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Abstract. In view of current research effort on semiconducting photonic-
crystal defect microcavities, we consider the dynamics of an array of coupled
optical cavities, each containing an ensemble of qubits. By concentrating on the
strong coupling regime, we analytically prove that the nonlinearity inherent in
the dynamics of each ensemble coupled to the respective cavity field allows the
formation of solitons. We further show how the use of the Holstein–Primakoff
transformation and the large-detuning limit with the cavity allows one to recover
the Bose–Hubbard model.
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The fields of nano- and micro-photonics have extensively taken advantage of the properties
of versatility exhibited by photonic-crystal nano- or micro-cavities to design and fabricate
compact semiconductor lasers and coupled-cavity waveguides. Recently, interest in the physics
of photonic-crystal cavities has been extended to their coupling with light emitters for the
construction of on-chip photonic sources and guides at the nano-scale. On the other hand,
fundamental research has recently been conducted towards the use of coupled-cavity systems
as potential candidates for the observation of quantum cooperative phenomena in strongly
correlated many-body systems [1]. Superfluid-to-Mott-insulator quantum phase transitions and
glassy phases have been theoretically predicted in arrays of mutually coupled resonators
interacting with quantum particles. At the basis of these interesting effects is the nonlinear
character of the so-called polariton, a combined state of a photon and a two-level quantum
system. For easiness of language, we refer to such two-level systems as qubits until we
address the physical setup we suggest. The flexibility of these systems, which makes them
exploitable quantum simulators, can be used to realize effective multiple-spin dynamics useful
for quantum information processing [2]. Intriguing possibilities are offered by arrays of
cavities interacting with qubits: photonic Mott insulators can be achieved from qubit-mediated
nonlinear photon–photon interactions [3], whereas the combination of intracavity qubit–photon
interactions and intercavity tunnelling is powerful for nonlinear-optical operations. The general
scheme of mutually coupled systems with embedded nonlinearities arising from interactions
described at the quantum level will certainly be useful to describe quantum transport across
nanostructures. In this respect, the consideration of these systems would set the ground, at a
fundamental level, for future applicability in nanotechnology.

Here we explore nonlinearity originated from a cooperative effect in an ensemble of
qubits, which can be embodied by nanoparticles such as quantum dots, and report for the
first time the formation of solitary waves (or solitons) [4]–[6] in a periodic array of coupled-
cavity–nanoparticle systems [7]. Solitons, i.e. localized nonlinear waves characterized by
striking stability against dynamical perturbations, are considered as one of the most remarkable
effects in nonlinear optics [8]. The generation of solitons in classical systems of nonlinear
coupled resonators was proposed in [6], extending the idea of linear waveguides realized
through coupled cavities given in [9]. The situation we consider is different from a classical
array of media with the Kerr nonlinearity [9] as we do not expand the qubit-medium polarization
as a power series of the field or assume fast response of the qubit system relative to the
field. Differently, we treat the dynamics of both cavity field and qubit ensembles on equal
footing. Our source of nonlinearity is intrinsic to each ensemble of qubits. The identification
of solitonic behaviour in a system of current theoretical and experimental interest is an
important step forward in the grounding of coupled-cavity systems as exploitable quantum
simulators. Our results are derived using a simple technique permitting the consideration of
any desired/appropriate order of nonlinearity; nevertheless, catching the most salient features
of the full dynamics at hand. The extension to bidimensional configurations and the treatment of
the fully discrete case are possible. Semiconducting photonic-crystal microcavities (doped with
multiple impurities) are a foreseeable setup for our proposal [10]. By using a few qubits per
cavity, we address an interesting working point between the Bose–Hubbard model (found when
each cavity is off-resonantly interacting with many qubits) and the fully microscopic polaritonic
dynamics [1].

The remainder of this paper is organized as follows. In section 1, we introduce the physical
model we consider and discuss in detail the steps needed in order to arrive at a cubic nonlinear
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Figure 1. (a) Schematics of the setup and exemplary discrete solitonic solution
of the dynamics associated with the cavity fields. (b) Each resonator represents
a defect microcavity in a photonic crystal.

