 

7 



Now the energy levels are written: 

+ 2 2 2 2 2 2 2 2 2 l A 

W = B S • [H cos a gxx + H cos B gyy + H cos y gzz]~ H 

and since: 

* + 1 
~ • H = + --2 

the measured energy separation is: 

AE H [ 2 2 + 2 2 + 2 2 ]~ 
u = B cos a gxx cos B gyy cos y gzz 

and the effective g-factor is defined as: 

geff = [cos2a g~x + cos2s g~y + cos2y g~z]~ 

(21) 

(22) 

(23) 

(24) 

The spin Hamiltonian for the system may be related to the g-factor as 

follows: 

Ji.= Isl S g H + S T I + [Elec~ron-Electron] 
Dipole Term 

+ [Electron-Electron] 
Exchange Terms (25) 

A 

where g is the g-matrix, H is the laboratory magnetic field, S is the 
A 

8 

electron spin operator, T is the hyperfine matrix, and I is the nuclear 

spin operator. 

The hyperfine matrix encompasses the effect of the magnetic moment 

of the nucleus at the electron. The labels employed in this study show 

the effect of the 14N nucleus. The 14N nucleus has three possible spin 

states; that is, the nuclear magnetic field can add to, subtract from, 

or fail to modify the applied magnetic field. Any sample will contain 

approximately equal numbers of the label molecule in the three differ

ent states, and the result will be three lines in the spectrum instead 

of one. In addition, this effect depends on the orientation of the 



applied field relative to the label molecule. The separation between 

the three equally spaced lines will vary depending upon molecular ori-

9 

entation. This orientation-dependence, as in the case of the g-factor, 

can be completely specified by a 3 x 3 matrix, which can be diagonal

ized by choice of the proper coordinate system for the expression of 

H, the applied magnetic field. The spin Hamiltonian with hyperfine 

interaction included takes the form: 

A A 

-+ +-+-+-+ "'=;:7-1 Jl=sS·g·H+S· 1 • (26) 
-+ 

where I is the nuclear spin operator. In the case of the nitroxide 

spin labels, it also happens that the principle coordinate system that 

diagonalizes g also diagonalizes T. These axes can be determined ex-

perimentally because they relate directly to maximum and minimum 

splittings, as in the case of the g-factor. 

The ESR spectra of free radicals depends upon the rate of tumbling, 

and this is also true for the nitroxide radical (10, 17-19). Examples 

of different types of nitroxide radicals which have been used as labels 

in various synthetic bilayer preparations (20-25) as well as in several 

types of biological membranes (26-31) are given in Figure 1. The line 

widths of a given ESR spectrum are a measure of anisotropies of the 

hyperfine interaction and g-factor, and these are increasingly averaged 

out as the solvent system decreases in viscosity. This phenomenon has 

been extensively studied for 14N (2, 25, 17, 32). The nitroxide 

radical in water shows three distinctly separated lines, appearing 

equidistant from each other. As the viscosity of the solvent increases, 

the peak to peak separation of these lines increases, and there is line 

broadening with concomitant alteration in the peak intensities. The 

types of information which we may be able to glean from the introduction 



Figure 1. Types of Nitroxide Spin Labels Used in 
Studies of Biomembranes 
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of a nitroxide label into a biological membrane are as follows: 

l. Since the electron spin resonance spectra are sensitive to 

the rate at which the label is able to reorient, the degree of mobil

ity permitted by the immediate environment may be evaluated. 

2. The g-factor and hyperfine splitting vary with the polarity 

of the solvent; therefore we may examine the polarity of the label 

environment. 

3. Since the area under the absorption response is proportional 

to the total number of unpaired spins in the samples, assuming no 

saturation is taking place, one can theoretically quantitate the 

amount of probe present in the samples. 

So, by following the changes of the ESR spectrum of the free radical 

in the free and bound states, we can deduce information about the en-

vironment close to the binding site. 

Nitroxides are stable, relatively inert, and give sharp, well 

resolved spectra, sensitive to the molecular environment. They have 

the general form: 

in which there is an odd electron, localized almost entirely on the 

-N-0 group and exhibiting magnetic hyperfine interaction, containing 

both isotropic and anisotropic components, with the nitrogen nucleus. 

If the nitroxide radical is present in low concentrations in aqueous 

or nonviscous solvent, the spectrum observed is three equally spaced 

lines of approximately equal height. This is due to the fact that 

the nitrogen nucleus can also be aligned parallel, antiparallel, or 

12 
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perpendicular to the laboratory magnetic field. The electron then ex

periences the sum of the external field and three different local mag

netic field values from the nitrogen nucleus, and each of these latter 

field values gives rise to a line in the absorption spectrum. As shown 

below, the spectra are exhibited as first derivatives of the absorption 

spectrum instead of Lorentzian lines (16). 

The spectrum of a labeled sample includes the effects of label mo

tion and random orientation of these rapidly moving labels. Fig. 2a 

shows the general outline of an absorption spectrum of a sample with 

various label orientations. The spectrum is the result of superimpos

ing the lines of the three-line spectra (Fig. 2b) for each of the 

orientations present. For certain molecular orientations, the split

ting is maximum, and only this orientation will contribute to the 

extreme high and low field portions of the spectrum. This separation 

often called T11 , can be obtained by a measure of the overall spectrum 

width. Most often the spectrum is recorded as the approximate first 

derivative of the absorption as shown in Fig. 2c, and in this case, we 

would measure T11 as shown in Fig. 3. 

In a similar fashion, the separation marked as T1 can be attri

buted to those molecules oriented so that a minimum splitting results. 

The rationale for this choice as well as the choice for the T11 mea

surement can be seen by comparison of the first derivative curve, 

Fig. 2c, with the absorption curve, Fig. 2a. 

