
MICROPROCESSOR FEASIBILITY STUDY AND PRELIMINARY 

DESIGN FOR AN ARTILLERY FIRE CONTROL APPLICATION 

By 

DAVID ERNEST WEST 
H 

Bachelor of Science in Electrical Engineering 

University of Oklahoma 

Norman, Oklahoma 

1974 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 
MASTER OF SCIENCE 

May, 1976 



-r\"e s \·s 
l Of7(p 

.w5tlm 
c..op,~ 

! . 
, . ' 



MICROPROCESSOR FEASIBILITY STUDY AND PRELIMINARY 

DESIGN FOR AN ARTILLERY FIRE CONTROL APPLICATION 

Thesis Approved: 

Thesis Adviser 

Dean of the Graduate College 

9476 'i9 

ii 

O r,L..-,HO N.A 

STATE UNIVERSITY 
U8RARY 

AUG :.!6 1976 



PREFACE 

A project is underway at Oklahoma State University to develop an 

artillery fire control system. A preliminary study has been concluded 

which demonstrated the feasibility of the proposed system approach by 

computer simulations. This is a similar preliminary study as to the 

feasibility of using a microprocessor as the basis of the hardware im­

plementation as an alternative to completely discrete components. 

I wish to express my thanks to Dr. Edward Shreve, my thesis adviser, 

for his valuable guidance. Also, I would like to thank the remaining 

committee members, Professor Craig S. Sims and Dr. McCollom, for their 

assistance in the preparation of the final manuscript. 

Finally, I would like to express my gratitude to Mrs. Janice Cronch 

for her excellent typing of the many drafts and the final copy. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

This document involves the application of microprocessors to a 

tactical artillery fire control system. It is part of an overall pro­

gram to develop a field portable fire control system. Feasibility was 

established by previous work done by the Electrical Engineering Depart­

ment of Oklahoma State University. A simulation of the system has been 

implemented on the IBM 360/65 with encouraging results. Further work 

is required in software development, so that a flexible hardware imple­

mentation is desirable. Thus, microprocessors shall be studied in the 

hope that they can produce a reasonable alternative to completely hard­

wired logic. 

1.2 System Description 

The fire control system must predict the point of impact and then 

calculate necessary corrections to the firing azimuth and elevation to 

achieve the desired impact position. These functions must be performed 

in real time so that additional rounds may be fired if necessary before 

the sensor round has impacted. The advantage of the system is that the 

meteorological effects from temperature, density and winds do not have 

to be precisely known before firing to enable compensation. The pro­

jectile itself serves as a sensor which enables automatic compensation 

1 
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without individual attention to each parameter. 

The overall system can best be described using Figure 1. The radar 

tracks the projectile to provide position and range rate data. This 

data is fed into the fire control system at a rate of 20 samples/second. 

The fire control system then uses this data to estimate the position 

and velocity of the projectile. These are used to predict the impact 

point and adjust the firing parameters of the artillery for predicted 

impact errors. 

ARTILLERY 

FIR-E 
RADAR CONTROL 

SYSTEM 

Figure 1. Fire Contra 1 System 

The general program structure which implements the fire control 

system is shown in Figure 2. Required operations for this process in­

clude coordinate transformations, input data filtering, integration of 

the state transition matrix and control. 

This report will look exclusively at the problem of implementing 

the Kalman filter and coordinate transformations for the following rea-

sons: the microprocessor analysis must begin by carefully determining 
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Figure 2. Fire Control Program Structure 
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the system specifications, which include power requirements, speed, in­

put/output (I/0) and software. Before these can be determined, the 

overall system must first be studied to find the subsystem which presents 

the greatest requirements. The Kalman filter processor has been deemed 

the most critical not only for numerical accuracy, but also for required 

speed. The Kalman filter determines the system•s accuracy and it must 

complete calculations within the 20 sample/second data rate. Thus, the 

microprocessor requirements such as speed and required instructions will 

be derived from analysis of the Kalman filter and coordinate transform­

ation algorithms. 

1.3 Objectives 

The major objectives of this analysis are first to make a selection 

of the required microprocessor and second to begin the application of 

this processor to the fire control system. This report is part of a 

preliminary project; therefore, the selection process will be well doc­

umented and written on such a level as to enable re-evaluation of the 

material in the event of system requirement changes. Also, material as 

to what is termed next generation processors will be included due to 

the uncertain time schedule of the project. In the event of a signifi­

cant time delay in the system design, this material may become useful 

since faster systems are being designed which may become available 

commercially. 

