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We show how the effects of vacuum-induced coherence can be realized by studying photon-photon corre-
lation in the �-polarized fluorescence in the j=1 /2 to j=1 /2 transition. These effects should thus be observ-
able in measurements of photon statistics in, for example, Hg and Ba ion traps.
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I. INTRODUCTION

An early work �1� predicted an unusual effect of quantum
interference in the problem of spontaneous emission. It was
shown that in a degenerate V-shaped system one could get
population trapping and generation of quantum coherences in
the excited states. This comes about due to the interference
between different channels of spontaneous emission. One of
the key conditions for the occurrence was that the dipole
matrix elements of the two transitions from the excited states
to the common ground state were nonorthogonal. Mean-
while, a very large body of theoretical literature has been
devoted to the subject of vacuum-induced coherences �2–9�
and a nice review is given in Ref. �2�. It was also suggested
how the above condition on dipole matrix elements can be
bypassed if we consider an anisotropic vacuum �10� which,
for example, would be the case when considering emission
from excited atoms or nanoparticles �11�. We thus look for
possible realistic systems where vacuum-induced coherences
�VICs� are observable. Kiffner et al. �12� showed that an
atomic system with degenerate transitions j=1 /2↔ j=1 /2
would be a suitable system where effects of VICs are promi-
nent. They showed how vacuum-induced coherences change
the spectrum of the emitted radiation. While the results of
Kiffner et al. for the spectrum are quite interesting, much of
the current experimental effort �13–16� is focused on the
study of photon-photon correlations �17�. Thus one would
like to understand if the vacuum-induced coherences signifi-
cantly affect the photon-photon correlations. This is the ques-
tion we examine. The significance of VICs depends on the
system under consideration. We deal specifically with the j
=1 /2 to j=1 /2 transitions, the details of which are given in
the next section, where we also explain how VICs are im-
portant for such a system. We mention explicitly two systems
where we have such transitions; thus these systems would,
for example, be candidates for the effects of VICs on photon-
photon correlations. These systems are �A� a single 198Hg+

ion in a trap �13� and �B� a single 138Ba+ ion in a trap �14�.
In both cases the ground level is 6s 2S1/2 and the excited
level is 6p 2P1/2. The measurement of photon-photon corre-
lation for such multilevel systems can be done in the stan-
dard way �see Diedrich et al. �17,14��.

It may be added that the photon-photon correlations have
acquired new significance in the context of quantum-
information processing and quantum imaging as well as in
interferences from independent atoms �15,16,18�. Thus it is
pertinent to check if VIC effects are to be included in the

calculation of photon-photon correlations for a given experi-
mental system. The organization of this paper is as follows.
In Sec. II we introduce the model and present the working
equations. In Sec. III we calculate the photon-photon corre-
lations both in the presence and in the absence of vacuum-
induced interference effects. In Sec. IV we present numerical
results to highlight the effects of vacuum-induced coherences
on photon-photon correlations. In Sec. V we conclude with
the outlook and future directions.

II. MODEL

Figure 1 shows the level scheme of a four-level atom
modeled with a j=1 /2 to j=1 /2 transition. This kind of level
scheme is realizable, for example, in 198Hg+ �13� and 138Ba+

�14� ions. The ground level is 6s 2S1/2 and the excited level is
6p 2P1/2. Each of these levels is twofold degenerate. We ex-
hibit the magnetic sublevels explicitly. The nature of transi-
tions between these levels can be found from various dipole
matrix elements. The dipole matrix elements can be obtained
from the Wigner-Eckart theorem and the Clebsch-Gordan co-
efficients. They are found to be

d�31 = − d�42 = −
1
�6

Dêz,

d�41 = d�32
� =

1
�3

D�̂−, �1�

with �̂−= �x̂− iŷ� /�2 and êz the unit vector along the z direc-
tion. In Eq. �1� D denotes the reduced matrix element of the

dipole moment operator d� . Thus the transitions �1�↔ �4� and
�2�↔ �3� couple to �+- and �−-polarized light, respectively.
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FIG. 1. Schematic diagram of a four-level atom modeled by the
j=1 /2 to j=1 /2 transition.
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The transitions �1�↔ �3� and �2�↔ �4� couple to light linearly
polarized along êz. The spontaneous decays of the excited
state to the two ground states are given by 2� and 2�� as
shown in the figure. The spontaneously emitted photons are
� polarized in the transitions �1�↔ �3�, �2�↔ �4� whereas
they are � polarized in the transitions �1�↔ �4�, �2�↔ �3�.
The four-level system is driven by a �-polarized monochro-
matic field of frequency �,

