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Model Selection for Discrete 
Dependent Variables: 

Better Statistics for Better Steaks 
F. Bailey Norwood, Jayson L. Lusk, 

and B. Wade Brorsen 

Little research has been conducted on evaluating out-of-sample forecasts of discrete 
dependent variables. This study describes the large and small sample properties of 
two forecast evaluation techniques for discrete dependent variables: receiver-operator 
curves and out-of-sample log-likelihood functions. The methods are shown to provide 
identical model rankings in large samples and similar rankings in small samples. 
The likelihood function method is better at detecting forecast accuracy in small 
samples. By improving forecasts of fed cattle quality grades, the forecast evaluation 
methods are shown to increase cattle marketing revenues by $2.59/head. 
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Introduction 

Model selection is perhaps the most difficult task in applied economic analysis. While 
economic theory assists in model formation, it rarely identifies a specific model. 
Researchers often turn to model selection criteria to narrow the field of candidate 
models. The appropriate model selection criterion is partly driven by the intended use 
of the model. When a model is used to predict a dependent variable, researchers will 
want a criterion that ranks models based on model "fit" or how well models predict 
movements in the dependent variable. 

Many such criteria are based on in-sample statistics, such as likelihood-ratio tests 
and the Akaike Information Criterion (AIC). Likelihood-ratio tests can be used to assess 
whether additional parameters increase prediction accuracy enough to be included in 
the model, whereas the AIC directly measures prediction accuracy while adjusting for 
the number of parameters. Other criteria are based on out-of-sample criteria. In some 
settings, out-of-sample criteria are preferred. Neural networks, for example, are suscep- 
tible to over-fitting and require out-of-sample forecasts for validation. Other times, the 
choice between in-sample and out-of-sample criteria is less clear and is determined by 
researcher preference. For instance, Piggott (2003) placed similar weight on in-sample 
and out-of-sample criteria in selecting among 14 demand systems. Others place greater 
weight on out-of-sample than in-sample criteria. Kastens and Brester (1996) argue that 
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economic restrictions should be incorporated in demand systems, despite the fact that 
they are rejected in-sample, because they improve out-of-sample forecasts. 

Comparing forecasts between models is relatively straightforward when the forecasted 
variable is continuous. Typically, the model with lowest mean squared forecast error is 
preferred. Hypothesis tests such as the AGS test (Ashley, Granger, and Schmalensee, 
1980) and a recently developed test by Ashley (1998) can be used to discern whether fore- 
cast errors from competing models are significantly different. How one should compare 
forecasts of discrete variables has received less attention. 

Despite the lack of work in this area, economists are faced with a plethora of problems 
associated with discrete variables. Examples include problems dealing with sample selec- 
tion bias (Heckman, 1979), technology adoption (Roberts, English, and Larson, 2002), 
predicting turning points (Dorfman, 1998), consumer choice (Loureiro and Hine, 2002), 
and willingness to pay (Loomis, Bair, and Gonzalez-Caban, 2002; Haener, Boxali, and 
Adamowicz, 2001). Clearly, researchers are in need of methods to evaluate the fore- 
casting performance of models with discrete dependent variables. Moreover, as methods 
susceptible to over-fitting, such as neural networks, are increasingly applied to discrete 
dependent variables, forecast evaluation will become a necessary component of model 
selection. 

Forecasting discrete dependent variables is more difficult than continuous variables. 
For instance, suppose we are interested in forecasting a variable G, which can only take 
the values zero or one. Standard logit and probit models forecast the probability G 
equals one. Although a higher probability indicates a greater likelihood G will equal one, 
it is not clear what threshold this probability should exceed before officially forecasting 
"G = 1." Often a threshold of 0.5 is used, but this choice is only desirable if the cost of 
misclassifying a "G = 1" is equal to the cost of misclassifying a "G = 0."1 The optimal 
threshold depends on the cost (benefit) of an incorrect (correct) forecast of "G = 1" and 
"G = 0," which requires specifying a loss function. Because the threshold choice is 
problem-dependent, and forecasting performance may differ with small changes in the 
threshold, general methods of model selection should not depend on a specific threshold. 

Moreover, since a forecast using a threshold will be either zero or one, the mean 
squared error criterion will assign a confident correct forecast (such as a forecasted 
probability of 0.99) a score equal to a less-confident, but nevertheless correct, forecast 
(such as a forecasted probability of 0.51). This article compares and contrasts two 
methods for evaluating forecasts of discrete dependent variables over all or many possible 
thresholds. The first is borrowed from the medical profession, and is referred to as 
receiver-operator curves (ROCs). The second method entails ranking models by likeli- 
hood function values observed at out-of-sample observations. We refer to this approach 
as the out-of-sample log-likelihood function (OSLLF) approach. 

