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We present a method of manipulating the Raman process by using a coherent control field which leads to
splitting of the Raman gain peak into a doublet and anomalous dispersion in the region between the gain peaks.
We show how the region of almost no Raman gain and strong anomalous dispersion is ideally suited for
producing superluminal propagation. In particular, we show that the group index for a23Na condensate could
be in the range −103 to −104.
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It is now widely recognized that the dispersive properties
of a medium can be well controlled by the application of a
coherent field on an accompanying unoccupied transition
[1,2]. This type of dispersion management has led to inter-
esting applications in nonlinear optics and in the propagation
of pulses. Harriset al. recognized the possibility of ultraslow
light [3], which was realized by Hauet al. [4]. There have
been many other realizations of ultraslow light in atomic
vapors [5] and solid state materials[6]. The work on ul-
traslow light has further led to proposals on the stopping of
light [7] which has been achieved in very recent experiments
[8]. Fiberlike dispersion in an atomic vapor can be produced
[9]. We have also seen parallel developments in superluminal
propagation. Based on the earlier suggestion of Steinberg
and Chiao[10], Wanget al. produced a double-peaked Ra-
man gain profile using two pump fields with closely sepa-
rated frequencies[11]. They obtained superluminal propaga-
tion of pulses with central frequency near the minimum in
the double-peaked Raman gain profile. Bigelowet al. [12]
realized superluminal propagation in alexandrite by using
population pulsations and reverse saturation in this medium.
Propagation of pulses with discontinuities has been studied
with a view to obtaining the correct signal velocities[13].
There are many other theoretical proposals for achieving su-
perluminality. Agarwalet al. [14] suggested the use of a
microwave field between the two lower levels of aL system.
Cross talk between different fields can also lead to superlu-
minality [15]. Note that the cross talk is especially important
when the separation between the two lower levels is of the
order of or less than the Rabi frequency of the pump field.
More specifically, Wilson-Gordon and co-workers[16] have
shown that Zeeman systems reverse dispersion with increase
of the strength of the pumping field.

In this paper, we propose a scheme in which Raman gain
processes can be coherently controlled and show how this
coherent control can lead to large superluminality in a fash-
ion similar to the realization of ultraslow light using coherent
control. It is known that the dispersion on the probe transi-
tion which corresponds to Raman gain should be normal in
the region of the line center. For large superluminality we
need to create anomalous dispersion with very little gain so
that pulses can propagate without growing or becoming un-
stable. This indeed is produced by the application of a coher-
ent control field which creates a hole in the gain profile in the
region of the line center. This is reminiscent of the hole in

the absorption profile produced by a coherent field[17].
Thus, by the application of a coherent field, we produce a
sharp minimum in the Raman gain profile and a steep
anomalous dispersion. This coupled with a large density pro-
vides us with ideal conditions for superluminal propagation
of light pulses. It must be noted that the control of other
two-photon processes has been discussed. For example, elec-
tromagnetically induced transparency in two-photon absorp-
tion has been proposed[18] and seen[19,20].

Our model for coherent control of Raman gain processes
is shown schematically in Fig. 1. The ground levelsugl and
ug8l are coupled to the excited leveluel by electric fields with
Rabi frequenciesG1 andG2, respectively. The corresponding
detunings areD1 and d, respectively, defined as the differ-
ences between the frequencies of the interacting fields and
the corresponding transition frequencies. The control field is
applied on the transitionug8l and ue8l and will enable us to
manipulate the Raman gain[21]. We note that the Raman
gain is a single-step process where the pumping fieldG1 is
detuned from the transition. We will continue to work under
detuned conditions, otherwise there would be a mixing of the
two-stepsugl→ uel→ ug8ld and one-step processes. Since the
systems used in many specific applications of coherent con-
trol appear rather similar, it is good to point out the major
differences. In the case of ultraslow light we have a weak
probe pulse whose propagation in alinear medium is con-
trolled by a coherent field. The probe pulse acts on a transi-

FIG. 1. Level configuration for achieving superluminality. The
pump and probe fields with respective Rabi frequenciesGisi
P1,2d interact with the transitionsuel↔ ugl and uel↔ ug8l, respec-
tively. Superluminality can be created by applying a control field
with Rabi frequencyG3 that couples the levelue8l to ug8l.
D1,d ,andD3 are the respective detunings.
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tion with population in the lower state. In a Raman gain

process the probe pulse acts between levels that are not nor-
mally populated and there is a pump on a transition that has
population in the lower state. The Raman gain process itself
is a second-order process. In addition, we apply a coherent
field to control the second-order Raman process.