Schrödinger equation. Section 2 is devoted to the discussion of a few important points related
to the generality of our results and their possible extensions. In section 3, we briefly address the
experimental setting where our proposal can be implemented, while section 4 summarizes our
findings and points out possible directions for future investigations.

1. Model and results

The salient features of the mechanism under consideration are elucidated by addressing the case
of a linear array of coupled microcavities. For simplicity, we describe the cavities as M equally
spaced and independent resonators. Each cavity contains N identical qubits whose ground
(excited) state we denote as |g〉(|e〉). The cavities are sufficiently close to each other to allow for
their mutual coupling through evanescent-photon hopping (see figure 1). The cavity coupling
drops exponentially with the distance so that we take only nearest-neighbour interactions. Each
qubit interacts with the respective cavity via the electric–dipole coupling. The volume of each
cavity can be made very small (we call λc the wavelength of the field) so that the coupling within
each cavity can be large [11]. Moreover, as discussed later, we consider fixed positions of the
qubits within a cavity, as in the case of quantum dots grown in semiconducting matrices. The
free energy of the system is Ĥ 0 =

∑M
j=1(ωcâ

†
j â j + ωeg

∑N
q=1 σ̂ z

q j), where ωc is the frequency of

the cavity fields, ωeg the energy spacing of the qubits, â†
j the creation operator of mode j and σ̂ z

q j
the z-Pauli matrix for the qth qubit interacting with the j th cavity of the array (we set h̄ = 1). At
resonance ωc ' ωeg and, in the interaction picture with respect to Ĥ 0, the coupling Hamiltonian
reads

Ĥ = −

M∑
j=1

J j â j â
†
j+1 +

M∑
j=1

� j â
†
j Ŝ

−

j + h.c., (1)

where h.c. stands for the hermitian conjugate, J j is the photon-hopping strength for the j th
pair of consecutive cavities and � j is the coupling rate between the j th cavity field and the
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corresponding qubit ensemble [12]. In analogy with the common approach to cooperative effects
such as optical bistability [7], phase factors accounting for the spatial distribution (and/or
finite dimensions) of the elements of a qubit system are incorporated using the collective
operator Ŝ±

j =
∑

q σ̂±

q j e
−ikcxq with kc being the wavevector of the cavity field, xq the position

of the qth element inside a cavity with respect to a chosen reference frame and σ̂−

q j = (σ̂ +
q j)

†
=

|g〉q j〈e|. From here on, we assume linear dimensions of each qubit system small with respect
to the cavity wavelength λc. Moreover, in order to fix the ideas, the parameters are taken as
real and homogeneous so that J j = J and � j = �, for any j, although the generalization is
straightforward. On the other hand, the seminal works on the behaviour of multi-atom systems
in cavities conducted by Bonifacio et al and by Haake and Glauber [12] have shown that atomic
cooperative effects are granted as far as the cooperative length (i.e. ‘the maximum distance
over which atoms in the radiating medium can cooperate in the generation of a superradiant
pulse’ [12]) is larger than the wavelength of the radiation interacting with the atomic system.
This condition is largely satisfied in the range of frequencies we are interested in. The statistical
properties of the system, under this condition, can thus be gathered without considering the
effects in Ŝ±

j induced by the relative positions of the qubits within a given cavity. Our assumption
of small qubit sample, having long cooperative length, thus allows us to safely neglect any
position dependence in the collective operators, which become Ŝ−

j =
∑N

q=1 σ̂−

q j .
One could relax the assumption of equal cavity frequencies, keeping in mind that, in

the interaction picture with respect to the corresponding Ĥ 0, both the inter-cavity and the
qubit–light coupling rates acquire time-dependent phase factors. The condition of quasi-
resonance within each qubit–cavity systems allows us to keep the latter as time-independent.
This would also be the case for the inter-cavity couplings in a situation of quasi-homogeneous
cavity frequencies. However, an explicit, non-negligible time dependence of Ji ’s would
result in a more complicated physical picture requiring a numerical assessment. As this
is not the focus of the present discussion and the model encompassed by Ĥ is a good
approximation for experimentally achievable physical situations (due to the progress achieved
in nanolithography, which allows to set very precisely the geometrical factors determining the
cavity frequencies in an array [10]), we restrict our attention to cavities having all the same
frequency.