After outlining the two methods, we introduce the concept of divergent distributions, 
which is the source of forecast accuracy for discrete dependent variables. The greater 
the divergence, the greater the forecast accuracy. We then show that ROCs and OSLLFs 
are both measures of divergence, and prove that both criteria will provide an identical 
model ranking and will choose the best model in large samples. Next, simulations are 

1 For example, in cancer detection where G = 1 indicates cancer and G = 0 indicates no cancer, a lower threshold than 0.5 
would be used. This is because the cost of inaccurately predicting "no cancer" can be deadly for the patient, while the cost of 
inaccurately predicting "cancer" is smaller. 
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used to determine which criterion performs best in small samples. ROCs are useful 
because they allow visual inspection of forecast performance and are absolute measures 
of forecast ability, while OSLLFs only provide relative measures of forecast accuracy. 
However, if the task is to choose between two models, simulations reveal a slight prefer- 
ence for the OSLLF criterion. Finally, the model selection criteria are applied to a problem 
recently posed by Lusk et al. (2003) involving the prediction of cattle quality grades. 

Forecasting Discrete Dependent Variables 

Suppose the variable of interest, G, can only take on the values zero or one. Most models 
do not output the forecasts "G = 1" or "G = 0," but instead output the probability that 
G will equal one. The researcher must then specify a threshold to officially forecast 
"G = 1." As noted previously, this threshold is problem-specific. Rather than rank models 
at one particular threshold, many in the medical profession have elected to rank models 
based on their forecasting ability at all threshold values. 

Model performance is often measured by the frequency of observations where "G = 1" 
is correctly forecasted, or P(G = 1 1 G = 1). This measure is referred to as the sensitivity 
of the model. Sensitivity alone is an incomplete picture of model performance, because 
if the mean of G is high, even a naive model that always predicts "G = 1" will obtain a 
high sensitivity score. However, this naive forecast will rank low on the specificity 
scale, which is the frequency of forecasts where "G = 0" is correctly predicted, or 
P(G = 0 | G = 0). When a low threshold is used, models will achieve a high sensitivity but 
a low specificity score. A high threshold implies low sensitivity but high specificity 
(Hsieh and Turnbull, 1996). To avoid the threshold-dependency problem, one can deem 
Model A superior in forecasting ability to Model B if it has a higher sensitivity and 
specificity at every threshold value. 

Receiver-operator curves (ROCs) measure forecast accuracy of discrete dependent var- 
iables. ROCs are attained by calculating the sensitivity (percentage of correct "G = 1" 
forecasts) and specificity (percentage of correct "G = 0" forecasts) for each possible 
threshold. An ROC is then a plot of sensitivity on the y-axis against specificity on the 
x-axis for all thresholds. The ROC will have a negative slope, will be nonnegative, and 
the formula for the area underneath the ROC has an upper-bound value of /2. An 
illustration is given in figure 1, where one model's ROC clearly dominates another. The 
process of picking Model A over Model B if A's ROC always lies above B's ROC is 
referred to in this paper as the ROC dominance (ROCD) criterion.2 

In some instances ROCs will cross, leading to an ambiguous model ranking using the 
ROCD criterion. In these cases, to attain an unambiguous ranking, the model with the 
largest area underneath its ROC can be chosen. This area is obtained by performing 
integration of the distance from the origin to each point on the ROC over all thresholds, 
as demonstrated in figure 1. This is referred to as the generalized ROC (GROC) criterion 
(Reiser and Faraggi, 1997). Recent advances have made ROCs easier to use, as they can 
be estimated as smooth curves directly from data using maximum likelihood (Hsieh and 
Turnbull, 1996; Blume, 2002), and statistical tests are available for distinguishing sig- 
nificant differences in ROCs (Reiser and Faraggi, 1997; Venkatraman and Begg, 1996). 

2 This term is chosen by the authors, as no unique name for this approach is offered in the literature. 
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Note: Sensitivity is the percentage of correct G = 1 forecasts, and specificity is the percentage of correct G = 0 
forecasts, given a particular threshold. A superior forecasting model will have a higher sensitivity for every value 
of specificity, and vice versa. The model whose ROC lies completely above another is deemed the superior model. 
Consider the two models at a threshold of 0.3. At this threshold, the superior model has a higher percentage of 
correct G = 1 and G = 0 forecasts. Thus, at that threshold, it is a better model. If the curves cross, one can pick 
the model with the largest area underneath the ROC. The area can be measured by the integral of the ray drawn 
above over all threshold values. 

Figure 1. Illustration of receiver-operator curves (ROCs) 

The term "curve" is actually deceiving, since the functions generating ROCs are not 
necessarily continuous. Let Pt be the predicted probability Gt = 1, where t refers to an 
out-of-sample forecast. Also, let c be the threshold where we predict Gt = 1 when Pt > c. 
The point on the ROC when c = 0.5 is represented by: 

Ed-G()^<0.5] "£Gtl[Pt> 0.5} 

. L t J L t J 
where /[•] is an indicator equaling one if its argument is true, and zero if false. For 
continuous ROCs, the area underneath the ROC can be calculated as: 

[£(l-Gt)/[/i<c]|a [^Gt/[Pt2c]]2 
(1) GROC = f1 -Î  + -i  do. 

