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We present a protocol for transfer of an unknown quantum state. The protocol is based on a two-mode cavity
interacting dispersively in a sequential manner with three-level atoms in theL configuration. We propose a
scheme for quantum networking using an atomic channel. We investigate the effect of cavity decoherence in
the entire process. Further, we demonstrate the possibility of an efficient quantum memory for arbitrary
superposition of two modes of a cavity containing one photon.
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I. INTRODUCTION

In the quantum information theory[1], transfer of infor-
mation in the form of a coherently prepared quantum state is
essential. One can transfer a quantum state either by the
method of teleportation[2] or through quantum networking.
The basic idea behind a quantum network is to transfer a
quantum state from one node to another node with the help
of a career(a quantum channel) such that it arrives intact. In
between, one has to perform a process of quantum state
transfer (QST) to transfer the state from one node to the
career and again from the career to the destination node.
There have been some proposals[3] for quantum networking
using cavity-QED, where two atoms trapped inside two spa-
tially separated cavities serve the purpose of two nodes. In
Ref. [3], the task was to transfer the state ofone atom into
the othervia the process of QST between the atom and pho-
ton, where the latter is used as a career. The photon carries
the information through either free space or an optical fiber
between the cavities, and the success depends on theproba-
bilistic detection of photons or adiabatic passage through the
cavities. We note that, though it may be difficult to beat the
communication with photons, it is always interesting to ex-
plore the alternatives. In fact, very recently, quantum net-
work using a linearXY chain of N interacting qubits was
proposed. In this proposal, the quantum state can be trans-
ferred from the first qubit to theNth qubit within micro-
scopic distance by preengineering interqubit interactions[4].

Further, storage of quantum states is also an important
issue. There have been several proposals for quantum
memory. For example, recent proposals[5,6] have shown
how to transfer the field state into atomic coherence by the
adiabatic technique and again retrieve the same through the
method of adiabatic following[5] or using the teleportation
technique[6]. Quantum memory of the individual polariza-
tion state into a collective atomic ensemble has been pro-
posed[7]. Initially, an entangled state of two pairs of atomic
ensembles is prepared, where the single-photon polarization
state is stored through a process similar to teleportation.
Though the information can be transferred back to the pho-
ton state, the protocol only succeeds with a probability 1/4.
Decoherence-free memory of one qubit in a pair of trapped
ions has also been experimentally demonstrated[8]. Maître
et al. [9] have proposed a quantum memory, where the quan-
tum information on the superposition state of a two-level

atom was stored in a cavity as a superposition of zero- and
one-photon Fock states. The holding time of such memories
is generally limited by the cavity decay time.

In this paper, we propose a scheme for QST to transfer the
unknown state of one atom to another atom where the atoms
are not directly interacting with each other. Note that by

direct spin interaction of theSW1·SW2 kind, the quantum state
could be transferred from one atom to another within a mi-
croscopic range. In the present scheme, we show how a simi-
lar kind of interaction between two atoms can be mediated
via a cavity. Thus the atomic state can be transferred from
one atom to another in the mesoscopic range.

We extend our idea of QST to a quantum network, where
we transfer thestate of one cavity to another spatially sepa-
rated cavity. For this we use long-lived atoms as career, and
make use of the QST process to transfer the state of the
cavity to an atom and again to the target cavity. Our protocol
for quantum networking provides adeterministic way to
transfer the quantum state between the cavities. This protocol
does not require any kind of probability arguments based on
the outcome of a measurement. Further, we propose the re-
alization of a quantum memory ofarbitrary superposition of
two modesof a cavity which contains only one photon. This
superposition state can be stored in the long-lived states of
the neutral atoms and retrieved in another two-mode cavity
later, deterministically. Our proposal relies on the techno-
logical advances and realizations as described in Ref.[10].

The structure of the paper is as follows. In Sec. II, we
describe the model and provide the relevant equations. In
Sec. III, we discuss how transfer of an unknown quantum
state can be performed between two atoms. We provide an
estimate of possible decoherence in this process due to cavity
decay. In Sec. IV, we extend our scheme to quantum net-
works and quantum memory.

