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Quantum logic gates using Stark-shifted Raman transitions in a cavity

Asoka Biswas and G. S. Agarwal
Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
(Received 18 January 2004; published 4 June 2004

We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and the
controlledNoT gate using a detuned optical cavity interacting with a three-level Raman system. We discuss the
role of Stark shifts, which are as important as the terms leading to the two-photon transition. The operation of
the proposed logic gates involves metastable states of the atom and hence is not affected by spontaneous
emission. These ideas can be extended to produce multiparticle entanglement.
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I. INTRODUCTION Il. MODEL

The performance of a quantum computer relies on certain ) ) ) )
universal one-qubit and two-qubit logic gates. Any quantum_ Let us consider a three-level atomic configuraiibiy. 1).
computation1] can be reduced to a sequence of these gatekhe atom passes through a bimodal cavity. The modes with
[2,3). There have been a number of experimental systemannihilation operatora andb interact with thele) —|g) and
proposed as candidates for implementing these logic gatel§) < |f) transitions, respectively. The Hamiltonian under the
and many of these have been implemented. We may mentioiptating-wave approximation can be written as
trapped ions[4], cavity quantum electrodynamicgb—7],
nuclear magnetic resonanf®,9], quantum dot$9,10], and
neutral atoms in an optical latti¢é1] as examples. Some of H= h[weg|e><e| + wfg|f><f| + w,a'a+ wyb’b
the basic two-qubit logic gates are the conditional quantum
phase gateg(QPG [12], the controlledNoT (CNOT) gate, +{gileXgla+ goleflb+H.cl, (1)
which is a universal two-qubit ga{8,9], the swap gate, etc.
It should be mentioned that#a shift of QpG and appropriate . : . _
rotation of the second qubit realize theioT gate. where wiy(l € e,f) is the atomic transition frequencyy(i

The QPG operation can be performed using a three-level© 162) Is the freguency c;f the cavity modesandb, andtg)]i
atom interacting with a detuned cavity. The two-photon traniS the atom-cavity coupling constant. Wg assugndo be
al. The interaction Hamiltonian in the interaction picture

sitions are especially attractive in this case as then one cdff X
work with long-lived ground states of the atom. In such a®@n e written as

situation, the excited state does not participate in the transi-

tion and thus it is possible to minimize the effect of decoher- At At

ence associated with the finite lifetime of the excited state H =%[g,/e)(glae ' + g,le)(flbe 2 + H.c ], )
[13,14. However, the two-photon transitions have complica-

tions associated with Stark shifts of the energy levels. The

Stark shifts are quite natural to any two-photon process a@here Aj=wegs—wi(i € 1,2) is the one-photon detuning of
one considers single-photon transitions which are detunethe cavity modes.

from the intermediate levels. If one ignores Stark shifts, as is If the initial number of photons in tha andb modes are

very often done, then the nature of the two-photon procesB andu, respectively, then the state vector of the atom-cavity
becomes similar to the one-photon process and many of thgystem can be expanded in terms of the possible basis states
results such as Rabi oscillations carry over to two-photorin the following way:

processes. In this paper, we consider a situation where a

three-level atom in thé\ configuration interacts with a bi-

modal cavity where the modes are highly detuned from the Ay
corresponding one-photon transition. We demonstrate the
possibility of performing a number of logic operatiofesg.,

QPG CNOT, and SwAP) using the two-photon Raman transi-
tion. We show this in spite of the nonzero Stark shifts in the
Raman transitions.