There are several parameters which may be used to interpret 

changes in biological membranes as monitored by spin-label techniques. 

In our experiments we have measured the change in field separation 

·between high and low fields which corresponds to 2T 11 and T1 (Fig. 3), 



(a) Idealized absorption spectrum 

(b) First derivative presentation of the spectrum (a) 

(c) Absorption spectrum of maleimide label in 310 mOsM, phosphate, 
pH 7.4 

(d) Maleimide label in 310 mOsM phosphate buffer, 'pH 7.4, ambient 
temperature, first derivative presentation 

Figure 2. Types of Spectral Representations 
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both of which are components of the motionally averaged hyperfine ten-

sor of nitrogen. As the viscosity of the environment increases and 

approaches a rigid glass spectrum, the field separation, or 2Tl 1, in

creases. There is a shift in the splitting of the lines and line 

broadening, as shown by increases in Tl· These spectral parameters 

characterize the rigidity with which the label is held. Changes in 

T1 l and Tj_ also indicate a change in the extent of the partial motional 

averaging in a given sample. McConnell (16) has related changes in 

T1j to the mean angular deviation of the hydrocarbon chain in the 

vicinity of the nitroxide label from the axis of symmetry of the rota

tion of the chain. For lipid hydrocarbon chains, this is simply a 

measure of the average angular deviation of the molecular axis from 

the principal axis, perpendicular to the membrane at the nth methylene 

on the chain. The more rigid the environment, the more restricted the 

fatty acid chain becomes and, therefore, the smaller the mean angular 

deviation. This is of particular significance when dealing with 

stearic acid spin labels in which the nitroxide group is rigidly bound 

to the stearic acid chain through a spirane linkage. The nitroxide 

group then accurately reflects the motion of the hydrocarbon chain. 

The equation expressing the relationship between this angle, e, and 

2 Ti) - Tl 
<cos 8> = (T _ T ) 

II 1 
(27) 

where T11 and T.l refer to the hyperfine tensor parameters measured 

for the same nitroxide label fixed in a rigid crystal structure, and 

T1 l is the effective parallel hyperfine component resulting from motion

al averaging. The values used for T.l and T 11 are taken from Mcconnell 
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et al. (16), as applied by Butterfield et al. (33). These values are 

based on measurements on cholestane label in a cholesterol chloride 

crystal. 

Order within the membrane is also often characterized by the 

order parameters, S, which may be defined in terms of the mean angular 

deviation as follows: 

S =} (3<cos28> - 1) (28) 

S can also be expressed directly in terms of Tl and Tl 1: 

T111 - T1 a 
s = ( i-) ( ~~l) 

Tl I - l n 
(29) 

where the factor (anxl/a~) is a solvent polarity correction employed 

when the parameters are measured under differing polarity conditions. 

In this case, a~xl is the coupling constant for the label in a crystal, 

and a~ is the coupling constant for the label in the sample. Being 

directly dependent upon the square of the cosine of the mean angular 

deviation, the order parameter also changes with alteration of the 

viscosity of the medium. In short, S is found to decrease as a direct 

consequence of decreases in <cos2>. By definition, S is bounded between 

1, for a completely ordered label (stationary), and 0 for a label under-

going rapid isotropic motion. 

Since the extreme high and low field region of the spectrum is en-

hanced during limited motion and the center region is enhanced during 

more isotropic motion, relative peak intensities of these two regions 

can be used to quantitate changes in molecular motion. Verma, et al. 

(34) have used this method in the examination of the effects of melittin 

on the erythrocyte membrane. The peaks are labelled in Fig. 3. As the 



Figure 3. Typical Spectra of Labeled Erythrocytes 
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ratio of b/c approaches 1, there is a perfect ordering of the long axis 

of the probe with respect to the membrane. A decrease in the intensity 

of b, then, indicates a disordering of the long axis and a decrease in 

the ratio, with an increase in mobility. 

The anisotropic N14 hyperfine coupling constant, a~, may be cal

culated from measurements of 2Tll and 2Ti by the equation: 

an= 1 (2Ti + T1 1) (30) 

This coupling constant shows a small dependence on the polarity of the 

solvent, ranging from 14.l Gauss in hexane to 15.l in water (33). It 

follows that it will also show a dependence on the polarity of the en

vironment of the nitroxide in the membrane. 

The existence in many, if not all, membrane systems of a bilayer 

(35-42) has been demonstrated by comparison of spectra from biological 

membrane systems with those from synthetic systems. The fluidities of 

these bilayer regions differ significantly, with the erythrocyte mem

brane being less rigid than viral membranes, and more rigid than nerve 

cell membranes (30, 36, 39). In general, lipid labels are more useful 

in examining polarity within the bilayer, and are more easily incor

porated. Interpretive problems may arise due to the fact that spin

labeled hydrocarbons may be sterically unable to participate in normal 

lipid-protein interactions and might be sterically excluded from high

ly ordered regions of the membrane. Evidence against this is the bio

synthetic incorporation of these labels into mitochondria of Neurospora 

crassa (43), mycoplasma (41), and transformed cells (44). 

Phospholipids and cholesterol are essential to structure and func

tion of biological membranes. The variation from cell to cell in 
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proportions of these and other membrane components, as well as variation 

in fatty acid chains on phospholipids may dictate functional properties 

such as permeability of a given membrane. Cholesterol and water affect 

the rigidity and order of phosphatidyl choline bilayers in opposite 

directions. Cholesterol increases orientation and decreases the fluid

ity of the membrane up to a certain point, while water will disorient 

an ESR spin label and seems to decrease the thickness of the bilayer 

(22, 23). Insertion of protein into a synthetic phospholipid bilayer 

causes an increase in the order parameter of phospholipids (40, 41, 

45), or a decrease in the fluidity. 