E� �t� = E0e−i�têz + c.c., �2�

where c.c. is the complex conjugate. With this particular
choice of polarization, the driving field couples only to the
two transitions �1�↔ �3� and �2�↔ �4�. The total Hamiltonian
for this atom-field system is given by

H = HA + HI, �3�

where the unperturbed Hamiltonian for the atom is

HA = ��
i=1

2

�0�i�	i� , �4�

where energies are measured from the ground level. The in-
teraction Hamiltonian is given by

HI = − d� · E� �t� = ����1�	3� − �2�	4��e−i�t + H.c., �5�

where H.c. is the Hermitian conjugate and � is the Rabi
frequency defined by

� = E0
d�42 · êz

�
=

1
�6

DE0/� . �6�

The time evolution of this four-level system is investigated
by studying the density matrix equation. The spontaneous
emission is included via master equation techniques. Follow-
ing the standard procedure �1�, we obtain

�̇ = −
i

�
�H,�� + L� ,

L� = − ����1�	1�� + �2�	2�� + ��1�	1� + ��2�	2� − 2�3�	3��22

− 2�4�	4��11� − ���1�	1�� + �2�	2�� + ��1�	1� + ��2�	2�

− 2�3�	3��11 − 2�4�	4��22� + ���4�	3��21 + �3�	4��12� ,

�7�

The last two terms in Eq. �7� arise from the vacuum-induced
interference and it comes because the dipole matrix elements

d�13 and d�24 are antiparallel. In a frame rotating with the fre-
quency of the coherent drive, the density matrix equations
are

�̇̃11 = i���̃13 − i��̃31 − 2	�̃11,

�̇̃22 = i��̃42 − i���̃24 − 2	�̃22,

�̇̃33 = i��̃31 − i���̃13 + 2���̃22 + 2��̃11,

�̇̃12 = − i��̃32 − i���̃14 − 2	�̃12,

�̇̃13 = − i
�̃13 + i���̃11 − �̃33� − 	�̃13,

�̇̃14 = − i
�̃14 − i��̃12 − i��̃34 − 	�̃14,

�̇̃23 = − i
�̃23 + i��̃21 + i��̃43 − 	�̃23,

�̇̃24 = − i
�̃24 − i���̃22 − �̃44� − 	�̃24,

�̇̃34 = − i��̃32 − i���̃14 − ��̃12, �8�

where

�̃ii = �ii, �̃12 = �12, �̃34 = �34,

�̃ij = �ije
−i�t �i = 1,2; j = 3,4� ,

	 = ��� + ��, 
 = � − �13 = � − �24. �9�

The remaining equations can be generated by taking com-
plex conjugates and using Tr���=1. The steady-state solution
of Eq. �8� is found to be

�̃12 = �̃14 = �̃32 = �̃34 = 0, �10�

�̃11 = �̃22 =
1

2

���2

�2���2 + 	2 + 
2�
,

�̃33 = �̃44 =
1

2

���2 + 	2 + 
2

�2���2 + 	2 + 
2�
,

�̃13 = − �̃24 = −
i�

	 + i


1

2

	2 + 
2

�2���2 + 	2 + 
2�� . �11�

As can be seen from Eqs. �10� and �11� the vacuum-induced
interference has no effect on the steady-state solutions. Thus
one should investigate how vacuum-induced coherences can
show up in dynamical quantities like the correlation func-
tions.

III. PHOTON-PHOTON CORRELATIONS

Since the objective of this paper is to investigate the ob-
servable consequences of vacuum-induced coherence, we fo-
cus our attention on the photon statistics of the radiation
emitted by our model system. In particular, we will calculate
photon-photon correlations as currently considerable experi-
mental effort is focused on such correlations. For this we
need to know how to relate the atomic properties to the sta-
tistical properties of the spontaneously emitted radiation. The
answer to this question already exists in quantum theory. In
fact, from the existing literature �19�, we know that the posi-
tive frequency part of the electric field operator at a point r� in
the far-field zone can be written in terms of the atomic op-
erators as
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E� +�r�,t� = E� 0
+�r�,t� − k0