J% 
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ROCs are not necessarily continuous. Imagine a model that perfectly predicts whether 
a variable will take the value zero or one, regardless of the threshold. All points on this 
ROC will lie at the point (1,1). However, the absence of a continuous curve does not 
prohibit integration of (1), nor does it preclude (1) from being a measure of forecast 
accuracy. Integration of (1) for this perfect model yields a value of '[2 and is the highest 
possible GROC value. 
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One advantage of ROCs is that they allow visual inspection of forecast performance. 
Moreover, since the value of the GROC criterion given in (1) must lie between zero and 
'¡2, the measure GROC//2 is similar to the coefficient of determination in that it lies 
between zero and one. The GROC criterion is an absolute measure of performance, 
allowing one to compare forecast performance across different data and models. 

A second potentially useful criterion for judging forecast performance of discrete 
dependent variables is based on the Kullback-Leibler Information Criterion, which 
selects models closest to the true data-generating process (Stone, 1977; Shao, 1993). 
This criterion selects the model with the highest log-likelihood function observed at out- 
of-sample observations.3 Originally, this was referred to as cross-validation, but over 
time "cross-validation" has taken on numerous definitions. For clarity, we refer to this 
approach as the out-of-sample log-likelihood function (OSLLF) approach. In a forth- 
coming study, Norwood, Roberts, and Lusk illustrate the usefulness of OSLLFs in select- 
ing yield distributions, and Norwood, Ferrier, and Lusk (2001) report that the OSLLF 
has been found to select true models with a higher frequency than many competing 
criteria. 

The OSLLF criterion may be especially desirable in the discrete variable case because 
it can rate forecasting ability without requiring the specification of a threshold. For 
variables that can only take the values zero or one, the OSLLF is calculated as: 

T T 

(2) OSLLF = ¿ (1 - Gt)ìn[l - Pt] + ¿ Gtìn[Pl t=i í=i 

Evaluating forecasts using log-likelihood functions preserves information on a model's 
confidence which would be lost when using mean squared error. For example, one could 
forecast "G = 1" whenever Pt > 0.5 and evaluate the mean squared error. However, this 
assigns a correct forecast of Pt = 0.51 the same score as a correct forecast of Pt = 0.99, 
when the second forecast should be scored higher. The OSLLF criterion accounts for 
differing levels of model confidence by giving the first forecast a score of ln(0.51) and the 
second forecast a higher score of ln(0.99). Contrary to the ROCs, an OSLLF does not 
provide a visual representation of forecast accuracy and is not an absolute measure of 
performance. The OSLLF values from different data cannot be compared. However, 
evidence is provided below that the OSLLF criterion is a better measure of relative 
performance between models using the same data. 

The following section shows that the predictive power of a model with a discrete 
dependent variable depends on how Pt behaves when the dependent variable is one and 
when it is zero. A concept of divergent distributions is introduced, where divergence is 
a measure of the distance between the distributions of Pt when the dependent variable 
is one and when it is zero. Predictive power is shown to be directly related to the degree 
of divergence. We then demonstrate that the ROCD, GROC, and OSLLF criteria are all 
measures of divergence with similar statistical properties. 

3 "Closeness" here is defined as the logarithm of a candidate model's likelihood function value minus the logarithm of the 
true model's likelihood function value. The Kullback-Leibler Information Criterion states that models with higher expected 
log-likelihood function values contain greater information. Models are often estimated by maximizing a log-likelihood 
function. If in-sample observations are used, the likelihood function will be higher than its expected value due to the fact that 
some of the observations are used for parameter estimation (Akaike, 1972; Sawa, 1978). To correct for this bias, one can pro- 
vide a penalty that reduces the in-sample likelihood function value according to the number of parameters, or employ out-of- 
sample observations, where no penalty is needed. 
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Divergent Distributions, Receiver-Operator Curves, 
and Log-Likelihood Functions 

When forecasting whether a variable Gt will equal zero or one, an index is generally 
used where a higher index value indicates a greater probability Gt - 1. Conversely, a 
lower index value suggests a greater probability Gt = 0. This index at observation t is 
denoted by Pt and is assumed to lie between zero and one. In economics, the index is 
usually generated from a model such as a logit model. In the medical profession, the 
index is often the direct measurement of a medical test, such as a cholesterol level. 

