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We discuss a simple search problem which can be pursued with different methods, either on a classical or on
a quantum basis. The system is represented by a chain of trapped ions. The ion to be searched for is a member
of that chain, consisting, however, of an isotopic species different from the others. It is shown that classical
imaging may lead to the final result as fast as quantum imaging. However, for the discussed case the quantum
method gives more flexibility and higher precision when the number of ions considered in the chain increases.
In addition, interferences are observable even when the distances between the ions are smaller than half a
wavelength of the incident light.
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Quantum search algorithms[1] enable us to determine an
object from a black box withN elements by a number of
measurements which is of the order ofÎN. A quantum search
thus provides a polynomial speedup in comparison with any
known classical algorithm. Several methods have been pro-
posed for implementing a quantum search[2]. In this article
we discuss a very simple example where the search can be
performed in the same system on either a classical or a quan-
tum basis. Such a situation is useful for illustrating the par-
ticular aspects of a quantum search with respect to a classical
search.

We recall that fluorescence imaging, i.e., measurement of
the mean intensity of radiation scattered by atoms upon ex-
citation, provides information about the density profile. In
fact, this is a common method used to image, for example,
trapped ions or a Bose-Einstein condensate[3–5]. We could,
however, do more than just image the sources of fluores-
cence, e.g., by determining the spectrum of the scattered
light. In this case, in addition to the position the motional
state of the atoms is accessible. Instead of imaging the par-
ticles individually on a detector, one could also observe the
fluorescence in the far field or Fourier plane of a lens[6]. In
this case, the intensity distribution corresponds to the inter-
ference pattern described by the first-order correlation func-
tion of the fluorescence light. It results from the contribution
of all particles at once, and their relative positions can be
deduced from the profile of the interference pattern. The in-
tensity distribution thus contains more information than the
direct imaging of the ions[7]. A further step in sophistication
would be to observe the scattered light using two detectors
and to measure the second-order correlation function. This
corresponds to a nonclassical imaging technique where the
associated spatial distribution is determined by the different
paths the photons can take when reaching the two detectors.
The corresponding interference pattern again relies on the
contribution of all scatterers simultaneously but for certain
excitation angles is purely due to quantum interferences
[8,9]. In this type of experiment only the coincidence events
at the two detectors are recorded. As the paths of the photons

contributing to these coincidences change with the relative
position of the detectors and/or the scatterers, the observed
interference patterns again allow the positions of the indi-
vidual particles to be retraced. However, owing to the larger
variability of the parameters involved, a much richer inter-
ference structure is obtained. To illustrate this in more detail
we consider a particular example, viz., a linear chain of ions
of the same atomic species. In order to set up a search pro-
cedure we assume that one of the ions belongs to an isotopic
species different to the others. By calculating the spatial
photon-photon correlations we then show how the second-
order correlations can be used to reveal information on the
position of the off-resonant, nonradiating isotope in the
chain. We will also demonstrate why this information is
more extensive than that obtained from the usual fluores-
cence imaging techniques or first-order correlation function.
In particular, it will be shown that the second-order correla-
tion function is able to provide data in parameter regions
where the first-order correlation function is not able to pro-
vide any information.

Let us consider a chain of ions with an energy level
scheme as shown in Fig. 1(a). The transitionugl→ uel is used
for exciting the system, whereas the transitionuel→ ufl
serves for fluorescence detection. The excitation could be
performed, by, for example, a short pulse of radiation. The

FIG. 1. (a) Level scheme considered for the trapped ions: the
ions are excited on theugl→ uel transition, whereas theuel→ ufl
transition is used for fluorescence detection;(b) an incidentp pulse

of a wave with wave vectorkWL excites the linearly trapped ions into
their upper leveluel. The fluorescence is then registered in the far
field by two detectors atrWi , i =1,2 surW1u= urW2u=rd.
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most basic search protocol would consist in resonantly excit-
ing each ion one by one on theugl→ uel transition using a
focused laser beam and observing the fluorescence scattered
by the ion on theuel→ ufl transition. With the isotope being
off resonant and remaining dark upon excitation, it will take
at mostN−1 steps to localize the isotope, i.e., in the mean
N/2 trials. One could next observe the fluorescence intensity
in the far field or in the Fourier plane of a lens, i.e., without
imaging the ions. The corresponding interference pattern—
produced by the simultaneous superposition of the electro-
magnetic fields of all scatterers—can be used to extract in-
formation about the position of the isotope. To be explicit, let
us calculate the far-field intensity produced by a chain of
ions at some distancer. The positive frequency part of the
field amplitude can be written as(see[10])