By incorporating the spontaneous decay ratesgle andgle8
sl Pg,g8d from the levelsuel and ue8l to the ground levels,
we perform full density matrix calculations using the equa-
tions given in the Appendix for the four-level system to sec-
ond order in the pump field and to first order in the probe
field. This is the condition under which Raman gain pro-
cesses are normally studied. The relevant part of the polar-
ization (the density matrix element) for the single-step Ra-
man process is found to be

reg8 ;
G1

2G2

8 F − 2iGeg

sgge+ gg8edsGeg
2 + D1

2dsGeg8 − idd

+
− i

sGeg+ iD1dhGgg8 − isd − D1djsGeg8 − iddG , s1d

whereGab is the dephasing rate of the coherence between the
levelsual andubl. Note the presence of the Raman resonance
in the second term in the above equation. Under the condi-
tions in which the Raman gain is normally studied, the term
without the Raman resonant term is unimportant. Thus in the
limit of large detuningd,D1@g’s, we get approximately

reg8 ;
− iG1

2G2

8dD1hGgg8 − isd − D1dj
. s2d

The real and imaginary parts of Eq.(1) give the dispersion
and the Raman gainfImsreg8d,0g. Note that the Raman dis-
persion is normal in the region of Raman resonance[see Fig.
2(a)]. As mentioned earlier, we need to obtain a region of
almost no gain with, however, steep anomalous dispersion.
This can be achieved by the control laser on the transition
ue8l↔ ug8l. Using the full density matrix equations and keep-
ing terms of all orders in the control field, we find the result
for the nonlinear Raman susceptibilityx which now depends
on the control field:

x =
2NudWeg8u

2

"G2
reg8 =

3Nl3

32p3G1
2D, s3d

where

D =
− i

A F2GeghGee8 − isd − D3dj

sgge+ gg8edsGeg
2 + D1

2d
+

hGee8 − isd − D3djhGe8g − isd − D1 − D3dj − suG3u2/4d

sGeg+ iD1dfhGgg8 − isd − D1djhGe8g − isd − D1 − D3dj + suG3u2/4dgG s4d

and A=sGeg8− iddhGee8− isd−D3dj+suG3u2/4d. Here reg8
=sG1

2G2dD /8 is the new optical coherence, modified by con-
trol field, N is the number density of the atomic medium,l
=2pc/v is the wavelength of theuel↔ ug8l transition,v is

the corresponding angular frequency, andudWeg8u is the magni-

tude of the dipole matrix element between the levelsuel and
ug8l. We have used the fact that the total decay rate 4g from
the level uel equals the Einstein coefficientA

=4udWeg8u
2v3/3"c3. Note that the Raman gain coefficient can

be calculated from

FIG. 2. Variation of the real partreg8 with probe detuningd. The
specific parameters chosen here are(a) G3=0, (b) G3=4.5g (solid
line), G3=6g (dashed line), andG3=8g (dot-dashed line). The other
parameters used here areD1=50g, D3=0, G1=G2=4g, gge=gg8e

=gg8e8=gge8=2g, Ggg8=0.01g (which accounts for the collisional
relaxation rate), Ge8g8=Ge8g=Geg8=Geg=2.01g, andGee8=4.01g.
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GR = − 4pk Imsxd = −
3Nl2

4p
G1

2 Im D, s5d

wherek=2p /l is the wave number of the interacting pulse
andN is the atomic number density.

We show the variation of the real and imaginary parts of

the Raman susceptibilityx in units of 2NudWeg8u
2/"G2 with the

detuningd of the probe field in Figs. 2 and 3. One clearly
sees the Raman gain atd=D1 for G3=0 [see Fig. 3(a)]. If
now one applies a control field that is resonant with the
corresponding transitionue8l↔ ug8l, then the gain peak splits
into a doublet. This is attributed to the fact that the resonant
control field dresses the levelsue8l andug8l into the superpo-
sitions u± l=sue8l± ug8ld /Î2 of the statesue8l , ug8l. The two
peaks refer to the Raman gain corresponding to the transi-
tions ue8l to u± l.