The first term (and its hermitian conjugate) in Ĥ of equation (1) describes the inter-cavity
coupling while the second term accounts for in situ exchange of excitations between a qubit
system and the respective field (for � � ωc, we use the rotating wave approximation). The
extended Hilbert space of the whole system makes the goal of tackling the dynamics ruled by
Ĥ formidable. However, we can exploit the collective behaviour of each ensemble by using
the Holstein–Primakoff (HP) transformation, which maps a physical collective spin into an
effective boson [13]. Assuming N � 1, we introduce the HP operators b̂†

j , b̂ j ( j = 1, . . . , M) as

Ŝ+
j =

√
Nb̂†

j Â j , Ŝz
j = b̂†

j b̂ j − N/2 with [b̂ j , b̂†
l ] = δ jl . Here, Â j = (1 − b̂†

j b̂ j/N )1/2 guarantees

that the collective operators Ŝ±,z
j satisfy the necessary algebraic structure. In terms of effective

HP bosons, equation (1) takes the form

Hhp = −

M∑
j=1

J â j â
†
j+1 +

M∑
j=1

�
√

Nb̂†
j Â j â j + h.c. (2)
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The enhancement of the intracavity coupling due to the collective nature of the coupling
is clearly seen. The nonlinear interaction between the two bosons entering the dynamics is
encompassed by Â j ’s, which depends on the number of excitations in the state of the HP boson.
The strength of any nonlinear effect results from a trade-off between 〈b̂†

j b̂ j〉 and N . Ressayre
and Tallet [14] treated collective atomic effects using the HP transformation and showed the
emergence of superradiance effects under the condition that the size of the sample is smaller
than the cooperative length.

For our discussion, it is useful to expand Â j in power series with respect to 1/N . Although
any order in this expansion could be taken, for clarity of presentation we consider the situation
of a ‘mesoscopic’ number of qubits per ensemble, i.e. N is such that Â j ' 1 − b̂†

j b̂ j/2N .
Physically, this implies that the number of qubits per cavity is large enough for the HP
transformation to be valid but sufficiently small not to blur any nonlinearity. We thus find the
form of the nonlinear coupling, up to this order of approximation

Ĥ hp '

M∑
j=1

(
�b̂†

j â j(b̂
†
j b̂ j)

2
√

N
− �

√
Nb̂†

j â j − J â†
j â j+1 + h.c.

)
. (3)

The structure of this Hamiltonian is interesting. The term (b̂†
j â j + h.c.) shows linear interaction,

exchanging a quantum between the field and the ensemble of qubits. On the other hand, the extra
dependence on b̂†

j b̂ j in the terms b̂†
j â j(b̂

†
j b̂ j) + h.c. makes the Hamiltonian manifest nonlinear

behaviour which, noticeably, is not of the cross-Kerr form [7]. It is worth stressing that, while
in the usual approach to coupled-cavity problems, the third term in equation (3), i.e. the photon-
hopping term, is diagonalized by means of a canonical transformation introducing collective
cavity modes [1], here we keep its structure which is instrumental to the following discussion.
Interestingly, by assuming the conditions for adiabatic elimination of the qubit degrees of
freedom, each b̂ j would effectively become proportional to â j and (3) would reduce to the
Bose–Hubbard model [1]. We explicitly consider the case of cavities having small dissipation
rates with respect to the effective rate of nonlinear dynamics so that the Heisenberg equations
for the two bosonic species involved in the dynamics are

i∂t â j = −J (â j+1 + â j−1) + �
√

Nb̂ j −
�

2
√

N
b̂†

j b̂
2
j ,

i∂t b̂ j = �
√

Nâ j −
�

2
√

N
(2b̂†

j b̂ j â j + b̂2
j â

†
j).