The structure of the paper is as follows. In Sec. Il, we |G, 1. Three-level atomic configuration with levégs, |f), and
present the model system and its theoretical description. If) interacting with two orthogonal modes of the cavity, described
Sec. lll, we show how different two-qubit logic gate opera- by annihilation operators and b. Here g; and g, represent the
tions can be performed using this model. In Sec. IV, weatom-cavity coupling of the andb modes with the corresponding
discuss the role of Stark shifts in quantum logic gate operatransitions, andAy's (ie1,2 are the respective one-photon
tions. detunings.
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D) = calgln, ) + cle)in—1,w) + cgff)in—1,u+1), i at) i [t
! 2 3 @ ds(t) =€ | co > —E(Al—Az)sm > d;(0)
L . . 2ig> (Ot
wherec;’s (i € 1,2,3 are the probability amplitudes for the +——sin| — |d,(0) r, (7b)
corresponding states. The amplitude equations can be ob- 4,02 2
tained from the Schrodinger equation as where
= 202\ 2 1/2
d; =-ig4vnd,, Q:{(%) +(A1—Az)z} ’
1
e ®
dy=—i[gyVnd; + grVu + 1d3] —iA4dy, (4) 2¢°
v= A__(Al_AZ) )
1
d3=—igoVp + 1dy —i(A; — Ap)ds, and we have considered=1 and #=0. Under the two-
photon resonance conditiaky=A,=A, the solution reduces
where the following transformations have been used: to
—iAqt (A=At 1 .
Gty e oy T~ s di(0) = S[ch(0) + ()~ D +ch(0), (99
We now work under the limit of large one-detunings. We
assume thag;=g,=g, A;>g, and(A;-A,) <g. In this limit,
we putd,~0 and the amplitude equatio) reduce to ds(t) = %[dl(o) +d3(0)](€7- 1) + dg(0), (9b)
- _ighh - I where 6=2g?t/A.
= / +Vu+ 1
o Ay [ndh + 1 +1dg), 53 We note that, if we exclude Stark-shift terms from the
Hamiltonian(6), and work under two-photon resonar(ce.,
L — A;=A,=A), then the effective Hamiltonian reduces to
Lo ig?Vu+1 ~
d3=_|(A1_A2)d3+A—[\”nd1+ \“’M+ 1d3] hQZ
1 Hie=— T(S‘aTb +S*ab"), (10)
(5b)

_ where S*=|f)(g| and S™=|g)(f| are the atomic two-photon
We note that Eqs(5a) and (Sb) can be obtained from an creation and annihilation operators, respectively. The solu-

effective Hamiltonian given by tion of the Schrédinger equations using this Hamiltonian is
A 2 gzt L. 92t
Herr = - Ai[|g)<g|a*a+ |£)(f|b'b] di(t) = CO{K)dl(O) +1 Sln(x d;(0), (113
1

2

2.
da(t) = cos( g t>d3(0) +i sin(%)dl(O), (11b)

ﬁ 2
- —fl [o)fla'b+ ) alab] + (A; - A|FXF]. gt
A

(6)

which represents a Rabi oscillation of the vedtdy,ds).
Here the first two terms represent the Stark shifts and the

next two terms give the intgraction leading to a transition lIl. QUANTUM LOGIC GATE OPERATIONS
from the initial state to the final state. The last term repre-
sents a shifting of the levéf) due to the two-photon detun- In this section, we will show how different kinds of two-

ing. From the Hamiltoniar{6), one can easily see that the qubit logic gates can be performed using the present model.
Stark-shift terms are of thesame order of magnitudé
=hg?/A,) as the coupling term, and thus are as important as A. QPG operation

the coupling term and should be kept in further discussion. Let us first consider the solutions of Eq&a) and (5b)

So one cannot ignore these Stark-shift terms from the Hamil- : e :
tonian. The solution of Eqg5a) and (5b) is under the total effective Hamiltonia) (with A;+# A»),

given by Egs.(7a and (7b). From these solutions one can

Ot . Ot easily see that, if
— Aint/2 - I_ _ inl —
di(t)=¢€ Hcos( 5 ) + Q(A1 A2)3|n< 5 )}dl(O) A-A, _ 2 .
2ig? (Ot g (A9’
+—sin(—>d3(0) , (74 . L )
AQ) 2 then, for an interaction time=T defined by
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(A N (Jg) and |k)) and the two-mode photonic basi§gg)
= \'_E E = (A, - A)/g’ (13 =|0,,1,) and|er) =|15,0,)),
dy(t) becomes -1 for the initial conditiod;(0)=1. At this [Kgr> — [K)gr),
particular interaction time, one can perform the following

QPG operation:
ker) — [K)|er),
102)[05,9) — [02)[05,9), (15
19lgr’ — |9)|gR),

102){05,f) — [02)[05, ),

(19 l9)ler) — — |9)ler),
102)|15,9) — (021, 9),

at the time defined by E¢13). We should mention here that
0|26, F) — = 0|25, ), there are several other schemes, which use noninteracting

levels to perform logic gates in a two-atom basis. Our model
which clearly involves thetomic ground-stat®asis and the s quite different from other schemgs5-17. Note that we
Fock statebasis inb mode. It should be mentioned here that yse a single atom interacting with a two-mode cavity, unlike
we have verified the above analytical results by solving Eqsthe cases cited above, which use two atoms interacting with
(4) numerically for the amplitudes; also. The numerical a single-mode cavity.
results reveal that the adiabatic approximation used in the
present problem holds well.

