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A CRITIQUE OF THE SMSG AND UICSM SECONDARY 
SCHOOL MATHEMATICS PROGRAMS

CHAPTER I

INTRODUCTION

* ' Background of Problem
At the present time, the students of curriculum are 

witnessing what has already been described as a "revolution" 
in school mathematics.^ The changes currently taking place 
in the mathematics curriculum are so extensive, so far- 
reaching in their implications, and so profound that the 
twentieth century will long be recorded as the period in 
which many of the very challenging problems of mathematics 
education will have been recognized and attacked by many 
study groups and authors in an effort to better the mathemat
ics programs of American schools.

A first cause for such activity has been the tremen
dous advances made by mathematical research. Dr. Price sug
gests that "the twentieth century has been the golden age of

G . Bailey Price, "Progress in Mathematics and Its 
Implication for the Schools", The Revolution in School Mathe
matics (Washington, D. C .: National Council of Teachers of
Mathematics, 1961), p. 1.
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mathematics, since more mathematics, and more profound mathe
matics , has been created during this period than during all 
the rest of history. The present century has seen the ex
tensive development of subjects in pure mathematics such as 
topology, abstract algebra, measure theory, and functional 
analysis. Coupled with the extension of the body of pure 
mathematics has been rapid development in many fields of ap
plied mathematics, e.g., probability and statistics, game 
theory, quality control, and linear programming.

Chemists have found new uses and interpretations 
for mathematics ; biologists are applying mathematics 
to the study of genetics; businessmen are using mathe
matics in scheduling production and distribution ; 
sociologists are using complicated statistical ideas ; 
game theory has been found to have important applica
tions to human behavior ; mathematical models give 
promise as a basis for the interpretation of phenomena 
in many disciplines.^

It is certain that modern research in mathematics has pro
duced changes equally as profound as those made in chemistry, 
physics, and biology.

Secondary causes for the revolution in mathematics 
have been the automation revolution and introduction of the 
large-scale, high-speed, automatic digital computing machines 
Automation has created the necessity for solving complicated 
design and development problems and the computer has

^Ibid., p. 1.
2American Association of School Administrators, Ad

ministrative Responsibility for Improving Mathematics Pro
grams (Washington, D. C .: American Association of SchoolAdministrators, 1955), p. 6.
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contributed a tool for their solution. The automation revolu
tion and the computer have produced a totally unprecedented 
demand for trained mathematicians and it is practically im
possible to foresee an adequate supply of highly trained

1personnel to meet this demand.
The demands created by the revolution in mathematics 

are not reserved solely for future professional mathematicians 
and scientists. The basic concern of general education is to 
help each student to realize and accept the challenge of his 
individual potential and to lay the foundation for successful 
pursuits of special aptitudes and interests so that he may 
function in maximized capacity as a responsible citizen. 
Mathematics educators have advocated that there does exist a 
body of mathematical subject matter that is of significance 
to every educable individual at any and all levels of instruc
tion and that mathematics must be accepted as fundamental in 
general education. These educators have advocated that this 
body of knowledge can make significant contributions toward 
the attainment of the basic objectives of general education 
and that it can provide for the following:

1. Competence in the basic skills and understand
ings for dealing with number and form;

2. Habits of effective thinking— a broad term in
volving analytical, critical, and postulational think
ing, as well as reasoning by analogies and the develop
ment of intelluctual curiosity;

3. Communication of thought through symbolic ex
pression and graphs ;

^Price, pp. 3-5.



4. Development of the ability to make relevant
judgments through the discrimination of values ;

5. Development of the ability to distinguish be
tween relevant and irrelevant data;

6. Development of intellectual independence;
7. Development of aesthetic appreciation and ex

pression ;
8. Development of cultural advancement through a

realization of the significance of mathematics in its 
own right and in its relation to the total physical 
and social structure.1

Due to the rapid technological strides which are
being made, it is now generally recognized that our society
is so dynamic that the problems of technology to be solved
fifty years from now will be vastly different from those of
the present. This eminent change carries significance for
the mathematics curriculum.

Technology is subject to rapid change. Training in 
specifics can, and may, soon become obsolete. On the 
other hand, a person with fundamental training in 
mathematics will have the background for making adapta
tions to applications, even to those not now f o r e s e e n . ^

The nature of the flexible society and the need for a well- 
informed mathematically literate citizenry would suggest that 
perhaps the emphasis in mathematics education should be di
rected toward the search for underlying principles and basic 
structures as guides to fundamental generalizations and ab
stractions which can be extrapolated beyond the needs of pres
ent society rather than upon rote mechanical arithmetic ma
nipulation .

^Charles H. Butler and F. Lynwood Wren, The Teaching 
of Secondary Mathematics (New York: McGraw-Hill Book Co.,
Inc., 1960), pp. 44-5.

2Ibid., p. 92.
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The rapid development of mathematics, the ensuing

technological revolution, and the need for a mathematically
literate population have thus produced a direct challenge to
our school systems.

The technological revolution now in progress requires 
that new mathematics be taught in our schools, that 
the emphasis be shifted in the teaching of many sub
jects already included in our mathematics courses, 
and that we increase the production of mathemati
cians and mathematics teachers.1

The changing conditions of mathematics and industry demand
that "new" mathematics be required in our schools and that
there be changed emphasis in the "old" mathematics available
for our society. Various curriculum study groups and authors
have faced this challenge demanding that no efforts should be
spared to insure that the mathematics education provided by
our schools shall be adequate for the needs of our time.

Support for a changing emphasis in mathematics in
struction has come from these and other additional sources.

1. In recent years serious questions have been posed 
regarding the advisability of a major emphasis 
upon making mathematics practical and relating it 
entirely to problems of living.

2. According to the statement of the Educational 
Policies Commission, the purpose which runs 
through and strengthens all other educational 
purposes is the development of the ability to 
think, and this purpose is realized only through 
the development of the rational powers of the in
dividual .

3. The changing attitudes of the society due to the 
"space-race" with the other nations of the world

^Price, p. 5.



have allowed our society to become more tolerant 
and cognizant of the need for change and, in 
short, have produced a more aware society.

4. Many foundations and government organizations
have contributed heavily to curriculum study pro
grams . ̂

During the past decade and in response to the need 
for a revised curriculum in elementary and secondary mathe
matics , several experimental groups, after conducting long 
and exhaustive surveys of the present curricula, have de
veloped, tested, and made their contributions available for 
publication. The following is a partial list of those groups 
whose efforts seem to receive major predominance in the cur
rent literature.

1. The largest united comprehensive study in mathe
matics has been conducted by the School Mathemat
ics Study Group. This group has sought to im
prove the mathematics programs in schools by pre
paring text and teacher materials. Its chief 
purpose has been to develop textbooks for the 
college-capable student, grades 7 through 12, al
though the group is now directing its attention 
to the lower grades and now has textbooks avail
able for grades K-12 as well as various study 
guides and monographs for teacher enrichment and 
teacher-training programs.

2. The next largest united study has been that con
ducted by the University of Illinois Committee on 
School Mathematics which has prepared text and 
teacher materials for a new college-preparatory 
curriculum for grades 9-12.

3. The University of Maryland Project has focused on 
the development of experimental units for grades 
7 and 8.

1Butler and Wren, pp. 3-85.



4. The Ball State Teachers College Program has dealt 
with the preparations of learning materials for 
grades 7-12 with texts for grades 8, 9, and 10 
having been published. Some work has been done 
in grades 1-3.

5. The Boston College Mathematics Institute is spon
soring a program for grades 7-12 although text 
materials are aval lab l,e only for grades 7-9.

6. The members of the University of Illinois Arith
metic Project have prepared materials for grades 
1-6.

7. The, Greater Cleveland Mathematics Program has as 
its purpose the development of a sequential pro
gram for the elementary and secondary schools al
though materials are now available only for 
grades K-6.

8. Other groups included are the (a) Geometry for 
Primary Grades Project, the Sets and Numbers 
Pro ject, and Mathematical Logic for the School 
Project (including grades 1-5) located at Stan
ford, (b) the Syracuse-Webster Elementary Project 
with experimentation and preparation of materials 
in grades 3-10, and (c) the Ontario Mathematics 
Commission with materials for grades 9 and 10.^

Although all share common elements and all purport to be aimed 
at the improvement of mathematics instruction, each of the 
programs listed is somewhat unique in its approach and phi
losophy. They all stress unifying themes or ideas such as 
the structure of mathematics, operations and their inverses, 
sets, deductive reasoning, logic, valid generalizations, etc. 
Yet the prepared materials may differ radically in their pre
sentation, placement, emphasis upon social applications.

^National Council of Teachers of Mathematics, An 
Analysis of New Mathematics Programs (Washington, D . C .: 
National Council of Teachers of Mathematics, 1963).
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structure, vocabulary, methods of presentation, and methods 
of proof.

The proliferation of modern experimental programs as 
indicated by the above listing as well as the explicit differ
ences in those programs insofar as methods of presentation, 
placement of materials, attention to mathematical structures, 
vocabulary, etc., indicates that there is at present no 
existent generally-accepted philosophical model describing 
the nature of the ideal mathematics education program for the 
schools of the United States. In like vein, the National 
Council of Teachers of Mathematics, the professional organiza
tion of mathematics educators, has been prompt to insist that 
not all the areas of psychological significance insofar as 
mathematics curriculum is concerned have been identified or 
considered and that there does not exist a mutually-acceptable 
model adequately describing the learning process, the role of 
internal motivation of student, societal needs and social 
structure.

How does the human brain and nervous system ac
quire its store of mathematical knowledge? How does 
the human organism use this store of knowledge once 
it has acquired it? These are fundamental questions 
to which the answers can be of great aid in the im
provement of the instruction of mathematics. Al
though comparatively little is known about the an
swers, the little that is known should be studied by 
every teacher of mathematics on every level of in
struction . ̂

^ h e  National Council of Teachers of Mathematics, The 
Learning of Mathematics, Its Theory and Practice (Washington, 
D. C .: National Council of Teachers of Mathematics, 1953),
p. vii.



The authors further state :
Until we know more, we must conceive of the as

pects of learning— motivation, analysis, transfer of 
training, and practice— as fluid elements, as tenta
tive workable explanations of a theory of learning.
When we gain more knowledge of the operation of the 
brain, and of the manner in which human behavior is 
changed, these various aspects may shift position, 
change in their importance, and even new elements 
may enter the picture.^

In absence of such models, the decision to select or not se
lect any of the several available modern curricula (and asso
ciated materials) is still a problem for the individual 
teacher whose decision must be made in terms of the logical 
order of mathematics and in the light of his own philosophy 
as to the desirable nature of the mathematics curriculum.

In 1959, the National Council of Teachers of Mathemat
ics, recognizing the need for some criteria of analysis and 
comparison of modern programs, formed the Committee on the 
Analysis of Experimental Programs. This committee was dele
gated the responsibility of determining ways in which the 
National Council of Teachers of Mathematics could assist 
school staffs in the restructuring of mathematics curricula. 
Its report recognized and discussed several areas of disagree
ment which currently exist in the minds of mathematics cur
ricula experts and stated these disagreements in several ques
tions which a teacher must analyze, among others, in order to 
clarify his own view of mathematics education.

^Ibid., p. 349.
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Questions raised by this group were :

1. At a particular grade level, which topics can be 
most effectively developed and which are most ap
propriate; how does the sequence of presentation 
of particular topics at particular grade levels 
affect their value in the mathematical maturity 
of the students?

2. What emphasis should be placed on the study of 
mathematical structures in order to bring about 
better understanding and use of mathematics ; how 
should such studies be timed?

3. What is the best method for presentation of mathe
matical ideas, i.e., what is the relative merit
of a sequence of activities from which a student 
may independently recognize the desired knowledge 
as opposed to presenting the knowledge and th^n. helping the student to rationalize it?

4. How early in his mathematical development can a 
student progress from the use of a generally un
sophisticated language of mathematics to a highly 
precise and sophisticated use of such language?

5. At what level and with what degree of rigor and 
sophistication should a student be introduced to 
mathematical proofs and at what level should he 
be expected to comprehend the nature of a "good" 
proof and to independently construct such proofs?

6. What should be the ideal relationship existing in 
mathematics between the development of skill in 
the manipulation of symbols and skill in develop
ing mathematical concepts?

7. What (and how much) emphasis should be placed on 
the social applications of mathematics and what 
should be the purpose and nature of these applica
tions?

The committee further suggested that the basic guiding phi
losophies of any writing group should clarify and reflect its 
position as to the role which mathematics is destined to play

^National Council of Teachers of Mathematics, An 
Analysis of New Mathematics Programs, pp. 2-6.
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as an integral part of the development and the role of mathe
matics in man's environment. In essence, the committee rec
ommended that a person analyzing any of the modern programs 
in mathematics should pay special attention to eight vari
ables which might be designated as guiding philosophies of 
the authors, placement of materials, attention to mathemati
cal structures, methods of presentation, vocabulary, proofs, 
development of concepts and skills, and attention to social 
applications.

Although the authors of this report do not explicitly 
define these variables, their study implicitly evidences ' 
their interpretations and usage of terms involved. Placement 
of materials involves more than just where particular topics 
are introduced but also involves the sequence in which par
ticular topics are studied as well as the rigor with which 
they are employed. The consideration of mathematical struc
tures involves the study of the basic principles or proper
ties of any system (not necessarily a number system) as well 
as the analysis of the basic properties common to different 
mathematical systems. Methods of presentation involves the 
particular pattern of approach to be used in communicating 
mathematical ideas to the student; in the main, these authors 
consider the general approach of demonstration, illustration, 
and description as opposed to the alternate pattern of experi
mentation, observation, and generalization. Vocabulary refers 
to the words and language of the mathematics profession as
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well as the precise, rigorous, and non-ambiguous usage of 
such language in the communication of mathematical ideas. A 
person possesses a mathematical concept when he understands 
and appreciates a mathematical idea; he possesses skill only 
when he approaches the level of automatic response in the use 
of that concept. The term proof, recognizably having many 
meanings, is used in the mathematical sense and generally 
refers to an argument (according to prescribed logical proc
esses) serving to establish the truth of a statement in view 
of certain definitions, assumptions, and intermediate state
ments . The term social application is used in a broad sense 
and describes the use of mathematics as a tool in solving the 
problems of society, as an instrument for describing the en
vironment in which we live, and as an aid in the understand
ing and solution of problems which may arise in the possible 
technological life of an individual; this usage is opposed to 
the commonly conceived definition of social application in 
"everyday living experiences" of the general populace.

An analysis of the various modern experimental pro
grams which have been listed in this chapter as well as other 
similar reviews of curriculum efforts reveals that the UICSM 
and the SMSG are the only experimental groups which have 
materials available for uses in grades 9 through 12. As a 
result, any instructor or school curriculum director wishing 
to establish a four-year secondary sequence of such modern
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materials would have to choose either the UICSM or the SMSG 
materials.

Examination of the mathematics curriculum changes 
which have occurred during the past few years reveals that 
these two programs have (and probably will continue to do so 
in the future) exerted a tremendous influence on the curricu
lum efforts of other groups as well as commercial publishers. 
Since these programs have served such an important definitive 
role, it behooves any mathematics educator to realize fully 
the scope and sequence, structure, potential, and limitations 
of such programs.

Statement of Problem
The problem for this study is stated in the form of 

the following questions :
1. What are the major features of the SMSG and the 

UICSM programs insofar as guiding philosophies, 
placement of materials, attention to mathematical 
structures, methods of presentation, vocabulary, 
proofs, development of concepts and skills, and 
attention to social applications are concerned?

2. What are the major similarities and differences 
between the UICSM and SMSG programs insofar as 
guiding philosophies, placement of materials, 
attention to mathematical structures, methods of 
presentation, vocabulary, proofs, development of 
concepts and skills, and attention to social ap
plications are concerned?

Definitions
In this study, secondary school designates the grade 

block 9-12. SMSG designates School Mathematics Study Group;
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SMSG secondary program designates the sequence composed of 
First Course in Algebra, Geometry, Intermediate Mathematics, 
Elementary Functions, and Introduction to Matrix Algebra.
UICSM designates University of Illinois Committee on School 
Mathematics ; UICSM secondary program designates the sequence 
composed of Unit 1, The Arithmetic of Real Numbers" Unit 2 , 
Generalizations and Algebraic Manipulation; Unit 3, Equations 
and Inequations ; "tin it 4, Ordered Pairs and Graphs; Unit 5 , 
Functions and Relations ; Unit 6, Geometry; Unit 7, Mathemati- 
ca1 Induct ion ; Unit 8, Sequences; Unit 9, Elementary Func
tions; Powers, Exponentials, and Logarithms; Unit 10, Cir
cular Functions and Trigonometry ; and Unit 11, Complex Num
bers ■

Purpose
The purpose of this study is to present an analysis 

of the SMSG and UICSM secondary programs so that a teacher or 
curriculum director contemplating the inclusion of one of 
these programs in their curriculum might make an intelligent 
decision as to which of the programs is better suited to his 
particular situation in terms of the criteria discussed.

Scope and Limitations 
A universally-accepted model describing desirable 

outcomes for any mathematics education program is not pres
ently available and the areas of internal motivation of the 
student, learning theory, societal needs, and social structure
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have not been adequately explored to the mutual satisfaction 
of all educators. Any statement given concerning appropri
ateness (or lack of it) of grade placement or method of pres
entation can not be made until such a model is developed.
This implies that any discussion of any of the "new" curricula 
(mathematics or otherwise) must be restricted with respect to 
the variable of rationality or logic of the discipline con
cerned. This study readily admits this restriction of dis
cussion .

A further limitation has been placed upon this study 
in terms of the level of sophistication of mathematical dis
cussion. The presentation of the materials (with remarks) of 
the SMSG and UICSM programs has been done within the limits 
of understanding of the teachers usually found in the second
ary classroom and who are, in general, not familiar with both 
sets of modern textual materials. Such an extensive and com
prehensive presentation has not been attempted previously.

This paper recognizes that the teacher plays a vital 
and dynamic role in the classroom and that his agreement or 
disagreement with the guiding philosophies of any textbook 
author might detract from the effectiveness or ineffective
ness of that author's presentation. Insofar as this study is 
concerned, it must be assumed that qualities of teaching of 
the two programs will be compatible.

This study is expository in nature and, in no sense, 
attempts to determine which is the better of the two programs
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for a particular classroom situation. Rather, efforts are 
directed singularly toward an exposition of the materials re
vealing basic differences and similarities.

Rationale Behind Approach to Problem 
The report of the Committee of the Analysis of Experi

mental Mathematics Programs has suggested some eight major 
areas of disagreement existing in the minds of mathematics 
curriculum experts: (1) guiding philosophies of the authors,
(2) placement of materials, (3) attention to mathematical
structures, (4) methods of presentation, (5) vocabulary,
(6) proofs, (7) development of concepts and skills, and
(8) attention to social applications.^ Inasmuch as this 
influential committee has recommended that any effective 
analysis of any of the modern programs should be based upon 
these variables, these eight areas of comparison were chosen 
for this study of the SMSG and UICSM programs.

Survey of Pertinent Literature 
In the spring of 1958, the president of the American 

Mathematical Association, after consulting at length with the 
presidents of the National Council of Teachers of Mathematics 
and the Mathematical Association of America, selected a com
mittee (with Dr. Edward G. Begle as chairman) of educators 
and professional mathematicians (primarily university

^Ibid., pp. 2-6.
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mathematicians) to organize the School Mathematics Study 
Group. The primary objective of this group was the improve
ment of the mathematics instruction in the schools of the 
United States through an improved curriculum. It postulated 
essentially that greater substance should be introduced 
earlier in the mathematics sequence. The president of the 
American Mathematical Association also appointed an advisory 
committee which consisted of university and college mathe
maticians, high school mathematics teachers, educational 
theorists, and scientific and technological personnel. The 
group was charged with the responsibility of constructing a 
curriculum which was to take proper account of the increasing 
use of mathematics and science in technology and other areas 
of knowledge and at the same time to reflect advances in 
mathematics itself.

The textual materials prepared by the School Mathe
matics Group were outlined and written by teams of authors 
representing all facets of mathematics instruction. The 
original writings of the group were tested through widely- 
distributed actual classroom use under the direct supervision 
of local people who were interested in such efforts. Writing 
groups received constructive criticism from these teachers 
and, in turn, conducted appropriate rewriting of these materi
als . It was soon recognized that teachers needed additional 
training for effective teaching of the materials; consequently, 
teacher materials and supplementary aids were provided.
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Although the first project was to prepare what optimistically 
were to be model textbooks for grades 7-12 to be used as pat
terns for commercial authors, the efforts of the group have 
been extended to the production of textual materials and 
teacher's commentaries for grades K-12 with two levels of 
materials in grades 7-9 as well as the units Introduction to 
Secondary School Mathematics, Programmed First Course in 
Algebra, Geometry with Coordinates, Analytic Geometry, and 
SMSG: The Making of a Curriculum. These books are available
upon order for general classroom use by any teacher desiring 
to use them. Various teacher-enrichment productions, e.g.. 
Concepts of Informal Geometry, Number Systems, Intuitive 
Geometry, Concepts of Algebra, and Geometry, have been pre
pared and distributed.^ The basic financial support for the 
efforts of this group has been provided through grants from 
the National Science Foundation.

The University of Illinois Committee on School Mathe
matics was organized in December, 1951, through the joint ef
forts of the Colleges of Engineering, Education, and Liberal 
Arts and Sciences at the University of Illinois. The prime 
purpose motivating the group was to investigate the content 
and teaching of high school mathematics in grades 9-12.
Dr. Max Beberman was selected as director of the project.

School Mathematics Study Group, New SMSG-Yale Pub
lications (New Haven: Yale University Press, 1965-66),
pp. 3-20.
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Since that time the major efforts (representing efforts of 
both mathematicians and teachers) of this group have been 
directed toward the development of instructional materials 
and their experimental trials and rewritings in schools 
throughout the country. Summer institutes, including both 
content and pedagogy, have been conducted for the purpose of 
preparing teachers for the use of the UICSM materials. Al
though these textbooks have been available for unrestricted 
classroom use since 1958, UICSM prior to that time distrib
uted these textbooks in classroom quantities only to teachers 
who had special instruction in their use and who had agreed 
to evaluate and criticize the texts. Dr. Beberman warns, 
however ;

We have introduced some new content, rearranged some 
of the traditional content and have developed many 
promising pedagogical techniques and approaches. . . .  
Although we do not consider the present editions as 
experimental, we still recommend that they be used 
with caution and preferably only by teachers who 
have had an opportunity to study them under the 
supervision of a person who has had classroom ex
periences in their use or who has made an intensive 
study of their contents and the implicit pedagogy.̂

Since early in 1951, the committee has been preparing and
evaluating self-instruction materials as well as designing
and producing appropriate filmstrips, etc. Financial support
has come initially through grants from the Carnegie Foundation
with supplemental grants from the National Science Foundation
and the United States Office of Education.

^Ibid., p. 58.
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Some initial differences in the SMSG and the UICSM 

secondary materials are illustrated by the content and se
quence (and tentative grade placement) of these materials as 
indicated by the unit titles and/or short descriptions of the 
units.

UICSM:
Grade 9- The arithmetic of real numbers ; generaliza
tions and algebraic manipulations ; equations and in
equations , applications ; ordered pairs and graphs.
Grade 10. Relations and functions; geometry.
Grade 11. Mathematical induction; sequences.
Grade 12. Exponential and logarithmic functions; 
circular functions and trigonometry; polynomial 
functions and complex numbers.^
SMSG:
Grade 9. First course in algebra, based on proper
ties of the real number system; equations through 
quadratic equations in one variable and linear equa
tions in two variables ; graphs of linear and quad
ratic functions.
Grade 10. Geometry, basically Euclidean geometry, 
but including considerable solid geometry and an in
troduction to analytic plane geometry.
Grade 11. Intermediate mathematics, including trigo
nometry and college algebra with stress on number 
systems, discovery exercises, and proof; the function 
concept given spiral development and coordinate geome
try introduced early for use as a tool in trigonome
try; vectors developed as a mathematical system.
Grade 12. Elementary functions, developed in a method 
to prepare for the calculus and introduction to matrix 
algebra.2

In 1961, the National Council of Teachers of Mathe
matics published what has become, in a sense, a definitive

^Dorothy M. Fraser, Current Curriculum Studies in 
Academic Subjects (Washington, D. C . : National Education As
sociation, 1962), p. 32.

^Ibid., p. 34.
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manual for modern mathematics programs. This publication, 
the reporting of eight Regional Orientation Conferences in 
Mathematics held in various parts of the United States, was 
published to outline the movements in secondary mathematics 
curricula and to aid school administrators in making deci
sions with respect to these questions: (1) What caused the
revolution in school mathematics? (2) What has been done to 
implement this revolution? (3) What adminstrative decisions 
are involved for local school systems? Dr. Kenneth E. Brown, 
in his contribution to the report in which he discussed 
briefly the efforts of eight different experimental groups, 
suggested:

All the programs we have discussed attempt to avoid the 
presentation of new material as a string of unrelated 
topics. Indeed, they stress unifying themes or ideas 
in mathematics such as the following: structure, opera
tions and their inverses, measurement, extensive use of 
graphical representation, systems of numeration, prop
erties of numbers, development of the real number sys
tem, set-language and elementary theory, logical deduc
tions, valid generalizations.!

Dr. Brown directed little attention to the basic differences
among the individual programs and devoted only approximately
two pages to the efforts of SMSG and UICSM.

In a report prepared for the Project on Education, 
Dorothy M. Fraser has provided information regarding the 
rather astonishing number of projects and studies dealing

^Dr. Kenneth E. Brown, "The Drive to Improve School 
Mathematics," The Revolution in School Mathematics (Washing
ton , D. C.: National Council of Teachers of Mathematics,
1961), p. 22.
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with the academic subjects in the school curriculum. In
cluded in the report are descriptive statements based on 
materials provided by the sponsors of each project and re
flect the goals and judgments of those sponsors. In the sec
tion dealing with modern elementary and secondary mathematics 
programs, the author states :

They are designed to bring mathematics programs up 
to date in content and methods of presentation. The 
secondary-school projects described in this chapter 
have worked toward this goal through different ap
proaches. In each of these projects, considerable 
changes in the mathematics curriculum are recom
mended, and some of the recommendations call for 
much more drastic changes than others.^

Her report terminates with very brief (approximately one page
each) surveys of some ten such modern programs.

The 1961 publication. An Analysis of New Mathematics 
Programs, prepared by the National Council of Teachers of 
Mathematics to assist teachers and school administrators in 
their consideration of program changes, evaluated briefly 
eight curriculum-revision projects (among which were the 
UICSM and SMSG programs). Although each of these eight pro
grams was evaluated, little attention was directed to spe
cific details of the sequence of materials and little dis
cussion was dedicated to the similarities and/or dissimilari-

2ties of the UICSM and SMSG sequences.

^Fraser, pp. 27-28.
2National Council of Teachers of Mathematics, An 

Analysis of New Mathematics Programs, pp. 6-68.
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A recent publication sponsored jointly by the Ameri

can Association of School Administrators, Association for 
Supervision and Curriculum Development, National Association 
of Secondary-School Principals, and the National Council of 
Teachers of Mathematics, has stated:

The emphasis in mathematics programs today is upon 
mathematical structures learned in an atmosphere of 
active inquiry. The student is encouraged to think 
for himself and to realize that there are often 
many ways to reach a solution. He meets many basic 
mathematical ideas very early, and he broadens and 
deepens these concepts as long as he continues in the 
mathematics sequence.^

Little attention is directed to the details of the curriculum
efforts of individual study groups although their influence
upon the modern mathematics curriculum is recognized.

While three of the above-mentioned publications. The 
Revolution in School Mathematics, An Analysis of New Mathe
matics Programs, and Studies in Academic Subjects have been 
prepared specifically to orient educators to modern mathemat
ics programs and various other pertinent publications and 
articles in periodicals have appeared, no materials are 
available which present specific and exhaustive surveys of 
the UICSM and SMSG programs. No materials are available 
(other than the materials themselves) which will allow a 
potential teacher or curriculum director to compare intelli
gently the UICSM and SMSG programs.

^American Association of School Administrators, 
Administrative Responsibility for Improving Mathematics Pro
grams^, p. 7.
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Organization of Study 

As an introduction to the reporting of the study. 
Chapter I contains a discussion of the background of the 
problem, the statement of the problem and associated defini
tions and delimitations, a statement of the rationale behind 
the approach to the problem, and a review of literature per
tinent to the study. Chapter II contains a detailed critique 
of the SMSG materials based on mathematical content and se
quence and directed in particular toward the philosophy of 
the authors, placement of materials, attention to mathemati
cal structures, vocabulary, social application, concepts and 
skills, methods of presentation, and proofs. Chapter III pre
sents a similar study of the UICSM program. Chapter IV con
tains a detailed over-all comparison of the two programs and 
Chapter V concludes the study with the summary of the results 
of the study and the list of derived recommendations.



CHAPTER II 

THE SMSG SECONDARY MATHEMATICS PROGRAM

General Characteristics of the SMSG Materials
The set of SMSG textbooks selected for this study is 

composed of student Units 9 and 10, First Course in Algebra; 
Units 13 and 14, Geometry; Units 17 and 18, Intermediate
Mathematics; Unit 21, Elementary Functions; and Unit 23,
Introduction to Matrix Algebra. Teachers' commentaries for 
these units are Units 11, 12. 15, 16, 19, 20, 22, and 24, 
respectively. The textbooks were presumably prepared with 
Units 9 and 10 planned for the ninth-grade student, Units 13 
and 14 for tenth-grade consumption, Units 17 and 18 for elev
enth-grade use, and Units 21 and 23 for seniors.

The following statements by the SMSG are somewhat in
dicative of the philosophies guiding the efforts of that 
group.

The general objective of SMSG is the improvement of 
the teaching of mathematics in the schools of this 
country. . . . One of the prerequisites for the im
provement of the teaching of mathematics in the
schools is an improved curriculum— one which takes 
account of the increasing use of mathematics in 
science and technology and in other areas of knowl
edge and at the same time reflects recent advances 
in mathematics itself. . . . This healthy fusion of
the old age and the new should lead students to a 
better understanding of the basic concepts and

25
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structure of mathematics and provide a firmer founda
tion for understanding the use of mathematics in a 
scientific society.^

Thus, SMSG dedicates its efforts toward both understanding
and application in mathematics.

The commentaries which have been prepared for the 
teachers are correlated page-by-page with the student texts. 
They contain fairly complete solution sets, and constantly 
suggest pedagogical techniques as well as enrichment topics. 
Questions to anticipate from students as well as ones which 
might be posed are common. Suggested test items for most 
chapters are included. Although little formal mathematics 
is presented, references are made quite often to appropriate 
mathematical treatises.

First Course in Algebra, Units 9 and 10 

Introduct ion
A more meaningful analysis of the SMSG's First Course

in Algebra may be made in view of the objectives of the
course as stated by the authors :

The principal objective of the FIRST COURSE IN ALGEBRA 
is to help the student develop an understanding and 
appreciation of the algebraic structure exhibited by 
the real number system, and use of this structure as 
a basis for the techniques of algebra. More specifi
cally, we are interested in an exploration of the

School Mathematics Study Group, First Course in 
Algebra, Unit 9 (New Haven; Yale University Press, 1960), 
Foreword.
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properties of addition and multiplication of real 
numbers and their order properties.!

The authors recognize that very few students will possess suf
ficient mathematical maturity, experience, and insight and 
knowledge of the real numbers to utilize a purely axiomatic, 
deductive approach to the algebraic study of the reals. 
Therefore, the authors undertook this study of algebra with 
the assumption that the student was fairly familiar with the 
real numbers but that he possessed only very vague notions 
regarding their algebraic structure although he is fairly 
proficient with the "arithmetic" operations. Their realiza
tion of the non-maturity of the students causes the authors
to "intend to be quite informal and intuitive, but not in- 

2correct."
In view of the objectives of the course and the level 

of mathematical maturity of the students involved, these two 
units have been written in "spiral" form. These texts are so 
written that the student must read regularly and carefully 
the several pages of textual material— including discussions 
and informal questions— presented prior to each set of exer
cises in order to understand fully the concepts being devel
oped. The many exercises are correlated and interrelated with 
the text to promote understandings of the concepts already

^Ibid., p. ix. 
2Ibid., p. X .
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presented and also to open avenues for consideration of 
future topics. Student inquiry is emphasized.

Sets and the Number Line 
The student is introduced to the concept of set by 

the definition: "A set is merely a collection of objects."^ 
Little attention is directed toward the necessary "well- 
defined" property of sets. Convenient symbols are presented 
to indicate the description and formation of sets, e.g., 
braces to enclose the names of the elements or members of a 
set provided that it is convenient to list the members of the 
set completely or to indicate enough elements to establish an 
"and so forth" pattern, capital letters to name sets, and Ç! 
to abbreviate the empty, or null, set.

In view of the modern elementary programs in which 
these symbols are commonly used, it seems strange that the 
authors do not introduce the union and intersection of sets 
except in certain exercises and even then the terms per se 
are not used. Also the conventional set notation is not in
troduced, e.g., Vj to denote union of two sets, 0  to denote 
intersection of two sets, CH. to denote is a subset o f , Ê  to 
denote is an element of, and ^  to denote is not an element 
of. In like vein, the absence of set-builder notation or the 
use of set-generators is noticeable, e.g., { y  = 3x : x is an 
even integerJL , is not utilized.

^Ibid., p. 1.
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Tïie student is introduced to the number line (or, at 

least, the positive half of the number line) used in tradi
tional texts with the exception that emphasis is placed on 
the idea that the number associated with a point on the line 
is called the coordinate of the point and that, consequently, 
a coordinate is not a point. At this early point, the 
authors consider the graph of a set of numbers to be the cor
responding points on the number line whose coordinates are 
the numbers of the set. Thus the student becomes acquainted 
with the terms coordinate, associated with, and corresponding 
to. The student is led to develop addition and multiplication 
procedures involving non-negative reals by using the number 
line. in view of the fact that a line extends indefinitely 
far, the authors would be a bit more consistent if they would 
plant a "barb" on the ends of the segment used in each "pic
ture" of a line to indicate that the line extended past the 
edge of the sheet.

The student is also introduced to the previously 
troublesome distinction between finite and infinite by the 
statement that a set will be considered finite if the members 
of that set can be counted with the counting coming to an end 
or if the set is empty. Any non-finite set is to be regarded 
as infinite. An exercise develops the abstract parallel that 
every finite set can be placed into a one-to-one correspond
ence with a finite set of natural numbers— a property which 
does not hold for an infinite set. The fact that every
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infinite set can be placed into a one-to-one correspondence 
with a proper subset of itself later permits the intuitive 
formulation by the student of the more sophisticated defini
tion: "A set is said to be infinite if and only if it can be
placed into a one-one correspondence with a proper subset of 
itself.

The counting numbers (or natura1 numbers) have the 
property that they may be arranged in such an order that each 
number is followed by its successor. Hence, there exists no 
largest counting number. This, in turn, implies that the set 
of counting numbers is infinite.

A fraction is defined as being a symbol which indi
cates the quotient of two numbers, and a number which can be 
represented by a fraction indicating the quotient of two 
whole numbers (excluding division by zero) is a rational num
ber . The notion of the denseness of the nationals is used to 
intuitively guide the student to an appreciation of the fact 
that there are infinitely many points on the number line 
whose coordinates are whole numbers and/or nationals. Any 
discussion of irrationals and negatives is postponed until 
later although it is mentioned that every point has a number 
coordinate which may or may not be rational.

In one of the sets of exercises at the end of the
chapter, considerable attention is placed on the property of

2closure of a set under certain given binary operations.

^Ibid., p. 14. ^Ibid., p. 17.
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Numerals and Variables 

This chapter points out, and emphasizes quite strongly, 
the difference between number and numeral, between symbol and 
referrent, etc., and makes quite adequately the point that a 
numeral is a nonunique name for the abstract number. Since 
a numera1 is a name of a number, a given number may have many 
names. However, no undue pressure is placed on the student 
to force the distinction between number and numeral and it is 
conveniently accepted that a symbol may represent either the 
number or the numeral representing it in the event that no 
confusion may arise. It is indicated, however, that indi
cated sums such as "4 + 2," indicated products such as 
"3 X  2," indicated quotients such as "6 + 2," or combinations 
of these, are actually themselves names of numbers, with the 
understanding that an "equals" sign between two numerals in
dicates that these two numerals name the same number. It is 
furthermore postulated that an expression may not bear the 
distinction of being a numeral unless it represents a defi
nite number.

The term numerical phrase is used to denote any 
numeral given by an expression which involves other numerals 
along with the signs for operation. It is illustrated that 
punctuation in the form of parentheses, braces, etc., often 
must be introduced to eliminate ambiguity in numerical ex
pressions and to achieve numeral status.
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A particularly useful innovation— that of numerical 

sentences— is introduced. A numerical sentence is simply-the 
result of combining numerical phrases to make complete state
ments about numbers. The important fact about such a sentence 
involving numerals is that it is either true or false, but not 
both. Much discussion is devoted to the analogy between an 
English sentence and a numerical sentence; one wonders why 
the authors do not punctuate their numerical sentences with 
the period at the end and make the analogy more complete 1

By relying on the accepted rules of arithmetic, the 
student is led to confirm that for various choices of arith
metic numbers a, b, and c_, (a + b) + c = a + (b + c) . It is 
emphasized that all such sentences of this form have a com
mon pattern and the student is directed to conclude that 
every sentence having this pattern is true. This property of 
addition is named the association property of addition.

Similar consideration of patterns leads to the "dis
covery" of the commutative property of addition, and the as - 
sociation property of multiplication over addition. Since 
the discussion has been restricted to the arithmetic numbers, 
the student does not at this point quantify these properties,
i.e., he is not compelled to state the domain of the property. 
Neither does the student at this point use letters to repre
sent "general" numbers but rather verbalizes the properties. 
Many examples and exercises are presented to help the student 
make a habit of using these properties to facilitate
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computation and to help him become aware that the algorithms 
of arithmetic are possible because of these properties.

In spite of the informality of these discussions the 
authors illustrate very lucidly that the distributive property 
in the pattern already studied, i.e., a(b + c) = ab + ac, 
does not allow manipulation of (a + b)c without closer ex
amination. It is illustrated that an alternate pattern may 
be obtained, i.e., (a + b)c = ac + be. In a sense, the 
authors have developed and illustrated a need for both a 
right and a left distributive property.

The concept of variable is introduced by this defini
tion :

A letter used to denote one of a given set of numbers 
is called a variable. In a given computation involv
ing a variable, the variable is a numeral which re
presents a definite though unspecified number from a 
given set of admissible numbers.^

The set of values admissible for the variable is called the
domain of the variable.

Sentences and Properties of Operations
The numerical sentence (restricted to specified, 

definite numerals and being either true or false) introduced 
in the previous chapter is extended in this chapter to the 
open sentence. An open sentence is essentially a sentence 
involving one or more variables with the property that the 
truth or falsity of the statement is undetermined unless

^Ibid., p. 37.
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additional information is given, e.g., "x + 3 = 7" is neither 
true nor false until additional information regarding the 
domain and value of x is supplied. Great emphasis is placed 
on the necessity for the statement of the domain of the vari
able when open sentences are being utilized.

The truth set of an open sentence in one variable is 
defined as the set of all those numbers from the domain of 
the variable which make the sentence true, e.g., the truth 
set of the sentence "x + 7 = 9" is -̂ 2̂ . This notion is ex
tended to the graph of the truth set of an open sentence con
taining one variable (later referred to as the graph of a 
sentence) as being the set of all points on the number line 
whose coordinates are the values of the variable which make 
the open sentence true. The early study of sentences involv
ing inequalities— an innovation fairly unique to modern 
texts— is introduced quite naturally without unnecessary fan
fare. This introduction is facilitated by the use of the 
truth set rather than the traditional "the solution of an 
equation."

Much attention is directed toward preserving the 
analogy between open sentences and/or numerical sentences and 
the sentences of the English language. The variable involved 
in an open sentence is suggestive of a pronoun (since a vari
able is a name of a number) and symbols such as =, ^  ,
K ,  ft, etc., as being verb forms.
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Discussion is directed toward the study of compound 

sentences with the connectives and and or. The truth set of 
"Sentence A and Sentence B" is established to be the inter
section of the truth set of Statement A and the truth set of 
Statement B , whereas the truth set of "Sentence A ox Sentence 
B" is established to be the union of their respective truth 
sets. Similar extensions are made to include the graphs of 
these compound sentences. (Although the authors, indicating 
that such notation is not necessary, have not introduced con
ventional set notation such as symbols for union, intersec
tion , etc., this discussion could have been made much more 
precise and more easily manipulated had such symbolism been 
introduced.)

The remainder of this chapter is devoted toward a 
more general statement of the properties of the arithmetic 
numbers as derived and informally stated in an earlier chap
ter. The student is now forced to quantify his statements by 
describing the domain of the sentence and to use variable 
symbols in their statement. The student intuitively recog
nizes and formally states the closure property of addition 
and multiplication, the addition and multiplication proper
ties of 0, and the multiplication property of 1 .

It is of interest to note that, while in this chapter 
the student determines the truth sets of many open sentences, 
no "rules" are used for such evaluations. The student is en
couraged to "sift" the basic addition and multiplication
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facts, check their effect on the truth or falseness of the 
sentences involved, and thereby determine the truth sets. It 
is also refreshing, from the mathematical point of view, to 
note exercises involving binary operations "defined" on rather 
unusual domains in which the student must examine the proper
ties of these operations.

This chapter serves the purpose of causing the stu
dent to begin thinking of the system of arithmetic numbers 
more often in terms of its basic properties so that eventu
ally everything that he does with such numbers will be done 
with these properties in mind.

Open Sentences and English Sentences 
This particular topic deals very effectively with the 

generally frustrating problem of "thought" or "word" ques
tions which inevitably cause great concern to the average 
algebra student. Due to the fact that the open sentence was 
used earlier, this problem is simplified by reliance upon the 
existing analogy between a mathematical sentence and an 
English sentence. The symbol "+" may be thought of as being 
synonymous with the English expression of "sum of," "more 
than," "increased by," "older than," etc. Similar equiva
lents for "x," "-," and " exist.

Much practice material is provided the student in 
translating such phrases as "x + 5" into English equivalents 
(open phrases into word phrases), e.g., "5 more than the
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number of boys in a certain class," and "5 miles farther in 
one direction than another." Conversely, English phrases 
such as "6 feet longer than wide" may be written as "y + 6 "  
provided that y represents the number which is the measure of 
the width. In the ensuing discussion and exercises the stu
dent is encouraged to extend this process to sentences and to 
learn to translate a word problem into a mathematical descrip
tion (or open sentence) with the truth set of the open sen
tence consisting of the solution to the problem. As in previ
ous exercises dealing with truth sets of open sentences, the 
truth sets are determined by reasoned guessing and graphing 
on the number line. Open sentences having as verb forms 
other order relations are treated simultaneously with those 
having the verb "equals."

The authors implicitly emphasize that a great distinc
tion exists (and needs to be recognized) between a geometri
cal entity (line segment, rectangle, etc.,) and its various 
measures. It is also simultaneously apparent that the con
version of an English sentence into an open sentence removes 
from the sentence its physical connotations, i.e., the mathe
matical sentence has no connection with physical "reality" 
but is rather an abstraction symbolized by appropriate nota
tion. In several of the available exercises in this chapter, 
the authors introduce irrelevant information to promote an 
awareness of that which is necessary and pertinent in the 
structuring of a proper decision.
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The Real Numbers

In previous chapters the student was led to recognize 
that all counting numbers, zero, and rational numbers may be 
represented as coordinates of points of a half-line to the 
right of (and including) a given point labeled "0" on a num
ber line. It was suggested earlier that there are points on 
this half-line whose coordinates cannot be represented by 
such numbers and that their coordinates are called irrational. 
The union of all such numbers which may be used to represent 
coordinates of points on this half-line are given the title 
of arithmetic numbers. The first four chapters are devoted 
to an examination of the properties of this system of numbers 
under the binary operations of addition and multiplication.

SMSG suggests that the points to the left of 0̂  may be 
named in a similar fashion and labeled with symbols similar 
to those used for points to the right except that an upper 
dash will indicate that the point is to the left of 0̂,
e.g., “7 (read "negative 7") is the coordinate of a point 7 
units to the left of the point labeled 0̂, thereby obtaining 
a new set which is effectively a "mirror image" of the num
bers of arithmetic with respect to the point named 0_. The 
numbers which are coordinates of points to the right of 0̂ are 
renamed the positive real numbers, the numbers which are co
ordinates of points to the left are named the negative real 
numbers, and the set of all numbers associated with points on 
the number line is called the set of real numbers. Thus the
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numbers previously referred to as arithmetic numbers are now 
referred to as the non-negative real numbers. (The authors 
permit some notation that is a bit confusing, e.g., does 
“3/2 mean “ (3/2) or “3 + 2?^ The second interpretation would 
be premature in that no operations as yet have been defined 
for the negatives - They also use point, coordinate, and num
ber interchangeably.)

This particular development of the reals is somewhat 
unorthodox (with respect to standard algebra texts) in that 
no particular physical interpretation is demanded, i.e., no 
attempt is made to consider negatives as numbers "smaller 
than zero." The notation "“a" is particularly powerful in 
that no conflict can arise from inadvertent usage of the nega
tive "sign" to indicate the operation of subtraction. One 
also notes that there are no "plus numbers," i.e., there 
exists no need for such notation as "+6" since the non
negative reals are the arithmetic numbers. Those interested 
in the rigor involved will note that it will not be necessary 
to prove that the properties of the arithmetic numbers hold 
for the non-negative reals since they are the same sets. 
Neither will it be necessary to prove the isomorphism of 
these two sets.

In view of the use of the number line to define nega
tives it is not surprising that the number line is used to

^Ibid., p. 99.



40
define the "less than" order relation, i.e., "a < b" is de
fined to mean that â  is to the left of b on the number line. 
This definition is extended to permit the formulation of the 
transitive property of the reals and the comparison property 
(or the trichotomy property) of the reals.

The opposite of a non-zero real number is defined to 
be the other real number which is at an equal distance from 
0_ on the real number line. The lower dash is introduced
to mean "the opposite of." Hence, if a is positive, “a and 
-a ("negative a" and "opposite of a") are different names for 
the same number. But “a is undefined if â is a negative real 
although -a is not undefined, e.g., -(“4) = 4. (It follows 
that "-a" may be positive or negative according as to whether 
a is negative or positive, respectively). SMSG suggests that 
it seems "natural" to retain the "opposite of" symbol to mean 
either "negative" or "opposite of" when the number in ques
tion is positive. (The authors insist that the student read 
"-a" as "opposite of a" rather than "minus a", and further 
cautions him that "taking the opposite" of a number is not 
"changing its sign.") The opposite of ]0 is defined to be _0. ̂

The absolute-value of a non-zero real number is de
fined to be the greater of that number and its opposite. The 
absolute value of ^  is defined to be 0̂. The student formu
lates the equivalent definition; "If x ̂  0, |x| = x;

^Ibid., pp. 109-110.
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if X <  0, 1x1 = -x."^ Also Ixl is illustrated to be tbe non
negative number which is the measure of the distance between 
_0 and X on the number line. (It is noted that the absolute 
value of any real number is a non-negative real or an arith
metic number.)

Properties of Addition 
Since SMSG has earlier extended the system of arith

metic numbers to the system of real numbers, SMSG attempts in 
this chapter to develop an extension of the operation of ad
dition from the arithmetic numbers to the real numbers in 
such a way that the basic properties of addition are pre
served. Consequently, all definitions for addition of real 
numbers are developed using the absolute values of the reals. 
It is emphasized that a we11-planned and appropriate defini
tion for addition of the reals is formulated in order that 
the familiar properties of the operation of arithmetic may be 
proved as theorems for the reals in view of this definition.

SMSG attempts to lead up to a general definition of 
addition of the reals in a plausible way by making full use 
of the number line and the interpretation of the absolute 
value of a real number as the distance between the zero point 
and the number on the number line. Many examples employing 
gains and losses suggest how addition involving negatives

^Ibid., p. 115.
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must be defined in order not to conflict with physical inter- 

1pretation.
The general results of these many examples are stated 

as definitions both in English and in the language of algebra;
(a) If a and b are both negative numbers, then: 

a + b = - ( |a| + lb| ) .
(b) If a ^ 0 and b < 0, then : 

a + b = l a |  - |b| , if | a l >  |b|,
and a + b = - ( jb| - |a% ) if | b l >  |a| .

(c) If b 2: 0 and a <  0, then:
a + b = Ib| - I a|, if |b I >  |a| ^
and a + b = - (|a| - |b| ), if|a| >  lb|.

These definitions, complicated though they appear, contain 
only operations which are known by the student from previous 
experiences, i.e., operations defined on the arithmetic num
bers. SMSG is careful to use quite often the term "defini
tion of addition."

The student is led to examine several examples and to 
accept without proof the commutative property of addition, 
the associative property of addition, the addition property 
of opposites, i.e., for every real number a, a + (-a) = 0, 
the addition property of 0 , and the addition property of 
equality, i.e., for any real numbers â, b, and c_, if a = b, 
then a + c = b + c. The proofs of these properties are not 
given although the student is informed (and challenged to do 
so) that such properties could be proved by reliance on the 
definition of addition and the axioms of the arithmetic num
bers .

^Ibid., pp. 124-29. ^Ibid., p. 127.
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The addition property of equality is used to deter

mine the truth sets of various open sentences (or equations). 
Since the authors have not yet introduced equivalent equa
tions , SMSG insists that the expression, "If the equation is 
true for some number x, then . . ." be written each time the
addition property of equality is used. This form emphasizes 
that the addition property of equality claims only that if a 
number makes an equation true, then it will make a new equa
tion formed by the addition property of equality true, but 
not necessarily conversely. Therefore, any member of the ap
parent truth set must be checked to determine whether or not 
it is a solution. The "process" of transposition, a tech
nique often vexing to a conscientious algebra student, is 
never mentioned and the text is worded in such a fashion that 
the student will invariably use the techniques of "adding op
posites" rather than "carrying-across-and-changing-the-sign."

The additive inverse of a real number x is defined to 
be the number y. which when added to x yields 0. The first 
formal proof of the text establishes the uniqueness of the 
additive inverse of any real number and that, furthermore, 
the additive inverse of a real is its opposite. (The existence 
of the additive inverse is assumed ; the uniqueness of the ad
ditive inverse is proved.) A further proof establishes that 
the additive inverse of a sum is the sum of the additive in
verses of the addends.^

llbid., pp. 135-38.
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Properties of Multiplication 

By use of the absolute values of the real numbers and 
the operations of the arithmetic numbers, SMSG defines multi
plication of real numbers in such a way that the properties 
of multiplication of arithmetic numbers still hold for real 
numbers. No effort is made to make the definition "plausible" 
except to emphasize that an extension of the arithmetic num
ber system to the real system demands a particular definition 
if the structure of the real number system is to be the same 
as it was for the arithmetic number system. Using this defi
nition and the axiomated properties of the arithmetic numbers, 
SMSG proves the multiplication property of 1 , the multiplica
tion property of 0 , and the associative and commutative 
properties of multiplication for the reals.

It is stated that the distributive property holds for 
all real numbers. (However, this could not be proved at this 
point since if a ^  0, b 2 0, c <  0, a ( b + c )  = l a |  ((bl -
%c1) = |a| (b - lc|). But the distributive property for 
arithmetic numbers does not permit the statement %a% (b - 
|c| ) = |a| b - I at j| cl = ab - ac" since multiplication has 
not been shown to be distributive over subtraction!)

The multiplication properties and the theorem estab
lishing that ( -1) a = (-a) are used extensively to justify 
and pjerform a variety of algebraic simplifications (including 
multiplication of polynomials by monomials, binomials by
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binomials, etc.) as well as to determine the truth sets of 
various open sentences.

The existence and the uniqueness of the multiplica
tion inverse of all non-zero reals is stated without proof.
The multiplication property of equality, e.g., for any real 
numbers a, b, and ĉ, if a = b, then ac = be, is presented 
without proof.

Examination of various examples leads the student to 
formulate the notion that if to both members of an equation 
one adds a real number or multiplies by a non-zero number (in 
a sense, "reversible" processes), the new sentence obtained 
is equivalent to the original sentence, i.e., their truth 
sets are the same. Many exercises using the notion of 
equivalent sentences are presented to provide practice in 
finding the truth sets of open sentences. Various of these 
exercises are structured to emphasize that operations other 
than the ones listed above often lead to erroneous "truth" 
sets or to extraneous solutions.

The symbol "1/a" is used to abbreviate the reciprocal
of a or the "multiplication inverse of a ," i.e., for a / 0,
a(1/a) = 1 .  In view of this agreement, it is shown that

1 11/1/a = a, (1/a) (1/b) = 1/ab, ( =a- ) = -( ar ) , etc. The law
of cancellation (though not referred to as such) is proved and 
used to determine the truth sets of various sentences. This 
chapter also introduces the indirect and reductio ad
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absurdum proof as well as a preliminary discussion of induc
tive reasoning.

Properties of Order 
This chapter concludes the study of the structure of 

the real number system with an examination of the less than 
order relation. The less than relation has been defined 
earlier for number pairs in view of their relative positions 
on the number line, i.e., a <  b if and only if a lies to the 
left of b on the number line. This notion is used to study 
the addition property of order, i.e., if a, b, ĉ are real num
bers and if a < b, then a 4- c 4 b + c; and the multiplica
tion property of order, i.e., if a_ and b are real numbers, 
and if a <  b, then ac K. be if c is positive and be < ac if 
2  is a negative number. Many exercises regarding the truth 
sets of inequalities are presented.

(During the past three chapters in particular of this 
unit one notes a transition from an inductive to that of a 
deductive approach to the study of the real number system.
It would seem that a student might be somewhat confused at 
this point insofar as trying to decide what has been proved 
and what has not been proved— some statements regarding the 
system have been referred to as properties and others which 
appear just as fundamental have been called theorems while 
some properties have been "proved" and others accepted with
out proof.)
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SMSG now presents a notion amazingly sophistocated for 

freshmen algebra students which should serve to eliminate much 
of this confusion. It is suggested that the real number sys
tem might be considered abstractly as a set of elements for 
which binary operation of addition and multiplication along 
with an order relation less than are given with the proper
ties that (a) addition has closure, commutativity, associ
ativity, an identity element 0̂, and there exists a unique ad
ditive inverse for each element; (b) multiplication has clo
sure, commutativity, associativity, an identity element 1̂, 
and there exists a unique inverse for every non-zero number;
(c) multiplication is distributive over addition; that (d) the 
trichotomy property (or comparison property) and transitive 
property hold for the less than order relation; and that 
(e) the addition and multiplication properties hold for the 
less than relation. Thus the system of real numbers might be 
defined independently of the arithmetic numbers and studied 
as a system in its own right. Under such a consideration, 
real number, addition, multiplication and order relation be
come undefined terms, the fundamental properties become 
axioms, and all the other properties derived as logical con
sequences of these axioms become theorems. (It is noted that 
the level of maturity of the student prohibits the considera
tion of the other postulate necessary for the structure of a 
well-ordered field, i.e., the completeness property, i.e., if 
S is any set of real numbers for which there is an upper
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bound, then there exists a least upper bound for S.) It is 
emphasized that mathematics is concerned with the study of 
the properties of number systems and that it is by means of 
proofs that one "bridges the gap" between the basic proper
ties of the defined systems and the theorems which grow out 
of them. ̂

Subtraction and Division for Whole Numbers
The real number system has been described earlier as 

a system with the two operations of addition and multiplica
tion. For convenience, subtraction and division are intro
duced and defined directly in terms of the more basic opera
tion of addition and multiplication.

Subtraction of the real number b from the real number
â  is defined as adding the opposite of b to â, i.e. , a - b =
a + (-b) . This is proved to be equivalent to the theorem 
often given as the alternate definition (emphasizing that sub
traction is the inverse of addition) for subtraction: a - b =
c if and only if a = b + c. It is shown that subtraction is

2non-commutative and non-associative.
Division is defined in respect to multiplication in 

much the same way as subtraction to addition, i.e., "For any 
real numbers ^  and b (b ^ 0), "a divided by b" means "â  multi
plied by the reciprocal of b. . . . a/b = a(1/b), b / 0."^

1 2 Ibid., pp. 202-204. Ibid., pp. 209-18.
^Ibid.. p. 223.
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These two definitions and some related properties are 

used to show that if b ^ 0, d ^ 0, then (a/b) (c/d) =
Many exercises are presented to develop skill in simplifying 
numerical expressions to ones in which there are no indicated 
operations remaining which can be performed, and in which 
there is at most one indicated division (if any) with the num
bers being involved in the indicated division having no com
mon factors, i.e., writing the simplest numeral for the ex
pressions. These exercises include what have been tradition
ally referred to as complex fractions.

Factors and Exponents
This chapter presents a discussion which is concerned 

primarily with determining the prime factorization of inte
gers . This discussion is essential because SMSG uses the 
ideas of prime factorization for "reducing" fractions, find
ing the lowest common denominator of fractions, and simplify
ing radicals. The discussion is fairly orthodox while intro
ducing the terms factor, proper factor, common factor, and 
prime and utilizing the sieve of Eratosthenes to locate the 
primes. The Fundamenta1 Theorem of Arithmetic is used to as
sure one that the prime factorization of an integer is unique, 
One of the most important aspects of this discussion lies in 
the statement "usually factoring over the positive integers 
gives us the most interesting results, and so when we speak 
of "factoring" a positive integer, we shall always mean over
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1the positive integers." Many problems involving fractions 

in which the student determines the least common denominator 
by use of the least common multiples are presented.

A fairly traditional introduction to exponents is 
found in this chapter. The student is introduced to positive 
integral exponents and led to formulate "rules" for manipula
tion of powers. The system of exponents is extended to non- 
positive integral exponents by defining a^ = 1 and a~^ =
1/a*.

The many exercises involving simplification of alge
braic expressions presented demand that the student state ex
plicitly the domain of the variables involved so that the ex
pressions will be numerals for all values of the restricted 
domain. Many of the exercises involved demand a sophisticated 
appreciation of the material of the chapter and are used as 
theorems in later proofs in other chapters.

Radicals
The square root operation is introduced as the in

verse of the squaring operation studied earlier and is moti-
2vated by consideration of the truth set of X = b, b >  0.