EW s+dsrW1,td = EW 0
s+dsrW1,td −

k2eikr

r
o

j

e−iknW1·RW jnW1 3 snW1 3 dW fedAfe
s jd,

s1d

wherenW1 stands for a unit vector in the direction of the de-

tector position, rW1=nW1r, and k=v0/c. v0, dW fe, and Afe
s jd

= ufl j jkeu are, respectively, the transition frequency, dipole
matrix element, and dipole operator of ionj for the transition

uel→ ufl and the sum is over all ion positionsRW j in the chain.
The far-field intensity is thus determined by the first-order
correlation function Gs1dsrW1d=kA†srW1dAsrW1dl, where AsrW1d
=o jAfe

s jde−iknW1·RW j. In the case of uncorrelated ionsskAef
s jdAfe

sidl
=kAef

s jdlkAfe
sidld , Gs1dsrW1d can be simplified to[10]

Gs1dsrW1d = o
j

kAee
s jdl + o

jÞi

kAef
s jdlkAfe

sidleiknW1·sRW i−RW jd, s2d

wherekAee
s jdl is the population of thej th ion in stateuel. Ac-

cording to Eq.(2), the information on the spatial structure of
the ion chain is contained inGs1dsrW1d as long askAef

s jdlÞ0. If,
however, ap pulse is used for the excitation,kAef

s jdl vanishes
and no information can be extracted fromGs1dsrW1d. In this
case, as will be shown below, an interference pattern is ob-
servable if not the first-but the second-order correlation func-
tion is examined, with a contrast which can be maximal
[8,9]. The information about the localization of a nonradiat-
ing particle is also contained in(2), as Gs1dsrW1d will look
different for different positions of the isotope. This will be
discussed in detail below. Note, however, that—apart from
an offset—a result similar to(2) is obtained also in the case
of classical dipoles or classical antennas, i.e., in the case of
classical light sources[7].

As mentioned in the Introduction, we could, however, do
more than just measure the far-field intensity, e.g., by exam-
ining the quantum features of the emitted radiation. For that
purpose let us study the spatial photon-photon correlations
produced by the chain of ions by using two photodetectors
[see Fig. 1(b)]. The photon-photon correlations are deter-
mined by the expression(see[10])

kEW s−dsrW1,tdEW s−dsrW2,tdEW s+dsrW2,tdEW s+dsrW1,tdl, s3d

whererW2=nW2r defines the position of the second detector and

EW s−dsrWi ,td denotes the complex conjugate ofEW s+dsrWi ,td , i =1,
2. As can be seen from Eqs.(1) and (3), the spatial photon-
photon correlations are determined in terms of the atomic/
ionic operators through

Gs2dsrW1,rW2d = kA†srW1dA†srW2dAsrW2dAsrW1dl. s4d

In order to demonstrate how the information on the spatial
structure of the chain is contained in the quantityGs2d

3srW1,rW2d, let us first examine the case of two ions. If the ions
are initially prepared in the stateuel, we find (see[9])

Gs2dsrW1,rW2d = Bh1 + cosfksnW2 − nW1dsRW A − RW Bdgj, s5d

where B is a constant. Obviously, the information on the
location of the two ions is contained in the nonclassical in-
terference patternGs2dsrW1,rW2d via the atomic position vari-

ablesRW A andRW B [9]. Let us consider next a chain ofN ions of
which one is an off-resonant, nonradiating isotope. The ex-
plicit calculation in case ofp excitation leads to the follow-
ing result:

Gp,N
s2d srW1,rW2d = o

j−1

o
N

ugi jsrW1,rW2du2,

i = 1, j = 1,

i Þ p, j Þ p, s6d

wherep=1,… ,N stands for the position of the isotope and

glmsrW1,rW2d=alsrW1dbmsrW2d+amsrW1dblsrW2d with alsrW1d=eiknW1·RW l

andbmsrW2d=eiknW2·RW msl ,m=1,… ,Nd. The solution(6) can eas-
ily be interpreted as the sum of terms associated with all
possible optical path differences between the photons when
scattered by two different ions and recorded by the two de-
tectors, on the assumption that the isotope atp does not
scatter at all. Equation(6) becomes even more transparent
for equally spaced ions. In the case of four ions, for example,
the system after initial excitation by ap pulse will be in one
of the pure statesufeeel , uefeel , ueefel, or ueeefl. In this
case we get ug12srW1,rW2du2;ug23srW1,rW2du2;ug34srW1,rW2du2=2
+2c1srW1,rW2d and ug13srW1,rW2du2;ug24srW1,rW2du2=2+2c2srW1,rW2d,
wherecmsrW1,rW2d=cosfksnW1−nW2dsRW 1−RW m+1dg, so that