It has also been demonstrated that on a phosphatidylcholine (PC) 

and phosphatidylserine (PS) membrane, calcium ion causes aggregation 

of the PS molecules and a remarkable increase in membrane rigidity 

(21, 46, 47). There is actually a calcium-induced phase separation, 

also observed with Ba++ and Sr++, which is evident from the exchange

broadening in the ESR spectra of PS-PC membranes. There is a rapid, 

reversible aggregation of PS bridged by Ca++ chelation and a fluid 

phase of PC which can be reversed or attenuated by the presence of Mg++ 

or tetracaine, which is a local anesthetic (48). 

Previous studies have indicated that intracellular calcium in 

human erythrocytes is also a determinant of cellular size, shape, 

transport of cations, and cell fragility (49-55). Incubation of ery

throcyte ghosts and whole blood cells with increasing concentrations 

of calcium ion causes both gross morphological alteration of the mem

brane as well as differences in the electrophoretic migratory proper

ties of the membrane proteins. Changes in morphology include deviation 

from the normal biconcave discoid shape of the circulating erythrocyte 



and the appearance of spicules on the surface of the resultant sphere 

(56, 57). There are also concomitant changes in protein aggregation 

as noted by freeze-fracture electron microscopy (58). Changes in 

cellular volume of calcium-treated ghosts seem to be accompanied by a 

decrease in passive permeability (59) and deformability (60, 61). 

This is possibly due to changes in the physical state of certain pro

teins in the erythrocyte membrane (58, 60-63). Bulk water transport 

is not affected by Ca++ concentrations up to 1.0 mM, and the presence 
++ + of Ca preserves the normal impermeability to choline, sucrose, Na , 

22 

and inulin. Mg++ protects the cell from Ca++ damage up to 0.3 mM (48). 

The aggregation of PS in synthetic bilayers would logically affect 

the environment of any protein present, and it might be expected that 

this would occur in both erythrocytes and isolated ghost membranes as 

well (47). Indeed, this appears to be the case. The mechanism of Ca++ 

action on the membrane is still largely unknown. If, in the circulat-

ing erythrocyte, there is a method for concentration of internal cal-

cium within the cell such that such alterations in the lipid and 

protein components of the membrane occur, the increase in membrane 

rigidity might initiate removal of these cells from circulation by the 

microcirculatory system. The decrease in volume might not be suffi

cient to offset the loss of deformability, and such cells would be 

trapped in the capillary beds of the spleen, hence removed. This is a 

possible 11 self-destruct 11 method for removal of aged cells. By examin

ing the changes in fluidity, polarity and order within the membrane, 

we may be able to gain some insight into the degree of alteration of 

these parameters with a given calcium ion concentration. 
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We have used stearic acid labels to examine a decrease in vis

cosity in the lipid portion of membranes of erythrocyte ghosts arising 

from incubation with increasing concentrations of calcium (0-30mM). 

We have also looked at the effects of calcium concentrations of 0-15mM 

on protein in the membranes using 4-maleimido-2, 2, 6, 6-tetramethyl

piperidinooxyl which is known to covalently bond with free sulfhydryl 

groups and e-amino groups of lysine. 



CHAPTER II 

METHODS AND MATERIALS 

All spin labels were obtained from Syva Associates, Palo Alto, 

California. There were four labels used in this series of experiments: 

2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxizolidinyloxyl (16 

NMS), 2-(10-carboxydecyl)-2-hexyl-4,4-dimethyl-3-oxizolidinyloxyl (12 

NMS), 2-(3-carboxypropyl)-2-tridecyl-4,4-dimethyl-3-oxizolidinyloxyl 

(5 NMS), and 4-maleimido-2,2,6,6,-tetramethylpiperidinooxyl (MSL). The 

structures of the labels are given in Fig. 4. 

The stearic acid labels were prepared for incorporation by a vari

ation of the method of Landsberger, et al. (64), which consists of 

dissolving 10 mg of each label in just enough CC1 4 to take it into 

solution in a 25 ml Erlenmeyer flask. The resultant solution was pale 

yellow and cloudy. The CC1 4 was evaporated with a gentle stream of 

nitrogen, leaving a thin film coating the surface of the flask. A 5% 

aqueous solution of fat-free bovine serum albumin (BSA) was prepared, 

10 ml of which was added to the flask. The flask was covered and 

allowed to stir overnight (12-14 hours) at room temperature to insure 

adsorption to the BSA. Sample spectra were run to make sure the label 

in each case had been adsorbed by BSA. 

The erythrocytes and erythrocyte ghosts were prepared from fresh 

blood obtained from the Dallas Blood Bank. Whole red blood cells were 

washed three times in 10 mM Tris buffer which was 0.154 Min NaCl at 

24 



25 

pH 7.4. The buffy coat and debris were removed by aspiration. Both 

erythrocytes and ghosts were labelled both in salinized 10 mM Tris 

buffer (pH 7.4) and in isotonic phosphate buffer (pH 6.8) to insure 

that no change in the labelling occurred due to a change in the buffer 

system. For the stearic acid labels, the ghost membranes were prepared 

in Tris buffer as described below. Each sample consisted of 1 ml pack

ed cells which had been resuspended in 10 ml of 10 mM Tris buffer at 

4°C. Increasing aliquots of 0.05 M CaC1 2 in 10 mM Tris were added to 

each sample except the control to give a concentration range of 0-30 

mM Ca++. The tubes were gently shaken to prevent high localized con

centration of Ca++ and allowed to incubate at 37° for thirty minutes. 

