Characterization of Immunodominant and Potentially Protective Epitopes of *Mannheimia haemolytica* Serotype 1 Outer Membrane Lipoprotein PlpE

Sahlu Ayalew,* Anthony W. Confer, and Emily R. Blackwood

Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma

Received 22 June 2004/Returned for modification 27 July 2004/Accepted 11 August 2004

Mannheimia haemolytica serotype 1 (S1) is the most common bacterial isolate found in shipping fever pneumonia in beef cattle. Currently used vaccines against M. haemolytica do not provide complete protection against the disease. Research with M. haemolytica outer membrane proteins (OMPs) has shown that antibodies to one particular OMP from S1, PlpE, may be important in immunity. In a recently published work, members of our laboratory showed that recombinant PlpE (rPlpE) is highly immunogenic when injected subcutaneously into cattle and that the acquired immunity markedly enhanced resistance to experimental challenge (A. W. Confer, S. Ayalew, R. J. Panciera, M. Montelongo, L. C. Whitworth, and J. D. Hammer, Vaccine 21:2821-2829, 2003). The objective of this work was to identify epitopes of PlpE that are responsible for inducing the immune response. Western blot analysis of a series of rPlpE with nested deletions on both termini with bovine anti-PlpE hyperimmune sera showed that the immunodominant region is located close to the N terminus of PlpE. Fine epitope mapping, in which an array of overlapping 13-mer synthetic peptides attached to a derivatized cellulose membrane was probed with various affinity-purified anti-PlpE antibodies, identified eight highly reactive regions, of which region 2 (R2) was identified as the specific epitope. The R2 region is comprised of eight imperfect repeats of a hexapeptide (QAQNAP) and is located between residues 26 and 76. Complementmediated bactericidal activity of affinity-purified anti-PlpE bovine antibodies confirmed that antibodies directed against the R2 region are effective in killing M. haemolytica.

Bovine respiratory disease arises from the interaction of numerous contributing factors, including physical stresses associated with weaning, shipment, inclement weather, and overcrowding coupled with viral and bacterial infections (8, 31, 32, 59, 63). The result in severe cases is colonization of the lungs with pathogenic bacteria resulting in severe pneumonia. *Pasteurella multocida, Haemophilus somnus*, and *Mannheimia* (formerly *Pasteurella*) *haemolytica* are associated with bovine pneumonia. However, *M. haemolytica* serotype 1 (S1) is by far the most important bacterial pathogen in the development of the often-fatal fibrinous pleuropneumonia in beef cattle known as pneumonic pasteurellosis or shipping fever (31, 32).

Immunity against *M. haemolytica* is thought to be primarily through production of serum antibodies that neutralize the secreted leukotoxin (LKT) and antibodies against surface antigens (45). The mechanism of activity of antisurface antibodies and the specific surface antigens involved in anti-*M. haemolytica* immunity are not known; however, complementmediated bacterial lysis and bacterial phagocytosis and killing are thought to be important in defense against *M. haemolytica* infection (45). Complement-mediated bactericidal activity against *M. haemolytica* and phagocytosis of *M. haemolytica* by bovine neutrophils has been demonstrated with bovine immune serum (12, 17, 40, 46).

Little is known about the specific surface antigens that are

important in stimulating host immunity to *M. haemolytica.* However, several studies point toward the importance of outer membrane proteins (OMPs). Pandher et al. (45) identified 21 surface-exposed immunogenic OMPs in *M. haemolytica* S1 by protease treatment and Western blotting. High antibody responses to several specific OMPs correlated with resistance to challenge with virulent *M. haemolytica* S1 (18, 43). Vaccination of cattle with OMP-enriched cellular fractions from *M. haemolytica* S1 also significantly enhanced the resistance of cattle to experimental challenge (42) even in the absence of antibodies to LKT.

A major 45-kDa OMP was one of the M. haemolytica OMPs to which high antibody responses correlated with resistance to experimental challenge (43). In 1999, Pandher et al. (46) reported the cloning, sequencing, and characterization of the gene encoding the 45-kDa M. haemolytica S1 OMP (designated PlpE), which was found to be genetically similar to an immunogenic lipoprotein (OmlA) of Actinobacillus pleuropneumoniae serotypes 1 and 5 (34). Affinity-purified anti-PlpE antibodies recognized an OMP of similar size in all serotypes of M. haemolytica except serotype 11 (46), which was later classified as Mannheimia glucosida. In addition, PlpE is surface exposed and immunogenic in cattle, and in complement-mediated killing assays, a significant reduction in killing of M. haemolytica occurred when bovine immune serum was depleted of anti-PlpE antibodies (43). Our laboratory recently cloned and expressed the gene for M. haemolytica OMP PlpE, and the recombinant PlpE (rPlpE) was purified and used in immunological and vaccination studies (15). In that study, rPlpE with an adjuvant was shown to be highly immunogenic in cattle and

^{*} Corresponding author. Mailing address: Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078. Phone: (405) 744-3593. Fax: (405) 744-5275. E-mail: ayalew@okstate.edu.

Name	Sequence $(5'-3')^a$	Orientation ^b	Target nucleotides ^c
plpEBH	GTCAggatccTGCGGAGGAAGCGGTAGC	F	198–215
plpEER	GACTgaattcTTATTTTTTCTCGCTAACCATTA	R	1208-189
plpBM-1	CTTggatccCAAGCACAAAATGTT	F	282-296
plpBM-2	CCTggatccCAAGCAGAGGTTACT	F	426-440
plpBM-3	ATTggatccAATGCTGAACAACTC	F	648-662
HNplp-1	GATaagettTTACCGTGCGGCAAATTC	R	890-876
HNplp-2	AAAaagcttTTATTTAATTTCTACATC	R	920-906
HNplp-3	TTTaagettTTATATACTTCCTTGAGC	R	950-936

TABLE 1. PCR primers used in this study	TABLE	1.	PCR	primers	used	in	this	study
---	-------	----	-----	---------	------	----	------	-------

^{*a*} Lowercase portions of sequences are restriction sites.

^b F, forward; R, reverse.

^c Numbering is according to GenBank accession no. AF059036.

vaccination of cattle with 100 μ g of rPlpE markedly enhanced resistance to experimental challenge with virulent *M. haemolytica* (15). Finally, the addition of rPlpE to a commercial *M. haemolytica* vaccine significantly enhanced (P < 0.05) the protection afforded by the vaccine against experimental challenge (15). All of these results indicate that antibodies against PlpE may significantly contribute to host defense against the bacterium.

Since extended portions of the molecule are predicted to be buried in the outer membrane, most of the OMP molecule would play no significant role in inducing protective immune responses. Only short, surface-exposed epitopes of these proteins represent the major immunogenic regions of the protein. Identification of such surface-exposed epitopes as protective antigens in animal models has been the goal of peptide vaccine design strategies for various pathogenic bacteria including nontypeable *Haemophilus influenzae* (3, 4, 44), *Pseudomonas aeruginosa* (62), *Neisseria meningitidis* (61), and *Streptococcus mutans* (48). Since the *M. haemolytica* PlpE is an important immunogen, this study was undertaken to characterize surfaceexposed and immunologically important epitopes of this OMP.

MATERIALS AND METHODS

Bacterial strains and growth conditions. *M. haemolytica* 89010807N (45), which is S1, was used as a source of the *plpE* gene (43) and in complementmediated bactericidal assays. The organism was routinely cultured in brain heart infusion (BHI) broth or on BHI blood agar plates (Hardy Diagnostics, Mesa, Ariz.) supplemented with 5% sheep blood. *Escherichia coli* DH5 α (Invitrogen, Carlsbad, Calif.) was used for subcloning and propagation of recombinant plasmids. Recombinant proteins were overexpressed in and purified from *E. coli* BL21(DE3) or BL21(DE3)(pLysS) (Novagen, Madison, Wis.). *E. coli* strains were grown on Luria-Bertani (LB) medium supplemented with the appropriate antibiotic when needed. All plates were incubated at 37°C with 5% CO₂.

Construction of recombinant plasmids containing deletions in plpE. Truncated forms of the plpE gene carrying various deletions were generated from M. haemolytica 89010807N genomic DNA by PCR with the primers listed in Table 1. PCR products were cut with BamHI plus EcoRI or BamHI plus HindIII and ligated to pRSETA (Invitrogen) and/or pET28 (Novagen) that were cut with the same pair of enzymes. Chemically competent E. coli DH5a (Invitrogen) cells were transformed with 1 to 5 µl of the ligation mixture and plated on LB agar plates supplemented with either 50 µg of carbenicillin/ml or 30 µg of kanamycin/ ml. Transformants were screened by restriction enzyme analysis, and appropriate subclones were identified. Plasmid DNA isolated from such subclone was submitted to the Oklahoma State University Core Facility where the nucleotide sequence was determined with the ABI model 3700 (Applied Biosystems, Foster City, Calif.) automated DNA sequencing system. Nucleotide sequences of representative subclones were compared to that deposited in GenBank (accession no. AF059036). The final eight recombinant plasmids constructed in this study and the truncated recombinant proteins they encode are listed in Table 2.

Expression and purification of truncated forms of rPlpE. Each recombinant plasmid listed in Table 2 was introduced into BL21(DE3)(pLvsS) cells (Novagen) to express and purify recombinant forms of PlpE with His tags on their N termini according to the manufacturer's protocols. Briefly, single colonies of BL21(DE3)(pLysS) harboring the truncated plpE in pRSETA or pET28 were inoculated into 250 to 500 ml of LB broth supplemented with 50 µg of carbenicillin/ml and 34 µg of chloramphenicol/ml (pRSETA-based constructs) or 30 µg of kanamycin/ml and 34 µg of chloramphenicol/ml (pET28-based constructs). The cultures were incubated at 37°C until reaching an absorbance (A_{600}) of 0.5, at which time expression was induced by adding isopropyl-\beta-D-galactopyranoside (IPTG) to a final concentration of 1 mM. Induction was continued for at least 3 h. Cells were then harvested by centrifugation at 10,000 \times g at 4°C, resuspended in binding buffer (6 M urea, 500 mM NaCl, 20 mM Tris-HCl, 5 mM imidazole [pH 7.9]), and lysed by applying 20,000 lb/in² in an Aminco French pressure cell (SLM Instruments, Inc., Rochester, N.Y.). Cellular debris was removed by centrifugation at 14,000 \times g for 30 min at 4°C, and the supernatant containing the recombinant protein was passed through a 0.45-µm-pore-size filter (Nalge Nunc, Rochester, N.Y.). The clarified supernatant was loaded onto a 10-mg-binding-capacity His•Bind column (Novagen) prepacked with Ni²⁺charged His•Bind resin that was preequilibrated with 10 ml of binding buffer. Unbound proteins were removed by applying 10 ml of binding buffer followed by 10 ml of wash buffer (6 M urea, 500 mM NaCl, 20 mM imidazole, and 20 mM Tris-HCl [pH 7.9]). The recombinant protein was then eluted in small fractions with an elution buffer (6 M urea, 1 M imidazole, 250 mM NaCl, 10 mM Tris-HCl [pH 7.9]). Fractions containing the recombinant protein were pooled and dialyzed against phosphate-buffered saline (PBS) containing decreasing concentrations of urea to remove the denaturant and, at the same time, aid in the refolding of the recombinant protein. The identity, purity, and integrity of purified proteins were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by Coomassie staining and Western blotting with murine anti-PlpE polyclonal ascites.

Production of polyclonal mouse ascites. Anti-PlpE polyclonal mouse ascites was produced by the Hybridoma Center of Oklahoma State University. Briefly,

TABLE 2. Plasmid constructs used in this study, characteristics of recombinant proteins, and binding properties of anti-PlpE antibodies, determined densitometrically

Plasmid	Recombinant	Deleted region	Binding capacity of anti- PlpE antibodies	
Tasinu	protein	(amino acids)	Vol ^a (INT/ mm ²)	% Binding
pSAC3	rPlpE (pRSETA)	0^{b}	2,472	100
pSAC30	$rPlpE\Delta C106$	232-337	2,333	94.3
pSAC31	$rPlpE\DeltaC96$	242-337	2,450	99.1
pSAC32	$rPlpE\DeltaC86$	252-337	2,635	106
pSAC63	rPlpE∆N28	1-28	2,528	102
pSAC64	$rPlpE\Delta N76$	1-76	699	28.0
pSAC65	$rPlpE\Delta N150$	1-150	310	12.5
pSAC67	rPlpE (pET28)	0^b	2,472	100

^{*a*} Sum of the intensities of the pixels inside the volume boundary \times area of a single pixel (in millimeters squared).

^b Mature rPlpe with 337 amino acids.