2�
i

��R̂i � �R̂i � d�31��3�	1���

+ �R̂i � �R̂i � d�42��4�	2��� + �R̂i � �R̂i � d�32��3�	2���

+ �R̂i � �R̂i � d�41��4�	1���Ri
−1e−i�k0r̂·r�i+���, �12�

where R� i=r�−r�i, r� being the distance of the point of observa-
tion from the origin and r�i being the position of the atom
from the origin. Further, �= t− r

c is the retarded time, k0=
�0

c ,

�0=�13=�24, and d� ij is the electric dipole moment operator.
The first term on the right of Eq. �12� is the free-field term
and the second term is the retarded dipole field emitted by
the atom. The emitted radiation consists of different polar-
ization components—the �- and the �-polarized compo-
nents. In Eq. �12� the terms �3�	1�� and �4�	2�� correspond to
� polarization whereas �3�	2�� and �4�	1�� correspond to �
polarization. We next calculate the photon-photon correla-
tions and the normalized second-order correlations for the
emitted radiation from the � transitions of this driven four-
level atom. For � polarization the relevant part of the electric
field operator is given by

E� +�r�,t� = E� 0
+�r�,t� − 
�0

c
�21

r
��n̂ � �n̂ � d�31���3�	1��

+ �n̂ � �n̂ � d�42���4�	2�� , �13�

where � as before is the retarded time t−r /c. In the lowest-
order correlation the free-field term of Eq. �13� does not
contribute. This can be seen directly from the definition of
quantized fields �19�, the fact that the field is initially in the
vacuum state, and the expression for the normally ordered

correlation function for the field, 	E� −�r� , t� ·E� +�r�� , t���. Hence,
with no contribution from the free-field term the intensity I�

of the light emitted in the � transition from the atom is

	I�� = 	E� �
−�r�,t� · E� �

+�r�,t��

= 
�0

c
�4 1

r2 	�n̂ � �n̂ � d�31��� · �n̂ � �n̂ � d�31���1�	1��

+ �n̂ � �n̂ � d�42��� · �n̂ � �n̂ � d�42���2�	2��� , �14�

where we have taken our origin at the location of the atom,
r�= n̂r, � is the retarded time, and we used the property
AijAkl=Ailkj. The negative frequency part of the electric

field operator E� −�r� , t� can be found by taking the complex
conjugate of the positive frequency part. Now, if we assume
that the point of observation lies perpendicular to both the
polarization and propagation directions, we have from Eq.
�14�

	I�� = 
�0

c
�4 1

r2 ��d�31�2	�1�	1��� + �d�42�2	�2�	2���� . �15�

Equation �15� can be further simplified using Eqs. �1� and
�11�, where in using Eq. �11� we have assumed that observa-
tion is being made at the long-time limit. The final expres-
sion for I� in the long-time limit �steady state� is then

	I��st = 
�0

c
�4 �D�2

6r2

���2

�2���2 + 	2 + 
2�
. �16�

Equation �16� clearly show that intensity emitted in the �
transitions is not altered by vacuum-induced coherences and
is simply proportional to the steady-state population of the
excited states.

Let us now investigate what happens in the case of two-
time photon-photon correlations in the � transitions. The
two-time photon-photon correlation for the level scheme in
Fig. 1 can be written as

	I��t + ��I��t�� = 	E� �
−�r�,t�E� �

−�r�,t + ��:E� �
+�r�,t + ��E� �

+�r�,t��

= 
�0

c
�8 1

r4 ��n̂ � �n̂ � d�31��� · �n̂ � �n̂

� d�31��2
Š��1�	3� − �2�	4��t��1�	1� + �2�

�	2��t+���3�	1� − �4�	2��t‹ , �17�

The two-time correlation function that appears in Eq. �17� is
to be obtained from the solution of the time-dependent den-
sity matrix equations �Eq. �9�� and the quantum regression
theorem �20�. In the rest of the paper we deal with correla-
tions like �17� in the steady state, where these depend only
on the time difference � and thus the retarded time becomes
irrelevant. A closer look at Eq. �9� shows that eight of the
fifteen equations form a closed set of linear equations which
can be solved to find �1�	1�t+� , �2�	2�t+� and hence the term
��1�	1�+ �2�	2��t+� in Eq. �17�. Before going further let us list
those eight equations:

�̇̃11 = i���̃13 − i��̃31 − 2	�̃11,

�̇̃33 = i��̃31 − i���̃13 + 2���̃22 + 2��̃11,

�̇̃13 = − i
�̃13 + i���̃11 − �̃33� − 	�̃13,

�̇̃31 = i
�̃31 − i����̃11 − �̃33� − 	�̃31,

�̇̃22 = i��̃42 − i���̃24 − 2	�̃22,

�̇̃44 = i���̃24 − i��̃42 + ���̃11 + ��̃22,

�̇̃24 = − i
�̃24 − i���̃22 − �̃44� − 	�̃24,

�̇̃42 = i
�̃42 + i����̃22 − �̃44� − 	�̃42. �18�

In compact notation these equations can be written as

�̇̃ = M�̃ , �19�

where �̇̃ and �̃ are �8�1� column matrices and M is an �8
�8� square matrix. Now, using the method depicted in �21�
and using Eq. �18�, we can express the solution of 	�1�	1�t+��
and 	�2�	2�t+�� in the form
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	�1�	1�t+�� = f11���	�1�	1�t� + f12���	�3�	3�t� + f13���	�3�	1�t�

+ f14���	�1�	3�t� + f15���	�2�	2�t� + f16���	�4�	4�t�

+ f17���	�4�	2�t� + f18���	�2�	4�t� , �20�

	�2�	2�t+�� = f51���	�1�	1�t� + f52���	�3�	3�t� + f53���	�3�	1�t�

+ f54���	�1�	3�t� + f55���	�2�	2�t� + f56���	�4�	4�t�

+ f57���	�4�	2�t� + f58���	�2�	4�t� , �21�

where the f’s are defined by

f ik��� = �eM��ik, �22�

and

Mik = �
l

Pil�llPlk
−1,

�eM��ik = �
l

Pile
�ll�Plk

−1. �23�

Here we have diagonalized the matrix M, with � being the
eigenvalues and P the corresponding eigenvectors. We now
make use of the quantum regression theorem to obtain the
two-time correlation function as

ŠB†�t���1�	1� + �2�	2��t+�B�t�‹ = F1���ŠB†�t��1�	1�tB�t�‹

+ F2���ŠB†�t��3�	3�tB�t�‹

+ F3���ŠB†�t��3�	1�tB�t�‹

+ F4���ŠB†�t��1�	3�tB�t�‹

+ F5���ŠB†�t��2�	2�tB�t�‹

+ F6���ŠB†�t��4�	4�tB�t�‹

+ F7���ŠB†�t��4�	2�tB�t�‹

+ F8���ŠB†�t��2�	4�tB�t�‹ ,

�24�

where we define the operator B as B†�t�= ��1�	3�− �2�	4��t;
B�t�= �B†�t��† and Fi���= f1i���+ f5i���. Using this definition
of the operator in Eq. �17�, the expression for the two-time
photon-photon correlation becomes

	I��t + ��I��t�� = 
�0

c
�8 1

r4 ��n̂ � �n̂ � d�31��� · �n̂ � �n̂

� d�31��2
ŠB†�t���1�	1� + �2�	2��t+�B�t�‹ ,

�25�

which, when Eq. �24� is used, simplifies to

	I��t + ��I��t�� = 
�0

c
�8 1

r4 ��n̂ � �n̂ � d�31��� · �n̂ � �n̂

� d�31��2�F2���	�1�	1��t + F6���	�2�	2��t� .

�26�

In the long-time limit, 	�1�	1��t� �̃11�t� and 	�2�	2��t� �̃22�t�,
where �̃11�t� , �̃22�t� are the steady-state populations of the
excited states given by Eq. �11�. Now, following our assump-

tion that the point of observation lies perpendicular to both
the polarization and propagation directions and substituting
for �̃11 and �̃22 from Eq. �11�, we can simplify Eq. �26�
further. The final expression for the two-time photon-photon
correlation is then

G�
�2���� = 	I��t + ��I��t��

= 
�0

c
�8 �D�4

36r4 �F2��� + F6����
1

2

���2

�2���2 + 	2 + 
2�� ,

�27�

where we have used Eq. �1� for the dipole matrix elements.
Note that F2��� �F6���� is the sum of probabilities of finding
the atom in the states �1� and �2� given that, at �=0, the atom
was in the state �3� ��4��. In the limit of large �,