The existence of two square roots is discussed with the posi
tive square root of b being denoted as the square root of b

^School Mathematics Study Group, First Course in 
Algebra, Unit 10 (New Haven: Yale University Press, 1960),
p. 252.
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y—and designated v X. This yields the observation that y X =

1x1 , - = -|x|.
The square root of 2 is shown to be irrational, i.e.,

it is proved by contradiction that any number whose square is
2 is not rational. (At the time of the axiomization of the
real number system in Chapter 8, SMSG authors stated: "The
completeness axiom is needed, for example, to prove the
existence of . In other words, we cannot prove, using only
the fifteen properties stated above, that there is a real num-

2 1ber a for which a = 2 . "  Therefore, this proof of the ir
rationality of \/2 does not establish the existence of '/2
but rather asserts only that any number whose square is 2 is 
irrational.)

Proof of theorems establishing that for non-negative 
numbers a and b , >/a / b  = ^ b  and that for a ^  0, b >  0,
/ a/b = / â y / b  authorizes the simplification (including ra
tionalization of the denominator of fractions) of expressions 
involving radicals. Great care is exercised in the statement 
of the domain for the variables involved in order that the 
phrases involved be meaningful.

A very excellent (and easily employed) technique for 
the approximation of /ÎC is presented. In summary, this 
method contains these steps :

^School Mathematics Study Group, First Course in 
Algebra, Unit 11 (New Haven: Yale University Press, 1960),
p. 226.
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1. To approximate write the number x as a num

ber between 1 a^j^lOO times an even power of 10;
V x  = X  / 1 0 ^ ^ .

2. Approximate y â  by some integer p between 1 and 
10. Define q = a/p, and determine the average 
(P + q)/2 as a second approximation to
/x %  t(P + q)/2] X 10*.

3. If a higher degree of accuracy is desired, let 
the second approximation assume the role of the 
first approximation p  in step (a) and repeat the 
process until desired accuracy is achieved.

The Teacher's Commentary actually establishes that the error
involved in these repeated approximations tends to 0̂, i.e.,
the sequence formed by these approximations converges to x .
(A very minor error is found in the text: "Thus if x is

/ 2 1positive or zero, then v x = x, a positive number ; . . .
If X = 0, = 0 which is neither positive nor negative.)

Polynomial and Rational Expressions 
This chapter develops factoring of expressions as 

being analogous to the prime factorization of positive inte
gers . The underlying definition of this chapter is that 
which defines a polynomia1 over a particular domain as being 
a phrase formed from variables and members of that domain 
with no indicated operations other than addition, subtraction, 
multiplication, or taking opposites. Therefore, the expres
sion "polynomial over the integers" is a different set of ex
pressions than "polynomials over the rationale" although the 
first set is a proper subset of the second. To factor a

^SMSG, Unit 10, p. 292.
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polynomial over a certain domain is to write a given poly
nomial as an indicated product of polynomials over the same 
domain.

The distributive property is used to structure the 
many techniques of factorization of polynomials including the 
"standard" forms found in most algebra texts for factoring 
quadratic polynomials, e.g., difference of squares, perfect 
squares, and completing the square. These techniques of 
factorization and the cancellation law are employed to deter
mine the truth sets of open sentences. (SMSG includes the
very welcome innovation of forcing the student to realize

2that the sentence "x - 6x + 8 = 0" is equivalent to the 
sentence "x - 4 = 0 or̂  x - 2 = 0" ; the truth set of the 
sentence is therefore ^ 2, 4^ •)

A rational expression is considered as being a phrase 
involving real numbers and variables with at most the opera
tions of addition, subtraction, multiplication, division, and 
taking opposites. Thus it is that the traditional problem of 
adding, subtracting, multiplying, and dividing "fractions" 
from conventional texts essentially becomes that of simplify
ing rational expressions. The analogy between rational ex
pressions and rational numbers and between polynomials and 
integers is constantly emphasized.

The "long" division process for polynomials is struc
tured on the successive subtraction of polynomial multiples 
of the divisor, obtaining at each step a polynomial of lower
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degree. The Division Algorithm for polynomials is considered 
as the basic premise for the operation.

Truth Sets of Open Sentences 
SMSG recalls that the procedure for solving a sentence 

consists of performing permissible operations (adding a real 
number to both members and/or multiplying both members by a 
non-zero real number) on the sentence to yield an equivalent 
sentence whose truth set is obvious. Many examples and exer
cises are given demanding careful attention to the concept of 
equivalent sentences and forcing the student to be careful to 
keep a record of the domain of the variable in order to main
tain equivalence. The addition property and multiplication 
property of inequalities are used to yield equivalent ine
qualities .

Many exercises are used to emphasize that solution to
sentences might inadvertently involve the solution sets of
compound sentences, e.g.,"a/x = b" is equivalent to the
sentence "a/x = b and x / 0" since a/x is not a numeral if 

2X  = 0 ; "x = 1 6 "  is equivalent to "x - 4 = 0 or̂  x + 4 = 0" ;
"ac = be is not equivalent to "a = b" but rather to "a - b =
0 or̂  c = 0." Many problems using simplifying processes which 
do not maintain equivalence, e.g., squaring both members, are 
presented.
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Graphs of Open Sentences in Two Variables 

This chapter extends the graph of sentences from the 
line to the plane by introducing the Cartesian coordinate 
axes and associating points of the plane with ordered pairs 
of real numbers (and conversely). The truth set of a sentence 
in two variables is defined to be the set of all ordered pairs 
which make the sentence true and the graph of the sentence is 
the set of all points whose coordinates are members of their 
t ruth set.

Some work is presented with graphs of open sentences 
involving integers only along with graphs of sentences involv
ing absolute values and inequalities. Certain compound sen
tences are also graphed by taking the union of the graphs of 
the component simple sentences if the connective is or and by 
determining the intersection of their graphs if the connec
tive is and.

Systems of Equations and Inequalities 
This chapter contains a graph-oriented study of sys

tems of simultaneous linear equations. Probably the most im
portant agreement is that the system

+ By + C = 0 1 
+ Ey + F = 0 /

Ax 
Dx + Ey

may be represented as the conjunction "Ax + By + C = 0 and 
Dx + Ey + F = 0." Since the truth set of the conjunction may 
be determined by finding the intersection of their graphs, a
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graphical process for solving systems of sentences is avail
able .

It is shown that if Ax + By + C = 0 and Dx + Ey + F = 0 
are the sentences of lines intersecting at exactly one point 
and if h and k are any two real numbers, then h(Ax + By + C)
+ k (Dx + Ey + F) = 0 is the sentence of a line passing 
through the point of intersection of the two lines. Therefore, 
one may choose multipliers h and k to obtain a line which is 
vertical (or horizontal) and which passes through the inter
section point. Consequently, one may "solve" a system by 
determining two lines one of which is vertical and the other 
horizontal and both of which pass through the intersection of 
the lines of the system, e.g., "2x + y - 4 = 0 and x - y + 1 
= 0" may be solved by writing the line h(2x + y - 4) + k (x -
y + 1) = 0 ,  choosing h = 1, k = 1 to obtain the sentence
"x = 1 " and then choosing h = 1 , k = - 2  to obtain the sen
tence "y = 2." This method, of course, is the graphical 
analogy of the method of addition for solving systems. The 
substitution method is also developed.

Quadratic Polynomials
In this chapter the parabola is examined by observing

the changes which occur when in the simple sentence y = x^,
the polynomial is multiplied by a, as some number h is added

2to X, and as some number k is added to x . This leads to the
changing by the completion of the square of any quadratic
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2 2 sentence y = Ax + Bx + C into the standard form y = A (x - h)

+ k— a form which facilitates graphing of the sentence. The
2relationship between the truth set of Ax + Bx + C = 0 and

the points of intersection with the x-axis of the graph of
2  2  y = Ax + Bx + C = a(x-h) + k is noted.

The standard form of the quadratic polynomial is used
2to solve quadratics. "x - 2 x - 2  = 0 " may be written as 

” (x - 1)^ - 3 = 0." But this sentence is equivalent to
" (x - 1  - >/^) (x - 1  + ^^3) = 0 ", which in turn is equiva
lent to "x - 1 - 3 = 0 or̂  X  - 1 + ^  3 = 0." Therefore,
the truth set is { 1 + 1 - ^ . (It is interesting

+ 2
to note that x = —  ~-- ~ ^ is never used to determine
the truth set of a quadratic sentence except in an exercise
in Chapter 17— a chapter which will probably not be studied
by a majority of students.)

Functions
This chapter developing the concept of function is

included here only for the consideration of selected classes
of better students as well as exceptional individual students.
A function is defined as follows:

Given a set of numbers and a rule which assigns to 
each number of this set exactly one number, the re
sulting association of numbers is called a function.
The given set is called the domain of definition of 
the function, and the set of assigned numbers is 
called the range of the function.

^Ibid., p. 573. ^Ibid., p. 576,

1
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The functions utilized for consideration in this chapter are 
real functions since the range and domain are restricted to 
the reals. The essential idea of the function as presented 
by SMSG is found in the actual association from numbers in 
the domain to numbers in the range and not in the particular 
way in which the association happens to be described and it 
is emphasized that not all functions can be represented by 
algebraic expressions. The terminology of independent and 
dependent variable so often used where the variables x and y_ 
are related by some function i.e., y = f(x), is avoided.
The student considers linear and quadratic functions as well 
as "bracket" functions involving absolute values.

Evaluation of Units 9 and 10 
The keynote of these units is the development of the 

materials by the use of a discovery approach. Many of the 
exercises are independent of the preceding problems and in 
some of the exercises there is very little continuity but, in 
general, the review exercises at the end of each chapter and'" 
the very excellent textual discussions (abounding in "How?," 
"Why?," "How do you know?," "Do you notice?," etc.) compen
sate for the occasionally weak exercises. The spiral approach 
and the "from inductive to deductive" approach to proofs with 
their associated "rules" should serve to implement mastery of 
concepts and skills. By the presentation of leading questions 
and through the verbalization presented in the texts, the



59
student is given ample opportunity to discover the basic 
structure of algebra.

The SMSG First Course in Algebra maintains an excel
lent balance between concepts and skills. Many of the "drill" 
exercises common to traditional texts are now needless (or at 
least to the degree exercised in the past) in view of the 
developed understanding of the algorithms on the part of the 
student. In most instances, however, new ideas and their 
significance are emphasized by multitudes of well-placed, 
well-structured exercises, which develop and demand under
standing of the topics under consideration. In addition, the 
teacher's commentary provides suggested test items and review 
problems for each chapter.

First Course in Algebra attempts to develop in the 
student the ability to think in terms of general patterns and 
structures so that he may make pertinent social applications. 
The materials presented stress the ability to construct and 
manipulate in an original fashion the tools of structural 
mathematics rather than to manipulate in a rote fashion the 
symbols involved. Insofar as social applications are intro
duced with each section of exercises rather than in sets all 
of which follow a certain algorithm for structure and solu
tion, very few sets of exercises involving just "applied" 
problems are found. Some critics have shown alarm over the 
lack of such problems but the writer of this paper has
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counted at least 267 "story" problems in addition to the multi
tude of other types of problems.

The mathematics materials found in these texts are, 
with very few exceptions such as prime numbers, functions, and 
deductive proofs, the same as those found in traditional texts 
except that of course a vastly different and modernistic ap
proach is utilized. Very few topics covered in traditional 
texts are omitted. However, the traditional texts would not 
be concerned with the general, abstract proofs nor would they 
exercise as much precision in the definition and language 
used in the discussion of variables, order, relations, abso
lute values, sentences, etc., and factoring although the
topics would be covered.

The vocabulary for this course is fairly similar to 
that found in traditional texts although a considerably more 
precise language is used. New terms introduced include sets, 
sentences, phrases, open sentences, opposites, inverses, 
equivalent, truth sets, etc. The student should become very 
aware of the role of the definition in mathematical thought. 
Extensive use is not made of symbols such as U  / O  ,V  3  ,
3 , 5^, etc., although their antecedents are verbalized quite 
regularly.

The "proofs" involved progress from inductive to de
ductive in nature. it is not until Chapter 6  that the stu
dent sees a deductive proof but the textual material and exer
cises from that point on provide ample opportunity for
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development of direct deductive proofs, indirect proofs, 
proofs by contradiction, etc., and the use of the tools of 
precise definitions, axioms, and theorems to sharpen these 
proofs. It appears, however, that the student may have con
siderable difficulty in ascertaining just what has been proved 
and what has not been proved since many "fundamental" theorems 
are presented without proof whereas many which appear equally 
"fundamental" are presented along with fairly rigorous proofs. 
Of course, students at this level are incapable of exploring 
and proving everything about the real number system.

Geometry, Units 13 and 14 

Introduction
Any fruitful consideration of the scope and sequence 

of the SMSG Geometry requires an understanding of the goals 
and objectives of the authors. The preface to Geometry con
tains these reyealing statements by the authors ;

We began and ended our work with the conyiction that 
the traditional content of Euclidean geometry richly 
deserves the prominent place which it now holds in 
high-school study, and have made changes only when 
the need for them appeared to be compelling. . . .
The basic scheme in the postulates is that of G. D. 
Birkhoff. In this scheme, it is assumed that the 
real numbers are known, and they are used freely for 
measuring the distance and angles. . . .  If we assume 
the real numbers, as in the Birkhoff treatment, then 
the handling of our postulates becomes a much easier 
task, and we need not face a cruel choice between 
mathematical accuracy and intelligibility. . . .  It 
seems a good idea in itself to connect up geometry 
with algebra at every reasonable opportunity so that 
knowledge in one of the fields will make its natural 
contribution to the understanding of both. . . - We
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have, therefore, based the design of both the text 
and the problems on our belief that intuition and 
logic should move forward hand in hand.l

In view of these philosophies, the authors assume some knowl
edge on the part of the student of the real number system.
This very modern approach to Euclidean geometry places great 
emphasis on the fundamentals of geometry and the texts attempt 
(though not demanding a logically complete system) to give a 
complete foundation of postulates and definitions as well as 
constant reinforcement of developed basic concepts through a 
multitude of well-constructed exercises emphasizing discovery 
and understanding. The texts are quite verbose as compared 
with traditional texts.

The Teacher * s Commentary (Units 16 and 17) has sev
eral unusual characteristics. In addition to a running com
mentary containing pertinent questions to consider, solutions 
to all but the simplest of the exercises, discussion of ques
tions which are likely to arise, and the mention of points 
which should be emphasized, these commentaries contain some 
rigid proofs of some of the theorems whose rigor forces the 
discussions to be logically incomplete for student consump
tion. These commentaries also classify every exercise in the 
text as being members of one of three classes: (1 ) problems
that relate directly to the text; (2 ) problems that are 
similar to, and yet a bit more difficult than the first group

^School Mathematics Study Group, Geometry, Unit 13 
(New Haven: Yale University Press, 1960), Preface.
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and which may be used for additional drill problems and as 
challenge problems for better students; and (3) enrichment 
problems that develop ideas as extensions of the information 
provided in the text. These commentaries also provide 
"Talks to the Teachers," a series of short, teacher-enrichment 
essays dealing with some topics, e.g., "Facts and Theory," 
"Equality, Congruence, and Equivalence," "Introduction to 
Non-Euclidean Geometry," and "Miniature Geometries," that 
cannot be dealt with conveniently and directly with particu-^ 
lar topic discussions in the text. Also provided are lists 
of review exercises and possible text items.

Common Sense and Organized Knowledge
This chapter is evidently constructed with the pur

pose in mind of presenting the difference in magnitude of 
difficulty existing between various mathematical problems.
It is impressed upon the student that once the basic informa
tion regarding a problem has been analyzed and organized, it 
is necessary to remain within the framework of this informa
tion to "solve" the problem.

The structure of a definition is explained from the 
viewpoint of "substitution," i.e., a definition is merely a 
mutually-agreed-upon substitution of a single word (or words) 
to serve as a synonym for a more complicated (and perhaps 
lengthier) expression. As a result, it is never necessary to 
"prove" a definition— a definition is merely an inter- 
subjective agreement to be used in communication. In view of
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the fact that all definitions utilize other words and terms 
in their statements, it is apparent that it is impossible to 
"define" all ideas, concepts, and other entities. Conse
quently, some terms must be utilized without definition; 
these, of course, are to be regarded as undefined terms and 
their meanings must be common to all undertaking a discussion. 
The undefined terms of the SMSG treatment of geometry are 
introduced as the point, line, and plane. The authors should 
also admit that they are regarding straight as undefined when 
line is restricted to mean straight line— an agreement neces
sary to the later "definition" of between.

The general nature of the mathematical proof suggests 
that these definitions, undefined terms, and resulting 
theorems will be used to construct and prove other theorems.
It becomes apparent that there can be no "first" theorems 
proved since no theorems would be available for use as founda
tions. Consequently, certain basic geometrical "statements" 
will be used and accepted as true without further substantia
tion as to the "truth" of these statements. The oft-quoted 
definition of these postulates as being "self-evident truths" 
is not suggested. SMSG Geometry suggests that any geometry 
is an invention to describe a particular system, e.g., the 
Euclidean geometry is an excellent approximation to 2- 
dimensional and 3-dimensional physical environment and physi
cal space but other systems are more functional under differ
ent conditions. It is suggested that the "purpose of stating
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postulates is to make it clear just where we are starting, 
and just what sort of mathematical objects we are studying."^ 
Thus, one can then build up a solid, organized body of "facts" 
about those mathematical objects.

Sets, Real Numbers, and Lines 
Chapter 2 immediately presents a radical departure 

from the traditional text in plane geometry. A very excel
lent, though brief, discussion of the fundamentals and lan
guage of set theory is introduced. No attempt is made to 
present this topic as one of great sophistication but rather 
an effort is made to cause the student to recognize that this 
is merely a convenient tool— a mathematical shorthand— to be 
utilized as need arises. Considerable rigor is displayed in 
examples and problems but rigorous notation and symbolism is 
not emphasized, e.g., the symbols LI, f\ , and C , (union, 
intersection, and contained in or is a subset of) are not 
used. Plane and line (and indeed all geometric figures) are 
considered as sets of points. Sufficient terminology is in
troduced to provide the capable student with a working group 
of point-set theory although the study is not exhaustive.

Another unorthodox feature (as compared to traditional 
texts) of this chapter is the presentation of an excellently- 
written topic dealing with the real number system, discussing 
quite adequately the positive, negative, and zero integers,

^Ibid., p. 9.
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rational numbers, irrational numbers, and the notion that the 
set of real numbers is merely the union of these sets. The 
concept of number itself is left dormant and the assumption 
is made that either the student already appreciates the ab
straction of number or that such rigor is not needed at this 
point.

The result of this discussion is presented in the 
statement of the "ruler postulate" which is usually reserved 
for more sophisticated discussions and which permits the coor- 
dinatization of a line: "The points of a line can be placed
in a correspondence with the real numbers in such a way that 
to every point of the line, there corresponds exactly one 
real number and to every real number there corresponds exactly 
one point of the line. This postulate, along with the de
veloped properties of the real number system of uniqueness of 
order, transitivity of order, inequality relations, existence 
of square roots, absolute value, etc., enables the authors to 
lend an algebraical flavor to many geometrical concepts.

The Ruler Postulate and the two subsequent postulates,
the Ruler Placement Postulate ("Given two points P and Q of a
line, the coordinate system can be chosen in such a way that
the coordinate of P is zero and the coordinate of Q is posi- 

2tive." ) and the Distance Postulate ("To every pair of differ
ent points there corresponds a unique positive number."^)

l%bid., p. 36. ^Ibid., p. 40. ^Ibid., p. 34.
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anticipate the consideration of the distance between two 
points A and B (or the length AB) as being the absolute 
value of the difference of the corresponding numbers on the 
real number scale. The introduction of the real numbers in 
these postulates serve as a pedagogical device at this level 
to avoid the necessarily sophisticated study of measure 
theory.

The evasive term of "betweenness on a line" is also 
dealt with very adequately by reliance upon the introduction 
of correspondence of points with the set of real numbers and 
the undefined terms straight line, or line. B is to be con
sidered as being between A and C if and only if A, B , C are 
distinct points on the same line and the measure of the dis
tance between A and B added to the measure of the distance 
between B and C is equal to the measure of the distance be
tween A and C. The segment AB is considered as the set of 
points having as elements the end points A and B together 
with all points that are between A and B. Considerable 
emphasis is placed on the difference between the segment (a 
geometrical figure, or set of points) and the length (a real 
number) of the segment. Similar statements suffice to define 
a ray A]^ as the set which is the union of segment AB and the 
set of all points C such that B is between A and C. This 
definition allows the definition of opposite rays, i.e., if A
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is between B and C, then and AC? are called opposite rays.^ 
Sufficient notation is introduced to serve as sign vehicles 
for these ideas, e.g., the line through A and B is represented 
by the line segment connecting A and B is represented by
AB, the ray emanating from A and containing B by KÊ, and the 
measure of AB by AB.

The student as of yet has not been required to prepare 
formal proofs but rather merely to answer searching questions 
which have been prepared in such a fashion as to demand a 
working knowledge of the materials presented.

Lines, Planes, and Separation 
As any person who has ever taught plane and solid 

geometry realizes, much effort must be spent in plane geometry 
in "forcing" the student to restrict his thinking to a plane 
while an equal amount of time must be spent in solid geometry 
trying to stimulate the student to enlarge his field of 
thought to 3-space. SMSG, feeling there should be no separa
tion of solid geometry from plane geometry, faces the issue 
squarely and discusses some of the ideas of solid geometry 
early in the course. It is with this view in mind that, re
membering the undefined terms of point, line, and plane, this
definition is presented: "The set of all points is called

2space."

^Ibid., p. 46.
^Ibid., p. 53.
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In this chapter is found a very "modern" concept, 

namely that of convex set. A set of points A is referred to 
as convex if for any two points P and Q of A, the entire seg
ment PQ lies in A, i.e., PQ is a subset of A. This contrasts 
vividly with the standard usage that a polygon is convex if 
all its angles are less in degree-measure than 180. The mod
ernistic idea of convex sets as presented by SMSG does not 
restrict itself to plane polygons and lends itself quite 
readily to discussion of regions, interiors of circles and 
spheres, etc.

Finally, the separation of a plane into two half
planes (which are themselves convex sets) by one of its lines 
and the separation of a space into half-spaces (also convex 
sets) by one of its planes is postulated. This again is a 
concept usually mentioned briefly (or not at all) in standard 
texts on the pretext that either it is too sophisticated for 
secondary students or that it is too obvious for discussion. 
Its importance in the SMSG text lies in the discussion of the 
idea of "oppositeness," i.e., opposite sides of a line or 
plane, a notion often assumed as undefined but which is 
troublesome to rigorous geometers.

Angles and Triangles 
In traditional high school texts, interior of an angle 

is taken for granted since a point "obviously" lies inside an 
angle or it lies outside the angle. The earlier discussion
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of betweenness and same side of by SMSG allows the authors to 
adequately define the interior of an angle.

This chapter also presents some very careful defini
tions for angles, triangles, etc. An angle is defined to be 
the union of two rays having the same endpoints but not being 
subsets of the same line; hence no possibility for a "straight" 
angle or a "zero" angle. A triangle is defined as the union 
of the segments AB, BC, and AC, where A, B, and C are any 
three non-collinear points.^ (These definitions demand the 
rather unusual result that, although a triangle determines 
three angles, it cannot be said that, since the sides of an 
angle are rays of infinite length, the triangle contains the 
three angles.) A very careful discussion is presented as to 
the conditions under which a point lies inside a triangle, a 
discussion leading to the consideration of the elements of 
the interior of a triangle as the intersection of the interi
ors of the three angles determined by the triangle.

The Angle Measure Postulate, the Angle Construction 
Postulate, and the Angle Addition Postulate permit the coor- 
dinatization of an angle in a fashion analogous to that used 
to coordinatize a line. The real number x (0 < x <  180) 
corresponding to a particular angle ^ A B C  is defined as the 
measure (actually the degree-measure) of the angle (and 
written m (^ABC) = x ) . It again will be noted that under

^Ibid., pp. 71-72.
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the definition of the measure of an angle, there is no angle 
whose measure is 0  or 180.

If and A(? are opposite rays and AI^ is another ray 
then ^BAD and /L DAG form a linear pair, and it is postulated 
that if two angles form a linear pair, they are supplementary 
and hence the sum of their measures is 180. A right angle is 
defined as an angle which is one of a linear pair of two 
angles having the same measure; hence the degree-measure of a 
right angle is 90.

Another novel definition is presented in this chapter 
in the definition of two angles as being congruent if their 
measures are the same real number. This treatment is trig
gered by the gross misuse of the word egual. The statement 
that ^  ABC “= CDE indicates simply that these angles (or 
both sets of points) have the same measure, i.e., m (Z ABC) = 
m (Z.CDE), and may or may not be equal sets.

Congruences
The conventional plane geometry text describes two 

congruent figures as being figures such that one may be made 
to coincide with the other without "changing their shapes." 
Such a demand implies assumption of various properties of geo
metrical figures which are invariant under such transforma
tions .

The SMSG materials present an approach to congruency 
somewhat in contrast with this approach. Two triangles.
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AABC and ADEF, for example, are considered congruent if at 
least one congruence exists between them. A congruence exists 
between these two triangles if (but not only if) there is a 
one-one correspondence ABC DEF between the vertices such 
that the corresponding angles are congruent and such that 
AB = DE, AC — DF, and BC — FE• It is further emphasized that 
AABC = A  DEF implies that there exists at least one such cor
respondence between these two triangles but there might exist 
more than one congruence, e.g., the triangles may be equilat
eral in which case A D, B E, C F (or ABC <r> DEF) and 
A E, B D , C F, (or ABC <-> EDF) would both be suitable 
one-one correspondences between the two triangles.) In view 
of this approach the statement A  ABC '= A  DEF yields this 
wealth of information: AB - DE, AC = DF, BC = EF, Z. A ^  Z. D,
Z  B = Z E , m (Z. A) = m  (ZD), m ( Z B) = m ( Z E) , m ( Z C) = 
m ( Z  F) , AB = DE, AC = D F , and BC = E F . The notation ABC ■<-> 
DEF is particularly applicable in that it not only identifies 
correspondence (or congruence) but also within itself labels 
the "corresponding sides" and "corresponding angles," proper
ties which often cause the student considerable difficulty in 
identification.^ The Side Angle Side Postulate is stated in 
practically the same language utilized by Hilbert and is in
troduced as the preliminary step for the attack of the prob
lems of determining the congruence of triangles.

^Ibid., p. 115.
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It is in this chapter (and not before) that the stu

dent is required to construct proofs. Although some "para
graph" proofs are used by the authors, the form utilized for 
proof by the student is essentially that of the traditional 
synthetic proof with the exception that the rigorous language 
already introduced is used.

A Closer Look at Proof
Prior to this point, the student has had only casual 

contact with complicated and rigorous proofs although a very 
inclusive vocabulary and a broad set of postulates (and 
several theorems) have been introduced. It is in this chap
ter, however, that the student is given an introduction into 
the rigor of a "good" deductive proof and the place and role 
of the arbitrarily-stated postulate and mutually-agreed-upon 
definition are made apparent. It is also suggested that in 
the solution of a geometry problem, the problem is translated 
into a special language to be utilized for solution but that 
the solution of the problem is independent of the environment 
leading to the problem. This then places the logic, symbol 
manipulation, etc., into a separate realm than the geometry 
problems themselves.

Logic and its structure is discussed adequately 
through informal processes. Consequently, the only apparatus 
of logic that is introduced is that which is necessary to the 
use of geometrical proofs. Very little of the symbolism of
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logic is introduced and the treatment is somewhat that of an 
intuitive approach. The indirect proof is introduced as a 
powerful tool in "contradiction-of-assumption" proofs.

An unorthodox innovation of this text lies in its 
expenditure of considerable time and discussion in the clari
fication and recognition of the necessity of consideration of 
the properties of existence and uniqueness and its emphasis 
that one does not necessarily imply the other. The careful 
concern over justifying existence and uniqueness becomes par
ticularly important when points, lines, segments, and other 
auxiliary sets not accounted for by the conditions of a prob
lem are introduced into a proof. Emphasized also are the 
necessity for proof of "obvious" statements and the inherent 
dangers which lie in proofs which are based upon the examina
tion of a geometric figure.

Geometric Inequalities
This particular chapter deals with the standard 

theorems developed in plane geometry relating to the inequali
ties inherent in geometrical considerations. The material 
covered in this chapter is quite similar to that found in cor
responding chapters of traditional texts with the major innova
tion being that line segments and/or angles are compared 
through the property of their measure— a result of the dis
cussion of the real number system and the consideration of 
the Ruler Postulate for the coordinatization of the line.
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Therefore, although the inequalities being considered describe 
and quantify geometric relations, they involve only real num
bers .

Perpendicular Lines and Planes in Space 
The material presented in this brief chapter deals 

primarily with lines and their relationships with planes —  
perpendicular, parallel, etc.,— in 2-dimensional and 3- 
dimensional geometry. The treatment is largely intuitive al
though some effort is directed toward examination of the 
existence and uniqueness of lines perpendicular to planes, 
etc. Of course, this general topic traditionally has be
longed to solid geometry but the postulates and theorems of 
earlier chapters mahe its consideration very feasible and ad
vantageous at this point.

Parallel Lines in a Plane 
This chapter presents the standard definitions and 

theorems (except that they are couched in set language) of 
"parallel" properties of lines in a plane along with the dis
cussion of transversals, alternate interior angles, etc., as 
developed in all geometry texts. Accompanying this discussion 
is the very carefully-stated and concise definition of a 
quadrilateral as a union of line segments which leads to the 
proofs of the various theorems involving the many types of 
quadrilaterals, e.g., the square, the rhombus, and the rec
tangle .
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Parallels in Space 

This chapter develops, through a fairly conventional 
treatment, a study of the properties of parallelism and per
pendicularity of lines and planes in space and extends these 
properties to the consideration of the projections of figures 
on a plane. The major departure from traditional texts is 
that set-language is utilized for the definition of dihedral 
angles (as the union of a line and two non-coplanar half
lines having this line as their common edge) and the measure 
of a dihedral angle as being the measure of any of its plane 
angles. This, of course, is equivalent to the coordinatiza
tion of a dihedral angle. It is noted that this entire chap
ter dealing essentially with 3-dimensional geometry would be 
found traditionally in a solid geometry text rather than a 
plane geometry text.

Areas of Polygonal Regions 
Due emphasis is placed in this chapter upon the dif

ference between a polygon and the region that it bounds, or a 
polygon and its interior. Such emphasis is necessary in that 
the polygon has been defined as a set of points and as such 
does not "contain" anything except the points in its sides. 
Consequently, SMSG uses as the basic tool the triangular re
gion defined as the union of a triangle and its interior 
points since one can fairly easily define interior insofar as 
a triangle is concerned. A polygonal region can be considered
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always as the union of a finite number of coplanar triangular 
regions such that if any two of these regions intersect, the 
intersection is either a segment or a point. It is further 
postulated that to every polygonal region there corresponds a 
unique positive number with the area of the polygon being de
fined as that number, and it is duly emphasized that the 
measure of the region is the property being discussed when 
one mentions the area of a polygon. It follows that the area 
of a polygonal region may be determined by considering the 
sum of the areas of the component triangular regions. One 
notes that the SMSG approach to the study of area is by 
postulation rather than by attempting to derive areas from a 
definition based on a measurement process. It is further 
postulated that the area of a rectangle (a real number) is 
the product of the length of its base (or at least its meas
ure) and the length (or measure) of its altitude.^ Considera
tion of the rectangle and various transformations allows the 
structuring of "formulas" (stated in theorem form) for deter
mining the measures of the areas of squares, parallelograms, 
triangles, trapezoids, etc., along with a proof and discus
sion of the Pythagorean Theorem. A multitude of mensuration 
problems using these developed theorems is provided.

^School Mathematics Study Group, Geometry, Unit 14 
(New Haven: Yale University Press, 1961), p. 322.
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Similarity

The most drastic difference between this topic and 
its counterpart in traditional texts is the very definition 
of similar triangles : "Given a correspondence between the
vertices of two triangles. If corresponding angles are con
gruent and the corresponding sides are proportional, then the 
correspondence is a similarity, and the triangles are said to 
be similar. It must be noted that the definition is a par
ticularly apt one since the duality of conditions leads to a 
quite natural extension to similarity of general polygons.
It is later shown that the existence of either of the proper
ties of similarity for triangles implies the other but that 
such is not the case for the general polygon in which both 
conditions must be satisfied.

Circles and Spheres 
Chapter 13 develops the standard terminology and 

theorems for circles as developed in conventional texts ex
cept that distinction is made between a circle and its inter
ior . The interior is defined very adequately as being the 
union of the circle and the set of all points in the plane of 
the circle whose distances from the center are less than the 
radius. The common properties and theorems regarding a circle 
are extended to its 3-dimensional counterpart, the sphere, and 
it is in this extension that departure from tradition is noted,

^Ibid., p. 365.
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Characterization of Sets Construction 

This chapter deals very efficiently with the tradi
tional material of loci and simple straight-edge-and-compass 
constructions with a largely conventional treatment. The 
really significant innovation is the use of characterization 
of a set rather than locus— as a matter of fact, the term 
locus is not used. Therefore, the authors concern themselves 
with defining, or characterizing, a given set of points by 
means of the property which each and every element of the set 
must satisfy, e.g., a circle is characterized as the set of 
points in a given plane at a given distance from a given 
point.

The basic theorems on concurrence of angle bisectors, 
side bisectors, medians, etc., of triangles are considered.
The techniques of Euclidean construction (using compass and 
straight edge) are introduced and the impossible construction 
problems of antiquity— trisection of the angles, duplication 
of the cube, and the squaring of the circle— are discussed.

Areas of Circles and Spheres 
The area and the circumference of a circle are defined 

as being the limiting value of the area and perimeter, re
spectively, of an inscribed regular polygon as the number of 
sides increases without limit. No rigid discussion of the 
meaning of (or the conditions for the existence of) a limit 
is present but an excellent intuitive approach is utilized.
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A similar idea involving the sum of equal chords of a circular 
arc is used to intuitively derive the expression for the meas
ure of an arc and the area of a circular sector.

Volumes and Solids 
This chapter, a chapter never found in traditional 

plane geometry texts, develops quite rigorous definitions and 
proofs concerning various 3-dimensional solids. Cavalieri's 
Theorem is postulated and serves as the key to the derivation 
of relations for determining the volume measures of prisms, 
pyramids, cylinders, and cones. Relations for the area and 
volume measures of spheres are developed t>y reliance upon the 
intuitive limit notion discussed earlier.

Plane and Coordinate Geometry
The SMSG text presents a well-written discussion of

2 -dimensional, coordinate geometry which is "just about
enough to give you an idea of what it is like and how it 

1works." Sufficient study is devoted to the system to de
velop plotting of points on a coordinate plane, the distance 
formula, the midpoint formula, the slopes of a line and its 
use in determining perpendicularity and parallelism, equa
tions of straight lines, the canonical equation of the circle, 
and analytic proofs of some of the theorems proved earlier by 
synthetic techniques. This chapter is not essential to the

^Ibid., p. 567,
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continuity of the course but serves rather as an enrichment 
topic.

Evaluation of Units 13 and 14 
SMSG's Geometry is devoted mainly to Euclidean plane 

geometry with some chapters on solid geometry and a short 
introduction to analytic geometry. The chapter on analytics 
is not necessary to the development and continuity of the 
course and might be considered as enrichment. All of the 
theorems and corollaries found in traditional texts are pres
ent in these texts. A very precise point-set language is 
maintained throughout along with a careful statement of postu
lates based on the Birkhoff postulates. Through the use of 
the real numbers for coordinatization of lines and angles, a 
pedagogical instrument is available to discuss distances, 
lengths, inequalities, etc., and, consequently, a flavor of 
algebra is noted in this treatment. There is an adequate 
display of material for a full year's work.

These units emphasize mathematical structure and the 
student should achieve a better understanding of the very 
nature and philosophy of mathematics. The student intuitively 
examines a concept, observes its verbalization into a precise 
language, and then studies the application thereof.

Most of the definitions presented are first discussed 
from an intuitive viewpoint and then stated in precise termin
ology. This precision in statement is maintained without
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excessive length and the materials are consistent in the use 
of these precise definitions once they have been formulated. 
Many terms new to conventional treatments are found, e.g., 
set, member, union, intersection, half-line, half-plane, 
separation, half-space, one-to-one correspondence, congruence, 
ordered-pair, linear pair, measure, region, convex set, 
region, oppositeness, uniqueness, betweenness, etc. The 
authors never use the term plane geometry but rather the 
simple, more-inclusive term geometry. Intensive use of sym
bolism is not employed, e.g.,LJ , 0  , €  , d  , , 3  , and
V  are never introduced and set-builder notation is not avail
able .

Again the keynote of these texts is student discovery 
and appreciation with the student participating in the intui
tive processes that establish conjectures, and then helping 
to formulate formal proofs. The student is not given a sys
tem to use and apply but rather it is hoped that the student 
will become a contributing part of the development of the 
system and thereby appreciate more fully the materials. Al
though these texts employ a metric approach and contain con
siderably more algebra than traditional texts, the traditional 
structure of geometry is preserved.

There are very few problems (other than several men
suration problems) that are of a social nature. These prob
lems that are "applied" in nature generally occur in the
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intuitive discussions and occasionally a physical situation 
is described to illustrate a theorem being formulated.

The proofs, stated in essentially the same form as 
the traditional synthetic proofs, are as a whole, fairly com
plete and rigorous for the students at this level. The 
authors do not attempt to camouflage proofs which are too in
volved and rigorous for student appreciation but rather empha
size these "gaps." The textual material engages, as a rule, 
the "paragraph" proofs accompanied with adequate discussions. 
Formal logic is not included.

Intermediate Analysis, Units 17 and 18 

Introduction
Units 17 and 18, Intermediate Analysis are the first 

units of the SMSG materials in which the SMSG curriculum 
deviates in a drastic fashion from its traditional counter
parts . Several very important characteristics of the text
are immediately ascertained by a glance through the chapters.
Since only one year is devoted at the tenth grade level to 
both plane and solid geometry, additional time is present for 
eleventh grade consideration of additional topics. The 
authors have elected to devote this extra time to trigonometry, 
vectors, and a more extensive treatment of complex numbers 
than ordinarily attempted at this grade level. The control
ling philosophy of the writers seems to be that one of the
fundamental objectives of these two units is to advance
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the student's understanding of number systems and their struc
tures . These units demand that a student possess good manipu
lative understanding of the real number system as well as a 
fairly adequate background in geometry. The scope and se
quence of the materials reflect a highly optimistic attitude 
on the part of the writers in that there is an abundance of 
material to be digested in the course. As a matter of fact, 
any student who thoroughly understands and possesses hoped- 
for manipulative skills with the materials could, with very 
little enrichment, pursue a beginning course in the calculus.

Number Systems 
This chapter is dedicated to the careful study of the 

natural numbers, the integers, the rational numbers, and the 
real numbers. The treatment of this chapter of number sys
tems never utilizes the number line. This treatment does not 
begin with the natural numbers being "given" and then ex
tended, successively, to each of the other mentioned systems 
but rather studies the systems through postulation and defini
tion and then examines the properties which these systems 
share. However, the student should easily notice that the 
new systems being constructed would have all the algebraic 
properties of the old system, would include all the numbers 
of the old system in such a way that the new and old alge
braic operations when applied to numbers of the old system, 
would be the same, and contain new numbers of the kind
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needed for some purposes for which the old system was inade
quate .

The system N of natural numbers is defined as a set 
having as members the numbers 1, 2, 3, 4, 5, 6 , . • . and
having the two operations of addition and multiplication, an 
equals relation, and the order relation less than defining a 
to be less than b (a <  b) if and only if there exists a 
natural number ĉ such that a + c = b. The equals relation 
possesses the dichotomy property (E^), the reflexivity 
property (Eg), the symmetry property (E^), the transitivity 
property (E^), the addition property (Eg) which states that 
if a = b, then a + c = b + c, and the multiplication property 
(Eg) stating that if a = b, then ac = be. The operation of 
addition possesses the closure property (A^), the commutâtiv- 
ity property (Ag), and the associative property (A3 ). The 
multiplication is defined to have the closure property (M^), 
the commutâtiyity property (Mg), the associatiyity property 
(M3 ), and a multiplicatiye identity (M^) with the additional 
property that multiplication is distributive over addition (D). 
The less than relation has the properties of trichotomy (O^), 
transitivity (O2 ) , addition (O3 ) stating that if a b , then 
a + c <  b + c, and multiplication (O4  (N) ) stating that if 
a <  b, then ac ^  be, ĉ in N. Additionally, the system pos
sesses the Archimedean property (O5 ) that if a and b are any 
given natural numbers such that a ^  b, there is a natural 
number n such that na >• b, and the we11-order property (Og).
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Accompanying these postulates are several theorems which may 
toe (and are) proved within the framework of these definitions 
and properties. In addition the cancellation properties 
(C^, , Cg, C^) for equality and order— actually the con
verses of E 5 , Eg, O 3 , and O 4 , respectively— are considered 
and C 2 , C 3 , C 4  are illustrated as toeing proved from the other 
properties.

The E , A, M, D, C, and O properties listed atoove are 
regarded as forming a logical toasis of the natural numtoer sys
tem. The authors state:

In organizing the natural numtoer system deductively, 
these toasic properties may be assigned the role 
played toy the axioms and postulates in the deductive 
organization of geometry. From them we may derive 
as theorems the other algebraic properties of the 
natural numtoer system.^

In view of this statement and the statement toy SMSG in an
earlier unit suggesting that the desirable characteristics of
a postulate system are simplicity, paucity, consistency, in-

2dependence, and completeness, it seems strange that the 
authors list three order properties (O^/ O 3 , O 4 ) which may toe 
proved directly from the "addition" definition of less than 
and the cancellation properties for equality and order (C^,
C 2 , C 3 , and C 4 ) as toasic properties of the natural numtoer 
system. In other words, the toasic properties of the natural

^School Mathematics Study Group, Intermediate Mathe
matics , Unit 17 (New Haven: Yale University Press, 1960),
p. 1 1 .

2School Mathematics Study Group, Geometry, Unit 16 
(New Haven: Yale University Press, 1960), pp. 583-86.
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number system (as identified by SMSG) when considered as 
axioms or postulates do not yield themselves to the SMSG's 
notion of a desirable postulate system since some of them 
may be proved within the framework of the others, i.e., they 
are not independent.

The system I of integers has defined as its members 
the numbers . . . , -3, -2 , -1 , 0 , 1 , 2 , 3, . . . with the
same operations and relations as the naturals. The system I
possesses all the E, A, M, D, properties of the naturals and, 
additionally, the additive identity property (A^) that a + 0  = 
a for any member of I and the subtraction property (A^)— used 
to "define" subtraction— that for each pair of integers ^  and
b, there is exactly one integer ĉ  such that a + c = b.^ The
additive inverse of an integer a is defined by the equation 
a + X  = 0 (and assumes the role played by the opposite in 
earlier units). Since the we11-order property is not valid 
for the integers, it is replaced by the discrete property 
stating that if a and b are integers and a < b, then 1  ^ b 
- a .

The system of rational numbers is defined to have
as elements all the integers and "numbers" of the form a/b
(b ^ 0), a_ and b integers. Equality of rationals is care
fully defined: a/b = c/d, b / 0 , d / 0 , if and only if ad =
be. The sum and product of the elements of Q are defined:

^SMSG, Unit 17, pp. 24-42
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y  + g- = — and ^  • g- “ Less than is similarly de
fined: a/b K, c/d if and only if ad ^  bc.^ From these defi
nitions, it follows that Q possesses all the E, A, M, D, C, 
and O properties of Q and also the division property (Mg) 
which postulates that for each pair of rational numbers, a . b , 
b / 0 , there is exactly one rational number ĉ such that be = 
a, i.e., division as the inverse of multiplication is closed 
in Q. (Of course, the discrete property of N and I no longer 
hold; this system Q is dense, i.e., between any pair of dis
tinct rational numbers, there are infinitely many rational 
numbers.)

The construction of the real number system R is ap
proached by the consideration of decimal expressions and the 
set of real numbers is considered as the set of all decimal 
expressions. The relations equals and less than are defined 
in view of n;^ place truncation to rationals, i.e., these 
definitions are based on those relations which we already 
possess for the rationals. In view of these definitions, the 
authors merely suggest that, formidable though it is to prove 
such, this set of numbers does possess all of the E, A, M, D,
O properties of Q and also possess one new order property 
(R) :

If f ̂ 0  ' ^ 1 ' ^ 2  ' * * * f ^n * * * and ^bQ, b^^, b^,. . . bĵ , . . . ̂  are two sequences of real numbers
with the properties

^Ibid., pp. 43-64.
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(i) a.Q ^ a. ^  3 ^ 2 —  — 3 ^ ̂

(ii) bo a a  2  ' ' - 2: bn 2  . . .(iii) a^ < bjj for every natural number n 
(iv) bn - 3^ 4L I/IO” for every natural number n 

then there is one and only one real number c such that 
a^ $ c 6  b^, for every natural number n.

The chapter also presents a thorough review of polynomials 
and their factors and rational expressions as well as the 
determination of truth sets of sentences (some including ab
solute values) by consideration of the definitions of addi
tive and multiplication of the reals and the application of 
the E, A, M, D, O properties.

(It should be noted that nothing really new is found 
in this "review" chapter except the degree of sophistication 
is considerably higher than in earlier treatments of the 
reals by SMSG. Little attention is given to intuition and 
the purely deductive approach to the real numbers is employed. 
This chapter is, therefore, a highly abstract review of that 
which the student previously recognized and learned somewhat 
intuitively in Units 9 and 10.)

An Introduction to Coordinate Geometry in the Plane 
This introduction to the study of analytics is ap

proached by the utilization of the standard terminology, e.g., 
quadrant, x-axis, y-axis, horizontal and vertical axes, and 
the origin, with the major refinement being that the one-to- 
one correspondence between the set of all points in the plane

^Ibid., p. 76.
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and the set of all ordered pairs of real numbers is estab
lished (and eniphasized) . Thus it is that the ordered pair of 
real numbers corresponding to a point serves as the coordin
ates of the point. Actually, the entire chapter is predicated 
on the concept of ordered number pairs.

A very careful study is made of the "distance" formula 
which determines the distance (denoted d(P^, Pg)) between two 
points and P^. Accompanying this discussion is the deriva
tion of the "midpoint" formula.

The graph of an equation or inequality is regarded as 
being the subset of the coordinate plane whose coordinates 
are truth values for the given equation or inequality (or any 
other restricting relation). It is at this point that "set- 
builder" notation is introduced for the first time, e.g., the 
equation 3x + 2y = 7 may be denoted as the set { (x, y ) :
3x + 2y = 1 y  . The standard tests for symmetry of graphs 
with respect to the origin and the axes are examined and many 
of the simpler theorems of plane geometry are established 
analytically.

A minor inconsistency is noted at this point. Since 
the coordinate axes are lines, they extend infinitely far.
The SMSG Geometry emphasized this idea by "barbing" the axes 
to indicate that the line actually extended past the margin 
of the pages of the text but this unit does not consistently 
follow this convention. The curves which extend indefinitely
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might also be "barbed" to indicate the extensions past the 
margin.

The Function Concept and the Linear Function
The student perhaps has studied already in Chapter 17,

Unit 10, the concept of function as applied to numbers. In
this chapter, however, the student is given the more formal,
more abstract definition:

Let A and B be sets and let there be given a rule which 
assigns exactly one member of B to each member of A.
Then the rule, together with the set A, is said to be 
a function and the set A is said to be its domain.
The set of all members of B actually assigned to mem
bers of A by the rule is said to be the range of the 
function.^

Under this definition the existence of a function requires a 
domain set and a rule for pairing a member of the range with 
each member of the domain. The word rule is understood to 
cover many different kinds of procedures for making assign
ments and no specific instructions are given about which sets 
are to"be used in the construction of functions. Considera
tion is directed toward the constant function, the identity 
function, and multiplication as a function when domain is the 
set of ordered pairs of real numbers and whose range is the 
set of reals. Although the traditional study of function has 
tended to concentrate exclusively on functions defined by 
equations, it is made quite clear that not all equations de
fine functions nor are all functions defined by equations.

^Ibid.. p. 166.



92
In view of the fact that the previous chapter has 

emphasized the distinction between a point and its coordinate, 
one is surprised that the graph of a function is defined as a 
set of ordered pairs rather than a set of points.^ It fol
lows then that for any function having as domain and range 
the reals, the term "graph of the function" may have either 
of two meanings : the geometric figure whose coordinates are
the ordered pairs of the function or the set of ordered pairs 
(x, f(x)). It follows, of course, that if one should con
sider a function which does not pair real number with real 
numbers, the ordered pairs could not be assigned a geometric 
coordinate interpretation. This ambiguity is further propa
gated by the notion of defining functions geometrically in 
which it is accepted that a set of points (on the Cartesian 
plane) defines a function if and only if no two points of the 
set have the same x-coordinates. It would appear that this 
ambiguity could be erased by a more careful use of terminol
ogy.

A thorough study of linear functions defined by the 
equation y = ax + b, a ^ 0 , is presented along with a consider
ation of functions defined by physical processes and functions 
defined by composition. Considerable emphasis is found 
throughout the chapter on the concept that the function de
fined by an equation and an equation defining a function are 
different notions.

^Ibid., p. 17 3.
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Quadratic Functions and Equations

The study of the quadratic functions as defined by 
2the equation y = ax + bx + c (a 5  ̂ 0 , a , b , real numbers) 

is based on the primary consideration of the quadratic func
tion as a special kind of pairing of the real numbers with 
the real numbers. The general quadratic function is examined
by successive consideration of a series of special cases,

2 2 2 2 namely y = x , y = a x , y = a x  + c ,  y = a ( x - h ) ,  and
finally, y = a(x - h) + p, and the effects produced on the
graph of the function as the various constants, a, c, h, and
£ are "inserted" and varied, e.g., the location of the vertex,
relative position with respect to the axes, and concavity.
The properties of these functions are analyzed by the use of
properties of the real numbers and the coordinate graph is
used as a display tool for these properties. It is assumed
that these curves are "smooth" curves.

From the consideration of properties of the quadratic
2function, the quadratic function, the quadratic equation ax +

snown oy x-ne completion or one square to nave 

^  ^— ~ ~ ~ the significance of the
bx + c = 0  is shown by the completion of the square to have 
the truth set 
discriminant is evaluated.

Quadratic equations are also solved by factoring. 
Equations, e.g., ones containing "fractions" and radicals, 
which are transformable into quadratic equations by transform
ations which may enlarge the solution set, diminish it, or
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leave it invariant, are treated simultaneously along with 
quadratic inequalities.

The Complex Number System 
The first section of this chapter reviews the inade

quacy of the real number systems when general quadratics are
2concerned, e.g., x + 1 = 0  has no solution in the system of 

reals. Consequently, the system of reals is extended to in
clude those numbers of such a nature that every quadratic 
equation will have a solution. A system C is constructed so 
that C will include as a proper subset the set of reals, will 
allow the reals to still possess all the algebraic properties 
which they possessed as members of the real number system,
and additionally to contain a solution to the equation
2 2 X  + 1 = 0 ,  i.e., an element ^  such that i = -1. It is

postulated that each element of C can be written in the form 
Z = a + hi, where ^  and b are real numbers. In this stand
ard form of a complex number Z = a + bi, a is called the real 
part of Z and b is called the imaginary part. The extension 
to C is postulated with the objective that the new system 
should have as operations and relations ones which are defined 
in terms of the operations and relations of the reals. This 
consideration leads to theorems which give formulas for the 
sum, product, difference, and quotient of the complex numbers. 
The text then shows that under this extension of the system



95
from the reals to the complex, any quadratic equation will 
now have "meaningful" solutions.

The Argand diagram representation of complex numbers 
is introduced to yield geometrical interpretation of state
ments regarding complex numbers and to express geometric 
statements in terms of complex numbers. Geometric considera
tion for the sum and difference of two complex numbers are 
structured accordingly with the absolute value | zl of the 
complex number Z = a + bi being defined as the distance from 
the origin to the point (a, b).^ (SMSG, being a trifle care
less in terminology at this point, might better have stated 
that the amplitude is the distance between the origin and 
the point (a, b) and thus eliminate the directed-distance con
notation associated with the term "from the origin to the 
point.")

The Fundamental Theorem of Algebra is stated without 
proof and is used to illustrate the ultimate significance of 
the system of complex numbers for algebra. The chapter con
cludes with the optional discussion of the outline of Gauss's 
construction of the complex number system by utilization of 
number pairs with addition and multiplication being defined 
by (a, b) + (c, d) = (a + c, b + d) and (a, b)" (c, d) =
(ac - bd, ad + be) respectively.

^Ibid., pp. 275-78.
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Equations of the First and Second Degree 

in Two Variables
This chapter is devoted to a systematic study of 

equations of the first and second degree and their graphs 
(considered as geometric figures). Although a considerable 
amount of work was done in Chapter 4 with quadratic func
tions and their graphs, greater emphasis was placed then on 
the numerical properties with the graph being used only as a 
display board for these numerical properties. This chapter 
is fairly orthodox in its study of these equations although, 
of course, the language is concise and crisp.

A thorough examination (utilizing the earlier defined 
concept of slope) of the general linear equation Ax + By + C = 
0 , A^ + ^ 0 , is presented along with the verification that
the graph of every linear equation is a straight line and 
that every straight line is the graph of a linear equation.
(The condition "A^ + B^ ^ 0" essentially states that either 
A or B is non-zero.)

The general conic is defined by the "focus-directrix- 
eccentricity" approach. Choose a point F (a, b) as a focus, 
a straight line Ax + By + C = 0 as directrix, a constant e to 
be the eccentricity and define a conic to be the set of points 
P(X, Y) such that d(P, F) = e • d(P, Q) where D(P, Q) repre
sents the distance between the point P(X, Y) and the directrix. 
If e = 1, the conic is a parabola; if 0 e ^  1, the conic
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is an ellipse; if e >  1, the conic is a hyperbola.̂  Stand
ard forms (or cononical forms) of the equation of the conics 
are introduced and it is illustrated that the equation of all
conics having a vertical or horizontal directrix are of the 

2 2form Ax + Cy + Dx + Ey + F = 0 hut that a non-vertical or 
non-horizontal directrix will yield a "cross-product" term of 
the form Bxy.

This chafer completes a description of all graphs of
first and second degree equations as being straight lines and
the conics (or their degenerates) although translation and
rotation are not introduced to serve to examine conics of the 

2 2form Ax + Bxy + Cy + Dx + Ey + F = 0, Bf^O. Considerable 
practice is demanded in the "sketching" of conics utilizing 
the standard forms obtained by "completing the square," the 
concepts of symmetry, and the asymptotes for hyperbolas.

Systems of Equations in Two Variables 
The basic working premise of this chapter is the 

definition of a solution set of an equation (or inequality) 
in two variables as being the set of ordered pairs of real 
numbers which satisfy the equation (or inequality)— thereby 
determining a one-to-one correspondence between the members 
of the solution set of the equation (or inequality) and the 
points of its graph. The geometric properties of the graphs

^Ibid.. p. 330.
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of the equations developed in the previous chapters are used 
freely.

The solution set of a system of two-variable equations 
(or inequations) is regarded as the intersection of the truth 
sets of the component equations (or inequalities). If and 
S 2  are the truth sets of two sentences of a system and if

= S^/ then the system of linear equations is dependent (and 
the graphs of the equations are coincident); if O  S 2  = 0, 
the systems are inconsistent (and the graphs of the component 
equations do not intersect), and the system is consistent if 

^  Sg ^ 0. (It is at this point that SMSG uses the inter
section symbol for the first time.)^

Systems in two variables containing component equa
tions one of which is linear and the other of which is quad
ratic as well as systems both components of which are quad
ratic are "solved" by both geometrical and algebraical methods 
The graphs of the equations are used extensively to predict 
the number of elements in the solution set of a system by 
"counting" the intersection points of the graphs.

Systems of First-Degree Equations 
in Three Variables

The SMSG discussion of the solution of systems of
first degree equations in three variables forces a quite
heavy reliance upon geometry in such a way that statements

^Ibid., p. 363.



99
about solutions of the systems are, for all practical pur
poses, actually synonymous with statements about the various 
configurations of planes and their intersections. The types 
of intersections of planes, i.e., the intersection is empty, 
a point, a line, or a plane, and parallelism are used to 
anticipate the types of solution sets that are to be obtained 
in algebraical solutions.

A one-to-one correspondence between ordered triples 
of real numbers and the points in space is "established" by 
the construction of a right-handed coordinate system. The 
formula for distance between these points in space is devel
oped in the same fashion as its 2 -dimensional counterpart and 
the first degree equation Ax + By + Cz + D = 0 is derived by 
reliance upon the geometrical property of a plane as being 
the set of points equidistant from two distinct points of 
space. The standard tests for parallelness, coincidence, and 
non-parallelness of planes are constructed.

The method of triangulation (attributed to Gauss) is 
utilized to determine general solutions to systems of three 
first-degree equations with three variables rather than 
Cramer’s rule commonly found in many texts.^

Logarithms and Exponents
The treatment of logarithms and exponents in this 

text is radically different than in most traditional texts

^Ibid., p. 432.
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primarily in that this treatment begins with the study of the 
theory of logarithms and derives from it the theory of ex
ponents and exponential functions. This approach is more 
modernistic and rigorous in that the traditional treatment of 
the laws for rational and irrational exponents are at the 
best unsatisfactory and, consequently, the theory of loga
rithms based on these foundations are equally unsatisfactory. 
This treatment permits the consideration of all logarithm 
functions simultaneously. The theory of logarithmic and ex
ponential functions are emphasized in this chapter with the 
use of logarithms for computation being minimized.

The logarithm function is defined for positive x as
follows :

(a) For each x >  1, the corresponding value of y is
the area of the region bounded by the x-axis, 
the hyperbola y = k/x and the vertical lines at 
1  and X .

(b) For X  = 1, the value of y is 0.
(c) For each x such that 0 ^ x ^  1, the value of

y is the negative of the area bounded by the
x-axis, the hyperbola y = k/x, and the vertical 
lines at 1  and at x .^

Although this function is defined in terms of the rather
sophisticated mathematical concept of area, the texts take
full advantage of the student's intuitive understanding of
area, i.e., the text avoids any use of the terms "calculus,"
"integral," or "limit." The approximate area under the

School Mathematics Study Group, Intermediate Mathe
matics , Unit 18 (New Haven: Yale University Press, 1960),
p. 455.
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curves considered is found by "counting" squares under the 
curve Y = k/x between the indicated ordinates .