2 1,153.4 SGGGGSSTPNHP 57 1.523.9 YGYYHDTNGKNLV 4 1,354.6 SGGSSTPNHFKPVLVP 58 1.399.7 YHDTNGKNLVDAA 4 1,354.6 STTPHFKPVLVPF 59 1,374.7 TNGKNLVDAADKFSOY 6 1,429.6 PNHFKVLVFKTONNL 61 1,470.6 VDAADKFSOY 7 1,433.3 VLVPKTONNLOAQ 62 1,554.8 FNUPKYTVPE 9 1,333.9 ONNLOAQNPOAQ 64 1,642.8 FVVVVDEKRVNDI 10 1,354.8 ONVPOAQNASQAQ 66 1,313.8 ERRVNDINBLKL 12 1,304.8 ONVPOAQNASQAQ 66 1,313.8 ERRVNDINBLKL 13 1,356.8 ONASQAQNAPQAQ 68 1,320.9 DIKLTATTRKKEGT 15 1,346.8 ONASQAQNAPQAQ 70 1,409.9 FVYCISDEKOFVNDIN 15 1,345.9 POANAPQAQNAP 70 1,478.8 FERVVNDIN 16 1,315.9 POANAPQAQNAP 70 1,478.8 FERVSONPTTR	No.	Mol wt	Peptide sequence	No.	Mol wt	Peptide sequence
2 1,153.4 SCGGSSSTPNHP 57 1,523.9 YGYYHDTNGKNLVDAA 4 1,254.6 GGSSSTPNHPKPV 58 1,399.7 THDTNGKNLVDAA 4 1,254.6 SSTPNIFKPVLVP 59 1,374.7 TNGKNLVDAADKFSOY 6 1,420.6 PNPRFVVLVPKTQNNL 61 1,470.6 VDAADKFSOY 7 1,433.3 VLVPKTONNLOAO 62 1,584.8 FNOTVVYDEKRVND 10 1,350.0 LOAONVPOAO 64 1,464.8 FFVVTVDEKRVNDNIS 11 1,364.8 ONVPOAONASOAO 66 1,313.8 ERRVNDNISDKLTATTY 12 1,306.9 POAONASOAO 66 1,315.8 ERRVNDNISDKLTATTY 13 1,356.8 ONAPQAQNAPQAQ 67 1,435.7 VNDNISDKLTATTY 14 1,305.9 POAQANAPQAQNAP 69 1,530.0 DIKLTATTYRKK 15 1,346.8 ONAPQAQNAPQAQ 70 1,417.8 FVYGSNHTK 15 1,346.8 ONAPQAQNAPQAQ 71 1,20.9 YKKKEGFVYGSNHTK <td>1</td> <td>1,022.4</td> <td>CGGSGSGGSSSTP</td> <td>56</td> <td>1,575.0</td> <td>DLFYGYYHDTNGK</td>	1	1,022.4	CGGSGSGGSSSTP	56	1,575.0	DLFYGYYHDTNGK
4 1,2546 SSTPHHERVPLVP 59 1,3747 TKGKNLVDAADKFSQY 6 1,4296 PNHERVVLVPKTQNNL 61 1,4706 VDAADKFSQY 7 1,434.3 VLVPKTQNNLQAQNVP 63 1,661.8 FSQVFVVYDEKRV 8 1,433.2 PKTQNNLQAQNVP 63 1,661.8 FSQVFVVYDEKRV 10 1,350.0 LQAQNVPQAQNAS 65 1,548.4 FVVVYDEKRVNDNISDKLT 11 1,364.8 ONVPQAQNASQAQ 66 1,513.8 ERVVNDISDKLTATY 12 1,365.9 QANASQAQNAPQ 68 1,530.9 DISKLTATYTRKKEGFVG 15 1,346.8 QNAPQAQNAPQ 71 1,520.9 NISDKLTATYTRKKEGFVGSNPHTK 15 1,346.8 QNAPQAQNAPQ 73 1,478.8 FVYGSNPHTKEFA 16 1,315.9 PQAQNAPQAQNAP 73 1,478.8 FVYGSNPHTK 18 1,345.0 PQANPAQAQNAP 75 1,440.8 GSNPHTKEFA ARISKLGPV 20 1,345.0 PQAQNAPQAQNAP 75 1,440.8	2	1,153.4		57	1,525.9	YGYYHDTNGKNLV
5 1,436.6 PHPLVLYRTQN 60 1,490.7 KNLVDAADK/SQY 7 1,434.3 VLYFKTQNNLQAQ 62 1,592.7 ADK/SGYYFVYDE 8 1,433.2 PKTQNLQAQNYP 63 1,661.8 FSOYFVYDEKRYNDN 9 1,433.9 ONNLQAQNYPQAQ 64 1,642.8 YFVYDEKRYNDNS 10 1,364.8 QNVPQAQNASQAQ 66 1,513.8 EKRYNDNSKLT 12 1,305.9 POAQNASQAQAQ 68 1,520.0 NISDKLTATYRKKE 14 1,305.9 SQAQMPQAQN 70 1,501.9 TATYRKKEGFVYGSNPHTK 15 1,346.8 QNAPQAQNAPQAQ 70 1,501.9 TATYRKKEGFVYGSNPHTK 16 1,375.9 QNAPQAQNAPQAQ 74 1,409.8 GSNPHTKEFAARIK 19 1,375.9 QNAPQAQNAPQVE 76 1,415.9 KEFAARISKLGDVE 21 1,370.0 ENAPQAQNAPQVE 76 1,415.9 KEFAARISKLGDVE 22 1,336.0 POQAVAPQVENAP 77 1,436.0 GSNPHTKEFAARISKL	3	1,246.5	GGSSSTPNHPKPV	58	1,399.7	YHDTNGKNLVDAA
5 1,436.6 PHPLVLYRTQN 60 1,490.7 KNLVDAADK/SQY 7 1,434.3 VLYFKTQNNLQAQ 62 1,592.7 ADK/SGYYFVYDE 8 1,433.2 PKTQNLQAQNYP 63 1,661.8 FSOYFVYDEKRYNDN 9 1,433.9 ONNLQAQNYPQAQ 64 1,642.8 YFVYDEKRYNDNS 10 1,364.8 QNVPQAQNASQAQ 66 1,513.8 EKRYNDNSKLT 12 1,305.9 POAQNASQAQAQ 68 1,520.0 NISDKLTATYRKKE 14 1,305.9 SQAQMPQAQN 70 1,501.9 TATYRKKEGFVYGSNPHTK 15 1,346.8 QNAPQAQNAPQAQ 70 1,501.9 TATYRKKEGFVYGSNPHTK 16 1,375.9 QNAPQAQNAPQAQ 74 1,409.8 GSNPHTKEFAARIK 19 1,375.9 QNAPQAQNAPQVE 76 1,415.9 KEFAARISKLGDVE 21 1,370.0 ENAPQAQNAPQVE 76 1,415.9 KEFAARISKLGDVE 22 1,336.0 POQAVAPQVENAP 77 1,436.0 GSNPHTKEFAARISKL	4	1,354.6	SSTPNHPKPVLVP	59	1,374.7	TNGKNLVDAADKF
7 1.4313 VLVPETONNLOAQON 62 1.592.7 ADKISOYFVYDE 8 1.433.9 VENTONLOAQONYP 63 1.661.8 FSOYFVYDEKRYNDN 9 1.433.9 ONNLOAQONYPOAQ 64 1.662.8 YFVYDEKRYNDN 10 1.350.0 LOAONYPOAQNAS 65 1.548.7 YVDEKRYNDNSLT 11 1.364.8 ONYPOAONASOAQ 66 1.513.8 EKRYNDNISDKLT 12 1.365.9 POAONASOAONAP 67 1.435.7 VVDEKRYNDNSLT 13 1.365.9 POAQNARQAQ 70 1.501.9 TATYRKKEGFYYGS 14 1.305.9 POAQNARQAQ 71 1.550.9 YRKKEGFYYGSNF 15 1.346.8 QNARQAQNARQVE 72 1.4453.8 KEGFYYGSNF 17 1.375.9 QAAQAARQAQNAPQ 73 1.478.8 FYYGSNFHTKEFA 19 1.375.0 QNARYQKANAPQ 75 1.4460.0 PHTKEFAARISKL 21 1.345.0 POAQANAPQYENAP 77 1.341.9 AARISKLGDVEIK <td>5</td> <td></td> <td></td> <td>60</td> <td>1,480.7</td> <td>KNLVDAADKFSQY</td>	5			60	1,480.7	KNLVDAADKFSQY
8 1,433.2 PKTONNLOAONVP 63 1.661.8 FSOYFVVDEKRV 9 1,433.9 ONNLOAONVPOAONAS 65 1.548.7 VYDEKRVNDNISD 10 1.350.0 LOAONVPOAONASOAO 66 1.513.8 EKRVNDNISDKLT 12 1.364.8 ONVPOAONASOAONAP 67 1.435.7 VVDEKRVNDNISDKLT 13 1.356.8 ONASOAONAPOAO 68 1.520.0 NISDKLTATYRKK 14 1.355.9 OVAONAPOAONAPOAO 69 1.530.0 DKLTATYRKKEGFVYG 16 1.345.8 ONAPOAONAPOAO 70 1.501.9 TYRKKEGFVYGSNP 17 1.345.0 OVAONAPOAONAPOA 74 1.470.8 KEVYCSNPHTKEFAARI 13 1.355.0 POAONAPOVENAPAO 74 1.470.8 GSNPHTKEFAARISKL 21 1.377.0 ENAPQAONAPO 75 1.481.9 KARISKLGDV 22 1.335.0 POYENAPQAO 74 1.470.5 KEFENCGAAGAS 23 1.377.0 ENAPQAONAPOVEN 75 1.481.9 KA	6	1,429.6		61	1,470.6	VDAADKFSQYFVV
8 1,433.2 PKTONNLQAQNVP 63 1,661.8 FS0YFVVYDEKRVNDN 9 1,433.9 ONNLQAQNVPQAQO 64 1,642.8 YFVVYDEKRVNDN 10 1,350.0 LQAQNVPQAQNASS 65 1,548.7 VYDEKRVNDNISDKLT 12 1,354.8 ONNPQAQNASQAQO 66 1,513.8 EKRVNDNISDKLT 13 1,356.8 ONASQAQNAPQA 67 1,435.7 VNDNISDKLTATYRKK 14 1,359.8 ONAQNAPQAQ 68 1,520.0 NISDKLTATYRKKEGFVYG 15 1,346.8 ONAPQAQNAPQA 70 1,501.9 TYRKKEGFVYGSNPHTK 15 1,345.0 ONAQNAPQYEN 72 1,445.8 KEGFVYGSNPHTKEFA 16 1,315.9 ONAQNAPQYENAP 75 1,480.0 PHTKEFAARISKLGDV 12 1,345.0 POAQNAPQYENAP 76 1,415.9 KEFAARISKLGDV 21 1,347.0 POAQNAPQYENAP 77 1,480.0 PHTKEFAARISKLGDV 22 1,345.0 POAQNAPQYENAP 77 1,481.9 <td< td=""><td></td><td>/</td><td></td><td>62</td><td>1,592.7</td><td>ADKFSQYFVVYDE</td></td<>		/		62	1,592.7	ADKFSQYFVVYDE
9 1,433.9 ONNLOAONVPOANAS 64 1,642.8 YFVVYDEKRVNDNSD 10 1,350.0 LOAONVPOAONAS 65 1,543.7 VYDEKRVNDNSDKLT 11 1,364.8 ONVPOAONASQAQA 66 1,513.8 EKRVNDNISDKLTATY 13 1,335.8 ONASQAQNAPQAQ 68 1,230.0 NISDKLTATY 14 1,359.9 SQAQNAPQAQA 70 1,50.9 TATYRKKEGF 16 1,315.9 PQAQNAPQAQNAP 70 1,275.9 YRKEGFVYGSNP 17 1,375.9 QNAPQAQNAPQ 73 1,478.8 FVYGSNPHTKEFA 19 1,375.0 PQAPARPVENAPQAQ 74 1,409.8 GSNPHTKEFARIL 20 1,345.0 PQAQNAPQVE 76 1,415.9 KEFAARISKLEDV 21 1,377.0 PCMAPAQAE 78 1,473.9 ISKLEDVERKEFARIL 23 1,377.0 QNAPQVENAPQAE 78 1,473.9 ISKLEDVERKEFARIL 24 1,361.1 PQVENAPQAE 78 1,473.9 ISKLEDVERKEFARIL		,		63	1,661.8	FSQYFVVYDEKRV
10 1,350.0 LOAONVPOAONASCA 65 1,548.7 VYDEKRVNDNISD 11 1,364.8 ONVPOAONASCAQOA 66 1,513.8 EKRVNDNISDKLT 12 1,359.9 POAONASCAONAPOA 67 1,435.7 VNDNISDKLTATYRKK 14 1,359.9 SQAONAPOAONAPO 68 1,530.0 DKLTATYRKKEGFVYG 15 1,346.8 QNAPQAQNAPQ 70 1,501.9 TATYRKKEGFVYGSNP 16 1,315.9 PQAQNAPQAQNAP 71 1,526.9 YRKKEGFVYGSNP 18 1,345.0 PQAQNAPQAQNAPQA 74 1,449.8 FCVGSNPHTKEFA 19 1,375.9 QNAPQAPQENAP 75 1,460.8 GSNPHTKEFAARISL 21 1,377.0 ENAPQAQNAPQ 76 1,415.9 ARISSLGDVEIKFE 23 1,377.0 QNAPQVENAPQAE 77 1,381.9 ARISSLGDVEIKFE 23 1,361.1 PQVENAPQAE 78 1,473.9 ARISSLGDVEIKFE 24 1,361.1 PQVENAPQAE 78 1,473.9 ISKLGDVEI	9	/		64	1,642.8	YFVVYDEKRVNDN
11 1,364.8 ONVPOAONASQAQNAP 66 1,513.8 EKRVNDNISDKLTATY 12 1,305.9 POAONASQAQNAP 67 1,435.7 VINDNISDKLTATY 13 1,305.8 QNASQAQNAPQAQ 68 1,520.0 NISDKLTATY 14 1,305.9 SQAQNAPQAQNAP 69 1,530.0 DKLTATYRKKEGFVGP 15 1,345.8 QNAPQAQNAPQAQ 70 1,501.9 TATYRKKEGFVGP 16 1,315.9 PQAQNAPQVENPAP 72 1,445.8 KEGFVGSNPHTK 18 1,345.0 PQAQNAPQVENPAP 75 1,445.8 KEGFVGSNPHTKEFAAR 20 1,345.0 PQAQNAPQVENAP 76 1,445.9 KEFAARISKLGDV 21 1,377.0 PCMAQNAPQVE 76 1,445.9 KEFENGAAR 23 1,370.0 QNAPQVENAPQAE 78 1,473.9 ISKLGDVEIKFEN 23 1,361.1 PQVENAPQAE 78 1,473.9 ISKLGDVEIKFEN 24 1,361.1 POVENAPQAE 78 1,474.8 VEKFENGGAAGSIKDEKAGDV	10	,		65	1,548.7	VYDEKRVNDNISD
12 1.05.9 POAQÑAŚQAQÑAP 67 1.435.7 VNDNISDKLTATY 13 1.336.8 QNAQONAPQAQNAP 68 1.530.0 NISDKLTATYRKK 14 1.335.9 SQAQNAPQAQNAP 69 1.530.0 DKLTATYRKKEGFVG 15 1.346.8 QNAPQAQNAPQAQ 70 1.511.9 TATYRKEGFVGSNP 16 1.315.9 POAQNAPQAQNAPQVE 72 1.445.8 KEGFVYGSNPHTK 18 1.435.0 POAQNAPQAQNAPQVE 73 1.478.8 FVYGSNPHTKEFA 20 1.345.0 POAQNAPQAQNAPQVE 75 1.480.0 PHTKEFAARISKL 21 1.377.0 ENAPQAQNAPQVENAP 77 1.319.9 AARISKLGDVEIKFEA 22 1.337.0 QNAPQVENAPQAE 78 1.473.9 ISKLGDVEIKFEN 24 1.361.1 POYENAPQAEVTPP 79 1.401.6 LGDVEIKFENGQA 25 1.330.2 ENAPQAEVTPPVPOPQ 81 1.403.5 KFENGAAQGSIKD 26 1.360.0 POAEVTPPVPOPOSOKK 82 1.314.5		,		66	1,513.8	EKRVNDNISDKLT