(4)

The coupled nature and the discreteness of these nonlinear equations make their direct
solution extremely demanding. In order to tackle the challenge, we put equations (4) into
a manageable form using plausible physical assumptions. First, we eliminate the difficulties
related to the non-commutativity of the operators in equations (4). We neglect the quantum
fluctuations of the operators b̂ j and b̂†

j calculated over each qubit’s state and concentrate on their
mean values, thus providing a mean-field analysis, which is nevertheless sufficient to gather the
crucial points of our investigation. Moreover, we take each cavity as prepared in a coherent
state (by coupling the array to an external source). This allows the operators in the dynamical
equations to be replaced with complex scalar functions as4 âl → αl and b̂l → βl . Equations (4)

4 Alternatively, we can assume a coherent-state ansatz for the eigenstates of |Ĥ hp| and derive the equations of
motion via variational principles [15].
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now become

i∂tαl = −J (αl+1 + αl−1) + �
√

N

(
βl −

|βl |
2βl

2N

)
,

i∂tβl = �
√

Nαl −
�

2
√

N
(β2

l α∗

l + 2αl |βl |
2).

(5)

As anticipated, our approach is designed so as to allow the generalization of these
equations to the case of arbitrary-order expansion in the operator Â j . So far, we retained the
discreteness of the equations of motion. For a clear understanding of our results (preserving
the important aspects of the dynamics), we take the continuous limit where the function γ

depends on a position-variable x along the array of cavities (here γ = α, β and their hermitian
conjugates). This simply means that the inter-distance d between two consecutive qubit–cavity
systems is much smaller than the scale represented by the wavelength λ of the wave-like
excitation propagating across the array. That is, by taking k = 2π/λ, it must be kd � 2π so
that γ j → γ (x, t). The photon-hopping contribution to the first of equations (3) is thus modified
according to α j+1 + α j−1 → 2α(x, t) + d2∂xxα(x, t). This changes the equation for α(x, t) into
i∂tα(x, t) = −2Jα(x, t) − Jd2∂xxα(x, t) + �

√
N (1 − |β(x, t)|2/2N )β(x, t) reminiscent of a

Schrödinger equation with a cubic nonlinearity (SCN) [4], which admits solitonic solutions.
However, the equation at hand differs from an SCN as the nonlinear term couples the dynamics
of real and effective bosons. Instead of using numerical methods for the solution of the problem
(such as Newtonian relaxation techniques [16]), we would like to get a clear picture of the
physical process. We thus decide to use an approach that can capture the pivotal features of the
physics behind this problem. In [17], a multiple-scale technique has been used to investigate
gap solitons in nonlinear periodic structures. The flexibility of this technique and its successful
applications so far suggest its adaptation to the present situation. The method is based on the
expansion of both time and space derivatives in terms of mutually independent time- and length
scales vp = µpv (v = t, x) according to ∂v =

∑
p>0 µp∂vp . Similarly γ =

∑
p>1 µpγ (p), where

we have introduced the small parameter µ. In its essence, the multiple-scale method utilizes
a separation of spatial and temporal scales analogous to other standard techniques used in
quantum optics, such as the slowly varying envelope approximation [7]. Following [17], we stop
the expansion at order p = 3 in γ , which is enough, in the conditions of small nonlinearity at
hand, to encompass the important aspects of the system’s dynamics. We now solve the problem
corresponding to a scale of order p − 1 and use it in the one of order p. By replacing the
scale expansion in the equations of motion (we drop any explicit dependence on x and t) and
collecting terms corresponding to the same power of µ, we get the universal structures

(i∂t0 + 2J + Jd2∂x0x0)α
(p)

− �
√

Nβ(p)
= 0(p)

α ,

i∂t0β
(p)

− �
√

Nα(p)
= 0

(p)

β

(6)

with 0
(p)

α,β depending on higher-order derivatives of γ (p−k) (k ∈ Z). We proceed stepwise: at

order µ we have 0
(1)
α,β = 0 so that α(1) and β(1) satisfy linear equations in the slow variables

x0 and t0 which are combined to give (∂t0t0 − 2iJ∂t0 − iJd2∂t0x0x0 + �2 N )α(1)
= 0 with β(1)

=

−i�
√

N
∫

α(1) dt0. In order to solve this equation, we take the plane-wave ansatz α(1)
=

Eei(kx0−ωt0) with E an envelope function depending on space and time scales faster than x0 and
t0 and ω the frequency of such a carrier excitation. The associated solvability condition leads
to the dispersion relation ω±(k) = −J (1 − d2k2/2) ±