Gp,4
s2d srW1,rW2d = 2sdp,1 + dp,4df3 + 2c1srW1,rW2d + c2srW1,rW2dg + 2sdp,2

+ dp,3df3 + c1srW1,rW2d + c2srW1,rW2d + c3srW1,rW2dg, s7d

wheredp,q is the Kronecker symbol. According to Eq.(7),
the information about the isotope position can be extracted
from Gp,4

s2d srW1,rW2d due to the unique distribution of prefactors
(or Fourier coefficients) cj for the different isotope localiza-
tions. From Eq.(7) it is seen, however, that the outcome for
the isotope positionsp=1 (2) is identical to the outcome for
p=4 (3). This means that for equally spaced ions an addi-
tional measurement would be required to determine whether
the isotope is on the left or right hand side with respect to the
middle of the chain. A similar argument holds for the general
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outcome(6): for arbitrarily spaced ions there is a unique
interference pattern for each isotope positionp since thegi j
will in general be different for differenti , j , so that there is a
unique combination ofgi j for each isotope positionp. By
measuring the spatial dependence of the photon-photon cor-
relation function one could thus clearly distinguish the iso-
tope positionp from any other positionp8. Note that the
additional degree of freedom given byrW2 due to the use of
two detectors increases the parameter space available. This is
exceedingly useful when the information from the first-order
correlation functionGp,N

s1d srW1d is difficult to extract. This is the
case for, e.g., a large number of ions and/or a small ion
spacing. There is in addition the particular situation where
Gp,N

s1d srW1d contains no information at all, as is the case, for
example, for ap-pulse excitation. In Fig. 2, we show the
behavior in case of four equally spaced ions forGp,4

s2d srW1,rW2d
for p=1 (or 4) and p=2 (or 3) as a function offisrWid
=arctansr i,y/ r i,xd , i =1,2. For the same excitation angle as
used in this figure(i.e., p-pulse excitation) Gp,4

s1d srW1d would
correspond to a constant, independently off1srW1d and inde-
pendent of the isotope positionp. For asp /2d-pulse excita-
tion on the ufl→ uel transition Gp,4

s1d srW1d would, however—
apart from a prefactor—show an interference pattern similar
to Gp,4

s2d srW1,rW2d for p-pulse excitation andf2srW2d=0 (see hori-
zontal lines in Fig. 2). More precisely, we obtain

Gp,4
s1d srW1d = 1

2sdp,1 + dp,4df3 + 2c1srW1d + c2srW1dg + 1
2sdp,2 + dp,3d

3f3 + c1srW1d + c2srW1d + c3srW1dg, s8d

where cmsrW1d=cosfknW1·sRW 1−RW m+1dg and p=1,2,3,4. The re-
sult (up to a prefactor) is shown in Fig. 3(a). Yet, it is here
that the additional degree of freedom ofGp,4

s2d srW1,rW2d with re-
spect toGp,4

s1d srW1d becomes important: the additional param-
eter rW2 increases the available parameter space and in this
manner allows a more flexible and precise search of the iso-
tope. To show that, we plot in Fig. 3(b) Gp,4

s2d srW1,rW2d for p
=1 (or 4) and p=2 (or 3), and with rW1 and rW2 such that
zuf1srW1du− uf2srW2duz=1/p. The latter condition stands for a
fixed distance between the two detectors and corresponds in
Fig. 2 to a straight line in the(f1srW1d , f2srW2d) plane (see
tilted lines in Fig. 2). As is seen from Fig. 3(b), the con-
straints for the angular resolving power are much more re-

laxed in comparison with that needed forGp,4
s1d srW1d [Fig. 3(a)].

The spatial second-order correlation function also allows
the isotope position to be determined in cases where the ions
are separated by onlyl /2 so that they cannot be individually
resolved. This can be demonstrated by analyzingG1,4

s2d

3srW1,rW2d for equally spaced ions with ion separationd
=l /2 (Fig. 4). If the detector positions are chosen such that
f1srW1d=f2srW2d—corresponding in the(f1srW1d ,f2srW2d) plane
to a straight line with slope 1—we resolve forG1,4

s2dsrW1,rW2d a
central maximum plus two side maxima in the central region
−p /4øf1srW1døp /4, whereas forG1,4

s1dsrW1d only the central
maximum is obtained[Fig. 4(a)]. However, it is from the
position and amplitude of the side maxima that the informa-
tion about the isotope positionp is derived, whereas the cen-
tral maximum in this regard contains no information at all.