The applications material will be written using a single best choice 

if one exists. In the event that a clear choice does not exist, appli­

cation of each will be done to give an idea as to their distinct advan­

tages. A further objective of the application material is to give an 
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estimate of the required manpower and resources involved to complete the 

project. Manpower requirements are seen as an important aspect of this 

problem. 

1.4 Analysis Procedure 

The study organization has been broken into seven logical steps as 

shown below: 

1. System description, 

2. Determination of microprocessor requirements from 
the system description, 

3. Overview of available microprocessors, 

4. Reduction of microprocessor spectrum for analysis, 

5. Study of available microprocessors within reduced 
spectrum of analysis, 

6. Detailed comparison and selection and 

7. Microprocessor application. 

The study will begin with the determination of the microprocessor 

requirements to implement the Kalman filter and coordinate transform­

ation algorithms. This will include determining the required number of 

bits of accuracy, the time limit for execution and the instruction set. 

Included in the software requirements will be the necessary subroutine 

functions. 

With the system requirements in mind, an overview of available 

microprocessors will be presented including an introduction to micro-

processors and integrated circuit technologies. From this overview 

one can reduce the spectrum of microprocessors to those with the most 

potential for this application. A study of particular processors on 

the market, which from preliminary analysis satisfy the basic require-
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ments, will be made. After the detailed study of individual processors, 

a comparison and selection process can begin. Finally after the selec­

tion is made, Chapter V will be dedicated to the application of the 

chosen microprocessor. Application material will include hardware sys­

tem alternatives, hardware multiplication and subroutine implementation 

if necessary, software organization, instruction definition and program­

ming examples. Manufacturer-supplied software support will be described 

along with required software support which must be developed. 



CHAPTER II 

DETERMINATION OF MICROPROCESSOR 

REQUIREMENTS 

Before a search for the best microprocessor can begin one must 

first investigate the system requirements and working environment of 

the processor. This chapter will try to document the basic requirements 

and any special constraints which the chosen microprocessor must meet. 

Also a look at the problem in detail will give better understanding of 

the required firmware functions. Preliminary work has been done at 

Oklahoma State University in the area of software simulations. The basic 

Kalman filter equations have been studied and some different algorithms 

for implementing required functions have been documented. These studies 

will be used to determine the microprocessor requirements. 

This chapter will basically draw from previous work to determine 

specific requirements and will not try to specify the fire controller 

functions. Specification of the fire control system is presently being 

done and is not yet in a concrete form. A complete specification of the 

fire controller is not necessary at this point since one of the basic 

reasons for selecting a microprocessor system is the added flexibility 

of firmware. 

The system characteristics will be studied to determine three major 

areas of interest: throughput, input/output (I/0) parameters and special 

constraints. Throughput requirements are based on the number and type 

8 
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of functions which the processor must execute in a given amount of time. 

The I/0 parameters specify such requirements as the type of data, re­

quired bit-accuracy of various operations and external control or com­

munication requirements outside of the controller system. Finally the 

special constraints will be specific characteristics which will neces­

sarily constrain selection of the microprocessor. 

2.1 Throughput 

The firmware implementation of the fire control system has not been 

completed. The basic variable seems to be in the type of data filter 

needed to smooth the radar tracking data. Two different methods have 

been simulated, a polynomial filter and a Taylor series filter, with 

encouraging results. It is thought that a third method, the extended 

Kalman filter, would give even better results (38). Thus the extended 

Kalman filter method, which was the subject of an independent study will 

be used to determine the throughput requirements. 

The time limitation for the execution of this state estimation 

loop is 0.05 second. This is the time to when the next radar data will 

be available. Thus the extended Kalman filter calculations must have 

been concluded so that real time estimation can be obtained of the test 

projectile path. Figure 3 is a block diagram of the extended Kalman 

filter prospective implementation. In this diagram the loop of interest 

includes the integration of the model and transition matrix and the ex­

tended Kalman filter. Although the integration routine is shown separ­

ately it is actually part of the extended Kalman filter as shown in 

Figure 4. Figure 4 shows the extended Kalman filter in detail where 

block two, COMPUTE THE PREDICTED STATE, includes the Runge-Kutta inte­

gration routine. 



< 

Integrate 
Model and 

Transition 
Matrix 

10 

Linearized About Latest 
Estimate. ~(t.,t ) 
and ~(ti,O) both 3p~ated 

Process observation and 
update estimate. 