Note that in the aboveprG operation we have considered ) ,
A;#A,. But if we work under the two-photon resonance A CNOT gate can be implemented froma@G operation
condition (A, =A,=A), then the solutions of Eqg5a) and through a rotatlon of the second qubit before and aft_er the
(5b) are given by Eqs(9a) and (9b). From these solutions, QPGoperation. We choose t_he atom as the second qubit m_the
one can easily notice that the time-dependent amplitude d"€Sent problem. By applying the Hadamard transformation
the initial state|0,|f,1,) is now (e2ing/A+1)/2 [see Eq. on the atomic state, before and after tyrs operation(14),

(9b)], which never reache-1). Rather for a certain choice we obtain the followingeNoT operation:
of 2¢?T/ A (=1/2), this becomes'™4/12. This clearly shows X

that the system no longer remains in that stateis obvious ¢

from the factor 1,(5). A transition takes place to another 102)/06,9)—(04)(05, 9).
basis statd1,)|g,0p). In this way, working with the total

effective Hamiltonian under two-photon resonance, one can- .

not perform a phase gate operation. Thus in the present ¢

model, theQpG operation can be performed successfolhyy 102105, ) 0|05, ),

B. cNOT operation

by avoiding the two-photon resonance condition R (16)
We emphasize that thePG operation discussed above in- c
volves the cavity modd as well as the ground metastable 10215, 9)— (02|11, ),

stateq(|g) and|f)) of the atom, the transition between which
is dipole-forbidden. This is unlike the case[ifi, where the .
authors used two Rydberg statstates with very large quan- ¢
tum numbers which are dipole-coupled. Thus, tlgeG op- 10a)] L6, )—0a)] 16,9,
eration discussed in the present paper is not affected by an

WhereC represents thenot ration here. Here the Had-
kind of decoherence due to spontaneous emission of th ereC represents thenot operation here. Here the tHad

. Lo N &mard transformation on the atomic qubit stdgdsand f)
atomic levels, though it is limited by the cavity lifetime as qll_ an be implemented by applying two ?esonan??w ﬁeI(|1Is with
operat|otr_1$ SUCQ gstth?. storfag:ﬁ of r:hf photor;)gt after t'n'g qual Rabi frequencies in the respective transitions of the
preparation and detection ot the photonic qubit aré 10 D&y, \ye identify the field qubit as the controlling qubit and
done W'thk"n the cawij lifetime. Tohreallze thyDGor?eratlog the atomic qubit as the controlled qubit. We note that re-
against_the cavity decay, one has to meet the conditio ntlv DeMar | demonstr NOT ration in
wA1k/2g?< 1, which directly follows from the condition Ce tly DeMarcoet al. demonstrated anot gate operatio

T< " and Eq(13), wherex is the cavity decay constant, A alEs;]lngIe trapped ion interacting with a single Raman pulse
possible parameter zone to satisfy the above condition ig '
A;=10g and k=0.01g. This, though challenging for an opti-
cal cavity, can be expected to be reached very soon.

Note that if we consider a third atomic metastable dtite In order to arrive atSWAP gate, we rewrite the Hamil-
which is an auxiliary state, it is possible to perform the fol- tonian(6) as an interaction between the two “qubits” in the
lowing QPG operation involving thetomic metastable states following way:

C. swAP gate operation
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ﬁeﬁ:—z—glz{S+R‘+S_R+—ZSZRZ+%]
+7L(A1—A2)<SZ+%), (17)
where
s'=lg, s =l S= 5001 -loxal,

(18
1
Rt=a'b,R =abl!, R= E(a'ra -b'b).

Here we identify a single photon in a two-mode cavity as A erep=
effective qubit with the two possible stateg) and|gg). The

field operatolR acts like a spin-1/2 operator in this basis. We
now assume that the two-photon resonance condition is sat-
isfied (A;=A,=A) so that the effective Hamiltonian reads

~ 2192
Heff ==

= T[SXRX+ SyRy—SZRZ+;ll], (19

where $'=(S*+S7)/2 and$'=(S*-S")/2i. This signifies a
spin-exchange interaction between two spin-1/2 particles.
This kind of interaction is always responsible for swap op-

eration. Defining the unitary operation as

U = expl— iHent/) = exi] i 0(SR + IR - SR+ )],
(20)
where #=2g?/A, a swap gate can be performed foé
=mUsw=U(0=m)],

