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Abstract. There are several examples of bipartite entangled states of
continuous variables for which the existing criteria for entanglement using the
inequalities involving the second-order moments are insufficient. We derive new
inequalities involving higher order correlation, for testing entanglement in non-
Gaussian states. In this context, we study an example of a non-Gaussian state,
which is a bipartite entangled state of the form ψ(xa, xb) ∝ (αxa + βxb)e−(x2

a +x2
b)/2.

Our results open up an avenue to search for new inequalities to test entanglement
in non-Gaussian states.

The detection and characterization of entanglement in the state of a composite is an important
issue in quantum information science. Peres [1] has addressed this issue for the first time to
show that inseparability of a bipartite composite system can be understood in terms of negative
eigenvalues of partial transpose of its density operator. There are several other criteria for
inseparability in terms of correlation entropy and linear entropy [2, 3] and in terms of positivity of
Glauber–Sudarshan P-function [4]. However, all these measures cannot be put to experimental
tests. To detect entanglement of any composite system experimentally, one needs to have certain
criteria in terms of expectation values of some observables.

Using Peres’s criterion of separability, Simon [5] has derived certain separability
inequalities, violation of which is sufficient to detect entanglement in bipartite systems. These
inequalities involve variances of relative position and total momentum coordinates of the two
subsystems and thus can be verified experimentally [6]. Duan et al [7] have also derived equivalent
inequalities independently using the positivity of the quadratic forms. It is further proved that
for Gaussian states (states with Gaussian wavefunctions in coordinate space), violation of these
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inequalities provides a necessary and sufficient criterion for entanglement. A different form
of criterion for entanglement involving second-order moments has been derived by Mancini
et al [8]. These inequalities have been tested for entangled states produced by optical parametric
oscillators and other systems where the output state can be approximated by Gaussian states
[9]–[12].

In context of quantum information and communication, non-Gaussian states are equally
important as Gaussian states. Several entangled non-Gaussian states have been studied in the
literature [13]–[15]. A way to produce non-Gaussian state is via the state reduction method
[16]–[18]. Thus, characterization of entanglement in a non-Gaussian state remains an open
question. This motivates us to derive new inequalities, when the existing inequalities based
on second-order correlation fail to test entanglement in these states.4 Thus, these inequalities
are expected to involve higher order correlation between position and momentum coordinates.
It should be borne in mind that there could be non-Gaussian states for which the existing criteria
of Simon and Duan et al [5, 7] are quite adequate. An example is provided by the pair coherent
states of the radiation fields, i.e., states given by [21]

ψ = N0

∞∑
n=0

ζn

n!
|n, n〉 N0 = 1√

I0(2|ζ|) . (1)

In this paper, we consider a bipartite entangled state of a bosonic system which, in turn, is a
non-Gaussian state in coordinate space. We consider an entangled state for which the existing
inseparability inequalities cannot provide any information about the inseparability of the state.
We derive new inseparability inequalities to test its entanglement.

We start by deriving the inequalities involving the second-order moments. Consider the set
of operators

U = 1√
2
(xa + xb), V = 1√

2
(pa + pb) [U, V ] = i. (2)

Then, we would have the uncertainty relation

�U�V � 1
2 . (3)

We now use Peres–Horodecki criteria of separability in terms of the partial transpose. Under
the partial transpose, xb → xb, pb → −pb. Hence the condition that the partial transpose of a
density matrix is also a genuine density matrix would imply that

�

(
xa + xb√

2

)
�

(
pa − pb√

2

)
� 1

2
. (4)

This inequality was first derived by Mancini et al [8] using a very different method.5 Thus if a
bipartite system is separable then (4) should be obeyed.Violation of equation (4) gives a sufficient

4 Certain results of a general nature have been proved. For example, Eisert et al [19] and Clifton and Halvorson
[20] have proved that pure states with infinite entropy of entanglement form a trace norm dense set. However, the
cases we examine correspond to finite entropy of entanglement.
5 Earlier Simon used a similar argument to derive his inequalities.
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condition for entanglement. The inequality of Duan et al follow from (4) by using the relations

M2 = M2
− + 4Mx,

M = [〈(�u)2〉 + 〈(�v)2〉],
M− = [〈(�u)2〉 − 〈(�v)2〉],
Mx = 〈(�u)2〉〈(�v)2〉,

(5)

where

u = xa + xb and v = pa − pb. (6)

