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Using resonant interaction between atoms and the field in a high-quality cavity, we show how to generate a
superposition of many mesoscopic states of the field. We study the quasiprobability distributions and demon-
strate the nonclassicality of the superposition in terms of the zeros of theQ function as well as the negativity
of the Wigner function. We discuss the decoherence of the generated superposition state. We propose homo-
dyne techniques of the type developed byfAuffeveset al., Phys. Rev. Lett.91, 230405s2003dg to monitor the
superposition of many mesoscopic states.
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I. INTRODUCTION

The interaction of a single atom with a high-quality cavity
has yielded many important results which can be understood
in terms of the Jaynes-Cummings modelf1g. The advances in
this field are extensively reviewed in the literaturef2–5g. The
generation of a superposition of mesoscopic coherent states
has a fundamental place in quantum theory as such a state
exhibits quantum interferences and the nonclassical character
of the radiation fieldf6,7g. Eiselt and Riskenf8g had discov-
ered that if a cavity contains a coherent field with large pho-
ton numbers, say of the order of 10, then the state of the field
for certain times splits into two parts. Each part can be char-
acterized approximately by a coherent state. Several authors
have studied many aspects of such splittingsf9,10g. Auffeves
et al. f10g made a successful observation of this splitting.
They also devised a novel homodyne method to observe in-
terferences. We note that previously such superpositions
were produced using dispersive interactions in a high-quality
cavity f11,12g or by using Raman transitions between the
center-of-mass degrees of freedom of trapped ionsf13g.

Earlier studies of the superpositions of more than two
coherent states have found many novel features of such
states. For example, Zurekf14g noticed that such superposi-
tions lead to structures in phase space which are smaller than
Planck’s constant. Clearly, we need efficient methods to pro-
duce such superpositions. One of the early suggestionsf15g
for the production of such states was through the passage of
a field in a coherent state through a Kerr medium. However,
Kerr nonlinearities are usually too small. Another possibility
is via the dispersive interactionf12,16g in the cavity. In this
paper, we present yet another possibility by using the reso-
nant interaction between the atom and the cavity. We show
how successive passage of atoms can be used to produce
superpositions involving many coherent states. We specifi-
cally concentrate on a superposition of four coherent states.

The organization of the paper is as follows. In Sec. II, we
present the details of our proposal to produce a superposition
of four coherent states. We examine the Wigner function and

the Q function for such states. We present a comparison of
exact and approximate phase-space distribution functions.
We further study zeros of theQ function which are a signa-
ture of the nonclassical properties of the field. In Sec. III, we
show how the passage of the third atom can be used to moni-
tor the superposition of four coherent states. In Sec. IV, we
examine the scale over which such a superposition can de-
cohere.

II. PREPARATION OF A SUPERPOSITION OF FOUR
MESOSCOPIC STATES OF THE FIELD

In a recent experiment, Auffeveset al. f10g have observed
a superposition of two distinguishable states of the field in a
high-quality cavity using resonant interaction between an
atom and the field inside the cavity. This observation is in
agreement with the theoretical prediction of Eiselt and
Riskenf8g. When a two-level Rydberg atom interacts with a
microwave field, it splits the field into two parts whose
phases move in opposite directions. If the interaction time is
chosen such that the phase difference between the split parts
becomesp, then the cavity field can be projected into a
superposition similar to a cat state,ual+ u−al.

In this section, we show that the above method can be
used for the preparation of a superposition of four mesos-
copic states of the field. We consider a two-level Rydberg
atom having its higher-energy stateuel and lower-energy
stateugl and the cavity has a strong coherent fieldual. The
atom passes through the cavity and interacts resonantly with
the field. The Hamiltonian for the system in the interaction
picture is written as

H = "gsuelkgua + a†uglkeud, s1d

whereg is the coupling constant for the atom with the cavity
field, anda sa†d is the annihilationscreationd operator. The
state of the atom-cavity system is written as

ucstdl = o
n

fcenstdue,nl + cgnstdug,nlg. s2d

Using Hamiltonians1d, the Schrödinger equation in terms of
cen andcgn is

ċen−1 = − igÎncgn, s3d
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ċgn = − igÎncen−1. s4d

We assume that the atom enters the cavity in its lower state
ugl and after interacting with the field for timet1, it is de-
tected in the same stateugl. Thus, effectively, the atom ab-
sorbs no photon but it projects the cavity field into the state

uccl = o
n

cn cossgÎnt1dunl, s5d

=
1

2o
n

cne
igÎnt1unl + cne

−igÎnt1unl, s6d

cn =
an

În!
e−uau2/2.