The cells were then centrifuged at 7500-8000 rpm for 15 minutes at 

4°C and the supernatant was aspirated off. Hemolysis in 10 rri~ Tris 

was again performed for one hour at 4°C. (This step was eventually 

found to be unnecessary and was eliminated.) Membranes were then 

washed essentially free of hemoglobin and centrifuged to a pellet. The 

membranes showed a tendency to retain hemoglobin with increasing Ca++, 

as evidenced by the pinkish color of the membrane pellets and the in

crease in intensity of the hemoglobin band on electrophoresis. Protein 

determinations by the method of Lowry (65) were run on each set of sam

ples and indicated that there was 3-5 mg/ml protein per sample. Choles

terol determinations (66) were also run to further confirm the above 

analysis. Incubation of 0.5 ml packed membranes with 0.5 ml spin label 

solution was allowed to proceed for six hours at room temperature. 

This incubation time seemed to be essential in order to get significant 

labelling of the ghosts. Whole erythorocytes, both fresh and aged, 
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were labelled in the same manner, but all hemolysis steps were omitted. 

All samples were occasionally shaken during incubation with the label. 

The samples were then centrifuged and the supernatants were carefully 

removed and monitored for excess label. The cells and/or ghosts were 

carefully washed free of excess label with buffer and resuspended in 

0.5 ml buffer. 

The electron spin resonance spectra were obtained on an electron 

spin resonance spectrophotometer constructed in the Physics Department 

of Oklahoma State University. This instrument is composed of the 

following components: 

Varian 100 KHz field modulation and control unit V4560 

Varian V4531 rectangular cavity 

Varian Vl53/6315 reflex klystron tube (90 Mv.ratts) 

Varian V4007-l electromagnet 

Varian V2200 regulated power supply 

Varian E-248-1 aqueous solution sample cell. 

This is, then, an X-band spectrophotometer utilizing 100 KC modulation 

and phase-sensitive detection, probably roughly equivalent to a Varian 

E-3, but much more amenable to modification. The modulation and con

trol unit is applied to signal filtering and phase-sensitive detection 

for a rectangular microwave resonant cavity. The loss of microwave 

energy due to the polarity of water molecules is a major problem with 

aqueous samples. In order to minimize this effect, a Varian E-248 

aqueous solution sample cell was used. It enables accurate position

ing of the aqueous sample in the planar region of minimum electric 

field intensity. 
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Preparation of samples for examination of protein with the MSL 

label was essentially the same insofar as the Ca++ incubations are con-

cerned. However, once the pellet had been spun down, the membranes 

were washed thoroughly with a 10 mM phosphate buffer, 0.154 Min NaCl, 

pH 7.4. The f1SL label solution was made in phosphate buffer which 

was 5 mM in NaCl and KCl at pH 6.8. The concentration was adjusted so 

-3 that there was 1.8 x 10 mM label for every 1.6-1.5 mg/ml protein. 

This procedure was essentially the same as that described by Schneider 

and Smith (67), except that it was not necessary to preserve ATPase 

activity. The ghost membranes were allowed to incubate in the label 

solution for three hours at room temperature. The membranes were 

washed free of excess label and spectra were run on both samples and 

supernatants. 

Ghosts prepared as described above were solubilized in 1.3% SOS 

in 0.1 M phosphate {pH 7.8) and 1% mercaptoethanol at room temperature 

as described by Carraway et al. (62), and subjected to electrophoresis 

on 5% polyacrylamide gels in 0.1% SOS (62, 68, 69). All gels were 

stained with Coomassie blue by the procedure of Fairbanks et al. (70). 

In all cases, the aggregation phenomenon described by Carraway et al. 

(62, 63) was observed. Whole erythrocytes which were labelled in the 

two different buffer systems were not subjected to electrophoresis. 



CHAPTER III 

RESULTS 

Membrane models and membrane systems from various sources may be 

examined with ESR by: 

l. Non-covalent labeling. 

2. Covalent linkage to protein components. 

3. Attachment to lipid components. 

We have used stearic acid labels to examine changes in properties in 

the membranes of erythrocyte ghosts arising from incubation with in

creasing concentrations of Ca++ (0-30 mM). We have also looked at the 

effects of the same range of Ca++ concentrations on protein in the mem

branes, using 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl. The 

deliberate variation in the position of the nitroxide label on the 

hydrocarbon chain of the three stearic acid labels (Fig. 4) enables the 

investigator to probe the phospholipid bilayer at different levels. 

This is reasonable since Ca++ can have an effect on both the polar and 

apolar regions of the membrane, though the effect on the polar region 

would be expected to be greater. 

Incubations of fresh and aged whole erythrocytes as well as ghosts 

prepared from each source were carried out in both phosphate and Tris 

buffer systems to insure that there was no change in the ESR spectrum 

due to a change in buffer. There was no observable change between mem

brane fluidity as measured by ESR between aged erythrocytes and the 
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Figure 4. Structures of Pertinent Spin Labels 
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ghosts prepared from aged blood, nor between fresh erythrocytes and 

ghosts (Fig. 5) prepared therefrom. There was, however, a difference 

in the amount of label taken up in that the erythrocytes did not label 

as well as ghosts in either case. This implies a greater accessibility 

of the lipid portion of the membrane to the spin label. From the spec-

tra obtained, there is no observable change in the lipid phase of the 

intact membrane as compared with ghost membranes within the limits of 

detectability, which confirms the observations of Landsberger et al. 

(64). However, there are differences between aged and fresh cells, as 

indicated by a shift in 2T 1! (Fig. 6). There is an increased rigidity 

in the membranes of the aged cells, similar to but not as marked as 

that observed with calcium-incubated cells. Further, it is known that 

the calcium effect is not seen with aged blood, indicating that per

haps there is already some change at the surface of the membrane which 

prevents uptake of calcium during hemolysis. 