II. MODEL CONFIGURATION

To describe how the QST protocol works, we consider a
three-level atom in theL configuration interacting with a
two-mode cavity(see Fig. 1). The modes with annihilation
operatorsa and b interact with theuel↔ ugl and uel↔ ufl
transitions, respectively. The Hamiltonian under the rotating
wave approximation can be written as
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H = "fveguelkeu + v fguflkf u + v1a
†a + v2b

†b + hg1uelkgua

+ g2uelkf ub + H.c.jg, s1d

where vlgsl Pe, fd is the atomic transition frequency,vi si
P1,2d is the frequency of the cavity modesa andb, andgi

is the atom-cavity coupling constant. We assumegi to be
real.

We work under the two-photon resonance condition and
assume large single-photon detuning. After adiabatically
eliminating the excited leveluel in the large detuning do-
main, we derive an effective Hamiltonian describing the sys-
tem of Fig. 1,

Heff = −
"g2

D
fuglkgua†a + uflkf ub†bg

−
"g2

D
fuglkf ua†b + uflkguab†g, s2d

whereD=veg,f −v1,2 is the common one-photon detuning of
the cavity modes andg1=g2=gs!Dd. The conditiong1=g2

can be satisfied by proper choice as we can choose appropri-
ate transitions in atomic systems, frequencies, etc. Note that
if one considers the levelsugl and ufl as Zeeman sublevels,
then these conditions are automatically satisfied. In that case,
we may consider the two modes of the cavity as two or-
thogonal polarization states of a photon. Now note that the
first two terms in Eq.(2) represent the self-energy terms and
the last two terms give the interaction leading to a transition
from the initial state to the final state. The probability ampli-
tudes of relevant basis statesuglun,ml and uflun−1,m+1l in
the state vector

ucstdl = dgstdug,n,ml + dfstduf,n − 1,m + 1l s3d

are given by

dgstd =
ÎnXY

n + m + 1
+ dgs0d,

dfstd =
Îm + 1XY

n + m + 1
+ dfs0d, s4d

where X=Îndgs0d+Îm+1dfs0d, Y=expfig2sn+m+1dt /Dg
−1, andn and m are the respective photon numbers in the

modesa andb. We note that the effective interaction(2) can
be seen as an interaction between two qubits defined via the
atomic variables and field variables

S+ = uflkgu, S− = uglkf u, Sz =
1

2
suflkf u − uglkgud;

R+ = a†b, R− = ab†, Rz =
1

2
sa†a − b†bd. s5d

In the single-photon space, the field operatorsR±, Rz satisfy
spin-1/2 algebra and thus the interaction(2) can be written
as an interaction between two qubits,

Heff ; −
"g2

D
sR+S− + R−S+ − 2RzSzd. s6d

In view of the above form of the effective interaction, we
conclude that our system of Fig. 1 can be used for anumber
of quantum logic operations.

III. QUANTUM STATE TRANSFER PROTOCOL

We next demonstrate how the dynamics of an atom in a
two-mode cavity can be used to implement the QST proto-
col. Hereafter, we will use the term “p pulse” to denote an
equivalent traversal timeT of the atom through the cavity
such that 2g2T/D=p. The time T could be controlled by
selecting the atomic velocity.

We assume that the atomA is initially in an unknown
state,

uilA = auglA + buflA, s7d

wherea andb areunknownarbitrary coefficients. The state
uilA of atomA is to be transferred to another atomB which is
elsewhere. Preparing the cavity in a stateu0,1l (i.e., initially
one photon in theb mode), we send the atomA through the
cavity for a certain time which is equivalent to ap pulse.
After atomA comes out of the cavity, atomB in state

ui8l = a8ugl + b8ufl s8d

is sent through the cavity. Herea8 and b8 are arbitrary co-
efficients and need not be known. AtomB also experiences a
p pulse during the interaction with the cavity. The entire
process can be described as follows:

uilA u0,1l

↓ p pulse on atomA

uglA sau0,1l − bu1,0ld

↓ B atom enters

uglA ui8lBsau0,1l − bu1,0ld

↓ p pulse on atomB

uglA uilBsa8u0,1l − b8u1,0ld. s9d

FIG. 1. Three-level atomic configuration with levelsugl, uel, and
ufl interacting with two orthogonal modes of the cavity, described
by operatorsa and b. Here g1 and g2 represent the atom-cavity
coupling of thea and b modes with the corresponding transitions
andD is the common one-photon detuning.
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If one prepares the cavity initially in stateu1,0l, then
following a similar sequence to the above, the final state will
be −uflAuilBsa8u0,1l−b8u1,0ld. Note that atomB has already
acquired the stateuil of atomA, i.e., the stateuil is transferred
from atomA to atomB.

More generally, our QST protocol can be written as

uilAui8lBsgu0,1l + du1,0ldcav→
Uspd

sgugl − dufldAuilBuclcav,

s10d

where Uspd=UAspdUBspd, Ukspd (kPA,B) f=exp
h−iHeffT/"jg denotes thep-pulse operation on the atomk,
and

uclcav= a8u0,1lcav− b8u1,0lcav. s11d

Our protocol has interesting features:(a) the initial states of
the atoms can be arbitrary, and(b) the field state can also be
an arbitrary superposition ofu0,1l andu1,0l. Note that in the
case of a two-level atom interacting with a resonant single-
mode cavity, the QST protocol from one atom to another
atom has difficulties associated with a relative phase which
can be changed either by using a conditional phase shift
which is essentially a two-qubit operation[see Eq.(3.8) of
Ref. [10]] or by applying a resonant microwave field to the
atomic qubit.

We note that if the initial state of the atomB is ugl (or ufl)
and the cavity is initially in stateu0,1l (or u1,0l), then we
can not only transfer the state of atomA to B, but we also
can interchange the states between them. However, the QST
protocol described here cannot be interpreted as a SWAP
gate. As in the usual version of a quantum gate, atomsA and
B must interact with the field simultaneously. We also note
that, in the process of coherence transfer between two atoms
using, for example, the scheme of Ref.[11], the atoms must
be addressed by the pulses simultaneously, which is basically
a local interaction. In the present protocol, the atoms interact
with thep pulse in a sequential manner. This is essentially a
nonlocal process.

Extending the idea of QST described above to a number
of atoms, we can transfer the state of any atom to the con-
secutive atom. This means that if we consider a sequel of
atoms, then the state of any atom can be transferred to the
consecutive atom which will pass the cavity after the former
leaves the cavity. The procedure of transfer of atomic states
to consecutive atoms has been shown schematically in Fig. 2.
Here the atomsA, B, C, etc. are sent through another iden-
tical bimodal cavity in initial stateu0,1l. After passing
through this cavity, atomC is again prepared in stateuil.
Thus, using a second cavity in this way, we can transfer the

state of the first atomA to a third atomC. Clearly, if we used
n number of cavities in this sequence, we could transfer the
state of atomA to the sn+1dth atom in the sequence.

Effects of decoherence: Fidelity of the QST protocol

Decoherence is a strong limiting factor in the realization
of any quantum computational protocol. The interaction of
the atom and the cavity with the environment causes them to
decay and results in decoherence. Thus, one has to consider
the effect of decoherence to examine with how much effi-
ciency the desired outcome can be produced. These calcula-
tions can be done in the density-matrix framework using the
following Liouville equation:

ṙ = −
i

"
fHeff,rg − kasa†ar − 2ara† + ra†ad

− kbsb†br − 2brb† + rb†bd, s12d

whereka and kb are the decay constants of the two modes
andHeff is given by Eq.(2).

