
In this paper we use an extinction-risk
model to explore management strategies for a
federally listed endangered fish, the Gila trout
(Salmonidae: Oncorhynchus gilae). This species
is endemic to the Gila River system of the
Colorado River drainage in southwestern
United States. Historically, the species occurred
throughout the upper San Francisco and Gila
river drainages in southwestern New Mexico
and the Verde River drainage in central Ari-
zona (Miller 1950, Behnke 1992). The Verde
River population has been extirpated, and the
species has declined by >95% in the remain-
der of its range as a result of overexploitation,
interactions with stocked, nonnative trouts,
loss of habitat, and habitat degradation (Sub-
lette et al. 1990, Dowling and Childs 1992,
Propst et al. 1992, Propst 1994). Currently, Gila
trout are restricted to headwater reaches of a
few small streams subject to catastrophic events
such as drought, wildfire, flooding, and anchor
ice (Rinne 1990).

Efforts to conserve and propagate Gila trout
began in 1923 when a captive stock was estab-
lished at the Jenks Cabin Hatchery by the New
Mexico Department of Game and Fish (Miller
1950). This hatchery and a similar facility at

Glenwood, New Mexico, were discontinued in
1939 and 1947, respectively (Propst et al. 1992).
Since 1923, the New Mexico Department of
Game and Fish has followed a policy of not
stocking nonnative salmonids into areas occu-
pied by Gila trout (Propst et al. 1992). Conser-
vation efforts for the species also included cre-
ation of more pool habitats by using log struc-
tures installed by the Civilian Conservation
Corps during the 1930s and repatriation of
populations to several streams (Rinne 1982,
Propst et al. 1992). In the 1970s five relict
populations were replicated into reclaimed
stream reaches treated with fish toxicant to
remove nonnative salmonids. The reclaimed
reaches were insulated from upstream move-
ment by nonnative trout species by natural
and artificial barriers (Propst and Stefferud
1997). Each of the 5 relict populations known
at the time was believed genetically distinct
(David 1976, Loudenslager et al. 1986), and
each was stocked into separate reclaimed
stream reaches. A 6th relict population was
discovered in 1992 in Whiskey Creek, a small
tributary of the West Fork of the Gila River.

We used population viability analysis (PVA)
to evaluate population sensitivity to changes in
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variables that affect risk of extinction. Results
from such analyses can suggest hypotheses for
conservation management (Reed et al. 1998). 
To gain such insight, we developed a viability
model for the species and one for each of its 2
major lineages, one comprising populations in
the Gila River drainage and the other com-
prising populations in the San Francisco River
drainage (Riddle et al. 1998, R. Leary and F.
Allendorf, University of Montana, personal
communication). We were specifically inter-
ested in modeling sensitivity of extinction risk
to population size, number of populations, and
effects of forest fires. We also assessed sensi-
tivity of the base model to errors in estimates
of fecundity and life stage structure.

We chose to focus on environmental sto-
chasticity as the primary controlling factor in
the viability models of Gila trout, an approach
that avoids complications and inaccuracies
associated with demographic and genetic sto-
chasticity (Akcakaya 1992). As with any model,
“relative” effects of varying different parame-
ters are more reliable than “absolute” proba-
bilities of extinction. PVA models are more
useful as tools to guide management options
than they are as predictors of the fate of a
species (Akcakaya et al. 1995). Gila trout is the
only trout species listed as endangered under
the Endangered Species Act of the United
States and it is listed as threatened by the
State of New Mexico (Behnke 1992). Our ob-
jective was to use PVA to evaluate management
options that might contribute toward conser-
vation of the species.

STUDY AREA AND HISTORY OF

GILA TROUT CONSERVATION

Gila trout are now restricted to streams in
narrow, steep-gradient canyons and small,
moderate-gradient valleys at elevations of
1650–2820 m in the Black and Mogollon
mountain ranges of southwestern New Mexico
(Fig. 1; Propst and Stefferud 1997). Canyon
reaches have swift-running waters with numer-
ous cascades and plunge pools. Valley reaches
have meandering channels, cobble riffles, and
fewer pools, most of which are formed around
log-debris piles and boulders. Base summer
flows range from <0.05 m3 s–1 to 0.65 m3 s–1

(Propst and Stefferud 1997). Riparian vegetation
consists of Arizona alder (Alnus oblongifola)
and Arizona sycamore (Platanus wrightii) along

lower-elevation streams; western box elder
(Acer negundo), willow (Salix spp.), New Mexico
locust (Robinia neomexicana), narrowleaf cot-
tonwood (Populus angustifolia), and ponderosa
pine (Pinus ponderosa) in mid-elevation streams;
and blue spruce (Picea pungens), white fir
(Abies concolor), and quaking aspen (Populus
tremuloides) along high-elevation streams
(Propst and Stefferud 1997).