Two particularly important logarithmic functions are 
considered: if k = 1 , the corresponding function (designated
Inx) is called the natural logarithm function, and if k = 
1 /lnlO, the corresponding logarithm function (designated 
logiQx) is called the common logarithm function. The develop
ment of these two logarithm functions is completely independ
ent of any notion of base and depends only on the value of 
the k-parameter being used.

The authors substantiate by use of the definition and 
many examples (and only indicate that a general proof could 
be made) that log(ab) = log a + log b for any arbitrary k.
Many exercises involving computation with common logarithms 
and the sketching of graphs and the examination of the proper
ties of the functions with arbitrary values of k are presented 
for student consumption.

It is of interest to note that this entire chapter is 
predicated on these fundamental properties : y = log x is de
fined and continuous for x >  0 ; y = log x is an increasing 
function; log 1 = 0 , log k = 1 ; and for every two positive 
numbers x_ and y, log(xy) = log x + log y for any arbitrary k. 
The authors use only an intuitive notion of continuous— no 
"breaks" or "jumps" in a continuous curve— and do not attempt 
any rigorous definition of its meaning.
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Since it may be shown that log x = klnx for any 

arbitrary k >  0, then (log x)/(log a) = (klnx)/(kina) =
(lnx)/(lna) is independent of the k used to define the func
tion. Therefore, f^(x) = log x/log a = log^x, a >  0,
a / 1 , X > 0 , is defined to be the logarithm function with
base a . (The motivation for defining log^x as the ratio 
log x/log a is that this ratio depends only on x and â  and 
not on the arbitrary k used to define log x.) It follows 
that under this definition the natural logarithm function 
with base e is the same as the natural logarithm function 
and that the logarithm function with base 1 0  is the common 
logarithm function. A compelling result of this definition—  
proved geometrically by an intuitive argument— is that for 
each real nurcber S , the equation log^x = S has a mique solu
tion. It may be shown that logarithms with base a satisfy 
the general properties listed above.

With this background regarding logarithm functions 
and the consideration of the existence of their inverses, the 
exponential functions are defined as the inverses of the 
logarithmic function. Utilizing this definition and the 
properties of the logarithm functions, SMSG indicates the 
rather sophisticated derivation of the laws of exponents.

In retrospect, it is seen that the authors rely quite 
heavily on the student's intuition as well as using several 
geometrical proofs which are not rigorous as foundations for 
a quite rigorous approach to logarithmic functions.



103
Introduction to Trigonometry 

This chapter is an introduction to trigonometry and 
does not profess to do more than present a brief survey.
With the exception of the inverse functions (or arc-functions), 
however, most of the topics of the traditional trigonometry 
course are treated to some degree. As in other topics, the 
major innovation here has been the introduction of concise 
language which permits the separation of the concept of angle 
and its measure.

In order to adequately introduce the trigonometric 
functions of angles, SMSG introduces a path (P, d) as the 
"motion" described by letting a point R start at an initial 
point P of a circle and move a distance d (the measure of the 
path) counterclockwise or clockwise along the circle (accord- 

. ing as d is positive or negative) to some terminal position Q. 
Two paths (P^, dĝ ) and (Pg, dg) are equivalent if and only if 
d^ = dg but are equal if they are equivalent and P̂  ̂= Pg.
The sum of two paths is defined to be another path: (P^, d^)
+ (Pg, dg) = (Pg, dg + dg). This innovation allows in a 
sense, a non-unique coordinatization of the arc of a circle.

If 9 is the measure of a path whose initial point is 
P and whose terminal point is Q along a unit circle having 
center at A, the angle A ^  W  A(f is designated (A, P, 9).
Since 9 is a measure of the angle, the angle designated (A,
P, 9) is referred to as a signed angle. Two signed angles 
(A^, P^, 9^) and (A2 , ? 2 » Gg) are equivalent if and only if
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they are determined by equivalent paths, i.e., = Gg. If
(A^, P^, G^) and (A2 , P2 , ® 2  ̂ are equivalent, then the geo
metric angles A^ and P 2  A 2  Q 2  are congruent. (It is 
interesting to note that the " " symbol is not used to
denote angles.) The real number G is the radian measure of 
(A, P, G) if a unit circle is used to assign the measure. A 
similar device is used to assign degree-measures to signed 
angles. Under this assignment, "straight" angles and "zero" 
angles as well as "negative" angles are assigned measures.
This particular approach essentially establishes a function 
whose domain is the set of angles and whose range is the set 
of all real numbers.

An angle is considered to be in standard position in 
a plane coordinate system if and only if its vertex is at 
the origin and its initial side is a subset of the x-axis.
Such an angle is primary if and only if 0 ^  G <1 360 degrees.

The six trigonometric functions of an angle are de
fined in the traditional method by considering the unique 
angle in standard position to which it is equivalent. The 
function aspect of these definitions is emphasized, e.g., 
sin G is a function whose domain is the set of all angles 
(P, X, G) and whose range is the set f x : - 1 ^  x ^ 1^ .

The remainder of the chapter is dedicated to the con
sideration of specific angles, use of trigonometric tables, 
solution of triangles, the law of sines, the law of cosines, 
and the addition and "half-angle" formulas. Cursory attention
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is directed toward the solution of trigonometric equations 
and the definition and proofs of identities.

The System of Vectors 
The most unorthodox feature of this brief treatment 

of vectors is its inclusion in a secondary school mathematics 
textbook.

As the introductory tool for consideration, a line 
segment AB is said to gain a sense of "direction" if one end 
point is designated as an initial point and the other is the 
terminal point. This directed line segment (or vector) is 
designated AB. (Note that this vector is designated AB but 
that K È  symbolizes a ray.) Two vectors AB and CD are equiva
lent if their measures (designated by |ab| and |cd| , respec
tively) are equal and the rays and Cl? are parallel, i.e., 
the lines containing AB and CD are parallel or coincident.
AB = CD denotes that AB is equivalent to CD. "By the sum of 
two vectors AB and CD we mean the directed line segment AX 
where X is the unique point such that BX = C D ." Geometric 
figures are used to lend credence to the associative and com
mutative properties of the addition of vectors and the dis
tributive and associative properties of the defined multipli
cation of vectors by scalars. Vectors are then used as a 
device for solving certain geometric problems and proving 
certain geometric theorems .

^Ibid., p. 631.
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The component notation for vectors, e.g., 

is the vector whose initial point is (0 , 0 ) and whose terminal 
point is (X^, Y^) or, more generally, any vector whose 
horizontal component is and whose vertical component is Y ^ , 
is introduced and the sum of two vectors Qxj^, Y ^  and 
C X g , Y ^  is redefined to be [x^^ + X ^ , Y-̂  + Y g ]  . This, 
in actuality, introduces the notion of free vectors although 
SMSG does not use the term. Introduced also are the vectors 
i = [l, o] and j = [o, to serve as a base for all vec
tors in the plane. This new consideration of vectors is 
utilized to prove algebraically the theorems illustrated 
earlier by geometrical processes. The inner product (com
monly known as the "dot" product of two vectors) is defined 
in terms of the magnitude of the vectors and the angles de
termined by them. The vector product (or cross-product) is 
not defined.

The chapter treats quite extensively several types of 
problems which are of a physical nature involving resultants, 
forces, velocity, acceleration, etc., by means of an assumed 
isomorphism between the set of forces and the set of vectors 
treated as a formal mathematical system. (One notes in the 
chapter a slight discrepancy with respect to earlier usage.
In this unit, |a b | is used to indicate the distance from A to 
B (and from B to A) whereas Unit 13, page 34, indicates that 
the distance between P and Q shall be denoted by PQ.)
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Polar Form of Complex Numbers 

An earlier chapter (Chapter 5) has introduced complex 
numbers, discussed equality, addition, subtraction, multipli
cation, and division of such numbers, and the Argand diagram 
representation of complex numbers was utilized to portray ad
dition and subtraction of these elements. This particular 
chapter introduces and studies the polar representation of 
complex numbers in a traditional manner with the unorthodox 
feature again being its inclusion in a secondary text.

The central tool for the chapter is, of course, the 
representation of a complex number Z = X + Yi in its polar 
form Z = |z I (cos 9 + i sin 9) , where cos 9 = x/ V x ^  + and 
sin 9 = Y / ^ X ^  + Y ^ . The central theorem utilized is, as ex
pected, de Moivre's theorem stating that for any natural num
ber n, (cos 9 + i sin 9)^ = cos (n9) + i sin(n9). SMSG "illus
trates" this theorem by an inductive process without ever at
tempting a proof in even a semi-rigorous proof except in the 
teacher's commentary. Extension of this definition and this 
theorem lead directly to the finding of nth powers (n a 
natural number) and roots of complex numbers and the solution 
of quadratic equations with complex coefficients.

Sequences and Series 
This chapter treats in an informal manner different 

aspects of the topic of sequences and series and introduces 
several of the related terms by appeal to the student's intui
tion .
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The key definition of the chapter is this :

A finite sequence of n terms is a function a whose
domain is the ' set of numbers f 1, 2, 3, . . . , n J-
The range is then the set {a(l) , a (2) , . . . ,
a(n)} , usually written fa^, a?, . . . , â ). . The
elements of the range are called the terms of the se
quence . 1

It follows then that an infinite sequence is one whose domain 
is the set of positive integers. A finite sequence is abbre
viated and an infinite sequence • The
indicated sum (abbreviated ) of a finite sequence is

/fk/
referred to as a finite series. The text develops the neces
sary definitions and formulas for the general terms and the 
sum of n_ terms of arithmetic and geometric sequences (or pro
gressions) .

The authors introduce an intuitive notion of the con
cept of limit by considering a correspondence between the 
terms of a sequence of numbers and a set of points in the 
number line and thereby lending a geometrical connotation to 
the concept. They consider a sequence to have a limit L 
(written L) if and only if the nth term of the se
quence becomes and remains arbitrarily close to L as n in
creased. The non-introduction of the ( €  , <5* ) notation for 
definition of a limit prohibits a "nice" proof of such conven
tional theorems as the one stating that if lim a = A and

n—
lim b^ = B , then lim (â  ̂ + bĵ ) = A + B, and, consequently, 
n — >0 ® n-

^Ibid., p. 731,
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several such theorems involving the sequences found by taking 
the sum,product, and quotient of convergent series "term-by- 
term" are stated without proof.

A series is defined to be convergent if and only if
it is "summable," i.e., if the sequence of partial sums of
its sequence is convergent. (If the sequence /

-  -n- -j o ois considered, the sequence of partial sums is f . )
The sums of several series, e.g., certain infinite geometric 
series, are investigated by utilization of inductively deter
mined formulas.

Permutations, Combinations, and 
the Binomial Theorem

In order to approach the study of permutations and 
combinations, the authors introduce ordered m-tuples by first 
considering the x Ng elements (ordered couples or 2 -tuples) 
of the Cartesian cross-product (although the term is not used) 
of two finite sets having cardinal numbers and N 2  respec
tively. Ordered triples (a, b, c) are considered as ordered 
couples of the form ( (a,b), c)— although the Cartesian 
product is not associative— and an ordered quadruple (a, b, 
c, d) is considered as the ordered couple ( (a, b, c), d ) . 
Inductive extensions allow the formation of ordered m-tuples 
with the result that if B^, B 2 , . . ., B^ are finite sets
having N^, N 2 , N^/ • . . , as their respective cardinal
numbers, one might form x N 2  x . . . x ordered m-tuples
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such that the first component of each comes from , the 
second from B 2 , etc.

The traditional "combination of m things taken n at a 
time (denoted C(m, n) ) is now considered in set-terminology 
as the number of n-element subsets of a set having m elements. 
Similarly, the "permutations of m things taken n at a time" 
is now considered as the number of those ordered m-tuples of 
elements of a set having n elements which have no duplication. 
Derivation of the formulas involved rely heavily upon those 
definitions and inductive arguments pedagogically assisted by 
rectangular arrays.

The binomial theorem is derived at this point for the 
first time in the SMSG texts and is a direct result of the 
theories of combinations. As a matter of fact, the theorem 
is stated in "combination" form, i.e., if N is a natural num
ber then (X + = 23 C (n, m) ^ (It should bem = 0

noted that while this chapter— and, in fact, the last several 
chapters— relies quite heavily upon induction, the "proofs" 
are not "proofs by induction" but rather are only expository 
arguments that point out apparent patterns which are then ac
cepted as "truths.")

Algebraic Structures
This chapter, definitely intended only as a supple

mentary chapter to be used if time permits, reviews the

^Ibid., p. 823.
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nature of the fundamental algebraic operations already used 
by seeking to abstract that which is essential and common to 
several number systems. This exposition serves as the last 
effort to clarify the role of the definition and axiom in a 
mathematical structure.

Some attention is directed toward the properties of 
the one-operation structure called a group. Examples of 
finite groups are demonstrated as well as those of both 
Abelian and non-Abelian groups. Equal attention is focused 
on the definitions and properties of the two-operation struc
ture called a field.

Evaluation of Units 17 and 18
Units 17 and 18 essentially contain discussions of 

all the topics ordinarily encompassed by a study of second- 
year algebra and trigonometry although the treatment of 
trigonometry is a very brief and compact one. In addition to 
the traditional topics, however, these materials abound in 
discussions which ordinarily would not be encountered at this 
level. An abundance of effort is expended to develop and dis
play the structure of the systems of natural numbers, the 
integers, the rationale, and the reals with an adequate and 
sophisticated extension to the complex numbers. Additionally, 
the student is led through an extensive consideration of se
lected topics from analytic geometry and vector algebra.
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One of the key aspects of these units is their con

stant and unremitting emphasis on the study and importance of 
mathematical structures. Implicitly emphasized in the chap
ters which deal with number systems— naturals, integers, ra- 
tionals, reals, and complex— are the conditions required for 
an extension of a number of system. Vector algebra is ap
proached as a mathematical system with a brief analysis of 
the assumed isomorphism between the system of vectors and 
physical forces as well as the discussion of the relationship 
between the system of vectors and the system of complex num
bers . Some time is devoted to the development of commutative 
and non-commutative groups and fields. In all instances, 
simplification of algebraic expressions and the solution of 
systems of equations are performed on and justified by the 
number system (and its properties) which is the domain for 
the discussion.

It appears that the authors have attempted to develop 
both concepts and skills with the primary emphasis upon the 
understanding of concepts and their development. Each topic 
presented is discussed extensively with exercises following 
serving to reinforce the concepts involved. In most instances 
the concepts are first presented in a fairly rigorous fashion 
with the related skills being developed later. It appears 
that fewer exercises of an exploratory nature are found in 
these units than in earlier units.
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The language used in these units is fairly precise 

and sophisticated although one gains the impression that this 
aspect was not of prime importance to the authors. The role 
of the definition is implicitly emphasized although the stu
dent has very little opportunity to formulate definitions on 
his own. Symbols to denote mathematical notions are again 
used only rarely, i.e. , one never meets the symbols ^  , 3  / 

etc., although these notions are used extensively. 
Even the symbols U  and FI are used sparingly.

Earlier units of SMSG materials have encouraged and 
demanded student involvement in the development of the mate
rials in that the student is led to discover and formulate 
concepts for himself. In these units, however, the authors 
appear to be content to present material for student consump
tion rather than student participation. Although the exposi
tions are excellent, the student is "lectured to" by the 
texts although the occasional "challenge exercises" call for 
some exploration on the part of the student.

Fairly rigorous proofs are quite abundant throughout 
the texts with some few being left as exercises. Since it is 
assumed that the student is already acquainted with good 
proofs, little discussion is devoted to the nature of a good 
proof. Those exercises demanding proofs call for little in
genuity on thé part of the student since most of them follow 
the same pattern as those example proofs found in the textual 
exposition. It is worthy of mention that the authors do not
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•** Iattempt to "gloss over" proofs which are beyond the level of 

the materials but rather call attention to these inadequacies.
These units do not in any sense emphasize social appli

cation. As a matter of fact, little attention is directed 
toward social application although one finds a few problems 
related to the physical sciences, e.g., problems involving 
falling bodies, mixtures, and time rates. The one notable 
exception is the chapter involving vectors where one finds a 
multitude of problems involving forces, velocities, work, etc.

Elementary Functions,~Unit 21 

Introduction
Elementary Functions follows generally the outline 

recommended by the Commission on Mathematics for the first 
semester of the twelfth grade although some disagreements 
with respect to point of yiew are noted. The integration of 
the topics of trigonometry and solid geometry into earlier 
units leaves the twelfth grade open for the fairly sophisti
cated study of "elementary" functions— in particular, poly
nomial functions, exponential and logarithmic functions, and 
certain periodic functions— which again plateau the spiral 
approach utilized by the SMSG.

Unit 21 actually assumes only a minimum amount of
I

mathematical background in SMSG units although some knowledge 
of trigonometry is assumed, and of course, the basic tech
niques of algebra and geometry. As a matter of fact, several
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topics studied earlier by students of SMSG materials, e.g., 
logarithmic and exponential functions, are approached in this 
unit from a diametrically opposite view than that utilized in 
earlier units.

Functions
This chapter presents a thorough discussion of func

tions concluding the spiral approach to functions in general 
and the linear, constant, and absolute value functions in 
particular. A function from a set A to a set B is represented 
as being a mapping from a domain set A onto a range set B and 
suitable notation is introduced to serve as the communication 
while for such representation, e.g., f : x — > 2x + 7, x €& R, 
describes the mapping of a given set (in this instance, the 
real numbers) to another set {f(x) : f(x) €  . For the
purpose of this study, functions are restricted to the reals 
or subsets of the reals although more general mappings are 
discussed.

The graph of a function is reintroduced to serve as 
an aid for understanding functions. A graph is the graph of 
a function if and only if no line parallel to the Y-axis 
meets it in more than one point.^ This "test" implies that 
the domain of a function is forced by definition to "lie" 
along the horizontal axis— a convention evidently subscribed

^School Mathematics Study Group, Elementary Functions, 
Unit 21 (New Haven: Yale University Press, 1960), p. 34.
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to by the authors in their textual discussions and examples. 
Yet the authors introduce exercises which force the student 
to consider graphs of functions which have the domain repre
sented along the Y-axis 1) The graph of a constant function 
is seen to be a straight line parallel to the X-axis and that 
of a linear function as being a straight line which may be 
parallel to neither axis. Attention is directed toward com
position functions and the concept of such functions is used 
to define the inverse of a function which is shown to be con
sistent with the general tenor of the topic in that an in
verse function is viewed as a "reverse" mapping.

Polynomial Functions
This chapter presents an intensive and sophisticated 

study— at least as far as conventional secondary texts are 
concerned— of what traditionally has been considered as the 
theory of polynomial functions and concerns itself primarily 
with developing methods for ascertaining the existence of and 
the location of (or approximation of) zeros of polynomial 
functions.

The process of synthetic division is structured by 
repeated use of the distributive law with actual proof of the 
validity of the process being presented only for third-degree 
polynomials with an intuitive induction utilized to generalize 
the process. This process is used to develop the Remainder 
Theorem (at least for third-degree polynomials), the Factor
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Theorem, and these results to "prove" the Fundamental Theorem 
of Algebra.

The Location Theorem advocating that "if f is a poly
nomial function and if a and h are real numhers such that 
f(a) and f(b) have opposite signs, then there is at least one 
zero of f between a_ and b" is made plausible on the basis of 
graphical representation of polynomial functions. Only an 
intuitive appeal is made for the continuity of the functions 
involved in this instance and the authors do not attempt a 
rigid definition of continuity. The Location Theorem, 
coupled with various search techniques including those which 
locate the potential integral and/or rational zeros, is used 
to determine or approximate the zeros for polynomial func
tions .

Tangents to Graphs of Polynomial Functions 
This chapter serves to complete the study of the 

theory of polynomial equations as presented by SMSG and deals 
primarily with the problem of determining the equation of the 
tangent to the graph of a polynomial function. To find the 
slope of such tangents, the authors, in view of the fact that 
no calculus is available, resort to a simple (yet sophisti
cated) and somewhat intuitive process. By considering the 
function

f : X — > ao + a^x + a2X ^ + . . . + a^x ̂

^Ibid., p. 74.
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and writing, by repeated use of synthetic division, this 
function in powers of x - a, i.e..
f : X —> bg + (x - a) + b 2 (x - a)^ + . .. + b^ (x - a)^,
one may find the equation of the tangent at (a, f(a) ) by ob
serving that as X "approaches" a, powers of (x - a) may be 
made arbitrarily small and that the first power of (x - a) 
dominates the higher powers. Consequently, the equation of 
the tangent at (a, f(c) ) is f (x) = bg + b^ (x - a) .

By again utilizing the process of synthetic division, 
the pertinent coefficient b̂  ̂ (actually the slope of the tan
gent to the curve at the point (a, f(a) ) may be determined 
and the resulting associated function (actually the first
derivative of the function f : x —^ f(x) )

f : X — ► a 2  + 2a2X + 3agx^ + . . . + na^x^
is designated as the slope function. Actually, this result
is proved only for second, third, and fourth degree polynomi
als and intuitively inducted to higher degree polynomials.

The slope function is used to determine relative maxi
mum and minimum points of curves and to solve various related 
"practical" problems. The slope function is used also to in
troduce Newton's iterative method for determining the real 
irrational zeros of polynomial functions. As in the preced
ing chapter, the authors make only an intuitive appeal for 
continuity of functions and utilize to the maximum degree the 
consideration of a function as being a mapping.
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Exponential and Logarithmic Functions

This development discusses what the authors identify 
as "a totally new class of f u n c t i o n s — the exponential and 
logarithmic functions— although approximately 104 pages of 
Unit 18 have already been devoted to this same subject. This 
earlier discussion has defined a logarithmic function by re
liance upon the measure of the area under a branch of an 
equilateral hyperbola and the exponential function as the in
verse of that logarithmic function.

This later discussion utilizes exactly the opposite 
approach— a novelty which seems very inconsistent. The ex
ponential function is defined by f : x —> ka*, a > 0 .  The 
conventional interpretation is defined for rational exponents,
i.e., a^'^^ (2 , 3 . integers, q 7  ̂0 ) is interpreted as the q-th 
root of the p—th power of a. a^, x irrational, is considered
as the limiting value of a^'^^, p, integers, as p/q ap-

2proaches x, e.g., a is defined to be the point of conver
gence of the sequence a^, a^'^, al-414 ^1.4142^ _ . .
(Again, the authors appeal only intuitively to the notions of 
limit and continuity.)

The logarithmic function f”^ : x — > log^x is defined 
as the inverse of the exponential function f : x — > a^. The 
advantages and disadvantages of different bases, particularly 
the base ê, are discussed. Very little attention is paid to 
logarithmic computations. Accompanying these mathematical

^Ibid., p. 145.



120
discussions are dozens of problems treating important physical 
phenomena such as growth, radioactive decay, cooling, and com
pound interest utilizing exponential and logarithmic formulas.

Circular Functions
This chapter is devoted to a completely new approach

(as compared to the earlier study in Units 17 and 18) of
plane trigonometry. The circular functions sin : x —> sin x
and cos : x — > cos x are defined by choosing the points A
(1, 0) and P (u, v) on a unit circle with measure of the
counterclockwise arc being x. Then u = cos x and v = sin x.
These two functions are established to be periodic, i.e.,
functions ^  such that f(x + a) = f(x), with fundamental
periods of each being 2TT . In like vein tan : x — ► ^cos X
is discovered to have the fundamental period Tf . The graphs 
of these functions are thoroughly examined and their proper
ties explored.

A unique feature of this chapter is the accompanying 
summarization of the properties of the class of plane vectors 
which are of unit magnitude and which emanate from the origin. 
A class of rotation functions— actually determined by linear 
combinations of these unit vectors— is studied and a simple 
algebra of these classes structured. These rotation functions 
are then used to derive the formulas for sin(X - Y) and 
cos(X i Y) in a manner usually found in vector analysis texts.
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A fairly intensive study of identities is then structured on 
these and other fundamental identities.

The reader should note several inconsistencies in 
this chapter which could have been eliminated by even fairly 
careful editing. Among these are the following;

1. "An angle is defined in geometry as a pair of 
rays or half-lines with a common end point."!
This definition is in conflict with an earlier 
SMSG definition: "An angle is the union of two
rays which have the same endpoint but do not lie in the same line . " 2

2. Earlier units have decreed that two different
angles whose measures are equal will be con
sidered as being congruent (not equal) and yet 
one finds this statement; "Clearly 2^Po OP^ = 
2IP1 OP2  = 4  PROPS' • • Consistency demandsthat this statement be read "Clearly ^PqOP^^S 
Z  P 1 OP2  =  Z P 2 OP 3 . . . . "

3. Earlier units have indicated that the symbol OP
will indicate the measure of the line segment OP
and not the segment itself. Yet one^finds OP 
being used to represent the vector ÜP without 
suitable clarification.'*

Evaluation of Unit 21
The materials presented in Elementary Functions are 

within the realm of reasonableness in that previous units of 
the SMSG series have laid an adequate groundwork for their 
presentation. The structure of mathematics is recognized con
sistently and easily throughout this unit. The language used

^Ibid.. p. 243.
2School Mathematics Study Group, Unit 13. p. 71.
^School Mathematics Study Group, Unit 21, p. 246.
^Ibid.. p. 254.
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in this unit is considerably more sophisticated and precise 
than that in earlier units and the proofs are generally more 
rigorous although some of the language utilized is inconsist
ent with that of earlier units. It appears that the authors 
assume that adequate (and considerable) attention has been 
given to proofs in the earlier years and, consequently, more 
time may be alloted to rigorous proofs at this stage. This 
emphasis is directed toward the mathematical maturity of the 
student and should provide an adequate foundation for proofs 
later in his mathematical career.

Throughout this unit, SMSG authors stress the basic 
concepts with their devoting less space than usual to mere 
acquisition of skills, i.e., "drill" is used less often than 
in the past with a higher percentage of theoretical observa
tions and proofs demanded. The student is forced to recog
nize basic principles and to develop necessary proofs which 
are superior to that of simply stating the principles and ap
plying them to routine-type exercises. In some instances, 
e.g., logarithmic and exponential functions, diametrically- 
opposed approaches are taken as compared to earlier develop
ments of the same topics.

Although such is not the primary purpose of the writ
ers, examples from the sciences and other areas, e.g., maxima 
and minima, laws of cooling, radioactive decay, and harmonic 
motion, are used quite effectively (and extensively) to remind 
the student of the usefulness of various topics under study.
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It appears that these examples of application cause the mathe
matical theory to unfold in a logical sequence as need arises 
with a resulting balance between theory and its application.

Introduction to Matrix Algebra, Unit 23

Introduction 
This unit represents the introduction into the 

twelfth-grade mathematics curriculum of a topic not hereto
fore taught in high schools except in isolated cases. This 
unit is structured in such a way that a student will gain 
facility in matrix manipulation and also simultaneously an 
appreciation of the several systems of mathematics already 
encountered. The properties of the algebra of matrices are 
studied such that the consideration of the properties of 
other systems seems to arise quite naturally. This study of 
matrices "ties together much that the student has learned 
already concerning algebra, geometry, trigonometry, and func
tions , and thus it furnishes a fitting capstone to his sec
ondary -school study of mathematics."^ Although the unit is 
designed for only a half-year course for college-capable stu
dents, an extremely large amount of sophisticated mathematics 
is met in a short period of time in this unit.

1School Mathematics Study Group, Introduction to 
Matrix Algebra, Unit 24 (New Haven: Yale University Press,
1960), p. X.
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In addition to the regular textual material, this 

unit contains in an appendix a list of very challenging 
"research" exercises dealing with such topics as quaternions, 
non-associative algebras, and set theory. These problems are 
designed to be student group projects and are very sophisti
cated in nature.

Matrix Operations
In this chapter the system of matrices is developed 

as an "invented" number system which has arisen (as has all 
other number systems studied earlier) from certain needs.
One notices an implicit emphasis on the notion that the sys
tem of matrices was invented with a purpose.

A matrix is defined in the conventional sense except 
no mention is made of the field from which elements of the 
matrix are to be selected, i.e., a m x n matrix is defined as 
a rectangular array of numbers (in this case, real numbers) 
having m rows and n columns. Ensuing discussions define and 
discuss the order of a matrix, the transpose of a matrix, and 
the equality relation for matrices, along with defined rules 
for determining the sum of matrices. Attention is directed 
toward the product of numbers and matrices (and the resulting 
properties) although such multiplication of a matrix by a 
number is defined only in a left-hand sense, e.g., one studies 
(and establishes) the rule that X(A + B) = XA + XB, X a real
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number and A and B matrices, but does not consider the prod
uct (A + B) X.^

Multiplication of matrices is defined in the tradi
tional manner with adequate discussion being directed toward 
the study of the properties of this class of elements having 
this defined operation. Probably the outstanding feature of 
this chapter is the demonstration (and proof) that the commuta
tive law for multiplication and the cancellation law do not 
hold.

In all cases, the authors present a multitude of ma
nipulative examples to suggest a conjecture which is then 
climaxed by a fairly rigorous proof utilizing the general 
C^ij3 , i = 1, 2, 3, 4, . . . , m; j = 1, 2, 3, . . . , n,
notation for matrices. All definitions are approached simi
larly, i.e., certain notions are illustrated by examples and 
formal statements of such are then formulated from the derived 
conjectures.

The Algebra of 2 x 2 Matrices 
SMSG in this chapter uses the study of 2 x 2  matrices 

as the vehicle for studying several very important notions com
mon in modern mathematics but which are foreign to the tradi
tional secondary curriculum. Imbedded in this chapter is a 
discussion of the closure of sets under given operations— a

^School Mathematics Study Group, Introduction to 
Matrix Algebra, Unit 23 (New Haven: Yale University Press,
1960), pp. 19-24.
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notion certainly not new to a SMSG student. However, one 
finds also a listing of the field postulates, the ring postu
lates (and the proof that 2 x 2  matrices form a ring under ad
dition and multiplication) and the group postulates (and the 
proof that the invertible 2 x 2  matrices form a group under 
multiplication).^ The determinant function for 2 x 2  matrices 
is described as the mapping S : ■ ■> ad - be of the
set of matrices having real elements into the set of real 
numbers. The introduction of the matrices I = and
J = empower the student, through consideration of
the correspondence x(i) +y(j) xl + yJ, to prove that the 
set of complex numbers is isomorphic to the set of 2 x 2  

matrices and that, consequently, the algebra of complex num
bers is imbedded in the algebra of matrices.

Matrices and Linear Systems
This chapter reviews the role which matrices may play 

in determining the truth sets of systems of linear equations. 
The authors approach this presentation by first examining the 
familiar algebraic methods of determining solution of such 
systems and then illustrating that this procedure may be syn
thesized by using matrices and row operations performed upon 
them.

It is illustrated that any elementary operation, i.e., 
interchanging of any two rows, multiplication of all elements

^Ibid., pp. 53-99.
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of any row by a non-zero constant, or addition of an arbitrary
multiple of any row to any other row, may be considered as the
result of pre-multiplication (or left-multiplication) by an 
elementary matrix, i.e., a square matrix obtained by perform
ing a single elementary row operation on the identity matrix.

It is demonstrated that one may represent a system of 
linear equation by matrix techniques, e.g., the system

a^x + b^y + cĵ z =
&2X + b ^y + C 2Z = d.2
a^x + b^y + CgZ = dg

may be represented by the matrix equation
X^1 ^1 ^1
y
z

One may then by utilizing row operations on matrices (or by 
multiplication by elementary matrices) "diagnolize" the above 
system to the form

1 0 0 1 r X
0  1 0  # y
0  0  1  z

from which one derives the equivalent system
X = S.
Y = S.
Z = S.

Similarly, one might "triangularize" the system into
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—  —

l a b X
^ 1

0  1 c # Y = K 2

0  0  1 Z / 3 .
from which the solution set can he read fairly quickly.

Two significant factors are introduced in this sec
tion. The first is the representation of a system of linear 
equations in matrix form. Secondly, the consideration of a 
system of linear system in matrix form leads to the considera
tion of a matrix function which has both domain and range as 
sets of matrices, i.e., the matrix equation AX = B actually 
defines a function f : X — > B where the domain consists of 
column matrices X and the range of column vectors Y.

Representations of Column Matrices ^
as Geometric Vectors

This sufficiently sophisticated chapter forms a very 
adequate basis for an introductory study of vector analysis. 
The representation of vectors in two-space by 2 x 1  column 
vectors actually yields a geometric interpretation, i.e., as 
directed line segments, for 2 x 1  matrices.

In general, the vectors in this chapter are treated as 
free vectors, i.e., most of the considerations involved allow 
the study of located vectors K È  : (a, b) (c, d)— vectors hav
ing their "tail" at (a, b) and "tip" at (c, d)— by consider
ing the vectors 0 ?  : (0 , 0 ) (h, k) where h = c - a and k =
d - b. Such machinery permits the consideration of the geo
metric interpretation of the multiplication of a vector by a
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number and of the addition of two vectors, direction numbers 
and direction cosines of lines, the definition of the inner 
product ^aj , ^c^ = ac - bd, an examination of the
properties of the system of 2  x 1  matrices with respect to 
this inner product,

The striking feature of this chapter is the discus
sion of the postulates for a general vector space and a 
subspace as well as discussions and exercises involving 
linear combinations of vectors, bases for vector spaces, 
linear independence of vectors, and the spanning of vector 
spaces by basis vectors.

One notices that the notation utilized here to sym
bolize the vector quantities contradicts that used in Unit 18, 
e.g., in this unit abbreviates a vector having tail at A 
and tip at B whereas Unit 18 would have interpreted this 
symbol as the ray emanating from A and containing the point 
B.

Transformations of the Plane 
This chapter presents another mathematically sophis

ticated chapter dealing with properties of the system of two- 
dimensional vectors utilizing a matrix representation and deal
ing particularly with transformation functions whose domain 
and range are both subspaces of the vector space H. The no
tion that such functions, called transformations of the plane 
into itself, associated with each point P of a plane the point
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P* (or maps P onto P') yields a geometric interpretation to 
the study of such functions. This chapter deals entirely 
with such functions and does not consider more general map
pings such as those carrying a point into a line, a circle, 
or other geometric configurations. This chapter again 
utilizes the free vector matrix representation, i.e., the 
located vector P(f ; (a, b) (c, d) having "tail" point at 
(a, b) and "tip" point at (c, d) is represented by the locater 
vector Ô Ÿ  : (0 , 0 ) (e, f) where e = c - a and f = b - d.

A linear transformation on H is defined to be a func
tion ^  from H into H such that for every pair of vectors U 
and V in H, f(U) + f(V) and for every real number r, f(rV) = 
rf(V).^ Utilization of this definition and the consideration 
of the function V —>AV, A a 2 x 2 matrix and V a 2 x 1 
vector matrix, yields the theorem that every matrix transforma
tion A is linear. This theorem establishes machinery to allow 
matrix representation for vector function by utilizing matrix 
multiplication, e.g., the function V —> aV, a £  R, V 6  H, may be 
represented by matrices as

B : ]  I v ] ,
and the "rotation" function which rotates a vector through an
angle 9 about the origin as

r xl [cos 9 -sin 9 I [xl
LyJ [sin 9 cos 9 j [yJ .

^Ibid.. p. 190.
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Such representation authorizes the use of matrix properties 
to study extensively the properties of various types of linear 
transformations, particularly those which leave unchanged the 
lengths of the vectors transformed, e.g., the reflection of 
the plane in the x-axis, a rotation of the plane through any 
given angle about \the origin, and a reflection in the x-axis 
followed by a rotation about the origin.

Evaluation of Unit 23 
Considering the detail and carefulness of approach 

utilized by the authors producing this unit, one probably 
would conclude that the topics of this unit are neither too 
difficult nor too abstract for a high school senior although 
traditionally such topics have not been included in the mathe
matics curriculum. The topics are developed by such an ap
proach that a person who had never before studied thoroughly 
the real number system could do so at this time. The knowl
edge of the real number system is strengthened through con
sideration of (and comparison with) the characteristics of 
matrix multiplication and addition. Structural properties of 
systems are illustrated by the introduction of various ab
stract sets along with their operations and the consideration 
of the properties of closure, commutativity, associativity, 
etc., and the determining of their ring, field, and group 
categories. The many ties between structural systems with 
which the student is already acquainted and those being
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introduced are emphasized, e.g., isomorphism is discussed in 
terms of the correspondence between complex numbers and matri
ces . An implicitly powerful notion is that 2 x 2  matrix 
theory can lead to (or be extended to) a system as complex as 
a vector space. The vocabulary, though not unsophisticated, 
would seem to be fairly intelligible to properly-placed stu
dents and such students should be able to follow explanations, 
proofs, and problems without too much difficulty although 
some of the notation is contradictory to that used in earlier 
units.

In the most part, the basic theorems are proved for 
the student although the student does prove various auxiliary 
theorems. Many of the exercises seem to have imbedded in 
them the opportunities to discover the necessary or conven
ient ideas for subsequent exercises, i.e., the discovery ap
proach is used consistently. Many of the concepts to be de
veloped fairly rigorously in subsequent discussions are de
veloped in an intuitive fashion prior to their rigorous for
malization. The distinction between the proof of a theorem 
and that of its converse is emphasized by the rending of such 
proofs into two separate theorems, one being the converse of 
the other. The indirect method of proof is used only rarely. 
The text seems to have struck a balance between development 
of concepts and skills in that adequate opportunity is pro
vided for original development on the part of the student as 
well as a plentitude of routine reinforcement problems.
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Some sound applications are indicated. The use of 

matrices and column vectors in industrial and business prob
lems are pointed out at the beginning of the unit and then 
not mentioned further after such applications have been 
demonstrated.

Evaluation of the SMSG Secondary Program 
The SMSG units which have been discussed in some de

tail in this chapter were "written explicitly for college- 
capable students"^ though they are not necessarily college- 
preparatory in nature, i.e., they also may be considered as 
sound terminal courses for students of mathematics. The sub
ject matter and the method of presentation are based on this 
early statement of philosophy by SMSG authors :

First, we need an improved curriculum which will offer 
students not only the basic mathematical skills but 
also a deeper understanding of the basic concepts and 
structure of mathematics. Second, mathematics pro
grams must attract and train more of those students 
who are capable of studying mathematics with profit. 
Finally, all help possible must be provided for 
teachers who are preparing themselves to teach these 
challenging and interesting courses . 2

In summary of the critique of the SMSG secondary pro
gram, one notes several characteristics of these materials in
sofar as content and placement are concerned.

1. First Course in Algebra (which does not presuppose 
a study of the SMSG Junior High School program) 
emphasizes the structure of algebra. This study

^School Mathematics Study Group, Newsletter No. 4,
1960, p. 8

2Ibid., p. 4.
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is based on an intensive exploration of the be
havior of numbers and pays careful attention to 
the language of the subject. This material, 
though comprised of materials making up a tradi
tional first algebra course, is organized radi
cally different than its traditional counterparts 
due to its fundamental-structures motivation.

2. Geometry is devoted mainly to plane geometry
(based on the postulates of George D. Birkhoff) 
and includes some chapters on solid geometry and 
and introduction to analytic geometry. Selected 
topics from solid geometry are introduced early 
in the unit with such topics integrated on oc
casion with the plane geometry and, in other 
cases, in special chapters. This development of 
geometry, evidently written in the belief that 
Euclidean geometry still deserves a prominent 
place in the secondary curriculum, assumes stu
dent familiarity with the number line since 
geometry is connected with algebra at every rea
sonable opportunity through coordinatization of 
both segments and angles for purposes of assign
ing measures. The definitions and theorems are 
exact although exactitude never appears to be an 
obstacle to the student.

3- In the eleventh-grade Intermediate Mathematics, 
chapters are devoted to trigonometry, vectors, 
logarithms, mathematical induction, and complex 
numbers. These chapters are written with a 
vastly higher degree of sophistication than those 
texts usual for this level. The units, written 
in the same vein, though on a higher plateau, as 
the ninth-grade materials, emphasize structure at 
all times. A preliminary chapter reviewing ele
mentary algebra from this point of view serves to 
introduce students who are new to mathematical 
structures to the realization that the earlier 
studied reals form an abstract number system.
Much attention has been directed toward giving 
the student insight into the nature of mathe
matical thought as well as preparing him to per
form certain manipulations with ease and under
standing.

4. Elementary Functions, though overlapping with
earlier units, and, unfortunately, in some cases 
conflicting with them is designed for use for the 
first semester of the twelfth grade. The central 
theme is that of studying polynomial, exponential.
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logarithmic, and trigonometric functions. The 
course, with its many simple but geometrically 
meaningful innovations for studying areas, tan
gents, maximum and minimum points, etc., should 
furnish a student with an adequate intuitive 
background for an introductory course in calculus.

5. Introduction to Matrix Algebra, though devoted to 
a second-semester, twelfth-grade study of matrices 
including applications to the solutions of systems 
of equations and to geometry, also pays careful 
attention to algebraic structures. The majority 
of the mathematics presented is new to the stu
dent and should put him close to the frontiers of 
mathematics as well as to provide him with many 
examples of patterns that arise in varied circum
stances. In retrospect, one notes that, with the 
exception of the unit dealing with matrices, SMSG 
has presented very little mathematics which is 
actually new to the secondary curriculum although 
the presentation, rigor, arrangement, language, 
symbolism, emphasis, etc., are vastly different.

Although the mathematical content of the SMSG materi
als is fairly conventional, the textual material and exercises 
abound with terms which probably would not have appeared or, 
at least, would not have been used so frequently in texts of 
twenty years ago, e.g., set, subset, pattern, opposite, re
flexive, symmetric, transitive, axiom, postulate, open sen
tence, truth set, binary, convex, half-line, half-space, 
union, intersection, region, measure, continuous, unique, 
limit. Abelian, basis, spanning, matrix, vector, conformable, 
embedded, equivalent, field, ring, isomorphism, kernel, circu
lar function, domain, range, image, inverse, least upper 
bound, greatest lower bound, mapping, mathematical model, 
one-to-one correspondence, and integral polynomial zeros.
SMSG seldom deigns to "invent" new terms as vehicles for
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communicating ideas and concepts but rather uses the terms 
which are commonly accepted by mathematicians. (It does seem 
rather strange, however, that SMSG seldom utilizes mathemati
cal symbols for communication of mathematical tools. Only
occasionally does one find in these texts the symbols I I and
n  for union and intersection, respectively, and even the 
highly utilitarian "set-builder" notation for describing sets 
is seldom utilized. Although all statements and theorems are 
quantified and the terms "imply" and "if and only if" are 
used frequently, one never finds the symbols \/, 3  , and

abbreviating for any, there exists, implies that, and if 
and only if, respectively.)

The proofs utilized by the SMSG authors provide 
another departure from traditional texts. In the units for 
the ninth grade, the proofs seem to be largely intuitive and 
lack rigor since the student is not yet fully acquainted with 
the characteristics of a good mathematical proof. However, 
the ninth-grade units, in spite of their intuitive appeal in
sofar as proofs are concerned, use progressively more sophis
ticated arguments until, by the end of the year's program, 
one notes an explicit concern for rigorous proofs. The tenth- 
grade study of geometry concerns itself still more with good, 
concise proofs as well as pointing out the "loopholes" in 
various proofs. The coordinatization of lines and angles as 
well as the introduction of the coordinatized plane permits 
proofs which are more numerically-oriented than those found
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in traditional geometry. The units prepared for later con
sumption are characterized by clean, crisp proofs for which 
the foundations have been laid during the first two years. A 
student having studied this program will have become acquainted 
with the various types of proof although he will not have seri
ously studied the logic involved in such proofs. The same 
s tudent should also be aware of the role of the definition, 
the axiom and postulate, and the undefined term in any mathe
matical proof and also realize that the truth of a mathemati
cal "fact" is relative to the abstract system under considera
tion.

When compared with traditional treatments of secondary 
mathematics, the really striking difference as evidenced by 
the SMSG program is the method of presentation of material in 
both textual discussions and exercises. In most instances, 
the comparatively lengthy textual discussions are written in 
a manner which seems to suggest a conversation with the stu
dent. The student, in reading these textbooks, must continu
ally contribute answers to "Why?" and "How?" if he is to fol
low the development of the topics. The authors apparently 
wrote these discussions with the ultimate goal in mind of 
helping to train the student to find out things for himself—  
a goal motivated by the heuristic philosophy that a student 
retains and understands more completely those things which he 
discovers for himself. The exercises, written in similar 
vein, often embody extensions of the material already studied
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and serve to assist the intuitive formulation of concepts to 
be precisely verbalized later as well as to reinforce the 
concepts already verbalized. (One does note, in this respect, 
the results of several authors contributing separate sections 
which were "tied together" with a minimum of editing and 
thereby damaging, to some extent, the continuity of the pres
entation . )

One must predicate a discussion of "concepts versus 
skills" in the SMSG program upon the notion that, in the eyes 
of SMSG, the development and verbalization of concepts is a 
desired goal, i.e., in a sense, the grasping and formulation 
of-.concepts i^ a skill. However, even the "drill" fancier 
would find very little to criticize in these textbooks since 
an abundance of such exercises is presented although not to 
the degree as programs of the past years— a manifestation of 
the belief that drill based upon understanding, i.e., meaning
ful drill, should provide desired reinforcement of skills 
with fewer exercises than non-meaningful drill. It appears 
that, in most instances, a pleasing balance has been achieved 
between drill exercises and ones structured to emphasize the 
underlying concepts.

SMSG makes very little direct effort to "apply" to 
the physical environment the mathematical concepts derived. 
Conversely, no particular effort is expended to emphasize the 
abstract nature of mathematics and the recognized character
istic of modern mathematics as having no necessary connection
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with the physical world. (It should be noted, however, that 
these materials contain many exercises which are of an applied 
nature and have a ring of "practicality" in that they are 
stated in an environmental language.) SMSG's guiding philos
ophy with respect to this problem has been reflected in the 
statement: "Since no one can predict with certainty his
future profession, much less foretell which mathematical 
skills will be required in the future by a given profession, 
it is important that mathematics be so taught that students 
will be able in later life to learn the new mathematical 
skills which the future will surely demand of many of them. "^

^Ibid., p. 3.



CHAPTER III 

THE UICSM SECONDARY MATHEMATICS PROGRAM

General Characteristics of the UICSM Program
The UICSM secondary mathematics program is one which

is based on several explicitly-stated operating principles:
We believe that students should be given an opportun
ity to discover a great deal of the mathematics which 
they are expected to learn. . . . We believe firmly 
that the learning of mathematics should be a delight
ful experience for youngsters, and that this delight 
is the reward for hard work. . . . Since we believe
that interest is a necessary condition for learning, 
we have tried to set the development of mathematical 
ideas in situations which are inherently interesting 
to young people. . . . There is a time in the stu
dent's mathematical career when he needs to bring 
rigor into the pursuit of mathematics and the mathe
matics he learns prior to this time must be so or
ganized that when rigor is finally introduced, it 
will not be necessary for him to throw out anything 
he has learned at an earlier level.^

These books, written for college-bound students, reflect
these operating principles in their textual structure.

The UICSM set of mathematics texts is divided into 
eleven units : Unit 1, The Arithmetic of the Real Numbers;
Unit 2, Generalizations and Algebraic Manipulations; Unit 3 , 
Equations and Inequations ; Unit 4, Ordered Pairs and Graphs;

^University of Illinois Committee on School Mathemat
ics , Hiqh School Mathematics, Unit 1. Teacher's Edition 
(Urbana: University of Illinois Press, 1960), pp. 1-4.
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Unit 5, Relations and Functions; Unit 6 , Geometry; Unit 7, 
Mathematical Induction; Unit 8 , Sequences ; Unit 9, Elementary 
Functions, Powers, Exponentials, and Logarithms; Unit 10, 
Circular Functions ; and Unit 11, Complex Numbers. The fact 
that the units are hound separately should not cause the 
reader to regard the units as separate texts hut rather as 
separate sequential and integrated chapters of Hiqh School 
Mathematics. These units are not written for particular 
grade levels hut rather for experience levels although Units 
1-4 comprise roughly the introductory high school algehra 
course and Unit 6  that of a high school plane geometry course. 
(In view of this parallel. Units 1-4 will he examined as a 
continuous hlock of study.)

The teacher's commentaries are major textual produc
tions within themselves. Rather than heing separate units, 
the commentaries have heen designed so that they can he inte
grated page-hy-page with the pages of the student edition 
with each of the commentary pages containing a discussion 
relevant to one or more pages of the text. These commentary 
sheets describe the experience-hased notions as to what to 
expect from the student and contain mathematical background 
and appropriate references to mathematical treatises for the 
teachers as well as pedagogical suggestions for the presenta
tion of mathematical concepts.
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The Arithmetic of Real Numbers. Unit 1 

Unit 1 is devoted to an investigation of the arith
metic of the real numbers and, consequently, that which is 
usually called algebra is not even mentioned until Unit 2.
It evidently has been the experience of the writers that in 
the earlier grades the students have learned very few things 
about numbers and the general properties of numbers and pos
sess little understanding of the processes involved although 
they have learned various algorithms and computational pro
cedures. However, an "algebraic" treatment of real numbers 
demands knowledge of some of the general properties of num
bers such as associativity, commutativity, distributivity, 
equality and inequality relations, as well as an appreciation 
of deductive proof. It is toward this particular set of 
needs that Unit 1 is directed.

Introduction
In order that the student may gain an intuitive idea 

regarding the difference between number and number-symbol, 
the writers present a very provocative account of an inter
change of letters between two persons— one of whom is trying 
to teach mathematics to the other by mail. Various misunder
standings develop due to the inadvertent interchanging of 
symbols and referrents leading to a maximum degree of confu
sion. The student is led to recognize that the source of
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this confusion lies in the symbolism and language rather than 
the abstraction of the numbers themselves.^

Names of numbers are called numerals or numerical ex
pressions ■ It follows directly that any given number has 
many numerals, e.g., "4," " 8  + 2," " 8  x h," the "product of 
2 by 2" and "3 + 1" are all names for the number 4. This 
discussion of the set of numerals naming the number 4 is the 
beginning of an effort on the part of UICSM to illustrate 
that the symbol "3 + 1" does not command the reader to add 3 
and 1 but rather is a name for 4. "2 + /2" is a numerical
expression representing the sum of 2  and y~2 and a shorter 
correct name for the sum of these two real numbers is not 
available. Similarly, "1/3 + 1/5" is a name for the number 
which names the sum of 1/3 and 1/5, a shorter name for this 
sum being "8/15."

The exercises at the end of this topic are typical of 
the kind of exercises which occur throughout the text. The 
exercises are designed to reinforce the already presented 
concepts and yet at the same time to force the student to ex
tend these ideas still further. The student must be alert to 
the discussion at hand in order to complete successfully the 
exercise.

University of Illinois Committee oh School Mathemat
ics, The Arithmetic of Real Numbers, Unit 1 (Urbana: Univer
sity of Illinois Press, 1962), p. A-N.
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Distance and Direction 

The writers do not make any attempt to formally de
fine a number but only present the idea of the numbers of 
arithmetic through consideration of measurements of magni
tudes such as lengths, areas, volumes, speeds, etc., and, in 
actuality, accept the arithmetic numbers as being undefined. 
These arithmetic numbers, which have already been used by the 
student since the first grade, are illustrated as being cap
able of measuring distances for trips along a "road" (a 
straight line), measuring from some arbitrary point as depar
ture point provided that alterations can be made to account 
for the direction of travel. The symbols —> and t— are 
"invented" to solve this need and a system is devised whereby 
a represents a number signifying a trip of a units in a given 
direction (perhaps west) and a represents another number of 
a units along the opposite (east) direction. These numbers 
representing both direction and magnitude are defined as real 
numbers. One notes that reliance is being placed intuitively 
upon the number line whose coordinates are real numbers and 
also that this extension to the real numbers treats the set 
of non-negative real numbers as different from, although iso
morphic to, the set of numbers of arithmetic.

The authors are very careful at this point to prevent 
the formation of the notion that a "real number is an arith
metic number with a sign in front" since a number is an
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abstraction and has no "front. It is evidently for this 
reason that the term signed-number is never used by UICSM 
when referring to the real numbers.

The "directed trips" and the associated right-real 
and left-real numbers are renamed once the student has become 
familiar with the underlying associated ideas. The right- 
real numbers are named positive numbers (indicated by ^a in
stead of a ) and the left-real numbers are named negative 
numbers (indicated by “Td instead of ^  ) . It is emphasized 
that positive and negative numbers come in pairs, each pair 
containing the positive number ’*’a and the negative number ~a, 
each corresponding to the arithmetic number a_.

Addition of Real Numbers 
The addition of real numbers is structured on an ex

tension of the number scale as is ordinarily presented (al
though the number scale is not used), except that the symboli
cal representation of the real numbers is different. The ad
dition of two real numbers ^a and b (represented by ^a + b) 
is presented by the use of two successive trips with the sum 
being the nurriber representing the total displacement, i.e., a 
single trip that would cause the same displacement as the com
bination of the two trips. As emphasized by the writers, the 
operation of addition of real numbers is different from the 
operation of addition of arithmetic numbers and, since the

^Ibid., p. 3.
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operations are different, it is not surprising that the new 
operation does not have the same properties as the old, e.g., 
addition does not necessarily involve increasing, and that 
the addition of real numbers is a combination of the opera
tions of addition and subtraction of arithmetic numbers. The 
care exercised by the UICSM writers is illustrated by their 
insistence that when one adds ^5 to ^3, one must write "^3 + 
^5" rather than "^5 + "**3, i.e., adding ^5 is written in such 
a way that the student associates this operation in the same 
way that they associate subtracting ^5.

It is evident that the superscript sign convention 
prevents ambiguity between operation-symbol and number-symbo1 , 
This notation separates the naming of the indicated operation 
from the "sense" of the real number to which the operation is 
applied— a very radical and useful departure from traditional 
texts.

The real number 0̂  is introduced as the sum of any two 
opposite real numbers ^a and ~a. It is pointed out that the 
real number 0 _ and the arithmetic number 0 _ are not the same 
since the real number 0  ̂is the sum of two real numbers 
whereas the arithmetic number 0  ̂is the difference of two 
arithmetic numbers. The authors prudently suggest, however, 
that no attempt will be made to differentiate symbolically 
between the two meanings.^

^Ibid., p. 14.
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The student is compelled to formulate the "rules" for 

the addition of real numbers, i.e., the text does not present 
at this time the formal rules for this operation. The writers 
do not even mention the process of subtraction at this point 
but rather wait until the concept of inverse operations has 
been developed.

Multiplication of Real Numbers 
Certain examples using a water pump (pumping in or

out), a water tank (filling or emptying), a movie projector
(running backwards or forwards), and consideration of hypo
thetical interactions of such permit the student to formulate 
rules for determining the products of real numbers. It is 
emphasized that the physical interpretation which leads to 
the rules for multiplying real numbers does not prove that
the rules are correct but that the rules themselves are con
sequences of the definition of real numbers and the opera
tions, and these definitions are implicit in their physical 
interpretation.

Numbers of Arithmetic and Real Numbers 
This particular topic deals with perhaps one of the 

most sophisticated mathematical ideas in the unit. The pur
pose of the Exploration Exercises of the section and the 
textual discussion is to present the point of view that the 
system of numbers of arithmetic and the system of non-negative 
real numbers are different systems which have the same
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structure. This, of course, is an illustration of the con
cept of isomorphism. It is demonstrated that if the system 
of the numbers of arithmetic is isomorphic to the system of 
non-negative real numbers, the two systems have the same 
structure, and are "abstractly" identical. There is no rea
son, however, for saying that the numbers in one system are 
the same as the numbers in the other. The term isomorphism 
is not used in the text at this point.

This presentation allows considerable simplification 
in many expressions in that the non-negative real numbers act 
as do the numbers of arithmetic with respect to addition and 
multiplication and their names may even be interchanged under 
these circumstances, e.g., 9 + 3 = 6  might be written as
9 + ”3 = 6 . It also suggests that such statements as 7 x 5 =
35 are ambiguous since, without further information, it is 
impossible to determine whether these are arithmetic numbers 
or real numbers. However, if no confusion can exist as a re
sult, the reader is urged to interpret the expression in 
either fashion.

Punctuating Numerical Expressions
This particular topic is rather conventional in its 

presentation although the language conforms with the more 
modernistic definitions. It is illustrated that in mathemat
ics the ambiguity of expressions such a s B x 3 + 2 x 5  may be 
removed by punctuation of the expression by use of parentheses.
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brackets, braces, etc. It is mentioned that ^  £"(7x2)
+ 6  ] X 5 ̂  + 7  is a name for a number and that its equiva
lent 107 (also a name for the same number) is considerably 
s impier .

The conventional rules for precedence of arithmetic 
operations, grouping, and simplification are then postulated 
but are restricted by the examples to the arithmetic numbers—  
perhaps somewhat confusing to a student who has so recently 
absorbed assorted pieces of information regarding the real 
numbers. The novelty of the presentation lies in its use of 
the terms punctuation (using symbols to remove ambiguities), 
equivalent (another expression naming the same number), and 
unabbreviatinq (tantamount to a procedure for deciding upon 
order of operations).

Principles for the Numbers of Arithmetic
This topic, also restricted to arithmetic numbers, 

develops, through an abundance of exercises, an awareness of 
the associative principles of addition and multiplication and 
the commutative principles for addition and multiplication.
In essence, these principles are stated as postulates in the 
undefined system of arithmetic numbers.

In its development of the distributive principle for 
multiplication over addition, the UICSM. material departs from 
the conventional in one respect. Most texts suggest that 
ax(b + c) is the "same" as (b + c)xa since the results of
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these operations are the same, but since the UICSM always 
writes the name of the multiplier to the right of the multi
plication sign, the distributive principle for multiplication 
is stated as (a + b)xc = axe + bxc, whereas the left- 
distributive principle for multiplication over addition is 
stated as cx(a + b) = cxa + cxb.^ Other principles are postu
lated and illustrated: (a) the principle for adding 0  (a + 0

= a), (b) the principle for multiplying by 1  (axl = 1 ), and
(c) the principle for multiplying by 0 (axO = 0).

An interesting notation innovation is the introduc
tion of the abbreviations cpa (commutative principle for addi
tion) , apa (associative principle for addition), cpm (commuta
tive principle for multiplication), Idpma (left-distributive 
principle for multiplication over addition), etc. One also 
notes with interest the pattern which is used, i.e., a sen
tence written with only operations indicated and grouping 
symbols indicated with empty spaces to be filled, one at a 
time, as justification for each step is made.