When the three stearic acid labels, 16 NMS, 12 NMS, and 5 NMS, 

are incorporated into membranes from fresh blood treated with Ca++ 

during hemolysis there is in all cases a steadily decreasing field 

separation betvJeen high and low field peaks with increasing concentra-

tions of calcium. This can be interpreted as a result of a decrease 
I 

of the effective T11 , implying a decrease in order and an increase in 

fluidity. The changes in T1 l range from about 1.5 Gauss in the labels 

designated 5 NMS and 16 NMS to about 5.0 Gauss in 12 NMS, as indicated 

by Tables I through III. The 12 NMS probe will be discussed in more 

detail since it seemed to give the most information involving changes 

in the structure of the membrane. With this probe, the change in 2T 11 

with increasing concentrations of calcium (0-30 rrN) is 7.80 Gauss. 



Figure 5. Spectra of Spin Labels Incorporated into 
Normal RBC Ghosts 
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Figure 6. Comparison of ESR Spectra With 5 NMS of 
Fresh and Aged Erythrocytes Suspended 
in Both Tris and Phosphate Buffer 
Systems 
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This indicates a very definite decrease in the viscosity of the en-

vironment of the nitroxide in this particular region of the membrane 

(Table I). There is also a decrease in 2T 1 l with the 16 NMS probe, 

though this change seems to be less marked at first glance (Table II). 

However, the concentrations monitored with this probe ranged only up 

to 3.75 mM, and it is significant to note that the largest change in 
2+ 2T 1 i with the other probes is present in this same Ca range. The 

d . 2T I • h . f ++ 12 ecrease in 11 in Gauss overt e same concentrations o Ca for 

NMS (4.50 G) is roughly twice that of the decrease in 2T 1j for 16 NMS 

(2.20 G). Looking at the 2Ti j values for 5 NMS, there is an even 

smaller change in 2T 1 l (1.5 G) in going from 0 to 30 mM Ca++. Table 
++ III shows values from 0 to 15 mM Ca , after which there was no fur-

ther change observed within the limits of our detection system. The 

shift in fields in the range 0 to 3.75 mM is less than l G. 

As discussed in the Introduction, the anisotropic N14 hyperfine 

coupling constant, an, can be calculated from measurements of T1 l and 

Tl by the equation: 

an= t (2Tl - T1 )). 

This coupling constant shows a small dependence upon the polarity of 

the given solvent, and it follows that it will also show a dependence 

on the polarity of the environment of the nitroxide in the membrane 

(Tables I-III). In the case of the label 12 NMS, the coupling constant 

does show a definite tendency toward a decrease (1.04 G) in the polar-
++ ity of the environment as shown in Table I, but only up to Ca concen-

trations of about 2.5 mM. The an values appear nearly constant with 

ca2+ concentrations increasing above 2.5 mM, though a slight trend is 
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TABLE I 

12 NMS SPIN PROBE IN ERYTHROCYTE GHOSTS 

(Ca++) 
rnM 2T11 T' l 2T 1 

l 
T• 

l ilT aN s 

0 57.80 28.90 18.02 9.01 20.89 15. 81 0. 703 

0.50 57.80 28.90 18.02 9.01 20.89 15. 81 0.703 

0.75 56.50 28.25 18.02 9.01 19.24 15.26 0.698 

1.00 56.50 28.50 18.02 9.01 19.24 15.26 0.698 

1.50 54.30 28.25 18.20 9.10 18.05 14.96 0.698 

2.50 53.60 26.80 18.36 9.18 17 .62 14.90 0.655 

5.00 53.00 26.50 18. 72 9.36 17. 14 14. 92 0.637 

12.50 51.80 25.90 18.92 9 .46 16.44 14.79 0.615 

25.00 50. 10 25.01 19.44 9.72 15.38 14.69 0 .581 

30.00 50.00 25.00 19.76 9.88 15. 12 14. 77 0.567 

Incubation of erythrocyte ghosts with Ca++ followed by labelling 
with the probe 12 NMS. The aN values \'Jere calculated as follows: 

aN = j (2T1 + T11). 

S values were calculated from the following relationship: 

T 1 - T1 aN 
s = ( 11 l ) (~) 

T - T a 1 • 

ll XL l XL N 
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TABLE II 

16 NMS SPIN PROBE IN ERYTHROCYTE GHOSTS 

(Ca++) 
mM 2Tll T 1 l 2T' l T' l 

,HI aN s• 

0 37.40 18.70 20.96 10.50 8.20 13.20 0.277 

0.5 37.40 18. 70 20.96 10.50 8.20 13. 20 0.277 

1.0 36. 80 18. 40 20.92 10.50 7.90 13. 11 0.259 

2.0 36.30 18.20 20. 71 10.50 7.70 13.00 0.244 

2.5 35.90 18.00 20.90 10.50 7.50 13.00 0.232 

3.75 35.30 17. 70 20.90 10 .50 7.20 12.90 0.214 
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TABLE I II 

5 NMS SPIN PROBE IN ERYTHROCYTE GHOSTS 

(Ca++) 
rnM 2T11 T11 2T' l T' 

l 8.T aN s 

0 58.85 29.43 18. 36 9. 18 20.25 15.93 0.703 

1.00 58.20 29 .10 18.36 9. 18 19.92 15.82 0.697 

2.00 58.20 29.10 18. 36 9. 18 19.92 15. 82 0.697 

4.00 58.00 29.00 18.80 9.40 19.60 15.93 0 .681 

6.00 57 .60 28.80 18. 90 9.45 19.35 15.90 0.673 

7.50 57.40 28.70 19.30 9.65 19.05 16.00 0.659 

15.00 57.30 28.65 19.60 9 .80 18.85 16.08 0.649 

15.00 No further apparent change 
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toward decreasing polarity. With the 16 NMS probe, there is a less 

drastic change in an' even considering the whole range from O to 30 

mM, in which an becomes essentially constant at a concentration of 4.0 

mM. The trend is toward a decrease in polarity, but possibly within 

the limits of experimental error; it is more practical to say that 

there is little detectable change. In the case of 5 NMS, a trend for 

an cannot readily be assigned. 