The relict and replicated populations of Gila
trout are located primarily in federally desig-
nated wilderness areas, where most human
activities are minimized or controlled. Conse-
quently, wildfire and interactions with intro-
duced trout seem to be the most important
factors affecting survival of existing Gila trout
populations (Propst and Stefferud 1997). Orig-
inally, wildfires were primarily lightning-caused
understory fires occurring in spring and early
summer and ceasing with the rainy (monsoon)
season in July–August (Rinne 1996). Within
the range of Gila trout, historic wildfires con-
sisted primarily of cool-burning understory
fires with return intervals of 3–7 years in pon-
derosa pine forests and 75–100 years in spruce
forests at higher elevations (Swetnam and
Dieterich 1985). Cooper (1960) concluded that,
prior to the 1950s, crown fires were extremely
rare or nonexistent in the region.

Starting in the early 1900s, however, fuel
loads began to increase, likely a result of in-
creased livestock grazing and a policy of fire
suppression by the newly established U.S.
Forest Service (Swetnam and Dieterich 1985,
Covington and Moore 1994). Fire suppression
and diminished herbaceous cover caused by
grazing reduced the frequency of wildfires. Lack
of periodic fires resulted in more woody debris
on the forest floor, increased sapling densities,
and establishment of brush. These changes have
increased the potential for catastrophic crown
fires (Rieman and Clayton 1997).

By the early 1900s, populations of Gila trout
were restricted to the upper reaches of a few
headwater streams primarily because of habi-
tat modifications, overfishing, and introduc-
tions of nonnative trouts (Miller 1950, Propst
et al. 1992). In these small, isolated systems,
refugia from ash flow are limited and opportu-
nities for recolonization often are nonexistent.
Consequently, in the past decade 6 populations
of Gila trout have been extirpated by extreme
fire events followed by intense summer
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(July–August) rains that washed ash and debris
into the stream (Table 1). The Divide fire in
1989 resulted in extirpation of the Main Dia-
mond Creek population (Propst et al. 1992).
The Bonner fire in 1995 extirpated popula-
tions in South Diamond and Burnt Canyon
creeks (Propst and Stefferud 1997). The Look-
out fire in 1996 extirpated the populations in
Trail Canyon, Woodrow Canyon, and Sacaton
creeks (JEB, DKB, DLP personal observation).

In addition to catastrophic loss following
fires, Gila trout populations in many streams
within the historic range of the species have
been eliminated through hybridization with
nonnative rainbow trout (Oncorhynchus mykiss;
Loudenslager et al. 1986, Riddle et al. 1998,
R. Leary and F. Allendorf personal communi-
cation). We did not model effects of hybridiza-
tion and genetic introgression because man-
agement options associated with such factors
(e.g., treat trout populations as “pure” because
of low introgression, or renovate the stream
and restock because of higher levels) are influ-
enced by level of genetic introgression, and
the degrees appropriate for different options
are debatable and somewhat arbitrary (Camp-
ton 1987, Allendorf and Leary 1988, Dowling
and Childs 1992).

METHODS

Sampling and Population Estimates

Ten Gila trout populations considered free
of genetic contamination by nonnative con-
geners in 1996 (Table 2, Fig. 1) were used to
develop a baseline PVA model. Subsequently,
3 of these were found to be genetically intro-
gressed by rainbow trout (R. Leary and F.
Allendorf personal communication). One of
these was subsequently eliminated by chemi-
cal renovation and the stream was restocked
with pure Gila trout in 1997. The other 2 rep-
resent relict populations, and, because they
exhibit relatively low levels of genetic intro-
gression (Iron Creek, 0.02; McKenna Creek,
0.05), management agencies have decided to
manage them as Gila trout, partly because
each may harbor locally adaptive genetic
material. For this study we retained the origi-
nal 10 populations included in the PVA.