As can be seen from Fig. 3(b), if G3Þ0, then at the two-
photon resonanced=D1, the gain of the medium[; imagi-
nary part ofx, Eq. (3)] is reduced by a large extent. Also, the
nature of the dispersion of the medium[; real part ofx, Eq.
(3)] in the region of the frequencies of the probe field varies
from normal to anomalous if one switches the control field
on (see Fig. 2). The slope of the anomalous dispersion can be
manipulated using the Rabi frequencyG3 of the control field.

Note that we could also directly integrate the complete set
of density matrix equations and compute the real and imagi-
nary parts of the susceptibilities. In this calculation, we have
to choose the field strengths so that the perturbative results
are recovered. In addition, we also have to choose the detun-
ing D1 such that the two-step process is unimportant. Some
typical results are shown in Fig. 4 where we show a com-
parison of the perturbative and numerical results. A small
shift in the numerical results is to be noted. This arises due to
the finiteness of the field strengthsG1 andG2 relative to the
detuningD1.

Having discussed the control of the Raman gain and the
dispersion of the Raman susceptibility, we next examine the
propagation of a pulse on the Raman transitionuel↔ ug8l. We
assume that the central frequency of the pulse is given by

d=D1. The group velocity of the Raman pulse can be evalu-
ated in terms of the Raman susceptibility through the relation

vg =
c

ng
, ng = 1 + 2p Resxd + 2pv

]

] v
Resxd. s6d

Here the group indexng is to be calculated atd=D1.
Using the relations(3)–(6), we calculate the group index

ng and Raman gainGRl at the Raman resonanced=D1,
wherel is the length of the medium. We show their variation
with the Rabi frequencyG3 of the resonant control field in
Fig. 5 for propagation in a23Na condensate medium. Note
that a negative value of the group indexng refers to the
situation when the pulse advancements1−ngdl /c becomes
much larger than its transit timel /c in vacuum. The Raman
pulse is narrowed depending on the amount of Raman gain,
which decreases on increasing the control field. Further, the

FIG. 3. Variation of the imaginary part ofreg8 with probe detuningd. The specific parameters chosen here are(a) G3=0, (b) G3

=4.5g (Solid line), G3=6g (dashed line), andG3=8g (dot-dashed line). The other parameters are the same as in Fig. 2.

FIG. 4. Variation of real and imaginary parts ofreg8 calculated
using the complete set of density matrix equations(solid lines) and
using the perturbative solution[Eq. (4); dashed lines] for G3=8g.
The other parameters chosen here are the same as in Fig. 2.
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group index can become as large as −1527 for a small value
of G3,5.76g, which is larger than the one reported
s,−310d in Raman experiments in Cs vapor[11]. Note,
however, that the pulse advancement for a group index of the
order of −1000 for propagation over a distance of the order
of 100 mm will be ,0.3 ns. On the other hand, the gain of
the pulse inside the medium remains of the order of
1.03 (GRl =0.0311 atG3=5.76g for l =50 mm). We thus
have the possibility of large superluminality using appropri-
ate coherent control. Note further that the group index is
sensitive to the value ofgg8e8. For example, we obtain values
of ng for G3=6g of −1518 forgg8e8=gge8=2g and −1928 for
gg8e8=gge8=0.02g. We further calculated the group index
near two-photon resonance, where Resreg8d vanishes. For
G3=8g, this is equal to −1180 atd=49.4g, which is almost
equal to that at two-photon resonance,d=50g.

The group indexng can be further increased if one in-
creases the detuningD3 of the control field. The variation of
ng with control field Rabi frequencyG3 for different values
of D3 is shown in Fig. 6. Note that the group index can be
made much larger −13 836 forD3=5g, at smaller G3
,4.09g. We have seen that even forG3=5.76g the value of
ng can be enhanced to as much as −7821 forD3=5g. The
gain GRl, however, does not change significantly for larger
D3 for a moderate value ofG3. Only for largerG3 can the
gain in the medium become smaller.

It is possible to obtain a much simplified expression forng
for resonant control field strengths and detunings much
larger thanG and forGe8g!g:

] x

] d
< −

3Nl3

32p3SG1
2

d2 D 4

G3
2 . s7d

Its similarity to the result for the case of ultraslow light[4] is
interesting. The minus sign yields superluminal propagation.
The extra factorsG1

2/d2d is a reflection of the fact that the

pump field has to create Raman coherence. We mention the
main difference between the work of Wanget al.and ours. In
our model, the control field creates two dressed states and the
gain doublet arises as a consequence of Raman transitions to
these states. On the other hand, in the work of Wanget al.,
the gain doublet is created by two different pump fields with
closely separated frequencies, where there is no possibility of
coherence-induced effects. Thus the susceptibility in the case
of Refs. 10 and 11 can be written as a sum of two indepen-
dent Lorentzians.