Usw
g — |9)|gR),

Usw
l9)ler) — —[F)lgr),
(21)

Usw
Flgr — —lo)ler),

Usw
[F)ler) — [)ler)-

D. Role of phases of the coupling constants
in a swap gate

In all the above calculations, we have assumed that the
field coupling constantg; and g, are equal andn phase
However if they are not so, the general expression for the
Hamiltonian[Eq. (6)] under two-photon resonance would be

H' =~ ~lo:*lg)(gla’a+ g2l X flbb + g,g5l0)(Fla'b

+0:0,/f }glab']. (22

Now if we impose the conditions

PHYSICAL REVIEW A69, 062306(2004)

01/=192/=09, 9=-01, (23
then the above Hamiltonian can be written as

_ 2hg?
A

2hg? - -
H’ [SXRX+S\’RV+SZRZ—%]:TQ[S-R—:1;]

(24)

instead of EQq(19). Then the corresponding unitary operation
U’ becomes

U’ = e—iH't/fl = ex{—i@(é. ﬁ— %)] = [1 +(e—i0_ 1)|’:\)]ei0.
(25

%+S-R is the projection operator with the eigenval-
ues 0 and 1. Thewap gate of Sec. Ill C can also be imple-
mented using the above unitary operator fersr. It is also
very interesting to note that not only for a particular phase
relation betweerg; andg,, but for any arbitrary phase be-
tween them, thewap gate works in the following way:

l9lgr) — 19)[9R),

9ler) — — €7/f)|gR),
. (26)
1F)lgr) — — €7?g)]er),

f)ler) — [F)ler),

where ¢ is defined through the relatice?*=g,g5/|9:||9.|-

We should emphasize that all these universal logic gates
are the key resource in quantum computation. Our method
and system can also be used to prepare two-particle and
three-particle entangled states involving metastable states of
the atoms. This can be done by sequentially addressing the
atoms by the two-mode cavity under the two-photon reso-
nance conditior{cf. [19,2Q).

IV. ROLE OF STARK SHIFTS IN QUANTUM
LOGIC OPERATIONS

Next we investigate the role of the Stark-shift term in
performing the logic gates. Let us consider the Hamiltonian
(10) under the two-photon resonance condition whet
cludes the Stark-shift ternrrom the corresponding solutions
of Eq. (113 and(11b) for the probability amplitudes, one can
obtain the following QPG operation with a 2 pulse
(20°T/ A =27):

|Oa>|0bag> - |0a>|obag>,
|0a>|obvf> - |0a>|ob1f>1
|Oa>|1bag> - |0a>|1bag>,

|Oa>|lb1f> - = |Oa>|lb1f>
But as soon as we keep the Stark-shift term in the Hamil-

tonian [see Eq.(6)] and continue to work under the two-
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photon resonance condition, we cannot achieve phase gaperform aQrPG operation in photonic Hilbert spadg0,0)
operation. It should be borne in mind that one cannot ignore-, |0,0),|0,1)—|0,1),|1,00—|1,0),|1,)——|1,1)).
the Stark-shift terms as they are as important as the coupling
term in the Hamiltonian. Our Sec. Il A shows how to per-
form the QPG in spite of the Stark-shift term. We used the V. CONCLUSIONS
extra freedom provided by two-photon detunings in our ) ) )
model. We should mention here that many authors have uti- In conclusion, we have presented a system in which a
lized an additional field to cancel the unwanted Stark shift§hree-level atom in thé configuration interacts with a high-
[21-23. We also note that in the context of other models,Q bimodal optical cavity, with the cavity modes being highly
Stark shifts have been used for two-qubit log@4], the detuned from the corresponding single-photon transitions.
Deutsch-Jozsa algorithf25], and quantum holograptg6]. ~ We have shown how a variety of logic operations can be
Note that, recently, Solanet al. reported appG operation  performed using the ground states of the atoms. The associ-
based on the interaction of a three-level atom in a laddeated decoherence due to spontaneous emission is thus negli-
configuration and two modes of a cavitgach mode can gible, though the quality of the cavity would lead to some
have either zero or one photohe cavity modes are highly decoherence. We further emphasize that Stark shifts are sys-
detuned from a single-photon transitiGgee Fig. 2 of27]),  tematically included in our case. Further, the present system
but are two-photon-resonant. They showed that by excludingan be used to prepare bipartite and tripartite entangled states
the self-energy terms in the effective Hamiltonian, one carinvolving the metastable states of the atoms.
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