From equation (5) it is clear that if the inequality Mx � 1 (which is the separability criterion of
Mancini et al) holds, then the criterion M � 2 which is the separability criterion of Duan et al,
is automatically satisfied for all values of M−. But if Mx < 1, then nothing can be said about the
exact value of M. It can be greater than or less than 2 depending on the values of Mx and M−.
The above analysis implies that the separability criterion given by Mancini et al and that given
by Duan et al are interrelated with each other. Furthermore, Mx < 1 is stronger than the criterion
M < 2 for inseparability. This follows from Mx � M/2. We also note that Duan et al derived
a more general separability inequality

∣∣∣∣m2 − 1

m2

∣∣∣∣ � M < m2 +
1

m2
, (7)

where

u = |m|xa +
1

m
xb, v = |m|pa − 1

m
pb. (8)

For bipartite Gaussian states, the inequalities for second-order correlations are also sufficient.
Equivalent necessary and sufficient conditions for separability of Gaussian states have been
derived by Englert and Wodkiewicz [22] using a density operator formalism. They have shown
that the positivity of the partial transposition and P-representability of the separable Gaussian
states are closely related.

In this paper, we focus on the following bipartite continuous variable Bell state formed from
ground and excited states of the harmonic oscillators

ψ(xa, xb) =
√

2

π
(αxa + βxb)e

−(x2
a +x2

b)/2, |α|2 + |β|2 = 1, (9)

which is the state of a composite system of bosonic particles. It clearly represents a non-Gaussian
state in coordinate space. The non-classical properties of such states were studied in [13].A recent
experimental proposal discusses how to generate non-Gaussian states by subtracting a photon
from each mode of a two-mode squeezed vacuum state [15].

The Peres–Horodecki criterion [1] is known to be necessary and sufficient for inseparability
for bipartite systems in (2 × 2) and (2 × 3) dimensions, but to be only sufficient for any higher
dimensions. This criterion states that if the partial transpose of a bipartite density matrix has at
least one negative eigenvalue, then the state must be inseparable. Next, we apply this criterion

New Journal of Physics 7 (2005) 211 (http://www.njp.org/)

http://www.njp.org/


4 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

to test the inseparability of the state (9). The density matrix of this state is given by

ρ = |ψ〉〈ψ| = |α|2|1, 0〉〈1, 0| + |β|2|0, 1〉〈0, 1| + (α∗β|0, 1〉〈1, 0| + H.c.), (10)

where

|1, 0〉 ≡
√

2

π
xae−(x2

a +x2
b)/2. (11)

Taking the partial transpose of the second subsystem, we obtain the following density matrix

ρPT = |α|2|1, 0〉〈1, 0| + |β|2|0, 1〉〈0, 1| + (α∗β|0, 0〉〈1, 1| + H.c.). (12)

The four eigenvalues of the above density matrix can be calculated as |α|2, |β|2 and ±|α||β|.
Clearly, the negative eigenvalue of ρPT confirms the inseparability of the state (9) under
consideration.

Now, we examine the validity of the existing inseparability inequalities (7) and (4) for
the entangled state (9). For the conjugate variables u and v defined by equation (8), we
find that

〈(�u)2〉 + 〈(�v)2〉 = |m|2 +
1

m2
+ 2

(
|α|2|m|2 +

1

m2
|β|2

)
, (13)

which is clearly greater than |m|2 + 1/m2. Thus, though the state (9) is entangled, the criterion
(7) cannot exploit this fact. In other words, violation of the criterion (7), as shown above, would
conclude that the state under consideration is separable, which definitely is not the case. We
further find that for m = 1

〈(�u)2〉〈(�v)2〉 = 4 − (αβ∗ + α∗β)2 = 4 − 4[Re(αβ∗)]2, (14)

which has minimum value equal to 3, which implies that 〈(�u)2〉〈(�v)2〉 is always greater than
unity for m = 1. According to the inequality (4), this refers to separability in the state which is
again not the case. From the above discussion, we conclude that the existing inseparability criteria
based on second-order correlations do not provide correct information about the inseparability
of a standard bipartite entangled state which in turn is non-Gaussian. This warrants a search
for new inequalities involving higher order correlations, to test the inseparability of such
states.