The order parameter, S, which is ultimately dependent upon the 

measurement of 2T 1 l and Tl from the individual spectra as shown in 

Fig. 6, may be calculated from Equation (29): 

Adequate justification for use of the correction factor derived from 

crystalline cholestane in a cholesterol chloride preparation is given 

by several workers (16, 25, 33). The values used for T11 and Ti are 

taken from McConnell et al. (16), as are the values for anxl· The 

order parameter decreases steadily \'Jith increasing concentrations of 

Ca++, indicating an increase in the fluidity of the membrane as shown 

in Tables I through III. There is a second method for calculation of 

order parameters as given by Equation (28): 

S1 =} (3<cos28> - 1) 

where cos2e is the square of the cosine of the mean angular deviation. 

The order parameters are nonidentical, but are related, since the 

following obtains: 

(2Ti!)(l.4) - 16 
70 

(31) 
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2T 1 l values became extremely difficult to measure in the range of 4 to 

30 mM, no further data is presented on this probe. It is, however, 

si gni fi cant to note that there is quite a difference in va 1 ues of 5 NMS 

as compared with 16 NMS even at 0 mM calcium. There is an angle of 

roughly 13-14° with the 5 NMS label. Though this value varies slightly 

from run to run, the change in e with the change in Ca++ is relatively 

constant at about 4°. Examination of e for 16 NMS indicates that the 

deviation of the long axis from orthogonality is quite large (7.7°) 

over the very small concentration range investigated (0-3.75 mM). 

Also, the angle itself is more than twice that of the 5 NMS label, 

ranging from 38.7° to 46.4° in 0 to 3.75 mM calcium. This indicates 

that this label has a large degree of motional freedom in the absence 

of calcium, and that the mobility is increased in the presence of even 

low concentrations of calcium. The largest variation, however, is with 

the 12 NMS label which shows an increase in mean angular deviation of 

13°2' over the concentration range 0 to 30 mM. More significant is the 

fact that most of this variation (8°45 1 ) occurs between 0 to 5 mM. The 

importance of this becomes more obvious when considered in conjunction 

with the electrophoretic data. When erythrocytes are incubated with 

calcium in a hemolyzing buffer at 4°C and subsequently resealed, there 
++ is an irreversible aggregation of protein beginning at 1 mM Ca . This 

aggregate is not dissociable by SOS and appears at the top of the gels. 

These observations that the fluidity of the lipid bilayer changes on 

incubation with increasing concentrations of calcium augments the 

suggestion by Carraway et al. (62), that a rather extensive reorganiza

tion of the membrane occurs. It is obvious from the above data that 

the lipid bilayer is also involved in these membrane alterations. 
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where the factor l.4 is the conversion factor from Gauss to MHz. 

Though the values obtained are nonidentical, the trend is definitely 

the same in that the order parameter in either case decreases for all 

three stearic acid labe1s. A comparison between both S and S' for 

these labels is given in Table IV. 

The mean angular deviation, which is indicative of mobility of the 

nitroxide with respect to the long axis of the fatty acid chain, is of 

particular interest in cases where the other parameters discussed above 

do not show much change (Table V). Since the fatty acid chain will try 

to align itself orthogonal to the surface of the membrane, when there 

is motional freedom in an applied field, the path described by the 

label with respect to the membrane will be conical (Fig. 7). The devia

tion of the axis of the fatty acid chain from orthogonality is measured 

by the angle e. In the case of the label 5 NMS, though there are mea

surable differences in 2T 1 l and Tl, these are much less noteworthy than 

with the 12 NMS label. This is also true of the an and S values. The 

mean angular deviation, on the other hand, does show an increase of 

almost 4° with increasing calcium concentration in the range 0-15 mM. 

When plotted as a function of the change in calcium, the increase in e 

appears at first examination to be linear. However, when e2 is plotted 

versus increasing calcium concentration, the resulting straight line 

indicates that the first plot is actually a gently curving parabola 

with the maximum inflection point between 0-5 mM calcium (Fig. 8). 

With the 12 NMS label, the graph of e versus calcium concentration is 

sigmoidal with the major change in slope lying between 2-10 mM Ca++ 

(Fig. 9). For 16 NMS, it would appear that the curve may have been· 

siqmoidal (Fig. 9) over a larger concentration range, but since the 



TABLE IV 

ORDER PARAMETERS S AND S1 FOR STEARIC ACID SPIN LABELS 

16NMS 12MMS 5NMS 

Ca++ Ca++ Ca++ 
in mM/ml in mM/ml in mM/ml 

Packed Ce 11 s s s• Packed Ce 11 s s s• Packed Cells s s• 

0 . 1335 . 277 0 .730 .8911 0 .7040 .9226 

0.50 . 1335 . 277 1.00 .698 .8521 1.00 .6972 .9021 

0. 75 . 1295 .259 1.50 .668 .7861 2.00 .6972 .9021 

1.00 . 1273 .244 2.50 .665 . 7651 4.00 .6813 . 8967 

2.00 . 1240 .232 5.00 .637 .7471 6.00 .6739 .8818 

3.75 .1199 .214 12.50 .615 . 7111 7.50 .6593 .8776 

25.00 .518 .6601 15.00 .6491 .8747 

30 .00 .567 .6571 
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TABLE V 

MEAN ANGULAR DEVIATIONS FOR STEARIC ACID PROBES 

16 NMS 12 NMS 5 NMS 

c ++ . a in 9 in c ++ . a in Q in c ++ . a in 9 in 
mM degrees mM degrees mM degrees 