In conclusion, we have presented a model showing the
possibility of superluminal propagation through coherent
manipulation of a Raman process. This can be achieved by
applying a control field so that the Raman gain peak splits
into a doublet and thereby produces anomalous dispersion in
the region between the two peaks. We further demonstrate
the possibility of large superluminality in a Bose condensate.
The achievable values are sensitive to the relaxation param-
eters and control field detuning.

APPENDIX: WORKING EQUATIONS FOR COHERENT
CONTROL OF THE RAMAN SYSTEM

For the sake of completeness and notational clarity, we
summarize the density matrix equations for the four-level
system of Fig. 1. The basic equations under the rotating wave
approximation are as follows:

ṙee=
i

2
fG1rge+ G2rg8e − c.c.g − sgge+ gg8edree,

ṙe8e8 =
i

2
fG3rg8e8 − c.c.g − sgg8e8 + gge8dre8e8,

ṙgg =
i

2
fG1

preg− c.c.g + ggeree+ gge8ree8,

ṙe8g8 = fiD3 − Ge8g8gre8g8 +
i

2
G3frg8g8 − re8e8g −

i

2
G2re8e,

FIG. 5. Variation of the group indexng (solid line, scale on the
left hand side) and total gainGRl (dashed line, scale on the right
hand side) with the control field Rabi frequencyG3 for D3=0. We
have assumed the parameters of a23Na condensate[l=589.6 nm
for the D1 transitionsuel↔ ugl , ug8ld]. Here the lengthl of the me-
dium is 50mm as in a Bose condensate, the number densityN=5
31012 cm−3, andG1=G2=4g. The other parameters areD1=50g,
gge=gg8e=gg8e8=gge8=2g, Ggg8=0.01g, Ge8g8=Ge8g=Geg8=Geg

=2.01g, andGee8=4.01g. Note that the Einstein A coefficient for the
D2 transitionsue8l↔ ugl , ug8ld for 23Na is 2p39.7953106 s−1.

FIG. 6. Variation of the group indexng with the control field
Rabi frequencyG3 for D3=2g (solid line) andD3=5g (dashed line).
The other parameters are the same as in Fig. 5.
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ṙeg8 = fid − Geg8greg8 +
i

2
G2frg8g8 − reeg +

i

2
G1rgg8

−
i

2
G3ree8,

ṙeg= fiD1 − Geggreg+
i

2
G1frgg − reeg +

i

2
G2rg8g,

ṙgg8 = fisd − D1d − Ggg8grgg8 +
i

2
G1

preg8 −
i

2
G2rge−

i

2
G3rge8,

ṙee8 = fisd − D3d − Gee8gree8 +
i

2
G1rge8 +

i

2
G2rg8e8 −

i

2
G3

preg8,

ṙe8g = fisD1 + D3 − dd − Ge8ggre8g +
i

2
G3rg8g −

i

2
G1re8e,

sA1d

whereree+rgg+re8e8+rg8g8=1. The actual values of the off-
diagonal elements are the ones given by Eq.(A1) with addi-
tional time-dependent phasesre8g8e

−iv3t, reg8e
−iv2t, rege

−iv1t,
rgg8e

isv1−v2dt, ree8e
isv3−v2dt, and re8ge

−isv1−v2+v3dt. Here, the
detunings of the pump, probe, and control fields areD1
=v1−veg, d=v2−veg8, andD3=v3−ve8g8, respectively, the
vi’s (i P1,2,3) being the respective angular frequencies.
The Rabi frequencies of these fields are defined asG1

=2dWeg.EW 1/", G2=2dWeg8 ·E
W

2/", and G3=2dWe8g8 ·E
W

3/", where
the Ei’s are the respective field amplitudes. The decay rate
Gab of the coherence between the levelsual and ubl is de-
fined asGab=oisgia+gibd+gcoll, wheregab is the spontane-
ous decay rate from the levelubl to ual andgcoll is the col-
lisional decay rate.
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