Needless to say that since there is an infinity of these higher order correlations, one could
construct a very large number of such inequalities involving higher order correlations. In what
follows, we consider the next logical correlations. Our analysis below is reminiscent of what
has been done in context of non-classical light [23, 24]. We could consider the following set of
operators:

Sx = a†b + ab†

2
, Sy = a†b − ab†

2i
, Sz = a†a − b†b

2
. (15)
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The operators Si obey the algebra of angular momentum operators and hence the uncertainty
relation �Sx�Sy � 1

2 |〈Sz〉| would give, for example

�

[
a†b + ab†

2

]
�

[
a†b − ab†

2i

]
� 1

2

∣∣∣∣
〈
a†a − b†b

2

〉∣∣∣∣ . (16)

It is known that under partial transpose, a separable density matrix remains as a valid density
operator. Using this property of partial transpose, we expect that for a separable state, the
following inequality is also valid

[〈a†abb†〉 + 〈aa†b†b〉 + 〈a†2
b†2〉 + 〈a2b2〉 − 〈a†b† + ab〉2]

×[〈a†abb†〉 + 〈aa†b†b〉 − 〈a†2
b†2〉 − 〈a2b2〉 + 〈a†b† − ab〉2] � |〈a†a − b†b〉|2,

(17)

which has been obtained from equation (16) under the partial transpose b ↔ b†. A violation of
(17) would imply that the state is entangled. However, for the state (9), |(|α|2 − |β|2)| � 1. Thus,
the inequality (17) is not violated and hence does not lead to any new information regarding the
inseparability of the state. Next, we consider the following operators satisfying SU(1,1) algebra

Kx = a†b† + ab

2
, Ky = a†b† − ab

2i
, Kz = a†a + b†b + 1

2
. (18)

Such operators previously have been used in consideration of higher order squeezing [23].
The uncertainty inequality would give

�

[
a†b† + ab

2

]
�

[
a†b† − ab

2i

]
� 1

2

∣∣∣∣
〈
a†a + b†b + 1

2

〉∣∣∣∣ . (19)

Using the partial transpose as above, we get a new inequality for separability

[〈a†ab†b〉 + 〈aa†bb†〉 + 〈a†2
b2〉 + 〈a2b†2〉 − 〈a†b + ab†〉2]

×[〈a†ab†b〉 + 〈aa†bb†〉 − 〈a†2
b2〉 − 〈a2b†2〉 + 〈a†b − ab†〉2] � |〈a†a + bb†〉|2.

(20)

For the state (9), the above relation leads to the following result

|α∗β|2 − 2[Re(α∗β)]2[Im(α∗β)]2 � 0, (21)

which is always violated for all values of α and β. Thus, the state under consideration is
inseparable according to this inequality (20) which is in conformity with the Peres–Horodecki
criterion. This inequality, which is based on higher order correlation, is thus successful to test
inseparability in the non-Gaussian states like (9), while the existing inequalities based on second-
order correlation fail to do so. This result opens up an avenue to search for general inseparability
inequalities for non-Gaussian states.

Note that the inequality (20) can also be expressed in terms of position and momentum
variables of the two subsystems as

[�2(xaxb) + �2(papb) + 〈xapapbxb〉 + 〈paxaxbpb〉 − 2〈xaxb〉〈papb〉]
×[�2(xapb) + �2(paxb) − 〈xapaxbpb〉 − 〈paxapbxb〉 + 2〈xapb〉〈paxb〉]
� 1

4 |〈x2
a〉 + 〈p2

a〉 + 〈x2
b〉 + 〈p2

b〉|2. (22)
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In order to detect entanglement using equation (20), we need to make a variety of homodyne
measurements [25]–[28]. Such measurements would yield the distribution of quadratures.

In conclusion, we have shown in context of a bosonic non-Gaussian state of the Bell form,
that the existing inseparability inequalities based on second-order correlations are not enough
to test the entanglement. We have derived a new set of separability inequalities using the Peres–
Horodecki criterion of separability. This new inequality involves higher order correlation of
quadrature variables and can be tested experimentally as discussed above. Violation of this
inequality detects entanglement in the non-Gaussian state under consideration. The failure of the
existing criteria in terms of the second-order moments is perhaps a reflection of the fact that the
state (9) in no limit goes over to a Gaussian state.
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