Life history data were primarily taken or
estimated from the literature (Nankervis 1988,
Propst et al. 1992, Propst and Stefferud 1997),
but population size estimates (N) for 6 streams
were based on field data gathered during May
through September 1996 and 1997. These 6
streams were Iron, McKnight, McKenna, and 
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Fig. 1. Map of upper Gila River drainage showing populations used in PVA. Names of numbered streams are given in
Table 2.



Mogollon creeks in the Gila drainage and
Spruce and Dry creeks in the San Francisco
drainage. For each stream we used a battery-
powered, backpack electroshocker (24 V, DC)
to sample one to three 200-m sites, with num-
ber of sites dependent on stream length. Prior
to sampling we blocked each site at the upper
and lower ends with fine-mesh nets. Deple-
tion sampling was conducted by making 3–4
passes upstream through each site, capturing
stunned fish with dip nets. To minimize injury
and ensure equal capture effort between passes,
we made no effort to “hunt” individuals. All Gila
trout captured were weighed to nearest 0.1 g
and measured to nearest millimeter for total
and standard lengths. Number of fish at each
site was estimated by the depletion method
(Zippin 1958). Population sizes within each
stream were obtained by multiplying estimated
number of fish per meter of stream in the sam-
ple site by total length of stream occupied by
Gila trout. Length of stream occupied was taken
from Propst et al. (1992) and Propst and Stef-
ferud (1997). Estimates of population sizes are
somewhat questionable because they assume
that observed local densities can be extrapo-
lated to the entire reach of stream occupied by
Gila trout; however, results reported below
indicate that the model is robust to this source
of error.

Depletion-shocking efforts consistently cap-
tured about 60% (n = 20, x– = 0.57, sx– = 0.05)
of the population estimate in the 1st pass at
each sample site. This percentage was used in
estimating population size for 4 Gila trout
streams (Main Diamond, Sheep Corral, Whis-
key, and White creeks) for which only single-
pass electrofishing data were available (Propst
and Stefferud 1997).

Stage-specific Structure, 
Survivorship, and Fecundity

We estimated stage-specific structure (pro-
portionate abundance of different life stages)
from published length-frequency data for each
Gila trout population (Propst and Stefferud
1997). Life stages were defined as follows
(Propst and Stefferud 1997): juveniles (<100
mm TL), subadults (100–150 mm TL), and
adults (>150 mm TL). Survivorship estimates
(Table 3) were computed from stage-specific
abundances as described by Caswell (1989).

Fecundity was estimated from the overall
mean count of ova (98.6) from 25 field-stripped
females from Main Diamond and McKnight
creeks (Nankervis 1988, DLP unpublished
data). Because RAMAS models each individual
as being capable of asexual reproduction, we
divided this mean value by 2 to arrive at indi-
vidual fecundity (Table 3). Dividing the mean
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TABLE 1. Years of occurrence for stockings/restockings and extirpations of Gila trout by forest fire/flood for 17 streams
during the 27-year period from 1971 to 1997. Data on stocking history and extirpation are based on Propst et al. (1992)
and on information from U.S. Forest Service records and the Gila Trout Recovery Team of the U.S. Fish and Wildlife
Service.

Drainage
Relict population Extirpation Stocking/

(Replicate population) by fire/flood restocking

San Francisco River drainage
Spruce Creek No Relict

(Dry Creek) No 1985
Gila River drainage

Iron Creek No Relict
(Sacaton Creek) 1996 1990/97
(White Creek) No 1994

McKenna Creek No Relict
(Little Creek) No 1982

Main Diamond Creek 1989 Relict/1995
(McKnight Creek) No 1970
(Sheep Corral Creek) No 1972

South Diamond Creek 1995 Relict/1997
(Burnt Canyon) 1995 Relict
(Mogollon Creek) No 1989/1997
(South Fork Mogollon Creek) No 1997
(Trail Canyon) 1996 1988/1997
(Woodrow Canyon) 1996 1989/1997

Whiskey Creek No Relict



fecundity of females by 2 assumed a 1:1 sex
ratio and successful reproduction by all adult
females every year. Nankervis (1988) found
that a small proportion (13%) of large subadult
females was reproductive, with a minimum
size at reproduction of 130 mm. We estimated
“subadult” fecundity by multiplying 0.13 by
the mean proportion of our 130–150 mm indi-
viduals (0.47) and then multiplying this con-
stant by 1/2 of the mean ova count (30.8) for
subadult females.