13 1.336.8 QNASQAQNAPQAQ 68 1.520.0 NISDRLTATYREK 14 1.305.9 SQAQNAPQAQAP 69 1.539.0 DKLTATYREKEGFVGSNP 15 1.315.9 PQAQNAPQAQNAP 70 1.501.9 TATYREKEGFVGSNP 16 1.315.9 PQAQNAPQUENAP 71 1.526.9 YREKEGFVGSNP 17 1.375.9 QNAPQAQNAPVE 72 1.445.8 EVGPVGSNPHTKEFA 19 1.375.9 QNAPQAQNAPVE 73 1.478.8 FVYGSNPHTKEFA 20 1.345.0 PQAQNAPQVENAPQAQ 74 1.449.8 GSNPHTKEFAARISKLGDV 21 1.377.0 EXAPQAQNAPQVE 75 1.445.9 KEFAARISKLGDV 22 1.345.0 PQAQNAPQVENAP 77 1.381.9 AARISKLGDVEKEPA 23 1.377.0 POAQONAPQVENAPA 77 1.381.9 AARISKLGDV 24 1.361.1 PQVENAPQAETPP 80 1.438.4 VEKFENGQAGGAGGS 25 1.330.2 ENTPTYPUPOPQ 81 1.441.5 SKILG		/		67		VNDNISDKLTATY
14 1305.9 SQAQNAP (AQNAP) 69 1.539.0 DKLTATYRKKEGF 15 1.346.8 QNAPQAQNAPQAQ 70 1.501.9 TATYRKKEGFYGSNP 16 1.315.9 PQAQNAPQAQ 71 1.526.9 YRKEGFYGSNP 17 1.375.9 QNAPQAENAPQVE 72 1.445.8 KEGFYYGSNPITKEFAARI 19 1.375.9 QNAPQVENAPQAQ 74 1.409.8 GSNPITKEFAARI 20 1.345.0 PQAENAPQAENAPQA 75 1.448.0 PHTKEFAARISKLGDV 21 1.377.0 ENAPQAQNAPQVENAP 77 1.381.9 AARISKLGDVEK 22 1.345.0 PQAENAPQAENAPAE 78 1.473.9 ISKLGDVEKFENA 23 1.377.0 ONAPQVENAPQAE 78 1.473.9 ISKLGDVEKFENA 24 1.361.1 PQVPNAPQAEN 79 1.401.6 ICDVEKFENGQAGS 25 1.330.2 ENAPQAEVTPPYPQPQ 81 1.403.5 KFENGQAQGS 26 1.369.0 PQAEVTPPYPQPQOSOKIDG 83 1.314.5 AO		,			/	
15 134.6.8 ONAPOADXAPOAD 70 1.50.9 TATYRKEGFVYG 16 1.315.9 PQAQNAPQAQNAP 71 1.526.9 TATYRKEGFVYGSNPHTK 17 1.375.9 PQAQNAPQVE 72 1.445.8 KEGFVYGSNPHTK 18 1.345.0 PQAQNAPQVENAP 73 1.478.8 FVYGSNPHTKEFAA 20 1.345.0 PQVENAPQAQNAP 75 1.4409.8 GSNPHTKEFAARISKL 21 1.377.0 ENAPQAQNAPQVE 76 1.445.9 KEFAARISKLGDVEIK 22 1.345.0 PQAQNAPQVENAP 77 1.381.9 AARISKLGDVEIK 23 1.377.0 ONAPQVENAPQAE 78 1.473.9 ISKLGDVEIK 24 1.361.1 PQVENAPQAEVTPP 80 1.388.4 VEIKFENGQACGSIKD 25 1.30.2 ENAPADXEVTPPVP 80 1.388.4 VEIKFENGQACGSIKD 26 1.369.0 PQAEVTPPVPOPOSOK 82 1.371.4 NGGACGSIKDEKDGAA 27 1.446.4 CSOGSIKDCKD 83 1.447.8 SIKLG		/		11	· · ·	
16 1315 PQAQNAPQQAP 71 1526.9 YRKECGFVYGSNP 17 1,375.9 QNAPQAQAPQVE 72 1,445.8 KEGFVYGSNPHTKE 18 1,345.0 PQAQNAPQVENAP 73 1,478.8 FVYGSNPHTKEFAARI 19 1,375.9 QNAPQVENAPQAQ 74 1,409.8 GSNPHTKEFAARI 20 1,345.0 PQAQNAPQVENAP 75 1,448.0 PHTKEFAARISKLODV 21 1,377.0 ENAPQAQNAPQVE 76 1,415.9 KEFAARISKLODV 22 1,337.0 QNAPQVENAPQAE 77 1,381.9 AARISKLODVEK 23 1,377.0 QNAPQVENAPQAE 78 1,473.9 ISKLGDVEKFENGQACGS 24 1,361.1 POYDAPQAEVTP 79 1,401.6 LGDVEKFENGQACGS 25 1,330.2 ENAPQAEVTPPYPQPQ 81 1,403.5 KFENGQAQGSIKD 26 1,360.0 PQAEVTPPYPQPQOSOK 82 1,371.4 NGGAQGSIKDKARA 28 1,372.2 PPVPQOSOKIDGSFD 84 1,447.8 SIKDEK		/		70		
17 1375.9 QNAPQADAPOYE 72 1.445.8 KEGFVYGSNPHTKEFA 18 1.345.0 PQAQNAPQVENAP 73 1.478.8 FVYGSNPHTKEFA 19 1.375.9 QNAPQVENAPQAQ 74 1.409.8 GSNPHTKEFAARI 20 1.345.0 PQVENAPQAQNAP 75 1.480.0 PHTKEFAARISKLGDV 21 1.377.0 ENAPQAQNAPQVE 76 1.415.9 KEFAARISKLGDV 22 1.345.0 PQAQNAPQVENAP 77 1.381.9 AARISKLGDV 23 1.377.0 ONAPQVENAPQAE 77 1.381.9 AARISKLGDV 24 1.361.1 PQYENAPQAEYTP 79 1.401.6 LGDVEIKFEN 25 1.330.2 ENAPQAEYTPPVPQ 80 1.388.4 VEIKFENGAAGSIKDEKDAGS 26 1.360.0 PQAEYTPPVPQQ 81 1.403.5 KEGGVAGGSIKDEKDAGA 28 1.372.2 PVPVPQPQSOKIDG 83 1.314.5 AQGKDEKDEKDAA 29 1.428.3 POPOSOKIDGSFD 84 1.447.8 SIKDEKDANAEI		,			· · ·	
18 1335.0 POAQNAPOYENAP 73 1.478.8 FVYGSNPHTKEFA 19 1.375.9 QNAPQVENAPQAQ 74 1,409.8 GSNPHTKEFAARI 20 1.345.0 POVENAPQAQNAP 75 1,480.0 PHTKEFAARISKL 21 1.377.0 ENAPQAQNAPQVE 76 1,415.9 KEFAARISKLGDVEIK 22 1.345.0 POAQNAPQVENAP 77 1.381.9 AARISKLGDVEIK 23 1.377.0 QNAPQVENAPQAE 78 1.473.9 ISKLGDVEIKFEN 24 1.361.1 POVENAPQAEVTP 79 1,401.6 LGDVEIKFENGQAQGS 25 1.330.2 ENAPQAEVTPPVP 80 1.388.4 VEIKFENGQAQGSIKD 26 1.369.0 PQAEVTPPVPQPQOK 81 1,403.5 KFENGQAQGSIKDEKDGNA 27 1,416.1 EVTPPVPQPOSOK 82 1,314.5 AOGSIKDEKDGNA 28 1,372.2 PPVPOPOSOKIGSFD 84 1,447.8 SIKDEKDGNAEIF 30 1,404.6 QSOKIGSFDKIGSVK 86 1,461.8 D		/		11	· · ·	
19 1,345.0 QNAPQVENAPQAQ 74 1,409.8 GSNPHTKEFAARI 20 1,345.0 PQVENAPQAQNAPQ 75 1,480.0 PHTKEFAARISKL 21 1,377.0 ENAPQAQNAPQVE 76 1,415.9 KEFAARISKLGDV 22 1,335.0 PQAQNAPQVENAP 77 1,381.9 AARISKLGDVEIK 23 1,377.0 QNAPQVENAPQAE 78 1,473.9 ISKLGDVEIKFEN 24 1,361.1 PQVENAPQAEVTP 79 1,401.6 LGDVEIKFENGQA 25 1,330.2 ENAPQAEVTPPVPQPQ 81 1,403.5 KFENGQAQGGSIKD 26 1,360.0 PQAEVTPPVPQPQ 81 1,403.5 KFENGQAQGSIKDKKD 28 1,372.2 PPVPVPQPOSOK 82 1,371.4 NGQAQGSIKDKDSA 29 1,428.3 POPOSOKIDGSFD 84 1,441.8 SIKDEKDGNA 20 1,428.3 POPOSOKIDGSFD 84 1,445.8 AEIFTIKGDT 30 1,404.6 OSKNLDSKEAQTLE 85 1,461.8 DEKDGNAEIFTIK		,			/	
20 1,345.0 PQVENAPQANAP 75 1,480.0 PHTKEFAARISKL 21 1,377.0 ENAPQAQNAPQVE 76 1,415.9 KARISKLGDV 21 1,377.0 ENAPQAQNAPQVE 76 1,415.9 KARISKLGDV 23 1,377.0 QNAPQVENAPQAE 78 1,473.9 ISKLGDVEIKFEN 24 1,361.1 PQVENAPQAEVTP 79 1,401.6 LGDVEIKFENGQA 25 1,330.2 ENAPQAEVTPPVPQQ 81 1,403.5 KFENGQAQGSIKDE 26 1,369.0 PQAEVTPPVPQQSOKLDG 83 1,314.5 AQGSIKDEKD 27 1,416.1 EVTPPVPQSSOKLDG 84 1,447.8 SIKDENDGNAEIF 30 1,404.6 OSQKIDGSFD 84 1,447.8 SIKDENDAAEIFTIK 31 1,375.9 KIDGSFDKIGSVK 86 1,362.7 DGNAEIFTIKGDT 33 1,411.7 DKIGSVKLNK 87 1,445.8 AEIFTIKGDTKQL 33 1,411.7 DKIGSVKLNK 87 1,445.8 AEIFTIKGDTKQL		/			· · ·	
1 1		/			/	
22 1,345.0 PQAQNAPQVENAP 77 1,381.9 AARISKLGDVEIK 23 1,377.0 QNAPQVENAPQAE 78 1,473.9 ISKLGDVEIKFEN 24 1,361.1 PQVENAPQAEVTP 79 1,401.6 LGDVEIKFENGQAQGS 25 1,330.2 ENAPQAEVTPPVP 80 1,388.4 VEIKFENGQAQGS 26 1,369.0 PQAEVTPPVPOPQQ 81 1,403.5 KFENGQAQGSIKDEKD 28 1,372.2 PPVPOPQSOKIGG 83 1,314.5 AQGSIKDEKDGNA2 29 1,428.3 PQPOSOKIGSFDKIG 85 1,461.8 DEKDGNAEIFTIK 30 1,404.6 QSOKIDGSFDKIG 85 1,461.8 DEKDGNAEIFTIK 31 1,375.9 KIDGSFDKIGSVKLNK 86 1,362.7 DGNAEIFTIKGDT 32 1,374.9 GSFDKIGSVKLNK 87 1,445.8 AEIFTIKGDTKOL 33 1,411.7 DKIGSVKLNKEAQ 88 1,475.8 FTIKGDTKOL 34 1,398.6 GSVKLNKEAQTLELSR 90 1,448.9 LEITPTES		,			· · · · · · · · · · · · · · · · · · ·	
23 1,377.0 QNAPQYENAPQAE 78 1,473.9 ISKLGDVEIKFEN 24 1,361.1 PQVENAPQAEVTP 79 1,401.6 LGDVEIKFENGQA 25 1,330.2 ENAPQAEVTPPVP 80 1,388.4 VEIKFENGQAQGSIKD 26 1,369.0 PQAEVTPPVPQPQ 81 1,403.5 KFENGQAQGSIKD 27 1,416.1 EVTPPVPQPOSOK 82 1,371.4 NGQAQGSIKDEKDGNA 28 1,372.2 PVVPQOSOKIDG 83 1,314.5 AQGSIKDEKDGNA 29 1,428.3 POPOSOKIDGSVK 86 1,461.8 DEKDGNAEIFTIK 30 1,404.6 QSOKIDGSFDKIG 85 1,461.8 DEKDGNAEIFTIK 31 1,375.9 KIDGSVKLNKKAQ 87 1,445.8 AEIFTIKGDT 32 1,374.9 GSFDKIGSVK 86 1,452.8 AEIFTIKGDT 33 1,411.7 DKIGSVKLNKEAQ 88 1,475.8 FTIKGDTKOL 34 1,398.6 GSVKLNKEAQTLE 89 1,441.6 KGDTKOLETTTE					· · · · · · · · · · · · · · · · · · ·	
24 1,361.1 PQVENAPQAEVTP 79 1,401.6 LGDVEIKFENGOA 25 1,330.2 ENAPQAEVTPPVP 80 1,388.4 VEIKFENGOAQOGS 26 1,369.0 PQAEVTPPVPQPQ 81 1,403.5 KFENGOAQOGSIKD 27 1,416.1 EVTPPVPQPQOSOK 82 1,371.4 NGGAQGSIKDEND 28 1,372.2 PPVPQPQSOKIDGSFD 84 1,447.8 SIKDEKDGNA 29 1,428.3 PQPOSOKIDGSFD 84 1,447.8 SIKDEKDGNA 30 1,404.6 QSOKIDGSFDKIG 85 1,461.8 DEKDGNAEIFTIK 31 1,375.9 KIDGSFDKIGSVK 86 1,362.7 DGNAEIFTIKGDT 32 1,374.9 GSFDKIGSVKLNK 87 1,445.8 AEIFTIKGDT 33 1,411.7 DKIGSFVKLNKEAQ 88 1,475.8 FTIKGDTKOLETTPTE 34 1,398.6 GSVLNKEAQTLELSR 90 1,498.6 TKQLEITPTESNR 36 1,517.8 KEAQTLELSRFTL 91 1,480.9 LEITPTESNR		,			/	
25 1,30.2 ENAPQAEVTPVP 80 1,388.4 VEIKFENGQAQGS 26 1,369.0 PQAEVTPVPQQQ 81 1,403.5 KFENGQAQGSIKD 27 1,416.1 EVTPVPQPQSOK 82 1,371.4 NGQAQGSIKDEKD 28 1,372.2 PPVPQPQSOKIDG 83 1,314.5 AQGSIKDEKDGNA 29 1,428.3 POPQSOKIDGSFD 84 1,447.8 SIKDEKDGNAEIF 30 1,404.6 QSOKIDGSFDKIG 85 1,461.8 DEKDGNAEIFTIK 31 1,375.9 KIDGSFDKIGSVK 86 1,362.7 DGNAEIFTIKGDT 32 1,374.9 GSFDKIGSVKLNKEAQ 88 1,475.8 FTIKGDTKOLETT 34 1,398.6 GSVKLNKEAQ 88 1,441.6 KGDTKOLETTPTE 35 1,511.8 KLMKEAQTLELSRFTL 91 1,480.9 LEITPTESNRIII 36 1,517.8 KEAQTLELSRFTL 91 1,480.8 ESNRIIIAILDON 39 1,435.9 RTILVDKLGTPPK 94 1,493.8 RIIIAILDON </td <td></td> <td>/</td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>		/			· · · · · · · · · · · · · · · · · · ·	