Principles for the Real Numbers
This topic extends the preceding discussion to the 

field of real numbers and allows and encourages the student 
to verify (though not prove) that the principles developed 
for the arithmetic numbers hold also for the system of real 
numbers. The better student is encouraged to understand that

^Ibid., p. 52.
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perhaps the operations on the reals were formulated as they 
were in order that just such an extension of principles would 
hold, i.e., it was desirable that the principles of arithme
tic numbers (since they were isomorphic to a subset of the 
reals) would be "included-in" the principles of the reals.

Inverse Operations 
In this topic, another very sophisticated mathemati

cal concept is utilized in the introduction of ordered pairs 
and the subsequent definition of various new operations. As 
an illustrative example, consider the operation adding 3 .
This operation actually entails taking all pairs of numbers 
such that the second member of the pair is the sum of the 
first member and the number 3, e.g., (3, 6 ), (2, 5), (6 , 9).
Consider now the operation of subtracting 3 defined to be the 
taking of the set of all pairs of numbers such that the first 
member of the pair is the sum of the second member and the 
number 3, e.g., (3, 0), (6 , 3), (8 , 5). Certainly these
operations are not the same although there does seem to be 
similarity (in some unknown way) between the two. Certainly 
if the operation adding 3 were followed by the operation sub
tracting 3 , or conversely, the results would merely nullify 
each other, i.e., the subtracting 3 operation "undoes" the 
adding 3 operation. Subtracting 3 is then defined as the in
verse of adding 3 . Extensions and further discussions of in
verses are made but the major point is that an inverse of
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an operation is an operation which "undoes" the effect of 
that operation.

Pairs of real numbers whose sum is 0_ are defined as 
being opposites. Therefore, every real number has an opposite.

Subtraction of Real Numbers
By using the results of the preceding topic, the 

process of subtraction of a real number is defined as an 
operation which is the inverse of adding that given number, 
i.e., the principle of subtraction states that subtracting a 
real number is precisely the same as adding its opposite.
This treatment is very modernistic in that the student should 
recognize that this presentation "constructs" subtraction by 
use of only the principles of addition, i.e., the operation 
of addition has been extended to serve as a definitive tool 
for inverse operations.

Opposites
An important fact about the real numbers is that, for 

each real number, there is a real number (the opposite of the 
first) which when added to the first gives 0_. Finding the op
posite of a real number is defined to be an operation just as 
adding 6  or multiplying by 6  are operations. The symbol "— " 
is introduced as the symbol naming the oppositing operation. 
Some potentially troublesome notation is introduced here; the 
sign "— " for opposite is approximately twice as long as the
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sign for negative, e.g.,— (”9) is the opposite of nega-
t ive 9 .

Since ^a has already been shown replaceable by a when 
no ambiguity is present, the above principles of opposites 
allows one to rename the negative number b as -b (since the 
opposite of a positive number is a negative number).^ This 
then allows the authors to rename the negative real numbers 
as being the opposites of positive reals unless ambiguity is 
produced. This means that the minus sign is to be used in 
three different ways: (1 ) when naming a negative number,
(2) when naming the opposite of a real number, and (3) when 
indicating the subtraction operation. The result of the in
troduction of these many operations has been to define care
fully the various uses of the minus sign which are usually 
thrown into the traditional algebra texts without differenti
ating explanations. The authors also discuss briefly the 
sameinq operation which is analogous to the oppositing opera
tion , i.e., just as oppositing takes a real number to its op
posite, the sameing operation may be thought of as the taking 
of a number to itself.

Division of Real Numbers 
Just as subtracting a is defined to be the inverse of 

adding a , dividing by b , b ^ 0 , is defined to be the inverse 
of multiplying by b . A fraction is defined to be a type of

^Ibid., p. 86.
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numeral having three parts: numerator, fraction-bar, and
denominator. This form indicates division of the numerator 
by the denominator. This definition requires that a fraction 
be a numeral rather than a number and is important in that 1 / 4  

is a different fraction from 2/8; however, 1/4 is the same 
number as 2/8. With this concept in mind, a quotient of the 
number a by the number b, b / 0 , may be named as the fraction 
a/b.

Comparing Numbers 
UICSM presents a scheme somewhat different from SMSG 

to consider order relations. Consider a pair of any two real 
numbers a_ and b, a / b .  The number of the pair to which one 
must add a positive number to get the other is defined to be 
the smaller whereas the other of the pair is the larger. One 
notes that this ordering principle for the reals does not 
rely upon the number line for meaning— a unique feature in 
that SMSG relies heavily upon representation of the set of 
reals as being coordinates of a number line.

The Number Line 
It is at this point that the authors formally intro

duce a device commonly introduced early in the semester in 
most texts— the number line— in which the ordered set of real 
numbers is thought of as being superimposed upon a straight 
line. This device is of great value in the clarification of 
the greater than and less than relations.
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It has already been seen that to each arithmetic num

ber there corresponds a unique real number and to that real 
number corresponds a unique opposite. With this in mind, the 
authors develop a very unusual (insofar as traditional treat
ments are concerned) definition: The number of arithmetic
which corresponds with a real number is called the absolute- 
value of the real number.̂  This definition demands that the 
absolute value of a real number is not a non-negative real 
number but rather a number of arithmetic— a quite unorthodox 
result. It is also noted that absolute-valuing is an opera
tion "matching" each real number to a single corresponding 
number of arithmetic. Rigorous discussion of this operation 
and the possibility of its inverse operation is presented.

Generalizations and Algebraic Manipulations, Unit 2
This particular unit treats one of the most important 

and valuable ideas in mathematics— the concept of the vari
able . The concept is treated with especial care since this 
is the first time that most students will have done formal 
study in the use of variables and one notes several unortho
dox features of the UICSM position insofar as the nature and 
role of the variable is concerned. A major purpose of the 
unit, in addition to displaying the properties of the vari
able, is to help students develop the manipulative shills 
which are traditionally taught in beginning courses in

^Ibid., p. 104.
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algebra. It is noted, however, that UICSM does not use the 
term variable but rather a new term which is coined to serve 
as vehicle for this concept.

Sentences
In the earlier topics, it has been mentioned that if 

two numerals are the names of the same number, the conven
tional equality sign would be used to indicate this fact. A 
sentence which consists of an equality sign between a pair of 
numerals (or numeral expressions) is a true sentence if the 
numerals are names of the same number ; it is a false sentence 
if the numerals are the names of different numbers. Under 
this agreement some statements are neither true or false, 
e.g., 9 + ̂  = 15 is neither true nor false. This, of course, 
is recognized as being the standard introduction to the con
cept of variable— yet the authors do not introduce the term 
at this point. The student is encouraged to recognize that 
an open statement containing a "hole", although neither true 
nor false as it presently stands, may be converted into a 
sentence which is either true or false (but not both) by put
ting a numeral into (or in the place of) the "hole." The 
many figures such as D  , ^  , "A" , O  , etc. , which might be 
used to indicate "holes" in a statement are given the name 
frames. One notes that, under the UICSM treatment, the frame 
does not "stand for a number" but rather "holds a place for" 
a numeral, i.e., the frame is a placeholder for a numeral.
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Subsequent developments will characterize the variable (a 
special type of which will be called pronumeral) as a place
holder for the name of a number rather than the traditional 
consideration of a variable as "the name of a number."

The authors give a very precise description of what 
is meant by substitution : "To substitute a numeral for a
frame in an expression or sentence is to replace each occur
rence of the frame by copies of the numeral."^ A multitude 
of exercises is provided which illustrate the use of frames 
and pattern sentences for the many principles of the reals.

Pronouns
A sentence which is either true or false is called a 

statement. Sentences containing holes or frames which can be 
converted into statements by filling the holes or frames with 
names (or by the process of substitution) are called open 
s entences. It follows then that an open sentence is neither 
true nor false. Actually, then, since the holes in an open 
sentence hold places for nouns, they are called pronouns, and 
in the event that mathematical sentences are used, the frames 
are the holding places for nouns which are the names of num
bers, i.e., they hold places for numerals and as such are 
called pronumerals. It is very conveniently suggested that.

University of Illinois Committee on School Mathemat
ics , Generalization and Algebraic Manipulations, Unit 2, 
Teacher's Edition (Urbana: University of Illinois Press,
1962), p. 13.
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although the work of mathematics could be done adequately by 
use of frames such as D , , and O  , it might be more con
venient to use the lower-case letters of the alphabet to per
form the chore of placeholding in open sentences. The ex
pressions and sentences which can be generated from pronumer
als are given the name pronumera1 expressions. The authors 
stress these properties of pronumerals : (a) a pronumeral is
a mark; (b) a pronumeral is not a numeral, and (c) a pronumeral 
is a mark which holds a place for numerals.^

One notices that this treatment of variable is rather 
unorthodox in that the variable is no more than a mark on the 
paper and not something which is denoted by a mark as a number 
is denoted by a numeral. This conflicts with the usual con
sideration of the variable as being the name of a number.
Also a variable per se does not have a referrent since it is 
not a name and is, under this consideration, no more than a 
blank in an expression which serves to hold the place for some 
object.

Many exploratory exercises are provided at this point 
which lead the student to formulate generalizations (using 
pronumerals and open sentences) of those ideas which he has 
already developed regarding the principles and rules of ma
nipulation of the reals and to state these generalizations

^University of Illinois Committee on School Mathe
matics , Generalization and Algebraic Manipulations, Unit 2 
(Urbana: University of Illinois Press, 1962), pp. 14-18.
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in exact, precise, non-ambiguous language, e.g., the student
is led to formulate such precise rules as : "For each x, for
each Y.' if 5L is negative and y  is negative, then x + y =

1-( |x| + l yl) . "  Considerable emphasis is placed upon the
quantifiers for each, and for every.

Generalizations 
The student is motivated to study in this topic the 

process of generalization. A generalization is obtained by 
writing a qualifying phrase as a "hypothesis" phrase for an 
open sentence, i.e., a generalization is obtained by writing 
a quantifying phrase such as "for each x" in front of a sen
tence. "For every y , y + y = 2y," is an open generalization 
sentence. The student is given practice in the confirmation 
(by use of test-patterns) of generalizations and the very 
idea of generality is presented intuitively, yet effectively, 
and shows that every instance of generalization regarding the 
reals must be a consequence of the developed principles of 
the real numbers. The reader cannot help but be impressed by 
the very logical, axiomatic approach to the process of gener
alization by utilization of what the authors refer to as test- 
patterns , which are actually "proofs" (using frames) struc
tured on the axioms (earlier referred to as basic principles) 
and their logical applications. These proofs of generalities 
are structured on the basic axioms and are built logically

^Ibid., p. 29.
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from them as foundation blocks. It is also emphasized that 
these proofs are only as strong as the axioms— a point which 
often seems to be under-emphasized (and even neglected) in 
many of the treatments of the structure of the number system.

Simplification of Expressions 
It is suggested that one of the major uses of pro

numerals and pronumeral expressions is to write formulas 
which can be used in solving problems. Quite often, however, 
such expressions may be so long and cumbersome as to be un
wieldy and the principles for real numbers are convenient to 
justify simplification of the expressions, i.e., generaliza
tion procedures may be utilized. These simplifications must 
be results of the principles of the real number system.

Equivalent numerical expressions are numerals for the 
same numbers and equivalent pronumeral expressions are ones 
such that for each substitution of a numeral for a pronumeral, 
both expressions have the same value. The rationale behind 
this definition is apparent since to simplify any expression 
is merely to transform (by use of the basic principles) it 
into an equivalent one which is simpler.

Theorems and Basic Principles 
In this topic— a remarkably sophisticated one— are 

collected the basic principles for real numbers from which 
all other principles concerning the operations of addition, 
multiplication, opposition, subtraction, and division can be
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obtained. The student is forced to derive many such princi
ples, use them to justify computational short-cuts, and to 
gain skill in applying these shortcuts.

The procedure of taking a known subject matter (in 
this instance, the real numbers) and organizing it deduc
tively by choosing some "true" statements from it as basic 
principles (or postulates) and deriving others (theorems) 
from them is illustrated and discussed here. It is also 
pointed out that in the application and construction of
mathematics, one forgets the "known subject matter," and
considering the postulates and theorems merely as sentences 
in an uninterpreted language, concentrates on the logical 
connections among these sentences— a process which pays 
strict attention to the structure exhibited by the original 
subject matter. The authors also introduce the symbol " ^  "
to represent the quantifier for each, and states the basic 
principles in terms of this usage.

Oppositing and Subtracting 
By utilization of the basic principles already intro

duced the student is encouraged to prove such theorems as the 
following: (a) V %  V y  V z  if x = y, then x + z = y + z (the
uniqueness principle for addition) ; (b) V ^ ^ y ^ ^ z  if x + z =
y + z , then x = y (cancellation principle for addition);
(c) V j j V y  if X = +y, then -x = -y (uniqueness principle for 
opposition) ; (d) x V y  if x + y = 0, then -x = y (0-sum
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theorem). These theorems are then utilized to provide tools 
for writing equivalent simpler expressions.

Division
In an earlier topic the process of division has been 

defined as the inverse of multiplying— a concept discussed by 
the utilization of ordered pairs. It has been shown that it 
is always possible to subtract a second real number from a 
first real number but that one can divide a first real number 
by a second real number if and only if the second is non-zero. 
It is concluded, from an analysis of the non-existence of the 
inverse of multiplying-by-O that dividing-by-zero is not an 
operation.

It is shown that the process of multiplying by each 
non-zero real number has an inverse such that there
is just one ^  such that zy = x," and this theorem is presented 
along with a "proof" of the division theorem " V x  Vy^O  ̂ z  ' 
if zy = X, then z = x + y." These and other results are 
utilized to prove the cancellation principle "VxVyVzTfO' 
if xz = yz, then x = y ."

Principles for multiplying fractions, determining the 
least common denominator, dividing fractions (justification of 
the "invert-and-multiply" rule), division and opposition (op
posite of a quotient is the quotient of opposites), etc., are 
developed as generalizations of the theorems and basic princi
ples . These studies allow the student to procure a very deep
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understanding of the processes utilized for working with frac
tions and lead him naturally to the study of "algebraic" frac
tions .

Comparing Real Numbers
In Unit 1 the concept of greater than was considered

by the construction of ordered pairs- This concept is now
formalized into a subtraction procedure: , (a) ifX y
X - y is a positive number, then x >• y, and (b) if x - y is 
not a positive number then x y .

Although several exercises demand it, no basic prin
ciples yet have been given from which students could derive 
theorems regarding absolute values. However, it follows that 
" 1 . . -I " (an arithmetic number) may be used as an abbrevia
tion for " ^ I . . . 1 " and the principle " if x ^  0 , 
then I x| = X  and if x ^  0, then I x| = -x, " follows di
rectly .

Eguations and Inequations, Unit 3

Graphs and Coordinates 
In previous topics the student has already thought of 

the real numbers as being ordered on a line. In this topic 
the subject is elaborated in that a one-to-one correspondence 
is indicated between the real numbers and the points on a 
line. Each point on the line (represented by a dot)

^Ibid., p. 109.
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corresponds with a unique real number and conversely. The 
real number associated with a particular point on the line is 
considered as the coordinate of that point.

Solution Set of a Sentence 
At this particular point, a concept is introduced 

which is very basic to the modern development of mathematics 
and one which has contributed a tremendous amount to the revo
lution of the structure of mathematics— the concept of the 
set. If an open sentence is considered, each real value of 
X can be used to convert the open sentence into a true state
ment or a false statement. A value of x which will convert 
the sentence into a true statement is said to satisfy the open 
sentence or to be a solution of the open sentence. The set of
all real numbers satisfying the open sentence is called the
solution set of the sentence. The student is introduced to 
the notion that some solution sets contain many elements, 
that some solution sets have only one element (and are called 
singletons), and that some solution sets are empty (or null). 
Suitable notation for the elements of a set is developed, 
i.e., Ç a, b ^  is a sufficient way to describe the set 
whose elements are a_ and b , whereas the set-builder 
^ x : x  + 5 <  9} describes the set of all numbers x such
that the sum of x and 5 is less than 9.

Since the UICSM authors have not yet introduced ex
ponential notation, one finds expressions such as 2 xx and
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2 33xxx, rather than 2x and 3x , respectively. From this point 

forward, the authors make extensive use of set notation and 
language and are consistent in their usage.

Graph of a Sentence 
The term graph of a sentence is an unusual one in 

secondary texts although the associated idea is rather ortho
dox. The picture (or representation by dots on the number 
line) made up of the graphs of the numbers in the solution 
set of a sentence is called the graph of the sentence. The 
geometric term locus is introduced as a possible alternative 
for the term solution set of a sentence. Convenient notation 
for discussion of these sets, or loci, is presented, e.g.,
Cx : 1 < X < 3^ names the set of numbers each of which
is greater than 1 and also simultaneously less than 3. This
same set might also be labeled by 1, 3 and, in the event that 
one wished the set to include the numbers 1  and 3, one might
use 1, 3 whereas 1, 3 would describe the set 1, 3 with the 
set {l3  unioned to the set.

Equations
Probably no definition of mathematics is more confus

ing than the one ordinarily given for equation. (What does 
it mean to say that an equation is a statement indicating 
that two numbers or quantities are equal? Two numbers cannot 
be equal since the only thing to which a number can be equal 
is itself 1) This difficulty has been corrected by the UICSM
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definition of an equation: "An equation is a sentence ob
tained by connecting expressions by an equality sign.
Under tbis definition, the truth or falsity of a statement is 
entirely irrelevant as to whether or not the sentence is an 
equation. The term equation refers to the form of the sen
tence and not to its content. The numbers which satisfy (or 
comprise the solution set of) an equation are given the title 
of roots of the equation (and are numbers, not numerals).

It is at this point that the carefulness with which 
the concept of equivalent pronumeral expressions was developed 
begins to bear fruit. The student sees and realizes the power 
of the tool of replacing an expression by an equivalent ex
pression. Its application toward finding the solution set of 
a sentence is evident.

Although at this point the student has had considerable 
practice with the solutions of equations, he has not yet seen 
a formal statement of the ordinary axioms usually seen, e.g., 
"When equals are added to equals, the results are equal." He 
has, however, formulated his own procedures and techniques for 
rewriting an expression into an equivalent expression. He has 
at the same time explored the significance of the very term 
equivalent by considering such examples as these : If equation
(a) is transformed into an equivalent equation (b), the roots

University of Illinois Committee on School Mathemat
ics, Equations and Inequations, Unit 3 (Urbana: University of
Chicago Press, 1962), p. 19.
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of (a) are roots of (b), and the roots of (h) are roots of 
(a). He has confirmed that certain transformation principles 
available to him hold the solution set invariant while alter
ing the form of the expression. These transformation princi
ples give him authority to simplify a "complicated" expression 
into a simpler, equivalent one.

UICSM introduces at this point the is a subset of re
lation. This relation is abbreviated by the regular notation, 
i.e., "A G  B" indicates that set A is a subset of set B.

Equivalent Equations 
This topic develops the further application of the 

student's reasonably good acquaintance with the equation 
transformation principles and guides him in the application 
of this acquaintance in deriving equations which are equiva
lent to a given one. An equation whose roots are the same as 
the roots of a given equation is said to be equivalent to it 
(and conversely). The process of transformation by use of 
the basic principles is utilized until an equivalent one 
whose root is "obvious" is obtained. The problem of solution 
of equations containing fractional expressions is also solved 
by transforming them into equations which do not contain frac- 
t ions. '

It is pointed out very dramatically that when one
transforms an equation by multiplication, one may not get an

2equivalent equation, e.g., x = 2 x is not equivalent to x = 2
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since the solution set for the first equation is ^ 0 , 2 } tout 
the solution set of the second is "t 2 3 . The student is en
couraged to always toe on the alert for transformations which 
do not yield equivalent expressions.

Transforming a Formula 
This i^pic treats the sutoject often referred to as 

the solving of literal equations. Again the concept of 
equivalence is utilized in that formulas such as C = 5/9 
(F - 32) and F = l.Bc + 32 are given as examples of equiva
lent formulas since either of them can toe transformed into 
the other toy using transformation principles developed ear
lier .

Solving Protolems 
The authors of the UICSM materials admit readily that 

they do not Xnow any universal formula for solving "word" or 
"vertoal" protolems tout sutoscritoe to the philosophy that the 
most effective teaching technique is to provide the student 
plenty of material with which to practice. This treatment 
does, however, steer away from processes which succeed in get
ting students to solve certain kinds of protolems in a mechani
cal way. It is pleasing to find several "word" protolems in 
which insufficient data is present, protolems in which the 
data is purposely inconsistent, and protolems in which more in
formation is provided than is necessary for the solution of 
the protolem. Schematic diagrams are utilized to a high
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degree in the construction of equations. The process of 
"translation" from English statements to open sentences is 
emphasized.

By use of the familiar principles for real numbers, 
pronumeral expressions may be expanded, e.g., (x + 1 0 )
(x + 2) = x(x + 2) + 10 (x + 2) = X X  + 2x + lOx + 20 = xx +
12x + 20. It is here that the exponent symbol. or exponent, 
is formally introduced for the first time in the UICSM texts. 
It must be noted that rules such as "The square of a binomial 
is the square of the first plus twice the product plus the 
second squared," "Sum of two terms times difference of same 
two terms is difference of squares," are not introduced and 
the student resorts to the basic principles, e.g., distribu
tive, associative, and commutative principles of the reals 
for derivation although the student will probably formulate 
these rules on his own initiative. It is important to note 
also that various exercises are given which use frames as 
variables , e.g., (Q + A)̂ , ( -* - O ) ̂, (■A’+n)(0+0).

The topic of factoring of quadratic pronumeral ex
pressions is developed as essentially a trial-and-error proc
ess relying primarily upon the distributive principles for 
multiplication. A more thorough treatment is reserved for a 
later unit.
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Quadratic Equations 

An implicit application of the factoring transforma
tion principle ^  y' x = 0 o r y  = 0 if and only if xy = 0,"
plus the 0 -product theorem is made to solve a select group of

2quadratic equations of the form ax + bx + c = 0  such that 
2ax + bx + c = 0  may be transformed into an equivalent sen-

2tence (dx + e)(fx + g) = 0 .  Consequently, "ax + bx + c = 0" 
is equivalent to the sentence "dx + c = 0  or fx + g = 0 ."

Solving Inequations 
The solution of inequations is a process that is 

fairly unique to modern treatments of secondary algebra. 
Certainly the concept of solution sets of sentences (which 
may even be intervals) gives a tremendous boost to the tech
nique and also the carefulness with which the basic princi
ples of the reals have been developed again lends support.

It is shown that the addition transformation princi
ple and factoring transformation principle for inequations 
are entirely analogous to those for equations but that the 
multiplication principle is more complicated, i.e., the gen
eralizations xz <  yz if and only if x >  y,"
and xz >  yz if and only if x >  y" must be in
troduced.^ These theorems are obtained informally in the 
text discussion.

^Ibid., p. 102.
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Square Roots

This very sophisticated treatment of a very familiar 
topic should provide opportunities for some inspired teaching 
since the student is led to think about some very important 
notions, see some fascinating theorems proved, and to learn 
an important iterative process for the computation of square 
roots. Although the authors do not actually prove (due to 
the need for principles of completeness of the reals) the 
fact, the idea that each positive number is the square of at 
least one positive number is utilized.

The text contains an explicit presentation of a study 
of degrees of approximation. A typical statement is this : 
"For each positive number x_, there is just one integer y. such 
that y i X < y + 1. This number y. the approximation to 
X correct to the units place." This is further refined in 
such statements as "The approximation to x correct to the 
nearest unit is the integer y. such that y - 0 . 5  ^ x <  y +
0.5." Suitable extensions are made for the hundredth place, 
etc..

A very excellent, though brief, topic is presented on
estimate of errors. Typical exercises and solutions require
discussions of this type:

Assume that you know that a number y. Is the approxima
tion to a number x correct to 2 decimal places. You 
know that y ^ x <  y + 0 .0 1 , i.e., 0  < (x - y ) <  0 .0 1 .

^Ibid., p. 112.
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Therefore you know that the size of the error x - y 
is between 0  and 0 .0 1 , i.e., |x - y l ^ O . O l . ^

Various iterative processes are developed for finding ap
proximations to square roots although the traditional process 
is not introduced. One of these methods is essentially the 
same as the "dividing-and-averaging" method discussed by the 
SMSG writers.

The non-negative square root of a non-negative real 
number is named the principal square root, or, simply, the 
square root. The following generalization is developed:
"For each x, >/x^ = x if x >  0 and \/y^ = -x if x 0,
i.e., for each x, ^ x ^  = IxI. No introduction is made of 
the negative and fractional exponents often found in tradi
tional treatments although the student is adequately intro
duced to the simplification and manipulation of radicals.

Ordered Pairs and Graphs, Unit 4
This unit serves as a good introduction to the number 

plane and presents an excellent overview of the graphing of 
sentences. This unit refines the concept of ordered pairs and 
graphs and presents a quite new approach to graphing. Several 
important ideas are presented in the Introduction.

The authors consider a pair of numbers â  and b and 
write them in the style (a, b ) , i.e., order the number a to
occupy the first position and b to occupy the second position.

^Ibid., p. 118. ^Ibid., p. 132,
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One is then forming an ordered pair of numbers such that of 
the ordered pair the first component is a and the second com
ponent is b. The ordered pair (a, b) is not the same as the 
set { a , b} since set a , b^ is the same set as { b, a^ 
but (a, b) is not the same ordered pair as (b, a). In gen
eral, (a, b) = (c, d) if and only if a = c and b = d. The
set of all ordered pairs with first components from some set 
A and second components from some set B is called the
Cartesian product of set A by set B and is named A X B.

Lattices
If one considers a Cartesian product of two sets A 

and B and represents the ordered pairs as corresponding to 
points on a rectangular array of "dots," one forms what is 
ordinarily considered as a lattice. The number of columns in 
the rectangular array is usually the same as the number of 
elements in the first factor of the product A X B and the 
number of rows is the same as the number of elements in the 
second factor of the Cartesian product. The first component 
of each of the set of ordered pairs is named the first coor
dinate and the second component the second coordinate.

Consider the set of all ordered pairs whose compon
ents are integral real numbers, i.e., the Cartesian product 
of the set of all real integers by itself. This lattice, in
finite in dimension, is named the number plane lattice.
Since each point of the lattice corresponds to an ordered
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pair whose coordinates are integers, and conversely, the proc
ess of graphing a set of ordered pairs is the process of lo
cating the points of the lattice which corresponds with (or 
has as coordinates) the given ordered pairs, a one-to-one cor
respondence between select points of a plane and the set of 
ordered pairs of integers is established. The set of points 
in the lattice having second component 0 _ is called the first 
component axis and that set having first component 0  ̂is named 
the second component axis (as opposed to the traditional 
naming of these axes as the x-axis and y-axis) while the 
point in common between the two axes is named the origin.

The intersection of two sets is defined as the set of 
elements which belong to both of the given sets with the 
union of two sets being the set of elements belonging to either 
(one or other or both) of the given sets. Proper notation,
i.e., "\J" and "Cl" to designate union and intersection re
spectively, is introduced to express these notions. Various 
exercises are utilized to demonstrate these concepts with lat
tices being utilized to give "graphical" significance to them 
with various motivating lattice games being suggested. The 
authors also design an opportunity to discuss the number 
(more properly, the cardinal number) of a set and use the 
notation n(A) to represent the cardinal number of the set A.
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The Number Plane 

In this topic the idea of the lattice formed by the 
cross-product of two sets composed of integral numbers is ex
tended to the number plane— the Cartesian square of the set 
of all real numbers. (It must be noted that UICSM at this 
point implicitly appears to regard the number plane as the 
Cartesian square of the set of all real numbers and does not 
concern itself with the problem of distinguishing between a 
point and its coordinates as evidenced by these statements : 

This Cartesian square is called the number plane.^
An ordered pair of real numbers is a point of the 
number plane.^

Yet the authors refer to the "components of the points to be 
3plotted" and later establish the traditional definition for 

coordinate— a somewhat inconsistent usage. A vertical grid 
line pictures a set of ordered pairs of real numbers which 
have the same first component and a horizontal grid line pic
tures a set of ordered pairs which have the same second com- 
ponent. Any pair composed of elements from a vertical grid 
line and a horizontal grid line may serve as components for 
the number plane. Any ordered pair of real numbers is a 
point of the number plane and corresponds with a "dot" which 
can be positioned on the plane. The "dot" is the graph of

^University of Illinois Committee on School Mathemat
ics, Ordered Pairs and Graphs, Unit 4 (Urbana: University of
Illinois Press, 1962), p. 20.

^Ibid., p. 21. ^Ibid.
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the ordered pair, and the components of the ordered pair are 
the coordinates of the dot. The first coordinate of each 
point is named the abscissa and the second coordinate the 
ordinate. This development of the number plane is very lucid 
and functional in that the locus of a bi-pronumeral sentence 
(conventionally referred to as an equation with two variables) 
is simply the graph of all ordered pairs which satisfy the 
sentence.

One may see immediately that the solution of a pair 
of simultaneous equations (or sentences) is that set of or
dered pairs which satisfy both sentences, e.g., the solution 
of the simultaneous system of equations

X
3x

+ y = 6 \  
+ y = 2 j

is the intersection of the two sets of ordered pairs one of 
which satisfies the first equation and the other the second 
of the equations, i.e., ^(x, y) : x + y = 6  ̂
C, (x, y) : 3x + y = 2 3 = {-2, 8  3 • Graphically, this inter
section represents the intersection of the graphs of the sen
tences. Similar discussions are presented to graph inequa
tions in which cases the solution sets may represent areas of 
the plane rather than particular points of the plane as well 
as graphs of equations and inequations involving absolute 
values, etc.
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Graphs of Formulas

This topic virtually duplicates the preceding one ex
cept that generalizations are graphed and the statement of 
the domain of the pronumeral is emphasized. It is important 
to note that step-graphs and other piecewise continuous graphs 
are studied.

Factors
In order to lend rigor to the topic of factorization, 

the number systems already studied by the students are evalu
ated in view of their being subsets of more inclusive systems, 
i.e., C X : X is a positive integer CL f y : y is an integer}
C  { z : z is a rational number } Cl ( w : w is a real number^ .

Very close attention is paid to their properties and the fol
lowing sophisticated definition is developed: "For each set
S of numbers, x is a factor of y. with respect to S if and
only if X and y  are in S , and if there is a z_ in S such that

1y = x z ." One notes as the major implication of this defini
tion the fact that the domain of factorization must be defined 
for factorization to be non-ambiguous.

A very comprehensive study of even and odd integers 
is provided along with the convention that a positive integer 
which has exactly two factors with respect to the set of posi
tive integers is a prime number and any number which is 
neither a prime number or 1 is a composite number. A study

^Ibid., p. 49.
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is made of the prime factorization of composite numbers and 
the Fundamental Theorem of Arithmetic is introduced and uti
lized in the accompanying exercises. Scientific notation 
(often called powers-of-ten) is presented as a computational 
tool and to provide practice with exponent manipulation. (At 
this point the student is introduced briefly to zero and nega
tive exponents.)

Factoring
If the factor-sets (set of all factors) of two non

zero integers A and B are considered, the highest common 
factor of A and B is defined to be a positive integer x̂  such 
that X is a multiple of each common factor of the numbers of 
the given sets. Similar discussions are made to define the 
least common multiple of two integers.

The concept of the highest common factor is applied 
to the factorization of pronumeral expressions such as

ISx^y^z^ + 20x^y^z^ - 35x^y^z = Sx^y^z (3z + 4z^x - 7y).
It is at this point that the authors first consider briefly 
the factoring of pronumeral expressions. None of the tradi
tional rules for factoring is stated and one might suggest 
that not enough of the exercises are provided for reinforce
ment of the developed concepts although the Supplementary 
Exercises furnish an added number of such exercises. The 
concept of least common multiple is used to simplify sums and



179
differences of fractional expressions into equivalent expres
sions containing only one fraction.

Evaluation of UICSM. Units 1-4
These four units, originally designed for ninth-grade 

consumption, are concerned with a detailed study of the real 
number system and its properties, an introduction to precise 
statement of principles and theorems with the accompanying 
proofs of several of them, sets and set notation, and solu
tion sets and graphs of equations and inequations. As an end 
result, these units differ little, with respect to subject- 
matter content, from the conventional algebra texts except 
that the language approaches and techniques are substantially 
different.

These units exhibit clearly their fundamental aim as 
being the consideration of the structure of mathematics. The 
aim is evidenced by the careful attention paid to the develop
ment of the real number system, the careful foundation of 
vocabulary and fundamental concepts, and the emphasis on 
proofs based on the principles of the real number system.

Accompanying this aim is the evidenced genuine con
cern with the development of a precise vocabulary in the lan
guage of mathematics and the implicit belief that a student
can be led early from a generally unsophisticated use of Ian-

. >guage to a precise and sophisticated use of it. Great care 
is taken to distinguish between an object and its name and a
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symbol and its referrent— the strict distinction between 
numeral and number is consistent. The universal quantifier 
as well as quantifier phrases occur early in the materials.
The theorems and principles are stated in precise and sophis
ticated language in order to adequately state generalizations. 
Many terms new to traditional texts are "coined" or "borrowed" 
to present new notions, e.g., pronumerals, pronumeral expres
sions, oppositing, sameing, pattern sentences, generaliza
tions, transformation principles, number plane lattices, and 
grid lines.

The numbers of arithmetic are postulated and the 
principles of the system are verified in Unit 1 with deductive 
proofs being introduced in Unit 2. There is considerable 
rigor in the proofs especially in regard to the precision of 
language and the demand for the student's authentication of 
each statement in a proof by reliance upon the basic princi
ples and proven theorems, although no formal logic is in
cluded. The use of the quantifier and other special symbols 
hold the notation at a fairly high level. The students are 
led to make independent proofs by the end of Unit 4 with the 
much earlier formulation of simple proofs.

Student discovery is the keynote of these UICSM units. 
Exploration Exercises, a novel feature of this production, 
appear frequently and encourage and guide the student in the 
discovery of generalizations. The "rules for signed numbers" 
are not stated as such but are to be discovered by the
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student through several interpretations of the symbols. Stu
dents are led to discover their own solutions to many prob
lems, e.g., solution of equations and inequations, thereby 
exhibiting UICSM's belief that the learning process is deep
ened by presenting a sequence of activities from which stu
dents may independently recognize some desired knowledge or 
concept. In many instances, special activities involving 
human characters are hypothesized which, through their in
terest appeal, serve to lead the student to recognize am
biguities .

Great emphasis is placed upon the development of con
cepts and this development occupies a more prominent role 
than the development of manipulation skills although the de
velopment of skills is not neglected. Lengthy lists of sup
plementary exercises accompany each unit, providing adequate 
drill for reinforcement of skills.

Numerous exercises (at least 429 such exercises in 
Unit 3) illustrate the social application of mathematics. 
These exercises, covering many fields and requiring critical 
thinking and careful analysis, serve to illustrate the mathe
matical principles. It appears, however, that the variety of 
application is of secondary importance compared to the prin
ciples .
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Relations and Functions, Unit 5 

As indicated by the title, this unit is devoted to a 
discussion of relations (as sets of ordered pairs) and the 
study of a special Kind of relation, the function. Included 
are sections dealing with a simple algebra of sets, illustra
tions of relations arising from geometric problems, and ones 
introducing the notions of domain, range, and converses of 
relations as well as a close scrutiny of the properties of 
reflexivity and symmetry. In addition to these topics, this 
unit deals briefly with variable quantities, functional de
pendence, linear functions, quadratic equations, and systems 
of equations.

Relations
Although the first few pages of this topic essen

tially recall and couch in a more precise language some of 
the notions of earlier units, UICSM immediately proceeds in 
this unit to introduce a sophisticated and non-traditional 
treatment of relations and functions. It is recalled that 
the notion of ordered pairs of elements has been introduced 
and utilized earlier, e.g., and operation was considered as 
"a set of ordered pairs no two of which have the same first 
component."^ The then explored implications of this defini
tion are several. First, a relation is a set of ordered

^University of Illinois Committee on School Mathemat
ics, Relations and Functions, Unit 5 (Urbana; University of 
Illinois Press, 1962), p. 1.
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pairs. Second, a relation which has been named, e.g., the 
crreater-than relation, has to be described in some fashion 
and its domain specified before one can 'know what the name 
means. Third, a relation defined on a particular set is es
sentially a subset of the Cartesian product of the set with 
itself. Accompanying the discussion of these implications of 
the relation definitions are many fairly abstract exercises 
which reinforce this modernistic presentation and which empha
size the number-pair approach to the study of functions.

It is at this point that UICSM uses for the first 
time the term variable— defined simply to be a pronoun (and 
not necessarily a pronumeral). In the eyes of UICSM, the 
variable is only a mark (or placeholder) to hold a place in a 
sentence or expression for names of things (not necessarily 
numbers). The set of all things whose places are held by the 
variable is considered to be the domain of the variable.

Principles for Sets
Through comparison with the principles of the real 

numbers as studied in Unit 2, the student is led to realize 
that the replacement of + by U / ’ by , 0 by 0, and 1 by S
in certain of these statements produces several of the prin
ciples for operating with subsets of a set S as discovered in 
the unit, e.g., "Vj^VyV^, (x + y) *z = x*z + y z , "  as estab
lished for the reals has as its analogous counterpart 
"Vx^Y^Z (xVjY)rtz = (xnz)VJ (YHZ) for subsets of S.
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Test patterns are used to establish still other principles, 
e.g., the principles of complements of sets, which may not 
have analogous counterparts in the system of reals.

An optional section (which incidentally includes the 
structuring of test-patterns for proving De Morgan's Laws) 
shows that one can use a minimum of seven basic principles 
(or axioms and definitions— though not called such) to "prove"
all the basic principles needed for operating with sets and

1subsets. An unorthodox feature of this treatment is that the 
sets being considered in this unit have as elements numbers, 
lines, rays, segments, curves, regions, populations or any 
defined membership. Also, UICSM has utilized symbolic ab
breviations to the utmost in the presentation of these prin
ciples .

Relations and Geometric Figures 
This brief section provides a few opportunities for 

the student to apply through geometric considerations that 
which he has learned about relations. Although the topic is 
brief, several characteristics of the UICSM materials are 
displayed. First, in the examples involving the various in
equalities associated with side-measures of the triangles, it 
is emphasized implicitly that a side of a triangle is a seg
ment and that one of the properties of a segment is its length 
and that, therefore, measures of geometric entities are num
bers (in particular, numbers of arithmetic). Second, the
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student is forced to realize the existence of the structure 
of systems by being reminded of the isomorphism between the 
system of numbers of arithmetic and the system of non-negative 
reals. Third, the UICSM attention to careful detail is il
lustrated by its insistence upon clockwise orientation when 
giving the side-measures of a triangle, e.g., the triangle 
(4, 7, 2) is a "different" triangle than the triangle (4, 2,
7) due to the clockwise orientation.

It does seem somewhat inconsistent, however, that the 
authors will in the same statement discuss the degree-measure 
of an angle in such a way as to indicate that the measure is 
a real number and then in the same sentence say that "an 
angle is 50°," e.g., "What is the relation of a degree- 
measure of one angle to the degree-measure of another angle 
of a triangle whose third angle is an angle of 50°?"^

Properties of Relations
The authors, having defined a relation R among the 

elements of a set S as being the subset of the Cartesian 
square S X S (or as a set of ordered pairs) utilize this defi
nition to present a sharp definition of the domain and range 
of a relation. The domain (designated as ) of a function 
R on a set S is essentially defined to be the set of members 
of S which are first components of members of R. Similarly, 
the set of members of S which are second components of R is

^Ibid., p. 30.
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the range (designated as ) of R. The existential quanti
fier 3  abbreviating "there is at least one" is introduced 
and used immediately. A rather unusual set, that of the 
field of R is introduced to consist of the
total set of elements of S involved in the given relation R 
and is actually the smallest subset of S whose Cartesian 
square contains all members of R. The examples and exercises 
presented to reinforce understanding of these definitions 
have a variety of subject matters, e.g., real numbers, people, 
sets, geometric figures, and measures.

An exercise develops the notion of the converse of a 
relation.^ The converse of a relation R is the relation 
whose members are obtained by reversing the order of the com
ponents of the members of R, i.e., the converse of R is

The remainder of the section deals with the reflexive 
and symmetric properties which a function may have, i.e., a 
relation R among the members of a set S is reflexive if and 
only if for each x 6 ^  , the pair (x, x) is in R and the rela
tion R among the set of members of a set S is symmetric if 
and only if for every (x, y) in S X  S , (x, y) in R implies 
that (y, x) is in R. The graphical connotations of these 
definitions are examined thoroughly along with the

^Ibid., p. 39.
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consideration of a multitude of exercises leading to student 
appreciation of these definitions.

Functions
As a result of having been persistent and precise in 

their treatment of relations as being sets of ordered pairs, 
UICSM now has the vocabulary available to formulate the mod
ernistic definition of function. "A function is simply a set 
of ordered pairs no two of which have the same first compon
ent." (This definition is illustrated to have the graphical 
significance that a function is a relation such that each 
vertical line crosses its graph in at most one point.) Many 
exercises serve to illustrate that functions can be sets of 
ordered pairs of any kind of elements and not necessarily 
pairs of numbers. UICSM assigns the term argument of a func
tion to members of the domain of a function and the values of 
the function to the range. A multitude of functions are il
lustrated many of which are merely finite sets of pairs and 
which are defined by listing the pairs while many of them are 
infinite sets of pairs and therefore demanding set-builder 
notation for definition of function.

Immediately following this general discussion of the 
function is the consideration of a function having a domain A 
and a range B as determining a mapping of A on B with the 
value of the function for a given argument being the unique

^Ibid., p. 50.
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image of this value. This alternate definition allows various 
pictorial representations of the effects of function and al
lows a meaningful exploration of the composing of functions 
and terminating in the definition of the operation of composi
tion . Having considered earlier the concept of the converse 
of a function, UICSM introduces the more stringent concept of 
the inverse of a function which, generally speaking, involves 
the understanding that if the converse of a function is also 
a function, the converse is called the inverse of f and desig
nated f”^.

The student at this point has concluded through a 
series of amazingly abstract, yet meaningful, exercises that 
for functions ^  and there may be obtained the composition 
function f*g. Exploration Exercises indicate that given func
tions and h, it is sometimes possible to find a function f̂ 
such that h = f*g. Under such a condition, h is defined to 
be functionally related to g , or, more briefly, h is a func
tion of ĝ  and ^  depends only on ĝ . Consideration of the nec
essary conditions for the existence of such functions culmin
ates in a theorem which is indicative of the tenor of the en
tire topic:

For each function h, for each function g , there is a 
function f such that h = f*g if and only if C , 
and, for all and X 2  in such that g (Xj_) = gfX^),
if either Xn or Xo belongs to then both belong to

and htX^) = htXg).!

^Ibid., p. 91.
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Variable Quantities

As indicated by the title, this topic serves as an 
introduction to variable quantities and to a sophisticated 
function-based analysis of uses of and operations on the 
formula functions used to define area-measures and volume- 
measures. The student has already recognized that the range 
of a function may be any set but that some of the more useful 
functions are numerical-valued, i.e., their range consists of 
numbers. Such numerical-valued functions are referred to by 
UICSM as variable quantities. Many variable quantities are 
considered as functions whose ranges are sets of numbers of 
arithmetic and others whose ranges are sets of real numbers, 
e.g., the area-measure of a square.

Since the singulary operations, e.g., oppositing, 
squaring, absolute-valuing, and reciprocating, and the binary 
operations, e.g., addition and multiplication, can be applied 
to a number or a pair of numbers obtaining unique results, 
such operations are, in yiew of the deyelopment of functions, 
simply functions. The essence of the discussion lies in the 
notion that each operation on numbers can be used to induce 
an operation on functions, e.g., the operation oppositing in
troduced earlier has been a singulary operation defined on 
numbers but the analogous oppositing operation for functions 
is defined on functions. The term constant yariable quantity, 
or constant, is introduced to describe yariable quantities 
named by numerals. (The reader notes some apparent conflict
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between the terms constant variable quantity and constant 
function. In view of the definitions presented, although a 
variable quantity is a function, a constant variable quantity 
may not be a constant function since a constant function has 
been defined earlier to have the set of real numbers as a 
domain. ) After this subtle introduction to variable quanti
ties, UICSM indicates that variable quantities can be multi
plied and added and that operations on real-valued variable 
quantities satisfy principles analogous to the basic princi
ples for real numbers, and that formulas can be manipulated 
by rules similar to those used for manipulating numerical 
equations.

Some apparent ambiguity is noted. "So, whenever we
have a formula in which both numerals and names of variable
quantities occur, we shall interpret each numeral as standing
for a variable quantity whose domain is that of the variable
quantifier and whose range is the set consisting of the num-

2ber named by the numeral." It follows then that each numeral 
is not only a name for a number but also a name for any func
tion whose range consists of this number. The authors attempt 
to justify the need for such distinction by demanding that if 
one considers the formula C = TT d, Ç  and d variable quanti
ties , then c/d = Tf makes sense only if Tf is a name for a 
variable quantity. (Actually the function approach utilized

^Ibid., p. 83. ^Ibid., p. 104.
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here demands that c = Tf d is a product-function such that 
for each circle X, C (X) = Tf d (X) = Tf (X)-d(X). But TT (X) =Tf 
since T f (X) is a constant function.) This connotation forces 
the reinterpretation of numerals in formulas as being names 
of variable quantities.

Linear Functions 
This comparatively simple unit gives a somewhat stand

ard treatment of linear functions with the major differences 
being the emphasis placed on the precision of the language 
involved and reliance upon the ordered-pair approach to func
tions. The brace-language for describing functions is uti
lized consistently as indicated by this definition: "f̂  is a
linear function of a real variable if and only if there are 
real numbers a. ^ 0 and b such that f = { (x, y ) : y = ax + b]".
The coefficient ^  is defined to be the slope of the function 
(free of geometrical significance) and b is demonstrated to 
be the intercept of Exploration exercises and textual dis
cussion yield the result that if (x^, y^) and (X2/ Y2) are 
any two distinct pairs of a linear function, then a = ^ 2  ~ ^ 1 ,

X2 - XI
a property sometimes used to define the slope of a function 
by reliance upon geometrical analogy. (One notes that under 
such a definition, the functions g = (x, y) : 3x + 2 = o}-
and h = f ( x ,  y) : y = 5 } are not linear functions although

^Ibid., p. 120.
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their graphs are straight lines, i.e., the UICSM definition 
of linear function demands that the graph of such a function 
he oblique to the axes.)

Applications of Linear Equations 
By the applications of the machinery developed in the 

preceding topic, UICSM develops a fairly orthodox treatment 
of proportionality with one major difference again being the 
language involved. Two variable quantities M and N are pro
portional if and only if they have the same domain and there 
exists a non-zero constant ^  such that M = hN and M is in
versely proportional to N if and only if their domains are 
the same and there is a number h 0  such that for each Q € 
M(e)*N(e) = h . Suitably precise definitions yield an ap
proach to joint variation.

Quadratic Functions 
This topic concerns itself primarily with the graphs 

of quadratic functions. The graph of a quadratic function is 
analyzed through the examination of many progressively compli
cated examples. The suggestive analysis utilized shows in
tuitively that one might determine the axis of symmetry, the
vertex (called the extreme point) , and the concavity of the

2graph by transforming the set selector y = ax + 6 x + c by
2completion of the square to an equivalent y = a ( x - p )  + q  

with the extreme point being (p, q), the axis of symmetry 
being {(x, y) : x = p ^ ,  and having upward or downward
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concavity according as a is positive or negative, respec
tively.

Quadratic Equations
The solution of quadratic equations written in the 

2standard form ax + bx + c = 0 , a ^ 0 , and, consequently, all 
quadratics which may be transformed to this as an equivalent 
form, is developed by the non-novel technique known tradi
tionally as "completion of the square" and the resulting 
quadratic formula is formulated as follows : "
such that b^ - 4ac ^ 0 ,  { x : ax^ + bx + c = o} =
f - b + J  b^ - 4ac - b - J  b^ - 4ac \ ^
I 2 a ' 2 a )’

Systems of Equations 
The determining of solution sets of systems of linear

equations leans heavily on the graphical interpretation of
those linear equations— an innovation particularly applicable 
in the analysis of consistency or non-consistency and depend
ence and independence of equations. To solve a system of two
equations is to find the set of ordered pairs (x, y) which
satisfy both equations of the system, i.e., the solutions of 
the system

ax + by + c = 0*1
dx + ey + f = 0  J

involves finding the members of the set {̂ (x, y ) : ax + by +

^Ibid., p. 192.
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c = o 3  n  c (x, y) : ey + f = 0 } or, equivalently, to deter
mine the set f (x, y) : ax + by + c = 0 and dx + ey + f = o} 
The scheme introduced for obtaining such solutions is actu
ally the traditional method of "addition and subtraction" al
though veiled in a more sophisticated garb. To determine the 
component x, for example, choose real constants m and such 
that the equation

m(ax + by + c) + n (dx + ey + f) = 0  ^ .
is equivalent to the equation a 'x = b ' which, in turn, is 
equivalent to x = b'/a'. Many applied problems whose solu
tions are defined by quadratic fequations terminate the unit.

An Evaluation of Unit 5 
This particular unit contains an extremely smooth ex

tension of the development of the concepts of relations and 
functions through repeated use of the underlying basic con
cepts of sets and set operations. The materials involved 
lean quite heavily on the materials of the earlier units and 
assume at least a very adequate familiarity with sets and set 
operations as well as the basic principles of the real number 
system. Although linear equations are introduced and the de
velopment of complicated quadratic functions are pursued in 
detail, systems of quadratics are not treated in this unit. 
This unit follows quite naturally and with amazing continuity 
the materials of Units 1-4. Consequently, both teachers and
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students would probably be seriously handicapped without pre
vious experience with the prior units.

Set theory and the associated language of sets are 
used continually throughout this unit. Although some such 
preliminary work was done in earlier units, this unit sees a 
more formal presentation of set theory and even proofs of 
many of the theorems of union, intersection, and complementa
tion. The basic structural concepts of this unit is the set 
and, particularly, sets of ordered pairs which serve as the 
vehicle for the definition and discussion of relations and 
functions thereby allowing modernistic discussions of many of 
the topics of traditional second-year algebra. Unit 5 seems 
dedicated to the stressing of a few major underlying ideas, 
e.g., set, relation, function, and inverse, and their applica
tions to special situations. The unit consequently places a 
strong emphasis on the mathematical structure of the system 
involved.

The precise language introduced in earlier units is 
continued in this unit. It does appear, however, that some 
attempt has been made to use more of the nomenclature of tra
ditional treatments of secondary mathematics with fewer un
orthodox words being coined to communicate particular ideas. 
Such a trend is evidenced, for example, for the use of the 
numerical variable to replace the earlier-introduced pro
numeral .
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The UICSM belief that good mathematics requires preci

sion of language for exactness and clarity is evidenced and 
demonstrated by the careful naming of sets, uses of well- 
stated definitions, and insistence upon the statement of the 
domain of definitions and theorems. Again, since the language 
is not all standard insofar as conventional treatments are 
concerned, a fairly thorough acquaintance with earlier units 
is demanded.

The early set-algebra proofs of the unit, based on 
the assumption of the principles of real numbers, are well- 
done and mathematically-sound for this level although they 
would require more mathematical sophistication and awareness 
of proof techniques than one would ordinarily expect of a 
student at this level. The text evidently is written on the 
implicit assumption that the student already knows how to 
construct fairly rigorous proofs. After the first few topics 
of the unit have been completed, the proofs are relatively 
unstructured, i.e., proofs of the formal sort are relatively 
rare although the student is expected to back up the answers 
to questions with reasons.

Unit 5, as were earlier units, is written in accord
ance with the belief that students may work certain well- 
structured and well-chosen problems and thereby discover im
portant principles. However, in many instances in the unit, 
it appears that the student is forced to make generalizations 
from a minimum of problems and in many instances to confirm a
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generalization already stated by the authors without prior 
intuitive examples. In several instances, however, the Ex
ploration Exercises provide a challenging avenue of meaning
ful entry into the next topic to be studied.

This unit deals almost exclusively with the develop
ment of concepts rather than shills although there is an ade
quate supply of practice materials— 57 of the 278 pages of 
the text form an appendix of supplementary exercises— and 
problems where shills need to be developed. Most of the 
exercises in the text proper are for the purpose of develop
ing an understanding of the concepts.

This unit does not place a strong emphasis on social 
applications although many of the sections involve some dis
cussion of non-mathematical areas for applications of the 
topics being studied. The supplementary exercises provide 
enough "thought" problems to provide necessary exercises for 
this type of problem.

Geometry, Unit 6  

This unit in the study of geometry attempts to lead 
students to see geometry as a mathematical theory abstracted 
from physical experience and deductively organized and to 
help students gain the insight which will enable them to 
guess probable consequences of assumptions as well as to em
brace an understanding of logic which will aid them in estab
lishing that their guesses are properly consequences of their
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assumptions. It is hoped by the authors that the traditional 
chasm between algebra and geometry will be recognized as non- 
realistic and thereby eliminated.^

Introduction
The introduction, which within itself could rightly 

be called a chapter, begins with an account of a well-planned 
journey to a planet Glox and fictionalizes certain communica
tion problems which might arise. The example is carefully 
constructed to illustrate the deductive process of drawing 
conclusions in an orderly fashion from a given set of system
atically-arranged observations. The identical problem is 
then completely restated with radically new environmental 
conditions, i.e., the situation containing the problem is 
completely revamped without changing the problem itself.
This construction serves to intuitively establish that state
ment, analysis, and solution processes of a problem may be 
deducted from well-arranged data and that the process is iso
lated from the environment of the problem. In essence, these 
examples serve to establish that it does not matter what 
axioms talk about as long as the objects being discussed have 
the properties expressed by these axioms and theorems. It 
then follows directly that the discussion of any model re
quires the assumption of certain basic statements from which

^University of Illinois Committee on School Mathemat
ics, Geometry, Unit 6 (Urbana: University of Illinois Press,
1960), p. i.
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conclusions may be drawn in accordance with certain orderly 
processes of implication.

The abstractions of point, line, plane, and straight 
are introduced with no effort whatsoever to formally define 
these concepts. A line is considered as a set of points and 
a plane a flat surface extending "forever" in all directions. 
No apologies or explanations are offered for acceptance of 
these terms yet the impression is created in the student's 
mind that these are the fundamental abstractions which he 
must universally accept in forthcoming discussions.

One notes also the early introduction and practically 
total reliance on the set notation— a vehicle for expression 
which until the past few years has been reserved for students 
on the upper plateaus of mathematical thought. This reliance 
on point-set notation for geometrical communication is an 
outstanding characteristic of this unit.

The concept of betweenness is intuitively developed 
by a series of illuminating examples and searching questions 
forcing the student to realize that betweenness is a notion 
pertaining to collinear points only. The development of be
tweenness allows the authors to develop notation clarifying 
ideas usually found troublesome.

1 . represents the set of all points of the
straight line containing the distinct points P 
and Q .

^Ibid., pp. 9-17.
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2 . represents the set of all points on the

straight line PQ which are on the Q-side of P, 
i.e., all points z such that Q lies between P and 
z . This set is given the name of half-line.

3. PC? represents P ^  l_) "Cp ] , or the ha If-line PC? 
unioned with its end-point. The set PQ is named 
ray and the point P the vertex of the ray.

4. PQ represents the set of all points between P and
Q and is defined as an open interva1, i.e., an 
open interval determined by points P and Q is the 
set of all points z such that z lies between the 
points P and Q .

5. PQ' represents PQ LJ C P, q } and is called a ̂
closed interval or segment, i.e., the segment PQ
is a geometric figure containing the points P and
Q and all points between P and Q.

These definitions and symbols allow traditionally troublesome
definitions to be stated more precisely, e.g., two lines 1 ^
and ±2 may be defined to be parallel if and only if 1 ^ 0  Ig = 0-

Another bothersome idea is discussed fairly rigidly, al
though intuitively. The discussion of the separation of a plane 
into two half-planes by a straight line permits the student to 
verbalize explicitly such concepts as that indicating that two 
points C and D are on opposite sides of the line L if and only 
if Cl) f~) h = 0. This again illustrates UICSM' s attention to 
details which are often neglected in traditional treatments of 
geometry.

The chapter contains fifteen Introduction Axioms stat
ing some of the facts about points and lines and characterizing 
some of the concepts which students have discovered while 
studying the Introduction. These axioms (and the twenty ac
companying Introduction Theorems which may be derived directly
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from the axioms) are, for the most part, concerned with the 
properties of geometric sets which may he seen from geometric 
figures. The purposes of the Introduction evidently are to 
build up good intuition about problems concerning collinear- 
ity, order of points on a line, separation, betweenness, etc., 
to give practice in using set notation, and to enlarge the 
student's understanding of the nature of the proof of a 
theorem as being an argument starting from axioms, or previ
ously proved theorems, and shows how the theorem in question 
follows, by accepted logical principles, from just these 
axioms and/or theorems.

Measures of Segments
In view of the facts that line segments are sets of 

points and that " = " always means is_ in the sense of is the 
same as, it is impossible to say that two line segments are 
equal unless they are exactly the same sets in which case the 
segments are coincidental. (This would also hold true for 
angles, rays, and, in fact, any geometric sets.) Therefore, 
the UICSM authors introduce early some of the aspects of 
measure theory in order to adequately cope with metric proper
ties of geometric concepts.

Such statements as "AB = 6  inches"— an erroneous 
usage of terms which would have expressed traditionally that 
the line segment AB has length 6  inches— are more rigorously 
and precisely stated by the introduction of the measure of a



202
line segment. Appropriate notation to express the assignment 
of a real nvuriber to a segment is introduced, e.g., inch- 
measure (AB) = 6 , foot-measure (AB) = 1/2, yard-measure 
(AB) = 1/6, etc. In essence, the UICSM method utilizes the 
mapping process to assign measures hy considering the set of 
all line segments as a domain, the set of all non-negative 
reals (which in an earlier unit has heen shown to be iso
morphic to the arithmetic numbers) as the range, and a func
tion (or mapping) which associates with each element of the 
domain a unique element of the range. Call this function 
unit-measure. Under this terminology, the measurement of a 
line segment AB is simply the assigning of a non-negative 
real number (abbreviated by m(AB) or simply by AB) to the 
segment by the unit-measure function. Measurement in differ
ent units is accomplished by the introduction of different 
mapping functions. It follows also that the distance between 
points A and B may be defined as m(AB) or the measure of the 
segment AB*.