If a model has any predictive ability, the value of Pt will tend to be larger when Gt = 
1 than when Gt = 0. For example, if Gt = 1, the average value of Pt should be higher than 
when Gt = 0, i.e., E(Pt | Gt = 1) > E(Pt ' Gt = 0). Let fo(Pt)be the probability distribution of 
Pt when Gt = 0, and f^P^be the distribution when Gt = 1. If /0 and/x are identical, the 
model has no predictive power. Moreover, models where f0 and/x are further apart will 
have more predictive ability. Hereafter, the distance between f0 and^ is referred to as 
"divergence," where greater divergence implies greater distance. 

Figure 2 illustrates divergence for two hypothetical models. The distributions are 
close together for Model B, indicating little divergence. In this case, Model B provides 
very little information on the true value of Gt. At a threshold of 0.5, where one forecasts 
"Gt = 1" if Pt >0.5, an incorrect forecast is almost as likely as a correct forecast. This is 
little improvement over a coin toss. Conversely, due to the large divergence for Model A, 
at a threshold of 0.5 all forecasts will be correct. The predictive power of a model stems 
directly from the degree of divergence between the distributions of fo(Pt) and f^P^- 

At any particular threshold c, model sensitivity is described by 

'-F1(c)= ¡'f^dP,. 
This is the frequency Pt will exceed c when G = 1, and thus describes the frequency of 
correct "G = 1" forecasts at threshold c. Similarly, 

F0(c)=j'f0(Pt)dPt 
is the model specificity, which details the frequency of correct "G = 0" forecasts at thresh- 
old c. By definition, the true ROC is the set of points {F0(c), 1 - F^c)} for all values of c. 

The GROC and the OSLLF criteria are measures of divergence. To demonstrate this, 
first consider the true GROC criterion value shown in (3): 

(3) ¡^[F^Y+ll-F^c)}2 dc. 

Greater divergence can be defined as a simultaneous increase in the value of F0(c) and 
a decrease in the value of i'(c) Vc. This essentially truncates F0(c) toward zero and Fx(c) 
toward one. It is obvious that this would increase the value of (3), implying (3) measures 
divergence. The OSLLF also measures divergence. The expected value of the OSLLF can 
be written as:4 

4 The variable Gt is not viewed as a random variable here, because we are holding the set of observations used for forecast- 
ing constant. Instead, we are evaluating the statistical properties of a single model's forecasting ability at a fixed set of 
observations. 
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fo(pt)for fo(p,)for f,(pt)for fl(pt)for 
Model A Model B Model B Model A 
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Note: Pt is the predicted probability Gt will equal one. The predicted probability Gt will equal zero is then 
1 - Pr The term fo(Pt) is the probability distribution of Pt when Gt = 0, and f^Pt)is the probability distri- 
bution of Pt when Gt = l. 

Figure 2. Degree of divergence for two hypothetical models 

(4) E[LLF] = £(1 -Gt) ¡1'n{l-Pt)f0{Pt)dPt + £G, fhniP^iP^dP,. 
t Jo t Jo 

Truncation of fo(Pt ) toward zero can be achieved by decreasing the endpoint over which 
it is integrated by e, while requiring it to still integrate to one.5 Truncation of f^P^ is 
obtained by increasing the beginning point over which it is integrated by 8, also requir- 
ing it integrate to one. Consider the partial effect this truncation has on the expected 
OSLLF value: 
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Since e lies in the (0, 1) range, ln(e) will always be negative, making (5) positive - proving 
that greater divergence increases the expected OSLLF value. 

This implies ROCs and OSLLFs are both measures of divergence. It does not imply 
they are equally desirable criteria. Next, we demonstrate that under a plausible assump- 
tion, the ROCD, GROC, and the OSLLF criteria will asymptotically provide identical 
model rankings. This assumption is referred to as the dual-divergence assumption. 

5 That is, if fiX) is a probability density function with the support (0, 1), the integral jj /CX)dXmust equal one. If f(X) is 
truncated from below at r', the new integral will only equal one if it is multiplied by the constant 1 - jj f(X)dX, i.e., 

pf(X)dX/l- ̂ fOOdX- 1. 
JO Jt' 
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When comparing two models in large samples, the dual-divergence assumption states 
that one model will always exhibit greater divergence than the other. Let the super- 
script i on the term F¿(c) refer to Model i. The dual-divergence assumption requires that 
if Model A exhibits greater divergence when G = 0 (F*(c) > F^(c) Vc), then Model A must 
also exhibit greater divergence when G = 1 (F^(c) < Ff*(c)'/c). If the assumption does not 
hold, then Model A could exhibit greater divergence when G = 0 but less divergence 
when G = 1 compared to Model B, and it would be unclear which model displays greater 
total divergence. 