√
J 2(1 − d2k2/2)2 + �2 N , thus defining
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effective ‘optical’ and ‘acoustic’ branches (corresponding to ω+(k) and ω−(k), respectively), in
analogy with a diatomic crystal. The difference with our case is that the two species in the
crystal (i.e. true and effective bosons) share the same site location. We remark that ω±(k)

are the long-wavelength approximations of the branches coming from the exact dispersion
relation for the discrete equations (4) in the linear limit. These read ω̃±(k) = −J cos(kd) ±√

J 2 cos2(kd) + �2 N , which becomes ω±(k) for kd � 1 and exhibits a band gap at the edge
of the first Brillouin zone [19]. Here, for definiteness, we concentrate on the optical branch.
The previous level of solution leaves E unknown. Its form is determined by going to higher
order in p and imposing the appropriate solvability conditions (the nullity of any secular terms,
as required in order for the multiple-scale approach to hold [17]). At order µ2 this results in
the equation (∂t1 + vg+∂x1)E = 0, so that the envelope function must depend on the variable
ξ = x1 − vg+t1 with the group velocity vg+ = ∂kω+ = (2k Jd2ω2

+)/(ω
2
+ + �2 N ). The iteration of

this approach leads to the general SCN

i∂tε + c1∂χχε + c2|ε|
2ε = 0, (7)

where c1 = (Jd2ω3
+ + �2 Nv2

g+
)/[ω+(ω

2
+ + �2 N )], c2 = 2�4 N/[ω+(ω

2
+ + �2 N )], E = ε/µ, χ =

ξ/µ and t2 = µ2t , as implied by the multiple-scale definition. Equation (7) can be exactly
solved by means of well-known inverse-scattering methods (ISM) and is known to have the
solitonic solution [18] ε = η

√
2c1/c2 sech{η[χ − 2c1σ t] − ν}eiσχ−ic1(σ

2
−η2)t−iφ0 for c1c2 > 0, as

in our case. We have thus found a solitary-wave behaviour in the array being studied, which
was our central aim. Here, η, σ, ν and φ0 are integration constants to be determined from the
boundary conditions associated with a given physical problem.

2. A few remarks

Some remarks are in order: the use of complex scalar quantities in going from equations (4)
to (5) corresponds to neglecting quantum correlations between qubits and fields. This, however,
does not imply the classical nature of the predicted solitonic behaviour. In fact, the non-classical
features of these excitations depend only on the quantum nonlinear interaction between the
ensemble of qubits and cavity fields. The signature of such nonlinearity is in the quantum
Heisenberg equations (4), whose form is dictated by Ĥ hp and the commutation rules of the
involved operators. The use of complex numbers (the mean values of the corresponding
operators) amounts to neglecting any operator fluctuations and this does not affect the form
of the dynamical equations. The next step would be the inclusion of linear fluctuations in
equations (5), which can be done following [21]. In particular, Nagasako et al in [21] have shown
that the influence of fluctuations on the solitonic solution gathered for the mean expectation
values can be rather small (even negligible). The use of similar quantitative analyses in our
specific case is the object of ongoing investigation. On a different level, the form of the
nonlinearity considered here requires some discussions. First, the inclusion of higher order
terms in the expansion of Â j ’s results in quite small modifications. For instance, for N ' 10 and
including terms of order N−2, the rate in front of a nonlinear term in equation (3) is modified
by less than 3%. Moreover, a very small extra nonlinearity is added (which is ∼2.5% of the
rate obtained by retaining only order N−1), giving rise to a cubic–quintic nonlinear Schrödinger
equation. The solution of the latter has solitonic character as well and is very close to what we
have found (due to the negligible rate of quintic nonlinearity). Multi-soliton solutions can also
be found through ISM [18]. The transition from nonlinear to linear regime occurs for c1 � c2.
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Figure 2. A photonic crystal with defect microcavities. Each single-mode cavity
contains N qubits and is coupled to its nearest neighbours.

In the long-wavelength approximation and in the realistic situation of J � �, this corresponds
to

√
N��/J , which bounds the number of qubits per cavity, in agreement with our analysis.