G�
�2���� → 
�0

c
�8 �D�4

36r4
 2���2

�2���2 + 	2 + 
2�� . �28�

Next let us derive the expression for two-time photon-photon
correlation in the absence of interference. In this case the
total photon-photon correlation will be a simple addition of
photon-photon correlations for radiation emitted in indi-
vidual � transitions:

G�
�2���� = 	I��t + ��I��t��

= 	E� �
−�r�,t�E� �

−�r�,t + ��:E� �
+�r�,t + ��E� �

+�r�,t���1�	3�

+ 	E� �
+�r�,t + ��E� �

+�r�,t�E� �
+�r�,t + ��E� �

+�r�,t���2�	4�,

�29�

=
�0

c
�8 1

r4 ��n̂ � �n̂ � d�31��� · �n̂ � �n̂

� d�31��2
Š�1�	3�t��1�	1��t+��3�	1�t‹

+ 
�0

c
�8 1

r4 ��n̂ � �n̂ � d�42��� · �n̂ � �n̂ � d�42��2

�Š�2�	4�t��2�	2��t+��4�	2�t‹ . �30�

Finally, using Eqs. �20�, �21�, and �11� we get the photon-
photon correlation in the absence of interference as

G�
�2���� = 
�0

c
�8 �D�4

36r4 �f12��� + f56����
1

2

���2

�2���2 + 	2 + 
2�� .

�31�

Here f12��� �f56���� is the probability of finding the atom in
the state �1� ��2�� given that, at �=0, the atom was in the state
�3� ��4��. Equation �31� in the limit of large � becomes

G�
�2���� → 
�0

c
�8 �D�4

36r4
 ���2

�2���2 + 	2 + 
2�� . �32�

We now further calculate the normalized photon-photon cor-
relation corresponding to Eqs. �27� and �31�. The g�2� func-
tion gives the nonclassical aspects of photon statistics,
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g�2��t + �,t� =
	I��t + ��I��t��

	I��t + ���	I��t��
=

�F2��� + F6�����̃11

4�̃11
2 ,

�33�

g�2��t + �,t� =
	I��t + ��I��t��

�	I��t + ���	I��t����1�	3� + �	I��t + ���	I��t����2�	4�

=
�f12��� + f56�����̃11

2�̃11
2 . �34�

Here �̃11 is the steady-state population of the excited state
given by Eq. �11� and g�2� �g�2�� is the normalized two-time
photon-photon correlation function corresponding to the
presence �absence� of vacuum-induced interference.

IV. NUMERICAL RESULTS

In this section we present our numerical results and dis-
cuss their consequences. To begin with, we first discuss our
method of computation. The decay rates of the excited states
to the two ground states, 2�� and 2�, are proportional to

�d�41�2 and �d�31�2, respectively. From Eq. �1� we get 2��

��0 /3 and 2���0 /6, where �0 is proportional to the square
of the reduced dipole matrix element. We use these values
for the decays in our numerical computation and normalize
all the computational parameters with respect to �0. Further,
we use standard subroutines to diagonalize the complex gen-
eral matrix M and obtain complex eigenvalues and eigen-
vectors of the form ��+ i��. For all values of detuning and
Rabi frequency used in our computation, we have two pairs
of complex conjugate eigenvalues, and four other eigenval-
ues whose complex parts are so small compared to the real
parts that these complex parts have no significant contribu-
tions. Hence these four eigenvalues can be taken to be purely
real. Note that this is in contrast to the case of photon-photon
correlations for the two-level model where the number of
eigenvalues is 4 �22�. The changes in the eigenvalues lead to
spectral modification as discussed by Kiffner et al. �12�. The
eigenvalues for �c=0.5�0, and �c=3�0 and detuning 
=0
are listed in Table I. Note, for example, that for �c=3�0 we
have eigenvalues �5.99870i−0.375 and �5.995 22i
−0.208 269. This difference in the real parts can produce a
dip in the sidebands in the Mollow spectrum �23�. Next we
calculate the elements f ij of the 8�8 matrix �f� using Eqs.
�22� and �23�. Finally we use the elements f ij corresponding

TABLE I. Eigenvalues �in units of �0� for the diagonalized ma-
trix M corresponding to two different values of the Rabi frequency
of the driving field which is on resonance with the atomic
transitions.