In the present case, to investigate the effect of decoher-
ence, let us consider a possible scheme. We considerugl and
ufl to be the Rydberg levels as in Haroche’s experiments. In
that case, we can use a bimodal microwave cavity like the
one used by Haroche’s group. We use parameters similar to
those in the experiments by Haroche and his co-workers. If
the cavity coupling constantg is 2p350 kHz and the cavity
decay constantka=kb=k for each mode is 2p3100 Hz,
thenk /g=0.002. Further, forD=10g, we calculate the cavity
interaction time to be 50ms for ap pulse, which is consis-
tent with the interaction time possible to achieve in a micro-
wave experiment. One sends the atoms with a velocity
,102 cm s−1 through a few-cm-long cavity to achieve this
interaction time. Using these parameters, we calculate the
fidelity F that the first step of the evolution(9) occurs. The
variation ofFsTd with the decay constantk is shown in Fig.
3(a), whereT is the interaction time of the atom with the
cavity. Note that the probability that the state of atomA is
transferred to the cavity remains more than 90% fork
=0.002g. We next show[see Fig. 3(b)] the variation of the
fidelity Fs2T+td of the entire process(9) to occur with the
time delayt between the atomsA andB for k=0.002g. It is
clear that the probability that the atomB acquires the desired
state remains above 80% even atgt=20s;t<63 msd.

IV. EXTENSIONS OF QUANTUM STATE
TRANSFER PROTOCOL

A. Quantum networks

Now we show how the above QST protocol can be made
useful in preparing a quantum network, in which long-lived
atomic states are used to communicate between the two
nodes of the network. We assume that there are two identical
two-mode cavitiesC1 and C2, which are considered as two
nodes of the network. Let us consider that the cavityC1 is
initially in a stateu0,1l. To prepare this cavity in a superpo-
sition state,

FIG. 2. Schematic diagram for the QST protocol for a number of
atoms interacting with the two-mode cavity in a sequential manner
for a timeT=Dp /2g2.
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uElcav= au0,1lcav− bu1,0lcav, s13d

we send an atomA in stateuil through the cavity(see Fig. 4)
such that the atomA experiences ap pulse. Now our goal is
to transfer this cavity stateuElcav to the other nodeC2. For
that we send a second atomB through the cavityC1 after A
comes out of it. We see that the atomB is prepared in stateuil
through the evolution(9). This atom is now sent through the
second nodeC2 which is initially in stateu0,1l. In this way,
the stateuElcav of nodeC1 is transferred to the nodeC2.

Extending the above idea to a number of distant nodes
(cavities), we thus can transfer the stateuElcav from one node
to another node of the proposed quantum network via a
quantum channel(atom). For example, to send this state
uElcav from C2 to another node(say,C3), we can send a third
atomC through these two nodes subsequently.

We emphasize that our protocol of quantum networking is
distinct from the teleportation protocol of Davidovichet al.
[12]. Their protocol depends on the Bell state measurements,
whereas in our protocol no Bell measurement is ever made.

We further note that the present scheme can be used to
spread entanglement between two distant cavities. For this,
one first sends an atomA in stateugl through the first cavity

C1 prepared initially in the stateu1,0l such that the atom
experiences ap /2 pulses2g2T/D=p /2d. This would prepare
the atom and the cavity in the following entangled state:

uClAC1
=

1
Î2

eip/2suglAu1,0l1 + uflAu0,1l1d. s14d

Next the atom passes through a second cavityC2 initially in
the stateu0,1l and experiences ap pulse. Thus, at the end of
this process, the two cavities are prepared in anentangled
state of two modesas

uClC1C2
=

1
Î2

eip/2fu1,0l1u0,1l2 − u0,1l1u1,0l2g. s15d

Clearly one can spread entanglement between the atom and
the cavity to another distant cavity. Note that in our proposal,
entanglement is created between the modes of the two dif-
ferent cavities. The entanglement between two modes of a
single cavity has been produced in[13].