26 1,369.0 POAEVTPPVPOPQ 81 1,403.5 KFENGGAQGSIKD 27 1,416.1 EVTPPVPOPQSOK 82 1,371.4 NGQAQGSIKDEKD 28 1,372.2 PPVPOPOSOKIDG 83 1,314.5 AQGSIKDEKDGNA 29 1,428.3 POPOSOKIDGSFD 84 1,447.8 SIKDEKDGNAEIF 30 1,404.6 QSOKIDGSFDKIGS 85 1,461.8 DEKDGNAEIFTIK 30 1,404.6 QSOKIDGSFDKIGSVK 86 1,362.7 DGNAEIFTIKGDT 31 1,377.9 KIDGSFDKIGSVK 86 1,362.7 DGNAEIFTIKGDT 32 1,374.9 GSFDKIGSVKLNK 87 1,445.8 AEIFTIKGDT 33 1,411.7 DKIGSVKLNKEAQ 88 1,475.8 FTIKODTKOLETT 34 1,398.6 GSVKLNKEAQTLE 89 1,441.6 KGDTKOLETTT 35 1,511.8 KLNKEAQTLEJSR 90 1,480.9 LEITPTESNRIH 36 1,517.8 KEAQTLEJSRT 91 1,480.8 ESNRIHALLDON <td></td> <td>/</td> <td></td> <td></td> <td></td> <td>-</td>		/				-
27 1,416.1 EVTPPVP0PQSQK 82 1,371.4 NGQAQGSIKDEKD 28 1,372.2 PPVP0P0SQKIDG 83 1,314.5 AQGSIKDEKD 29 1,428.3 P0PQSQKIDGSFD 84 1,447.8 SIKDEKDGNAEIF 30 1,404.6 QSQKIDGSFDKIG 85 1,461.8 DEKDGNAEIFTIK 31 1,375.9 KIDGSFDKIGSVKLNK 86 1,362.7 DGNAEIFTIKGDT 32 1,374.9 GSFDKIGSVKLNK 87 1,445.8 AEIFTIKGDTKQLETT 34 1,398.6 GSVKLNKEAQTLE 89 1,441.6 KGDTKQLETTT 34 1,517.8 KEAQTLELSR 90 1,498.6 TKOLEITPTESNRIII 35 1,511.8 KLNKEAQTLELSR 90 1,498.6 TKOLEITPTESNRIII 38 1,460.9 ELSRFTLVDK 92 1,422.9 TPTESNRIIIALDQN 39 1,453.9 RFTLVDKLGTPPK 93 1,480.8 ESNRIIIALDQN 39 1,453.9 RFTLVDKLGTPPKFDK 95 1,472.6 IAILDQNQKSYTPGME		,	•		/	
28 1,372.2 PPVPOPOSQKIDG 83 1,314.5 AQGSIKDEKDGNA 29 1,428.3 POPQSQKIDGSFD 84 1,447.8 SIKDEKDGNAEIF 30 1,404.6 QSQKIDGSFDKIG 85 1,461.8 DEKDGNAEIFTIK 31 1,375.9 KIDGSFDKIGSVK 86 1,362.7 DGNAEIFTIK 31 1,374.9 GSFDKIGSVKLNK 87 1,445.8 AEIFTIKGDT 33 1,411.7 DKIGSVKLNKEAQ 88 1,475.8 FTIKGDTKOL 34 1,398.6 GSVKLNKEAQTLE 89 1,441.6 KGDTKOLETTPTE 35 1,511.8 KLNKEAQTLELSR 90 1,498.6 TKOLETTPTESNR 36 1,517.8 KEAQTLELSRFTL 91 1,480.9 LEITPTESNRIII 37 1,531.8 OTLELSRFTLVDK 92 1,422.9 TPTESNRIIIAILDON 38 1,460.9 ELSRFTLVDKLGT 93 1,480.8 ESNRIIIAILDON 39 1,433.9 RFTLVDKLGTPFK 94 1,493.8 RIIIAILDONQKS <td></td> <td>/</td> <td></td> <td>11</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>		/		11	· · · · · · · · · · · · · · · · · · ·	
29 1,428.3 PQPQSQKIDGSFD 84 1,447.8 SIKDEKDGNAEIF 30 1,404.6 QSQKIDGSFDKIG 85 1,461.8 DEKDGNAEIFTIK 31 1,375.9 KIDCSFDKIGSVK 86 1,362.7 DGNAEIFTIKGDT 32 1,374.9 GSFDKIGSVKLNK 87 1,445.8 AEIFTIKGDTKQL 33 1,411.7 DKIGSVKLNKEAQ 88 1,475.8 FTIKGDTKQL 34 1,398.6 GSVKLNKEAQTLE 89 1,441.6 KGDTKQLETTPTE 35 1,511.8 KLNKEAQTLELSR 90 1,498.6 TKQLEITPTESNRII 36 1,517.8 KEAQTLELSRTL 91 1,480.9 LEITPTESNRII 37 1,531.8 QTLELSRFTLVDK 92 1,422.9 TPTESNRIIIAILDON 38 1,460.9 ELSRFTLVDKLGT 93 1,480.8 ESNRIIIAILDON 39 1,453.9 RFTLVDKLGTPPK 94 1,493.8 RIIIAILDONOKS 40 1,439.9 LVDKLGTPPKFDKVSG 96 1,492.5 LDQNOKSYTPGME		/			/	
30 1,404.6 QSQKIDGSFDKIG 85 1,461.8 DEKDGNAEIFTIK 31 1,375.9 KIDGSFDKIGSVK 86 1,362.7 DGNAEIFTIKGDT 32 1,374.9 GSFDKIGSVKLNK 87 1,445.8 AEIFTIKGDTKQL 33 1,411.7 DKIGSVKLNKEAQ 88 1,475.8 FTIKGDTKQLETT 34 1,398.6 GSVKLNKEAQTLE 89 1,441.6 KGDTKQLETTPTE 35 1,511.8 KLNKEAQTLELSR 90 1,498.6 TKQLEITPTESNRII 36 1,517.8 KEAQTLELSRFTL 91 1,480.9 LEITPTESNRIII 37 1,531.8 QTLELSRFTLVDK 92 1,422.9 TPTESNRIIIAIL 38 1,460.9 ELSRFTLVDKLGT 93 1,480.8 ESINRIIIAILDON 39 1,453.9 RFTLVDKLGTPPK 94 1,493.8 RIIIAILDONQKSYTP 41 1,355.8 KLGTPPKFDK 95 1,472.6 IAILDONQKSYTP 42 1,426.9 TPPKFDKVSGKKI 97 1,448.7 NOKSYTPGMEKAI					· · · · · · · · · · · · · · · · · · ·	
31 1,375.9 KIDOSFDKIGSVK 86 1,362.7 DGNAEIFTIKGDT 32 1,374.9 GSFDKIGSVKLNK 87 1,445.8 AEIFTIKGDTKQL 33 1,411.7 DKIGSVKLNKEAQ 88 1,475.8 FTIKGDTKQLETT 34 1,398.6 GSVKLNKEAQTLE 89 1,441.6 KGDTKQLETT 35 1,511.8 KLNKEAQTLELSR 90 1,498.6 TKQLEITPTESNR 36 1,517.8 KEAQTLELSRFTL 91 1,480.9 LEITPTESNRIII 37 1,531.8 QTLELSRFTLVDK 92 1,422.9 TPTESNRIIIAILDQN 38 1,460.9 ELSRFTLVDKLGT 93 1,440.8 ESNRIIIAILDQN 39 1,453.9 RFTLVDKLGTPPK 94 1,493.8 RIIIAILDQNQKSYTP 41 1,355.8 KLGTPPKFDKVSG 96 1,492.5 LDQNQKSYTPGMEKAI 43 1,503.0 KFDKVSGKKIIEE 98 1,439.8 SYTPGMEKAIMET 44 1503.0 KVSGKKIIEEKDF 99 1,477.0 PGMEKAIMETKFI <td></td> <td>/</td> <td></td> <td>11</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>		/		11	· · · · · · · · · · · · · · · · · · ·	
32 1,374.9 GSFDKIGSVKLNK 87 1,445.8 AEIFTIKGDTKQL 33 1,411.7 DKIGSVKLNKEAQ 88 1,475.8 FTIKGDTKQLETT 34 1,398.6 GSVKLNKEAQTLE 89 1,441.6 KGDTKQLETT 34 1,398.6 GSVKLNKEAQTLELSR 90 1,498.6 TKQLETTFTESNR 35 1,511.8 KLNKEAQTLELSRFTL 91 1,480.9 LEITPTESNRIII 36 1,517.8 KEAQTLELSRFTL 91 1,480.9 LEITPTESNRIII 38 1,460.9 ELSRFTLVDKLGT 93 1,480.8 ESNRIIIAILDON 39 1,433.9 RFTLVDKLGTPFK 94 1,493.8 RIIIAILDON 31 1,503.0 RFDKVSGKKI 97 1,448.7 NQKSYTPGME 41 1,355.8 KLGTPPKFDKVSG 96 1,492.5 LDQNQKSYTP 41 1,503.0 KFDKVSGKKIIEE 98 1,439.8 SYTPGMEKAI 43 1,503.0 KVSGKKIIEEKDF 99 1,477.0 PGMEKAIMETKFI		,		11	/	
33 1,411.7 DKIGSVKLNKEAQ 88 1,475.8 FTIKGDTKQLETT 34 1,398.6 GSVKLNKEAQTLE 89 1,441.6 KGDTKQLETT 35 1,511.8 KLNKEAQTLELSR 90 1,498.6 TKQLEITPTE 36 1,517.8 KEAQTLELSRFTL 91 1,480.9 LEITPTESNRIII 37 1,531.8 QTLELSRFTLVDK 92 1,422.9 TPTESNRIIIAIL 38 1,460.9 ELSRFTLVDKLGT 93 1,480.8 ESNRIIIAILDQN 39 1,453.9 RFTLVDKLGTPFK 94 1,493.8 RIIIAILDQNKS 40 1,439.9 LVDKLGTPPKFDK 95 1,472.6 IAILDQNQKSYTPGME 41 1,355.8 KLGTPPKFDKVSGKKI 97 1,448.7 NQKSYTPGMEKAI 42 1,426.9 TPPKFDKVSGKKI 97 1,448.7 NQKSYTPGMEKAI 43 1,503.0 KVSGKKIIEEKDF 99 1,477.0 PGMEKAIMETKFI 44 1503.0 KVSGKKIIEEKDF 99 1,477.0 PGMEKAIMETKFI 45 1,514.1 GKKIIEEKDFLVLNLS 100 1,522.0		/		11		
34 1,398.6 GSVKLINKEAQTLE 89 1,441.6 KGDTKQLETTPTE 35 1,511.8 KLNKEAQTLELSR 90 1,498.6 TKQLEITPTESNR 36 1,517.8 KEAQTLELSRFTL 91 1,480.9 LEITPTESNRIII 37 1,531.8 QTLELSRFTLVDK 92 1,422.9 TPTESNRIIIAILDQN 38 1,460.9 ELSRFTLVDKLGT 93 1,480.8 ESNRIIIAILDQN 39 1,433.9 RFTLVDKLGTPFK 94 1,493.8 RIIIAILDQNOKS 40 1,439.9 LVDKLGTPFKFDK 95 1,472.6 LAILDQNOKSYTP 41 1,355.8 KLGTPFKFDKVSGKKI 97 1,448.7 NQKSYTPGME 42 1,426.9 TPFKFDKVSGKKIIEE 98 1,439.8 SYTPGMEKAIMET 43 1,503.0 KFDKVSGKKIIEE 98 1,439.8 SYTPGMEKAIMET 44 1503.0 KVSGKKIIEEKDF 99 1,477.0 PGMEKAIMETKFI 45 1,514.1 GKKIEEKDFLVL 100 1,522.0 EKAIMETKFIDSKAG		/				-
35 1,511.8 KLNKEAQTLELSR 90 1,498.6 TKQLEITPTESNR 36 1,517.8 KEAQTLELSRFTL 91 1,480.9 LEITPTESNRIII 37 1,531.8 QTLELSRFTLVDK 92 1,422.9 TPTESNRIIIAIL 38 1,460.9 ELSRFTLVDK 92 1,422.9 TPTESNRIIIAIL 39 1,453.9 RFILVDKLGTPPK 94 1,493.8 RIIIALDQN 39 1,453.9 RVLGTPPKFDK 94 1,493.8 RIIIALDQNOKSYTP 41 1,355.8 KLGTPPKFDKVSG 95 1,472.6 IAILDQNOKSYTPGME 42 1,426.9 TPPKFDKVSGKKI 97 1,448.7 NQKSYTPGMEKAI 43 1,503.0 KFDKVSGKKIIEEK 98 1,439.8 SYTPGMEKAI 44 1503.0 KVSGKKIIEEKDF 99 1,477.0 PGMEKAIMETKFI 45 1,514.1 GKKIIEEKDFLVLNLS 101 1,435.9 IMETKFIDSKAGN 46 1,515.0 IIEEKDFLVLNLS 102 1,392.6 TKFIDSKAGNSDQKYL						
36 1,517.8 KEAQTLELSRFTL 91 1,480.9 LEITPTESNRIII 37 1,531.8 QTLELSRFTLVDK 92 1,422.9 TPTESNRIIIAIL 38 1,460.9 ELSRFTLVDKLGT 93 1,480.8 ESNRIIIAILDQN 39 1,453.9 RFTLVDKLGTPPK 94 1,493.8 RIIIAILDQNQKS 40 1,439.9 LVDKLGTPPKFDK 95 1,472.6 IAILDQNQKSYTPGME 41 1,355.8 KLGTPPKFDKVSG 96 1,492.5 LDQNQKSYTPGME 42 1,426.9 TPPKFDKVSGKKI 97 1,448.7 NQKSYTPGMEKAI 43 1,503.0 KFDKVSGKKIIEE 98 1,439.8 SYTPGMEKAIMET 44 1503.0 KVSGKKIIEEKDF 99 1,477.0 PGMEKAIMETKFI 45 1,514.1 GKKIIEEKDFLVL 100 1,522.0 EKAIMETKFIDSKAGNSDQ 46 1,515.0 IIEEKDFLVLNLS 101 1,435.9 IMETKFIDSKAGNSDQ 48 1,457.7 FLVLNLSDINAEQ 103 1,420.7 IDSKAGN		/	-		· · · · · · · · · · · · · · · · · · ·	-
37 1,531.8 QTLELSRFTLVDK 92 1,422.9 TPTESNRIIIAIL 38 1,460.9 ELSRFTLVDKLGT 93 1,480.8 ESNRIIIAILDQN 39 1,433.9 RFTLVDKLGTPPK 94 1,493.8 RIIIAILDQNQKS 40 1,439.9 LVDKLGTPPKFDK 95 1,472.6 IAILDQNQKSYTP 41 1,355.8 KLGTPPKFDKVSG 96 1,492.5 LDQNQKSYTPGME 42 1,426.9 TPPKFDKVSGKKI 97 1,448.7 NQKSYTPGMEKAI 43 1,503.0 KFDKVSGKKIIEE 98 1,439.8 SYTPGMEKAIMET 44 1503.0 KVSGKKIIEEKDF 99 1,477.0 PGMEKAIMETKFI 45 1,514.1 GKKIIEEKDFLVL 100 1,522.0 EKAIMETKFIDSK AGNSDQ 46 1,515.0 IIEEKDFLVLNLS 101 1,435.9 IMETKFIDSKAGNSDQ 48 1,457.7 FLVLNLSDIN 102 1,392.6 TKFIDSKAGNSDQ 49 1,355.6 LNLSDINAEQLSGDFL 105 1,434.7 NSDQKYLIGE 50 1,390.6 SDINAEQLSGDFL 106 1,533.8<		,				