As a result, the cavity field splits into two parts whose phases
move in directions opposite to each other. Now we consider
the passage of a second identical atom through the cavity.
The second atom enters the cavity in its lower stateugl and,
after interacting with the field for timet2, is detected in the
same stateugl. The state of the field inside the cavity after
passing the second atom is

ucc8l = o
n

cn cossgÎnt1dcossgÎnt2dunl, s7d

=
1

4o
n

scne
igÎnst1+t2dunl + cne

−igÎnst1+t2dunl + cne
igÎnst1−t2dunl

+ cne
−igÎnst1−t2dunld. s8d

Thus after passing the second atom, the state of the field
inside the cavity splits into four parts.

In the coherent stateual, the photon distribution follows
Poisson statistics, so in Eq.s8d, most of the contribution to
the summation comes from the termsn<uau2. Thus we can
expandÎn in phase terms around the average number of
photonsn̄= uau2 in Eq. s8d. In fact for n̄,10, only the terms
up to second order insn− n̄d are significant and other terms
are negligible,

În = În̄ +
n − n̄

2În̄
−

sn − n̄d2

8n̄3/2 . s9d

If we substitute the value ofÎn from Eq. s9d in Eq. s8d, the
term proportional ton will change the phase of the coherent
field while the second- and higher-order terms insn− n̄d will
distort the shape of the coherent state in phase space. For
simplification, in order to understand the nature of the gen-
erated superposition state, we do not consider the distortion
in the coherent state. Then Eq.s8d can be approximated by

ucc8l =
1

4
feish1+h2duaeisu1+u2dl + e−ish1+h2duae−isu1+u2dl

+ eish1−h2duaeisu1−u2dl + e−ish1−h2duae−isu1−u2dlg,

s10d

hi =
gtiÎn̄

2
, ui =

gti

2În̄
, i = 1,2. s11d

If we choose interaction timest1 and t2 such thatu1=p /2
and u2=p /4, we get the superposition of four mesoscopic
coherent states placed in the east, west, north, and south
directions in phase space,

ucc8l =
1

4
fe−ish1−h2dua8l + eish1+h2du− a8l + eish1−h2duia8l

+ e−ish1+h2du− ia8lg; s12d

where we seta=a8eip/4.
Now we calculate the Wigner distribution for the states7d.

The Wigner distribution for the state having density matrixr
can be obtained using coherent states asf17g

Wsgd =
2

p2e2ugu2E k− buruble−2sbg*−b*gdd2b. s13d

The density matrixrc for states7d in terms of number states
is

rc = o
n,m

ana*m

În!m!
e−uau2 cossgt1Îndcossgt2Înd

3 cossgt1Îmdcossgt2Îmdunlkmu. s14d

Using Eqs.s13d and s14d, the Wigner distribution for the
states7d is

Wsgd =
2e2ugu2

p2 o
n,m

ana*m

n!m!
e−uau2 cossgt1Înd

3 cossgt2Îndcossgt1Îmdcossgt2Îmd

3E s− b*dnbme−ubu2 expf− 2sbg* − b*gdgd2b.

s15d

After evaluating the integral, Eq.s15d is simplified to the
form

Wsgd =
2e2ugu2

p
o
n,m

s− 1dn+mana*m

2n+mn!m!
e−uau2 cossgt1Înd

3 cossgt2Îndcossgt1Îmdcossgt2Îmd
]n+m

]gn]g*me−4ugu2.

