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We report interferences in the quantum fluctuations of the output of a parametric amplifier when the
cavity is driven by a quantized field at the signal frequency. The interferences depend on the phase
fluctuations of the input quantized field and result in splitting of the spectrum of the output, and thus the
recent observation [H. Ma et al., Phys. Rev. Lett. 95, 233601 (2005)] of interferences in the classical
domain have a very interesting counterpart in the quantum domain. The interferences can be manipulated,
for example, by changing the amount of squeezing in the input field.
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In recent times quantum interferences have been central
to many new applications of few level quantum systems
driven by the coherent fields. In particular, the electro-
magnetically induced transparency (EIT) has led to the
possibilities of enhanced nonlinear optical phenomena
[1], ultraslow light [2], storage and stopping of light [3],
an efficient method of laser cooling [4], and control of
chiral anisotropies [5]. The EIT has also been demon-
strated for quantized fields [6]. In this Letter we report
the possibility of quantum interferences in totally different
class of systems which are nonresonant and which are
being extensively used in the context of quantum imaging
and quantum information science [7,8]. We use parametric
interactions driven by quantized fields at the signal or the
idler frequency. The generated quantum fields in paramet-
ric interactions exhibit a variety of interferences depending
on the phase fluctuations in the input quantized field [8].
We note that optical parametric interactions have been
studied extensively since the classical work of Armstrong
et al. [9]. These classical interactions are known to possess
unusual properties. Kaplan [10] discovered that under
certain conditions on the pump and signal amplitudes,
there is no exchange of energy between the pump and
signal. There is yet another very interesting situation where
by a suitable choice of the phases of the input amplitudes
can lead to either purely growing solutions or decaying
solutions. To see this consider the classical Hamiltonian for
the parametric process

 H � @g�a2by � ay2b�; (1)

which in the limit of undepleted pump �b� leads to
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Thus by choosing �a=ay� � igb=jgbj one can suppress the
growing solution. Yet another very interesting aspect of
classical parametric interactions was discovered in a recent
letter by Ma et al. [11]. They have studied a variety of
interference effects in parametric interactions in a cavity
when the cavity is also driven by a field at the signal

frequency, i.e., a � 0. The interferences arise from the
nonzero signal field at the input and the signal field pro-
duced by the pump field. Ma et al. in particular reported
mode splitting in transmission spectra. All the above re-
markable developments refer to the behavior of parametric
interactions when all the fields are treated classically.
Clearly it is important to investigate the nature of the
interference effects when fields are treated quantum me-
chanically [12–14]. It is well known that parametric inter-
actions generate fields which have important quantum
mechanical properties [15]. In this Letter we report on
the interferences which are initiated due to input quantized
fields at the signal frequency, and in particular, we report
on interferences in the quantum fluctuations of the output
of an optical parametric amplifier (OPA). We demonstrate
how the fluctuations in the output can be manipulated by
the choice of the input quantized field.

Let us consider an optical parametric amplifier in a
cavity with right mirror that is 100% reflecting and with
partially reflecting left mirror. The pump field b has large
amplitude and is treated as undepleted as shown in Fig. 1.
Let the frequency of the pump be 2 ~! and that of the signal
be ~!. Let !c be the frequency of the cavity. We assume
that the field a is quantized and is driven by a quantum field
ain�!�. If the input quantum field is in vacuum state, then
this reduces to the problem well studied in the literature. In

aout

b

ain
(ω)

OPA

FIG. 1. Schematic diagram of an optical parametric amplifier
in a cavity.
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this Letter we are concerned with the new features arising
from the quantum nature of ain�!�. In a frame rotating with
the frequency of the signal field, we can use the connec-
tions between the input and output fields to obtain the
fundamental equation for a quantized field inside the cav-
ity,

 

da
dt
� �i�a� �a�

������
2�
p

ain � 2igbay;

� � !c � ~!;
(2)

and where 2� gives the rate of leakage of photons from the
cavity. The output field is given by

 aout�t� � ain�t� �
������
2�
p

a: (3)

Note that a is the single mode cavity field with the
communication relation �a; ay� � 1 and is dimensionless.
The field aout�t� includes contributions from all the
vacuum modes and satisfies commutation relation
�aout�t�; a

y
out�t

0�� � ��t� t0�. Thus the dimension of
aout�t� is 1=�

����������
time
p

� or �
���������������������
frequency
p

�. Using (2) and (3)
we can eliminate the cavity field and obtain the output field
in terms of the input field,

 aout�!� � V�!�ayin��!� �U�!�ain�!�; (4)

where U�!� � 2�I11 � 1, V�!� � 2�I12, and where the
matrix I is given by

 

I �
�i!� i�� � iG

�iG	 �i!� i�� �
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�1

;