The authors also emphasize that for the majority of 
the work utilized in plane geometry, the unit of measurement 
itself is fairly unimportant but that the basic properties 
common to all measures are the ones of paramount importance, 
e.g., m(AB) + m(BC) = m(AC) and m(AB) + m(BC) >  m(BC) if A, 
B, and C are collinear. The measures of segments are then 
utilized to prove rigorously (several by algebraic processes)
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many of the various inequality theorems ordinarily introduced 
in conventional plane geometry textbooks.

One notices immediately in the development of the 
theorems the elimination (or a severe modification) of the 
general pattern of synthetic proof traditionally utilized. 
Instead of the standard arrangement of "figure, statement of 
hypothesis, statement of desired conclusion, argument, vali
dating statements, and, finally, the conclusion," the UICSM 
program introduces the column proof (a modified form of the 
standard block proof) and also a paragraph proof which essen
tially follows the pattern of proof in logic. The point-set 
notation lends itself quite naturally to such an arrangement. 
These methods of arranging proofs are used interchangeably 
whenever the situation deems one of the methods more feasible 
than the other.

. Angles and Their Measures 
Since the UICSM authors have developed rigorous lan

guage to define segments, rays, etc., their definition of an 
angle is straightforward: "An angle is the union of two non-
collinear rays which have the same vertex. The rays are the 
sides of the angle and their common vertex is the vertex of 
the a n g l e . I n  other words, ZAB C  represents the union of 
the sets of points B2? and B(̂ , or LJ BC. (One notices that 
the use of the word collinear excludes the existence of a

^Ibid., p. 51.
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straight angle since, under this definition, a straight angle 
would be merely a straight line having no unique vertex, no 
unique interior, nor a unique bisector.)

The measure of an angle is introduced by considering 
the mapping of a domain of all angles into the range of the 
real numbers with the degree-measure function being the 
measure-function of primary concern. The degree-measure of 
^ A B C  is denoted by ° m ( 2 ABC) or, simply, mZ.ABC. It is axi- 
omated that the range of the degree-measure function will be 
the set of all real numbers x such that 0 <  x ^  180. Sup
plementary angles are defined as pairs of angles whose meas
ures total 180; complementary angles are those pairs whose 
measures total 90. An angle whose measure is equal to that 
of its supplement is defined to be a right angle. The inter
ior of an angle ^ A B C  is defined to be the intersection of 
the set of all points on the C-side of with the set of all
points on the A-side of èc?.

Traditional plane geometry texts have, without due 
regard to the variant or invariant properties of geometrical 
figures under translation and rotation, etc., considered two 
geometric figures to be congruent if they may be made to co
incide. The UICSM unit states simply:

Angles are said to be congruent if and only if they 
have the same measures. Segments, also, are said to 
be congruent if they have the same measure.^

^Ibid., p. 58.
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Another "unorthodox" definition is that of perpendicularity: 

_L 6 e? if and only if their union contains a right angle.
It is seen that these and other precisely stated definitions 
are in keeping with the tenor of the unit.

Triangles
This particular chapter, as indicated by the title, 

deals with triangles, classification of triangles, and their 
various properties. In this chapter are developed the the
orems dealing with the congruence of triangles— a concept 
which is a very basic foundation-stone in the traditional 
study of geometry.

A triangle is considered as the union of three line 
segments whose endpoints are three noncollinear points, i.e., 
ZiABC = AB* D  BC* LJ GÂ*. Each of the angles which contains 
two sides of the triangle is an angle of the triangle. (A 
consequence of this definition is that a triangle does not 
contain an angle since the sides of a triangle are merely 
proper subsets of the sides of the angle which are themselves 
rays.) Further examination leads to the consideration of the 
interior of a triangle as being the intersection of the in
teriors of the three angles of the triangle— a consideration 
which forces a distinction between a triangle and its inter
ior .

UICSM demands that two triangles shall be considered 
congruent if and only if the vertices of one can be matched
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with the vertices of the other in such a way that correspond
ing sides are congruent and corresponding angles are congru
ent. If one considers the triangles ^  ABC and ^  DBF and 
then examines the mapping A ^ D ,  B— ÿE, G— J*F and determines 
that ^  = D^, BC = e F, ^  = DF, ZCAB = Z.FDE, /.CBA ^ Z.FED, 
and ^ACB - ^DFE, then one says that a congruence exists be
tween the two triangles • It follows that six such mappings 
of the vertices of one triangle to the vertices of another 
may exist whereas several, only one, or, possibly, none may 
establish a congruence. The corresponding-parts dilemma which 
accompanies the need for determining corresponding parts of 
two congruent triangles is partially solved by the use of the 
notation ABC DBF to indicate the correspondence such that 
A matches D, B matches E, and C matches F. In the event that 
the correspondence indicates congruence, this notation di
rects that AB and DE* are corresponding sides and that Z. ABC 
= ^  DBF, etc.

With this particular idea of congruence in mind, the 
authors pursue the question of the establishment of congruence 
and the conditions necessary to prove congruence. The famil
iar side-side-side, side-angle-side, and angle-side-angle 
theorems for congruence are proved in view of the definition 
of congruence.
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Geometric Inequations 

This particular chapter deals primarily with the vari
ous inequalities between measures of angles of triangles, 
measures of sides of triangles, interior and exterj^r. angles, 
etc., present in geometric considerations. Axiom B stating 
that " V x V y  Vz if y ̂  xz% then xy + yz >  xz, is the basic 
tool for proofs of the theorem involving these inequalities.
In most aspects, this UICSM chapter is fairly similar to 
those presenting the traditional treatment, of course, the 
language is converted to that which is compatible with the 
definitions introduced and the set notation utilized through
out the book.

It is in this chapter that the authors deal with the 
medians, altitudes, and angle-bisectors of triangles and dis
cuss the "distance of a point to a line." Further theorems 
of congruence are also developed.

Parallel Lines 
In the conventional textbook of geometry, it is postu

lated that through any point exterior to a given line, there 
exists one and only one line parallel to the given line.
This basic postulate of Euclidean geometry had survived with
out serious question or doubt until the advent of geometries 
such as those submitted by Reimann, Lobachevsky, and Bolyai 
who doubted the sacredness of this (and other) postulates of

^Ibid., p. 32.
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Euclid. It is of interest that the axioms present in the 
UICSM. material are sufficient to prove, in the light of these 
axioms, that there exists such a line and that there exists 
at most one such line.

This chapter, other than its total reliance on set 
theory as the vehicle for proof with the utilization of the 
modern language introduced earlier, is essentially standard 
in its results. The standard theorems regarding parallel 
lines and transversals are developed along with several mis
cellaneous related topics. In the last few pages of the chap
ter students are given the opportunity through exercises to 
search out, and prove, theorems of their own devising.

Quadrilaterals
After the consideration of a polygon as being the 

union of segments such that each endpoint is an endpoint of 
just two segments with no two segments intersecting except at 
an endpoint, and such that no two segments with a common end
point are collinear, this chapter begins a detailed study of 
the classes and properties of quadrilaterals. Various defini
tions are presented for the parallelogram, rhombus, rectangle, 
and square from enumeration of various classes of quadrilater
als. The UICSM materials mahe a definite effort to make the 
definition include as few of the properties of the class as 
is needed to make the definition clear and concise and develop
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the remainder of the properties of each particular class as 
theorems.

One definition of this chapter seems out-of-character
with the remainder of the chapter.

. . . the polygon has been drawn in a flat wooded sur
face and that nails have been driven part way into the 
wood at the vertices. Think of a noose placed loosely 
around the nails. The polygon is convex if and only 
if the noose touches all the nails when it is tight
ened . ̂

This definition hardly seems to carry the precise notion that 
a polygon is convex if and only if, for each of its sides, 
all of its points not on this side belong to the same one of 
the two haIf-planes whose common edge contains the side in 
question.

Similar Polygons 
After spending some several pages on the notion of 

sufficient and necessary conditions for statements or sen
tences , the UICSM authors pursue the topic which is ordinar
ily entitled similar polygons. One notes in this chapter 
that, while doing the work preparatory to the study of similar 
geometric figures, the UICSM textbook emphasizes that the real 
numbers u, v, x, and y . ( v ^ O ,  y ^ O )  are "in proportion" if 
and only if u/v = x/y. This concept of proportionality ex
tends, quite naturally, to the ratio of geometric line seg
ments by the convention that two line segments are in a given

^Ibid., p. 162.
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ratio if the measures associated with these segments form 
that given ratio. Since a measure is a real number, the 
ideas of ratio and proportion for segments then becomes just 
application of the techniques of ratio and proportion for 
real numbers.

Two polygons are similar if there exists a matching 
of the vertices of the first polygon to the vertices of the 
second for which the corresponding angles are congruent and 
the corresponding sides are proportional, i.e., there may be 
demonstrated a similarity. From this definition, the stand
ard theorems regarding similarity and properties of similar 
triangles are developed as well as theorems dealing with 
transversals, mean proportionals, and the Pythagorean Theorem.

Trigonometric Ratios
This chapter presents another radical departure from 

traditional geometry texts. In this chapter, three of the 
trigonometric ratios (sine, cosine, and tangent) usually de
veloped near the end of a geometry text (or even reserved for 
a later course) are discussed in a coordinate-free manner by 
use of the ratios of measures of the sides of a right tri
angle. However, application of these ratios is restricted to 
the analysis and solutions of problems directly or indirectly 
involving right triangles. The functions secant, cosecant, 
and cotangent are never mentioned. Emphasis is placed on the 
difference between the trigonmetric function and the
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trigonometric ratio in that sine of A indicates a particular 
ratio associated with angle A whereas sine is the mapping 
function relating the angle and its (opposite leg) / (hypote
nuse) ratio. The domain of these three functions is limited 
to the non-zero angles which are acute thereby implying that 
trigonometric ratios for zero, obtuse, and negative angles 
are not to be considered at this point.

Rectangular Coordinate Systems 
One of the more recurrent criticisms of plane geometry 

during the last century has been directed toward its total re
liance upon the synthetic method of proof. It has been argued 
that, in many instances, reliance upon analytic procedures 
would be more desirable and yet just as meaningful and rigor
ous as reliance upon the synthetic proof. This challenge is 
met by the UICSM materials by the introduction of an excel
lently written chapter dealing with the fundamentals of rec
tangular coordinates, coordinate geometry, and analytic tech
niques made possible by this introduction. Reliance on set 
theory is again noted in that each point on a plane is con
sidered as being matched with an ordered pair of real numbers 
called the coordinates of that point. The rather unique nota
tion introduced involves letting x(u) and y(u) represent the 
abscissa and ordinate, respectively, of the point u and d(AB) 
naming the distance between points A and B.
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The distance formula (for determining the measure of 

the distance between two points) is developed by the use of 
the metric concept of assigning a measure to the line segment 
connecting any two arbitrary points on the plane. The mid
point formula is introduced and then generalized to the gen
eral division formula. Various theorems of plane geometry 
are then proved by the use of analytic tools and some intro
ductory work is done with the concept of slope and the writ
ing of various equations whose graphs are straight lines.
Many of the exercises develop still a greater number of the 
common theorems of analytic geometry.

Circles
This particular chapter, with a few notable excep

tions , develops the standard theorems dealing with circles 
and their properties. A circle, like any other geometric 
figure, is defined as a set of points. The circle with center 
Ç  and radius r̂  is considered as the set f P : d (C?) = r 1 .
The minor arc AB of a circle with center Ç  is defined to be 
the set having as elements the points A and B of the circle 
and all points of the circle in the interior of the angle 
Z a CB. To name a major arc, UICSM authors innovate and write 
the names of the end points and, between them, write a name 
of another point of the arc, e.g., AB is the name of a minor 
arc whereas A KB is the name of a major arc. Two circles are
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congruent if they have the same radius— the radius being the 
measure of a radial segment.

Another distinction is noted in that this chapter 
utilizes both synthetic and analytic proofs for development 
of theorems and relies quite heavily on the equation of the 
circle for determining points of intersection, the radical 
axis, etc. In summary, the chapter encompasses every theorem 
dealing with circles, tangents, inscribed angles, etc., and 
related properties found in traditional texts.

The standard method for defining the measure of the 
circumference of a circle has been to consider an inscribed 
regular polygon and allow the number of sides to increase in
definitely. As the nurtber of sides increases, it is hopefully 
mentioned that the sum of the measures of the sides of the 
polygon will approach as a limit the circumference of the 
circle. The term limit is, of course, one of complexity and 
only an intuitive development is ever presented. UICSM ap
peals intuitively to the theory of sequences for a discussion 
in this sense: The perimeter of the regular polygons in
scribed in the circle are represented as a monotonically- 
increasing sequence P^, P^, P^, Pg, . . . , P^, . . . , where

represents the number of sides, and represents the peri
meter of an inscribed polygon of n sides. There will exist 
upper bounds to the sequence. The least upper bound of the 
sequence is defined as the circumference of the circle. Also 
the chapter presents a few problems involving the techniques
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of ruler-and-compass construction although a rigorous dis
cussion is not presented.

Measures of Regions
The term triangular region is introduced by UICSM to 

name the union of the triangle and its interior. Extensions 
of this idea are made to care for the general polygon and the 
circle. This carefulness in naming a triangular region (and 
other regions) is introduced to insure that the student's at
tention is directed to the fact that the domain of the area- 
measure function consists of the regions rather than the tri
angles (or other simple closed curves) themselves.

The concept of least upper bound of a sequence is uti
lized to define the area-measure function for a circular re
gion. The sequence A 3 , A 5 , . . . , A^, . . . , is con
sidered with A^ being the area-measure of a regular in
scribed polygon having n sides and the least upper bound of 
the sequence is defined as the area-measure of the circular 
region. The standard formulas for the measures of sectors, 
annular disks, etc., are then developed.

Appendix
Also included in Unit 6  as an Appendix is a very 

lucid presentation of the fundamentals of decision-making and 
the rules of reasoning. Various inference schemes are con
sidered among which are substitution rules for equations, con- 
ditionalizing and discharging assumptions, hypothetical
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syllogisms, contraposition, double denial, biconditionals, 
conjunctives, alternation, denying an alternative, test- 
pattern principles, principle of identity, and the law of ex
cluded middle. Many excellent exercises which are designed 
for practice in logic and use of set theory notation are pro
vided for the students' and instructor's use. The Appendix 
is provided for the purpose of review but if a student has 
not studied earlier UICSM units (or similar textbooks), it 
would be desirable that the student study the Appendix before 
beginning the textbook proper.

An Evaluation of Unit 6  

Unit 6  of the UICSM program presents in what is opti
mistically designated a one-semester course a study of the 
geometrical topics common to a traditional high school course 
in plane geometry. This unit can be taught either before or 
after Unit 5 but would be practically incomprehensible to a 
student not having studied Units 1-4. The point of view of 
the authors apparently is that this unit should not be taught 
unless a proper background in proof has been laid and that 
geometry should be taught at a particular experience level 
rather than at a particular grade level. Furthermore, the 
primary emphasis of the unit is on proof rather than geometri
cal content and, in spite of the fact that traditional con
tent is used, one gains the impression that the content is
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more a vehicle for proof than an essential element of content 
within itself.

This unit strives to lead students to see geometry as 
a deductively-organized mathematical theory abstracted from 
physical experience as well as to aid them in the development 
of an insight which will enable them to logically ascertain 
the ramifications of assumptions as well as to attain a 
deeper understanding of that very logic which aids them in 
ascertaining these consequences. The unit never presents 
geometry in such a way that even hints at a distinction be
tween the branches of mathematics. Implicit in the unit is 
the notion that the way to a better understanding and use of 
mathematics is through the conscious and continual study of 
the structure of the system. This approach to plane geometry 
is a point-set approach based largely on Hilbert's axioms .

The unit demonstrates continually a basic and funda
mental belief in the paramount importance of precise and 
sophisticated language. All theorems are accompanied by 
quantifier statements indicating the domain of the theorem. 
Set theory and its language along with the associated symbols 
are commonly used. The authors do not hesitate to coin new 
words and symbols to communicate particularly troublesome 
ideas.

The unit assumes considerable experience in proof 
prior to the consideration of the unit. Some understanding 
of the methods of mathematical proof, e.g., the basic logical
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principles governing its use, the use of variables and quanti
fiers , and the role of test-patterns as proofs of universal 
generalization as well as some formal consideration of condi
tional sentences, must have been arrived at earlier by the 
student. The unit, in its effort to be rigorous at all times 
in its proofs, admits that many of the proofs contain logic 
gaps which might not be apparent to the student. Consequently, 
the authors point out loopholes or continuity breaks in the 
structure or statements which are true but nonetheless cannot 
be proved at that point of presentation, i.e., the unit seems 
to advocate that unconscious usage of poor reasoning is much 
more abhorrable than admittedly poor reasoning. The burden 
of proof is placed on the student at an early time in the 
unit. The Introduction Axioms are formulated from desired 
figure-oriented properties which are then stated in a precise 
form and accepted as axioms for the structuring of the unit. 
The text uses the conventional synthetic geometric proof, the 
column and paragraph proof, and analytic proofs interchange
ably.

The unit strongly emphasizes a sequence of activities 
from which the student independently recognizes, verbalizes, 
and communicates a desired knowledge. The exercises, parti
cularly the Exploration Exercises, foster student discovery 
of concepts to be formally studied in later chapters and 
multitudes of examples are exhibited. The textual material 
is essentially a written-lecture type of presentation.
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The unit places primary emphasis on the development 

of the geometrical concepts with great demand placed upon the 
development of manipulative skills using these concepts in 
writing mathematical proofs. There is absolutely no demand 
for development of skills in applying these concepts to any 
other situation.

Unit 6  presents no evidence of the belief of the 
authors that mathematics at this level need have social appli
cation. One notices no application to motivate the study of 
any of the topics and the few exercises of this type are 
found in the unit after the applicable theory has already 
been developed.

Mathematical Induction, Unit 7
Since really effective proofs of many of the generali

zations regarding the integers (both negative and non-negative) 
require mathematical induction and recursive definitions,
UICSM has developed Unit 7 to cater mainly to this need. 
Coupled with this achievement is that of providing for the 
student maximum opportunity to practice the proving of gener
alizations regarding the integers and inequality relations. 
This unit continues the spiral deductive organization of the 
student's inductive knowledge of the real number system which 
began in Unit 2. One gains the impression, by a preliminary 
inspection, that, in contrast with earlier units, the central 
exercise of Unit 7 is the proving of theorems.
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The Real Numbers 

This segment of UICSM Unit 7 begins what is a new 
look (a higher level in the spiral study) of the real number 
system by a reconsideration of the intuitively-true basic 
principles and non-rigorously proved theorems of earlier 
units. Units 1-4 (and particularly Unit 2) have stated the 
ten basic principles (the two commutative principles, the as
sociative principles, the right and left distributive prin
ciples, the principles for 2  i.' the principles for sub
traction, and the principle for quotients), and have used 
these principles to prove in a non-rigorous fashion some 7 8  

theorems regarding the system of reals.
In this considerably more rigorous step of the spiral 

treatment of the reals, the student is forced to realize that, 
since the above basic principles involve explicitly only the 
number 0 _ and all the other numerals for whole numbers must 
be defined with an appropriate and advantageous scheme being 
to define 2  an abbreviation for 1 + 1 , 3 as an abbrevia
tion for 2 + 1 , . . . , 10 as an abbreviation for 9 + 1, etc.

By the utilization of this numeral abbreviation defi
nition and by repeated use of the ten basic principles of the 
reals and selected ones of the 78 theorems of Unit 2, the 
student is led to justify, in a step-by-step manner which in
tuitively suggests the desirability of the inductive method, 
the traditional algorithms for determining the computing 
facts for addition and multiplication as well as the
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associated and analogous algorithms for simplifying certain 
types of algebraic expressions. The analysis of the Division- 
with-Remainder Algorithm and the techniques for determining 
division computing facts as presented in earlier units re
veals that these techniques have implicitly utilized the 
theorem "V  ̂  x / 1  = x and V  ̂  x/-l = -x," and that implicit in 
this theorem is the assumption that 1  7  ̂ 0  and - 1  ^ 0 — two in
equations which cannot be derived from the ten basic princi
ples! Accordingly, the basic principle "1 ^ 0 and -1 7  ̂0" is 
added to the list of basic principles in order to axiomate 
the desired property for the system and to prove the associ
ated theorem stating that if x ^ 0  then -x 7  ̂ 0 ."^

The Positive Numbers 
The earlier section of this unit has concluded that 

the eleven now-present basic principles are not sufficient to 
prove statements such as " 2 7  ̂0. " In order to approach more 
adequately the axiomatic study of the reals, UICSM authors 
introduce four basic principles which express the relationship 
between the oppositing operation and the property of being 
positive and which adequately distinguish between the set P
of positive reals and the set N of negative reals.

(P^) [x ^ 0  either x 6: P  or - x €. P 3 •
(Po) V  not both X €  P and -x €  P  .X
^University of Illinois Committee on School Mathemat

ics, Mathematical Induction, Unit 7 (Urbana; University of 
Illinois Press, 1961), pp. 16-20.
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(Pg) V x  V y  G P and y € P ) = ^xH-y € p],
(P4 ) V x V y  [(x ^ P and y € P)=^xy € p].^

These four principles combined with earlier principles, supply 
sufficient axioms for the establishment as a theorem of what 
is traditionally axiomized as the trichotomy law by most 
modern algebraists. The exercises for this section seem to 
be particularly strong in their demand for good deductive 
reasoning and provide an opportunity for various proof tech
niques .

Inequations
The greater than relation " >  " as studied in Unit 2 

was-defined such that, for two real numbers a and b, a > b 
if and only if a - b is positive. This definition is now in
troduced as a basic principle:

(G) Vx V y  C y >  ^ y - X  € P 3
This principle, along with the principles (P^), (Pg), (P^),
and (P4 ), are used to establish various theorems regarding 
inequalities and, particularly, the addition, multiplication, 
and factoring transformation principles for inequalities.

The Positive Integers
UICSM Unit IV contained many proofs regarding proper

ties of the set of positive integers I"*" = £l, 2, 3, 4, . .
These proofs implicitly accepted the following assumptions

^Ibid., p. 74. ^Ibid., p. 30.
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although the students probahly were not disturbed by accept
ing such:

(1) The positive integers belong to P, that is 
1+ Q  P.

(2 ) is closed with respect to addition and multi
plication .

(3) For all positive integers m and n, if n >  m 
then n - m is a positive integer.

(4) 1 is the only positive integer between 0 and 2.
(5) Each non-empty set of positive integers has a 

least member.
(6 ) For each real number x, there is an integer k. 

such that k < X < k + 1 .
(7) Each positive integer other than 1 has just one 

prime factorization.̂
Since these have not been included as basic principles (nor
can they be deducted from the sixteen basic principles of
this unit) the UICSM authors lead an exploratory search for
certain basic principles which are simpler in nature and more
homogeneous in content which would be adequate for proving
any desired theorem regarding the positive integers. After
several pages of examination, the following basic principles
are formulated:

dl) 1  6  I+;
(Ig) Vn n + 1 € I+;
(I3) Vg[(l €  S and V n  C  " ^ S n + 1  € S 3  )=^
Vn n € S 3

(Close examination of these basic principles in view of the 
context of the materials reveals that these basic principles 
constitute essentially a rewording of Peano's Axioms for the

^Ibid.. p. 47. ^Ibid., p. 49.
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natural numbers (or positive integers). Using only these 
axioms, it is possible to define addition and multiplication 
in the set l"*" and to prove that has all the properties of 
an integral domain except that it does not have a zero and 
its elements do not have additive inverses. It is noted also
that I 2 says precisely that l^ ^2 K where K = £l, 1 + 1 ,
1 + 1 + 1 ,  l + l + l + l ,  . . . 3  / i.e., K is the set of all
real numbers which can be proved to exist by using and Ig.
Examination shows that = K and, therefore, every positive 
integer can be postulated from (I^) and (I^).)

After having studied these principles for the set I^, 
the unit introduces the standard three-part proof by mathe
matical induction (involving the initial step establishing 
P(l), the induction step establishing that F(n) F (n + 1), 
and the final step establishing \/^F(n) of a function F and 
uses this technique to prove closure for addition and multi
plication for l"*" as well as to examine numerous recurrence 
relations.

The Relation Greater Than for 
the Positive Integers

In the closer examination of the greater than rela
tion for the positive integers, detailed attention is paid to 
the existence (or non-existence) of lower bounds and greatest 
lower bounds for various sets of numbers with the major prod
uct of the study being that a non-empty set of positive reals 
may have lower bounds but no greatest lower bound whereas



224
every non-empty set of positive integers has a least member. 
Motivation for such a study is furnished by the proof indicat
ing that there does not exist a rational number whose square 
is 8  and the accompanying realization that nothing can yet be 
proved regarding the existence of a positive real number 
whose square is 8 .

The reader may note that the list of basic principles 
heretofore introduced is complete enough to describe ade
quately the set of positive integers but they do not, in any 
manner, describe the distribution of those integers among the 
r< als. Consequently, the authors introduce the next-to-last 
basic principle of the unit, the Cofinality Principle:
"(C) ^ >  X, n a positive integer, x a positive real
number. (This principle is easily seen to be a rather spe
cial case of the Archimedean Property: "If A and B are posi
tive real numbers, there exists a positive integer n such 

2that nA >  B." Had UICSM chosen to have introduced the com
pleteness principle which states that each non-empty set of 
reals having an upper bound has a least upper bound, the co
finality principle could have been proved as a theorem.)

The Integers
The student's earlier knowledge of the integers as a 

particular subset of the reals is summarized in the last

^Ibid., p. 89.
2Neal H. McCoy, Introduction to Modern Algebra (Bos

ton: Allyn and Bacon, Inc., 1960), p. 102.
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basic principle of the unit: "(I) V  ̂  C X €  I (X €  I
or X = 0 or -X €  I^), i.e., an integer is a real number 
which is a positive integer or zero or whose opposite is a 
positive integer. Various theorems are presented describing 
the properties of the set as well as a study of the greatest 
integer function and the fractional-r-art function.

The transitive, reflexive, and non-symmetric proper
ties of the divisibility relation are recalled and the analo
gies between the divisibility relation and the less-than-or- 
equal-to relation are examined and arrayed. Supplemental 
exercises develop the notion of the highest common factor. 
Accompanying the development of the Euclidean Algorithm for 
the computations of the highest common factor are associated 
methods of solving simple linear Diophantine equations.

An Evaluation of Unit 7
This unit is a considerably more sohpisticated step 

than Units 1-4 in the spiral approach to the study of the 
real number system and devotes itself to a deductive organiza
tion of the student's somewhat intuitive existing knowledge 
of the reals with the formulation of a set of axioms (called 
basic principles) which serve to characterize the structure 
of that system. The major goal of this unit is the promotion 
of the student's practicing in the proving of generalizations 
concerning the positive reals, the positive integers, and the

^UICSM, Unit 7 , p. 94.
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integers along with the inequality relations. These proofs 
rely heavily upon the process of induction and, consequently, 
the inductive process and recursive relations are prevalent. 
The UICSM believes, evidently, that the mathematical content 
of this unit is not academically beyond the secondary student 
with an adequate background in Units 1-6 although the text
book reads as though it were a traditional treatment of in
troductory modern algebra. Certainly it would be futile for 
a student to attempt this unit without having studied earlier 
units. Since the entire unit is devoted to the axiomatic de
velopment of the real number system, it is evident that UICSM 
is dedicated to the study of mathematical structures as a 
basis for a better understanding and appreciation of mathemat
ics .

Both the student's textbook and the teacher's guides 
are consistent in their use of precise language and the sym
bols V ,  3  . , etc., are used whenever applicable. Ap
parently UICSM advocates that precise language and mathemati
cal symbolism are desirable at this level as the vehicle for 
communicating mathematical ideas.

The proofs involved in this unit are sufficiently 
rigorous and varied in nature with comparable proofs never 
seen in traditional curriculum sequences short of a modern 
algebra course. The unit utilizes the methods of proof-by- 
contradiction, paragraph proofs, column proofs, and inductive 
proofs and demands that the student construct a multitude of
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such proofs to establish some 129 theorems of the real num
bers by the use of twenty-one basic principles. UICSM evi
dently assumes that earlier units have been successfully com
prehended by the student since no effort is made at this point 
to elaborate (other than by examples) upon the nature of a 
good proof.

This unit, as does all earlier units, includes an 
abundance of Exploration Exercises designed to motivate the 
student to formulate independently the ideas of the following 
topic. The textual material frames many questions which de
mand the student's consideration for his full understanding 
of the materials. One gains the impression that the reading 
of the textual material demands as much concentration on the 
part of the student as does the actual solution of the exer
cises .

Since the primary and principal activity of this unit 
is the proving of theorems, the exercises are largely theo
retical in nature. The exercises are well-structured to 
develop both the concepts and their dependent manipulative 
skills. Quite often, the problems involve extension of the 
theory and demand appreciation prior to the next topic.

UICSM makes no effort to motivate the study of the 
concepts and basic principles of this unit by the use of 
social applications. Evidently UICSM considers the under
standing of the concepts as a more desirable objective than 
their potential social applications.
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Sequences, Unit 8  

This unit includes a study of the usual material on 
arithmetic progressions (although as a special case of more 
general sequences), integral exponents, geometric progres
sions (though structured as depending on exponentiation se
quences) , and the process of assigning sums to infinite geo
metric progressions, as well as concentrated study of combina
torial processes. This material, though certainly not new to 
a secondary program, is far from traditional in its approach, 
depth, and mathematical rigor.

Continued Sums
This unit tahes as its fundamental working definition

that of a sequence â  as "a function whose domain is I^, the
set of positive integers."^ The sigma-notation ^  a. is in-i=l 1

troduced immediately and used to indicate the sum of the first 
n terms of a sequence. An auxiliary sequence called the con
tinued sums sequence for a given sequence a_ is defined re
cursively by

i  IV

^  a V a .  y  ■ 0.p —  y  J o^p +  ^
p-d.

This continued-sums sequence whose nth term is the sum of the 
first n terms of the sequence â, is used to compute by

University of Illinois Committee on School Mathemat
ics, Sequences, Unit 8  (Urbana: University of Illinois
Press, 1961), p. 4.

^Ibid., p. 9.
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induction the sums of the first n terms of various se
quences .

After the student has become familiar with the con
cept of sequence, the domain of the function is extended to 

Co} , the set of non-negative integers, and even, on 
occasion, the set I of integers, and a more general defini
tion is extended for the sigma-notâtion.

For each j C I and each function â  whose domain in
cludes { h : k ^ j'}

Î: - o.

With this basic definition, the left distributive principle 
for continued sums, the sum-rearrangement theorem, the asso
ciative transformation principle for continued sums, and the 
translation transformation principle for continued sums are 
formulated in order to authorize computational techniques.

UICSM. introduces a rather novel approach to the study 
of arithmetic progressions through its definition of a differ
ence sequence Aa having terms (Aa) which is formed from a 
sequence a having terms a^ by the formula (A  a)^ = a^^^ - a^ 
to determine the pth term of the difference sequence. It 
then follows that a sequence whose first difference sequence 
is a constant sequence is an arithmetic progression with Aa 
being the common difference. The treatment culminates in the

^Ibid., p. 36.
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proof of the regular formulas for the nth term and the sum of 
the first n terms of an arithmetic progression.

An overview of even the first topic of this unit sug
gests that a student must rely heavily upon the inductive 
process developed in Unit 7. This cursory examination also 
yields the suggestion that the exercises, in most instances, 
are considerably less sophisticated than the textual discus
sions .

Continued Products 
The continued products sequence of a given sequence 

having terms a^ is defined in a way analogous to the con
tinued sums sequence of the earlier topic.

For each j €  I and each function a_ whose domain in
cludes { k : k ^ j"} ,

- ij

(The Greek letter Tt is used to denote continued products 
just as C  was used to indicate continued sums.) Although 
this definition of the continued products sequence seems un
wieldy, cumbersome and somewhat sterile, its immediate appli
cations are many, e.g., kl may be defined by ^  &o /( « —  "P 
which in turn implies that 0 1  = 1  and the exponential sequence
may be defined by ^ which adequately defines

^Ibid., p. 94.
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a non-negative integral power of a base x and in turn implies
that VjjX® “ 1. UICSM leads an exploratory search for
theorems for continued products sequences analogous to those
proved earlier for continued sums sequence.

UICSM supplements the above mentioned definition for
the exponential sequence by defining ^ x  ^ 0  \ / X  <C 0  x^ =

-k
1 /x in order that exponential expressions involving negative 
integral exponents may be manipulated by the inductively- 
proved theorems V^x ^ 0  x^ x^ = x^^^, (xy)^ = x^ y^,
(x/y)^ = x^/y^ (x/y)”^ = (y/x)^.^ UICSM again provides a 
vast proliferation of exercises to develop manipulative 
facility of these definitions and theorems.

The language of sequences enables UICSM to define re
cursively a geometric progression as a sequence a_ such that, 
for some x, a^ ^ 0 , + 1  ~ ^n^’ (The student is ex
pected to prove inductively, in original exercises, the 
standard formulas for the nth term and the sum of the first 
n terms of a geometric progression.) The sum of an infinite 
geometric progression whose common ratio r̂  such that |r) ^  1  

is determined by the traditional type of argument except that 
a fairly rigorous definition of the concept of a limit is im
plicit in this definition: "In general, for any sequence a,
and any number s, ^  a^ = s if and only if

is -
1 2 Ibid., p. 114. Ibid., p. 143.
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The function C(j, h ) , j 6  0, k 0, used to deter

mine the number of k-membered subsets of a j-membered set, 
may be defined recursively by

C (jjO) = i-j

This basic definition authorizes the solution of problems 
traditional to the study of combinations. Similarly, the 
derived theorem (as well as supporting theorems) stating that 
" Vj>.o \y X P(j' ( j - i)/" and used to number
the permutations of j_ things taken k at a time is used to 
solve traditional permutation problems.

The text proper of this unit culminates with an in
ductive proof of the binomial theorem: V^j ^ q
(x + y) ̂ = .jS q C(j, k) x^ ^ y^. This topic, although some
what unique in its presentation, is fairly traditional in ap
proach and certainly provides sufficient practice for stu
dents pursuing the unit.

Throughout this unit are certain enrichment supple
ments which, though not vital to the continuity of the text, 
certainly contribute to its effectiveness. Among these are 
the consideration of the Fibonacci sequence, sum of devia
tions of the terms of a sequence from a given number, base-m 
representations of positive integers, recursive relations for 
finding sumr. of powers, and prime and composite integers.

^Ibid., p. 168.
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An Evaluation of Unit 8  

As in earlier units, UICSM does not specify that 
Unit 8  be taught at any particular grade level but rather at 
a particular mathematical experience level. This unit, de
voted largely to sequences and their uses in examining many 
topics such as exponential functions, arithmetic and geometric 
progressions, factorial functions, combinations and permuta
tions, and the binomial theorem, definitely presupposes an 
adequate understanding of earlier units, particularly Units 6  

and 7. UICSM's emphasis on the continued development of the 
real number system as a mathematical structure forces one to 
conclude that the understanding of the mathematical structure 
of the reals is one (if not the) prime objective.

UICSM Unit 8  formulates several new terms, e.g., con
tinued sum sequence, difference sequence, and continued
products sequence, to communicate certain applicable notions.

n
The unit makes extensive use of the sigma-notation _C , the

n
product-notation 7 7 * , and the now familiar ^ , 3  , andi=l
V • The unit also relies quite heavily upon recursive de
finitions to define particular concepts involving an iterat
ing process.

The rigorous proofs, predominantly inductive in nature, 
are the prime characteristics of this unit. The extension of 
the ideas of the reals to develop sequences indicates UICSM's 
concern with the importance of critical examination of good 
proofs. UICSM definitely assumes that the appreciation of a
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good proof is already a working part of the student's mathe
matical background.

The method of presentation of this unit is not appre
ciably different from that of Unit 7. Although the student is 
guided along possible avenues of proof, the burden of the 
proof must be assumed by the student. Again the primary pur
pose of the unit seems to be to train the student in the proc
ess of good mathematical proof and to provide adequate prac
tice in this endeavor. This unit, as does earlier units, 
provides a wealth of Exploration Exercises to lead the stu
dent to discover ideas independently.

Since one of the prime objectives of this unit seems 
to be the acquisition of skills in writing proofs, this unit, 
through its multitude of exercises, certainly provides ade
quate opportunity for the achievement of these desired skills. 
As in Units 6  and 7, UICSM apparently does not subscribe to 
the notion that social application is to be a major objective 
at this experience level. This unit does, however, state 
many of the exercises in a physical-environment language.

Elementary Functions, Powers, Exponentials, 
and Logarithms, Unit 9

This unit, initially designed to be the preliminary 
unit of study for the twelfth-grade, concerns itself with a 
study of principal roots, rational numbers and rational ex
ponents, exponential functions and their inverses, the 
logarithm functions, and completes the list of postulates (or
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principles) necessary for the defining of the real number 
system. The unit contains approximately 190 pages of textual 
material and exercises and nearly that many additional pages 
devoted to Appendices which contain, among other topics,
UICSM's only consideration of solid geometry. The unit is in 
harmony with earlier units and is written in accordance with 
the philosophy of the UICSM in that it stresses discovery of 
generalizations by the students rather than presenting gener
alizations and then explaining them.

Definite Description
The basic definition for this topic is that of the

square root: " ^ q \/x = the real number z such that 
2 ~  1(z %  0 and z = x .)." This definition demands the considera

tion of both an existence condition ( V  _ \/ (z ^  0 and--------------------- X s  0  z2z = x) and a uniqueness condition ( V  ^  q V  ( (Y ^  0
2  2  ^ ^ and y = x) and (z >  0 and z = x) y = z). UICSM immedi

ately suggests (and proves later) that the existence condition
cannot be considered a consequence of the already adopted 
basic principles although the uniqueness condition may be 
thus established. In order to establish the existence condi
tion one needs the completeness principle of the reals and 
UICSM forces the students to see the need for such a basic 
principle.

^University of Illinois Committee on School Mathemat
ics , High School Mathematics. Unit 9 (Urbana: University of
Illinois Press, 1962), p. 3.
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The Need for a New Basic Principle 

UICSM proves that the presently-existing basic prin
ciples for the reals are insufficient to establish an exist
ence condition for the reals by showing that all of these 
basic principles still hold if they are restricted to describ
ing the rationale but that the statement " V x  ^  0  3  z (z ^  0

2and z = x ) ," becomes false when restricted to the rationale. 
Therefore the system of basic principles as already formu
lated is not sufficient to establish existence of the square 
roots of all non-negative reals•

In preparation for the Completeness Principle, the 
student is led, through Exploration Exercises, to discover 
that the set S = f x ^  0 : x^ <-2 3 has no greatest member 
but that b being a non-negative number whose square is 2  as
sures one that b is an upper bound of S , that \/ ^ Q  x <  b
^  X € s] , that no number less than b is an upper bound of 
S and that, additionally, b is the least upper bound of S. 
These are used as tools for proving that the least upper 
bound b of S is such that b^ = 2, i.e., b = >/T*.

The Least Upper Bound Principle
UICSM attempts to establish that, generally, "V y  ̂  q

3  z "Z 0  = y" and " V y  ^  q ^ 0  : x^ <  y'J has a least
1upper bound" are equivalent statements. Therefore, the as

sumption of the completeness principle (called by UICSM the

^Ibid.. p. 31.
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least upper bound principle), "Every nonempty set which has 
an upper bound has a least upper bound," justifies the work 
with square roots.

Exploration Exercises concerned with the domains and 
ranges of various functions as well as with monotonie decreas
ing and monotonie increasing functions and their inverses 
motivate the following:

A function f is continuous at x if and only if x 
and f(x) differs arbitrarily little from f(xg) for 
each X C £ which is sufficiently close to Xq .
A function is continuous if and only if it is contin
uous at each of its arguments.

One notes that arbitrarily little and sufficiently close are
undefined although the standard and rigorous definition for
continuity is considered in the accompanying appendix.

It is interesting to note that UICSM introduces and 
uses at this point some theorems, e.g., "Each monotonie func
tion has a monotonie inverse of the same type," and "Each 
positive integral power function is continuous," which are ac
cepted without proof (except in the Appendix)— a highly un
usual occurrence for this group.

Principal Roots
UICSM's study of roots other than square roots is 

predicated upon the so-called (PR) relation defining the 
" " operator: V u  ( ^ 3 ^  2 T O and

^  ) . " This definition of this operator, along

^Ibid., p. 42. ^Ibid., p. 49.
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with earlier-considered theorems, yields a uniqueness-theorem:
Vn Vhôo V.* [(<^2 O and %  )=^ • This (PR)
relation and the uniqueness theorem provide the necessary 
tools for manipulation of radical expressions.

The Rational Numbers 
The rationality or irrationality of a real number is 

determined by tests structured from a rather unique definition 
(or basic principle) of a rational number : V  C x G  R
—I 1xn Ê  I j  . (R is the set of rational numbers; n g  I). 
The denseness of the rationale in the reals as well as the 
denseness of the reals is considered.

Rational Exponents 
Earlier discussions of this unit have defined for 

each X the exponential sequence with base x as a sequence 
whose domain is the set of nonnegative integers. A later 
definition extended the domain of sequence functions to ones 
whose domain is the set of all integers. This topic deals 
with the extension of these exponential sequences to ones 
having rational numbers. The method of attack is simple and 
nonnovel— the student is forced to assign a meaning to such 
sequences in a manner so that the laws which held for inte
gral exponents will still hold. The result of such examina
tion is stated in a rather nontraditional, i.e., insofar as

^Ibid., p. 62.
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wording is concerned, defining principle: r
V  ^  = ( s ^  x ) ^ . ^  The student is then led tom , rm s  i
prove those theorems for rational exponents which are analo
gous to those for integral exponents.

The Exponential Functions 
At this point, the student will have become familiar 

with many facts regarding sequences with rational arguments.
These facts encompass the following central ideas. First,
for 0  <  a 1 , the exponential function having base a and 
rational arguments is a continuous monotonie function which 
is decreasing if 0  < a < 1  and increasing if a >  1 .
Second, for 0 < a < 1 ,  given M >  0, there is an N such
that, for each r > N, a~^ >  M and 0 ^  a^ <. Third, for
a ”>  1, given M >  0, there is an N such that, for each r >  N,
r —r 1a >  M and 0 < a ̂ m * These facts are used to structure

the following adoption:
(a) V x  > 1  V u  ~ the least upper bound of

t y :  =
(b) V q  < X < 1  V u  (1 /x)
(c) 1 ^ = 1  and = 0 -

This adoption (or definition) essentially removes the "u G  R" 
restriction on the definition of an exponential function with 
base X and rational argument u, i.e., ■̂ (u, y) , u €  R : y = x
UICSM is now confronted, by this definition with these three

1 2 Ibid., p. 92. Ibid.

u
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problems if rigorous consistency is to be maintained. First, 
the existence of the least upper bound of the set in (a) must 
be shown. Second, these new definitions must be shown to be 
consistent with the old. Third, the theorems proved by uti
lizing earlier definitions must hold in view of these defini
tions. The last two of these three tasks is reserved for the 
Appendix although the textbook adequately develops the first.

The Logarithm Functions
This topic presents a rather traditional, except for 

language, introduction to the theory of logarithms. It is 
shown, by consideration of many examples, how one might use 
the inverse of an exponential function to perform multiplica
tion, division, and exponentiation computations by addition, 
subtraction, and multiplication, respectively. The values of 
the "powers of are approximated by reference to a well- 
constructed graph of C(x, y) : a^ = x^ . Linear interpola
tion techniques are also introduced to further the process of 
approximation of powers— authorized by the fact that the in
verse function, as well as the exponentiation function, is 
continuous.

The UICSM approach to the formal study of logarithms 
is based on the notion of an inverse exponential function,
i.e., the exponential function with base a is "C (x, y) : y = â 1  

and the logarithm function with base â  is {̂ (x, y) : x = a^^ . 
As a tool for proving the theorems regarding logarithms, UICSM
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proposes a defining principle (L): V

0 < a < l x > 0

=  X. It is concluded, after some examination, that 
the domain of each logarithmic function is the set of posi
tive numbers and its range is the set of reals and that each 
such function is continuous and monotonie increasing if the 
arbitrarily-chosen base is greater than ^  and monotonie de
creasing if the arbitrarily-chosen base is positive and less 
than 1 .̂

By using the above principle (L), the student is 
forced to construct proofs for the computational theorems of 
logarithms. Most of the computation is done by use of the 
common-logarithm —function (to the base 10) . The exercises of 
the topic involve a variety of general proofs as well as an 
ample supply of exercises involving logarithmic computation 
and the solution of exponential equations, etc.

Some Laws of Nature 
This presentation, somewhat out of character with the 

earlier UICSM units, illustrates ways by which mathematics 
might help discover physical laws by the abstraction of em
pirical data into mathematical functions. Boyle's and Gay- 
Lussac's laws are shown to describe adequately the functional 
relation between the empirically-obtained readings for tempera
ture, pressure, and volume of various types of gasses.

In a similar vein, the consideration of the decay of 
radioactive substances demands that one understand the
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behavior of the expression (1 + x)x as x tends to 0. This
limit, actually the least upper bound of the set T Y.* 3 y

1 /x 1  x ^  0
= (1 + x) J which, of course, is 2.718281829459..., is de
fined to be the ubiquitous number e . The examination of
Newton's law of cooling, the study of transient currents in
simple circuits, the examination of the adiabetic compression 
of gasses and even compound interest all illustrate the im
portance of this number ê. The vast realm of physical appli
cation also indicate the relative convenience of e as a base 
for logarithms rather than the common base 1 0 .

Appendices
The Appendices (comprising a total of 146 pages of 

material as compared to 189 pages of textual material in the 
unit) is actually a unit of study within itself. With one
exception, the five Appendices concern themselves with rigor
ous proofs of theorems used earlier without proof in the unit. 
Included also are more sophisticated statements of the defini
tions involved, e.g., continuitv.

Appendix A deals more completely with principal roots 
and, after a rather sophisticated discussion of the concepts 
of monotonicity, increasing and decreasing functions, continu
ity, etc., establishes that each monotonie function has a
monotonie inverse of the same type and that each continuous

>■ *
monotonie function ^  whose domain is a segment a, b has a 
continuous monotonie inverse of the same type whose domain is
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the segment f(a), f(b). These two results have been used in 
textual discussions without proof.

Appendix B places its main emphasis on the study of 
the irrational numbers. The one-to-one correspondence be
tween two sets traditionally used to define the relation 
"having the same number of elements as" and "having more ele
ments than" is utilized to approach the properties of infi
nite and countably infinite. UICSM demonstrates that, sub
ject to these definitions, the set of rationals is countably 
infinite but that the set of irrationals (as well as the set 
of reals) is not countably infinite.

Appendix D contains a very brief (actually only 42 
pages) synopsis of what usually is referred to as solid geome
try and devotes itself primarily to an abbreviated develop
ment of the surface area and volume formulas for simple solids. 
The approach to solid geometry is a point-set one and utilizes 
a language compatible with Unit 6 . Cavalieri's Principle is 
axiomized and used quite extensively to develop the basic 
formulas regarding volume-measure of solids. This very brief 
development presents, in capsule form, the standard mensura
tion formulas for triangular regions, quadrilateral regions, 
regular polygonal regions, circular regions, prismatic solids, 
pyramidal solids, prismatoidal solids, and spherical solids. 
The outstanding characteristic of the presentation is its 
total devotion to precise point-set vocabulary. The exercises
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presented are largely computational in nature and present a 
call for very few formal proofs.

An Evaluation of Unit 9 
This unit has led the student through the completion 

of the set of basic principles for the real numbers by the 
statement of the least upper bound principle, has brought 
into prominence more of the principles of logic, has dis
cussed and applied the properties of monotonicity and continu
ity of functions, has defined and explored power functions, 
exponential functions, and logarithmic functions, and has 
brought to the student's attention the realization that func
tions of these kinds occur, in a sense, in nature. The Ap
pendix, if pursued, has exhibited more of the properties of 
rational and irrational numbers, has talked about mensuration 
formulas, and the use of logarithms in computational work.
The study of this unit, if to be in the least comprehensible 
to the students, must have been preceded by the past several 
units of the sequence in that the type of presentation, the 
language, the structure of the material, the technique of 
proofs, etc., are assumed from previous units.

UICSM has, in context with the earlier units, contin
ued to insist upon the exhibition of the structure of the real 
number system. The inclusion in this unit of the least upper 
bound principle (or completeness principle) completes the axi- 
omization of the real number system and emphasizes the
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reliance of the computation and simplification algorithms 
upon this list of basic principles and the derivable theorems.

The vocabulary, as in all the previous units, is one 
of precision and rigor. No attempt is made to avoid sophis
ticated terminology and the unit fairly bristles with terms 
such as least upper bound, monotonie, decreasing function, 
continuous, infinite, uncountability, and operators. The 
unit also employs extensive symbolism appropriate to the dis
cussions . All statements and theorems are accompanied by the 
appropriate quantifiers stated in symbolic forms.

This unit assumes much experience in proofs of all 
types, e.g., inductive and reductio ad absurdum, prior to the 
level at which the material is used. The text makes a val
iant effort to be rigorous in its various proofs yet must 
rely upon select theorems which are beyond the experience 
level of the student and whose proofs must be relegated to 
the Appendix. It must be noted that, in spite of these loop
holes in the development of the unit, the text points to these 
loopholes and demands that the student recognize the inade
quacies .

This particular unit seems to present to the student 
a series of written lectures which develop the desired con
cepts and then reinforce this concept with a variety of drill 
exercises. It appears that fewer exercises demand student 
proofs, but rather, more of the exercises which, though simple 
in nature, are designed for reinforcement. As in all earlier



246
units, the Exploration Exercises play a vital role in permit
ting the student to intuitively build an anticipatory insight 
into the material to be more rigorously attacked in the next 
section.

This unit appears, in addition to developing a tre
mendous number of mathematical concepts, to provide maximum 
opportunity for development of associated skills. Literally 
hundreds of exercises provide opportunity to apply the tech
niques of logarithmic computation, reduction and simplifica
tion of radical expressions, etc.

The unit concludes with a consideration of several of 
the laws of nature and illustrates how one may quantify na
ture in many instances and describe (and anticipate) physical 
phenomena by a mathematical model abstracted from empirical 
data. Accompanying these discussions are many exercises 
which deal with the physical environment and are, in a sense, 
applied in nature.

Circular Functions and Trigonometry, Unit 10
This unit, destined to be a part of the twelfth-grade

mathematics program, develops what has been called for the
..past many years plane trigonometry. The over-all results of 

the presentation are roughly those of such a traditional 
course but this unit pays more careful attention to detail 
and structure and the use of the winding-functions (or 
wrapping-functions) to serve as an angle-free vehicle for the



247
definition of the trigonometric functions is an innovation 
worthy of special attention. The actual unit itself is 
written in accordance with the UICSM discovery approach al
though more careful editing would have corrected several con
tradictory usages of terms which have been defined earlier 
and are now used in a conflicting manner.

Functions
This section, essentially a review for students hav

ing studied Unit 5, re-introduces a function as being a set 
of ordered pairs no two of which have the same first compon
ent. Although not stated explicitly by UICSM, the statement 
of the rule defining the value of the function corresponding 
to each of its arguments is essential to the description of 
the function— an essential sometimes accomplished by the 
introduction of an algebraic expression and sometimes by list
ing the ordered pairs. Many examples of different functions, 
among which is the greatest integer function (to be used ex
tensively later in the unit) defining [x] to be the real 
integer n such that n i x < n + 1 , are presented along with 
the consideration of many functions whose domains and ranges 
are not both necessarily numbers.

Circular Functions 
As a basic tool for the definition of sine and cosine 

functions, UICSM introduces the rather novel winding function 
W  which determines W(x) by laying off on a unit circle
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(centered at the origin) an arc whose measure is x (starting 
at (1 ,0 )) in a counterclockwise direction if x 3» 0  and a 
clockwise direction if x <  0  with W(x) being the endpoint of 
the arc. The added condition that W (0) = (1, 0) completes the 
description of W(x). The first coordinate of W(x) is defined 
to be cos(x) and the second component sin(x); hence W(x) = 
(cos(x), sin(x)), with the domain of x being the set of real 
numbers. The reader notes that the symbol ABD is used to 
designate the arc from A to D in the counterclockwise direc
tion— an innovation that seems somewhat out of character 
since " "  would perhaps intuitively suggest clockwise 1) As 
in earlier units, the name m is used to designate the func
tion whose domain is the set of all segments and arcs and 
whose value for each of its arguments is the measure of that 
argument.

One notes that this definition of the sine and cosine 
functions is independent of the consideration of an angle.
Due to the close connection between these functions and the 
unit circle, UICSM uses the term circular function more often 
than trigonometric function. The term also serves to de- 
emphasize their computational use in solving triangles and 
hopefully permits the later value of the functions in describ
ing periodic phenomena.
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Some Properties of Cos and Sin 

By total reliance upon the angle-free winding func
tion W(x) earlier introduced, UICSM leads in the discovery of 
many of the properties of the sine and cosine functions. In
cluded in these are: (a) sin and cos are periodic functions
since W(x + 2 lt ) = W(x) for every x and, consequently, 
sin(x + 2  It ) = sin x and cos (x + 2 fT) = cos x; (h) the sine 
is an odd function and the cosine is an even function since 
sin(-x) =-sin x and cos (-x) = cos x for every ü ./’ (c ) for
every x and y. such that x + y = 'TT' / 2 , sin x = cos y; (d) the 
sine function is monotonically increasing in the interval
0 , 'JV/2 and the cosine is monotonically decreasing in that

2 2interval and (e) for every x, sin x + cos x = 1. The unique 
part of this presentation lies not in the final results but 
rather in the use of the winding function approach which 
allows the definition of the circular functions without ever 
considering, in any sense, angles.

The remaining four circular functions of traditional 
trigonometry are introduced by definitions based on the sine 
and cosine functions: tan x = sin x/cos x and sec x =
1 /cos X with the domain of both functions being the set of 
all real x such that x ^ (2 n + 1 ) (tT/2 ) and cot x = (cos x) / 
(sin x) and esc x = l/(sin x) are introduced as functions 
having as domains the set of real x such that x 7  ̂ (2 n) (tf/2 ).
These definitions provide ample opportunity for transformation 
of expressions containing names of circular functions to
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simpler equivalent forms— actually the traditional identities. 
UICSM. does not use the term identity since *We don't know of 
any simple definition of 'identity' which agrees sufficiently 
well with the intuitive notion that an identity is an equa
tion which is generally true, we shall not use the word 
'identity' in this unit."^

Geometric Applications of Circular Functions
After spending considerable time discussing the 

radian-measure of an angle (actually a very natural conse
quence of the winding function used to define the function) 
and the difference between a line segment and its measure as 
well as the difference between a region and its measure,
UICSM proceeds to develop the cosine law and sine law of tra
ditional texts. These laws are then used as tools for solv
ing triangles as in those traditional texts except that great 
care is exercised to distinguish between a side of a triangle 
and its measure and every statement (and exercise) is worded 
in terms of measures.

The degree-measure function is introduced by the con
version formula postulating that an angle whose radian- 
measure is ff has a degree-measure of 180, i.e., if A is an 
angle such that m(A) = 1, then °m(A) = 180. Since the circu
lar functions have been stated essentially in radian-measure

University of Illinois Committee on School Mathemat
ics, Circular Functions and Trigonometry (Urbana: University
of Illinois Press, 1963), p. 38.
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language, UICSM finds it necessary to introduce new functions, 
called degree-sine and degree-cosine, etc., to make it pos
sible to work directly with angles whose measures are radian- 
measures without having to convert their measures to radian- 
measures.

The reader notes several inconsistencies in this par
ticular unit.

1. The discussion of the degree-measure of angles in 
terms of radian-measures is inappropriate since 
the student has already studied the degree- 
measure of angles in Unit 6  and used the term 
measure to indicate degree-measure— the term 
measure is used here to indicate radian- 
measure 1

2. Mention is made (and use presumed) of empty 
angles and straight angles although the defini
tions of Unit 6  have decreed that such angles are 
not to be defined 1. .In this sense, the statement
" Tf radians = 180°," although a helpful mnemonic, 
is somewhat meaningless.

3. UICSM uses the sum and difference of angles—  
usage which definitely contradicts the definition 
of angles as sets as presented in Unit 6  and 
which removes the possibility of addition of 
angles since the only admissible operations for 
sets are union and intersection.

4. Also, the word prove in the Exploration Exercises 
of this section seems to indicate that an intui
tively-convincing argument is sufficient— cer
tainly contradictory to the rigor of earlier 
units.

Consequently, this particular section seems to be out-of
character with earlier units and, in some instances, even 
contradictory.
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A Basic Theorem About Circular Functions 

By reliance upon the winding function W(x), UICSM is 
able to establish that for every x and y  such that W(x) ^ W(y), 
one of the two arcs W(y), W(x) is congruent to one of the two 
arcs W(0), W(x - y ) . An immediate consequence of this proof
is that for every x and y, m(W(y), W(x)) = m(W( 0 ), W(x - y) ) 
from whence the student may show algebraically the authentic
ity of the subtraction principle for the cosine which states 
that for every x and y, cos (x - y) = cos x cos y + sin x 
sin y . This subtraction principle for the cosine, along with 
the basic properties of the function as earlier developed, 
provides the foundation for the proofs of the addition prin
ciple of the cosine, and the addition and subtraction laws 
for the sine and the tangent— actually the basic fundamental 
identities of traditional trigonometry.

Inverse Circular Functions 
UICSM presents in this section a semi-traditional ap

proach to the inverse trigonometric functions with the major 
innovation being the language used. It is discovered that 
the sine, cosine, tangent, and cotangent functions do not 
themselves have inverses (as seen from the ordered-pairs ap
proach) but that each of the functions have subsets which do 
have inverses.
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An Evaluation of Unit 10

Tills unit on trigonometry does not necessarily pre
suppose the knowledge on the part of the student of Unit 7,
8 , and 9, and it is conceivable that a student might ade
quately comprehend the unit without having studied even Unit 
5 in that the concepts required from that unit are reviewed 
thoroughly in this particular unit. The unit ties itself 
nicely to Unit 6  although several notions of Unit 10 are con
tradictory to those of Unit 6 , e.g., the use of the empty 
angle (an angle whose degree-measure is 0 _) , the straight 
angle whose degree-measure is 180 , and the sums and differ
ences-of angles. UICSM's emphasis upon structure is evi
denced by the careful attention paid to the statements of 
domain and range for the functions as well as the emphasis, 
by use of the winding function, of the notion that the argu
ment (or domain) of the sine and cosine functions is the set 
of real numbers rather than a set of angles.