Let us finally consider nine equally spaced ions in the
trap, one of which is an isotope. There are five different
positions for the isotope which can be distinguished from

FIG. 2. (Color) Three-
dimensional plot of the second-
order correlation function
Gp,4

s2d srW1,rW2d versus the two detec-
tor positionsfisrWid , i =1,2, for N
=4 ions, with the off-resonant,
nonradiating isotope placed in(a)
the first (or fourth) position and
(b) the second(or third) position
of the chain. The distance between
neighboring ions isd=5.75l, the
wavelength of the incident light is
l=194 nm, and ap pulse is used
for the excitation.

FIG. 3. (Color) Interference patterns forN=4 ions. Blue and
green curves correspond to the first(or fourth) and second(or third)
ion being the isotope, respectively. Parameters are the same as in
Fig. 2. (a) Classical interference patternGp,4

s1d srW1d [or second-order
correlation functionGp,4

s2d srW1,rW2d where the second detector is at
f2srW2d=0; see horizontal lines in Figs. 2(a) and 2(b)]. (b) Nonclas-
sical interference patternGp,4

s2d srW1,rW2d; the two detectors are slightly
separated withzuf1u− uf2uz=1/p [see tilted lines in Figs. 2(a) and
2(b)].
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Gp,9
s2d srW1,rW2d (see above). These five different possibilities are

plotted in Fig. 5(a) on the assumption thatzuf1srW1du
− uf2srW2duz=1/p and ap pulse is used for excitation. It can
be clearly seen from the figure that the requirement for the
angular resolving power is far less demanding in comparison
with Fig. 5(b), where Gp,9

s1d srW1d (apart from a prefactor) is
plotted for asp /2d-pulse excitation on theufl→ uel transi-
tion. For a relative position of the two detectors such that
zusinf1srW1du− usinf2srW2duz=0.378, one even obtains forGp,9

s2d

3srW1,rW2d constant values, with amplitudes which depend on
the isotope positionp, but are independent off1srW1d. These
values are depicted in Fig. 5(a) by dashed lines. However,
due to the nonlinear dependence of the two detector posi-
tions, this situation might be more difficult to implement
experimentally. Nevertheless, such a special angular inde-
pendent case could play an important role when one was
interested in normalizing the correlation function, e.g., for
the purpose of a better comparison between the different iso-
tope positions.

In conclusion, it has been shown in a simple search prob-
lem using a chain of trapped ions that the search process can
be strongly improved when interferences are observed rather
than employing a one-by-one search. The speedup of the

search process results from the fact that the interference pat-
terns are produced by the light of all emitting ions of the
chain at once so that there is a simultaneous contribution of
all scatterers to the signal. This superposition of the signal is
apparently sufficient for the speedup and no entanglement
between the ions nor other quantum phenomena are required
[7]. However, quantum interferences allow one to increase
the parameter space available and in particular improve the
precision when a larger number of ions is involved, since
they relax the demands for the spatial resolving power of the
detectors. Moreover, in the case of quantum interferences an
interference pattern is obtained even at ion distances smaller
thanl /2 which is the ultimate limit for a classical interfer-
ence experiment.
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FIG. 4. (Color) Interference patterns forN=4 ions with ion
distancel /2. (a) Red curve, nonclassical interference patternG1,4

s2d

3srW1,rW2d with f1srW1d=f2srW2d [see red line in(b)]; black curve, clas-
sical interference patternG1,4

s1dsrW1d [G1,4
s2dsrW1,rW2d with f2srW2d=0; see

black line in (b)].
FIG. 5. (Color) Interference patterns forN=9 ions. Black, yel-

low, green, blue, and red curves correspond to first(or ninth), sec-
ond (or eighth), third (or seventh), fourth (or sixth) and fifth ion
being the isotope, respectively. Parameters are the same as in Fig. 2.
(a) Nonclassical interference patternGp,9

s2d srW1,rW2d; the two detectors
have a constant separationzuf1u− uf2uz=1/p. Dashed lines corre-
spond to detectors’ positions being chosen in such a way that
zsinuf1u−sinuf2uz=0.378.(b) Classical interference patternGp,9

s1d srW1d.
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