G � 2gb:
(5)

Here the parameter G has the same dimensions as the
coupling parameter g as b is dimensionless. For simplicity
we set the phase of b zero. It should be noted that
ay��!�� � �a��!��y� is the Fourier transform of ay�t�.
The spectrum Sout�!� of the output field is defined by

 

hayout�t�aout�t� ��i �
1

2�

Z
Sout�!�e�i!�d!;

hayout�!2�aout�!1�i � 2���!2 �!1�Sout�!1�:
(6)

Let us now assume that the input field be a multimode
squeezed field. Then using the basic definitions (6), the
properties of the multimode squeezed field,
 

hayin�!2�ain�!1�i � 2���!1 �!2� �n;

hain��!2�ain�!1�i � 2���!1 �!2�jmje�i�;
(7)

and Eq. (4) we can calculate Sout�!�. The result can be
written in the form
 

Sout�!� � jmjjU�!� � ei�V�!�j2 � � �n� jmj�jU�!�j2

� � �n� jmj � 1�jV�!�j2;

�n � sinh2�; jmj � sinh� cosh�;
(8)

and � is the phase of m of the squeezed field. The parame-
ter � characterizes squeezing in the field. We assume weak
frequency dependence of � . Equation (8) gives our key
result, which we would use to demonstrate a variety of
quantum interference effects. We first note that if the
squeezed input field is replaced by vacuum, then Sout�!� �
jV�!�j2 and there are no interferences in fluctuations of the
output field. Similarly for input thermal fields �jmj � 0�
�n � 0, there are no interference effects. We also note from
Eq. (4) that mean field haout�!�i � 0 if the initial quantum
field is such that hain�!�i � 0. The phase fluctuations in
the squeezed field at the signal frequency allow the possi-
bility of two terms in Eq. (4) to beat, which in turn leads to
interferences. These interference are functions of!, detun-
ing �, amplitude of the pump b, and the phase of the input
squeezed light. We first examine the detuning dependence
of the fluctuation spectrum at ! � 0. We choose all pa-
rameters in units of the cavity decay rate �. In Fig. 2 we
show the behavior of Sout�0� for different values of �. We
choose the parameter G so that we are well below the
threshold of parametric oscillation. In fact, G=� is equal
to jb=btj, where bt is the value of the pump amplitude at the
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FIG. 2. The fluctuation spectrum of the output amplitude as a function of the detuning for different values of �. The common
parameters of the above three graphs are chosen as G=� � 0:5, � � 3:0, and ! � 0. The output spectrum is normalized to the output
spectrum for G � 0.
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threshold of oscillation. The chosen values of G are in the
same range as used in the experiment [11]. Evidence of
quantum interferences in fluctuations of the output is
clearly seen. In order to understand the interferences in
Fig. 2, we examine the result Eq. (8) in the limit of large � .

For large � , Eq. (8) can be approximated by

 Sout�!� 
 jmjjU�!� � e
i�V�!�j2: (9)

In the limit ! � 0, we have
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(10)

Note that as G! � (threshold of parametric oscillation),
the numerator in (10) becomes much closer to �2 than the
denominator in (10) which would lead to splitting of the
line.

We next consider the fluctuation spectrum of the output
intensity as a function of frequency. This is shown in Fig. 3.
The two well-defined resonances correspond to the two
eigenvalues of (5)! � �

�������������������
�2 �G2
p

if �� G. For �<G

values we have a splitting of the line shape which can be
associated with the two purely imaginary eigenvalues of
(5) ��

�������������������
G2 � �2
p

. In Fig. 4 we display the effect of the
amount of squeezing in the input quantized field, on quan-
tum interferences in the output field. We also note that the
quantum statistics of the output field can be easily calcu-
lated since the output field is related linearly to the input
field via the relation (4).

Thus, in conclusion, we have shown how quantum in-
terferences, so widely studied in the context of multilevel
systems, also occur for nonresonant systems like a para-
metric amplifier [16]. The interferences manifest in quan-
tum fluctuations of the output field and can be manipulated
by the phase fluctuations of the input quantized field at
signal frequency. Similar interferences are expected to
occur in the case of a nondegenerate parametric amplifier
and in other quantum nonlinear optical processes like four-
wave mixing.
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FIG. 3. The behavior of Sout�!� shown as a function of angular frequency ! at different values of �. The common parameters of the
above three plots are chosen as G=� � 0:5, � � 3:0, and �=� � 5.
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FIG. 4 (color online). (a) The fluctuation spectrum of the out-
put field as a function of the detuning at � � ��=2. (b) The
fluctuation spectrum of the output field as a function of the
angular frequency for the value of �=� � 0:5 and � � �3�=4.
The parameter G=� is chosen as 0.5.
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