0 38.7 0 15.50 0 13. 0 

0.50 38.7 l.O 18.40 l.O 14.8 

0.75 44.7 l.5 22.40 2.0 14.8 

l.00 45.3 2.5 23. 30 4.0 15.2 

2.00 45.6 5.0 24.25 6.0 16.3 

3.75 46.4 12.5 26 .10 7.5 16.6 

25.0 28.50 15.0 16.8 

30.0 28.60 



Figure 7. Path Described by Fatty Acid in 
Motion is Conical 
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Figure 8. The Effect of Increasing Calcium 
Concentration on the Mean Angu
lar Deviation With 5 NMS 
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Figure 9. The Effect of Increasing Calcium 
Concentration on the Mean Angu
lar Deviation With 12 and 16 
NMS 
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Another method for evaluating order in a membrane system is 

examination of intensity ratios as Verma has done in his examination 
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of the effects of melittin on erythrocyte membranes (34). In a given 

spectrum, if we arbitrarily label the first three peaks a, b, and c, 

the b/c ratio may be calculated. In the case where b/c = l, there 

would be perfect ordering about the long axis of the probe. With a 

decrease in the intensity of b, there is a disordering of the long axis 

and an increase in mobility. In the examination of the calcium-treated 

erythrocyte ghosts, there is a decrease in the b/c ratio until a con

centration of 2.5-3.0 mM is reached, after which the values are 

constant. 

If the molecular weight of a single ghost membrane were accurately 

known, then one could calculate the total number of unpaired spins in 

the sample, hence the concentration of the label would be precisely 

known. Some work has been done of quantitation of the amount of probe 

actually taken up by a membrane system (64), and while it may have 

been feasible to do so with our samples, it would have required more 

care in measuring the spectra in the supernatants. One can quite easi

ly see, however, changes in the shape of the spectrum attendant with 

the decrease of T1 )· Figure 10 shows a large increase in the intensity 

of the center peak and a decrease in the so-called liquid lines. This 

may indicate that with increasing concentrations of calcium, there is 

a greater contribution by the strongly immobilized nitroxide which may 

be penetrating further into the treated membrane and that there is less 

exchange of label with the solvent system. However, it is probably 

more practical to say simply that the intensity increases. 



Figure 10. Spectra of Erythrocyte Ghosts in the 
Presence and Absence of Calcium 
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The discussion to this point has centered about changes in the 

fluidity of the phospholipid components of the membrane. We also con

ducted preliminary examination of the protein component utilizing the 

spin label designated MSL (Fig. 4). This probe is known to bind 

covalently with the free sulfhydryls or with the E-amino groups (71-

74) of the membrane protein (Fig. 11). Since there are potential bind

ing sites on any protein accessible to the label, it is not possible 

to identify the protein which is labelled by spectrophotometric observa

tion. However, there is always a contribution from weakly immobilized 

radicals which are bound at the surface and a contribution from strong

ly immobilized radicals which have penetrated further into the membrane 

protein. This is true of both the control and the calcium-treated 

erythrocytes, so any change in the ratio of the strongly (A) to the 

weakly (B) immobilized contribution to the spectrum (Fig. 12) may be 

indicative of a change in the state of aggregation of the protein (Fig. 

12). A plot of the a/b ratios versus increasing calcium concentration 

is clearly parabolic (Fig. 13), indicating a change in protein conform

ation which levels off at about 10 mM. The region of greatest change 

in slope lies between 1-5 mM calcium concentration. This is in good 

agreement with the changes observed above with the stearic acid labels 

and with electrophoretic data. Plots of the order parameter, S, versus 

calcium concentration for the three stearate labels are shown in Figures 

14 and 15 for comparison with Figure 13. Note that the regions of 

greatest change with respect to calcium concentration are closely com

parable. The peak intensity of the center peak also increases but, as 

with the stearic acid spin probes, no attempt was made at quantitation 



Figure 11. Schematic Representation of Incorporation 
of the Spin Label MSL Into Protein 
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Figure 12. Maleimide Incorporated Into Calcium-Treated 
Erythrocyte Membranes 
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Figure 13. Plot of Increasing Calcium Concentration 
Versus the A/B Ratio 
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Figure 14. Variation in Order Parameter, S, With 
Increasing [ca++], 16 NMS Label 
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Figure 15. Variation in Order Parameter, S, With 
Increasing [ca++], 5 and 12 NMS 
Labels 
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of the actual amount of probe bound. Further experimentation in this 

area has been initiated but will not be reported at this time. 



CHAPTER IV 

DISCUSSION 

It is useful at this point to discuss briefly some assumptions 

which have been made in reduction of the data. In the original devel-

opment of parameter calculations, a series of approximations were made 

by Hubbel and McConnell (37). These were outlined as follows: 

1. The effective spin Hamiltonian,}l 1 , has axial symmetry. 

2. The line shape for each hyperfine signal is Lorentzian 

(though this is not always strictly true). 

3. The line width for each hyperfine signal is isotropic, but 

m-dependent where m is the component of the nitrogen nuclear spin in 

the local field direction at the nucleus. 

4. The spatial distribution of the average hyperfine axis in 

oriented multibilayers is given by: 

[-(s-3) 2/23 2] 
p (9) = si n8 ° (32) 

This is a distribution function for the principle axis, z•, where$ 

is the angle between Z1 and N which is normal to the planes of the 

phospholipid bilayers (Fig. 16). 