The continuous limit can be bypassed using the discrete dynamical equations so as to find a
solution valid within the whole Brillouin zone (the discrete solitons predicted in [20]). This can
be done by taking γl =

∑
p µpγ (p)(ξl, µt, φl) with ξl = µ(ld − λ̃t), φl being a phase difference

between each system and λ̃ which is found via solvability conditions. The relaxation of the
long-wavelength assumption would give insight into the dynamics within the whole Brillouin
zone, thus allowing the study of gap solitons. However, this will require a detailed numerical
analysis which is the focus of current investigation. Finally, we mention that the required trade-
off between the number of atoms per cavity and the degree of nonlinearity is a result of the
contingent situation we consider and the HP transformation. Obviously, this is not the only
option available and it would be interesting to study the effects of different forms of nonlinearity
arising from coherent matter–light interactions. In particular, the possibility of having nonlinear
effects which grow with the number of atoms per cavity, as in [23], would be a particularly
intriguing case to explore. Finally, we briefly discuss the behaviour of the collective-qubit
excitation β(x, t). Once the solitonic nature of the envelope function E is ascertained, one
can determine the analogous character of β(t) from the condition β(t) = (�

√
N/ω)Eeikx0−ωt0 ,

which reveals the solitonic nature of the collective qubit-like excitations with a modified
amplitude.

3. The physical setup

We identify in an array of photonic-crystal microcavities a potential candidate for the
observation of our predictions [10] (see figures 1(b) and 2). The linear arrangement addressed
here can be generalized to a bidimensional configuration by replacing the cavity adjacency
matrix, which determines the hopping term in equations (4), with a proper tensor. Each cavity is
a single defect (created, for instance, every two or three sites) in the crystal’s lattice and is doped
with N ∼10 qubits (substitutional Si donor impurities or InAs quantum dots in a GaAs photonic
crystal [10], with linear dimensions in the range of tens of nm, the density being determined by
adjusting the bulk doping density) [11]. Importantly, the possibility of cooperative behaviour
(in the form of superradiance) of quantum dots in a system close to the building block of the
one addressed here has been experimentally demonstrated [22].

The inter-cavity spacing can be as small as tenths of the wavelength of the radiation
confined in the crystal [10]. At cavity frequencies of hundreds of THz, � ∼40 GHz is realistic

New Journal of Physics 11 (2009) 013059 (http://www.njp.org/)

http://www.njp.org/


9

(for both Si impurities and InAs dots) because of the small mode volume of microcavity fields
(linear dimension in the range of 100 nm, which in turn gives an indication of the required
energy density). A proper pattern of the array allows �/J ∼10 or smaller. For cavity quality
factors around 105–106 (see [11]), which are within the experimental reality, the inter-cavity
tunnelling time is shorter than the photon lifetime in our system, therefore securing a coherent
transient period where equation (7) is rigorously valid.

For the spontaneous emission from the excited state of the qubits, we can take advantage
of the relatively long coherence time of donor impurities in a bulk semiconductor matrix
(1 ns for Si at the frequency considered here and up to 2 ns for InAS quantum dots in GaAs
structures [11]). This is important: a solitonic behaviour is known to be possible in conditions
of negligible dissipation, which is the usual assumption in most of the analytical approaches.
Spontaneous emission can also be quenched by detuning the two-level systems from the
respective cavity field by 1. It is possible to see that equation (7) still holds with c1,2 and vg+

modified by taking ω+ → ω′

+ + 1, where

ω′

+ = −J +
(Jd2k2

− 1)

2
+

1

2

√
4�2 N + (2J − Jd2k2 − 1)2 (8)

is the modified dispersion relation of the optical branch. The solitonic nature of the
corresponding solution is preserved for �/1 ∼0.1.

4. Conclusions and perspectives

We have addressed the nonlinear dynamics of an array of coupled cavities from a quantum-
mechanical perspective. Built-in nonlinearities arise from the coupling of the cavities with
ensembles of qubits and compete with photon tunnelling so as to create solitons. We have
used a simple method to demonstrate this effect, from a quantum standpoint, in a system
of coupled photonic-crystal microcavities. Our study adds to the affirmation of coupled-
cavity systems as flexible quantum simulators and is a potentially useful approach to future
studies of quantum solitonic transport in nanotechnology. The mean-field description of our
coupled cavity-quantum two-level systems yields a behaviour which takes us smoothly from the
polaritonic to the solitonic regime. Future studies will concentrate on the behaviour of quantum
fluctuations around the mean-field solutions.
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