The language of this unit is far less sophisticated 
than earlier units although careful attention is paid to the 
statement of quantifiers for the theorems ; the measures of 
arcs, segments, and angles; the ordered number-pair defini
tion for functions, etc. However, little use is made of the 
earlier oft-used set-builder notation and the symbols used to 
indicate for every, there exists, such that, implies that, if 
and only if are not used here as in earlier units. Earlier 
units have demanded that the letters m, n̂, p, and represent
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elements in l"*" (the set of positive integers) and that î, j_, 
and k are elements in I (the set of integers), a convention 
not followed by this unit.

The proofs in this unit, although fairly rigorous in 
nature, are certainly not of the sophistication of the earlier 
units. Most of the proofs, mainly analytic in nature, seem 
merely to give convincing arguments in many instances as op
posed to the meticulous attention to detail in earlier units.

As does all previous UICSM units, this unit puts to 
good use the Exploration Exercises to allow the student to 
discover (and intuitively comprehend) the concepts of the sec
tion to be studied. The textual material itself is continu
ally posing questions which force a student, if he actually 
reads the material, to formulate (and authorize) many of the 
concepts for himself. Exercises are many and varied in na
ture and seem designed to reinforce the concepts already 
studied rather than to extend the student's body of knowledge.

The unit is fairly well-balanced in its discussion of 
concepts and its demand for skill-building. One does notice 
that little direct attention is paid to the process of deter
mining the truth sets of trigonometric equations, the graphs 
of trigonometric functions, the study of trigonometric reduc
tions by means of the related angle, the logarithms of trigo
nometric functions— topics usually covered extensively in 
such a course. It would appear that these omissions might be
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potential causes for concern for those planning to study more 
advanced mathematics.

UICSM makes little, if any effort to apply this unit 
to a physical environment. In fact, the long, tedious tri- 
angle-solving problems and logarithmic computations of the 
traditional trigonometry course are minimized practically to 
their non-inclusion.

Complex Numbers, Unit 11 
This comparatively brief unit culminates the UICSM 

sequence with a fairly thorough study of complex numbers by a 
number-pair approach. The general mode of presentation is in 
accordance with the previous units.

Linear and Quadratic Equations 
As an introduction to the study of complex numbers, 

UICSM reviews briefly the techniques for determining the 
truth sets of linear and quadratic equations and illustrates 
quite vividly that the meaningfulness of a solution depends 
upon the number system in which the solution is being sought. 
The student is informed (and constantly reminded) from the 
beginning of the unit that the objective of the unit is to 
construct a number system (called the complex number system) 
which will be constructed with certain defined operations 
such that a proper subset of that system will be isomorphic 
to the system of reals with respect to addition and multipli
cation and in which every member will have a square root.
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The Complex Numbers 

UICSM essentially introduces the complex numbers as 
being simply a system of ordered pairs of real numbers— actu
ally just points of the number plane. If = (x, y) and 

= (u, v) are two complex numbers, then the sum z^ + is 
defined to be (x + u, y + v ) , the opposite of is defined 
to be -(x, y) = (-x, -y), and the difference z^ - z^ is de
fined to be the complex number w such that z^ = w + Zg. By 
using these definitions, the student is forced to determine 
the authenticity of the associative and commutative proper
ties of addition.

Complex Numbers and Geometry 
UICSM suggests that this section, dealing with the 

definition and implications of the product of a complex num
ber (x, y ) by a real number t might be omitted in the inter
est of economy of time. This definition for the multiplica
tion of a complex by a real is motivated by a set of Explora
tion Exercises which shows, among other things, that if 
(%Q, Yq) 7̂ (0 , 0 )/ then the line t o , 0 ) (xq , ygT is ^(x, y) : 
3^ (tXg, tyg) = (x, y)^ . It follows that one may define 
a line containing points Zq and z^ as { z : 3 ^ z = Zq + 
t(z^ - z^yy and that the points Zq , z-̂ , and Zg are collinear 
if there is a real t such that %2 " %0 + t(zi - Z 2 )- The no
tion of linear dependence of complex numbers is imbedded in 
this statement:
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For all complex numbers and Zo/ Z]_ and Z 2  are 
linearly dependent if and only if 1

3 3t2 C  ^^1' ^ 2  ̂ ^  (O' 0) and t^z^ + t 2 Z 2  = (0, 0 ) J  .
The notion of the distance between complex numbers and the
closely related notion of a complex number are shown to be 
useful in proving many theorems about triangles and parallelo
grams, e.g., the medians of a triangle are concurrent.

One notes here another word usage which is contradic
tory to that of Unit 6 . Unit 11 considers two lines L and L'

2to be parallel if and only if L O  L' = 0 or L = L ' . Unit 6
has considered two lines L and L' as being parallel if and
only if L O  L' = 0— a troublesome and unnecessary error for 
the careful student.

Definition of Multiplication of Complex Numbers
In its effort to extend the real number system to the 

system of complex numbers so that these complex numbers will 
have some of the properties of addition and multiplication of 
the reals, UICSM causes examination of the need for a defined 
operation X to be called multiplication so that this opera
tion is distributive with respect to addition, is associative 
and commutative, that there is an identity element e_ such 
that for every z ^  (0 , 0 ), z X  e = e  X  z = z ,  and that it is 
possible to define a reciprocation operation so that for every

^University of Illinois Committee on School Mathemat
ics, Complex Numbers, Unit 11 (Urbana; University of Illinois Pressl 1963), p. 32.

^Ibid., p. 40.
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z y (0 , 0 ) , there will be a number z* such that (z) X, (z*) = e. 
This multiplication must be defined in such a way that there 
will exist a proper subset of this set which will be isomor
phic with respect to the reals under the operations of multi
plication and addition.

Examination shows that, for all complex numbers 
(x, y) and (u, v ) , the definition (x, y) X (u, v) = (xu - v y , 
X V  + yu) will suffice as a suitable definition for the desired 
operation. (The letter i  is introduced to abbreviate (0, 1); 
i^ = ii = (0, 1) X  ( 0 , 1 ) =  (-1, 0). In view of the defined 
operation, for any complex number (x, y ) , (x, y) X  (1 , 0 ) =
(x, y) ; hence, there exists the multiplicative identity 
(1, 0).) Since any complex number (x, y) might be considered 
as (x, 0 ) + y( 0 , 1 ), the conventional symbol x + yi is intro
duced to abbreviate (x, y ) . The reciprocation operator "/" 
is defined in such a way that z X (/z) = (1, 0), / (x + yi) = 
^2 + y 2  ̂ “ ( ^ + 2 ̂  ^ " This authorizes the definition of 
division such that for z^ and (0 , 0 ) ,
(/Zg).

UICSM shows intuitively that, in view of these defini
tions, the set of real complex numbers (complex numbers hav
ing 2  their second component) is isomorphic to the set of 
reals. It follows easily that any real number, negative or 
nonnegative, has two square roots in this system and that, 
consequently, any quadratic equation with real coefficients 
has meaningful solutions in the system of complex numbers.
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Quadratic Equations with Real Complex Coefficients

This section, containing only a few minor innovations, 
is prohably the most traditional treatment of any section in 
the entire UICSM sequence in its discussion of quadratic equa
tions having real complex coefficients. The name real complex 
coefficient is shortened to real coefficient since the real 
complex system and the real number system are isomorphic.
The term imaginary is sacrificed in favor of unreal— an inno
vation which should prove helpful to both student and instruc
tor. The text leads a rather typical discussion of the uses 
of the discriminant of a quadratic equation, the sums and 
products of roots of a quadratic equation, equations involv
ing radicals and possible extraneous solutions, and written 
problems whose solution sets are the truth sets of quadratics.

Quadratic Equations in Two Variables 
In this section, the graphs of the parabola, the 

circle, the ellipse, the hyperbola, and the general conic are 
studied. Particular attention is paid to symmetry of the 
graphs, the extreme point of the parabola, the center and 
radius of the circle, the foci and axes of the ellipse, and 
the center and asymptotes of the hyperbola. The solution 
sets of systems of these equations are determined both graphi
cally and algebraically with heavy emphasis upon geometric 
interpretation of the results.
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Systems of Equations 

This section briefly discusses the several techniques 
for solving systems of quadratics. Included among these are 
the traditional method of substitution, the method of addi
tion, and the transforming of systems into equivalent ones 
which contain equations reduced to a pair of linear equations, 
e.g., the elimination of constants technique.

An Evaluation of Unit 11 
This unit, although the last in a series of eleven 

units, definitely does not presuppose an intensive knowledge 
of the first ten units and, as a matter of fact, probably 
could be adequately comprehended by a good student who has 
completed (and understood) Unit 5. The unit provides a com
prehensive, though not exhaustive, study of the complex num
bers through the number-pair approach rather than the vector 
(or Argand's) approach.

UICSM, on several occasions in the unit, emphasizes 
that the complex number system is to be regarded as an exten
sion of the real number system and is to be designed such 
that the addition and multiplication operations, notions of 
equality, etc., are to be formed such that the operations will 
be commutative, associative, that there will be additive and 
multiplicative identities, etc., and that this invented sys
tem will contain a subsystem isomorphic to the set of reals. 
This structuring of the complex number system is motivated by
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the need for a system which will authorize a meaningful solu
tion set for any quadratic equation. The observant student 
should note that the extension from the real numbers to the 
complex numbers is analogous to earlier extensions structured 
in response to demonstrated needs.

This unit is typified by UICSM's constant use of 
crisp, nonambiguous language with each theorem and definition 
accompanied by the now-usual quantifier. The unit relies more 
heavily on set-language than did Unit 10 but not as heavily as 
did Units 6-9.

The proofs are very adequate for the material pre
sented and are fairly rigorous in nature with the majority 
being direct proofs with some few relying upon the inductive 
process. Some few of the theorems, particularly those deal
ing with the exhibition of isomorphisms between various sys
tems, are somewhat intuitive in nature and do not bother with 
rigorous presentations.

The unit makes maximum use of the Exploration Exer
cises in helping the student to discover the desirable proper
ties and definitions which this new number system should have 
if its subsystem, the system of reals, is to retain the prop
erties of the reals. The textual material presented reads 
easily, is sequentially organized, and conversational in na
ture .

This unit, although doing a more-than-adequate job of 
developing concepts, has an unusually large number of what
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one might term drill exercises. Certainly any person oppos
ing modern programs on the basis that little drill is pro
vided for reinforcement of concepts would be at a loss for 
substantiating evidence in this unit.

In this unit, UICSM does not use the social applica
tions of mathematics to motivate the study of ideas, to de
velop basic principles, and, therefore, does not consider so
cial application of mathematics as a major objective at this 
level. The unit does provide, through two sets of applied 
exercises, some opportunities for applying some of the prin
ciples after they have been developed.

An Evaluation of the UICSM Secondary Program 
The UICSM units which have been examined in some de

tail in this chapter are the results of a group formed to
"prepare text materials for a new college preparatory mathe-

1matics curriculum, grades 9 through 12." The director of 
the program. Max Beberman, has suggested, however, that the 
role of UICSM is not purely that of a college preparatory one 
since the UICSM production is "an attempt to bring to the 
mind of the adolescent some of the ideas and modes of

Dorothy M. Fraser, Current Curriculum Studies in 
Academic Subjects (Washington, D. C .: National Education As
sociation, 1962), p. 32.
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thinking which are basic in the work of the contemporary 
mathematician.

Insofar as placement of the materials is concerned, 
the UICSM tentatively recommends the units concerned with the 
arithmetic of the real numbers, generalizations and algebraic 
manipulations, equations and inequations, and ordered pairs 
and graphs (Units 1-4) for grade 9; the units dealing with 
relations and functions, and geometry (Units 5 and 6) for 
grade 10 ; the units on mathematical induction and sequences 
(Units 7 and 8) for grade 11; and the units on exponential 
and logarithmic functions, circular functions and trigonometry, 
and polynomial functions and complex numbers (Units 9-11) for 
grade 12. These units, though bound separately, were written 
to form a thoroughly sequential and integrated set of mathe
matical experiences . UICSM constantly stresses the sequential 
nature of its spiral approach to the development of a four- 
year curriculum and warns against attempting to use parts of 
it to supplement another program already in existence. The 
sequential nature of the units will allow different grade 
placement of the units and the appropriateness of any particu
lar unit at any particular grade level must be judged in terms 
of the mathematical experiences which the students have had 
prior to that point and not in terms of the grade level itself.

Max Beberman, An Emerging Program of Secondary School 
Mathematics (Cambridge: Harvard University Press, 1962),
p. 44.
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It is this continuity of these materials which seems to he 
one of the strongest points of these units.

Insofar as subject matter is concerned, the UICSM 
materials align themselves roughly into these divisions.
Units 1-4 present a detailed study of the real number system, 
precise statement of principles (or axioms and definitions) 
and theorems and the proofs of certain theorems, sets and 
their notation, solutions of linear and simple quadratic 
equations, and graphing of equations and inequations. Unit 
5, a unit providing an extremely smooth flow of the develop
ment of the concepts of relation and function through the use 
of sets and operations on them, introduces linear functions 
and proceeds to the more complicated quadratics which are 
studied in detail. Unit 6 presents a metric-oriented ap
proach to many of the concepts of Euclidean geometry with the 
emphasis being on proof rather than content. By considering 
the machinery authorized by a study of sequences and induc
tion, Units 7 and 8 complete the development of the real num
ber system (begun in Unit 2) with the exception of the prin
ciple of completeness. Unit 9 provides a rigorous discussion 
of elementary functions (power, exponential, and logarithmic) 
and their applications and presents the completeness principle 
Unit 10 contains a treatment of the circular functions based 
on a winding function with the emphasis being on such proper
ties as periodicity, evenness and oddness, monotonicity, and 
on analytic trigonometry rather than triangle-solving.
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Unit 11 devotes itself to an axiomatic, number-pair approach 
to the system of complex numbers. In retrospect, one notes 
that Units 1-5 differ little from conventional textbooks in 
content but the approach and techniques are substantially dif
ferent, that Unit 6  presents a considerably more metric ap
proach to plane geometry than traditional texts, that solid 
geometry is relegated to merely an appendix topic in Unit 9, 
that the units on mathematical induction and sequences are 
essentially additions to the curriculum, and that the unit on 
complex numbers is more inclusive than those of traditional 
programs. These materials, rigorous in nature and precise in 
language, are certainly, insofar as content is concerned, 
adequate to prepare a college-bound student for the elemen
tary calculus.

The UICSM units were developed with the demonstration 
of the structure of mathematics as a prime target. In Unit 1, 
the careful attention given to the development of the ra
tional numbers and the subsequent emphasis laying a careful 
foundation of vocabulary and fundamental concepts to permit 
rigorous proofs in Unit 2 early demonstrate the logical struc
ture of mathematics. In Unit 5, the ideas of functions and 
relations are developed in terms of sets and the entire unit 
is heavy in its emphasis on structure. Unit 6 , in its ap
proach to geometry through postulates based on those of Hil
bert, indicates that a way to a better understanding of the 
use of mathematics is through continual study of structure
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and, through this consideration, removes the traditional 
algebra-geometry division. The permeation of geometry with 
algebraic techniques illustrates the basic unity of mathemat
ics. Subsequent units complete the development as a struc
ture of the real number system which was begun in Unit 2.

Probably the most significant innovation of the UICSM 
materials lies not in the subject matter but in the manner 
and method of presentation. UICSM seems to believe that a 
student will come to understand mathematics better when his 
textbook and his instructor use precise, nonambiguous language 
and when he is directed to discover generalizations for him
self .

These two disiderata— discovery, and precision in 
language— are closely connected, for new discoveries 
are easier to make once previous discoveries are 
crystallized in precise descriptions (it is easier 
to discover how to solve equations when you know 
what an equation and a variable are 1 ) and skill in 
the precise use of language enables a student to 
give clear expression to his discoveries.^

In answer to this belief, UICSM pays careful attention to the 
problem of distinguishing between the use and the mention of 
symbols and attempts to be rigorous at all times. Also in 
answer to this need, UICSM has attempted to allow the student 
to play an active part in developing and inventing mathemat
ical ideas and procedures. Unorthodox as it may seem, UICSM 
apparently subscribes to the notion that it is unnecessary to 
require a student to verbalize his discovery to determine

^Ibid., p. 4.
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whether or not he is aware of a rule— hence fewer stated 
rules than in traditional texts, e.g., schemes for solving 
equations and step-by-step descriptions of algorithms for 
manipulations and simplifications. Also one notes the UICSM 
insistence that a student become aware of a concept before a 
name has been assigned to the concept— hence much discussion 
leading to the formalization and final verbalization of a con
cept rather than discussion preceded by the statement of a 
concept. In short, UICSM predicates its entire program upon 
student participation, development, understanding, verbaliza
tion, and generalization.

The UICSM materials are characterized by terms which 
are not too common in the traditional secondary texts. A 
scanning of the units reveals such terms as opposites, same- 
ing, punctuating, pronumerals, test-patterns, open sentences, 
truth sets, universal quantifiers, equivalent, generalization, 
operator, set, subset, union, intersection, transformation, 
ordered pairs, Cartesian product, finite, infinite, countably 
infinite, lattices, symmetric, transitive, reflexive, exis
tential quantifier, field and converse of a relation, composi
tion, mapping, measure, binary, biconditional, modus ponens, 
monotonicity, recursion, sequence, closure, continuous, and 
dense. UICSM, on occasion, invents new names for several no
tions and concepts which reflect the use to which such notions 
and concepts are to be put, e.g., the name of a numeral is 
referred to as a pronumeral and the general form for proving
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or disproving certain basic theorems is referred to as a test- 
pattern. From the very beginning, UICSM introduces and uses 
symbolism to its fullest, e.g., U, 0, G , ̂  , 3 , V , ,
and are common. In the same vein, the units introduce 
adequate notation to distinguish between a line, a ray, a 
vector, and a segment although the units are not consistent 
in their usage. It is apparent that UICSM is dedicated to a 
need for an adequate and appropriate nonambiguous mathemat
ical vocabulary for all students at the secondary level and 
to the belief that students at such a level may appreciate a 
precise vocabulary.

In the structuring of proofs, maximum use is made of 
the test-pattern and the elements of simple logic. The role 
of the axiom (or postulate), the definition, and the theorem 
in any proof is evidenced by the rigor of the proofs. As an 
example. Unit 6  is essentially an outline of a purely deduc
tive treatment of Euclidean plane geometry in which the stu
dent learns that "a deductive theory can be obtained by ab
straction of postulates from a model and deduction of 
theorems from these postulates without reference to the model, 
and that such a deductive theory can then be reinterpreted to 
yield information about other models." Several types of 
proofs can be found, e.g., paragraph proofs, proofs by con
tradiction, indirect proofs, column proofs, and proofs by

^Ibid., p. 43.
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induction, and all display maximum possible rigor. An out
standing feature of these proofs is the insistence of the 
UICSM upon the necessity of pointing out the inadequacies of 
many of the proofs of the units in the apparent belief that 
the student's recognition of nonrigor in a proof will compound 
that student's appreciation of a good proof. Since the four- 
year UICSM approach to the structure of the real number sys
tem is a spiral one, these proofs grow increasingly sophisti
cated as the pages are turned. Another outstanding feature 
is the insertion of metric methods in the unit on geometry—  
an innovation which, as mentioned earlier, emphasizes the 
basic unity of mathematics and lends an algebraic flavor to 
geometry.

The concepts-versus-skills aspect of these materials 
is difficult to analyze in that UICSM feels that the acquisi
tions, manipulation, and application of concepts are within 
themselves skills and thus it is that UICSM makes no effort 
to establish a dichotomy between the two types of exercises 
but rather intermixes them to a pleasant balance. An examina
tion of a set (chosen at random from Unit 1) of exercises re
veals a total of 97 drill problems dealing directly with opera
tions on real numbers followed by a set of Exploration Exer
cises— largely discovery type in nature— which causes the stu
dent to anticipate and appreciate the concepts to be verbal
ized in the next chapter. It appears that even a drill fan
cier would have little to complain about regarding these
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presentations although the sets of exercises are not drill- 
oriented. One notices, however, very few sets of exercises 
in which a stereotyped example is given which may he followed 
as a pattern by practically every exercise in the set.
Rather the student usually discovers and formulates his own 
rules as he studies exploratory exercises. It is evident, of 
course, that certain units such as the one treating mathemat
ical induction do not yield themselves to mechanical, rote- 
drill exercises .

In that a "child delights in the what-would-happen-if 
type of question, and, if he can given consistent answers to 
such questions, he regards this work as being eminently prac
tical,"^ UICSM. introduces many mathematical concepts by im
bedding them in student-centered situations of "fantasy" 
which are sensible for the grade level involved- It is hoped 
that this approach, in accordance with the discovery approach, 
will develop interest in mathematics and power in mathemat
ical thinking. Because of the student's independence of rote 
rules and routines, it also develops versatility in applying 
mathematics. Very few exercises are couched in a concrete, 
environment-oriented language in what has been traditionally 
referred to as sensible socially-applied problems since a 
sensible problem for an adult is not necessarily a sensible 
problem for an adolescent.

^Ibid., p. 37.



CHAPTER IV

A COMPARISON OF THE SMSG AND UICSM 
SECONDARY MATHEMATICS PROGRAMS

A comparison of the SMSG and the UICSM programs is 
difficult to construct due to several reasons. One of the 
foremost difficulties is created by the vast mass of textual 
material comprising these programs. The SMSG student text
books contain a total of 2755 pages with the teacher's com
mentaries containing a total of 2640 pages whereas the UICSM 
student editions contain 2404 pages and the teacher's commen
taries at least 2300 for a grand total of at least 10,100 
pages of written materials in the two programs. The differ
ent scope and sequence arrangements of the two programs re
flect the realization that there is no universal agreement as 
to "what should be taught where and when." Specific SMSG 
units are constructed for specific grade-level consumption, 
while usage of particular UICSM units is predicated upon 
readiness alone. ,

However, the obstacle of paramount importance lies in 
the realization that a comparison of the two programs should 
be made in view of a completely unbiased, objective frame of 
reference if the programs and their positions dre to be

271
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adequately assessed. The state of flux currently existing in 
mathematics curriculum precludes the existence of any uniform 
agreement as to universally acceptable criteria for judgment 
of factors in a "proper" secondary mathematics program. 
Further, evaluation of the programs must be made in reference 
to the conditions in the environment where the programs are 
used. Hence, this chapter attempts not to evaluate but only 
to analyze and compare these programs with respect to the 
variables designated as philosophies of authors, placement of 
materials, attention to mathematical structures, vocabulary, 
proof, methods, concepts and skills development, and atten
tion to social applications. These variables, admittedly not 
independent, and the associated discussions, necessarily 
somewhat redundant, hopefully serve to orient a reader to the 
general characteristics, similarities, and differences be
tween the programs.

Philosophies of the Authors 
An analysis of the SMSG and UICSM programs will be ac

celerated by an appreciation of the guiding philosophies of 
the two groups. Both groups have at different times stated 
their philosophies in various ways.

The SMSG authors, early in their program development,
stated :

The world of today demands more mathematical knowledge 
on the part of more people than the world of yesterday 
and the world of tomorrow will make still greater de
mands. Our society leans more and more heavily on
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science and technology. The number of our citizens 
skilled in mathematics must be greatly increased; an 
understanding of the role of mathematics in our so
ciety is now a prerequisite for intelligent citizen
ship.^

Thus, from its beginning, SMSG has been dedicated to the no
tion that the study of mathematics is to be predicated upon 
the needs of society and has implicitly directed that such 
awareness be communicated to the student. This awareness is 
coupled with a profound implication stated by the SMSG 
authors :

Since no one can predict with certainty his future 
profession, much less foretell which mathematical 
skills will be required in the future by a given pro
fession, it is important that mathematics is to be so 
taught that students will be able in later life to 
learn the new mathematical skills which the future 
will surely demand of many of them. . . . First, we
need an improved curriculum which will offer stu
dents not only the basic mathematical skills but 
also a deeper understanding of the basic concepts 
and structures of mathematics.

In like vein, SMSG recently stated:
Since 1958, the School Mathematics Study Group has 
concerned itself with the improvement of teaching of 
mathematics in the schools of this country. . . . One
of the prerequisites for the improvement of the 
teaching of mathematics is an improved curriculum—  
one which takes account of the increasing use of 
mathematics and science in technology and in other 
areas of knowledge, and at the same time, reflects 
advances in mathematics itself. . . . These textbooks
were designed to improve substantially the curriculum 
of school mathematics by offering the student not 
only the basic mathematical skills but also a deeper

^School Mathematics Study Group, Newsletter No 
(New Haven: Yale University Press, 1959), p. 4.

^Ibid.
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understanding of the basic concepts and structures 
of mathematics.

As the director of UICSM, Dr. Max Beberman, in his
now-famous Inglis Lecture of 1958, stated:

In 1952, a few of us at the University of Illinois 
asked ourselves: Can able mathematicians together
with skillful teachers develop materials of instruc
tion and train highschool teachers in their use so 
that the products of the program are enthusiastic 
students who understand mathematics?

In this lecture. Dr. Beberman emphasized that the construc
tion of such a curriculum effort demands obeisance to several 
guiding principles which must be reflected in the products. 
The curriculum architect must have in mind an image of the 
student and a catalogue of his knowledge and misknowledges at 
each particular grade level. This architect must have in 
mind the expectation of what a college—bound high school stu
dent should know of mathematics at graduation. The architect 
must be cognizant of the application (perhaps relatively far 
in the future) of the mathematical knowledge to a vast host 
of physical and environmental problems some of which are yet 
unanticipated. The architect must be cognizant of and con
versant with the drastic changes occurring within the field 
of mathematics. The prime and foremost result of that

^School Mathematics Study Group, New SMSG-Yale Pub
lications (New Haven: Yale University Press, 1965-66), p. 3

2Max Beberman, An Emerging Program of Secondary 
School Mathematics (Cambridge: Harvard University Press,
1962), p. 1.
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architect's effort must be that the student understand his
mathematics. His lecture concluded with these statements :

The UICSM program is a product of the combined ef
forts of mathematicians and teachers. It is an at
tempt to determine what the teacher must do to bring 
to mind some of the ideas and modes of thinking 
which are basic to the work of the contemporary 
mathematicians.^

Analysis of the philosophies of the two groups as re
ferred to the desirable nature of the high school curriculum 
reveals equivalent beliefs. Both groups subscribe to the 
idea that mathematics be oriented in some degree to the needs 
of the society yet the current needs of the society is not 
the only objective. Both groups take the position that, due 
to the impending technological and scientific strides in our 
society, the student currently studying mathematics may not 
now be able to identify adequately and to appreciate his 
needs. Certainly, neither group advocates the "tearing-away" 
of mathematics from its social implications but rather sug
gests that the changing society and the uncertainty of the 
mathematical needs of the future force one to study a mathe
matics so structured that it will answer present needs and 
also can be extrapolated to a newer and radically-different 
environment. Then mathematics, if not to allow the present 
environment to "cast a millstone about its neck," must, 
though being completely cognizant of the present needs of the 
society, transcend that society. Both groups indicate their

^Ibid., pp. 43-44.
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belief that this need may be met only through student under
standing of that which he studies. This understanding, how
ever, is to be accompanied by the acquisition of those skills 
requisite to the application of that understanding. Thus it 
is that the guiding philosophies of the two groups are so 
nearly equivalent as to be identical. It follows that these 
two different programs, being based on common philosophies, 
must structure their differences on bases other than the de
sired end-products of the four-year study by the student of 
such programs.

Placement of Materials
It will be recalled that placement of mathematical 

topics is defined in a broad way so as to consider more than 
just when or where a particular content topic is introduced 
but also to involve the sequence in which particular topics 
are studied as well as the rigor with which they are employed. 
In a sense, the depth and degree of sophistication to which 
an idea, concept, or tool is explored may be as important (or 
perhaps more so) as the point of entry of that idea, concept, 
or tool.

In Chapter I of this paper are found very brief 
course outlines and/or unit titles of the SMSG and UICSM pro
grams. Due to the compactness and brevity of these outlines, 
they seem at first glance to describe drastically different 
programs of study insofar as mathematical content is
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concerned. Yet the extensive, practically voluminous cri
tiques of the SMSG and UICSM programs presented in Chapters 
II and III, respectively, of this paper, have provided some 
fairly interesting results insofar as the mathematical con
tent of these sequences are concerned.

The SMSG ninth-grade course, although provocative, 
meaningful, and mathematically sound as well as being charac
terized by new techniques of presentation, covers essentially 
the same basic material as does a conventional first-year 
algebra textbook. Although differing in comparison with con
ventional textbooks with respect to content, postulational 
scheme, and manner of treatment, SMSG Geometry is still 
basically a treatment of synthetic Euclidean geometry. The 
SMSG eleventh-grade units, though structured differently than 
the conventional texts, display a basic mathematical content 
essentially that of trigonometry and second-year or college 
algebra. Similarly, although the treatment is novel and the 
approach more sophisticated, the basic subject matter of the 
first-semester, twelfth-grade unit is somewhat in context 
with the conventional program. At this point, the SMSG pro
gram has adequately prepared for, though not trespassed upon, 
the elementary calculus. Of course, as pointed out earlier, 
SMSG's Introduction to Matrix Algebra, being composed of 
mathematics which is new to the student and new to the sec
ondary curriculum, is intended to put the student close to 
the frontiers of mathematics during his senior year and to



278
provide examples of mathematical patterns that arise in 
varied circumstances.

Similarly, UICSM's unit-by-unit study of the arith
metic of the real numbers, generalizations and algebraic 
manipulations, equations and inequations, ordered pairs and 
graphs, relations and functions, circular functions and trigo
nometry, and polynomial functions and complex numbers intro
duces only a few really new mathematical topics to the secon
dary curriculum. Therefore, these new materials, though pre
senting some new topics, utilizing new mathematical approaches 
and pedagogical techniques, and directing new emphases, are 
basically sufficient to prepare a student for the elementary 
calculus though not encroaching upon that area.

Since both SMSG and UICSM utilize the spiral approach 
to the development of secondary mathematics, several areas 
which hopefully will illustrate some of the major similari
ties and dissimilarities between the two programs may be 
chosen for comparison of the two. The study of the several 
following areas, chosen to represent the development of mathe
matical content, the structuring of mathematical tools, and 
the adoption of algorithms, serves to indicate some of the 
differences insofar as content placement is concerned. Since 
any two areas chosen are likely to overlap, the discussions 
will, in some instances, be somewhat redundant.

One of the most universally accepted innovations in 
modern mathematics programs has been the introduction of
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"set-language" as a tool to build a more precise, rigorous 
communication vehicle. Both SMSG and UICSM are characterized 
by their early introduction of such tools but examination of 
their usages of such reveals some major differences.

SMSG introduces on the very first page of their mate
rials the set as being a collection of elements with some 
common characteristic. Within the next fifty pages, SMSG 
uses empty (or null) sets, finite and infinite sets, and de
fines the truth set (later referred to as the solution set) 
of an open sentence to be the set of all members chosen from 
the domain of the variable and which make the sentence true. 
However, the only method ever utilized to identify the ele
ments of a set is the enumeration of the names of the elements 
of the set in braces or by verbal description of the elements 
of the set. The set-builder notation is not used in First 
Course in Algebra. SMSG's Geometry begins immediately (and 
continues steadfastly) the usage of set language in its study 
of geometry and although the is a subset of relation and the 
union and intersection operations are defined on sets, these 
entities are verbalized but never symbolized. All geometric 
figures, e.g., straight lines, rays, segments, angles, and 
circles, are characterized as sets of points and the theorems 
are verbalized in set language. Early in Intermediate Mathe
matics , sets are employed (among a multitude of other usages) 
to describe the traditional locus and to define the solution 
set of a system of simultaneous equations (or sentences) to
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be the intersection of the solution sets of the component 
sentences. (It is at this point that is used for the 
first time to symbolize intersection.) It is not until Ap
pendix 1, Elementary Functions, that SMSG formally introduces 
the symbols U  and € and provides the set-builder notation 
to describe sets. The Cartesian cross-product is not regarded 
as important enough to be granted index-status in any of the 
units although lattices are used quite frequently in several 
of the units. Thus, an examination of the SMSG materials re- 
.veals that although SMSG relies upon set language from the 
very first page, the usage is somewhat informal and little 
attention is directed toward incorporating the associated 
symbolism into the textual materials and exercises.

On the other hand. Units 1 and 2 of the UICSM program 
do not employ set language for the first two units of study. 
Unit 3 immediately introduces the set as an undefined term 
and uses the concept to define intervals, open intervals, 
half-open intervals, half-lines, rays, etc., as sets of real 
numbers. The set-builder notation is introduced early in the 
unit with the is a subset of relation being defined (and sym
bolized by S  ) on sets. The Cartesian cross-product of two 
sets A and B is brought into focus early in Unit 4 and used 
to discuss lattices whose coordinates are integers, lattices 
whose coordinates are rationale, etc., with the discussion 
culminating in the construction of the number plane as the 
Cartesian square of the reals. The union and intersection
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operations are defined and symbolized early in Unit 4. From 
Unit 4 through the remainder of the sequence, practically 
every page of the UICSM textbook resounds with set language 
and notation with the set-builder notation being a universal 
tool. Every geometric figure is defined as a set of points 
and all theorems (both geometric and non-geometric) are 
phrased in set language whenever feasible. Thus it is that 
UICSM makes a very formal tool of set language and continu
ally makes precise usage of the instrument.

It follows, therefore, that both programs make fairly 
extensive usage of set language. Although SMSG introduces 
the language earlier in the first year of study, UICSM makes 
a vastly more formal usage of such in later units and employs 
both set language and the associated symbolism to a much 
higher degree than SMSG.

Since practically every page of any mathematics text 
uses directly or indirectly the concept of variable, it is 
inte. .sting to note the different approaches taken by the two 
groups. This difference, though a subtle one, is probably 
the greatest single difference between the texts prepared by 
each group for ninth-grade consumption.

According to the approach used by SMSG, a variable is 
a letter used to denote one of a given set of numbers and, in 
a given computation involving a variable, the variable is a 
numeral which represents a definite, though unspecified, num
ber from a given set of admissible numbers. (Generally
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speaking, SMSG restricts the domain of the variable to sets 
of numbers or, as in the last unit of study, to sets of 
matrices.) SMSG's approach to variable suggests that the 
solution set of the sentence x + 7 = 9 is equal to the solu
tion set of the sentence x = 2 — a set whose elements are 
"obvious."

In its approach to variable, UICSM, having used 
frames (or "holes") to hold places for numerals in open sen
tences, points out that since the "holes" in an open English 
sentence hold places for nouns, they are called pronouns. 
Similarly, the pronoun x in the open sentence x + 7 = 9 
holds a place for those nouns which are names of numbers, 
i.e., X holds a place for numerals, and, consequently, is 
given the name pronumeral. Pronumerals (a term used by UICSM 
is the sense in which the variable has been used in conven
tional texts) in an open sentence hold places for numerals. 
Therefore, in the eyes of UICSM, a pronumeral is merely a 
symbol which can be replaced by a numeral. UICSM's Unit 5 
sharpens this notion even more by defining a variable as 
simply a pronoun. A variable is little more than a "mark" 
which holds a place in a sentence or in an expression for 
names of things. It follows that a pronumeral is, in actu
ality, a numerical variable but that the term variable is a 
more inclusive one than pronumeral. (This approach to vari
able and pronumeral suggests that if one says that f 2 ̂  is 
the solution set of the sentence x + 7 = 9, then one means
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that if X were replaced in the sentence hy the numeral 2 , the 
sentence would be converted from open to true.)

In comparative summary, the SMSG text uses the ap
proach that the variable is the name of a definite though 
often unspecified number, while the UICSM textbook states 
that the pronumeral (actually a numerical pronoun or numerical 
variable) holds the place for the name of a number. Minor 
point though it is, the variable as introduced by UICSM is a 
more inclusive one than that used by SMSG since, to the UICSM, 
a variable is simply a pronoun which may have as elements in 
its domain any type of object whatsoever.

Since both programs make extensive use of the number 
line, number plane, and graphs from the very beginning of 
their programs, an examination of their views as to their 
notions of such is appropriate. These differences, though 
again subtle, create associated language structure differ
ences throughout the two sequences.

In the early chapters SMSG assumes a one-to-one cor
respondence between the set of real numbers and the points on 
a straight line. The real numbers associated with the points 
label the points and coordinatize the line. The line on 
which points are labelled is referred to as the real number 
line and the number associated with the point is called the 
coordinate of the point. The graph of a set of numbers is 
the corresponding set of points on the number line whose co
ordinates are the numbers of the set and the graph of the
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truth set of an open sentence is the set of all points whose 
coordinates are the values of the variable which make the 
open sentence true. In like vein, the real number plane is 
constructed by coordinatizing a plane through an axiomated 
one-to-one correspondence between the points of a plane and 
the set of ordered pairs of real numbers. The plane being 
coordinatized is the real number plane and the pairs of real 
numbers are the coordinates of the points. Similarly the 
graph of a sentence in two variables is the set of all points 
(usually marked with a heavy dot) whose coordinates satisfy 
the sentence. In essence, the SMSG program refers to the 
line and plane being coordinatized by the reals as the real 
number line and the real number plane, respectively, and the 
points of the number line (or number plane) are "geometric" 
points having the real numbers (or ordered pairs of reals) as 
coordinates.

UICSM displays a somewhat different approach to the 
real number line. After UICSM has used real numbers to 
measure directed trips, the real number line is defined as 
the ordered set of real numbers. Therefore, the points of 
the number line are real numbers. Pictures of segments of 
straight lines are used to represent the number line with the 
real numbers being designated as coordinates of the points on 
the pictorial representation. In order to distinguish be
tween number line and nuitber line picture (in a sense, to 
distinguish between abstraction and "picture"), an element of
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the real number line is referred to as a point on the real 
number line and an element of the geometrical figure whose 
coordinate is the point (or real number) as a dot. Each dot 
on a line is referred to as the graph of the real number line 
which is its coordinate.

In like fashion, UICSM defines the real number plane 
as the Cartesian square of the reals, i.e., the points of the 
plane are ordered pairs of real numbers corresponding with 
dots which can be marked on pictures of the plane. The dot 
is the graph of the ordered pair and the components of the 
ordered pair are the coordinates of the dot. The authors are 
consistently careful to refer to a page or sheet of paper 
used to represent a section of a number plane as a picture of 
the real number plane.

In summary, SMSG uses a more geometrical notion for 
the real number line than UICSM since SMSG refers to the num
ber line as a "geometrical" straight line coordinatized by 
the reals whereas UICSM considers the number line to be the 
set of reals itself. Similarly, SMSG refers to a plane co
ordinatized by ordered pairs of reals as the real number 
plane (whose elements are geometric points) whereas UICSM 
considers the real number plane to be the Cartesian square 
(whose elements are ordered pairs of real numbers) of the 
reals.

In several instances throughout the SMSG units, one 
finds the term relation, e.g.. Unit 9 speaks of the relation
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is less than for real numbers as an order relation. However, 
the term order relation is used with little, if any, explicit 
attention to the word relation although order is adequately 
defined. A glance through even the first few units reveals 
the use of many relations, e.g., equals, is congruent to, is 
similar t o , greater than, not greater than, less than or 
equal to, is the square root of, divides, and is a factor of, 
although the term relation is never considered important 
enough per se to warrant explicit discussion or even the 
award of index status.

The UICSM emphasis upon the concept of relation is a 
completely different one. After having discussed (among 
others) the is equal to, is not equal to, is greater than, 
and is less than relations without having explicitly defined 
the term, UICSM devotes an entire unit (Unit 5) of study to 
relations and functions. In view of the fact that UICSM has 
already made early use of the Cartesian cross-product of sets, 
it is_^feasible to define a relation as a set of ordered pairs, 
i.e., a UICSM relation is a subset of the Cartesian product 
of two sets. UICSM describes a relation by either listing 
the total set of ordered pairs comprising the relation, by 
graphing the ordered pairs of the relation, or by employing 
the brace or set-builder notation. All three forms emphasize 
the necessity of the description of the domain (the set of 
elements used for the first components) and the range (the 
set of elements used for the second components) of the
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relation. Suitable attention is directed toward the exist
ence or nonexistence of the reflexive, symmetric, and transi
tive properties of certain relations along with exhibition of 
several equivalence relations as well as the examination of 
the union and intersection of relations. (As will be seen 
later, UICSM uses this fairly intensive study of relations as 
a springboard for its definition of function in the same 
unit.) The use of relation as an ordered pair of elements 
pervades all the remaining units of the UICSM units and al
lows a sophistication of language which is somewhat unex
pected in a secondary project.

Thus it is demonstrated that SMSG essentially uses 
relation as an undefined term with little attention to ex
planation. On the other hand, UICSM, in its devotion to de
tail, uses the ordered-pair notion of relation in an explicit 
and utilitarian fashion to build other concepts and to pro
vide a sophistication in its language.

In modern programs, the proper understanding and 
usage of the function has become of major importance. UICSM 
and SMSG take full advantage of the concept but, again, their 
approaches and emphases differ.

The SMSG sequence, in its unfolding, reveals an in
creasingly sophisticated spiral approach to the concept of 
the function. The term function is not used until the last 
chapter of the materials prepared for the ninth-grade. At 
that time a function is constructed by using some "rule" to
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assign to each element of a set A of numbers exactly one num
ber. The association of numbers along with the rule, the 
given set of numbers (the domain) and the set of assigned 
numbers (the range) is defined as the function (actually a 
real-valued function). Using the notion of a function as an 
association, the student is led to study the linear function 
( y = a x + b ,  a / 0 ), the guadratic function (y = ax^ + bx + c , 
a ^ 0), etc. Thus, during the ninth grade the SMSG student 
is acquainted only with real-valued functions.

SMSG Geometry, though not making an explicit issue of 
the subject, employs several measure-functions. This usage 
is very informal and is only considered implicitly as that of 
a function. The Distance Postulate actually postulates the 
existence of a measure-function whose domain is the set of 
line segments and whose range is the set of positive reals. 
The Angle-Measure Postulate axiomates the existence of a 
measure-function whose domain is the set of angles and whose 
range is {x: 0  x ^  180 ̂  ; the area-measure formula
A = bh actually defines a function whose domain is the set of 
rectangular regions and whose range is that of the positive 
reals. No special notation is employed in this usage with 
the major reflection of function theory being the notion of 
correspondence.

Early in the units prepared for eleventh-grade con
sumption , SMSG formally broadens the concept of function to 
include nonreal-valued functions by allowing the domain and
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range to be any sets whatsoever. It is at this point that ^  
is first used to name a function and f(x) to symbolize the 
element assigned to x by the function Although the func
tion definition is not restricted to reals, the majority of 
the text concerns itself with real-valued functions, e.g., 
linear functions, quadratic functions, and composition and 
inverse functions. Exceptions involve the assignment of 
measures and paths to signed angles and the six trigonometric 
functions whose domains are signed angles and whose ranges 
are appropriate subsets of the set of reals.

In the twelfth-grade units, SMSG considers a function 
as a mapping and symbolizes the function ^  by the notation 
f : X  —> f(x). Elementary Functions applies the concept of 
mapping to polynomial, exponential, logarithmic, and trigo
nometric functions. Introduction to Matrix Algebra carries 
this concept still further to define the determinant function 
(having 2 x 2  matrices and the set of reals as the range)

a b"6 [c d. — > ad - be

and the inner-product function (having the set of ordered 
pairs, or two-dimensional vectors, as domain and the set of 
reals as range).

Dot
c
d

ac + bd,

Therefore, it is evident that the SMSG spiral ap
proach to functions initiates in the real-valued functions
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described in Unit 10 and terminates in the mapping interpreta
tion of Unit 23. Regardless of the language used, SMSG con
siders a function from set A to set B to be a "correspondence" 
of the elements of A and B such that to each element of A 
there corresponds exactly one element of B.

As did the SMSG authors, the UICSM writers chose not 
to introduce function until after the student had consider
able depth in the program. (UICSM*s first use of function 
comes in Unit 5— a unit probably studied at the first of the 
tenth grade.) The UICSM student's first acquaintance with 
function lies in the definition that a function is a set of 
ordered pairs, i.e., a relation, no two of which have the 
same first component. The student sees the function as a 
special kind of subset of the Cartesian product of two sets 
and studies a multitude of examples where neither the domain 
or range of the function is the set (or a subset) of the 
reals. The set-builder notation is immediately applied and 
continually employed to describe functions, and membership of 
an ordered pair in a function is described in several ways, 
e.g., if F = (x, y) : y = 2x - 1 ̂  , then (3, 5) €  F,
3F5, or F (3) = 5. As an example of the typical uses to which 
UICSM subjects the ordered pair function, the area-function 
for rectangles is described as A = { (x, y) €  R X. N : y is
the area-measure of x, R is the set of rectangles, N is the 
set of numbers of arithmetic 3 " •
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Within just a few pages after the introduction of the 

function as a set of ordered pairs no two of which have the 
same first component, UICSM declares that every function de
termines a mapping of its domain onto its range. UICSM, 
using the ordered pair notation, is able to very gracefully 
state that a function has an inverse if and only if its con
verse is a function or if the mapping from domain to range is 
a one-to-one mapping.

As did the SMSG authors, the UICSM writers implicitly 
employ functions to discuss length-measures, area-measures, 
angle-measures, etc., in their unit on geometry. Even the 
sine function in trigonometry is defined in this unit as 
sin = ^ (x, y) € X X  Y : x = set of acute angles, Y = ^  .

Unit 7 sees the introduction of the greatest integer 
function IIxH which maps each real number onto the great
est integer not greater than the real number and the frac
tional part function C  x ^  which maps a real number x onto 
X  - (C X  3  . Recursive definitions for certain types of 
functions are also employed. Later units direct attention to 
increasing functions, nth power functions, monotonie functions, 
continuous functions, principal nth root functions, principal 
square root functions, logarithmic and exponential functions, 
winding functions, and trigonometric functions. In practi
cally all instances the ordered pair or mapping aspects of 
the function are of primary application with extremely care
ful attention being paid to the domain and range of such
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functions. (In that the ordered pair and mapping concepts 
were introduced practically simultaneously, it appears that 
the spiral approach to functions is not a characteristic of 
the UICSM materials although the functions studied later in 
the sequence are more sophisticated than those near the point 
of entry of the function.)

This view of the approaches to function as evidenced 
by the two groups reveals that SMSG, utilizing a highly spiral 
approach, initially considers a function as a special sort of 
correspondence between sets of numbers, later generalizes the 
domain and range of function to general sets, and plateaus in 
the twelfth-grade with the function considered as a mapping. 
The developmental work with function is therefore spread 
across four years of work. The notation used is somewhat in
formal. UICSM, on the other hand, insists upon the function 
as a set of ordered pairs of elements no two of which have 
the same first component (early in Unit 5) and immediately 
characterizes a function as a mapping. The notation, primar
ily the set-builder notation, to describe sets is used in a 
very formal and precise manner throughout the remainder of 
the units.

In that both programs devote a large percentage of 
their writing to exhibiting the structure of number systems 
as being composed of a set of numbers, operations defined on 
the numbers in the set, and rules governing these operations, 
it is appropriate to examine their views on the meaning and
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usage of the term operation. Their relative appreciation of 
the term again reflects different points of view and emphases.

Throughout the SMSG texts, statements such as "Addi
tion on the number line is such an operation," "It contains 
only operations which we know how to do from previous experi
ence, " "We now want to define a new and very useful operation 
on a single real number," etc., reveal an awareness of the 
term. However, the term operation is used freely without an 
iota of explicit concern for the definition thereof. In es
sence, SMSG essentially regards operation as undefined and 
uses it in the dictionary sense as being a process which in
volves a change or transformation in a quantity or process or 
action that is a part of a series in some work. Consequently, 
SMSG pays little attention to the existence and role of opera
tors .

UICSM, however, directs explicit attention to the 
definition of operation (defined on numbers) and attempts to 
illustrate the significance and results of the concept. In 
Unit 1, the authors view (though do not formally state) an 
operation as a set of ordered pairs of numbers no two of 
which have the first component. Unit 1 contains in its tex
tual discussion references to many operations, e.g., adding, 
multiplying, oppositing, sameing, positiving, negativing, and 
squaring. Unit 5, in a more rigorous discussion pursuing a 
somewhat different avenue, defines a singulary operation 
(actually applied to a single element) on a set S to be a
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mapping (when applicable) of a subset of the set S onto a 
subset of S, e.g., the square-root operation applies only to 
the subset of nonnegatives of the set of reals, and a binary 
operation (a^pplied-to o-rdered pairs of numbers ) as a mapping 
of a subset of the Cartesian square of S onto a subset of S. 
Since whenever an operation can be applied to a number or an 
ordered pair of numbers, the result is unique, an operation 
defined on a set of numbers or ordered pairs is simply a func
tion whose domain and range are subsets of the set. From this 
point, a very simple extension authorizes the operations 
(themselves functions) to be defined in functions as well as 
numbers. Throughout the later units, UICSM treats +, -,

, 's3^ ,  I ' " I , etc., as operators defining the mapping in
volved in the operation function.

Thus it is noticed that whereas SMSG assumes student 
appreciation of the concept of operation, UICSM devotes con
siderable discussion to the notion. UICSM's discussion, by 
nature an abstract one, portrays a careful attention for 
sophisticated detail on the part of the authors.

Pervading the entire SMSG sequence is the construc
tion and analysis of number systems— a development based on a 
spiral approach. Unit 9 essentially axiomates the system of 
arithmetic numbers though it spends several dozens of pages 
reviewing its operation, relations, and properties. The 
arithmetic-number operations of grade-school experience are 
interpreted in view of number line experiences. The negatives
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are introduced by the use of labels for the left half of the 
number line with the union of the set of negatives and the 
set of arithmetic numbers being named the set of reals.
(Hence, it is noted that the set of arithmetic numbers i^ the 
set of nonnegative reals.) The operations of addition and 
multiplication are defined and verbalized although such defini
tions are structured so that desirable number-line experiences 
may be formalized. Although many of the properties of the 
reals, e.g., the associative and commutative properties of 
addition and multiplication, the addition and multiplication 
properties of equality, the addition properties of zero and 
opposites, and the distributivity of multiplication over addi
tion, are stated in a generalized form, these properties are 
exhibited and verified rather than proved. Therefore, it is 
apparent that the early SMSG approach to the structure of 
number systems is an informal one.

Unit 17 presents a formal, abstract development of 
the number systems which were informally constructed and 
analyzed in the earlier units. The system of natural numbers 
is characterized by a list of nine definitions and twenty 
"basic properties" which, though not necessarily independent, 
serve to define the abstract system. The system of integers 
(whose consideration is motivated by the nonclosure of the 
naturals under subtraction) is likewise defined by supplement
ing the list of basic properties for the naturals and defini
tion of the opposites of the naturals. The system of
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rationale (whose study is motivated by the nonclosure of the 
integers under division) is defined by extending the proper
ties of the integers and introducing the definition of the 
multiplicative inverses of the nonzero integers. The develop
ment of the reals is climaxed by the consideration of the 
reals as being the set of all decimal expressions, i.e., the 
union of the rationale and the irrationals. The system of 
complex numbers is constructed as an answer to the need for a 
still more inclusive system which contains the real system
with all its properties and also containing a number satisfy-

2ing the sentence x + 1 = 0 .  Since every real number is de
fined to be a member of the complex number system, the system 
of reals is a subsystem of the system of complex numbers.

Therefore SMSG uses the term extension of systems in 
just that sense. The extension of each system, motivated by 
a need for a new type of number and of a more inclusive sys
tem, involves constructing a new system which would have all 
the algebraic properties of the old system; includes all the 
numbers of the old system in such a way that the new and old 
algebraic operations, when applied to the numbers of the old 
system, would be the same; and contains new numbers of the 
type needed.

As did SMSG, UICSM utilizes a spiral approach to the 
study of number systems though differing in several respects. 
These differences, as do many others, cause a considerable 
variance in language structure of the two programs.



297
In Unit 1, the arithmetic numbers, accepted as unde

fined, are pictured as measuring distances along the number 
line. The real numbers are defined informally as numbers 
which may represent directed distances along the number line. 
(Therefore, the numbers of arithmetic, though isomorphic to 
the nonnegative reals, are not the nonnegative reals and the 
set of arithmetic numbers is not a subset of the reals.)
Units 2-4 concern themselves with the examination of the 
properties of the reals, forming and justifying generaliza
tions describing the reals, and practicing manipulations 
pertinent to a study of the system.

Units 6 , 7, and 8  reflect a continued concern for the 
derivation of a list of basic principles and theorems which 
will completely characterize the abstract system referred to 
as the reals— a task that is essentially completed in the ap
pendix of Unit 9. However, the approach to the formal study 
of the subsystems of the reals seems a unique one. These 
studies are motivated by these questions• Which of the reals 
are positive numbers ? Which of the posit ive numbers are 
positive integers (or naturals)? Which of the reals are in
tegers? Which of the reals are rational? UICSM. proceeds to 
establish basic principles which will "sift" the positives 
from the reals, the positive integers from the positives, the 
integers from the reals, etc., and to study theorems describ
ing each subsystem. In essence, this approach examines the
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special properties which some kinds of reals possess and which 
other kinds of reals do not possess.

UICSM defines the complex number system as being 
simply the set of all ordered pairs of real numbers, i.e., 
the Cartesian square of the reals, subject to the equals re
lation (a, b) = (c, d) if and only if a = c and b = c; the 
product definition (a, b) - (c, d) = (ac - bd, be + ad), etc.
Addition and multiplication are defined in such a way that 
there is a proper subset of C such that the number system C 
with respect to its multiplication and addition is isomorphic 
with the real numbers and its defined operations of addition 
and multiplication. Just as the set of arithmetic numbers is 
not a subset of (but is isomorphic to a subset of) the set of 
reals, the set of reals is not a subset of (though isomorphic 
to a subset of) the set of complex numbers.

It is therefore evident that UICSM is of the opinion 
that systems are not "extended" in the sense employed by 
SMSG. Whereas SMSG considers each system to be a subsystem 
of progressively more inclusive systems, UICSM forces each 
system to be isomorphic to subsystems of progressively more 
inclusive systems.

In association with the introduction of new systems, 
both programs employ a somewhat unusual and meaningful tool 
to introduce the negatives and positives. These innovations 
produce a distinct language difference in the two sequences 
during the first several chapters.
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SMSG's introduction of the negatives as being numbers 

which might be labels for the points on the left half of the 
number line (just as the arithmetic numbers were the labels 
for the points on the right ray) causes the arithmetic num
bers to play the role of what has been traditionally referred 
to as the positive reals. SMSG, therefore, while labeling 
the negatives with an upper prefixed dash, e.g., “2 , need not
label the positive numbers with any symbol since they are ac
tually the arithmetic numbers. The opposite of any real num
ber is defined by saying that two numbers are opposites if 
they are on opposite sides of zero in the number line and 
equidistant from that point. The opposite of a number is 
labeled by prefixing the lower dash, e.g.; the opposite of 
2 is - 2). After discussing the possible ambiguities (and 

inaccuracies) promoted by interchanging the symbols, SMSG 
agrees that since a and -a are the same if a is positive and 
since the "opposite" dash is applicable to any real number 
whereas the "negative" dash applies only to positive numbers 
to name negatives, the lower dash may be used in most in
stances to name either "the opposite of" or "the negative of" 
unless ambiguity or inadvertent error demands more careful 
use. In this context, the text never uses such expressions 
as "add the negative of" but rather "add the opposite of."

UICSM's insistence upon the numbers of arithmetic as 
not being real numbers, produces a somewhat more cumbersome, 
though not unwieldy, situation. The right-real numbers are
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designated as positive by a prefixed upper dash, e.g., 2  =
^ 2 , and the left-real numbers are designated as negative and 
designated by an upper prefix dash, e.g., 2 = 2. Pairs of
numbers whose number line sum is zero are designated as op
posites and the lower prefixed dash is used to name the op- 
positing operation, e.g., the opposite of 2 is —  2). After 
suitable discussion to the need for such distinctions, UICSM 
agrees that since 9 and — 9, etc., are both names for the 
same number, they could be used interchangeably. Similarly, 
since +9 and 9, etc., are members of isomorphic sets, they 
also can be used interchangeably unless relatively rare am
biguities occur in which case the more precise notation can 
be used. As does SMSG, UICSM uses such expressions as "add 
the opposite of" to the total exclusion of "add the negative 
of," etc.

It is apparent therefore that both programs make 
heavy application of the concept of opposites although their 
views on the role of negatives and positives differ somewhat. 
SMSG's approach to the negatives removes the necessity for 
labeling the positives whereas UICSM finds it necessary to 
distinguish between the positives and the nonzero arithmetic 
numbers. This latter, of course, produces a somewhat more 
abstract language in the texts of the UICSM.

The notion of the absolute value of a real number is 
one of prime importance to both programs in that both pro
grams employ the absolute value to state the "rules" for
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manipulation of the reals. According to the SMSG approach, 
the absolute value of a nonzero real number is the greater of 
that number and its opposite with the absolute value of 0  ̂de
fined to be 2" Hence the absolute value of any real number 
is 2  ^ positive real number. The number line evaluation
of the absolute value yields the interpretation that the ab
solute value of any real number is the measure of the non
directed distance between 2  â rid the point whose coordinate is 
the number. UICSM, by use of the real number line, indicates 
that a given real number corresponds to a given number of 
arithmetic since the set of nonnegative reals is isomorphic 
with the set of arithmetic numbers with the elements of the 
set of negative reals being the opposites of the set of posi
tive reals. The absolute value of a given real number is de
fined by UICSM to be the number of arithmetic corresponding 
to the given real number. This implies that the absolute 
value of a real number is not a real number but rather a num
ber of another system, the system of arithmetic numbers. Of 
course, these different interpretations of the absolute value 
is necessitated by the different approaches employed to "ex
tend" the number systems involved.