Consider again the example of predicting quality grades in cattle. Suppose Days on 
Feed is the only variable determining whether a steer graded Choice. Further, suppose 
a steer grades Choice whenever Days on Feed > 100. Assume that Days on Feed is 
measured with error. One cannot say with 100% certainty whether a steer will grade 
Choice given the measured Days on Feed, but instead must express the probability of 
grading Choice. A logit model estimating whether a steer grades Choice as a function 
of Days on Feed will specify Pt as a continuous function in the (0, 1) interval. The func- 
tion fo(Pt) will contain mass over a series of points closer to zero, and the function f^P^ 
will contain mass over points closer to one. The dual-divergence assumption requires 
that if the measurement error increases, FQ(Pt) decreases and í'CP¿) increases at every 
Pr Both distributions move closer together. 

Now, suppose Days on Feed can be measured perfectly. In this case, one can use the 
indicator function Pt = I [Days on Feed > 100] to generate perfect forecasts. The functions 
fo(Pt) and f^Pf.) will now be centered with all their mass at zero and one, respectively. 
Divergence increases for both distributions fo(Pt) and fx(Pt) when moving from the 
approximating statistical model to the true deterministic model. 

We believe this provides an accurate depiction of what happens when a model is 
replaced with another that better represents reality. The new model contains more 
information, and divergence increases for both fo(Pt) and /^Pj). At the very least, this 
provides us with a useful metaphor for characterizing models with more or less informa- 
tion. This metaphor is utilized in the dual-divergence assumption. 

Large Sample Properties 

When calculating empirical ROCs, the empirical distributions F0(Pt) and i'(Pt) are used 
to calculate (3). Asymptotically, F0(Pt) and í'(P¿) will converge to F0(Pt) and Ffâ) by 
definition. Consider Models A and B. The dual-divergent assumption implies that one 
model, say Model A, will display greater divergence and the two conditions in (6) will 
hold: 

(6) F1A(c)<Ff(c)Vc and F0A(c) >F*(c) Vc. 

From equation (6), Model A's ROC will always lie above Model B's ROC in large 
samples, and will be chosen under both the ROCD and the GROC criterion. Note that 
(6) implies:6 

6 Equation (6) uses the fact that, so long as Y is nonnegative and has an expected value less than infinity, E(Y) = 
10(1 -F(Y))dY, where F(Y) is the cumulative distribution function. This can be proven by integrating JJ YdFÇY) using 
integration by parts. 
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(7) J 
* 
[ 1 

- 
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[ 1 

- 
FB{Pt)' dPt 

and 

which states that the expected value of Pt is larger for Model A than Model B when 
Gt=l, and is smaller for Model A when Gt = 0. 

It is now proven that, asymptotically, Model A will be ranked higher using the OSLLF 
criterion as well. The difference in OSLLF values between Models A and B is specified 
as: 

T 
(8) OSLLFA - OSLLFB = ¿ Gt[ln(PtA) - 

MPB)] 
T 

+ ¿ (1 - Gt)[ ln(l - Pf) - ln(l - PtB)' 
t = l 

According to Slutsky's theorem, (8) converges in probability to: 

T 
(9) OSLLFA - OSLLFB = y£Gt[ln(EA(PA'Gt = 1)) - ln(EB(PtB'Gt = 1))] 

+ ¿(1 - 
G,)[ln(l -EA(PtA'Gt = 0)) - ln(l -EB(PtB'Gt = 0))]. t=i 

Using the result from (7), the expression in (9) is unambiguously greater than zero, and 
Model A will asymptotically obtain a higher OSLLF value than Model B. This proves 
that, asymptotically, all three criteria will choose the same model. 

Small Sample Properties 

In small samples, or if the dual-divergence assumption does not hold, ROCs may cross. 
The ROCD criterion will then yield an ambiguous model ranking. In these cases, 
although the GROC and OSLLF criteria will provide an unambiguous ranking, they 
may not agree on the preferred model. This begs the question which of the two criteria 
is "better." We address this question using a simulation. Refer to figure 2, where 
divergence is illustrated for hypothetical Models A and B. It is obvious that Model A 
exhibits much greater divergence. In the simulation used, Model A is assumed to exhibit 
greater divergence than Model B, but the difference in divergence is very small. Thus, 
although Model A is truly superior, in a single small sample, Model B could easily appear 
superior and be chosen by the GROC and/or the OSLLF criteria. Using simulations, we 
calculate the percentage of times Model B is incorrectly chosen using each criteria. The 
method with the lowest percentage of incorrect choices is deemed a better detector of 
divergence. 

The distributions fA(c), fA(c), fB(c), and /f (c) are assumed to be normal distribu- 
tions truncated between zero and one. The means of fA(c) and fA (c) before trunca- 
tion are assumed to be 0.3 and 0.7, while the means for fB(c) and /f (c) are 0.32 and 
0.68, respectively. The standard deviation for all distributions before truncation is 
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O.I.7 By this choice of parameters, Model A has greater divergence, but due to their 
similarities, Model B may be chosen in small samples. Since Model A exhibits greater 
divergence, it is said to be superior. In repeated samples it will provide better forecasts. 
The true frequency at which Gt = 1 is set to 0.7, and the sample size is 50. At each sim- 
ulation, values of Gt are randomly chosen. If Gt = 0, values of Pt are randomly drawn 
from the distribution f*(Pt) for Model A and f*(Pt) for Model B. If Gt = 1, the values of 
Pt are randomly drawn from the distribution f^(Pt) for Model A and ff (Pt) for Model B. 
The random draws are then used to calculate the OSLLF value in (2). The area under- 
neath the ROC is measured by the integral given in (1). 