B. Storage and retrieval of an arbitrary superposition state
of two modes of a cavity

We now discuss how the presentp-pulse technique can be
used to prepare an efficient quantum memory for arbitrary
superposition of two cavity modes, where there is only one
photon present in either mode. Let us consider a two-mode
cavity which is in a superposition state of two modes[see
Eq. (13)],

uElcav= au0,1lcav− bu1,0lcav, s16d

wherea andb areknowncoefficients. Now we send an atom
in state(8) through the cavity. Applying ap pulse on it, we
can map the superposition ofuElcav into the state of the atom.
This procedure can be written as

ui8luElcav→ − uiluclcav, s17d

where uil=augl+bufl and uclcav is given by Eq.(11). Be-
cause, the statesugl and ufl of the atom are radiatively long-
lived, information about the state of the cavity can be stored
inside the atom for a sufficiently long time. To retrieve this
information into the cavity, we prepare asecondcavity in
either of the statesu0,1l or u1,0l and send the atom in state
uil through the cavity. Upon applying ap pulse, the cavity
can again be prepared in the superposition state as before.
The retrieval of superposition can be shown as

FIG. 4. Schematic diagram for the quantum network between
distant cavities via the atomic channel. Description of the figure is
in the text.

FIG. 3. (a) Variation of the fidelityFsTd of mapping the state of
the atomA in the cavityC1 with k /g. We have assumed that the
cavity decay rates are the same for both the modes andD=10g. (b)
Variation of the fidelityF calculated at time 2T+t, with the time
delayt between the atoms fork=0.002g andD=10g.
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uilu0,1lcav→ ugluElcav, uilu1,0lcav→ − ufluElcav. s18d

We should mention here that the quantum memory pro-
posed here for the cavity state is expected to work better
since the information is being stored inside the long-lived
atomic statesugl and ufl. However, the transfer time of the
cavity state to the atom is limited by the cavity holding time
and the atom must stop interacting with the cavity before it
decays. We also note that if the two modes are degenerate
and correspond to two states of circular polarizations, then
Eq. (16) can be viewed as a superposition of two polarization
states of a photon. In such a case, our proposal corresponds
to storage and retrieval of the polarization states of a photon.

V. CONCLUSION

In conclusion, we have presented a protocol for the trans-
fer of a quantum state from one atom to another atom. This
protocol can be extended to a number of atoms passing
through sequential cavities and thus one can set up a quan-
tum network. We have further shown how an efficient quan-
tum memory of arbitrary superposition of two cavity modes
can be built up. Our proposals have certain advantages as we
work with long-lived states of atoms. We provide a proper
estimate of the efficiency of the state transfer protocol
against cavity decoherence.

[1] M. Keyl, Phys. Rep.369, 431 (2002); A. Galindo and M. A.
Martín-Delgado, Rev. Mod. Phys.74, 347 (2002).

[2] C. H. Bennettet al., Phys. Rev. Lett.70, 1895(1993).
[3] J. I. Ciracet al., Phys. Rev. Lett.78, 3221 (1997); S. J. van

Enk, J. I. Cirac, and P. Zoller,ibid. 78, 4293 (1997); T. Pel-
lizzari, ibid. 79, 5242(1997).

[4] M. Christandl, N. Datta, A. Ekert, and A. J. Landahl, Phys.
Rev. Lett. 92, 187902(2004).

[5] D. F. Phillipset al., Phys. Rev. Lett.86, 783(2001); M. Fleis-
chhauer and M. D. Lukin, Phys. Rev. A65, 022314(2002).

[6] A. E. Kozhekin, K. Mølmer, and E. Polzik, Phys. Rev. A62,
033809(2000); C. Schori, B. Julsgaard, J. L. Sørensen, and E.

S. Polzik, Phys. Rev. Lett.89, 057903(2002).
[7] G.-P. Guo and G.-C. Guo, Phys. Lett. A318, 337 (2003).
[8] D. Kielpinski et al., Science291, 1013(2001).
[9] X. Maître et al., Phys. Rev. Lett.79, 769 (1997).

[10] J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys.
73, 565 (2001).

[11] T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys.
Rev. Lett. 75, 3788(1995).

[12] L. Davidovich, N. Zagury, M. Brune, J. M. Raimond, and S.
Haroche, Phys. Rev. A50, R895(1994).

[13] A. Rauschenbeutelet al., Phys. Rev. A64, 050301(2001).

TRANSFER OF AN UNKNOWN QUANTUM STATE,… PHYSICAL REVIEW A 70, 022323(2004)

022323-5