Since the first year of study as advocated by both 
programs has as one of its major purposes the development of 
an informal appreciation of the real number system, the de
velopment of the arithmetic operations of the reals is of 
paramount importance in the comparison of the program.
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These developments, though not contradictory, display some
what different emphases.

SMSG, prior to any consideration of the operations to 
be defined on the reals, presents a comprehensive review and 
summary of the properties and operations of the arithmetic 
numbers and structures a number line interpretation of the ad
dition and multiplication operations. Immediately upon intro
duction of the reals, SMSG, after exhibiting several instances 
in which the addition of reals might be environmentally ap
plicable, describes geometrically the operation of number 
line addition of the reals. To add two real numbers a and b , 
start from the point whose coordinate is a_ and move ^  units 
to the right or left according as b is positive or negative, 
respectively, with the coordinate of the terminal point being 
defined as a + b. The student is led to translate immediately 
into the language of algebra the "rules" which he has dis
covered for the addition of the reals.

Insofar as multiplication is concerned, the student 
is led, through textual exposition, to phrase a meaning for 
the product of two real numbers in such a way that whatever 
meaning is given to that product, that meaning must agree 
with the products which are already present for the nonnegative 
reals and that the properties of multiplication discovered for 
the nonnegative reals must still hold for all real numbers.
The product of real numbers a and b is defined, consequently, 
to be ja| Ib| if both a and b are both positive (or both
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negative) and -( I al lb! ) if one is nonnegative and the 
other negative. Little attempt, if any, is made to make the 
operation "intuitively" plausible by using environment-based 
applications of such an operation.

Subtraction of the reals is extended from the system 
of arithmetic numbers in such a way that it still has the 
properties known from arithmetic and using only ideas with 
which the student is already familiar. After examination of 
such desired properties, the student is led to recognize that 
subtracting the real number b from the real number a must be 
equivalent to adding the opposite (or additive inverse) of b 
to â. Insofar as the number line is concerned a - b is the 
measure of the directed distance from b to a and la - b I is 
the nondirected distance between a and b. In a similar 
fashion, division, being the inverse of multiplication, of 
the real number a by the real number b (b ^ 0 ) is defined to 
be the product of a by the reciprocal (or multiplicative in
verse) of b.

UICSM, on the first few pages of Unit 1, introduces 
the real numbers and immediately proceeds to the task of 
structuring definitions for the addition and multiplication 
operations in the reals. After such definitions are somewhat 
complete, UICSM then presents an examination of the principles 
for the members of arithmetic to allow a more precise examina
tion of the operations defined in the reals which have been 
conceptualized (but not yet verbalized) by the student.
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The initial appreciation of the desired properties of 

the operation of addition of reals is through number-line 
construction used along with business application such as 
profit and loss and other business applications, gain and 
loss in football yardage, above and below sea-level, etc.
The student is led to discover the "rules" for such addition 
without the verbalization of such until Unit 2, i.e., the 
student uses a nonvefbalized concept for an entire unit with
out explicit concern for the verbalization thereof. As in 
the case of the addition of real numbers, UICSM students come 
to a nonverbal awareness of the operation of multiplication 
through physical interpretation. This interpretation, based 
on a projector which can be run forward or backward contain
ing a film depicting a pool being filled or emptied, is so 
designed as to lead the student to the formulation of comput
ing rules which are in accord with accepted procedures for 
multiplication of real numbers. The verbalization of the 
"rules" for such, though used continually through Unit 1, is 
not demanded until Unit 2.

Subtraction initially names the number-pair inverse 
of the addition of a given real number, e.g., subtracting 2  

is the inverse of adding 2. This notion culminates in the 
Unit 1 nonverbalized realization that subtracting a real num
ber is equivalent to adding its opposite— a notion verbalized 
in Unit 2 by "Y  ̂  V y  x - y = x + - y." Similarly, division 
in Unit 1 is considered to be the number-pair inverse of
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multiplication and Unit 2 defines division by the principle 
of quotients " V y  f O' (x + y)' y = x," and the associ
ated theorem " V^; Vy ^ q z «y = x, then z = x * y."

An examination of these two approaches indicates that 
the UICSM authors introduce the number-line and construct 
environmental situations to create a nonverbal awareness of 
the "desirable" definitions for the arithmetic operations on 
the reals. This creation is followed by a fairly precise 
examination of the generalizations of the system of arith
metic numbers. The complete Unit 1 utilizes these non
verbalized definitions with no formal statements of such 
until Unit 2. On the other hand, SMSG precedes its discus
sion of the reals with the analysis of the properties of the 
arithmetic numbers and then promotes the simultaneous dis
covery and verbalization of the rules for performing the 
operations on the reals.

An examination of the use of relations as reflected 
by the two programs has revealed already that UICSM uses a 
highly number-pair oriented approach to relations (and pays 
high tribute to the concept) while SMSG makes little explicit 
issue of the use of the term although definitely using the 
concept in its textual materials. The less than relation 
should serve to reflect the difference in the actual defini
tions of relations employed by the two groups.

SMSG's Unit 9 defines the less than relation by issu
ing the directive that a is less than b if and only if a is
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to the left of to on the number line although a theorem (often 
used by other programs as a definition) proved later in the 
unit states that if x is less than z_, then there is a positive
real number y. such that z = x + y. In Unit 17, SMSG, in its
more abstract and rigorous development of number systems, de
crees that the natural number a is less than the natural num
ber b if and only if there exists a natural number ĉ  such 
that a + c = b. Similar extensions are made for the integers, 
the rationale, and the reals. UICSM, in its brief mention of 
the counting numbers, uses less than to declare that a_ is 
less than b if and only if ^  comes before b in the counting
process but in its Unit 1 study of the reals immediately de
fines the lesser of two reals to be the one to which one must 
add a positive real to obtain the other. Unit 5 introduces 
the number-pair definition of the less than relation to be 
•f(x, y) e  R X R : y - X is a positive number 3 and Unit 7 
considers the basic defining principle for less than as 
V x  V  y ^ y y - X €  P }■ . In essence, therefore, 3MSG
introduces and, for at least two years of study, uses the 
comparatively informal number-line approach to less than be
fore ascending to the "positive difference between larger and 
smaller" definition. On the other hand, UICSM early in its 
program introduces and uses exclusively this outlook.

Since the limit is a sophisticated tool used in 
practically all areas of mathematics, both SMSG and UICSM 
make heavy application of the term. The groups again place
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vastly different emphasis upon the degree of sophistication 
with which the concept is to he initiated and exercised.

SMSG usage of the limit is a fairly informal, though 
adequate, one. In its Unit 10 structure of the square root 
of a algorithm as being one which "could be continued without 
end, each time finding two rational numbers, closer and 
closer together, with \/% lying between them. "^ The circum
ference of a circle is the limit of the perimeters £  of the 
regular inscribed polygons since "if we decide how close we
want 2  to be to Ç, we ought to be able to get 2  to be this

2close to C merely by making n large enough." A similar tool 
defines the area of a circular region to be Tf r^ and the 
length of an arc AB as the limit of the sum of chords whose 
endpoints are points of the arc, etc. The definition in 
Unit 17 of the equality relation for reals through nth place 
truncation of decimal representations, the limiting forms of 
the conics, and the derivation of the asymptotes of the hyper
bola all imply the informal use of limit, e.g., the asymptotes
of a hyperbola are straight lines such that "the curve gets

3closer and closer to these lines as x increases." A some
what more rigorous reliance on the limit is reflected in the
definition that a sequence of terms, a^, "has a limit a^ if

^School Mathematics Study Group, Unit 10, p. 300.
2School Mathematics Study Group, Unit 17, p. 345.
^School Mathematics Study Group, Unit 14, p. 515.
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becomes and remains arbitrarily close to A as n gets 

larger and larger."^ Although several pages of exercises 
contain many applications of limits, the notion of "arbitrar
ily close" is the predominant feature with arbitrarily re
maining formally undefined; Unit 21 hopes that n̂  can be 
chosen "large enough so that for a given x '

1 + X  +  x^ +  . .. . +  X
2 : nl

X  2will differ from e by an arbitrarily small amount." There
are many other discussions given similar to the example
cited. These definitions, though informal, could be stated
very easily in the conventional (6,6") form and thus it
should follow that the student studying mathematics from the
SMSG texts are gaining the correct calculus concepts although
they are not stated in a rigorous language.

Insofar as area of applications are concerned, UICSM's 
limit is used in a fashion similar to that of SMSG except 
that its language of description is considerably more formal. 
After having used the limit very informally in Unit 3 to dis
cuss the square root algorithm, UICSM, in its unit on geometry, 
defines the circumference of a circle as the least upper bound 
(assuming the completeness principle) of a sequence of 
perimeter-measures of regular polygons inscribed in the circle 
and the area-measure of a circular region as the least upper

School Mathematics Study Group, Unit 18, p. 576.
2School Mathematics Study Group, Unit 21, p. 213.
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bound of a sequence of area-measures of inscribed regular 
polygons with successively more sides. Unit 8  sees a sequence 
a^ converging to a real number s_ if and only if

3 y > 0  3ni V n  ^  m 1 ^ | < y,

and Unit 9, in its attempt to define "arbitrarily close" and 
"sufficiently close" in its definition of continuity, employs 
very sophisticated language essentially involving the conven
tional ( € , (S' ) notion of the limit. Therefore, the differ
ence in the SMSG and the UICSM usage lies in the sophistica
tion of the language and not in the basic areas of applica
tion.

Closely akin to the limit used by both programs is 
the property of continuity of functions and/or graphs. SMSG, 
in its study of the logarithmic and exponential functions, 
refers to the graph of the logarithmic function (and its in
verse, the exponential function) as being continuous since it 
has no breaks, jumps, gaps, or holes in it. Several of the 
theorems regarding polynomial functions, e.g., the Location 
Theorem (actually a loosely stated form of Rolle's Theorem 
described by another name) assumes, though not concerning it
self with a formal definition for such, continuity of the 
polynomial function. Hence, SMSG does not concern itself 
with answering a need for a formal definition of continuity 
and the discussions, when necessary, are graph oriented. How
ever, UICSM's attack is one climaxing in emphatic rigor. The
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first eight units use continuity in a way analogous to that 
of SMSG but early in Unit 9 UICSM states that "a function ^ 
is continuous at X q if and only if Xq and f(x) differs
arbitrarily little from ffx^) for each x € which is suf
ficiently close to Xq,"^ and later sharpens the condition by 
stating that a function ^  "is continuous at a^ if and only if 
a^ 6  and lPW-Ç(Ol
Therefore, UICSM's use of continuity in the latter units is 
predicated upon a rigorous function-based definition that 
permits a high degree of mathematical sophistication.

Since mathematics and logic have been shown to be in
separable, the student of modern curricula probably would ex
pect to find logic reflected in the modern programs. Al
though SMSG makes good use of the connectives and and or in 
the solution of equations and systems of equations and is al
ways concerned with determining the factors pertinent to good 
deductive reasoning, the SMSG units reflect little explicit 
attention to the rules of formal logic. This is not to imply 
that logical reasoning is not a desirable objective of the 
SMSG program but rather that the rules of logical reasoning 
and the structure of logic are not studied per s e . On the
other hand, UICSM furnishes (and recommends that the topic be
   -     -

^University of Illinois Committee on School Mathematics, Unit 9 , p. 42.
2Ibid., p. 211.



311
studied in conjunction with Unit 6  as a vital part of the 
unit's work) a thirty-eight page appendix (complete with 
exercises) dealing with some of the rules of reasoning and 
the principles of logic used in proving theorems. Included 
in this discussion are brief acquaintances with universal 
instantiation, the conditionalizing and discharging of assump
tions, modus tollens, contraposition, rules of double denial, 
converses, biconditional sentences, conjunctive sentences, 
alternation sentences, etc. The study of this particular ap
pendix is not necessary to the continuance of the squence but 
does illustrate UICSM's attention to the role of formal logic 
in mathematical reasoning.

In Unit 18,, SMSG states, in its proof of De Moivre ' s
Theorem:

. . . continuing in this way, we may derive, one after
the other, similar formulas for z^, z^, z^, . . . , z^,
for each natural number n . The formula of De Moivre 
states the general result. z^ = r^ (cos n9 + i sin 
n9) . 1

This example is typical of the many references made by SMSG 
to notions which could be proved only by the process of in
ductive proof. Yet formal inductive proof is not introduced 
by SMSG until the Appendix of Unit 21— a discussion entailing 
a total of 16 pages with a grand total of 18 exercises involv
ing the First and Second Principles of mathematical induction 
and an acquaintance with recursive definitions.

^School Mathematics Study Group, Unit 18, p. 696.
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UICSM's Unit 7, entitled Mathematical Induction, con

tinues the deductive organization of the real number system. 
Students practice the proving of generalizations concerning 
the positive numbers, the inequality relations, the positive 
integers, and the integers. Although the unit is not devoted 
entirely to inductive proof, induction is central to much of 
the unit since the proofs of many of the generalizations 
about the positive integers require the use of mathematical 
induction and the notion of recursive definitions. Unit 8 , 
relying heavily upon induction, concerns itself with sequences 
and with proving theorems about sequences, particularly con
tinued sums sequences, e.g., the arithmetic progression, con
tinued products sequences, e.g., factorial sequences, exponen
tial sequences, geometric progressions, and infinite geometric 
progressions, and the binomial theorem along with combinations 
and permutations. Later units refer to the method of induc
tive proof without fanfare.

SMSG includes in its eleventh-grade materials a quite 
intensive and inclusive chapter dealing with vectors and 
vector techniques. Vectors, initially defined as directed 
line segments, are equivalent if they have the same lengths 
and the rays of which they are subsets are parallel and in 
the same direction. The properties of addition of two vec
tors (the sum of two vectors being defined in the geometric 
sense, i.e., AB + CD = AX, where X is the unique point such 
that BX is equivalent to CD^ and the multiplication by
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scalars are verified somewhat informally and the results used 
to establish vector-based proofs for many of the theorems of 
plane geometry. Following such discussion is the introduc
tion of the more rigorous component notation (or coordinate 
notation) for vectors with the properties of addition, e.g., 
associativity and commutativity and the existence of a vector 
zero and additive inve^ees, algebraically demonstrated and 
proved in view of comparable properties of the system of real 
numbers. Through the standard definition of the inner prod
uct , the conventional tests for perpendicularity of free vec
tors, etc., are developed along with vector tools for finding 
the angle between two vectors, etc. After a demonstration of 
the role of vectors in physical applications, the system of 
vectors is abstracted as a formal mathematical system and the 
chapter plateaus its study of vectors with the introduction 
and analysis of the axioms for a two-dimensional vector space 
along with the theorem stating that any system S satisfying 
the axioms for a two-dimensional vector space is isomorphic 
to the system of vectors in a plane. It is noted that this 
development of vectors builds the "algebraic" or component 
representation of vectors upon the geometrical interpretation 
of such entities.

After using rotation vectors in Unit 21 to develop 
the formulas for sin (x + y) and cos (x + y), SMSG, in Unit 
23, sees the system of plane vectors considered as the set of 
2 x 1  column matrices with real numbers as elements with the
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addition and multiplication by a scalar of such vectors de
fined by the matrix operations. The prime objective of the 
chapter appears to be the demonstration of the association 
between column vectors and directed line segments with the 
geometric interpretation of addition and multiplication by 
scalars being preceded by algebraic interpretation. The 
chapter, including also a matrix-based definition for the 
dot-product of two vectors as well as exploration of areas of 
applications for such, culminates in the examination of the 
axioms for vector spaces and subspaces.

UICSM apparently does not recognize a need for the 
tools provided by consideration of vectors and, consequently, 
uses the concept of vector very sparingly. As a matter of 
fact, UICSM does not consider the term vector important 
enough to award it a position in its "index— table of con
tents" listing of topics and terms introduced. Therefore, 
where SMSG makes quite an issue of vector techniques, UICSM 
does not employ the tool with its textual developments.

Inasmuch as both programs make early and extensive 
use of the Cartesian coordinate system and analytic tech
niques , it is of interest to note the consideration of conics 
as evidenced by each of the programs. Although, as in many 
earlier-discussed areas, their approaches are not contradic
tory, they do evidence a difference in structure and emphasis

SMSG, while confirming itself to nonslant conics, 
nevertheless pays explicit attention to the study of the
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conics as well as their limiting forms and degenerates through 
the avenue of the exploration of the graphs of two-variable 
quadratic expressions. Although in early units the parabola 
is discussed informally as the graph of a quadratic polynomial 
in one variable and the ellipse as being the locus of points 
the sum of whose distances from two fixed points is constant, 
the SMSG approach to the conics is the focus-eccentricity- 
directrix one with a conic being defined as the set of points 
P with the property that the distance from P to a fixed point 
(the focus) is equal to a constant ê  (the eccentricity) times 
the distance from P to a fixed line (the directrix). If 
e = 1 , the conic is a parabola; if e ^  1 , the conic is an 
ellipse; if e > 1 ,  the conic is a hyperbola. Canonical (or 
standard) forms of the equations of the loci are developed 
for each of the conics and a multitude of exercises hopefully 
develop facility in finding the vertex, focus, and directrix 
of any given parabola; the eccentricity, transverse and con
jugate axes, and the asymptotes of any given hyperbola; and 
the eccentricity, vertices, co-vertices, center, foci, and 
lengths of major and minor axes of any given ellipse.

UICSM, in its Unit 11 analysis of quadratics, pays
explicit attention to the general quadratic of the form 

2 2Ax + Bxy + Cy + Dx + Ey + F = 0 and examines various loci 
whose equations might lead to this form. Among such loci 
are those involving the locus of a point moving such that
(1 ) the sum of its distances from two fixed points is
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constant, (2 ) the absolute difference of its distance from 
two fixed points is constant, and (3) the distance between 
the point and a fixed straight line is the same as the dis
tance between the point and a given fixed point. These curves 
are named ellipse, hyperbola, and parabola, respectively.
The general shape of the curves are examined through the 
properties of symmetry with canonical forms for the equations 
being developed for nonslant conics. The discriminant test 
to determine the nature of a slant conic is developed and 
used for such analysis with slant conics being sketched by 
addition-of-the-ordinates techniques. UICSM's study of 
conics seems to arise as a side-result of the study of sys
tems of equations and not as a result of explicit desire to 
illustrate the conics though the treatment is fairly compre
hensive .

Both SMSG and UICSM emphasize the study and analysis 
of functions. Central to (and typical of) such analyses are 
their study of the logarithmic and exponential functions.

Early in the third year of study, SMSG introduces the 
logarithm function on the domain of positivé reals by con
structing the correspondence that for each x ■> 1 , the loga
rithm of X is the area (used as an undefined term) of the 
region bounded by the x-axis, the hyperbola y = h/x, and ver
tical lines at ^  and x; for x = 1 , the logarithm of x is 0 ;̂ 
and for x such that 0  < x <  1 , the logarithm of x is the
negative of the area bounded by the x-axis, the hyperbola
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y = h/x and the vertical lines at ^  and x. Values of such 
logarithms (for various positive values of h) are approxi
mated by "intelligently guessing" the area under carefully 
graphed hyperbolas. The natural logarithm function is de
fined by choosing h = 1 ; the common logarithm function is one 
whose value is caused to be ^  when x = 1 0  by choosing 
h = 1/ln 10. The standard computational algorithms are justi
fied in view of these definitions. Although such discussion 
is very informal and largely geometry-based, the logarithm 
function (with h >  1 ) is demonstrated to be monotonically 
increasing and hence has an inverse. The inverse is defined 
to be the exponential function.

Early units have successively defined a^ for x posi
tive integral, for x integral, and for x rational. Unit 21 
of SMSG defined the exponential function f : x —> ha , h >  0,
a " > 0 , for an arbitrary real x by informally "pinching down" 
on a^, m < X, m rational, as m approaches x, and the equiva
lent limit of the sequence a ^ , n >  x, n rational, as n ap
proaches X. This function, also either monotonie increasing 
or monotonie decreasing (or, as SMSG says, strictly increas
ing or strictly decreasing) has an inverse which is named the 
logarithm function.

UICSM's earlier units have defined x^, h rational, 
through the use of the continued products sequence for h 
nonnegative and integral, through the reciprocal definition 
for h negative and integral, and for h rational by the
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principle ^ g Vj. riti e  I , Unit
9 completely redefines the exponential function as follows:^

(4^) V x  >  1  Vu = the least upper bound of

fy 3r < u y ° x'' Ï '
<̂ 2> ''̂ 0 < ,: < 1 '^u
U3) 1“ = 1 and ^ 0 0“ = 0.

UICSM therefore is forced (if its usual rigor is to be main
tained) to establish (1 ) the existence of the least upper 
bound postulated in the first phase of the definition,
(2 ) that the new definition is consistent with those already 
adopted, and (3) that the "laws of exponents" still hold for 
real number exponents. (The formal proofs of (2) and (3) are 
very sophisticated ones and are reserved for the appendix.)
An equally sophisticated proof (also reserved for the appen
dix) insures the existence of the inverse of the function. 
This inverse function, the logarithm function, authorizes the 
standard algorithms for computation.

These approaches to the logarithmic and exponential 
functions somewhat typify the two programs. Although the 
subject matter is essentially equivalent, the precision of 
language and degree of rigor of UICSM is more pronounced than 
that of SMSG. SMSG, in its approach to logarithmic and ex
ponential function, displays no explicit concern for a

^University of Illinois Committee on School Mathemat
ics, Unit 9 , p. 92.
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rigorous definition of continuity but rather is ready to ac
cept a geometry-based argument to conclude that the graph of 
the function has no holes or gaps in it; UICSM demands that a 
fairly sophisticated notion of continuity be verbalized and
incorporated into the proof. SMSG, in its "pinching down" on 
hX , h irrational, is willing to accept the existence of a 
limit for the associated sequences ; UICSM insists on rigor
ously proving that their utilized least upper bound exists.

SMSG's eleventh-grade study of complex numbers, moti-
2vated by the empty solution set of ax + bx + c = 0 , a ^ 0 ,

2with respect to the system of reals if b —  4ac <1 0, con
structs an extension of the real number system so that, with 
respect to that extended system, every quadratic equation 
with real coefficients has a nonempty solution set regardless 
of the value of the discriminant. The student is led to seek 
a new number system which contains the system of real nuirbers
with its familiar properties and also an element satisfying 

2the sentence x + 1 = 0 .  Such an extension demands the in
troduction of elements of the form a + bi, a and b real and 
2i = -1. The standard rules are deduced for calculating with 

these complex numbers with the introduction of the additive 
and multiplicative identities and inverses. Following such 
deductions, maximum usage is made of Argand's representation 
of the complex a + bi as the point (a, b) on the Cartesian 
plane to yield a geometric interpretation to the sum and dif
ference of two complex numbers and to verify associativity.



320
commutativity, etc. (An optional topic at the end of the 
chapter contains a completely abstract number-pair construc
tion of the complex number system along with number-pair 
definitions for equality, sum, product, etc.) The SMSG con
sideration of complex numbers is climaxed by the presentation 
(though not a proof of) the Fundamental Theorem of Algebra 
and the "proof" of De Moivre's Theorem based on the polar 
form of complex numbers. Thus, SMSG utilizes three succes
sive forms to express a complex number x : (1 ) z = a + bi,

2where a and b are reals and i = -1 , (2 ) z = (a, b ) , an or
dered pair of reals, and (3) z = r(cos 9 + i sin 9).

UICSM's treatment of the complex numbers, reserved 
until the last unit of study in the sequence, is motivated by 
the study of quadratics. The elements of the complex number 
system are initially defined to be ordered pairs of reals 
subject to certain restrictions, e.g., (a, b) = (c, d) if and
only if a = c and b = d, (a, b) + (c, d) = (a + c, b + d),
(a, b) X (c, d) = (ac - bd, ad + be), -(a, b) = (-a, -b),
(a, b) - (c, d) = (a - c, b - d ) , etc. The study of the
properties of this system subject to these definitions pre
cedes the introduction of x + yi to symbolize (a, b) with the 
division of complex by Z^ defined to be Z^ + Zg = Z^^x/Zg,

2  o 2  2where /Z = / x + yi = (x/x + y ) - (y/x + y ) i , authorizes 
the analysis of the solutions of quadratic equations and prop- 
perties of the conics. No mention is made of De Moivre's 
theorem or the polar form of complex numbers and Argand's
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representation is used very sparingly. UICSM, though enti
tling an entire unit as Complex Numbers, certainly does not 
grant the entire unit to the topic and the resulting treat
ment is less inclusive than that of SMSG's eleventh-grade 
treatment although reserved for the last topic of study.

Table 1 displays a partial list of the symbols, their 
referrents , and the respective units of entry of such symbols 
used in textual discussions and exercises by SMSG and UICSM, 
respectively. (The unit of entry designates the unit in 
which the symbol is first introduced.) Although some few of 
the indicated symbols are used sparingly, most of them are 
found frequently after their introduction. Examination of 
this partial list of symbols yields some insight into the 
nature of the usage of mathematical symbolism by the two pro
grams . (Such commonplace symbols as +, -, +, =, > ,  ,
A , and —  are not listed.)

The UICSM texts rely more heavily than do those of 
SMSG on the symbols ordinarily used in logic and usually re
served for higher courses in mathematics, e.g., the universal 
quantifier V , the existential quantifier 3 ,  and the implies 
that and if and only if symbols and respectively.
UICSM's symbolism is used to convey very detailed distinc
tions in a manner more precise than that of SMSG, e.g., UICSM
distinguishes between the interval a, b (not containing a and
b) and the closed interval a, b which contains a and b , the 
half line A ^  (not containing A) and the ray Â]^ (which contains
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TABLE 1

MATHEMATICAL SYMBOLS AS UTILIZED BY SMSG AND UICSM

SMSG UICSM
Referrent

Symbol Unit of 
Entry Symbol Unit of 

Entry

Absolute value of a la| 9 1
Absolute value of Izl Ua, b)|z = a + bi 17 11
Arc with endpoints 

A and B APB 14 Are 6
Cardinal number of A -- - n (A) 4
Cartesian product of

sets A and B - -- A X  B 4
Closed interval of reals 

{x: a  ̂ X 6  b} . . (a, b) 3
Complement of set 2 - - T 5
Determinant of matrix X <T(x) 23 - ——
Distance between P,

and ? 2 dfPifPg) 17 m(P^,P^) 6
Domain of relation R — — 5
Empty set 9 0 3
Existential quantifier -- — 3 5
Field of relation R -- — 5
Half-line of number line

(a, Id)(a is not an element) - — 3
Half-line (P is not an

element — 6
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TABLE 1— Continued

SMSG UICSM
Referrent

Symbol Unit of 
Entry Symbol Unit of 

Entry

Half-open interval of 
reals, {x: a ë x < b (a, b) 3

If and only if ----- —  — 7
Implies that ----- — — 7
Intersection of sets n 2 1 n 4
Inverse of function ^ ' f-i 2 1 5
Inverse of matrix A A-l 23 ----- --
Is an element of € 2 1 € 3
Is a subset of ----- -- c 3
Is approximately^ 

equal to 1 0 — 3
Left-real a ----- V _____ <-a 1

Line with elements 
P and Q 13 6

Line-interval (points 
between P and Q) —  — —  — PQ 6

Line segment with P 
and Q as endpoints PQ 23 6

Matrix (m x n) t?ijH mxn 23 -- -----

Measure of arc m(A^) 14 m(A^) 6

Measure of line segment m(PQ) 13 m(PQ) 6

Negative of a ~a 9 “a 1
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TABLE 1— Continued

SMSG UICSM
Re ferrent

Symbol Unit of 
Entry Symbol Unit of 

Entry

One-to-one
correspondence 13 <-> 6

open interval of reals, 
[x: a < X ^ b} —— —  — (a, b) . 3

Opposite of a “3. 9 — a 1

Positive a -- — +a 1

Range of relation R -- — (̂ fZ 5
Ray of line 

(endpoint A) 13 6

Ray of number line 
(endpoint a) -- —  — a , 3

Right-real a -- — t 1

Set {...} 9 r...} 3
Transpose of matrix A 23 — —

Triangular region -- -- A 6

Union of sets U 2 1 u 4
Universal quantifier -- — V 2

Length of vector AB Ia b I 18 -- —
Vector with tip at B 

and tail at A AB 18 —  — —  —

Vector with components 
a and b ta, bl 18 — — --
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A ) , and the triangle A  and the triangular region jk . Both 
programs are very careful, however, to distinguish between 
sets and their measures. Not only does UICSM introduce more 
symbols and utilize them to draw finer distinctions, the 
UICSM textual materials display a more prevalent usage of 
such symbols and seem never to use words to communicate no
tions , concepts, or operations which have been previously ab
breviated by a symbol.

Both SMSG and UICSM structure an algorithm for ob
taining the approximate square root of positive reals. The 
examination of their respective approaches to such an algo
rithm reveals another difference in the emphases and detail 
as advocated by the groups.

Both programs initially advocate what might be termed 
as "educated guessing" to approximate solutions, i.e., the 
"pinching-down" on the square root of a real by successive 
approximations involving a search process. Both groups pre
sent, as a refined tool, an iterative process illustrating 
that, if y^ is an approximation to then y^ = (ŷ  ̂+
x/y ^ ) / 2  is an even better approximation, and, in general,
Y 1+1 ~ + x/y ^ ) / 2  is a better approximation than y^ for
>yx . The differences in the two treatments lie mainly in 
UICSM's attention in the student text to the degrees of ap
proximation and the estimate of errors involved in the proc
ess . Fairly precise proofs of the convergence of y^^^ =
(yĵ  + s/y^)/2 to vGT are contained in the commentaries of
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both programs but the UICSM textual treatment is more detailed 
than that of SMSG. SMSG essentially uses the "it can be 
shown" approach in its textual discussion with the student.

Both modern programs have subscribed to the belief 
that the study of primes and composites should be integrated 
into the high school curriculum both for its expository role 
in number theory and its utilitarian role in the operations 
on both arithmetic and algebraic fractions. SMSG's Unit 10, 
while paying proper attention to the domain of factorization 
and the Fundamental Theorem of Arithmetic (with no attempt at 
proof) uses the study of primes and composites primarily for 
operations on fractions and simplification of radical expres
sions as well as factorization of polynomial expressions.
(The SMSG study of primes precedes that of factorization of 
polynomial expressions.) UICSM's Unit 4 study of primes and 
composites (along with the highest common factor and greatest 
common divisor), preceded by "trial and error" factorization 
of polynomial expressions, achieves its initial value in 
simplifying and facilitating operations on fractions. Unit 8 , 
however, presents a more sophisticated look at some of the 
number theory aspects of primes and composites involving the 
Sieve of Eratosthenes, Euclid's proof that the number of 
primes is infinite, a discussion of Goldbach's conjecture, 
and culminating in a fairly rigorous proof of the Fundamental 
Theorem of Arithmetic. Therefore, it is evident that UICSM's 
treatment is more thorough and rigorous and emphasizes the
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number theory aspects of the study of primes and composites 
more than does that of SMSG.

In that both programs devote entire units to the 
study of geometry, it is feasible to construct a comparison 
of the two efforts. SMSG devotes a full year to the study of 
geometry whereas UICSM dedicates only one semester to such a 
study per se.

SMSG's units on geometry reflect the conviction of 
the authors that the traditional content of Euclidean geometry 
serves as a significant part of the high school curriculum and 
that Euclidean geometry (though Euclid's postulates are not 
logically sufficient for geometry) rightly deserves the rather 
prominent place which it has traditionally held. Therefore, 
Geometry reflects the inclination on the part of the SMSG 
authors to make changes only when absolutely necessary.
Since SMSG authors were of the opinion that the foundations 
of geometry are not a part of elementary mathematics and 
hence do not belong in the secondary curriculum. Geometry 
utilizes as its basic postulate scheme that proposed by 
G. D. Birkhoff rather than the more formal one adyocated by 
Hilbert. This treatment, assuming the real numbers, makes 
the handling of the postulates a much easier task.

Geometry is a one year set-oriented study of geometry 
which, at eyery opportunity, connects geometry with algebra 
and, whenever feasible, treats geometric topics algebraically. 
In the main, the text is devoted to plane geometry and
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includes all the topics of the conventional plane geometry 
texts although including a few chapters on solid geometry (to 
he discussed on later pages of this paper) and terminating 
with a hrief, though intensive, introduction to analytic 
geometry. This introduction, involving slope, parallelness 
and perpendicularity, the distance formula, the midpoint 
formula, equations and intersection of lines, equations of 
circles, analytic proofs of selected theorems, etc., is not 
necessary to the continuity of the unit and contributes pri
marily as an enrichment addition to ;̂ he unit. The proofs of 
the unit are primarily two-column proofs although one para
graph proofs are suggested.

UICSM. Geometry optimistically presents a one-semester 
course including most of the topics common to high school 
courses in plane geometry. Since, in the eyes of UICSM, 
knowledge of the principles of logic and an appreciation of 
the role of the rules of reasoning in drawing valid infer
ences are prerequisites for the understanding of the nature 
of a good proof, an appendix on logic is included to be 
studied concurrently with the unit. UICSM's insistence upon 
good proofs causes the authors to insist upon pointing out 
the nonrigorous points of their proofs and to explore ways in 
which such "gaps" could be filled by the introduction of more 
sophisticated techniques. The one-column proofs and paragraph 
proofs are used to the uniform exclusion of the two-column 
proofs of traditional texts. The basic postulate scheme is
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that of David Hilbert and the use of the real numbers to co- 
ordinatize lines, segments, rays, angles, arcs, etc., pro
duces a highly algebraic treatment of plane geometry. The 
language of sets is used at every opportunity. An early in
troduction of analytic geometry (involving the distance 
formula, midpoint formula, slope, perpendicularity and paral
lelness, etc.) yields a tool which is utilized heavily in the 
textual development of a multitude of the theorems of geometry 
remaining to be proved in the unit and thus analytic tech
niques become a vital, integrated part of the unit. (This 
use of analytic tools, among other innovations, allows UICSM 
to cover in one semester all the topics common to a tradi
tional plane geometry course.)

Therefore, SMSG and UICSM both present set-oriented, 
algebraic-flavored treatments which contain treatment of at 
least all the topics of the conventional high school plane 
geometry. Differences are noted however. SMSG uses the 
postulate treatment of Birkhoff; UICSM uses the postulate 
scheme of Hilbert. The SMSG units involve a treatment of 
some of the topics of solid geometry; UICSM restricts its 
treatment at this point to plane geometry. SMSG introduces 
analytics as a terminal study; UICSM introduces the tools of 
analytics early in its unit and structures it to be a vital, 
integrated part of the unit. SMSG utilizes the traditional 
two-column proof almost exclusively although occasionally us
ing the paragraph proof; UICSM employs both the one-column
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and paragraph proofs to the practically total exclusion of 
the two-column proof. SMSG, though insistent upon logical 
reasoning, devotes little direct attention to the rules of 
formal logic; UICSM devotes a lengthy appendix (to be studied 
concurrently with its unit on geometry) to development of 
some of the rules of logic.

The last several years have seen a decline in the 
popularity of solid geometry. This change in status of that 
subject is reflected in the work of both SMSG and UICSM.

Geometry, as published by SMSG, contains a few chap
ters on solid geometry which are inserted into the unit but 
which are basically isolated from the other chapters. The 
chapters concern themselves with such topics as lines and 
planes in space, perpendicular lines and planes in space, 
parallels in space, circles and spheres, and volumes of 
solids. This treatment of solid geometry is set-oriented, 
theorem-directed, and the proofs involved are of the same 
nature as those of the chapters dealing with plane geometry. 
Therefore, SMSG evidently feels that solid geometry should be 
a part of the secondary curriculum but as an integrated part 
of geometry rather than as a separate subject.

On the other hand. Geometry, as published by UICSM, 
has the standard study (though abbreyiated and laden with in- 
noyations) of plane geometry but pays no attention to solid 
geometry. It is not until Unit 11 that there is found (in 
the appendix which probably would not be consumed if time
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were short) an abbreviated development of the surface area- 
measure and volume-measure formulas for simple solids. The 
appendix does little more than give some nonrigorous justifi
cation for the formulas for the volume-measure formulas of 
simple closed regions, e.g., prism, cylinders, pyramids, 
cones, spheres, etc., and the area-measure formulas of such 
regions. The approach is largely axiomatic with no theorems 
to prove and no theoretical observation demanded. It appears, 
therefore, that UICSM advocates that traditional solid geome- 
try per se has little merit in the secondary curriculum.

During the past several years, severe criticism has 
been directed from some quarters toward the undue emphasis 
upon triangle-solving, tedious logarithmic computations, etc., 
in the conventional courses in trigonometry. Both the UICSM 
and SMSG trigonometries demonstrate a reaction which should 
be pleasing to such critics.

SMSG does not devote a single unit nor even the com
posite of a semester's work to the exclusive study of trigo
nometry. The student's first acquaintance with trigonometry 
comes in Unit 18 with a four-week, 80-page study based on the 
definition of the sine and cosine function of a real number x 
defined as the abscissa and ordinate, respectively, of a 
point P located on a unit circle centered at the origin and 
such that the counterclockwise arc (measured from the inter
section of the circle with the positive x-axis) has a measure 
X. This particular definition, along with suitable
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refinements, serves to authorize the study of the graphs of 
the trigonometric functions, the law of sines, the law of 
cosines, and the addition formulas as well as an impressive 
amount of work with equations and identities. Radian measure 
for angles is used as often as degree measures. The presenta
tion also looks (though does not emphasize) at the right- 
triangle definitions for the trigonometric functions.

Unit 21 returns to the study of trigonometry with a 
five-week, 7 5-page circular-function-oriented treatment also 
based on the wrapping, or winding, function. Both radian and 
degree angle-measures are commonplace. In addition to study
ing identities and arc functions, SMSG develops slope func
tions for the sine and cosine functions. In summary, the 
merging of the two SMSG segments involving the study of trigo
nometry would produce a unit displaying very few really dra
matic differences between this and the conventional trigonome
try course if the usual chapters on solution of right tri
angles and logarithmic computation were neglected. These 
omissions, plus precise language, abundant usage of radian 
measure, and basic initial winding function definitions of 
the trigonometric functions would be the most noticeable dif
ferences .

UICSM, though introducing right-triangle definitions 
of the trigonometric functions in Geometry to solve right 
triangles mainly as an illustrative tool of ratio and propor
tion, generally reserves the study of the circular functions
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for a complete unit of wcrlc to be consumed during tbe senior 
year. As did SMSG, UICSM utilizes the winding function to 
structure angle-free definitions for the trigonometric func
tions .sine and cosine and then uses these two functions to 
define the other four functions. The Law of Sines and the 
Law of Cosines are proved analytically. Right triangles are 
solved through consideration of their being a subset of the 
oblique triangles. The solutions of triangles is minimized. 
The unit, complete with the addition and subtraction formulas, 
double- and half-angle formulas, inverse functions, and 
identities and equations, is, as was SMSG's treatment, very 
comparable to that of the conventional trigonometry course 
insofar as subject matter is concerned although the basic 
functions are defined differently, radian measure is used 
heavily, computations with trigonometric functions and solu
tions of triangles (particularly right triangles) are mini
mized, and the entire unit is function-oriented in its ap
proach .

Throughout its entire sequence, SMSG has displayed a 
willingness to accept informal proofs of many of the theorems 
which UICSM has explained with rigor and a high degree of 
sophistication. Likewise, SMSG has been willing to sacrifice 
thorough and extended discussions of several topics, e.g., 
sequences, relations, induction proofs, limits, continuity, 
and existence theorems regarding bounds, whereas UICSM has 
insisted upon comparatively sophisticated (and necessarily
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time-consuming) examinations of these areas. Therefore SMSG 
has available a block of time to devote to an introduction to 
matrix algebra. This is probably the major content innova
tion of SMSG (as opposed to UICSM) in that practically all of 
the material in this one-semester unit is unique to the SMSG 
program.

The subject matter content of the unit involves the 
study of matrix operations and the resulting properties, the 
algebra of 2 x 2  matrices, matrices and linear systems, re
presentation of column matrices as geometric vectors yielding 
a matrix interpretation of the algebra of vectors as well as 
the study of vector spaces and subspaces, and transformations 
of the plane. The development of the unit creates opportuni
ties for the consideration of the axioms for fields, groups, 
and rings. As operation after operation is defined, the 
structure of mathematics is repeatedly emphasized and terms 
such as group, ring, field, and isomorphism are introduced 
when feasible to illustrate unifying concepts.

Attention to Mathematical Structures
For many years high school mathematics has consisted 

largely of the study of models or applications built upon 
mathematical systems. The properties of such systems cer
tainly apply to the models but the properties of the system 
may be fairly obvious in the abstract system and yet hidden 
by the nature of the physical objects named in the models.
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by an overt concern with the achievement of manipulative 
skills authorized by the model, emphatic attention to-social 
applications, etc. The properties of mathematical systems 
are fundamental and enduring whereas the models or applica
tions thereupon built may change as social needs vary. There
fore, advocates of modern mathematics programs have shown a 
concern for the necessity of promoting the teaching of the 
study of mathematical structures. Such a study of structures 
involves the study of the basic principles or properties of 
any system-as well as the analysis of the basic properties or 
principles common to different (and perhaps all) mathematical 
systems. These mathematical systems are not necessarily num
ber systems.

SMSG's First Course in Algebra reflects a serious at
tempt to communicate some appreciation of the structure of 
mathematics. In its initial study of the arithmetic numbers, 
SMSG shows the "doing and undoing" relatedness of addition 
and subtraction and of multiplication and division; displays 
the interrelatedness of the "four fundamental operations" by 
using the number line and by reviewing the operations defined 
in earlier grades; and adequately displays the commutative, 
associative, and distributive laws as they apply to the funda
mental operations. The introduction of the real number sys
tem (in the same year of study) is characterized by the same 
treatment. The extension of the system of arithmetic numbers 
to the system of reals very definitely conveys the notion
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that the familiar system of arithmetic numbers is a subsystem 
of the reals and shares certain displayed properties with 
that more inclusive system. Therefore, SMSG's first two 
units of study, by both the presentation of leading questions 
and through verbalization, give the student the opportunity 
to gain some glimpse of the basic structure of the two sys
tems .

SMSG's Geometry effectively destroys the somewhat 
prevalent, yet erroneous, impression that geometry and alge
bra are completely disjointed realms of study. The early in
troduction and use of the reals to coordinatize lines, rays, 
segments, angles, etc., with the Ruler Postulate and the 
Angle-measure Postulate, etc., authorizing the precise use of 
geometric figures (which are sets of points) and measures 
(real numbers assigned to those sets), make a gigantic stride 
toward demonstrating the basic unity of mathematics. Since 
SMSG connects geometry with algebra at every reasonable oppor
tunity, knowledge in either one of these areas should make a 
natural contribution to the understanding of both. However, 
an earlier and more inclusive use of analytic tools might 
have helped to create more of a feeling of a displayed unity 
of mathematics and have heightened the desired impression that 
geometry and algebra are interrelated and inseparable. Simi
larly, this impression could have been heightened by the 
utilization of fewer two-column proofs (as used by most con
ventional geometry texts) in favor of more one-column and 
paragraph proofs as used in preceding and succeeding units.
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Approximately 25 to 30 per cent of the textual de

velopment of SMSG's Intermediate Mathematics deals specifi
cally with the structure of mathematical systems, and the 
explicit attention paid to the study of mathematical struc
tures plays a key role in the two units. The natural numbers, 
the integers, and the rational numbers are reviewed from the 
point of view of their basic structural properties. The real 
number system is characterized by its basic properties with 
the complex number system being developed after a brief, but 
inclusive, section outlining the conditions required for the 
extension of a number system. (This "extension of system" 
approach involves displaying the natural numbers as being a 
subset of the integers, the integers as a subset of the ra
tionale, the rationale as a subset of the reals, and the reals 
as a subset of the complex numbers, and should again serve to 
convey the impression that each system is a subsystem of a 
still higher system and shares certain exhibited properties 
with that higher system.) Simplification of algebraic ex
pressions, derivations of truth sets of equations and systems 
of equations, etc., are focused on the properties of the num
ber system under consideration. The chapter on vector alge
bra, including a discussion of the assumed isomorphism be
tween the system of vectors and system of physical forces, 
and between the system of vectors and the system of complex 
numbers with respect to certain operations, approaches the 
topic from the structural point of view. The last chapter
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includes discussions of noncommutative as well as commutative 
groups and fields. SMSG's Elementary Functions continues the 
study of structures through its function-oriented study of 
polynomials, exponents, logarithms, and trigonometry.

SMSG's crowning effort in exhibiting the structure of 
mathematics lies in its Introduction to Matrix Algebra and 
its study of many unifying concepts repeatedly emphasizing 
the structure of mathematics. Knowledge of the real number 
system is reinforced through a comparison with the character
istics and properties of matrix addition and multiplication. 
Some of the differences between the real number system and 
that of matrices, with their respective additions and multi
plications, are illustrated by the differences between a 
field and a ring. The unit contains many examples of ab
stract sets along with their operations and the student is 
required to check those systems for the simple structural 
properties such as closure, commutativity, associativity, 
etc., and to determine whether or not they are fields or 
rings, The concept of group, reserved until after the study 
of rings and fields, is introduced through the study of 2 x 2  

invertible matrices. The unit continually points out ties 
between newly-introduced structural systems and ones with 
which the student is already familiar. A correspondence be
tween complex numbers and matrices is used to illustrate 
again the concept of isomorphism. After the development of 
such studies, the structure of general algebras is discussed.
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In this particular unit, students can view the growth of com
paratively simple 2 x 2  matrix theory into a system as com
plex as vector spaces.

As was the case for SMSG, the UICSM textbooks reflect 
a fervent belief that the study of mathematical structure is 
essential if a better understanding and use of mathematics is 
to be achieved. One of the underlying objectives of the 
UICSM program is the development of the real number system 
and an examination of its structure although many other sys
tems are studied in the process. The fact that UICSM treats 
in a sense its entire sequence as a single textbook with the 
separate units playing the role of chapters does much to 
establish continuity of presentation and allows an increas
ingly sophisticated spiral treatment of the real number sys
tem.

Units 1-4 contain a rather informal, yet detailed, 
study of the real number system and the properties of that 
system along with precise statements of principles and theo
rems . The units develop the system of reals as a self- 
contained system complete with elements, operations, rela
tions , and rules which are defined prior to formal review of 
the system of arithmetic numbers. The subsequent study of 
the properties and principles of the arithmetic numbers leads 
UICSM to demonstrate that the set of arithmetic numbers is 
isomorphic to the set of nonnegative reals with respect to 
their respective operations of addition and multiplication.
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Thus, the nonnegative reals and the numbers of arithmetic, 
though members of different systems, share common properties 
such as associativity and commutativity of addition and multi
plication, distributivity of multiplication over addition, 
etc., with respect to their operations. The study of inverse 
operations demonstrate the interrelatedness of addition and 
subtraction and of multiplication and division. Even Unit 1, 
early in the first year of study, evidences careful attention 
to the development of the properties of the system of ra
tional reals. Unit 5 is characterized by set theory and set 
theoretical concepts. The ideas of relations and functions 
are developed in terms of sets and, as they apply, applica
tion of these concepts and further topics of traditional 
second-year algebra are interwoven. The approach of the unit 
stresses a few underlying ideas (set, relation, function) and 
a careful exploration of the properties of these general 
ideas.

UICSM's Geometry indicates a conscious attempt to 
construct an algebraic treatment of geometry. As did SMSG, 
UICSM introduces the reals to coordinatize lines, angles, 
etc., makes a valiant attempt to separate sets and measure of 
sets, treats geometry from a unifying point-set approach, and 
introduces algebraic processes whenever feasible. The unit 
is characterized by the early introduction and heavy reliance 
upon analytic tools to establish theorems traditionally estab
lished by two-column synthetic proofs. The one-column and
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paragraph proofs lend even more informal support to the basic 
unity of algebra and geometry.

Units 7 and 8  complete the development of the real 
number system which was begun in Units 1 and 2, with the ex
ception of the principle of completeness (which is reserved 
for Unit 9). Involved in this effort are formal rigorous 
discussions of the basic principles of the reals as well as 
the study of the subsystems of positive reals, positive in
tegral reals, integral reals, and rationale. The basic 
scheme involved in the study of these systems involves the 
analysis and enumeration of those basic properties possessed 
by the positives and not possessed by the nonpositives, the 
properties possessed by the positive integral reals and not 
possessed by the nonpositive integral reals, the properties 
possessed by the integral reals and not possessed by the non
integral reals, etc. Imbedded in such examinations are the 
necessary examinations and enumerations of the properties 
shared by the various subsystems.

Complex Numbers constructs the system of complex num
bers along with its defined operations such that the system 
of real numbers is isomorphic to a subset of the system of 
complex numbers with respect to their respective operations 
of addition and multiplication. The majority of the entire 
unit is dedicated to the study of the properties and prin
ciples of the complex number system.
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UICSM's primary concern with the development of the 

real number system makes little use of vectors, matrices, 
fields, rings, groups, vector spaces and subspaces, etc., to 
demonstrate the properties common to different systems and to 
illustrate unifying concepts although many exercises and some 
textual attention is directed toward examination of abstract 
systems. Although SMSG makes heavy use of such systems, 
UICSM's comparative neglect of such is somewhat compensated 
by the study of the system of numbers of arithmetic being 
isomorphic to the system of nonnegative reals and the system 
of reals being isomorphic to a subset of the system of com
plex numbers along with consideration of the abstract and 
subsystem. UICSM's emphasis on proof makes it evident that 
the logical structure of mathematics is paramount.

Methods
Both SMSG and UICSM have insisted upon an important 

qualification to the study of secondary mathematics— the 
modern student must understand his mathematics and be enabled 
to discover generalizations for himself. Both groups further 
advocate that the student will understand mathematics better 
if he plays an active role in the development of mathematical 
ideas and procedures. This insistence has been reflected in 
practically; every aspect of the two programs but probably 
more highly than elsewhere in the manner in which the texts 
have been written and arranged and the role assigned the
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exercises. Although no text can within itself establish and 
dictate the method to be used in any particular situation, 
the orientation of the presentation can make some methods 
more feasible than others.

The critique of SMSG materials as presented in Chap
ter 2 of this paper has illustrated that First Course in 
Algebra develops most of its topics by using the discovery 
approach imbedded in the textual discussions. However, some 
of the exercises are independent of preceding problems and, 
in many instances, there is a minimum of evolution of ideas 
throughout the sequence of some of the problem sets. The re
view exercises at the end of the chapters and the "leading" 
discussions preceding the problem sets compensate, in some 
degree, for the difficulty. In Geometry the students continue 
to be participants in the development of the material and are 
led by the authors through the intuitive processes that 
establish conjectures, and then to construct proofs. The 
textbook exercises are well selected to cause student in
volvement in the system rather than to present a system to be 
used. In Intermediate Mathematics, the authors appear to be 
content to present material for student consumption rather 
than student participation in content development, i.e., the 
student is, in a sense, "lectured to" by the textbook. The 
style and the format of the text seem to suggest the presenta
tion of the final product to the student with exercises built 
to fit precisely the concepts developed in textual materials
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although exceptions are noted, e.g., the Challenge Exercises 
which, though not immediately related to textual materials, 
are not included for the purpose of developing basic material. 
(This is not to imply that the discovery approach is neglected 
and that understanding is minimized but rather that the stu
dent, while reading the textbook, is more likely to "follow" 
the formulation of a concept rather than to independently 
construct such.) Elementary Functions, written in the same 
general vein as Intermediate Mathematics, forces the student 
to recognize basic principles and to develop necessary proofs 
and the text goes far beyond simply stating the principles 
and how to apply them. In Introduction to Matrix Algebra, 
the basic theorems, for the most part, are proved for the 
student with the student expected to prove auxiliary theorems 
and to solve .problems based on the already proved theorems.
The attention to the discovery process is illustrated by the 
fact that many of the problems seem to have involved in them 
some of the necessary and basic concepts used in solving sub
sequent exercises. Many of the concepts to be developed 
rigorously in subsequent discussions are developed in an in
tuitive fashion prior to their rigorous formalization.

An overview of the entire SMSG sequence authorizes 
several conclusions regarding the methods utilized by the 
writing team. Although SMSG is thoroughly dedicated to the 
role of student discovery and, consequently, dedicates itself 
to the promulgation of such, the great bulk of the textual
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materials, i.e., the mathematical content, is presented by 
means of textual exposition which leads the student through 
concept discoveries. These expositions are far superior to 
those normally found in conventional texts. They are written 
in suitable language for students at the particular grade 
level for which they are intended and the language, though 
not unwieldy and overly technical, is clear and precise from 
the mathematical point of view. Although the exercises pre
sent a multitude of opportunities for student exploration, 
the exploration exercises are, in the main, serving an en
richment function while their omission would detract little 
from the continuity of the materials.

For the most part, new concepts are introduced by 
first citing examples, then making conjectural generaliza- 
tions, and then following with a deductive proof. In most 
instances, the generalizations are given to the student in 
the textual presentation but usually near the end of the 
discussion so that, as the presentation develops, the student 
still has a chance to come to the desired conclusion on his 
own. Often, several concepts are being discussed and gener
alized simultaneously. The desired generalizations are 
usually verbalized immediately after formulation.

Although both the SMSG exercises and textual materi
als often raise or border on questions that are not to be re
solved until a later date, the SMSG materials generally have 
the exercises independent of the development of the textual
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content sequence. Altliougli these exercises concern themselves 
with the content material of the textbook, they seldom involve 
an extension of the mathematical theory being exposed but 
rather serve to clarify and intensify the student appreciation 
of such.

Very few of the chapters or topics begin with the in
troduction of definitions to be utilized in the study but, 
rather, are preceded by a study of the type of situation in 
which the intended definition will function. The definitions 
are not "thrown out to the students" but usually are preceded 
by the analysis of the reasons why a particular definition is 
made in a particular way, e.g., the definitions of the arith
metic operations as defined on the reals are preceded by the 
enumeration of the desirable characteristics to be imbedded 
in the definitions.

As was the case for SMSG, UICSM has as one of the 
fundamental concepts of its program the value attached to the 
principle of student discovery. UICSM displays, through its 
written materials, the belief that the learning process is 
deepened by providing a sequence of activities from which a 
student may independently recognize some desired segment of 
knowledge. UICSM's belief that the student will understand 
mathematics better if he plays an active role in developing 
the material causes UICSM to attempt to design both textual 
exposition and exercises in such a way that the student will 
discover principles and rules. The UICSM presentation.



347
though dedicated as was SMSG to the discovery method, reveals 
several different emphases in its approach.

Among the most noticeable features of the UICSM pro
gram are its exercise sets. UICSM introduces two general 
types of exercises as characterized by their usage.

UICSM's general exercises, usually immediately follow
ing textual expositions, serve the primary roles of reinforc
ing the concepts already gained (whether verbalized or not) 
and, in many instances, to serve as vehicles for the exten
sion of the mathematical theory already studied. The results 
of such exercises often are used as theorems for later tex
tual proofs and, consequently, as the basis for further 
theorems. (In these instances, these exercises must not be 
omitted in that the omission would detract from the continu
ity of the sequence.) UICSM's texts, supplying a tremendous 
volume of exercises and including long lists of supplemental 
problems at the end of each unit, are so constructed that the 
exercises are usually directed toward the mathematical mate
rial immediately at hand and often involve student generaliza
tions and proofs of concepts not previously verbalized.

Insofar as method of presentation of mathematical con
cepts are concerned, the importance of the UICSM Exploration 
Exercises can hardly be overemphasized. These exercises, 
quite prevalent in all UICSM units, are constructed to pro
duce student curiosity and awareness regarding the concepts 
to be studied later. The results of these exercises are
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often incorporated into defining principles and theorems to 
be proved in later topics. These exercises serve also to 
develop an awareness of the inadequacies of past proofs (inso
far as mathematical rigor is concerne^) and/or mathematical 
systeitfs. These Exploration Exercises, a vital part of the 
UICSM textbooks, definitely encourage discovery and insist on 
the student's playing an active part in developing and in
venting mathematical ideas and procedures. (As a matter of 
fact, it is often quite difficult to locate the point at 
which the textual exposition begins and the Exploration Exer
cises cease.)

UICSM's textual expositions are, as are those of SMSG, 
vastly superior to those of conventional texts. The text, 
much more verbose than its conventional counterpart, and 
characterized by mathematically precise language, is laden 
with student-directed questions which are concerned with the 
topic immediately at hand. The treatment is insistent upon 
student discovery, understanding, generalization, and verbali
zation as evidenced by the demand that the student discover 
(and formulate for himself) the "rules" for the arithmetic 
operations of addition and multiplication on the reals, the 
"rules" for solving equations and inequations, and the "rules" 
for manipulating algebraic expressions, etc. These, and 
other, discoveries are guided by the text but the student is 
directed by well-constructed guideposts rather than led by 
the textual exposition.
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Associated with UICSM's insistence upon the key role 

of discovery is UICSM's demonstrated belief that it is not 
necessary to require a student to verbalize his discovery to 
determine whether he is aware of a rule or concept and that 
sequences of properly constructed exercises can determine 
whether or not the desired awareness is present, e.g., UICSM 
students add real numbers on page 9 of Unit 1 and yet do not 
state (or even see stated) a "rule" for such until some 170 
pages later in spite of the fact that the nonverbalized 
"rule" has been used extensively by the student in the mean
time. (It is also difficult at times to distinguish between 
the "textual" material and the exercises in that the reading 
and understanding of the textual materials are as involved as 
the exercises.) Somewhat related to the process of discovery 
is the UICSM insistence that students become aware of con
cepts before assigning names to the concept. As mentioned 
earlier, UICSM predicates its entire program upon student 
participation, development, understanding, verbalization, and 
generalization and the discovery method as utilized by UICSM 
could be described as experimentation, observation, and gen
eralization with the student being fully active in the three 
areas.

Vocabulary
Any student of mathematics realizes that the usage of 

precise nonambiguous language in the communication of
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sophisticated concepts is of paramount importance since mathe
matics requires precision in language for exaction and clar
ity. Some disagreement is noted, however, in the level at 
which generally unsophisticated language can be replaced by 
sophisticated and precise use of the vehicle. Both UICSM and 
SMSG programs reflect their cognizance of the vocabulary and 
language problems which have developed through the years in 
mathematical curriculum. Their ensuing emphases and belief 
differ appreciably, however.