38 1,460.9 ELSRFTLVDKLGT 93 1,480.8 ESNRIIIAILDQN 39 1,453.9 RFTLVDKLGTPPK 94 1,493.8 RIIIAILDQNQKS 40 1,439.9 LVDKLGTPPKFDK 95 1,472.6 IAILDQNQKSYTP 41 1,355.8 KLGTPPKFDKVSG 96 1,492.5 LDQNQKSYTPGME 42 1,426.9 TPPKFDKVSGKKI 97 1,448.7 NQKSYTPGMEKAI 43 1,503.0 KFDKVSGKKIIEE 98 1,439.8 SYTPGMEKAIMETKFI 45 1,514.1 GKKIIEEKDF 99 1,477.0 PGMEKAIMETKFIDSK 46 1,515.0 IIEEKDFLVLN 100 1,522.0 EKAIMETKFIDSK 47 1,501.9 EKDFLVLNLS 101 1,435.9 IMETKFIDSKAGNSDQ 48 1,457.7 FLVLNLSDINAEQ 103 1,420.7 IDSKAGNSDQKYL 49 1,355.6 LNLSDINAEQLSGDFL 105 1,434.7 NSDQKYLIGEA 50 1,390.6 SDINAEQLSGDFL 105 1,434.7 NSDQKYLIGEAKSDNW 51 1,500.8 NAEQLSGDFLIRRSDD 107 1,426		/	-	11	· · · · · · · · · · · · · · · · · · ·	
39 1,453.9 RFTLVDKLGTPPK 94 1,493.8 RIIIAILDQNQKS 40 1,439.9 LVDKLGTPPKFDK 95 1,472.6 IAILDQNQKSYTP 41 1,355.8 KLGTPPKFDKVSG 96 1,492.5 LDQNQKSYTPGME 42 1,426.9 TPPKFDKVSGKKI 97 1,448.7 NQKSYTPGMEKAI 43 1,503.0 KFDKVSGKKIIEE 98 1,439.8 SYTPGMEKAI 44 1503.0 KVSGKKIIEEKDF 99 1,477.0 PGMEKAIMET 45 1,514.1 GKKIIEEKDFLVL 100 1,522.0 EKAIMETKFIDSK 46 1,515.0 IIEEKDFLVLNLS 101 1,435.9 IMETKFIDSKAGN 47 1,501.9 EKDFLVLNLSDIN 102 1,392.6 TKFIDSKAGNSDQ 48 1,457.7 FLVLNLSDINAEQ 103 1,420.7 IDSKAGNSDQKYL 49 1,355.6 LINLSDINAEQLSGDFL 105 1,434.7 NSDQKYLIGE 50 1,390.6 SDINAEQLSGDFL 105 1,434.7 NSDQKYLIGE <		/	-		/	
40 1,439.9 LVDKLGTPPKFDK 95 1,472.6 IAILDQNQKSYTP 41 1,355.8 KLGTPPKFDKVSG 96 1,492.5 LDQNQKSYTPGME 42 1,426.9 TPPKFDKVSGKKI 97 1,448.7 NQKSYTPGMEKAI 43 1,503.0 KFDKVSGKKIIEE 98 1,439.8 SYTPGMEKAIMET 44 1503.0 KVSGKKIIEEKDF 99 1,477.0 PGMEKAIMETKFI 45 1,514.1 GKKIIEEKDFLVL 100 1,522.0 EKAIMETKFIDSK 46 1,515.0 IIEEKDFLVLNLS 101 1,435.9 IMETKFIDSKAGN 47 1,501.9 EKDFLVLNLSDIN 102 1,392.6 TKFIDSKAGNSDQ 48 1,457.7 FLVLNLSDINAEQ 103 1,420.7 IDSKAGNSDQKYLIGE 50 1,390.6 SDINAEQLSGDFL 105 1,434.7 NSDQKYLIGEAKS 51 1,500.8 NAEQLSGDFLIRR 106 1,533.8 QKYLIGEAKSDNW 52 1,503.8 QLSGDFLIRRSDD 107 1,426.7 LIGEAKSDNWQA		,			/	-
41 1,355.8 KLGTPPKFDKVSG 96 1,492.5 LDQNQKSYTPGME 42 1,426.9 TPPKFDKVSGKKI 97 1,448.7 NQKSYTPGMEKAI 43 1,503.0 KFDKVSGKKIIEE 98 1,439.8 SYTPGMEKAIMET 44 1503.0 KVSGKKIIEEKDF 99 1,477.0 PGMEKAIMETKFI 45 1,514.1 GKKIIEEKDFLVL 100 1,522.0 EKAIMETKFIDSK 46 1,515.0 IIEEKDFLVLNLS 101 1,435.9 IMETKFIDSKAGN 47 1,501.9 EKDFLVLNLSDIN 102 1,392.6 TKFIDSKAGNSDQ 48 1,457.7 FLVLNLSDINAEQ 103 1,420.7 IDSKAGNSDQKYL 49 1,355.6 LNLSDINAEQLSG 104 1,404.7 KAGNSDQKYLIGE 50 1,390.6 SDINAEQLSGDFL 105 1,434.7 NSDQKYLIGEAKS 51 1,503.8 QLSGDFLIRR 106 1,533.8 QKYLIGEAKSDNWQAI 52 1,503.8 QLSGDFLIRRSDD 107 1,426.7 LIGEAKSDNWQAI 53 1,599.1 GDFLIRRSDDLFY 108 1,460.6 <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>					· · · · · · · · · · · · · · · · · · ·	
42 1,426.9 TPPKFDKVSGKKI 97 1,448.7 NQKSYTPGMEKAI 43 1,503.0 KFDKVSGKKIIEE 98 1,439.8 SYTPGMEKAIMET 44 1503.0 KVSGKKIIEEKDF 99 1,477.0 PGMEKAIMETKFI 45 1,514.1 GKKIIEEKDFLVL 100 1,522.0 EKAIMETKFIDSK 46 1,515.0 IIEEKDFLVLNLS 101 1,435.9 IMETKFIDSKAGN 47 1,501.9 EKDFLVLNLSDIN 102 1,392.6 TKFIDSKAGNSDQ 48 1,457.7 FLVLNLSDINAEQ 103 1,420.7 IDSKAGNSDQKYL 49 1,355.6 LNLSDINAEQLSG 104 1,404.7 KAGNSDQKYLIGE 50 1,390.6 SDINAEQLSGDFL 105 1,434.7 NSDQKYLIGEAKS 51 1,500.8 NAEQLSGDFLIRR 106 1,533.8 QKYLIGEAKSDNW 52 1,503.8 QLSGDFLIRRSDD 107 1,426.7 LIGEAKSDNWQAI 53 1,599.1 GDFLIRRSDDLFY 108 1,460.6 EAKSDNWQAIMVSEKK 54 1,663.2 LIRRSDDLFYGYY 109 1,517.7		/		11	/	
43 1,503.0 KFDKVSGKKIIEE 98 1,439.8 SYTPGMEKAIMET 44 1503.0 KVSGKKIIEEKDF 99 1,477.0 PGMEKAIMETKFI 45 1,514.1 GKKIIEEKDFLVL 100 1,522.0 EKAIMETKFIDSK 46 1,515.0 IIEEKDFLVLNLS 101 1,435.9 IMETKFIDSKAGN 47 1,501.9 EKDFLVLNLSDIN 102 1,392.6 TKFIDSKAGNSDQ 48 1,457.7 FLVLNLSDINAEQ 103 1,420.7 IDSKAGNSDQKYL 49 1,355.6 LNLSDINAEQLSG 104 1,404.7 KAGNSDQKYLIGE 50 1,390.6 SDINAEQLSGDFL 105 1,434.7 NSDQKYLIGEAKSS 51 1,500.8 NAEQLSGDFLIRR 106 1,533.8 QKYLIGEAKSDNW 52 1,503.8 QLSGDFLIRRSDD 107 1,426.7 LIGEAKSDNWQAI 53 1,599.1 GDFLIRRSDDLFY 108 1,460.6 EAKSDNWQAIMVS 54 1,663.2 LIRRSDDLFYGYY 109 1,517.7 SDNWQAIMVSEKK					· · · · · · · · · · · · · · · · · · ·	
44 1503.0 KVSGKKIIEEKDF 99 1,477.0 PGMEKAIMETKFI 45 1,514.1 GKKIIEEKDFLVL 100 1,522.0 EKAIMETKFIDSK 46 1,515.0 IIEEKDFLVLNLS 101 1,435.9 IMETKFIDSKAGN 47 1,501.9 EKDFLVLNLSDIN 102 1,392.6 TKFIDSKAGNSDQ 48 1,457.7 FLVLNLSDINAEQ 103 1,420.7 IDSKAGNSDQKYL 49 1,355.6 LNLSDINAEQLSG 104 1,404.7 KAGNSDQKYLIGE 50 1,390.6 SDINAEQLSGDFL 105 1,434.7 NSDQKYLIGEAKS 51 1,500.8 NAEQLSGDFLIRR 106 1,533.8 QKYLIGEAKSDNW 52 1,503.8 QLSGDFLIRRSDD 107 1,426.7 LIGEAKSDNWQAI 53 1,599.1 GDFLIRRSDDLFY 108 1,460.6 EAKSDNWQAIMVS 54 1,663.2 LIRRSDDLFYGYY 109 1,517.7 SDNWQAIMVSEKK		/			· · · · · · · · · · · · · · · · · · ·	
45 1,514.1 GKKIIEEKDFLVL 100 1,522.0 EKAIMETKFIDSK 46 1,515.0 IIEEKDFLVLNLS 101 1,435.9 IMETKFIDSKAGN 47 1,501.9 EKDFLVLNLSDIN 102 1,392.6 TKFIDSKAGNSDQ 48 1,457.7 FLVLNLSDINAEQ 103 1,420.7 IDSKAGNSDQKYL 49 1,355.6 LNLSDINAEQLSG 104 1,404.7 KAGNSDQKYLIGE 50 1,390.6 SDINAEQLSGDFL 105 1,434.7 NSDQKYLIGEAKS 51 1,500.8 NAEQLSGDFLIRR 106 1,533.8 QKYLIGEAKSDNW 52 1,503.8 QLSGDFLIRRSDD 107 1,426.7 LIGEAKSDNWQAI 53 1,599.1 GDFLIRRSDDLFY 108 1,460.6 EAKSDNWQAIMVS 54 1,663.2 LIRRSDDLFYGYY 109 1,517.7 SDNWQAIMVSEKK		,			/	
46 1,515.0 IIEEKDFLVLNLS 101 1,435.9 IMETKFIDSKAGN 47 1,501.9 EKDFLVLNLSDIN 102 1,392.6 TKFIDSKAGNSDQ 48 1,457.7 FLVLNLSDINAEQ 103 1,420.7 IDSKAGNSDQKYL 49 1,355.6 LNLSDINAEQLSG 104 1,404.7 KAGNSDQKYLIGE 50 1,390.6 SDINAEQLSGDFL 105 1,434.7 NSDQKYLIGEAKS 51 1,500.8 NAEQLSGDFLIRR 106 1,533.8 QKYLIGEAKSDNW 52 1,503.8 QLSGDFLIRRSDD 107 1,426.7 LIGEAKSDNWQAI 53 1,599.1 GDFLIRRSDDLFY 108 1,460.6 EAKSDNWQAIMVS 54 1,663.2 LIRRSDDLFYGYY 109 1,517.7 SDNWQAIMVSEKK				11	· · · · · · · · · · · · · · · · · · ·	
47 1,501.9 EKDFLVLNLSDIN 102 1,392.6 TKFIDSKAGNSDQ 48 1,457.7 FLVLNLSDINAEQ 103 1,420.7 IDSKAGNSDQKYL 49 1,355.6 LNLSDINAEQLSG 104 1,404.7 KAGNSDQKYLIGE 50 1,390.6 SDINAEQLSGDFL 105 1,434.7 NSDQKYLIGEAKS 51 1,500.8 NAEQLSGDFLIRR 106 1,533.8 QKYLIGEAKSDNW 52 1,503.8 QLSGDFLIRRSDD 107 1,426.7 LIGEAKSDNWQAI 53 1,599.1 GDFLIRRSDDLFY 108 1,460.6 EAKSDNWQAIMVS 54 1,663.2 LIRRSDDLFYGYY 109 1,517.7 SDNWQAIMVSEKK		/		11	/	
48 1,457.7 FLVLNLSDINAEQ 103 1,420.7 IDSKAGNSDQKYL 49 1,355.6 LNLSDINAEQLSG 104 1,404.7 KAGNSDQKYLIGE 50 1,390.6 SDINAEQLSGDFL 105 1,434.7 NSDQKYLIGEAKS 51 1,500.8 NAEQLSGDFLIRR 106 1,533.8 QKYLIGEAKSDNW 52 1,503.8 QLSGDFLIRRSDD 107 1,426.7 LIGEAKSDNWQAI 53 1,599.1 GDFLIRRSDDLFY 108 1,460.6 EAKSDNWQAIMVS 54 1,663.2 LIRRSDDLFYGYY 109 1,517.7 SDNWQAIMVSEKK		,			· · · · · · · · · · · · · · · · · · ·	
49 1,355.6 LNLSDINAEQLSG 104 1,404.7 KAGNSDQKYLIGE 50 1,390.6 SDINAEQLSGDFL 105 1,434.7 NSDQKYLIGEAKS 51 1,500.8 NAEQLSGDFLIRR 106 1,533.8 QKYLIGEAKSDNW 52 1,503.8 QLSGDFLIRRSDD 107 1,426.7 LIGEAKSDNWQAI 53 1,599.1 GDFLIRRSDDLFY 108 1,460.6 EAKSDNWQAIMVS 54 1,663.2 LIRRSDDLFYGYY 109 1,517.7 SDNWQAIMVSEKK		/			· · · · · · · · · · · · · · · · · · ·	
50 1,390.6 SDINAEQLSGDFL 105 1,434.7 NSDQKYLIGEAKS 51 1,500.8 NAEQLSGDFLIRR 106 1,533.8 QKYLIGEAKSDNW 52 1,503.8 QLSGDFLIRRSDD 107 1,426.7 LIGEAKSDNWQAI 53 1,599.1 GDFLIRRSDDLFY 108 1,460.6 EAKSDNWQAIMVS 54 1,663.2 LIRRSDDLFYGYY 109 1,517.7 SDNWQAIMVSEKK		,			/	-
51 1,500.8 NAEQLSGDFLIRR 106 1,533.8 QKYLIGEAKSDNW 52 1,503.8 QLSGDFLIRRSDD 107 1,426.7 LIGEAKSDNWQAI 53 1,599.1 GDFLIRRSDDLFY 108 1,460.6 EAKSDNWQAIMVS 54 1,663.2 LIRRSDDLFYGYY 109 1,517.7 SDNWQAIMVSEKK		/			· · · · · · · · · · · · · · · · · · ·	
52 1,503.8 QLSGDFLIRRSDD 107 1,426.7 LIGEAKSDNWQAI 53 1,599.1 GDFLIRRSDDLFY 108 1,460.6 EAKSDNWQAIMVS 54 1,663.2 LIRRSDDLFYGYY 109 1,517.7 SDNWQAIMVSEKK			-	11	/	
53 1,599.1 GDFLIRRSDDLFY 108 1,460.6 EAKSDNWQAIMVS 54 1,663.2 LIRRSDDLFYGYY 109 1,517.7 SDNWQAIMVSEKK				11	/	-
54 1,663.2 LIRRSDDLFYGYY 109 1,517.7 SDNWQAIMVSEKK				11	· · · · · · · · · · · · · · · · · · ·	
	53	/		11	/	-
55 1,634.0 RSDDLFYGYYHDT	54	,		109	1,517.7	SDNWQAIMVSEKK
	55	1,634.0	RSDDLFYGYYHDT			