Population Viability 
Analysis

We used the computer package RAMAS/
GIS (Akcakaya 1994) to model population via-
bility. This package appears to be the best of
those available for PVAs on organisms such as
Gila trout, which has relatively large popula-
tion sizes and high rates of reproduction com-
pared with most other species for which PVAs
have been done. The RAMAS algorithm uses a

Monte Carlo simulation of age- or life stage–
structured population growth based on Leslie
matrices (Leslie 1945, Ferson et al. 1991) to
model extinction risk for metapopulations.
The program has been used successfully in
PVAs for leopard darter (Percina pantherina;
Williams et al. 1999), striped bass (Morone
saxatilis; Ginzberg et al. 1990), and bluegill
sunfish (Lepomis macrochirus; Ferson et al.
1991).

Extinction risk for Gila trout in the PVA
models was expressed as the percentage of
1000 replicate simulations in which extinction
of the species occurred within 100 years. In
the base model we used forest fires as the
major source of environmental catastrophe,
and severity of catastrophe was modeled at
100% population reduction. Probability of such
a fire was based upon known effects on popu-
lations of Gila trout for the past 27 years
(1971–1997), the period of time that the species
has been intensively monitored. During that
time 6 populations were eliminated by forest
fires and resultant habitat degradation (U.S.
Forest Service unpublished data; JEB, DKB,
DLP unpublished data). We arrived at proba-
bility of catastrophe for the base model (2%
per population per year) by dividing number
of extirpations of Gila trout populations (6)
resulting from catastrophic fires, by total num-
ber of stream years (288; computed from data
in Table 1) for the species during the past 27
years.

Parameter estimates (Table 3) were used to
develop a base model for viability of the Gila
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TABLE 2. Length of stream occupied and population
size estimates (N) for Gila trout populations used in viabil-
ity analyses. Numbers associated with the name of each
population correspond with those in Figure 1. Populations
without asterisks are those used in the base model. Those
with an asterisk are streams that either are presently devoid
of Gila trout but targeted for restocking, or were
restocked subsequent to the viability analysis; these 6
were used in the analysis of the effect of adding popula-
tions of Gila trout.

Drainage/ Occupied length of
Population stream (km) N

San Francisco River 
drainage

1. Spruce Creek 3.7 2236
2. Dry Creek 1.9 537

Gila River drainage
3. Sacaton Creek * 1.6 1101
4. Mogollon Creek 14.2 9651
5. Woodrow Canyon * 0.4 188
6. Trail Canyon * 1.8 1211
7. South Fork Mogollon 

Creek* 1.2 1128
8. Sheep Corral Creek 1.3 149
9. Whiskey Creek 0.2 20

10. White Creeka 12.0 8248
11. McKenna Creek 1.2 1038
12. Iron Creek 4.3 1529
13. Main Diamond Creek 6.1 5795
14. Burnt Canyon * 1.5 115
15. South Diamond Creek * 5.2 2080
16. McKnight Creek 8.5 2159

Average (N) 2324
aPopulation size estimate based on a nonnative rainbow trout population.

TABLE 3. Life history variables and mean values (± s)
used in the base model of Gila trout viability.

Variable Mean

Number of life stages 3
Fecundity

Stage 1 ( juvenile) 0
Stage 2 (subadult) 1.88 ± 0.97
Stage 3 (adult) 98.57 ± 66.47

Initial stage structure proportions
Stage 1 ( juvenile) 0.72 ± 0.13
Stage 2 (subadult) 0.25 ± 0.03
Stage 3 (adult) 0.04 ± 0.01

Survivorship
Stage 1 ( juvenile) 0.491 ± 0.445
Stage 2 (subadult) 0.128 ± 0.063
Stage 3 (adult) 0.430 ± 0.068

Catastrophe probabilitya 2.0%
Catastrophe effectb 100%
aProbability of catastrophe in a given year for each population.
bEffect is percent reduction of a population for each catastrophe occurrence.



trout. We used the statistically conservative 
Komolgorov-Smirnov D-test (Akcakaya 1994,
Sokal and Rohlf 1994) to evaluate significance
of differences in extinction rates between the
base model and a variety of other models,
each differing in a single parameter. Sensitiv-
ity to effect of catastrophe (% reduction in N)
was modeled by decreasing the effect from
extirpation (100% reduction) to no reduction
(0%) in increments of 5%. To examine sensitiv-
ity to probability of catastrophe, we increased
the fire-flood return interval from the base
model of once every 27 years (2% per popula-
tion per year) to once every 7 (14.3%), 5 (20%),
and 3 years (33%). Those rates bracket the
range of the pre-1900 fire-return interval for
the ponderosa pine forest habitat that predom-
inates in watersheds supporting Gila trout in
New Mexico (Swetnam and Dieterich 1985).