s16d

In Fig. 1, we show the Wigner distributions for the generated
superposition states8d as well as for the approximated state
s10d using some typical values of parameters. There are four
patches at the corners corresponding to four mesoscopic
states of the field and between each pair of states of the field
there are interference fringes indicating the coherence be-
tween the states. In the central part, there are sub-Planck
structures as noticed by Zurekf14g which form as a result of
quantum interference between the two diagonal pairs. The
comparison of Figs. 1sad and 1sbd shows that a significant
squeezing perpendicular to the arc of the circleuzu= uau oc-
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curs due to the effects of the higher-order terms insn− n̄d
fsee Eq.s9dg. Squeezing in the resonant Jaynes-Cummings
modelf18g has been studied very well earlier. As a result of
small differences in the field statistics, there are differences
in the interference patterns. In Fig. 2, theQ distributions for
the statess8d and s10d are shown with the same parameters
used in Fig. 1. We select the interaction times such that there
is no overlapping between two states of the field. A compari-
son of Figs. 2sad and 2sbd shows that the states of the field
corresponding to the phases ±gÎnst1+ t2d fsee Eq.s8dg in the

generated mesoscopic state have more spread along the circle
uzu= uau and squeezing perpendicular to it in phase space be-
cause of larger distortion terms. Thus the split states of the
field in the generated superposition state are situated at the
same position as in the approximated state but with changed
shape.

We further mention that after passingN atoms through the
cavity and properly selecting the interaction times, we can
generate the superposition of 2N mesoscopic states of the
field placed along the arc of a circle of radiusuau in phase
space. In Fig. 3, we show theQ distribution for the generated
state of the field after passing three atoms through the cavity.
It is clear that the generated state is a coherent superposition
of eight mesoscopic states.

In this method of preparing superposition of mesoscopic
field states, most of the time atoms are in their ground states,
thus decoherence effects due to atomic damping are negli-
gible. Only the decoherence of the generated superposition
states after passage of the first atom may lead to the genera-
tion of an undesirable statistical mixture of statesf11g. The
mesoscopic states in the generated superposition after pas-
sage of the first atom lie on the circle of radiiuau in the phase
space. Thus they decohere as exps−2uau2ktd fcf. Eq. s28dg.
The required interaction time for the first atom is given by
gt1<puau. The required interaction time for the next atom is
half the interaction time for the previous atom. We assume
that all atoms come in a proper sequence so that the total
time in the generation of the state is equal to the total inter-
action time of the cavity field with the atoms. Then the time
required after passage of the first atom in the preparation of
2N mesoscopic states, for largeN, is given by

t1
2

+
t1
4

+
t1
8

+ fsN − 1dtermg < t1. s17d

Thus the probability of generating the desired state, for large
N, is reduced by the factor exps−2uau2t1/ tcavd, wheretcav is
the lifetime of the field in the cavity. In the case of good
cavities,gtcav<400 is feasible. The probability of generating

FIG. 1. sColor onlined The Wigner distributionWsgd for sad the
generated states8d and sbd the approximated states10d, using pa-
rametersa=4, gt1=3.7p, andgt2=1.9p.

FIG. 2. sColor onlined The Q-distribution functionQsgd for sad
the generated states8d andsbd the approximated states10d, using the
same parameters as in Fig. 1.

FIG. 3. sColor onlined The Q-distribution functionQsgd for the
generated state after passing three atoms through the cavity, fora
=8. The interaction times for the first atom, second atom, and the
third atom are chosen such thatgt1=8p, gt2=4p, andgt3=2p.
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states7d in these cavities, foruau2,10, will be more than
80%.

The relation between theQ distribution and theP distri-
bution for a state is given by

Qsgd =E Psade−ua − gu2d2a. s18d

From Eq.s18d, it is clear that forQ=0 theP distribution will
oscillate between +ve and −ve values. The negative value of
P is a signature of the nonclassical nature of the state. Thus
the exact zeros of theQ distribution are also signatures of a
nonclassical nature. Here it will be interesting to analyze the
exact zeros of theQ-distribution of the approximated state
s12d. TheQ distribution for states12d is