� /�0 �=0.5�0 �=3.0�0

1 �−0.349797,−1.10904� �−0.375000,5.99870�
2 �−0.349797,1.10904� �−0.375000,−5.99870�
3 �−0.215794,−1.09726� �−0.208269,5.99522�
4 �−0.215794,1.09726� �−0.208269,−5.99522�
5 �−0.300406,0.000000� �−0.250000,0.000000�
6 �−0.165314,0.000000� �−0.250000,0.000000�
7 �−0.403098,0.000000� �−0.333462,0.000000�
8 �0.000000,0.000000� �0.000000,0.000000�
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FIG. 2. Plot of two-time photon-photon correlation as a function
of time for �=0.5�0 , 
=0.0�0, where �0=4�D�2�14

3 /3c3. All the
plotted parameters are normalized with respect to �0 rendering them
dimensionless. The solid and dashed lines in this figure and Figs. 3,
4, and 6 correspond to photon-photon correlations in the presence
and absence of VICs, respectively.
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FIG. 3. Plot of two-time photon-photon correlation as a function
of time but now for a small detuning 
=0.5�0; other parameters
remain the same as in Fig. 2.
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FIG. 4. �Color online� Plot of two-time photon-photon correla-
tion as a function of time for �=3.0�0 , 
=0.0�0, where �0

=4�D�2�14
3 /3c3. All the plotted parameters are dimensionless. The

solid red line in this figure corresponds to photon-photon correla-
tion in the presence of VICs.

PHOTON-PHOTON CORRELATIONS AS A PROBE OF… PHYSICAL REVIEW A 77, 033850 �2008�

033850-5



to Eqs. �27� and �31� and Eqs. �33� and �34� to evaluate the
two-time photon-photon correlations and normalized photon-
photon correlations in the presence and absence of vacuum-
induced interference, respectively.

Figures 2–4 show photon-photon correlations correspond-
ing to Eqs. �27� and �31�. The solid and dashed lines in the
figures correspond, respectively, to photon-photon correla-
tions in the presence and absence of interference. The corre-
lations calculated in the presence of interference show strong
damping of the oscillations and attain an overall higher value
as the time separation � between two counts increases. The
differences between G�2� and G�2� are most noticeable in the
limit of large time separation �. In order to understand this,
we examine the distinction between F2���= f12���+ f52��� and
f12���. We recall that f12 �f52� was the probability of finding
the atom in the state �1� ��2�� given that at �=0 it was in the
state �3�. We exhibit these probabilities in Fig. 5. We observe
that the function f52��� starts becoming significant at a time
scale of the order of ��

−1.
Further, for large �, f12 and f52 become comparable. The

physical process that contributes to f52 is the following:

�3� →
� pol

laser

�1� →
emission

�-photon

�4� →
� pol

laser

�2� .

Similarly, population can start from the state �4� and end up
in the state �1� via

�4� →
� pol

laser

�2� →
emission

�-photon

�3� →
� pol

laser

�1� .

We show normalized photon-photon correlations in a typical
case in Fig. 6. In the case of interference, we observe stron-

ger damping of the oscillations and an overall reduction of
the g�2� function at shorter time scales. At long-time limits
g�2���→�� is 1. The photon antibunching effect is also vis-
ible as 0�g�2��0��1. For a shorter time scale we get
g�2�����” 1, a clear signature of the nonclassical nature of the
two-time photon-photon correlations.

V. CONCLUSIONS

In conclusion, we have shown that the vacuum-induced
coherences do significantly affect the two-time photon-
photon correlations even though they show no effect on the
total steady-state intensity of the radiation emitted in the �
transitions. The effect of this coherence is reflected in the
form of stronger damping and overall larger values of the
correlation function G�2�. The level scheme j=1 /2→ j=1 /2
is easily realizable and has already been used, for example,
in 198Hg+ �13� in the context of interferences produced by a
system of two ions and more recently in 138Ba+ �14� in the
context of emission in the presence of a mirror. In future we
hope to investigate how the asymmetry in the level structures
introduced by a magnetic field �24� would influence the
photon-photon correlations. This might in turn give us more
freedom in choosing the level structure and hence a broader
choice in selecting atomic transitions for experiments. Fi-
nally, note that it would also be interesting to examine the
VIC effects in the context of nonlinear optical effects using
j=1 /2 to j=1 /2 transitions.
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