The preferred model at each simulation is the one with the largest OSLLF or GROC 
value. After 1,000 simulations, the OSLLF criterion chose the inferior model in 17% of 
simulations with a standard error of 0.0118, while the percentage for the GROC criterion 
was 23% with a standard error of 0.0133.8 Although the criteria performed similarly, the 
simulations suggest the OSLLF criterion is slightly better at detecting divergence. This 
finding was robust across alternative means, standard deviations, and expected values 
for Gt. Table 1 presents simulation results under different parameter assumptions. The 
OSLLF outperformed the GROC regardless of the simulation setting. 

In the next section, the two criteria are used to study a problem posed by Lusk et al. 
(2003) where a marketing strategy for fed cattle entailed forecasting whether cattle will 
grade Choice or better. Lusk et al. only considered one model for predicting Choice. In 
the discussion below, this model is compared against several other forms to determine 
if better forecasting models exist. The marketing simulation in Lusk et al. is repeated 
with a better forecasting model to estimate the monetary value of the ROC and the 
OSLLF criteria. 

Forecasting Fed Cattle Quality Grades 

A larger number of animals are being marketed on an individual basis, referred to as 
"selling on a grid," where they receive premiums and discounts for individual carcass 
and quality characteristics. Schroeder and Graff (2000) illustrated the economic value 
of producers accurately knowing their cattle quality and marketing them accordingly. 
Unfortunately, cattle quality is not known until after slaughter, and producers must use 
forecasts of quality characteristics to determine the optimal marketing strategy. Koontz 
et al. (2000) found that profits could be enhanced by forecasting quality grades and 
sorting animals according to optimal marketing dates. A number of observable factors, 
such as the number of days on feed, placement weight, genetics, etc., can be used to 
forecast cattle quality at slaughter. In addition to these measures, recent research has 
illustrated the ability of ultrasound measurements of ribeye area, backfat, and marbling 
to improve forecasts of cattle quality (Lusk et al., 2003). 

This analysis seeks to determine whether the aforementioned model selection criteria 
can be used to identify superior forecasting models of cattle quality. We apply the model 
selection techniques to the data used by Lusk et al. (2003), who focused on the predictive 

Random draws from the truncated normal are performed using the acceptance-rejection method. Random numbers are 
generated from the normal distribution with the specified mean and standard deviation, but are only accepted if they lie 
between zero and one. 

8 It is worth noting that if the sample size is increased to 500, both percentages fall below 1%. 
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Table 1. Simulation Results for Small Sample Properties of OSLLF and GROC 
% of Time 

Inferior Model 
Mean of o, , , „ o , Is Chosen by  Standard o, , , „ 

Frequency Sample o ,  
foie) tf(c) f*(c) f*(c) Deviation3 Gt = 1 Sizeb OSLLF GROC 

0.30 0.70 0.32 0.68 0.1 0.7 30 28% 31% 

0.30 0.70 0.32 0.68 0.1 0.7 100 6% 19% 

0.30 0.70 0.32 0.68 0.1 0.3 30 13% 38% 

0.30 0.70 0.32 0.68 0.1 0.3 100 8% 21% 

0.30 0.70 0.32 0.68 0.2 0.7 30 42% 45% 

0.30 0.70 0.32 0.68 0.2 0.7 100 23% 25% 

0.20 0.80 0.32 0.68 0.1 0.7 30 0% 3% 

0.20 0.80 0.32 0.68 0.1 0.7 100 0% 1% 

0.30 0.70 0.305 0.695 0.1 0.7 30 39% 48% 

0.30 0.70 0.305 0.695 0.1 0.7 100 35% 47% 

Notes: /0A(c) is the distribution of Pt , the predicted probability Gt = 1, for Model A given that Gt = 0. Similarly, /*(<?) 
is the distribution of Pt for Model B given that Gt = l. Thus, the superscript refers to the model and the subscript 
indicates the true value of Gt. All simulations employed 1,000 iterations. 

aThe standard deviation for /0A(c), /A(c), f*(c), and /f(c). 
b Sample size refers to the number of forecasts used to calculate the out-of-sample log-likelihood function (OSLLF) 
and generalized receiver-operator curve (GROC) values. 

power of ultrasound data. The primary determinant of profitability on a grid is whether 
an animal grades Choice or higher (hereafter, Choice). Lusk et al. used a logit model to 
predict whether an animal will grade Choice based on the several variables mentioned, 
including ultrasound measures. The authors demonstrated that predictions from the 
logit model incorporating ultrasound data could enhance revenue by $4.16/head over 
models which ignored ultrasound information. Lusk et al. also showed that if the model 
forecasts were 100% accurate, revenue would increase by $21.35/head. 