Qsgd =
1

p
zkgua8le−ish1−h2d + kgu− a8leish1+h2d

+ kguia8leish1−h2d + kgu− ia8le−ish1+h2dz2. s19d

The exact zeros ofQsgd will be given by

zkgua8le−ish1−h2d + kgu− a8leish1+h2d + kguia8leish1−h2d

+ kgu− ia8le−ish1+h2dz = 0. s20d

Thus theQ distribution shows nonclassical behavior at all
phase pointsg satisfying the conditions20d. For example, if
we takea8 to be real and observe theQ distribution along
the lineg= ugueip/4 in phase space, the condition for nonclas-
sicality s20d simplifies to

e−ugua8/Î2 cosFh1 + h2 +
ugua8

Î2
G

+ eugua8/Î2 cosFh1 − h2 +
ugua8

Î2
G = 0. s21d

For ugu=0 the conditions21d becomes cosh1 cosh2=0. For
uguÞ0, using the values ofh1=pua8u2/2, h2=pua8u2/4 fsee
Eq. s11dg, the conditions21d can be rewritten as the simulta-
neous equations

ugu
Î2a8

+
3p

4
= s2n1 + 1d

p

2a82 ,

ugu
Î2a8

+
p

4
= s2n2 + 1d

p

2a82, ni = 1,2, . . . . s22d

The solution of Eqs.s22d givesa82=2sn1−n2d, thusa82 must
be an even integer and the values ofugu are given by

ugu =
p

2Îsn1 − n2d
s3n2 − n1 + 1d, n1 . n2. s23d

In the above paragraph, we have outlined an analytical
approach for getting information about the nonclassical be-
havior of a state by finding exact zeros of theQ function. It
is quite clear from the above that a simple analysis of theQ
function can provide information on the nonclassical behav-
ior of the state. Thus this is an alternate analytical approach
for checking the nonclassical behavior of the state. In gen-

eral, analyzing zeros of theQ function is easier than looking
for the −ve value of the Wigner function. In Ref.f19g, it is
shown that the experiments performed for phase measure-
ment of the radiation field are equivalent to the measurement
of the Q function. The measured quantitywsx,pd, the prob-
ability distribution for the joint measurement of the two
quadraturesx and p, is directly proportional to theQ func-
tion. Thus the zeros of theQ function correspond to the
minima of the measured quantitywsx,pd in such experi-
ments.

III. DETECTION OF THE GENERATED SUPERPOSITION
OF MESOSCOPIC STATES OF THE FIELD

In the previous section, we have shown how the cavity
field can be projected into a superposition of 2N mesoscopic
states of the field after passingN atoms through the cavity.
The generated state in the cavity can be detected by the con-
ditional probabilities of detection of the atoms used in the
preparation itself as the cavity field is entangled with the
atomic states. An elegant method can also be homodyne de-
tection f10g, which can be implemented in the same experi-
mental setup. After preparing the cavity in the desired super-
position state, a resonant external coherent fieldubl is
injected into the cavity. For the sake of simplicity, let us
assume that two atoms are passed through the cavity in the
preparation of the mesoscopic state of the fieldfEq. s7dg.
After adding the external field, the state of the resultant field
in the cavity is

uChl = o
n

cn cossgt1Îndcossgt2ÎndDsbdunl,

=o
m

o
n

cn cossgt1Îndcossgt2ÎndkmuDsbdunluml

=o
m

Fmuml, s24d

Fm = o
n

cn cossgt1Îndcossgt2ÎndkmuDsbdunl, s25d

whereDsbd;eba†−b*a is the displacement operator. Now we
bring the third atom in its lower-energy stateugl to probe the
cavity field. The probability of detecting the probe atom in
its lower stateugl after crossing the cavity in timetp is

Pg = o
m

uFmu2 cos2sgtpÎmd. s26d

The interaction timetp for the probe atom is selected such
that if there are photons in the cavity, it leaves the cavity in
its higher-energy stateuel with larger probability. We have
shown in the earlier section that all the states of the field in
the superposition lie on a circle of radiusuau, so if we choose
the external fieldubl having amplitudeuau and phasef, the
probe atom will leave the cavity in its ground state with
larger probability when the value ofp+f will match to the
phases of the states of the field in the generated superposi-
tion. Thus the probability of the probe atom leaving the cav-
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ity in its lower stateugl would, as a function off, have peaks
corresponding to the positions of the centers of the super-
posed mesoscopic states. In Fig. 4, we plot the probability of
detecting the probe atom in its lower state withf. It shows
four peaks at the positions of the four states of the field in the
generated superposition state. The small oscillations in the
background are because of the interference effects of residual
field components after adding the external field to the cavity.