TABLE 3. Overlapping peptides spanning PlpE^a

^a Peptides comprising R2 are shown in boldface type.

three female Swiss Webster (CFW) mice (Charles River Laboratories, Wilmington, Mass.) were immunized three times with 50 µg of truncated rPlpE diluted in RIBI (Corixa Corp., Seattle, Wash.) adjuvant. The first immunization was given subcutaneously. The second immunization was given intraperitoneally after 14 days and repeated 10 days later. A test bleed was performed, and the sera were screened for antibodies to rPlpE by enzyme-linked immunosorbent assay (ELISA). Because the antibody titer was less than 1:3,200, two additional intraperitoneal immunizations were given at 10-day intervals. The mice were then injected with approximately 2 × 10⁶ sarcoma cells (catalog no. TIB-66; American Type Culture Collection, Manassas, Va.). Between 7 and 10 days after sarcoma injection, ascites was removed from each mouse three times. A total of 4 to 18 ml of ascitic fluid was removed from each mouse before euthanization.

Bovine antisera. PlpE-specific sera were obtained from 6- to 8-month-old calves that were used for immunogenicity studies of rPlpE (15). Sera from these calves were screened for anti-*M. haemolytica* antibodies, as measured by ELISA, to formalin-killed *M. haemolytica* whole cells (16, 18). Calves that had anti-*M. haemolytica* antibody concentrations of less than 0.50 ng of immunoglobulin G binding to the antigen at a 1:400 serum dilution (normal background) were used in this study. Each of three calves was vaccinated once with 10, 50, or 100 μ g of rPlpE in a commercial proprietary adjuvant (Pfizer, Inc., Lincoln, Neb.) and, on

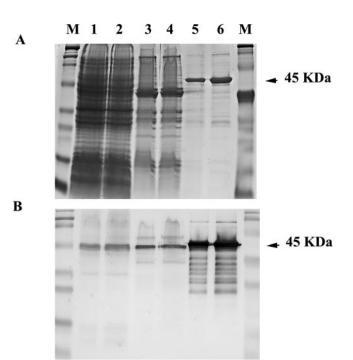


FIG. 1. Twenty and 40 μ l of whole-cell lysate (lanes 1 and 2), the same volumes of outer membrane proteins (lanes 3 and 4), and 0.5 and 1.0 μ g of rPlpE (lanes 5 and 6) were separated by SDS–12.5% PAGE. M, molecular mass markers. One gel was stained with Coomassie brilliant blue (A), and the second was transferred onto nitrocellulose for a Western blot with hyperimmune calf serum immunized with rPlpE (B).

day 23, had endpoint antibody titers of 1:12,800, 1:25,600, and 1:25,600, respectively, as measured by an ELISA for rPlpE (15). A nonvaccinated calf had an endpoint titer of only 1:400. In that study, rPlpE-vaccinated calves were subsequently challenged with 5.0×10^9 CFU of virulent *M. haemolytica* and had between 71 and 81% smaller lung lesions than did the *M. haemolytica*-challenged nonvaccinated calf (15).

Anti-*M. haemolytica* serum was obtained from a weanling beef calf that spontaneously developed high anti-*M. haemolytica* antibodies with an endpoint titer of 1:25,600 after natural exposure. Serum was also available from a calf that had been subcutaneously vaccinated twice, 14 days apart, with 2 ml of 10⁹ CFU of live *M. haemolytica* each time. The serum was obtained 14 days after the last vaccination and had an endpoint titer to PIpE of 1:25,600.

Preparation of affinity columns and purification of anti-PlpE antibodies. Purified rPlpE was coupled to *N*-hydroxylsuccinimide (NHS)-activated Sepharose 4 Fast Flow (Amersham Biosciences, Uppsala, Sweden) according to the manufacturer's recommendations. Briefly, defined bed volumes of NHS-activated Sepharose 4 Fast Flow in an Econo column (Bio-Rad, Hercules, Calif.) was washed with 10 to 15 volumes of cold 1 mM HCl and equilibrated with PBS. Purified rPlpE (3 to 7 mg) in PBS was mixed with a 2-ml bed volume in a ratio of 0.5:1 (coupling solution and medium), and the column was incubated at 4°C on a rocking platform overnight. The nonreacted groups were blocked by 0.1 M Tris (pH 8.0) and washed with alternating high- and low-pH buffers (Tris-HCl [pH 8.0] and acetate buffer [pH 4.0], respectively). An affinity column was prepared for each truncated rPlpE as well as for whole rPlpE.

Anti-rPlpE antibodies against specific regions of PlpE were purified by using the affinity columns described above. A column with NHS-activated Sepharose coupled to an rPlpE of interest was fitted with a flow adaptor according to the recommendation of the manufacturer (Bio-Rad) and equilibrated with Dulbecco's PBS (DPBS) at a flow rate of 1 ml/min. Hyperimmune serum produced by immunizing calves with full-length rPlpE was diluted 1:10 with DPBS and passed through Nalgene 0.45- μ m-pore-size PES filters (Nalge). The filtered serum was then applied to the equilibrated column via a peristaltic pump (pump P-1; Pharmacia LKB) at a flow rate of 1 ml/min. The flowthrough was reapplied to the column several times to reextract the serum by connecting the flowthrough to the reservoir of the initial serum. The column was then washed with DPBS until complete removal of nonspecific proteins was achieved, as determined by a UV monitor (optical unit UV-1; Pharmacia LKB) attached to a chart recorder. The specifically bound antibody was eluted with glycine buffer (100 mM glycine, 140 mM NaCl [pH 3.0]) by collecting fractions into microcentrifuge tubes containing a 1/10 volume of 1 M Tris-HCl (pH 8.0). The absorbance of fractions was determined at 280 nm, and those having a reading of at least two to three times that of the background were pooled and dialyzed overnight against DPBS at 4°C in a Slide-A-Lyzer dialysis cassette (Pierce, Rockford, III.). The concentration of affinity-purified antibodies was determined with a BCA protein assay kit (Pierce). Specific antibodies against rPlpE with 28-, 76-, and 150-amino-acid deletions on their N termini, rPlpE Δ N28 (pSAC63), rPlpE Δ N76 (pSAC64), and rPlpE Δ N150 (pSAC65), respectively, were purified as described previously.

Antibodies against regions of PlpE that are exposed on the surfaces of *M.* haemolytica cells were purified as previously described (45, 60). Briefly, intact *M.* haemolytica cells from 500 ml in late log phase were harvested by centrifugation and washed with PBS. The washed cells were resuspended in 10 ml of a 1:10 dilution of hyperimmune bovine anti-rPlpE serum or anti-PlpE mouse ascites diluted in PBS on ice for 2 to 4 h with gentle agitation. The cells were pelleted and washed several times with PBS. The antibodies bound to the surface were eluted by resuspending and agitating the cells in 2 ml of 0.1 M glycine and 140 mM NaCl (pH 3.0) for at least 30 min. The cells were centrifuged at 14,000 × g, and the eluted antibodies were collected in the supernatant, which was neutralized immediately by adding a 1/10 volume of 1 M Tris (pH 8.0).

Epitope mapping of PlpE by peptide array. A peptide array comprising a total of 109 overlapping 13-mer peptides with a 3-amino-acid offset (Table 3) was custom made by Sigma-Genosys LP (The Woodlands, Tex.). Briefly, the synthesis of peptides was performed on cellulose membranes in which hydroxyl functions of a commercially available filter paper were derivatized with 9-fluorenyl-methoxy carbonyl-B-alanine (Fmoc-B-Ala) with subsequent removal of the Fmoc group. The synthesis areas were defined by spotting an Fmoc-B-alanine pentafluorophenyl ester solution to distinct areas on the membrane. Blocking the remaining amino functions between spots provided discrete reaction sites on the membrane for further standard solid-phase peptide synthesis with amino acid pentafluorophenyl esters. Peptides remained covalently attached to the cellulose membrane by the C terminus and had a free N terminus.

Typically, prior to blotting, the membrane was blocked with SuperBlock dry blend (Pierce) blocking buffer in Tris-buffered saline (TBS) (pH 7.4). All incubations were done at room temperature. The membrane was then incubated in blocking buffer containing primary antibody at a dilution of 1:1,000 to 1:5,000 for an hour. Following several washes with TBS (pH 7.4) supplemented with 0.05% Tween 20 and 0.2% Triton X-100 (TBSTT), the membrane was incubated in SuperBlock containing a goat anti-bovine or anti-mouse secondary antibody conjugated to horseradish peroxidase (HRP) (Kirkegaard & Perry Laboratories, Inc., Gaithersburg, Md.) at dilutions of 1:100,000 to 1:200,000 for 1 h. The membrane was washed several times with TBSTT, incubated with SuperSignal West Pico chemiluminescent substrate (Pierce) working solution (0.125 ml/cm²) for 5 min, placed in a plastic membrane protector, and exposed to a CL-X Posure X-ray film (Pierce) for various durations of time. The X-ray film was then developed in a Konica (Wayne, N.J.) SRX-101A medical film processor. The developed X-ray film was scanned on an Arcus 1200 Agfa scanner (Taipei, Taiwan), and scanned images were analyzed with the Gene Pix Pro, version 4.0 (Axon Instruments, Union City, Calif.). Signal intensities were defined as the median pixel intensity following the subtraction of the local median background signal. The peptide array was stripped with Restore Western blot stripping buffer (Pierce) according to the procedure recommended by the manufacturer. Complete stripping was confirmed by autoradiography. The blot procedure was repeated several times with anti-PlpE antibodies obtained from different sources or purified in a variety of ways.

The peptide array was sequentially probed according to the manufacturer's recommendations. Nonspecifically binding spots were initially identified by probing the peptide array with HRP-conjugated goat anti-bovine and rabbit anti-bovine secondary antibodies. The membrane was then probed with a naive serum obtained from a colostrum-deprived newborn calf to further identify spots that nonspecifically bound bovine antibodies. Finally, the peptide array was probed with antibodies produced against PlpE by either vaccination with rPlpE or live *M. haemolytica* or by natural exposure.

Complement-mediated bactericidal assay. Serum from a newborn colostrumdeprived Holstein calf was used as a source of complement. Sources of antibodies used in the complement-mediated bactericidal assay were hyperimmune sera from calves vaccinated with the full-length rPlpE and affinity-purified antibodies with the affinity columns described above. Each of these antibodies, with the

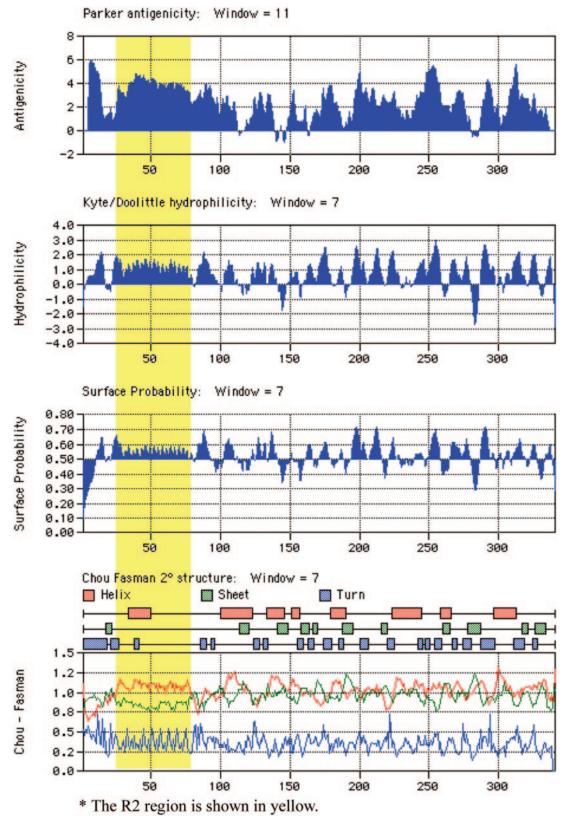


FIG. 2. Predicted features of the deduced amino acid sequence of PlpE showing regions that are potentially antigenic, hydrophilic, and surface exposed and secondary structures.

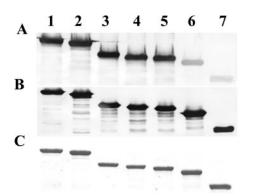
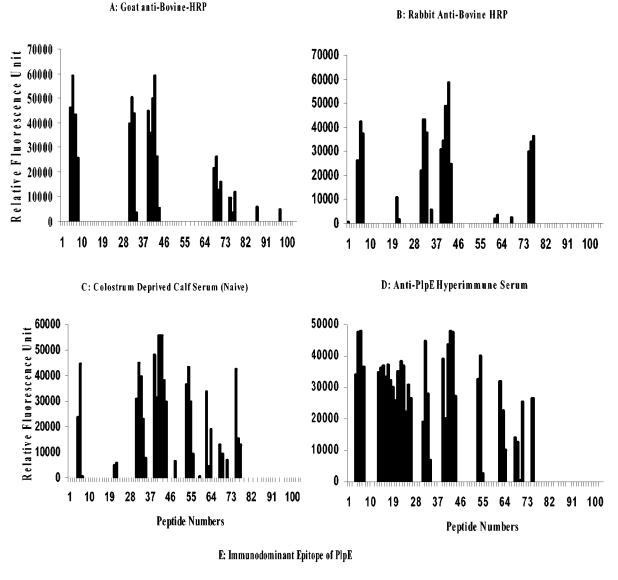


FIG. 3. Nested deletion mutants were tested for binding capacity of anti-rPlpE antibodies from bovine and murine sources. 1, rPlpE; 2, rPlpE Δ N28; 3, rPlpE Δ C86; 4, rPlpE Δ C96; 5, rPlpE Δ C106; 6, rPlpE Δ N76; 7, rPlpE Δ N150. (A) Anti-PlpE bovine hyperimmune serum; (B) anti-His-tagged mouse monoclonal antibody; (C) Coomassie stain.

exception of the complement source, was incubated at 56°C for 30 min to inactivate resident complement prior to use.

The complement-mediated killing assay was performed as previously described (45), except that a decapsulation procedure (12) was added. Decapsulation was done to maximize the exposure of surface protein epitopes to anti-PlpE antibodies (12). Briefly, well-isolated colonies of M. haemolytica 89010807N from overnight growth on BHI blood agar plates were transferred into tubes with BHI broth and grown in a shaker-incubator (200 rpm) at 37°C overnight. The overnight starter culture was transferred into a 125-ml conical flask containing 50 ml of BHI and incubated at 37°C in a shaker-incubator for 2 to 3 h. The cells were pelleted, washed once with PBS, resuspended in 40 ml of PBS, and decapsulated by incubation at 41°C with 100-rpm shaking for 1 h to remove the polysaccharide capsule (12). The decapsulated cells were resuspended in PBS to an A_{600} of 0.50. A 1:1,000 dilution of the latter was used in a killing assay. The assay, plating, and incubation were done as previously described (45). In each assay, heat-inactivated antibodies without any complement source and complement source without antibodies were used as negative controls. The percent killing was calculated with the following formula: % killing = $[(CFU_{t0} - CFU_{t30})/CFU_{t0}](100\%)$.