The latter result exemplifies the potential economic value in determining better 
forecasting models. In the following, we seek to determine whether the model selection 
criteria can be used to identify models with superior forecasting ability, which in turn 
would result in greater economic value associated with ultrasound technology. 

Let G = 1 if the quality grade is Choice or better, and G = 0 otherwise. In addition to 
the logit model used in Lusk et al., a probit model and neural network model are also 
used to estimate the probability G = 1. Moreover, different combinations of explanatory 
variables are evaluated for the logit and probit models. The probability of achieving a 
Choice or better grade was stated as a function of ribeye area (REA), backfat (BF), and 
marbling (MAR), each measured using ultrasound. Other attributes not measured by 
ultrasound are days on feed (DOF), placement weight (PLWT), and a dummy variable 
indicating whether the sire or dam was an Angus (ANGUS). 

Lusk et al. evaluated the two sets of variables using a logit model. One form uses 
ultrasound variables and the other form does not: 

(10) Variable Set 1: Probability (G = 1) = f(DOF, PLWT, ANGUS); 

(11) Variable Set 2: Probability (G = 1) = f(REA, BF, MAR, DOF, PLWT, ANGUS). 
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Alternative specifications are also developed by letting /(•) be a logit or probit model or 
a neural network. For the logit and probit models, the following additional explanatory 
variables are considered: 

(12) Variable Set 3: Probability (G = 1) = f(REA, BF, MAR, DOF, PLWT, 
ANGUS, REA2, MAR2); 

(13) Variable Set 4: Probability (G = 1) = f(REA, BF, MAR, DOF, PLWT, 
ANGUS, REARMAR); 

(14) Variable Set 5: Probability (G = 1) = f(REA, BF, MAR, DOF, PLWT, 
ANGUS, REA2, MAR2, REARMAR). 

This provides a total of 11 models. Estimation of probit and logit models was accomp- 
lished using standard maximum-likelihood procedures in MATLAB. The neural network 
model was a multilayer perceptron network with two hidden layers, which can be 
written as: 

(15) Probability (G = 1) = 
2 

Pt =F E wjfj(wjo + WjiREA + Wj2BF + wj3MAR + wj4DOF 

+ wj5PLWT + wj6ANGUS) + Wo , 

where Wj and wjfi denote parameters to be estimated, fj is a symmetric logistic function, 
and Fisa logistic function. The weights were estimated by maximizing the binomial log- 
likelihood function with a weight decay term as follows: 

T 

(16) max£(l-Gt)ln[l-Pt] 
t=i 

+ Y,Gt'nlPt] - k W02 + W2 + W22 ♦ ¿¿«¿ • 
í=l [ j=l ¿=0 

In (16), À is a weight decay coefficient used to prohibit the network from over-fitting the 
data, and is set equal to 0.005 (Chavarriaga, 2001). The weight decay term is not included 
when calculating the OSLLF value. The estimation, performed in MATLAB, used 100 
different starting values with the nonlinear constraint 0.05 < Pt < 0.95.9 

A total of 162 observations are available for estimation and forecasting. The forecasts 
are accomplished using grouped cross-validation where, for each validation, 27 obser- 
vations are left out of the estimation and used for forecasting.10 This procedure follows 
Zhang's (1991) suggestion that there be at least five validation groups. For the 162 
forecasts, the OSLLF and the GROC values are calculated for each model and reported 
in table 2. 

9 Without this constraint, neural networks tend to set Pt equal to zero or one at one or more observations, which are outside 
the domain of the log-likelihood function. 

10 To illustrate, at the first iteration, the first 27 observations are removed from the 162 total observations. The model is 
estimated using observations 28-162, and is then used to forecast observations 1-27. At the second iteration, the model is 
estimated using observations 1-27 and 55-162, and is then used to forecast observations 28-54. 

This content downloaded from 139.78.28.91 on Tue, 21 Jul 2015 21:20:42 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


4 1 6 December 2004 Journal of Agricultural and Resource Economics 

Table 2. Fed Cattle Quality Grade Forecast Evaluation Results 
Average Out-of-Sample Generalized Receiver-Operator 
Log-Likelihood Function Curve (GROC) Measure d / 

Model3  (QSLLF) Value b/ [Rank] c  [Rank] c  

Logit Using: 
Variable Set Klogitl) -0.6692 [11] 0.9403 [9] 
Variable Set 2 (Iogit2) -0.6137 [5] 0.9485 [4] 
Variable Set 3 (Iogit3) -0.5955 [1] 0.9527 [1] 
Variable Set 4 (logité) -0.6178 [6] 0.9470 [5] 
Variable Set 5 (Iogit5) -0.5972 [2] 0.9498 [2] 