There are a series of further approximations also pertinent to 

the dependence of the spectra on Eigenvalues of the time-dependent 

Hamiltonian,J-L 1 , and perturbations thereof. These obtain under cer-

tain conditions and include considerations that the individual widths 
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Figure 16. The Axis System Defining the Orientation 
of the Molecular z• Axis With Respect 
to the Magnetic Field Direction H 
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N 

H 

of resonance lines are angular dependent, and that the effective or 

time-dependent Hamiltonian,}{', does not have axial symmetry in either 

the g' or T' tensor. The calculated spectra employing the above ap

proximations are very similar to the experimentally observed spectra; 

therefore, we may assume that the approximations made are valid. The 

method is, as pointed out in the Introduction, a valuable and sensitive 

method for examination of biological membranes as well as for synthetic 

systems. 

Assumptions must be made about the labelling of the membrane 

itself. The spin label may possibly be bound nonspecifically at two 

or more conformationally different sites on the membrane, and could 

give rise to both a weakly immobilized and a strongly immobilized con

tribution to the spectrum. Indeed, Wallach and coworkers (27) have 

observed that 5 NMS may be complexing with arginine residues as well 

as interacting with lipids in the membrane. This would render the 

analysis of these spectra with respect to specific lipid-protein inter

actions very difficult indeed. It would not, however, alter the 
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reflection by that label of increased lipid fluidity, since both com

ponents are labelled and the hydrophobic binding element is large in 

any case. 

Aged intact erythrocytes, in contrast to fresh intact cells, 

reflect an increase in the fluidity of the membrane similar to that 

observed at low calcium concentrations. Indeed, the calcium effect 

cannot be seen at all with aged cells. There is a difference in the 

ability of the intact cells in any case to take up label with the 

stearate labels. This implies some difference in the membranes in 

the two systems. This is in agreement with the studies of Zwaal et al. 

(75). 
I 

There are differences in the magnitude of changes in T11 , which 

decreases in the presence of increasing [Ca++], with each of the 

different stearate labels. These are, however, all in the same direc-

tion; therefore one may conclude that there is a decrease in the 

viscosity in the irrunediate proximity to the label in each instance. 

This implies that similar changes are occurring at different levels 

within the lipid component of the membranes. The most significant 

changes occur between 1-5 mM Ca++, and little change is observed beyond 

15 mM. The most useful label for monitoring the process appears to be 

12 NMS, since it is sensitive to change over larger concentration 

ranges. 

The order parameters, which are representative of time averages 

over molecular motions are such that the longer the time involved -in 

averaging, the lower the parameters. The averaging time, in turn, is 

dependent upon the magnitudes of the anisotropic contributions to the 

spin Hamiltonian, which involves hyperfine and g-factor interactions. 
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These have been quantitated for each of the stearate labels. These 

order parameters, Sand S', as shown in Table IV, indicate a decrease 

in value for each label, hence decreasing order in the lipid portion 

of the membrane. 

The interrelationship between the order parameters and the mean 

angular deviation has been discussed above. There is an increase in 

the angles in each instance (Table V), indicating an increase in 

mobility of the label with increasing calcium concentration. The ini-

tial angles vary widely among the three labels, but the trend is the 

same. 

The observed increase in intensity of the center peak of the spec-

trum implies that the lipid layer becomes increasingly accessible to 

the stearate labels with increasing calcium concentration. This per-

haps indicates that the lipids are less tightly packed. 

Data obtained so far with the protein label MSL suggests that 

there is a conformational change occurring between 1-5 mM Ca++, which 

is the region of greatest change for the stearate labels as well. 

This is also the concentration range in which protein aggregation has 

been observed by Carraway et al. (62, 63). The concentration of 5 mM 

Ca++ brings about irreversible aggregation of membrane protein. 

These observations indicate that increasing Ca++ concentrations 

induce a definite decrease in the order of the lipid portion of the 

membrane and an accompanying conformational change in some as yet un-

specified protein component. One might speculate that this could be 

directly related to the observed phase changes induced by Ca++ in 

synthetic bilayers (47). Since Zwaal (75) has indicated that the 

outer portion of the erythrocyte membrane consists of predominantly 
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choline-containing phospholipids, it might behoove us to use labelled 

phosphatidyl choline as McConnell et al. (76) have done with rabbit 

sarcoplasmic reticulum. The diffusion constant for lateral diffusion 

of phospholipids could then be monitored. This is of particular 
++ applicability since the sarcoplasma sequesters Ca from the mycoplasma 

++ and an in vitro assay for Ca uptake was used as a measure of the in-

tegrity of spin labelled membranes. 

Other protein labels must be employed in order to identify the 

protein moiety affected by the presence of high Ca++ concentrations. 

Gotto et al. (71, 77) have used tvw different methods for labelling 

proteins. The first employed MSL to study lipid-protein interactions 

in lipoproteins (71). Very little could be said about lipoprotein-

protein interactions, though it is significant that very little per

turbation of the membrane was observed in the presence of the spin 

label. The second label was an isothiocyanate nitroxide label. There 

were both weakly and strongly immobilized sites of attachment. The 

strongly constrained signal was thought to arise from lipid-protein 

interaction which reduced the molecular motion of the spin label bound 

to the protein. There is also an organophosphorus derivative, the 

method for preparation of which is given by Morrisett et al. (78), 

which will label serine groups in apolar environments. There are also 

steroidal nitroxides which may be used (79). 

Future studies utilizing this array of labels should enable us to 

observe the subtle interactions attendant with the observed organiza-

tional changes of the protein. 
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