To assess effect of population size, the esti-
mate for each population was doubled in one
model and halved in another. This was a crude
attempt to model the effect of extending or
shortening the length of stream occupied by
the species in each stream. It also allowed
assessment of the robustness of the base model
to error in estimating population size.

To assess effect of fecundity upon viability,
fecundity estimates were doubled in one model
and halved in another. To assess sensitivity to
life stage structure, we modeled the mean plus
or minus 1 standard deviation for the propor-
tionate abundance of each life stage separately;
for each of these models, proportional abun-
dances of the other 2 life stages were adjusted
by addition or subtraction, with the amount of
adjustment depending on the relative contri-
bution to stage structure in the base model.

Sensitivity to number of populations was
examined by considering 4 models in which
populations were added to the base model of
10 streams. First, we added 6 streams presently
devoid of Gila trout because of hybridization
or fire-flood (Table 2). Projected population-
size estimates for those were based on past
estimates of trout density in those streams
(Propst and Stefferud 1997), which were cal-
culated using the previously defined method
for expanding single-pass catches. For the
other 3 models we added 5, 10, or 15 popula-
tions, each having a population size equal to
the average of the original 10 streams in the
base model.

To assess effects of catch-and-release, artifi-
cial-lure, or fly-only angling on local popula-
tions, we examined viability of the McKenna
and McKnight Creek populations with an
annual catastrophe that reduced abundances
of life stages 2 (subadult) and 3 (adult) by 5%,
10%, and 15%, respectively, in 3 separate
models for each population. These reductions
seem reasonable because studies indicate that
3–10% of individual trout die as a result of
hooking by artificial-lure or fly fishing (Nuhfer
and Alexander 1992, Taylor and White 1992,
Schill 1996, Schisler and Bergersen 1996).

RESULTS

Under base-model conditions, estimated
probability of Gila trout extinction in 100 years
was 36% (Fig. 2). As expected, increased sever-
ity of catastrophe (measured by reduction in
abundance per event) and shorter return in-
tervals were associated with increased risk of
extinction (Fig. 2).

The base model was relatively insensitive
to population size. Doubling and halving pop-
ulation sizes had no significant effect on extinc-
tion rate (Table 4). Correspondingly, simulat-
ing a catch-and-release fishery causing annual
mortality of 5–15% of subadults and adults had
no significant effect on viability of either the
McKenna or McKnight Creek populations.

Viability of the species was insensitive to
changes within 1 standard deviation of the
mean in proportional abundances of the 3 life
stages. However, the model was sensitive to
large changes in fecundity estimates (F). Dou-
bling and halving fecundity produced signifi-
cant (P < 0.001) differences from the base
model in probability of extinction (1/2F, 47%;
F, 36%; 2F, 31%).

PVA was highly sensitive to number of pop-
ulations. The model incorporating the planned
restocking of 6 additional streams with Gila
trout indicated a reduction of extinction risk
from 36% to 21%. Adding another 5, 10, and
15 “average” populations lowered the modeled
risk to 12%, 7%, and 5%, respectively (Table
4). Probabilities of extinction from each of
these models were significantly different from
those of the others.

Comparing modeled extinction risks of the
Gila River lineage of Gila trout (45%) and the
San Francisco River lineage (81%) to that of all
drainages combined (36%) indicates that each
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lineage has a significantly higher probability of
extinction than does the species as a whole
(Table 4). The model incorporating the planned
restocking of 6 streams (all in the Gila River
drainage) gave a significantly lower risk of ex-
tinction for the Gila River lineage (26%; Table
4). Adding those 6 populations plus 5 or 10 aver-
age populations also resulted in significantly
lower risks (15% and 8%, Table 4). Adding 2
average stream populations to the San Fran-
cisco River lineage significantly decreased
extinction risk from 81% to 67% (Table 4).
Adding 6 average populations significantly
reduced the chance of extinction from 67% to
44% (Table 4).