A retrospective examination of the language and 
vocabulary used by SMSG reveals a precise and utilitarian 
terminology in spite of the fact that there is no undue 
explicitly-directed emphasis upon precise and sophisticated 
language. The student is encouraged to learn to write mathe
matical statements that convey the information which they 
were designed to convey. In most instances, the new terms to 
be defined are discussed intuitively prior to their formal 
definition but are used precisely after their first formal 
introduction. The resulting statements of definitions (and 
theorems) are exact; the exactitude does not detract from the 
utilitarianism of the definitions (and theorems). The textual 
developments are such that definitions are precise without too 
much length, e.g., an angle is defined as the union of two 
non-colinear rays having a common endpoint— a definition 
which is authorized by a carefully constructed textual back
ground .
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Mathematically-sophisticated concepts whose abstrac

tion is such that their formal statements are thought to be 
beyond the com^ehension of the student of a particular unit 
are used, although only informally explained, in a manner 
serving to present misunderstandings although the concepts 
are never formally verbalized, e.g., the concepts of limit 
and continuous. All theorems are accompanied by the perti
nent quantifiers although such quantifiers are usually im
bedded in the textual discussion rather than in the body of 
the theorem, e.g., a chapter may indicate at the beginning 
that all the theorems of a particular chapter will involve a 
certain domain of application.

Although many terms are used which probably would not 
have been used so frequently in their conventional counter
parts, SMSG seldom invents or "coins" new terms to identify 
new ideas and concepts but instead uses the terms which are 
commonly accepted by mathematicians. The general vocabulary 
in any particular unit seems to be at the level appropriate 
to the other academic subjects studied at the same period. 
Extensive use is not made of symbols and, although the lan
guage of sets is used extensively, very little of the associ
ated symbolism is introduced and used generally.

As a whole, the SMSG vocabulary does not appear to be 
overly sophisticated and would appear to be fully intelligible 
to students properly placed in the course. The language and 
vocabulary are not particularly unique to the SMSG texts and
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even a student entering the program in a unit late in the se
quence would probably suffer very little in this respect.

UICSM's student-discovery-oriented textbooks implic
itly postulate that student understanding will be achieved 
when he uses nonambiguous language and when the student is 
enabled to discover generalizations by himself. UICSM ad
vocates that mathematical discoveries are facilitated by the 
formulation of precise descriptions and the accompanying 
skill in the precise uses of language helps the student to 
give clear expression to those discoveries. It is apparent 
that UICSM is dedicated to the belief that students at the 
secondary level may appreciate and incorporate into their 
communication process a precise mathematical vocabulary.

UICSM pays careful attention to the destruction of 
the ever-present ambiguities which are common to secondary 
materials. Discussions in great detail are directed toward 
the number versus numeral, the use versus mention of symbols, 
the geometric set versus its measure, and, in general, the 
name (or measure) of a described entity versus the entity it
self. The usage of such distinctions is uniform throughout 
the textual expositions and all the exercises.

Not all the language, particularly in the earlier 
units, is standard. UICSM quite often "invents" terms to 
describe notions and concepts in such a way that the descrip
tion somewhat conveys the use to which the notion and con
cepts are to be directed, e.g., the pronumeral, the operations
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of sameincf, oppositing, negativing, positiving, abbreviating, 
and unabbreviating. These terms are usually replaced by 
their more conventional counterpart in later units, e.g., the 
pronumeral becomes a numerical variable.

UICSM's materials show a concern for precise and 
subtle distinctions, e.g., the interval whose endpoints are 
A and B, respectively, designates the set of points between A 
and B in the line whereas the segment whose endpoints are 
A and B, respectively, designates the interval unioned with 
its endpoints, and carefully reflects these distinctions in 
their language. The materials also represent the belief that 
the meanings of very few terms should be "taken for granted" 
as being appreciated by the student, e.g., whereas SMSG es
sentially assumes the meaning of relation and operation,
UICSM devotes several pages of material exclusively to these 
concepts.

The definitions, usually preceded by intuitive dis
cussions of the concepts to be verbalized, are precise and 
sophisticated and often very verbose in their statement due 
to the inclusion of all the qualifying conditions. UICSM 
provides a vast number of opportunities for the student to 
construct rigorous definitions and to state precisely-worded 
theorems on his own initiative and as a vital part of his 
mathematical development.

The generalizations and principles (or theorems) are 
always accompanied (as an integral part of such) by the
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quantifiers listing their domain of application. More in
volved topics such as composition of functions, intersection 
of relations and functions, etc., can be discussed due to 
UICSM*s constantly applied vocabulary of basic set concepts 
and relations and functions.

In addition to the precise and sophisticated language 
used as a tool, a compact mathematical symbolism is intro
duced and used constantly to develop the textual exposition. 
From the very beginning, UICSM introduces and uses such sym
bolism to its fullest and seldom uses the "verbal form" to 
describe a notion previously named by a symbol.

Proof
Both SMSG and UICSM programs take proper considera

tion of the role played in modern mathematics by good crisp 
proofs. Both programs devote serious attention to the role 
of the definition, the undefined term, and the axiom (or 
postulate) in any mathematical proof and also are emphatic in 
insisting that the "truth" of a mathematical "fact" is rela
tive to the system under consideration. In both programs, 
the proofs are much more rigorous than in their traditional 
counterparts.

The critique of the SMSG materials as presented in 
Chapter ii of this paper has pointed out several characteris
tics of this program regarding its approach to proofs. SMSG's 
First Course in Algebra uses heavily the number line in the
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development of the properties of the real number system and 
establishes a few simple generalizations based upon such al
though it is not until Chapter 6  that the student sees his 
first deductive proof. Chapter 7 introduces the student to 
inductive and deductive reasoning and challenges him to pro
vide reasons for the steps displayed in a texjt-structured 
proof. Chapter 8  provides the student with proofs for the 
existence and uniqueness of identities and inverses. The 
student himself proves independently only very few theorems 
in the first year although SMSG is optimistically hopeful 
that he, in the meantime, is developing an appreciation for 
the process. The proofs in Geometry, highly algebraic in 
flavor in many instances due to the metric approach, are gen
erally complete and rigorous. Little attempt is made to 
camouflage the "gaps" in the proofs but rather to direct at
tention to these "gaps" and promote student awareness of such. 
The student is forced into the construction of proofs as soon 
as possible. (This nonattempt to "gloss over" temporarily 
inadequate proofs beyond the level of the materials but 
rather to call attention to these inadequacies is a mathemati
cally pleasant characteristic of these and other SMSG units.) 
The remaining units of the SMSG sequence present increasingly 
sophisticated proofs climaxing in the demand for very 
thorough, precise proofs in the last units. SMSG devotes 
little time to the explicit discussion of the nature of a
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good proof but rather illustrates such through the textual 
examples and discussion.

A student having studied the entire SMSG program will 
have studied and become acquainted with the various types of 
direct and indirect proofs although he will not have studied 
explicitly the formal logic involved in good proofs. No at
tempt is made to stereotype the proof forms— particular 
methods of proof are used interchangeably as deemed feasible 
and economical by the circumstances involved. Some are pre
cise , to the point, and arranged in an orderly format whereas 
others are presented in an informal, paragraph proof. In 
some instances, particularly in the later units, the concepts 
which will be handled fairly rigorously in a subsequent dis
cussion are presented in an informal fashion in the exercises 
which should serve to help the students discover ideas to be 
used in the later proofs. The number line, the number plane, 
and graphs are used whenever feasible to structure informal 
proofs. Algebraic techniques are used fairly extensively in 
Geometry and analytic techniques are used frequently in Inter
mediate Mathematics and Elementary Functions. Indirect proof, 
though utilized in some cases, is used rarely. The "proofs" 
of several concepts which can be proved most economically by 
induction are saluted by indicating that the truth of such 
concepts could be shown— as a matter of fact, proofs are rela
tively rare in the SMSG treatments. Much attention is



357
directed towards the difference in the one-proof "If 2» then 
2 "̂ theorems and the two-proof " 2  if and only if 2 " theorems.

À cursory examination of the proofs imbedded in the 
UICSM programs is likely to create the impression that the 
UICSM proofs are vastly more sophisticated and rigorous than 
those of SMSG. A more thorough examination reveals, however, 
that much of the apparent rigor is more a reflection of the 
sophistication of he subject matter content than of the 
proof form per se. As an example, UICSM insists upon de
tailed study (along with explicit verbalization) of such con
cepts as limit, continuity of functions, monotonicity, etc., 
whereas SMSG merely devotes relatively informal attention to 
such concepts. It follows, necessarily, that proofs utiliz
ing the equivalent of the ( G , S" ) definitions for limit and 
continuity will appear relatively abstract and overly un
wieldy in secondary texts. The nature of the proofs in UICSM 
is influenced somewhat by the more inclusive use (as compared 
to SMSG) of the number-pair approach to functions and rela
tions and the use of general sets rather than subsets of the
reals for the domain and range of such relations and functions.

Some differences other than these are noted which are 
reflected particularly in the emphases placed in certain proof 
forms as well as the point of entry of rigorous proofs. The
UICSM student is expected to make fairly rigorous proofs in
dependently by the end of the first semester of study and to 
formulate simple proofs even earlier. The UICSM texts display
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an early attempt to place the burden of the proof on the stu
dent. Geometry demonstrates a high regard for the rules of 
formal logic and studies such simultaneously with the subject 
of geometry. The proofs, most of which are paragraph and 
one-column proofs, for the remaining units are precise and 
rigorous and devote, as did SMSG, considerable attention to 
displaying the "gaps" in the proofs. Methods are suggested 
by which these "gaps," considerably fewer in number than in 
the SMSG units, might be filled in future studies.

The UICSM materials present more proofs regarding 
existence and uniqueness than do their SMSG counterparts.
The proofs, being less graph-oriented, are more verbal and 
thorough than those of SMSG. UICSM, after having devoted an 
entire unit to the process of induction and topics which can 
economically utilize that process, makes frequent use of 
proof-by-induction in later units. As did SMSG, UICSM avoids 
any stereotyping of proof form and uses any particular type 
of proof which is feasible and economical, e.g., the tools of 
analytics are used extensively in Geometry to prove theorems 
traditionally established by the synthetic process. UICSM 
certainly provides opportunities for the student to practice 
the preparation and presentation of rigorous mathematical 
proofs. The concept of rigorous proof seems to be central to 
the development of the ideas presented in the UICSM units.
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Concepts and Skills 

The mathematics curriculum has long been a center of 
controversy in that proponents of various schools of method
ology have disagreed as to the relationship which should 
exist in the mathematics programs between the function of 
concept development and skill development in the manipulation 
of symbols. Some have advocated that the student gains the 
full meaning of a concept only when he approaches the auto
matic response in the use of the concept while others have 
argued that such a response is not necessary for student under
standing of mathematical concepts. Opponents of modern pro
grams have insisted that such programs have neglected the 
development of skills while paying undue attention to mathe
matical structure, generalizations, and proofs. At the pres
ent time, no really exhaustive, statistically-valid study has 
been conducted (due to the vast number of variables involved) 
which will indicate the validity (or nonvalidity) of such 
claims although some studies have been conducted, e.g., the 
studies carried out by the Educational Testing Service and 
the Minnesota National Laboratory have shown that SMSG stu
dents, generally speaking, did at least as well as would be

1expected in achievement. Whether these treatments are ade
quate is a question which can be answered only after further

^School Mathematics Study Group, Newsletter No. 10 
(Stanford: Leland Stanford Junior University, 1961).



360
testing and evaluation of the progress of the students in- 
voIved.

An examination of the philosophy of the authors as 
well as the textbooks of the SMSG reveals that the develop
ment of concepts occupies a more prominent role in their pro
gram than their conventional counterparts. This does not 
preclude the development of manipulative skills in that SMSG 
insists that the acquiring of skills and the development of 
understanding of basic concepts can grow together.

Chapter II of this paper has suggested that the 
textual discussions, considerably more verbose than their 
traditional counterpart, seldom verbalize a "rule" until at 
least that usage has been recognized by the student. In only 
a relatively few instances does one find a displayed example 
of a detailed step-by-step problem-solving technique. Rather, 
the student is encouraged to analyze any given problem situa
tion and to choose the most feasible method, either direct or 
indirect, for its solution and to be able to make mathemati
cally feasible each step of the chosen technique. In short, 
the SMSG emphasis upon drill is upon meaningful drill and de
mands that students "earn the right" to manipulate symbols.

Although admittedly statistically insignificant, an 
examination of the SMSG exercises reveals several interesting 
facts. If one identifies a "drill" exercise as one which 
follows directly and without mathematically theoretical ex
tension from the textual discussion, previous exercises or
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examples, and a "discovery" exercise as one in which the stu
dent is compelled to extend the theoretical results of the 
textual discussion or to verbalize (or, at least, utilize) an 
independently-derived conclusion, corollary, or generaliza
tion, the following results appear.

First Course in Algebra contains approximately 7 3% 
drill and 27% discovery exercises ; Intermediate Mathematics 
presents approximately 8 8 % drill and 1 2 % discovery exercises; 
Elementary Functions contains approximately 80% drill and 20% 
discovery; and Introduction to Matrix Algebra displays ap
proximately 70% drill and 30% discovery. (Due to the ar
rangement of the exercises, each of the component parts of a 
numbered exercise was considered an exercise if the authors 
merited it important enough as an entity to assign an identi
fying letter to that part; the miscellaneous exercises and 
review exercises were not tabulated. This classification 
does not, in any sense, attempt to analyze the comparative 
difficulty and/or length of the individual exercises. The 
exercises in Geometry were not tabulated due to the fact that 
the stated main function of these units is the development of 
concepts.) This data would certainly indicate a preponder
ance of drill exercises but it must be noted that many of 
these exercises are actually instruments to provide drill for 
discovery exercises in which the student has independently 
recognized and formulated the working principles. SMSG, in 
its effort to develop both concepts and skills, seems to have
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devoted less space than its traditional counterparts to the 
acquisition of skills and has placed vastly more stress on 
the development of basic concepts with the optimistic belief 
that the resulting meaningful drill will be successful in 
developing the necessary skills. In the same sense, the 
study of the exercises reveals that student-directed dis
covery exercises are followed by at least several exercises 
which should serve to reinforce the involved concepts, i.e., 
in all instances, problems provide for the development of 
skill of translation as well as for furthering the under
standing of the concepts involved.

The critique presented in Chapter III of this paper 
as well as the statement of the guiding philosophy of the 
UICSM in this chapter have indicated that the entire UICSM ap
proach has been predicated on the notion that the student is 
more likely to remember that which he discovers for himself 
and that, therefore, the discovery approach is the proper one 
for students. UICSM has further recommended that its materi
als are to be pursued at a rate compatible to the capacity of 
the students involved and these materials reflect a conscious 
effort to maintain continuity of mathematical experiences.

The textual materials, considerably lengthier in dis
cussion than their traditional counterparts, continually lead 
a student from notion to notion by forcing that student to 
justify practically every sequential step from derived or ac
cepted principles with the explicit emphasis being on
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understanding of concepts. As was the case for SMSG, the 
UICSM materials seldom demand the association of a particular 
response with a particular stimulus and, in actuality, appear 
to avoid any stereotyping of any procedure. Certainly very 
few algorithms or "rules" are developed. The UICSM materials 
do exhibit many examples (structured in detail and more numer
ous than SMSG) for student consumption but the number and 
type is insufficient to lead the student to work the majority 
of the exercises. The materials are so written that, on oc
casion, it is impossible to separate the textual material from 
the exercises and hence the perusal of the textual materials 
is a requisite for the exercises, and conversely. As also 
evidenced by SMSG the UICSM authors demand a variety of 
proof forms with a total disregard for uniformity of method 
of proof but rather base the appropriateness of a given proof 
form upon the feasibility and economy of that usage.

Although a well-defined trichotomy does not exist, 
the UICSM exercises might be classified as either "drill" 
(following directly and in the same manner as an exhibited 
example or previously examined exercise), or "discovery" 
(forcing the student to extend the theoretical results of the 
textual discussions or to verbalize or utilize an 
independently-derived generalization regarding material al
ready studied), or "exploration" (in which the student exam
ines independently exercises which are to build an anticipa
tory awareness of concepts for future studies). An actual
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count (performed in the same manner as earlier indicated for 
the SMSG materials) of the exercises in alternate units of 
the UICSM sequence presents an indication of the trend in ex
ercises as evidenced hy UICSM. Unit 1 reveals approximately 
70% drill, 12% discovery, and 18% exploration exercises;
Unit 3 contains approximately 74% drill, 14% discovery, and 
12% exploration exercises; Unit 5 displays 63% drill, 27% 
discovery, and 10% exploration exercises; Unit 7 presents 
69% drill, 14% discovery, and 17% exploration exercises;
Unit 9 contains 6 8 % drill, 21% discovery, and 11% exploration 
exercises; and Unit 11 concludes the sequence with 78% drill, 
9% discovery, and 13% exploration exercises. The general 
pattern of presentation used by UICSM is the development of 
a mathematical idea followed by a large number of exercises 
to provide practice in applying the idea to theoretical mathe
matical problems. It is to be noted that the discovery exer
cises often contain as results theorems which, though to be 
independently proved by the student, are an integral part of 
the sequence. Similarly, the exploration exercises, being 
anticipatory in nature, foretell and create an awareness for 
following textual discussions.

A study of the UICSM materials indicate that the de
velopment of concepts occupies a more prominent and central 
role than the development of manipulative skills although 
UICSM professes to believe that a mathematics program should 
develop both the concepts and the necessary manipulative
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skills. Certainly, UICSM provides a multitude of exercises 
which are "drill" in nature for those wishing to use them.
It will be remembered that in the eyes of both UICSM and SMSG, 
the ability to make conjectural generalizations and then 
establish their validity (or nonvalidity) is within itself a 
desirable skill.

Social Applications 
Mathematics educators as well as practicing profes

sional mathematicians are often divided on the desirable na
ture of mathematics insofar as the emphasis to be placed on 
social applications and the purpose and nature of such appli
cations are concerned. Some feel that the clear understand
ing of a subject such as mathematics can be gained only 
through social applications whereas others feel that the 
clarity of such understanding may be dimmed by overt atten
tion to social application. This disagreement is further re
flected in the fact that some people hold that the major pur
pose of mathematics is to serve as the "hand-maiden of the 
sciences" and to function as a tool in solving the problems 
.of our society whereas others feel that the actual building 
of the mathematical tool is the more important. The structur
ing of a mathematics curriculum must, of necessity, reflect 
the author's philosophy with respect to such positions.

SMSG early admitted that mathematics is to be based 
on the needs of the society but that the rapidly-changing



366
needs of society create a practically insurmountable barrier 
to teaching society-oriented mathematics in that no person 
(or persons) could possibly anticipate the mathematical needs 
of a society of even fifty years from now. Therefore, SMSG's 
primary attention to the social role of mathematics has been 
through the avenue of correct decision making and structuring 
of valid generalizations.

This attention to good decision-making has produced 
as one of the major characteristics of the SMSG program an 
insistence on fairly rigorous generalizations and proofs.
This insistence, though not overly-demanding, has promoted 
student awareness of the role of the undefined term, the 
definition, the postulate, and the theorem in mathematical 
decision-making and problem-solving. Included in this se
quence has been a fairly simple presentation of some of the 
rules of informal logic which is so necessary in correct de
ductive reasoning. These mathematical problem-solving situa
tions , necessarily abstract in nature, have implicitly demon
strated that decision-making, if to be properly performed, 
must be done in view of the factors germane to the situation 
at hand and that such a decision is achieved by manipulating 
abstractions within a model free from environmental stresses 
and stigmas. SMSG assigns an increasingly important role to 
mathematical philosophy as a factor in the evolution of 
our society yet does not give explicit attention to such a
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role except indirectly through the desirable aspects of good 
deductive reasoning.

In terms of the total number of problems, SMSG text
books contain relatively few social applications. Occasion
ally one finds a few problems related to the physical 
sciences, e.g., falling bodies, rates, mixtures, radioactive 
decay, maxima and minima problems, the laws of cooling, and 
applications of simple harmonic equations. Fleeting refer
ences are made to the quantification of physical phenomena, 
e.g., the laws of exponential growth and decay illustrating a 
use for logarithmic and exponential functions. Even the unit 
on matrices— a unit rich in potential exhibitions of such 
references— uses only few examples from the lives of the stu
dents to point out the existence of social applications and 
then omits further consideration of such. (The chapters de
voted to vectors do present numerous problems dealing with 
forces, velocities, work, etc. However, one gains the im
pression that such a consideration has as its purpose the ex
position of the assumed isomorphism between the mathematical 
system of vectors and the physical system of forces rather 
than the exhibition of the social applications of forces per 
se.) This is not to say that problems of the social nature 
and worded in environmental language are not present—  
actually at least 267 such are found in First Course in Alge
bra— but rather to imply that SMSG does not devote undue
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attention to the role of mathematics in helping one under
stand his environment.

UICSM, in the adoption of a policy similar to that 
advocated by SMSG regarding the social application of mathe
matics , recognizes early in Unit 3 the application value of 
mathematics by including numerous exercises on the subject. 
Such an inclusion covers many areas and tends to require 
critical thinking as well as careful analysis. The emphasis 
is entirely upon mathematical principles ; social application 
seems merely to illustrate them and it is clear that the 
variety of applications is of secondary importance. In the 
remainder of the units, UICSM, in general, does not use 
social applications of mathematics to motivate the study of 
ideas and to develop basic principles. Often, however, new 
sections of study are introduced by means of an allusion to a 
nonmathematical field to show where this particular topic 
might be applied with the sciences being used exclusively in 
this respect.

The exercises themselves which are of an "applied" 
nature quite often do more than simply state a situation in 
environmental terms but rather include scientific facts in 
their statement, i.e., physical principles are often stated 
as working assumptions. Although it is somewhat out of con
text in the UICSM materials. Unit 9 produces a quite dramatic 
presentation showing how mathematical models often can be ab
stracted from empirical data and then used to quantify and
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predict physical phenomena, e.g., the study of Gay-Lussac's 
laws for gasses, absolute temperature, isopiestic and iso
thermal conditions, the general gas laws, radioactive decay, 
Newton's law of cooling, and transient currents in simple 
circuits. Implicit in this discussion is the role of mathe
matics in the development of the sciences although little 
direct attention is paid to the importance of mathematical 
thought in philosophy and as a factor in the evolution of our 
society. The emphasis, however, is still on the mathematical 
principles involved.

As did SMSG, UICSM pays careful attention to the proc
ess of logical reasoning in mathematics and hopefully expects 
the transfer to the social environment. Special attention is
directed to the role of the definition, the postulate, and

_ >

the theorem in decision-making. Considerable emphasis is 
placed upon the rules of formal logic and the associated sym
bolism. The many examples illustrating that intuitive short
comings, environmental differences, and lack of precise com
munication vehicles may create problem-solving difficulties, 
seem to portray the role played by correct deductive reason
ing in the physical world, although UICSM directs little ex
plicit effort toward that particular usage of mathematics. 
UICSM does, however, adequately indicate that decision-making 
is essentially the manipulation of abstract entities which 
represent, in many instances, concrete objects and which, in 
other instances, represent abstractions.



CHAPTER V

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Statement of Problem
The problem for this study was stated in the form of 

the following questions:
1. What are the major features of the SMSG and the 

UICSM programs insofar as guiding philosophies, 
placement of materials, attention to mathematical 
structures, methods of presentation, vocabulary, 
proofs, development of concepts and slcills, and
attention to social application are concerned?

2. What are the major similarities and differences
between the UICSM and SMSG programs insofar as 
guiding philosophies, placement of materials, at
tention to mathematical structures, methods of 
presentation, vocabulary, proofs, development of 
concepts and sXills, and attention to social ap
plications are concerned?

The primary purpose of the study was to prepare an analysis
of the SMSG and UICSM secondary programs so that a teacher or
curriculum director contemplating the usage of one of these
two particular secondary mathematics programs might make a
more intelligent decision in terms of the criteria discussed
in the statement of the problem and determine which of the
programs is better suited to their particular situation.

370
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Procedure

The general procedure utilized in the completion of 
this study involved several steps. (1) In addition to the 
survey of available pertinent literature, a study was made of 
the history of the programs and particularly the guiding and 
motivating philosophies of the two groups. (2) The several 
newsletters of both groups were examined thoroughly in order 
that the writer might gain an "historical" perspective as to 
the developmental efforts and problems of the two groups.
(3) Careful study was directed toward the textual discussions 
of the student textbooks; practically every exercise in both 
programs was solved and analyzed. (4) A thorough study of 
the commentaries was conducted with careful attention being 
pair to teacher-directed comments identifying the beliefs of 
the sponsoring groups as to the desirable role of mathematics 
in the secondary curriculum, the rationale motivating the ap
proaches, and the suggested pedagogical devices. (5) The 
characteristics of the prepared materials of the two groups 
with respect to the variables identified in the statement of 
problem were evaluated for each unit within each program as 
well as the separate total programs, thus permitting identifi
cation of the major differences and similarities of the two 
programs with respect to each of the study variables.
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Summary

Philosophies of the Authors 
This study has shown that the guiding philosophies of 

the groups preparing the UICSM and SMSG programs with respect 
to the characteristics of a desirable secondary mathematics 
program were so nearly equivalent as to be identical although, 
in some instances, their techniques of implementation differed. 
In the eyes of both groups, the successful and desirable mathe
matics curriculum must create student appreciation of some of 
the ideas and methods of exploration and generalization basic 
to the work of the contemporary mathematician, must display 
and take account of the increasing demand upon mathematics by 
present and future scientific and technological strides as 
well as to reflect the tremendous advances and exponential 
growth of the discipline itself, and must develop an under
standing of the role of mathematics in our society. Further
more, this curriculum must be developed and so taught that 
the student, although presently unable to ascertain the total
ity of the uses to which his mathematical knowledge might be 
applied in the future, will be able in later life to extrapo
late his present skills and to learn the new mathematical 
skills which shall be demanded of him in the increasingly 
complex society of the future. Both groups apparently were 
dedicated to the belief that the basic ingredient of such a 
curriculum must be the recognition of the logic of the
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mathematics studied by the student and that the eventual suc
cess or failure of their programs depended upon the achieve
ment or nonachievement, respectively, of such.

Both groups subscribed heavily to the tenet that the 
desirable outcomes of a successful mathematics curriculum 
should be interested, enthusiastic students who, whether 
college-bound or not, simultaneously possess a deeper under
standing of the basic concepts and structures of mathematics 
and are well-grounded in the basic mathematical skills re
quisite to the utilization of such understandings. Both 
groups evidently subscribed to the premise that the construc
tion of such an understanding-oriented curriculum should re
sult in the mathematical literacy needed by both the profes
sional mathematicians and the lay citizenry of the society. 
Both groups optimistically postulated that fewer students 
will be repelled by such a curriculum than would have been by 
the conventional manipulation-oriented curriculum.

Placement of Materials
This study has shown that the SMSG units, despite 

their many provocative and invigorating mathematical and 
pedagogical innovations, introduced, prior to the unit on 
matrix algebra, very little basic mathematical content not 
common to traditional secondary curricula. The ninth-grade 
First Course in Algebra contained essentially the same basic 
mathematical material as the traditional ninth-grade algebra
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textbook; the tenth-grade Geometry was basically a study of 
Euclidean plane and solid geometry; and the eleventh-grade 
Intermediate Mathematics and the twelfth-grade Elementary 
Functions dedicated themselves to the comparatively more 
rigorous and inclusive development of concepts and techniques 
usually reserved for second-year algebra and trigonometry.
The twelfth-grade Introduction to Matrix Algebra, however, 
was completely new to the student and the secondary curricu
lum. Interwoven into this sequence of units was a spiral 
study of the set of real numbers involving increasingly 
sophisticated and rigorous discussions, concepts, and proofs.

Similarly, the UICSM. sequence introduced only a few 
really new mathematical topics to the secondary curriculum. 
However, UICSM‘s presentation placed emphasis upon various 
areas not heretofore emphasized in the traditional secondary 
programs, e.g., mathematical induction, formal logic, and se
quences, and at the same time, minimized other areas, e.g., 
solid geometry; utilized new mathematical approaches and 
pedagogical techniques, e.g., a highly algebraic treatment of 
Euclidean geometry; and dramatically rearranged the order of 
introduction of various topics. UICSM also constructed an 
increasingly-sophisticated spiral development of the system 
of real numbers.

A major difference in the two programs was noted in 
the basic arrangement of the component units. The various 
SMSG units were constructed for specific grade-level
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consumption, i.e., First Course in Algebra was intended for 
ninth-graders and Geometry was intended for tenth-graders, 
etc., and, as such, inadvertently conveyed the impression of 
being "separate-subjects" presentations. The units were so 
constructed that a student would experience only a minimum of 
difficulty in entering the SMSG sequence at any particular 
grade level although such is not recommended by the authors. 
The basic unity of mathematics was, in a sense, illustrated 
by the final unit Introduction to Matrix Algebra which served 
as a unifying "capstone" to the entire sequence.

The UICSM units, however, were written to form a 
thoroughly integrated and sequential course of study with the 
eleven component units being viewed as "chapters" in a single 
book entitled High School Mathematics. The appropriateness 
of the study of any unit was to be based upon mathematical- 
experience levels rather than grade levels and, therefore, 
grade placement of the units could be resolved in a variety 
of ways. Generally speaking, the UICSM sequence was con
structed so as to create a smooth flow of mathematical con
cepts thus not conveying the idea of the "compartmentaliza- 
tion" of mathematics into relatively disjointed areas of con
centration. The nature of the units would make it compara
tively difficult for a student to enter the program at an in
termediate position although better students might do so if 
provided some orientation as to the nature of previous units.
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Since the basic mathematical contents of tne two pro

grams were essentially equivalent (with some exceptions to be 
mentioned later), the major similarities and dissimilarities 
in the subject matter content of the two programs lay in the 
order and time of presentation and the emphasis placed upon 
component concepts. For the purpose of this study, several 
areas of comparison were chosen which were somewhat illustra
tive of these variables.

Both SMSG and UICSM relied heavily upon the language 
and application of elementary set theory and used such at 
every opportunity at which such usage was feasible and eco
nomical. However, although the SMSG sequence introduced sets 
and terms such as is an element o f , is a subset of, union, 
intersection, etc., frequently, SMSG seldom did more than 
verbalize these concepts, and until the last units, little 
attention was directed toward incorporating the associated 
symbolism into the exercises and textual discussions. Little 
attention was directed to such set notions as that of the 
Cartesian product. On the other hand, UICSM, although not 
using sets per se until Unit 3, made heavy and formal demands 
upon the language of sets and the associated symbolism. The 
UICSM units fairly bristled with set language and symbols 
using the set-builder notation as a basic vehicle of communica
tion. Practially every generalization was stated in set- 
language with maximum utilization of symbols. The Cartesian 
cross-product was used frequently to authorize and implement
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such tools as relations, functions, number planes, lattices, 
etc.

SMSG, in its approach to the study of algebraic ex
pressions, considered the variable to be a numeral represent
ing a definite, though unspecified, number from a given set 
of admissible numbers. In its analogous development, UICSM 
first introduced a pronumeral to be a symbol holding a place 
for (or which could be replaced by) a numeral. Later units 
in UICSM defined a variable as simply a pronoun having any 
set of elements as domain; hence a pronumeral is a numerical 
variable. In essence, where SMSG considered a variable to be 
a numeral, UICSM held that a variable was a placeholder for 
the name of any object and reserved the pronumeral as a place
holder for numerals.

Both UICSM and SMSG depended heavily upon the real 
number line, the real number plane, and graphs. Their differ
ent constructions of such entities forced associated language 
differences into the texts. SMSG, postulating a one-to-one 
correspondence between the set of real numbers and the points 
on a straight line, used the real numbers to coordinatize a 
straight line called the real number line ; the graph of a set 
was the set of points on the real number line whose coordi
nates were the numbers of that set. Similarly, SMSG con
sidered the real number plane to be the "geometric" plane co- 
ordinatized by ordered pairs of reals and the graph of a two- 
variable sentence to be the set of all points of the plane
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whose 'coordinates satisfied the sentence. UICSM defined the 
real number line to be the set of all real numbers and the 
real number plane to be the Cartesian square of the reals, 
i.e., the set of all ordered pairs of reals. The graph of a 
sentence was the set of all "dots" on a "number line picture" 
(or "number plane picture") which were pictures of numbers 
(or pairs of numbers) forming the truth set of the sentence.

SMSG, although making frequent use of relations such 
as equals, greater than, less than, etc., used relation as an 
undefined term with little attention to explanation. UICSM 
directed a significant amount of explanation to the concept 
and defined a relation to be a set of ordered pairs (not 
necessarily real numbers) of elements, i.e., a subset of the 
Cartesian cross-product of two sets, and placed heavy depend
ence upon relations and their properties in its later defini
tion of function. The extensive use of number-pairs was a 
significant characteristic of the UICSM materials.

The first two years of the SMSG sequence used the 
number line to define the less than relation for the reals by 
stating that a <  b if and only if a is to the left of b on 
the number line; the later units used the more sophisticated 
and abstract notion that a b if and only if there existed 
a real positive number c_ such that a + c = b. UICSM, early 
in its sequence, introduced and utilized the number-pair 
definitions of the less than relation to be {(x, y ) €  
R X R ; y - x i s a  positive numberJ •
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In its many uses of the function, SMSG considered a 

function from set A to set B to be a correspondence of the 
elements of set A and set B such that to each element of A 
there corresponded exactly one element of B. Most of the 
functions in the early units were real-valued with a function 
being considered as a mapping only in the last two units.
UICSM initially considered a function from set A to set B to 
be the set of ordered pairs (with the first component of each 
being an element of set A and the second component of each 
being an element of set B) no two of which have the same 
first component. This view of a function was followed prac
tically immediately (and used extensively thereafter) by the 
consideration of a function as a mapping from its domain to 
its range, with the domain and range being general sets and 
not necessarily sets of real numbers.

Both programs directed an appreciable amount of time 
to exhibiting the structure of number systems and the examina
tion of the operation and rules defined on these systems.
SMSG, in its interwoven discussion of the operations, essen
tially regarded the term operation as an undefined one and 
paid little or no attention to the existence and role of 
operators. UICSM, directing explicit and lengthy attention 
to a more abstract discussion of the many operations involved, 
used a variety of techniques to define operations, e.g., an 
operation (such as adding 3) may be considered a set of or
dered pairs no two of which have the same first component, a
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sinqulary operation on a set S is a mapping of a subset of S 
onto a subset of S , and a binary operation is a mapping of 
the Cartesian square of S onto a subset of S.

Both of -che programs spent appreciable time in their 
spiral examination (spread across several units) of the exten
sion of number systems although their approaches varied.
Both groups essentially postulated the system of arithmetic 
numbers and then carefully examined the properties of that 
system. In the extension from the system of arithmetic to 
the system of reals and then from the system of reals to the 
system of complex numbers, SMSG, in each instance, constructed 
a new system such that the initial system was a proper sub
system of the new system, i.e., £ arithmetic numbers}Q
{ real numbers } —  fcomplex numbers} . UICSM, however,
utilized a more sophisticated extension method in that its 
study "extended" an intial system by constructing a new sys
tem such that the initial system was isomorphic to a proper 
subsystem of the new system, i.e., the system of arithmetic 
numbers was isomorphic to (but not equal to) the set of non
negative reals and the set of reals was isomorphic to (but 
not equal to) the system of complex numbers of the form 
a + bi, a a real number.

These different approaches to the extension of number 
systems forced different approaches to various concepts, e.g., 
the construction of the negatives. SMSG initially introduced 
the negatives as being labels for points on the left-half of
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the number line since the positives played the role of being 
labels for those on the right-half. UICSM introduced the 
"right-reals" and the "left-reals" as being measures of the 
directed distance of points to "the right of" or "to the 
left of" the origin, respectively, on the number line. UICSM, 
due to its insistence that the set of arithmetic numbers was 
not the set of nonnegative real numbers but rather that the 
system of arithmetic numbers was isomorphic to the system of 
nonnegative reals, distinguished between right-reals and 
positives. Both groups granted a highly utilitarian role to 
the opposite.

Both groups utilized the absolute value quite heavily 
in the statement of generalizations. SMSG considered the 
absolute value of a nonzero real number to be the greater of 
that number and its opposite with the absolute value of 0 _ de
fined to be 0. In the eyes of UICSM, the absolute value of a 
real number was the number of arithmetic corresponding to the 
number (or its opposite if the number is negative) under the 
isomorphism between the system of arithmetic numbers and the 
system of nonnegative reals ; hence the absolute value of a 
real number is not a real number.

Insofar as the arithmetic operations on the reals 
were concerned, SMSG used a number-line interpretation for 
addition with the subtraction of a number b being defined as 
the addition of the opposite of b. Multiplication was defined 
so as to phrase a meaning for the product in such a way that
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its meaning would agree with the results of the addition 
operation; division by b (h ^ 0 ) was defined as the product 
by the reciprocal of b. UICSM used number-line interpreta
tions and other environmental situations to create nonverbal 
awareness of the desirable properties of the operation and, 
as did SMSG, relied upon the notion of inverse to define sub
traction and division.

Although SMSG and UICSM both made extensive use of 
the limit, their approaches and degree of sophistication dif
fered. SMSG essentially assumed that the limit of a function 
of X as X approaches some â  is L if and only if f (x) gets 
"arbitrarily close" to L as x approaches â . The discussion 
of limits, as presented by SMSG, could be easily amended to 
the conventional { & , S ) form if desired but the authors 
evidently felt that the informal discussion was sufficient. 
UICSM, however, employed a very sophisticated verbalization 
(and provided practice in its usage) essentially employing 
the (£ , S  ) notion of the limit.

SMSG did not concern itself with a formal definition 
of continuity and used graph-oriented approaches to illus
trate the concept, e.g., a function is continuous in an in
terval if its graph has no "holes" or "gaps" within the in
terval . The UICSM attack on continuity of a function at a 
point a was a rigorous function-based definition that de
manded the existence of the function at x = a and that the 
limit of f(x) as x approaches a be f(a).
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Although SMSG concerned itself implicitly with demon

strating good decisions and the rules of decision-making, no 
direct attention was given to the study of formal logic.
UICSM furnished its student with a thirty-eight page appendix 
(to he studied in conjunction with the unit on geometry) 
dealing with the rules of reasoning and the simpler principles 
of logic.

Although the units involved many theorems which can 
he rigorously established only hy induction, SMSG’s approach 
to the mechanics of mathematical induction was informal with 
little special attention to the process until an appendix of 
Unit 21. UICSM Unit 7 dealt extensively with the process of 
mathematical induction and forced induction to play a vital 
role in the remainder of the units. A particularly heavy re
liance upon mathematical induction was noted in the UICSM 
Unit 8  treatment of sequences.

In the topics dealing with conics, SMSG utilized the 
focus-eccentricity-directrix approach to the study of conics 
and restricted itself to the study of nonslant conics. UICSM 
defined the ellipse, hyperbola, and parabola as the locus of 
a point the sum of whose distance from two fixed points is 
constant, the difference of whose absolute distance from two 
fixed points is constant, and the distance from a fixed line 
and a fixed point is constant, respectively, but examined 
canonical forms for the equations of both slant and non-slant 
conics.
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The SMSG study of the complex numbers, motivated by

2 2 the empty solution set of ax + bx + c = 0 if b - 4ac 0,
involved an extension of the system of reals to the system of 
complex numbers which includes elements (designated alter
nately by SMSG as a + b i , (a, b) , and r (cos 9 + i sin 9) )
such that the system of reals is a subsystem of the complex

2number system and the solution set of ax + bx + c = 0  is
always nonempty. UICSM's analogous study was based on the
number-pair approach and involved constructing a system C 

2such that ax + bx + c = 0  will always have a nonempty solu
tion set and such that the system of reals will be isomorphic 
to a proper subsystem of C.

Both SMSG and UICSM constructed an iterative algo
rithm to approximate the square root of a positive real, 
i.e., if y^ is an approximation to sfîT, then y^ = (y^ + 
x/ŷ )̂ /2 is a better approximation. SMSG ' s treatment of the 
algorithm was informal; UICSM directed attention to degrees 
of approximation and the estimation of errors in the process.

SMSG and UICSM both sponsored studies of primes and 
composites as an aid in determining greatest common divisors 
and least common multiples, the factorizations of polynomial 
expressions, and simplification of fractions. UICSM's treat
ment was the more thorough and rigorous of the two and empha
sized the number theory of the study of primes and composites.

SMSG's Geometry, a one-year set-oriented, algebraic- 
flavored study of geometry (both plane and solid) based on
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the postulate scheme proposed by G. D. Birkhoff, reflected 
the SMSG belief that Euclidean geometry deserves its promi
nent place in the secondary curriculum and, consequently, 
presented a treatment which, though full of innovations, was 
fairly traditional. UICSM's Geometry, a one-semester, set- 
oriented, algebraic-flavored study based on the postulates of 
David Hilbert, covered most of the topics common to tradi
tional plane geometry courses and was characterized and facili
tated by the early introduction of coordinate geometry.

SMSG's Geometry, reflecting SMSG's belief that some 
consideration should be given to solid geometry, contained a 
few chapters dealing with a set-oriented approach to the study 
of solid geometry. UICSM, apparently dedicated to the belief 
that solid geometry deserves little prominence, devoted only 
an appendix discussion in Unit 9 to any of the topics of 
solid geometry and even then did little more than justify in 
a nonrigorous fashion some of the mensuration formulas asso
ciated with such a study. Both SMSG and UICSM presented 
circular-function-oriented studies of trigonometry which de
emphasized the solution of right triangles and logarithmic 
computation. Both studies were characterized by precise lan
guage, abundant usage of radian measure, and analytic tech
niques. UICSM devoted an entire unit (Unit 10) to the study 
of trigonometry as a study of circular functions; SMSG de
voted four weeks of study in Unit 18 and five weeks in Unit 21
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to the study of topics traditional to the study of plane 
trigonometry.

Although both programs utilized symbolism frequently, 
the UICSM texts relied more heavily on the symbols ordinarily 
used in logic and traditionally reserved for higher courses 
in mathematics. The UICSM symbolism conveyed more precise 
and detailed distinctions than that of SMSG and the UICSM 
materials, seeming never to use a word to communicate a no
tion when a symbol was available, displayed a more prevalent 
usage of symbols than those of SMSG.

The major mathematical content unique to SMSG (as op
posed to UICSM) was the inclusion of vectors, vector algebra, 
and vector techniques (culminating in the examination of the 
axioms for vector spaces) in the eleventh-grade units, and 
the unit on matrix algebra (Unit 23) dealing with matrix op
erations, the algebra of 2 x 2 matrices, linear systems, 
matrix interpretation of the algebra of vectors, etc. The 
unit on matrix algebra served as a vehicle for discussing the 
axioms for fields, groups, and rings, and to emphasize re
peatedly the structure of mathematics. In order to gain the 
time to be used for these topics which UICSM did not pursue, 
SMSG was willing to accept informal proofs of many theorems 
proved with sophisticated rigor by UICSM and to sacrifice 
thorough time-consuming discussions of many topics which 
UICSM pursued with enthusiasm, e.g., sequences, relations.



387
induction proofs, limits, continuity, existence theorems, 
logic, and number theory.

Attention to Mathematical Structures
When compared with conventional treatments of second

ary mathematics, both the SMSG and the UICSM texts were 
characterized by their attention to mathematical structures.
In both treatments, it was evident that the display of the 
logical structure of mathematics was of paramount importance 
since each group directed an appreciable percentage of its 
efforts to the study of the structure of mathematical systems 
and the interrelations of the various mathematical systems 
considered.

SMSG's extension of number systems and the analysis 
of the shared properties of such systems were imbedded in a 
sequence of materials which saw each abstract system con
structed, its algebraic properties examined and generalized, 
and that system then imbedded in a more inclusive system of 
which the particular system was a subsystem. The component 
systems were examined from the point of view of their basic 
structural properties with careful attention directed to the 
display and generalization of the properties shared by the 
various systems. At various points in its sequence, SMSG 
directed attention to the naturals, the wholes, the rationale, 
the reals, the complex numbers, and, finally, the system of 
matrices.
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UICSNL likewise spent considerable time in construct

ing and displaying extensions of mathematical systems al
though utilizing a slightly different approach to the study 
of the shared properties of these systems. The UICSM exten
sion of systems involved the examination of a particular ab
stract system (along with the generalization of its proper
ties) followed by the construction of a different, more- 
inclusive system such that the particular system was iso
morphic to a proper subsystem of that more inclusive system. 
The UICSM array of extensions initiated in the extension from 
the arithmetic numbers to the reals and culminated in the 
development of the complex number system. The axiomization 
of the reals was followed by studies which "sifted" the posi
tives from the reals, the integers from the reals, the ra
tionale from the reals, etc., and which essentially examined 
the special properties which some kinds of reals possess and 
which other kinds of reals do not.

Methods
It has been shown that both groups were dedicated to 

the value of the discovery approach in the teaching of mathe
matics. Both groups insisted upon student understanding and 
have advocated that a student's understanding would be maxi
mized if he has a part in the development of that which he 
pursues.
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In the main, SMSG presented the great bulTc of its 

mathematical content through a comparatively verbose textual 
presentation which carefully led the student through concept 
discoveries. However, the student was usually given an oppor
tunity to verbalize the gained concept prior to its statement 
by the text. Generally, new concepts were introduced by cit
ing examples, forming conjectural generalizations, and then 
deductively proving the generalizations. Often several con
cepts were generalized simultaneously. These generalizations 
were usually verbalized and displayed fairly quickly after 
formulation. Although such was not always the case, the 
exercises were generally independent of the textual content- 
development sequence since they seldom involved an extension 
of the basic mathematical theory being exposed. This does 
not imply that the exercises were never exploratory in nature 
but rather that they served, on occasion, in an enrichment 
role as well as a concept-reinforcing one.

The UICSM program particularly represented the belief 
that the learning process was aided if the student discovered 
the principles and rules for himself. The UICSM general 
exercises, usually directed to the content directly at hand, 
served the roles of reinforcing the concepts already gained 
and often to extend the mathematical theory already studied 
through the proof of theorems to be used in future proofs.
The prevalent Exploration Exercises were constructed to point 
out inadequacies of existing systems, to formulate desirable
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properties to be demanded of new systems and techniques, and 
to promote student curiosity and awareness regarding topics 
to be studied in the near future. Such exercises demanded 
that the student play an active part in the development of 
the concepts. In brief, the UICSM textual discussions, 
general exercises, and Exploration Exercises formed an inte
grated continuum no part of which could be omitted. The 
UICSM units also exhibited the belief that it was not neces
sary that a student verbalize a discovery immediately but 
rather that he might possess nonverbal awareness of a concept 
and manipulate it prior to its naming and verbalization. The 
UICSM method of presentation of mathematical concepts could 
be characterized by the three steps of experimentation, ob
servation, and generalization.

Vocabulary
When compared with their conventional counterparts, 

both SMSG and UICSM units were characterized by a concern for 
a precise, mathematically-sophisticated, unambiguous language 
although UICSM directed more explicit consideration to the 
discussion of the need for such. Both programs used set lan
guage consistently, stated all generalizations with appropri
ate quantifiers, differentiated between number and numeral, 
set and measure of set, etc. SMSG used basically the lan
guage commonly used by contemporary mathematicians and often 
used terms whose formal definitions were evidently thought to
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be beyond the comprehension of the student without formal, 
overly-sophisticated verbalization. No overt concern with 
symbolism was noted. UICSM, on the other hand, frequently 
"coined" terms to describe concepts in such a way that the 
name conveyed the potential use of the term and seldom as
sumed the meaning of any term without direct and precise at
tention. The UICSM language drew finer lines of distinction 
in many more instances than did SMSG, e.g., UICSM distin
guished between the interval AB, and the segment AB (contain
ing A and B). From the very beginning, UICSM introduced and 
exploited symbolism to its fullest.

Proofs
The SMSG and the UICSM units were characterized from 

the very beginning by attention to "good" proofs which were 
significantly more precise and more rigorous than those of 
their traditional counterparts. Both appealed to the role of 
the undefined term, the definition, the postulate, and the 
theorem in good decision-making. Both groups utilized vari
ous forms of both direct and indirect proofs and avoided the 
stereotyping of proof forms since they used any particular 
type of proof which was economical and feasible at the point 
of discussion, e.g., both groups utilized a more highly alge
braic approach to geometry than evidenced in the traditional 
programs. It was significant that, in addition to presenting 
a multitude of good proofs, both groups attempted to promote
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an awareness of the "holes" and "gaps" (fewer in number in 
the UICSM texts than in the SMSG texts due to the intensity 
of the UICSM presentation and the concentration on fewer 
topics) in certain nonrigorous proofs necessitated by the 
sophistication of the concept involved. Both groups made 
frequent use of the number line and also the number plane to 
make intuitive generalizations which were then formalized 
into fairly crisp proofs. The concept of rigorous proofs 
seemed to be central to the development of both programs and, 
in both sequences, the student was led always to authorize 
his manipulation of symbols and to be able to support his 
generalizations.

However, several differences were noted in the proofs 
included in these two programs. Generally, UICSM expected 
precise and rigorous proofs earlier- in its sequence than did 
SMSG, e.g., UICSM expected fairly rigorous proofs by the end 
of the first semester of study. More attention was paid by 
UICSM to the rules of formal logic. The language used by 
UICSM was more rigorous and discerning than that of SMSG, 
e.g., UICSM demanded that attention be directed to formal 
discussions of relations, operations, limits, and continuity 
whereas SMSG was willing to accept such terms as being some
what undefined. UICSM's number-pair approach to relations 
and functions and its consideration of a multitude of non- 
real-valued functions and relations influenced the nature of 
its proofs. UICSM made a more prevalent usage of symbolism
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in its proof forms than did SMSG. The precision and sophisti
cation of the language made the UICSM proofs appear more in
volved and unwieldy than those of SMSG although the basic dif
ference might lie in the subject matter rather than in the 
proof vehicle. The UICSM texts reflected a greater concern 
for uniqueness and existence proofs than did those of SMSG.
The coordinate plane and the associated analytic tools were 
introduced earlier and used more extensively by UICSM than by 
SMSG. UICSM made an oft-employed tool of the theory of mathe
matical induction whereas SMSG hardly made use of the imple
ment. UICSM early placed the burden of the proof on the stu
dent whereas SMSG usually led the student through the proof 
by posing well-framed leading questions and by suitable tex
tual discussions.

Concepts and Skills 
Although including a great number of drill exercises, 

SMSG devoted less space than its traditional counterparts to 
the acquisition of manipulative skills and placed high empha
sis on the development of basic concepts. SMSG hopefully 
postulated that less drill is needed to develop basic skills 
if that provided drill is meaningful in nature and based on 
an understanding of the process. In all units, however, many 
exercises were provided which should reinforce and develop as
sociated skills with respect to the involved concepts and 
techniques. Many of these exercises were, in reality.
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exercises providing drill for concepts developed in discovery 
exercises in which the student had independently recognized 
and formulated the concept and/or working techniques. The 
sets of exercises were seldom stereotyped in form and ap
proach .

Although UICSM postulated that a mathematics program 
should develop both the concepts and the manipulative skills, 
it was evident that the development of concepts played a more 
prominent and central role than the development of manipula
tive skills although a veritable multitude of drill exercises 
were presented (in greater abundance than in the SMSG units) 
for those desiring to use them. The texts contained as an 
integral part of the sequence exercises which forced the stu
dent to produce theorems which were a vital part of the con
tent development. Many of the drill exercises, seldom stereo
typed in nature, reinforced those concepts independently dis
covered by the student. UICSM demanded that all drill be 
based on understanding and that, hence, less formal drill was 
necessary.

Both groups, therefore, placed a premium on under
standing of concepts which authorize meaningful drill. Fur
ther, in the eyes of both groups, the ability to make and 
validate conjectural generalizations was within itself a de
sirable skill and conscious effort was directed toward the 
development of that skill.
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Social Applications 

Both SMSG and UICSM, although admitting that mathe
matics is to be based on the present and future needs of so
ciety, utilized relatively few exercises exhibiting what might 
be referred to as social application and devoted only a minor 
part of the textual discussions to the role of mathematics in 
the exposition and understanding of the environment. This is 
not to imply that exercises of a social nature (and worded in 
an environmental language) dicT not appear but rather that the 
two groups did not devote a disproportionate amount of effort 
in helping one understand his environment and to solve prob
lems of a social nature. Their major contributions in this 
respect were imbedded in the fact that both groups directed 
special attention to the role of the definition, the postu
late, and the theorem in decision-making was well as the in
formal logic so necessary in correct deductive reasoning. In 
both programs, the authors seemed to optimistically hope for 
the transfer of such logical reasoning based on a sound mathe
matical background and the appropriate mathematical model 
whenever needed by the social environment.

Conclusions
Due to the multiplicity of intermediate variables in

volved, a precise statement of the major differences and 
similarities of the two programs with respect to the variables
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identified for this study was difficult although some general 
conclusions were justified by the study.

1. The guiding philosophies of the SMSG and UICSM 
were so nearly equivalent as to be identical in 
that both groups predicated their efforts upon 
the need for a mathematically-informed.population 
whose meînbers not only possess the basic mathe
matical skills but also a deeper understanding of 
the basic mathematical concepts and structures of 
mathematics.

2. Insofar as basic mathematical content was con
cerned, the SMSG authors appeared willing to 
sacrifice some sophistication and depth of exami
nation of certain concepts in order to include 
brief discussions of topics such as vectors, 
matrices, and the postulates for groups, rings, 
fields, and vector spaces, as well as all the 
topics common to traditional programs. The UICSM 
materials (built more as an integrated continuum 
of mathematical experiences than are those of the 
SMSG) were characterized by intensified attention 
to the basic concepts and, as a result, have a 
more narrow scope of basic content than those of 
SMSG.

3. The spiral approaches used by SMSG and UICSM to 
the study of the real number system and their 
constant analyses, comparisons, and extensions of 
mathematical systems made it evident that atten
tion to mathematical structures and the exhibi
tion of the logical structure of mathematics were 
of paramount importance in the eyes of both 
groups.

4. Both SMSG and UICSM were dedicated to the notion 
that a student understands better that which he 
helps discover and develop and, consequently, 
both groups employed the discovery method. SMSG, 
through the use of lengthy textual discussions, 
led the student to formulate and validate generali
zations which usually were verbalized fairly 
quickly; UICSM, through leading questions (which 
the student must answer) and exercises often in
volving independent proofs of theorems, demanded 
individual student exploration and promoted stu
dent awareness and appreciation of concepts prior 
to their formal verbalization.
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5. SMSG and UICSM made maximum usage of precise lan

guage and descriptive vocabularies ; SMSG generally 
used the language employed by contemporary mathe
maticians whereas UICSM frequently invented new 
descriptive terms which were often more discerning 
than those of SMSG.

6 . Both SMSG and UICSM reflected a proper considera
tion of the role played in mathematics by good 
proofs ; both groups avoided stereotyping of proof 
forms and utilized various proof forms whose 
usages were dictated only by economy and feasi
bility. The UICSM proofs were, in general, more 
intensified and discerning than those of SMSG due, 
in part, to the fact that UICSM was often con
cerned with some of the comparatively sophisti
cated concepts whose validity SMSG was willing to 
assume in order that the necessary examination 
time be spent exploring new concepts.

7. Both SMSG and UICSM hopefully developed both 
basic concepts and the associated manipulative 
skills although they definitely devoted less 
space than their traditional counterparts to the 
acquisition of skills and placed vastly more 
stress on the development of basic concepts.

8 . Although SMSG and UICSM demanded that mathematics 
play a heavy social role, their primary attention 
to the social role of mathematics has been through 
the avenue of correct decision-making and their 
textbooks contained relatively few problems di
rectly reflecting social applications.

Recommendations
In view of the impressions gained in this study re

garding the efforts of the SMSG and UICSM teams, the writer 
of this paper would offer the following recommendations :

1. No person contemplating the teaching of either of 
the programs should do so unless he is definitely 
in agreement with the philosophies guiding the 
two writing teams. The discovery approach uti
lized by UICSM and SMSG units demands the utmost 
cooperation between the textbook and the teacher- 
directed classroom experiences if the program is 
to be even moderately successful.
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2. Since a potential teacher's reaction to these two 

programs is very likely to depend on his prepara
tion to teach them, it would he well for a person 
contemplating the adoption of such a program to 
review briefly his own academic qualifications, 
willingness to learn, and inclination to modify 
his past approaches if changes in such are neces
sary.

3. The teacher contemplating the adoption of either 
of these programs should view and examine the se
quences as a continuum of experiences rather than 
as a series of separate units since the nature of 
the units are such that, in a sense, the sum of 
the parts is less than the whole.

4. The person contemplating the adoption of either 
of these programs should do so only after he has 
considered the objectives of his curriculum.

5. The prospective teacher of either of these modern 
programs should understand and be able to clarify 
the role of mathematics in the development of the 
individual and his society.

6 . The person contemplating the adoption of either 
of the two programs should be cognizant of the 
fact that neither of the programs was prepared to 
be the final answer to all the problems of mathe
matics curriculum but rather to reflect the
thinking of these particular groups as to the na
ture of a desirable curriculum and to serve as 
definitive guideposts for other authors.

Suggested Areas for Further Research
This study recognizes the relevance of several theo

retical questions which arise from the study of the background 
of the problem, the survey of pertinent literature, and the
analyses of the SMSG and UICSM secondary programs. These
areas, definitely nonindependent in nature, might well be 
considered as projects for further research.

1. Although mathematicians generally agree that mathe
matics and logic are inseparable, it would appear
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feasible to devote further study to the question 
as to whether or not the secondary mathematics 
program should demand the development of mathe
matics as a logical system.

2. Attention should be directed primarily toward the 
construction of a theoretical model describing 
the desirable outcomes for a secondary mathematics 
program. Such a model could then detail the de
sired mathematical content of a secondary program, 
describe the placement of such content, and 
identify the roles played by the intermediate 
variables of internal motivation of the student, 
societal needs, and the interaction between mathe
matical reasoning and environmental needs, both 
present and future. Such a model would do much
to insure maximum economy in the development of 
requisite mathematical understandings and skills.

3. Although the body of knowledge regarding the 
learning process in general is growing, further 
concentrated research should be directed to de
termine, if possible, how youngsters learn mathe
matics and the concepts involved. Since intui
tion plays such a vital role in mathematics, con
centrated attention could well be directed toward 
the further exploration of the nature of intui
tion and how such intuition could be fostered in 
young people. A direct result of such a study 
would be the acquisition of practical and utili
tarian methods of developing intuition and guid
ing such developments through curriculum efforts.
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