Western blotting. Whole-cell lysates, outer membrane preparations of *M. haemolytica* or rPlpE, were resolved on SDS–12.5% PAGE gels by electrophoresis and transferred onto 0.2-µm nitrocellulose membranes in a Mini Trans-Blot cell (Bio-Rad). Membranes were blocked with TBS containing 1% casein for 1 h at room temperature. Each membrane was transferred into blocking buffer containing an appropriately diluted anti-PlpE antibody, where it was incubated for 1 h at room temperature. Following extensive washing with TBST, bound antibodies were detected by either alkaline phosphatase-conjugated goat antibovine or anti-mouse antibodies with 5-bromo-4-chloro-3-indolyl-phosphate (BCIP)–nitroblue tetrazolium as the substrate (Kirkegaard & Perry Laboratories).


ELISA. ELISA was performed as described previously (14). Briefly, highbinding, 96-well, flat-bottom polystyrene Costar 9018 (Corning Inc., Corning, N.Y.) plates were coated with 0.5 µg of recombinant protein/ml in coating solution (12.8 mM Na2CO3, 34.8 mM NaHCO3 [pH 9.6]) at 4°C overnight or at 37°C for 2 h on a rocking platform. The plates were washed four times with $1 \times$ PBS supplemented with 0.05% Tween (PBST) (Sigma, St. Louis, Mo.) and blocked with PBST-1% bovine serum albumin for 1 h at room temperature. Primary bovine or murine antibody diluted in PBS-1% bovine serum albumin was added to the wells and incubated at 37°C for 1.5 h. In most instances, an initial 1:400 dilution followed by twofold serial dilutions of the primary antibody were used. After washing with PBST, a 1:400 dilution of goat anti-mouse or goat anti-bovine HRP conjugate (Kirkegaard & Perry Laboratories) was added and the plates were incubated at 37°C for 1 h and 30 min. Following washing with PBST, o-phenylenediamine tablets (Amresco, Solon, Ohio) were reconstituted and used as the substrate according to the manufacturer's recommendations. The absorbance at 490 nm was determined for each well by using a Vmax kinetic microplate reader (Molecular Devices, Sunnyvale, Calif.).

RESULTS

Immunogenicity of rPlpE. The purity of the rPlpE preparation (Fig. 1A) and the specificity of the immune response of an rPlpE-vaccinated calf were evident (Fig. 1B), in that PlpE in the OMP and whole-cell lysate was demonstrated. Evidence of mild proteolysis in the Western blots and several trace contaminants were seen on the stained gel.

Epitope mapping with truncated rPlpE. Computer analysis of the deduced amino acid sequence of PlpE with MacVector, version 7.2.2 (Accelrys, Inc., San Diego, Calif.), which employed algorithms such as antigenic index (47), hydrophilicity (38), and surface probability (36), revealed the presence of putative antigenic regions randomly distributed throughout the protein (Fig. 2). To determine whether this was true, we constructed a series of truncated proteins. A total of six plasmid constructs (pSAC30, pSAC31, pSAC32, pSAC63, pSAC64, and pSAC65) carrying the plpE gene with various deletions were made (Table 2). Western blot analysis clearly demonstrated that all of the six truncated forms of rPlpE and the full-length protein reacted with hyperimmune serum from calves immunized with full-length rPlpE. Quantitation of the respective bands on a Western blot (Fig. 3) in which equal amounts of each recombinant protein were resolved on SDS-12.5% PAGE gels demonstrated substantial differences in the intensities of the reactions of hyperimmune serum with the truncated recombinant proteins (Table 2). There was no appreciable difference in the intensity of the reaction between rPlpE (lane 1) and pSAC63 (rPlpE Δ N28) (lane 2), lacking the N-terminal 28 amino acids. There were also no differences in the intensity of binding between rPlpE and mutants carrying 86 (rPlpE Δ C86), 96 (rPlpE Δ C96), and 106 (rPlpE Δ C106) amino acid deletions on the C terminus of PlpE (lanes 3, 4, and 5, respectively). In contrast, the binding capacity of antibodies to mutants carrying deletions on their N termini decreased with increasing deletions. The reactivity to pSAC64 (rPlpE Δ N76) (lane 6), which carries a deletion of 76 amino acids on the N terminus, decreased to 28%, a reduction of 72% compared to rPlpE. Further deletion of the N terminus, as seen with pSAC65 (rPlpE Δ N150) (lane 7), reduced the binding capacity of immunoglobulins to the truncated protein to 12.5%. These findings clearly indicate that the region between residues 28 and 76 from the N terminus of PlpE carries a stretch of amino acids with possible epitope(s) that may be responsible for inducing the immune response elicited when rPlpE is used as a vaccine.

Fine mapping of epitopes on PlpE. To further localize epitopes on PlpE, an array of overlapping peptides was probed with immune sera. A total of eight discrete highly reactive regions were identified when the peptide array was sequentially probed as described (Fig. 4). HRP-conjugated goat and rabbit anti-bovine secondary antibodies were reactive to regions 1, 3, 4, 7, and 8 (Fig. 4A and B, respectively). When naive serum from a colostrum-deprived newborn calf was used to test the peptide array, regions 5 and 6 were identified in addition to those already mentioned (Fig. 4C). When antibodies obtained from calves that were immunized with rPlpE, live M. haemolytica, or natural exposure to M. haemolytica were used to probe the peptide array, all eight of the regions were found to be highly reactive (Fig. 4D). When the nonspecific regions, i.e., 1, 3, 4, 5, 6, 7, and 8 were subtracted from those that reacted with hyperimmune sera produced against PlpE, region

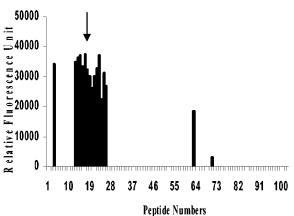
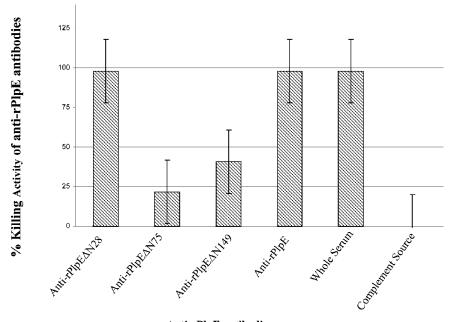



FIG. 4. Overlapping 13-mer peptides spanning PlpE were sequentially probed with a variety of antibodies. (A) Goat anti-bovine-HRP; (B) rabbit anti-bovine-HRP; (C) colostrum-deprived calf serum (naive); (D) bovine anti-PlpE hyperimmune serum; (E) immunodominant epitope (R2) identified by subtracting the background, i.e., panels A, B, and C from panel D. The clusters of peaks also known as regions (R) are numbered from left to right as they appear in panel D (R1, peptides 5 to 7; R2, peptides 13 to 26; R3, peptides 31 to 34; R4, peptides 39 to 44; R5, peptides 53 to 55; R6, peptides 62 to 64; R7, peptides 68 to 71; R8, peptides 75 to 77). The arrow shows the immunodominant epitope region (R2) of the PlpE protein.

Bactericidal Activity of Anti-rPlpE Antibodies

Anti-rPlpE antibodies

FIG. 5. Complement-mediated bacterial killing activity of anti-PlpE antibodies purified by affinity columns with intact rPlpE, deletion derivatives of rPlpE as ligands, and whole serum from a calf that was immunized with rPlpE and from a colostrum-deprived newborn calf.

2 (R2), corresponding to amino acids 37 to 79 of the PlpE sequence, remained (Fig. 4E) the immunodominant region of PlpE.

Bactericidal activities of anti-PlpE antibodies. To determine whether immune sera produced against the purified rPlpE would have complement-mediated cell killing activity, hyperimmune sera from calves immunized with rPlpE were tested for their ability to promote complement-mediated killing of the homologous strain *M. haemolytica* 89010807N. Sera from calves vaccinated with rPlpE exhibited bactericidal activity of 98 to 100% in the presence of a complement source (Fig. 5).

Complement-mediated cell killing activities of anti-rPlpE antibodies that were purified on rPlpE Δ N28, rPlpE Δ N76, rPlpE Δ N150, or rPlpE affinity columns confirmed the results of the binding studies described above (Fig. 5 and Table 2). There was no difference in the complement-mediated cell killing activity of anti-rPlpE antibodies purified on rPlpE Δ N28 and rPlpE affinity columns and that exhibited by the whole anti-rPlpE antiserum, in that all showed almost 100% killing activity (Fig. 5). The flowthrough from each of the above purifications had a bactericidal activity that was significantly reduced to 17 to 21% (P < 0.00002). On the other hand, the complement-mediated bactericidal activity of anti-rPlpE antibodies purified on rPlpEAN76 and rPlpEAN150 affinity columns were only 25 and 40%, respectively, which is significantly lower (P < 0.0001) than those exhibited by anti-rPlpE antibodies purified by rPlpE Δ N28 and rPlpE affinity columns. The flowthrough sera depleted by rPlpE Δ N76 and rPlpE Δ N150 affinity columns showed a killing activity of $\geq 65\%$, demonstrating that the absorption did not significantly reduce (P > 0.05) the bactericidal activity of anti-PlpE sera. These results indicate that complement-mediated bactericidal activity is associated with anti-rPlpE antibodies that are directed against epitope located in R2.

DISCUSSION

Numerous attempts have been made previously to develop efficacious vaccines against *M. haemolytica*. These include live *M. haemolytica* (2, 6, 7, 9, 11, 19, 21, 33, 50), killed *M. haemolytica* cells (10, 20, 22, 23, 52), components or fractions of *M. haemolytica* cells (17, 24, 27, 28, 35, 49, 53–55), and commercial vaccines (57, 58). While immunity to *M. haemolytica* appears to require anti-LKT and antisurface antigen antibodies (55), partial protection could be afforded to cattle experimentally vaccinated with *M. haemolytica* preparations that did not contain LKT (21, 40). The partial protection against challenge was not attributed to any specific protein until Pandher et al. (45) cloned the *plpE* gene and showed that absorption of anti-PlpE sera with *E. coli* expressing the PlpE protein could substantially reduce complement-mediated bactericidal activity.

It was previously shown that vaccination with rPlpE enhances resistance to *M. haemolytica* challenge and augments commercial vaccine-induced immunity, suggesting that this is an important surface antigen (15). Epitope mapping of the PlpE protein by measuring the binding of anti-PlpE antibodies to truncated rPlpE molecules demonstrated that the major

epitopes of this protein lie within the N terminus between amino acids 28 and 76. This region of the polypeptide contains eight imperfect tandem repeats of the hexapeptide QAQNAP (45). Further evaluation by peptide array analysis demonstrated that R2, between residues 36 and 76, is the major epitopic region. The use of deletion mutants to adsorb anti-rPlpE antibodies further demonstrated that antibodies to R2 are involved in complement-mediated killing of *M. haemolytica*. Taken together, these results provide solid evidence that R2 of PlpE is surface exposed, immunodominant, and important in stimulating antibodies capable of killing *M. haemolytica*.

In silico analysis of the deduced amino acid sequence of R2 with algorithms such as Parker's antigenicity (47), Kyte-Doolittle hydrophilicity (38), surface probability (36), and Chou Fasman secondary structure indices (13) demonstrated that this stretch of amino acids has a moderately high antigenicity, is fairly hydrophilic, contains a fairly high number of amino acids with very high surface probability, and is characterized by a series of turns associated with helices and sheets, respectively, all of which are strong indicators of a region that is potentially highly immunogenic (Fig. 2). Repeats in OMPs are widely distributed and perform vital functions in many bacteria. Some serve as adhesins (25, 26, 56). Others perform functions such as mediation of adhesion, infection, and transmission of the organism, as well as contributing to protective immunity (25, 30, 37, 39, 41), and still others confer multidrug resistance (29). The repeats that constitute PlpE R2 share little or no sequence homology with the proteins mentioned above. They do, however, exhibit a similar architectural design, being comprised of amino acids which may not be identical but are similar in their properties, such as charge, hydrophilicity, and surface probability. Some, such as R2 in PlpE, enhance resistance when given as immunogens.

The use of an intact recombinant protein or a subregion of it as a vaccine or component of a vaccine depends not only on its inherent immunogenic nature but also on its conservation in homologous and closely related strains involved in a disease process. The latter is particularly important in bovine respiratory disease in which M. haemolytica S1, S2, and S6 are associated with the disease, albeit to different degrees (1, 51). Previously, whole-cell lysates from 11 serotypes of *M. haemo*lytica were probed by Western blotting with anti-PlpE sera to demonstrate the presence of the PlpE protein in all of them (45). However, there was no sequence information showing the extent of the conservation of this protein among the different serotypes. PCR amplification and sequencing of the *plpE* gene from *M. haemolytica* S1 and S6, the two serotypes that play the major roles in M. haemolytica-induced bovine respiratory disease indicated that the nucleotide sequences were identical (5). This suggests that a single peptide, viz., R2, can be used as a vaccine efficacious against two serotypes usually implicated in the bovine respiratory disease complex. We are currently sequencing *plpE* genes from a larger number of the aforementioned serotypes collected from different geographical areas over an extended period of time to determine similarities among various isolates within S1 and other serotypes, especially in R2.

ACKNOWLEDGMENTS

This work was supported in part by grant no. 2002-02232 from the USDA CSREES, National Research Initiative Competitive Grant Program, and by a grant from The Noble Foundation of Ardmore, Okla. We thank Marie Montelongo and Kayla Ingram for technical assistance and Richard Eberle for critical review of the manuscript.