DISCUSSION

The probability of extinction of Gila trout
within 100 years (36%), as computed under
conditions of the base model presented herein,
is only a benchmark for comparison of the
effects of different management strategies.
Results from such models should not be
treated as realistic assessments of extinction
risks (Ackakaya et al. 1995, Reed et al. 1998),
nor should they be used to classify species
according to endangered status (Taylor 1995).
The weakest aspects of our modeling effort
probably are the estimates of population sizes,
which assume uniform densities for each
stream, and the estimates of fecundity, which
had large variance (Table 3) and assumed no

local population variation. However, the base
model was robust to population size estimates,
and the questionable fecundity estimates do
not invalidate use of the base model for insight
into management strategies. Even with more
precise models, recommendations from sensi-
tivity analyses generally should be treated as
hypotheses to be empirically evaluated before
implementation by management agencies (Reed
et al. 1998).

If Gila trout are left unmanaged, as assumed
by our base model, risk of extinction would be
much higher than indicated because not all
risk factors were included. Most importantly,
the models do not include population losses
resulting from interactions with nonnative
trout species (hybridization, competition, and
predation). Such interactions are important in
the decline and current status of Gila trout
(Miller 1950, Propst and Stefferud 1997). How-
ever, they were not included in the PVA because
they allow few management options beyond
stream renovation and restocking or strategies
to prevent introductions of nonnative trouts.

Altering the historic fire regime in pon-
derosa pine forests of southwestern New Mex-
ico from cool-burning understory fires with
regular return intervals of 3–7 years (Swetnam
and Dieterich 1985) to less frequent, but more
catastrophic, crown fires has frustrated efforts
to restore Gila trout to a level where the species
can be downlisted from endangered to threat-
ened (Propst et al. 1992). Correspondingly, our
models suggest that viability of Gila trout is
especially sensitive to effects of forest fires.
Ignoring other factors of catastrophic loss, such
as effects of nonnative trouts and drought, the
models suggest that risk of extinction would
be extremely low if effects (percentage of pop-
ulation reduction) of potentially catastrophic
fires were reduced by a proactive fire manage-
ment program. In our analyses even small
decreases in catastrophe led to substantial
reductions in extinction risk (Fig. 2).

Much of the area occupied by Gila trout is
under prescribed natural fire management that
allows naturally occurring fires to burn in cer-
tain areas and under certain constraints. These
fires, however, may not be adequate to reduce
fuel loads to a level sufficient to prevent cata-
strophic crown fires of the type observed in
the recent past. Active prescribed burning
may be needed to accomplish this goal. Pre-
scribed burns in autumn, when fuel moisture
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Fig. 2. Effect of catastrophe probability and severity on
probability of extinction of Gila trout.



levels are high and daily temperatures are low,
would allow cool, surface-burning fires to
reduce fuel loads while minimizing chance of
fire escaping from the prescribed area. Reduc-
tion of fuel loads by more frequent low-inten-
sity fires should contribute to a more natural
forest structure, thereby reducing the frequency
of catastrophic fires (Pyne et al. 1996).

Our results indicate that prescribed fires
with a return interval as short as 3 years would
not increase extinction risk for Gila trout, even
if as much as 50–60% of the local population is
lost with each event. Such losses should, how-
ever, be minimized to reduce genetic and
demographic stochasticity, both of which can
negatively affect survival of a population (Boyce
1993). Further, the suggested beneficial effects
of more frequent fires of lower intensity
should be treated as a hypothesis to be tested
prior to full-scale implementation in the man-
agement of Gila trout. As emphasized by Rie-
man and Clayton (1997), prescribed fires can
lead to inadvertent population losses because
of the large fuel loads that have developed
during the past 75+ years of fire suppression
in the region. Initially, prescribed fires could
be viewed as experimental and restricted to
watersheds projected to be renovated for Gila
trout. Extension to Gila trout streams might
be implemented once the methodology has
been perfected, and perhaps only after estab-
lishment of more populations of the species.