Probit Using: 
Variable Set Kprobitl) -0.6691 [10] 0.9400 [10] 
Variable Set 2 (probit2) -0.6239 [7] 0.9453 [6] 
Variable Set 3 (probit3) -0.6028 [3] 0.9495 [3] 
Variable Set 4 (probit4) -0.6301 [8] 0.9360 [11] 
Variable Set 5 (probitõ) -0.6104 [4] 0.9433 [7] 

Neural Network (neural) -0.6308 [9] 0.9419 [8] 

a Variable Set 1 is given by text equation (10), and Variable Set 5 is given by text equation (14). 
bThe OSLLF value divided by 162 forecasts. 
c Numbers in brackets are the model rankings for each criteria. A rank of one indicates the best model, while a 
rank of 11 is the worst model. 
dThe GROC measure was calculated as (1) and is not divided by '[2. 

Model Selection Results 

After the grouped cross-validation was used to obtain 162 out-of-sample forecasts, each 
model was ranked according to the OSLLF and the GROC criteria. As shown in table 
2, both criteria agreed on the three highest ranked models and chose the logit model 
using variable set 3 (Iogit3) as the best forecaster. Models without ultrasound data 
(logit 1 and probit 1) and the neural network (neural) performed poorly. In addition to 
comparing criteria in table 2, models can also be compared by plotting the ROCs, as 
shown in figure 3. The ROCs for Iogit3 and neural exhibit ROC dominance over logit 1, 
illustrating the contribution of ultrasound data to forecasts. Although Iogit3 does not 
ROC-dominate neural, its ROC lies above that of neural most of the time. 

In the Lusk et al. analysis, in-sample predictions from Iogit2 were compared with in- 
sample predictions from logitl to estimate the returns from ultrasound data. Here, we 
are interested in determining how much returns might increase if ultrasound data were 
used in conjunction with a better forecasting model. To accomplish this, the cattle 
marketing simulation in Lusk et al. was repeated; however, instead of using in-sample 
predictions, we focus on out-of-sample predictions as would be the case in actual cattle 
marketing decisions. The simulation involved using forecasted quality characteristics 
to determine whether an animal should be marketed on a live weight, dressed weight, 
or grid basis. By measuring the increase in revenues using Iogit3 instead of Iogit2, we 
can estimate the value of model selection criteria in cattle marketing decisions. 

Due to space considerations and a desire to avoid redundancy, most simulation details 
are deferred to the Lusk et al. (2003) article. Lusk et al. used Iogit2 to predict quality 
grades, as demonstrated by equation (1) in their article. We replaced Iogit2 with the 
model that was ranked highest according to the OSLLF and GROC criteria- Iogit3. 
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Figure 3. Receiver-operator curves for selected 
logit and neural network models 

After replacing Iogit2 with Iogit3, the exact simulation described in Lusk et al. was 
repeated to observe how marketing revenues change. 

Simulation results indicate that the average revenue obtained using marketing 
methods based on predictions from Iogit2 was $861.59/head, which is $2.59/head lower 
than the average revenue obtained using marketing methods based on predictions from 
Iogit3 ($864.18/head). The marginal cost of using model selection criteria is relatively 
inexpensive. Thus, the $2.59/head benefit from model selection criteria is quite large, 
especially in comparison to the $4.16/head value of ultrasound technology reported by 
Lusk et al. 

Discussion 

This study is motivated by the frequent use of discrete variable models in economic 
analysis and the importance of forecast evaluation. Research on how one should 
evaluate forecasts of discrete dependent variables is rare, especially in the agricultural 
economics literature. This paper evaluates two methods for ranking forecasts of discrete 
dependent variables: receiver-operator curves (ROCs) and out-of-sample log-likelihood 
functions (OSLLFs). Both criteria are shown to be statistically valid measures of fore- 
cast performance, and share similar large and small sample properties. The theoretical 
prediction that the model selection criteria will frequently choose the same model is 
verified by an empirical analysis of cattle grades. 

The theoretical and empirical examples here assume a single variable which takes 
on the values zero or one. The ROC and OSLLF criteria are easily extendible to multiple 
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dependent variables, such as multiple recreational site choice. In these cases, there will 
be a separate receiver-operator curve for each dependent variable. The OSLLF is more 
easily implemented by specifying a multivariate likelihood function. A multivariate 
function also incorporates information on error correlations across dependent variables, 
which should reap efficiency gains similar to those in seemingly unrelated regressions. 
This across-equation information is not present in the generalized ROC (GROC) criterion 
Given that simulations reveal a slight preference for the OSLLF criterion and it is easier 
to calculate, we recommend using the OSLLF for relative model comparisons when the 
dependent variable can take on multiple discrete outcomes. 

[Received December 2003; final revision received June 2004.] 
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