REFERENCES

- Al-Ghamdi, G. M., T. R. Ames, J. C. Baker, R. Walker, C. C. Chase, G. H. Frank, and S. K. Maheswaran. 2000. Serotyping of Mannheimia (Pasteurella) haemolytica isolates from the upper Midwest United States. J. Vet. Diagn. Investig. 12:576–578.
- Aubry, P., L. D. Warnick, C. L. Guard, B. W. Hill, and M. F. Witt. 2001. Health and performance of young dairy calves vaccinated with a modifiedlive Mannheimia haemolytica and Pasteurella multocida vaccine. J. Am. Vet. Med. Assoc. 219:1739–1742.
- Bakaletz, L. O., B. J. Kennedy, L. A. Novotny, G. Duquesne, J. Cohen, and Y. Lobet. 1999. Protection against development of otitis media induced by nontypeable *Haemophilus influenzae* by both active and passive immunization in a chinchilla model of virus-bacterium superinfection. Infect. Immun. 67:2746–2762.
- Bakaletz, L. O., E. R. Leake, J. M. Billy, and P. T. Kaumaya. 1997. Relative immunogenicity and efficacy of two synthetic chimeric peptides of fimbrin as vaccinogens against nasopharyngeal colonization by nontypeable Haemophilus influenzae in the chinchilla. Vaccine 15:955–961.
- 5. Blackwood, E. R., S. Ayalew, and A. W. Confer. 2002. Molecular and immunological analysis of the outer membrane protein, PlpE, from *Mannheimia haemolytica* serotypes 1, 2, and 6, abstr. 93P. *In* R. P. Ellis (ed.), Proceedings of the 83rd Annual Meeting of the Conference of Research Workers in Animal Diseases, St. Louis, Mo. Iowa State University Press, Ames, Iowa.
- Blanchard-Channell, M. T., M. K. Ashfaq, and W. L. Kadel. 1987. Efficacy of a streptomycin-dependent, live Pasteurella haemolytica vaccine against challenge exposure to Pasteurella haemolytica in cattle. Am. J. Vet. Res. 48:637–642.
- Brennan, R. E., R. E. Corstvet, and D. B. Paulson. 1998. Antibody responses to Pasteurella haemolytica 1:A and three of its outer membrane proteins in serum, nasal secretions, and bronchoalveolar lavage fluid from calves. Am. J. Vet. Res. 59:727–732.
- Bryson, D. G. 1985. Calf pneumonia. Vet. Clin. North Am. Food Anim. Sci. 1:237–257.
- Cameron, C. M., F. J. Bester, and D. J. Du Toit. 1984. Factors affecting the immunogenicity of Pasteurella haemolytica in mice. Onderstepoort J. Vet. Res. 51:97–102.
- Cardella, M. A., M. A. Adviento, and R. M. Nervig. 1987. Vaccination studies against experimental bovine Pasteurella pneumonia. Can. J. Vet. Res. 51: 204–211.
- Catt, D. M., M. M. Chengappa, W. L. Kadel, and C. E. Herren. 1985. Preliminary studies with a live streptomycin-dependent Pasteurella multocida and Pasteurella haemolytica vaccine for the prevention of bovine pneumonic pasteurellosis. Can. J. Comp. Med. 49:366–371.
- Chae, C. H., M. J. Gentry, A. W. Confer, and G. A. Anderson. 1990. Resistance to host immune defense mechanisms afforded by capsular material of Pasteurella haemolytica, serotype 1. Vet. Microbiol. 25:241–251.
- Chou, P. Y., and G. D. Fasman. 1978. Empirical predictions of protein conformations. Annu. Rev. Biochem. 47:251–276.
- Coligan, J. E., A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, and W. Strober. 1994. Current protocols in immunology, vol. 1. John Wiley & Sons, Inc., Somerset, N.J.
- Confer, A. W., S. Ayalew, R. J. Panciera, M. Montelongo, L. C. Whitworth, and J. D. Hammer. 2003. Immunogenicity of recombinant Mannheimia haemolytica serotype 1 outer membrane protein PlpE and augmentation of a commercial vaccine. Vaccine 21:2821–2829.
- Confer, A. W., R. W. Fulton, K. D. Clinkenbeard, and B. A. Driskel. 1998. Duration of serum antibody responses following vaccination and revaccination of cattle with non-living commercial Pasteurella haemolytica vaccines. Vaccine 16:1962–1970.
- Confer, A. W., B. A. Lessley, R. J. Panciera, R. W. Fulton, and J. A. Kreps. 1985. Serum antibodies to antigens derived from a saline extract of Pasteurella haemolytica: correlation with resistance to experimental bovine pneumonic pasteurellosis. Vet. Immunol. Immunopathol. 10:265–278.
- Confer, A. W., R. D. McCraw, J. A. Durham, R. J. Morton, and R. J. Panciera. 1995. Serum antibody responses of cattle to iron-regulated outer membrane proteins of Pasteurella haemolytica A1. Vet. Immunol. Immunopathol. 47:101–110.
- Confer, A. W., R. J. Panciera, R. E. Corstvet, J. A. Rummage, and R. W. Fulton. 1984. Bovine pneumonic pasteurellosis: effect of culture age of Pasteurella haemolytica used as a live vaccine. Am. J. Vet. Res. 45:2543–2545.
- Confer, A. W., R. J. Panciera, R. W. Fulton, M. J. Gentry, and J. A. Rummage. 1985. Effect of vaccination with live or killed Pasteurella haemolytica

on resistance to experimental bovine pneumonic pasteurellosis. Am. J. Vet. Res. 46:342–347.

- Confer, A. W., R. J. Panciera, M. J. Gentry, and R. W. Fulton. 1986. Immunologic response and resistance to experimentally induced pneumonic pasteurellosis in cattle vaccinated with various dosages of lyophilized Pasteurella haemolytica. Am. J. Vet. Res. 47:1853–1857.
- Confer, A. W., R. J. Panciera, M. J. Gentry, and R. W. Fulton. 1987. Immunologic response to Pasteurella haemolytica and resistance against experimental bovine pneumonic pasteurellosis, induced by bacterins in oil adjuvants. Am. J. Vet. Res. 48:163–168.
- Confer, A. W., J. C. Wright, J. M. Cummins, R. J. Panciera, and R. E. Corstvet. 1983. Use of a fluorometric immunoassay to determine antibody response to *Pasteurella haemolytica* in vaccinated and nonvaccinated feedlot cattle. J. Clin. Microbiol. 18:866–871.
- Conlon, J. A., P. E. Shewen, and R. Y. Lo. 1991. Efficacy of recombinant leukotoxin in protection against pneumonic challenge with live *Pasteurella haemolytica* A1. Infect. Immun. 59:587–591.
- de la Fuente, J., J. C. Garcia-Garcia, E. F. Blouin, and K. M. Kocan. 2003. Characterization of the functional domain of major surface protein 1a involved in adhesion of the rickettsia Anaplasma marginale to host cells. Vet. Microbiol. 91:265–283.
- 26. de La Fuente, J., J. C. Garcia-Garcia, E. F. Blouin, S. D. Rodriguez, M. A. Garcia, and K. M. Kocan. 2001. Evolution and function of tandem repeats in the major surface protein 1a of the ehrlichial pathogen Anaplasma marginale. Anim. Health Res. Rev. 2:163–173.
- Donachie, W., C. Burrells, and A. M. Dawson. 1983. Specificity of the enzyme-linked immunosorbent assay (ELISA) for antibodies in the sera of specific pathogen-free lambs vaccinated with Pasteurella haemolytica antigens. Vet. Microbiol. 8:199–205.
- Donachie, W., A. D. Sutherland, and G. E. Jones. 1986. Assessment of immunity to Pasteurella haemolytica in sheep by in vitro methods. Dev. Biol. Stand. 64:63–69.
- Eda, S., H. Yoneyama, and T. Nakae. 2003. Function of the MexB effluxtransporter divided into two halves. Biochemistry 42:7238–7244.
- Emsley, P., I. G. Charles, N. F. Fairweather, and N. W. Isaacs. 1996. Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature 381:90– 92.
- Frank, G. H. 1989. Pasteurellosis of cattle. Academic Press Limited, London, United Kingdom.
- Frank, G. H. 1986. The role of Pasteurella haemolytica in the bovine respiratory disease complex. Vet. Med. 81:838–846.
- 33. Frank, G. H., R. E. Briggs, R. W. Loan, C. W. Purdy, and E. S. Zehr. 1994. Serotype-specific inhibition of colonization of the tonsils and nasopharynx of calves after Pasteurella haemolytica serotype A1 after vaccination with the organism. Am. J. Vet. Res. 55:1107–1110.
- Gerlach, G. F., C. Klashinsky, S. Rossi-Campos, A. A. Potter, and P. J. Wilson. 1993. Molecular characterization of a protective outer membrane lipoprotein (OmlA) from *Actinobacillus pleuropneumoniae* serotype 1. Infect. Immun. 61:565–572.
- Gilmour, N. J., W. B. Martin, J. M. Sharp, D. A. Thompson, P. W. Wells, and W. Donachie. 1983. Experimental immunisation of lambs against pneumonic pasteurellosis. Res. Vet. Sci. 35:80–86.
- Janin, J., S. Wodak, M. Levitt, and B. Maigret. 1978. Conformation of amino acid side-chains in proteins. J. Mol. Biol. 125:357–386.
- King, A. J., G. Berbers, H. F. van Oirschot, P. Hoogerhout, K. Knipping, and F. R. Mooi. 2001. Role of the polymorphic region 1 of the Bordetella pertussis protein pertactin in immunity. Microbiology 147:2885–2895.
- Kyte, J., and R. F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132.
- Lindmark, H., K. Jacobsson, L. Frykberg, and B. Guss. 1996. Fibronectinbinding protein of *Streptococcus equi* subsp. *zooepidemicus*. Infect. Immun. 64:3993–3999.
- MacDonald, J. T., S. K. Maheswaran, J. Opuda-Asibo, E. L. Townsend, and E. S. Thies. 1983. Susceptibility of Pasteurella haemolytica to the bactericidal effects of serum, nasal secretions and bronchoalveolar washings from cattle. Vet. Microbiol. 8:585–599.
- 41. Mooi, F. R., H. van Oirschot, K. Heuvelman, H. G. van der Heide, W. Gaastra, and R. J. Willems. 1998. Polymorphism in the *Bordetella pertussis* virulence factors P.69/pertactin and pertussis toxin in The Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect. Immun. 66: 670–675.
- 42. Morton, R. J., R. J. Panciera, R. W. Fulton, G. H. Frank, S. A. Ewing, J. T. Homer, and A. W. Confer. 1995. Vaccination of cattle with outer membrane protein-enriched fractions of Pasteurella haemolytica and resistance against experimental challenge exposure. Am. J. Vet. Res. 56:875–879.

Editor: D. L. Burns

- Mosier, D. A., K. R. Simons, A. W. Confer, R. J. Panciera, and K. D. Clinkenbeard. 1989. *Pasteurella haemolytica* antigens associated with resistance to pneumonic pasteurellosis. Infect. Immun. 57:711–716.
- Novotny, L. A., J. A. Jurcisek, M. E. Pichichero, and L. O. Bakaletz. 2000. Epitope mapping of the outer membrane protein P5-homologous fimbrin adhesin of nontypeable *Haemophilus influenzae*. Infect. Immun. 68:2119– 2128.
- Pandher, K., A. W. Confer, and G. L. Murphy. 1998. Genetic and immunologic analyses of PlpE, a lipoprotein important in complement-mediated killing of *Pasteurella haemolytica* serotype 1. Infect. Immun. 66:5613–5619.
- Pandher, K., G. L. Murphy, and A. W. Confer. 1999. Identification of immunogenic, surface-exposed outer membrane proteins of Pasteurella haemolytica serotype 1. Vet. Microbiol. 65:215–226.
- Parker, J., D. Guo, and R. Hodges. 1986. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25:5425–5432.
- Peeters, C. C., I. J. Claassen, R. Schuller, G. F. Kresten, E. M. van der Voort, and J. T. Poolman. 1999. Immunogenicity of various presentation forms of PorA outer membrane protein of Neisseria meningitidis in mice. Vaccine 17:2702–2712.
- Potter, A. A., A. B. Schryvers, J. A. Ogunnariwo, W. A. Hutchins, R. Y. Lo, and T. Watts. 1999. Protective capacity of the Pasteurella haemolytica transferrin-binding proteins TbpA and TbpB in cattle. Microb. Pathog. 27:197– 206.
- Purdy, C. W., C. W. Livingston, Jr., G. H. Frank, J. M. Cummins, N. A. Cole, and R. W. Loan. 1986. A live Pasteurella haemolytica vaccine efficacy trial. J. Am. Vet. Med. Assoc. 188:589–591.
- Purdy, C. W., R. H. Raleigh, J. K. Collins, J. L. Watts, and D. C. Straus. 1997. Serotyping and enzyme characterization of Pasteurella haemolytica and Pasteurella multocida isolates recovered from pneumonic lungs of stressed feeder calves. Curr. Microbiol. 34:244–249.
- Purdy, C. W., D. C. Straus, R. J. Sutherland, and J. R. Ayres. 1996. Efficacy of a subcutaneously administered, ultraviolet light-killed Pasteurella haemolytica A1-containing vaccine against transthoracic challenge exposure in goats. Am. J. Vet. Res. 57:1168–1174.
- Rajeev, S., S. A. Kania, R. V. Nair, J. T. McPherson, R. N. Moore, and D. A. Bemis. 2001. Bordetella bronchiseptica fimbrial protein-enhanced immunogenicity of a Mannheimia haemolytica leukotoxin fragment. Vaccine 19: 4842–4850.
- 54. Shewen, P. E., C. W. Lee, A. Perets, D. C. Hodgins, K. Baldwin, and R. Y. Lo. 2003. Efficacy of recombinant sialoglycoprotease in protection of cattle against pneumonic challenge with Mannheimia (Pasteurella) haemolytica A1. Vaccine 21:1901–1906.
- Shewen, P. E., and B. N. Wilkie. 1988. Vaccination of calves with leukotoxic culture supernatant from Pasteurella haemolytica. Can. J. Vet. Res. 52:30– 36.
- Shimoji, Y., Y. Ogawa, M. Osaki, H. Kabeya, S. Maruyama, T. Mikami, and T. Sekizaki. 2003. Adhesive surface proteins of Erysipelothrix rhusiopathiae bind to polystyrene, fibronectin, and type I and IV collagens. J. Bacteriol. 185:2739–2748.
- Srinand, S., S. L. Hsuan, H. S. Yoo, S. K. Maheswaran, T. R. Ames, and R. E. Werdin. 1996. Comparative evaluation of antibodies induced by commercial Pasteurella haemolytica vaccines using solid phase immunoassays. Vet. Microbiol. 49:181–195.
- Srinand, S., S. K. Maheswaran, T. R. Ames, R. E. Werdin, and S. L. Hsuan. 1996. Evaluation of efficacy of three commercial vaccines against experimental bovine pneumonic pasteurellosis. Vet. Microbiol. 52:81–89.
- Thomson, R. G., S. Chandler, M. Savan, and M. L. Fox. 1975. Investigations of factors of probable significance in the pathogensis in cattle. Can. J. Comp. Med. 39:194–207.
- Turbyfill, K. R., J. A. Mertz, C. P. Mallett, and E. V. Oaks. 1998. Identification of epitope and surface-exposed domains of *Shigella flexneri* invasion plasmid antigen D (IpaD). Infect. Immun. 66:1999–2006.
- van der Ley, P., J. van der Biezen, R. Sutmuller, P. Hoogerhout, and J. T. Poolman. 1996. Sequence variability of FrpB, a major iron-regulated outermembrane protein in the pathogenic neisseriae. Microbiology 142:3269– 3274.
- 62. Webb, D. C., and A. W. Cripps. 2000. A P5 peptide that is homologous to peptide 10 or OprF from *Pseudomonas aeruginosa* enhances clearance of nontypeable *Haemophilus influenzae* from acutely infected rat lung in the absence of detectable peptide-specific antibody. Infect. Immun. 68:377–381.
- Yates, W. D. 1982. A review of infectious bovine rhinotracheitis, shipping fever pneumonia and viral-bacterial synergism in respiratory disease of cattle. Can. J. Comp. Med. 46:225–263.