The model of Gila trout viability was insen-
sitive to size of individual populations, but it
does not recognize that increased population
size requires a corresponding increase in habi-
tat, which, for Gila trout, is primarily a func-
tion of length of stream occupied. Increased
stream length generally would increase the
probability of trout surviving catastrophic
events in refugia (i.e., tributaries) not directly
affected by the catastrophe. Wildfires occurring
in the last few years usually have been limited
to single or small numbers of watersheds where
resident trout populations often have had no
refuge from post-wildfire ash flows associated
primarily with mid- to late-summer rains.
Increasing stream lengths often would increase
the number of tributaries occupied by Gila
trout, thereby reducing the effect of catastro-
phe from 100% loss of the population to a loss
of lesser magnitude, and the models indicate
that such a reduction can have a significant
effect on risk of extinction (Fig. 2). Further-
more, a marked increase in amount of habitat
(length of stream) occupied would reestab-
lish natural connectivity among a number of
now-isolated local populations of Gila trout.
Increased connectivity would heighten the rate
of recolonization following catastrophic losses
in local areas, thereby improving viability of
the species. In New Mexico alone existing pop-
ulations occupy <20% of the approximately
825 km of stream theoretically available for
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TABLE 4. Effects of population size (N) and number of populations on probability of extinction for Gila trout over its
extant range and in the Gila and San Francisco drainages separately. Values shown are percent probability of extinction
in 100 years. Asterisks signify significant difference from all other models in the subset (P < 0.01).

Probability of extinction (%)________________________________________________
Populations 1/2 N N 2N

Gila and San Francisco lineages
Existing 40.0 36.0 34.0
Projecteda 21.0 *
Projected + 5b 12.0 *
Projected + 10b 7.0 *
Projected + 15b 5.0 *

Gila River lineage
Existing 48.0 45.0 44.0
Projecteda 26.0 *
Projected + 5b 15.0 *
Projected + 10b 8.0 *

San Francisco lineage
Existing 83.0 81.0 80.0
Existing + 2c 67.0 *
Existing + 6c 44.0 *

aTen populations in the base model (= existing) plus 6 additional populations in streams designated for restocking with Gila trout.
bProjected populations plus 5, 10, or 15 populations with the average size of all existing populations of Gila trout.
cExisting populations in Spruce and Dry creeks plus 2 or 6 populations with the average size of all existing populations of Gila trout.



restoration of the species in the Gila River
drainage. Similar opportunities exist within the
historic range of the species in Arizona.

Like many other conservation efforts for
endangered and threatened species, recovery
of Gila trout is a complicated and politically
controversial issue. Some public opposition to
Gila trout recovery efforts has been in response
to closures of streams to fishing after they have
been restocked with the species. The PVA
models incorporating an annual “catastrophe”
that reduced adult and subadult abundances
by as much as 30% had no significant effect on
viability of the affected populations, indicating
that a regulated fishery might not increase
extinction risk for the species.

Consideration should be given to focusing a
high proportion of conservation efforts on the
San Francisco River lineage. The PVA indicates
that this lineage has a much higher extinction
risk than the Gila River lineage. Additionally,
the 2 populations of the lineage are geographi-
cally very close (Spruce Creek is a Dry Creek
tributary), and the past history of Gila trout
demonstrates a high probability for eliminat-
ing both populations by a single catastrophic
wildfire.

Ongoing efforts to conserve Gila trout
emphasize 3 general approaches: (1) reducing
opportunities for hybridization and other
interactions with congeners, (2) increasing
number of streams occupied, and (3) restock-
ing streams from which the species has been
extirpated by catastrophes or hybridization
with congeners (U.S. Fish and Wildlife Service
1993). Our results suggest that a 4th approach
is central to the success of this effort, namely,
an effort to reduce catastrophic effects of wild-
fires. Besides reducing the expense and effort
involved in restocking areas of extirpation,
such an approach would help preserve genetic
variation. Repeated restocking is likely to result
in losses of genetic variability as a result of
genetic drift. For example, all extant popula-
tions of the Main Diamond Creek and South
Diamond Creek lineages exist only as popula-
tions derived from either captive, hatchery
populations or from other transplanted popu-
lations. Such a program will almost certainly
lead to reduced genetic variation (Stockwell et
al. 1996, Dunham and Minckley 1998). Our
models of Gila trout viability were highly sen-
sitive to the effect of forest fires and indicate
that a small reduction in the effect of this 

factor greatly increases the viability of the
species. Thus, it seems desirable from the
standpoint of both management practicality
and long-term genetic viability of the species
to implement an aggressive, proactive pro-
gram of fire management in watersheds sup-
porting Gila trout.
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