IV. DECOHERENCE OF THE GENERATED
SUPERPOSITION STATE

Next we study the decoherence of the generated superpo-
sition states8d. We are interested in the coherent superposi-
tion of four well separated mesoscopic states of the field. The
decoherence of such a state will be equivalent to the deco-
herence of the states12d. This can be done using the master
equation

ṙ = −
k

2
sa†ar − 2ara† + ra†ad, s27d

wherek is the cavity field decay parameter and we carry an
analysis in the absence of thermal photons. For initial state
s12d, we find the density matrix after timet,

rstd =
1

16
fsuatlkatu + u− atlk− atu + uiatlkiatu + u− iatlk− iatud

+ e−2uau2s1−e−ktdsuatlk− atue−2ih1 + u− atlkatue2ih1 + uiatl

3k− iatue2ih1 + u− iatlkiatue−2ih1d + e−uau2s1−ids1−e−ktdsuatl

3kiatue−2ish1−h2d + u− iatlkatue−2ih2 + u− atl

3k− iatue2ish1+h2d + uiatlk− atue−2ih2d + e−uau2s1+ids1−e−ktd

3suiatlkatue2ish1−h2d + uatlk− iatue2ih2 + u− iatl

3k− atue−2ish1+h2d + u− atlkiatue2ih2dg,

at = a8e−kt/2. s28d

In Eq. s28d, the second, third, and fourth terms reflect the
coherent character of the superposition. These are the terms
which decohere due to interaction with the environment. The
contribution to the Wigner function from the second term in
Eq. s28d is

e−2ugu2−2uau2s1−e−ktd

4p
hcosfh1 + isa8g* − a8*gdg

+ cosfh1 + sa8g* + a8*gdgj, s29d

which decays ase−2uau2s1−e−ktd<e−2uau2kt for kt!1. This term
arises from the coherence between the pairua8l, u−a8l and
the pairuia8l, u−ia8l, and is responsible for the central sub-
Planck structures. The term in curly bracket can be written as
hcosfh1+2a8ugusinug+cosfh1+2a8ugucosugj. Thus in any
direction uÞnp /2 one has an interference pattern which
arises from two cosine terms with different periodicity. Thus
the sub-Planck structures decohere ase−2uau2kt. The third and
the fourth terms in Eq.s28d show the coherence between
other pairs of coherent states, and decay ase−uau2kt. In Fig. 5,
we plot the decoherence of the approximated states12d in
terms of the Wigner function at different times. As time
progresses in Fig. 5 fromsad to sdd, the central interference
patterns decay faster and disappear earlier than the interfer-
ence fringes between the coherent states, sayual and uial,
disappear. This is clear from Eq.s28d that the central inter-
ference patterns decohere two times faster than the interfer-
ence fringes between the coherent states likeual and uial.

V. CONCLUSIONS

In this paper, we have shown the possibility for generating
the superposition of four mesoscopic states of the field using

FIG. 4. The probability of detecting a probe atom in its ground
state as a function off for the generated superpositions7d. The
parameters used are the same as in Fig. 1 and the interaction time
for the probe atom is selected such thatgtp=1.5p.

FIG. 5. The decoherence of the approximated states12d in terms
of the Wigner function at different times,sad for kt=0, sbd for kt
=1/2uau2, scd for kt=1/uau2, andsdd for kt=2/uau2, for uau=4.
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resonant interaction between atoms and the field in a cavity.
We have discussed the properties of the quasiprobability dis-
tributions of the generated state and compared with the su-
perposition of four coherent states. We have discussed the

time scale over which the state decoheres and shown that the
generated state can be monitored using homodyne detection
techniques. Another way to detect such superposition is by
doing tomographyf20g of such states.
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