~(tiMPACT'tiPP) 
calculated here. 

A+ + + A+ oxiMPACT=xdes(tiMPACT)-x(tiMPACT) ox = difference ~-----.------_J between desired and predicted impact 

Figure 3. Extended Kalman Filter Implementation 
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( ENTRY 

I k = o I 

(1) ~STORE THE FILTER STATE 
. {~(kjk), P(kjk)} 

(2) COMPUTE THE PREDICTED STATE 
A 

x(k+lJk) (Ru nge Kutta) 

(3) COMPUTE THE PREDICTED ERROR COVARIANCE MATRIX 
P(k+ljk) 

(4) COMPUTE THE FILTER GAIN MATRIX 
K(k+l) 

\It 

( 5) PROCESS THE OBSERVATION 
yk+l' ~(k+ljk+l) 

( 6) COMPUTE THE NEW ERROR COVARIANCE MATRIX 
P(k+ljk+l) 

~ 
k = k+l 

Figure 4. Flowchart of Extended Kalman Filter {28) 



The required functions for the execution of the extended Kalman 

filter system including the Runge-Kutta integration routine are shown 

in Table I. This instruction mix was part of the results obtained by 

a separate study (28). Table I was derived by looking at the functions 

which must be implemented in the extended Kalman filter loop. These 

are the functions which must be executed during the 0.05 second sample 

time. The primary purpose of this instruction mix will be to compute 

the execution time of the critical Kalman filter loop for prospective 

microprocessors. The number of required executions of each function 

shown in Table I does not include the use of one function to execute 

another function. 

TABLE I 

INSTRUCTION MIX FOR EXTENDED KALMAN 
FILTER IMPLEMENTATION 

Function 

Add-subtract 
Multiply 
Divide 
Sin } Cos 
Tan 
Square root 
Exponential 
Miscellaneous 

Number Required 

900 
1100 
14 

7 

10 
1 

4000 

12 

The functions of Table I are only the major functions which must be 
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available as either an instruction or a subroutine. They do not include 

the many memory reference instructions, register manipulation instruc­

tions and jump instructions which will also be required. As a rough 

estimate 4000 miscellaneous instructions of these types will be included 

in the instruction mix. This is about twice the number of the special 

functions. These types of instruction have roughly the same execution 

times especially when compared to the more complex special functions. 

As a measure of the basic throughput requirements, the execution time 

of the extended Ka 1 man fi 1 ter 1 oop will be ca 1 cu 1 a ted based on the in~ 

struction mix of Table I. This type of throughput calculation is very 

rough and only intended as a first approximation. A more accurate in­

struction mix would require programming the application on each processor 

being considered. In many cases the execution times of the functions 

wi 11 even have to be estimated. These estimates wi 11 be based on the 

performance of a similar microprocessor with the same function. 

One has the alternative of using hardware or firmware for the im­

plementation of these special functions. The only functions of the 

ones shown in Table I which are generally offered by most microprocessors 

are the add and subtract functions. The multiply and divide functions 

are sometimes offered but they are no more than internal firmware im­

plemented requiring long execution times. The remaining functions must 

be implemented either in hardware or as subroutines. The minimization 

of hardware would ,lead to the software implementation of these functions 

·depending on the speed of the chosen microprocessor. It is doubtful that 

a total firmware solution would have the required throughput. Thus a 

tradeoff between hardware and firmware implementations will probably be 

necessary. Although the determination of this tradeoff is part of the 
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system design, two alternatives will be discussed here. 

The first alternative is to use Cordie in the implementation of 

these functions. Cordie algorithms are implemented using both firmware 

and hardware. A general decimal Cordie computer is shown in Figure 5. 

The basis of Cordie is the use of a look-up table in read only memory 

(ROM) for certain constants which are then used by hardware in the cal­

culation of the required function. The process requires a great deal 

of control and timing hardware, but it is a fast method of implementa-

tion { 37). 

The other alternative is lto allocate the hardware resources to a 
-~·--···•·~·-···· ,.,,_ "'-•w ••~----~~ ... "'•·'<-• •• 

·-·. . - .. ~--- ··-·· .. -.,-,~-'"'""''•"''-"'~'""··· ... ~~-~- -~--..,.--~.,.-.... ----, 
single function which can be used together with firmware <:Q.!llf()l to im­

plement the remaining functions. All the special functions could be 

implemented with the addition and subtraction instructions as a base . 

;'But a better solution is to increase the number of base functions by . - .. - ".,._ __ ., ... -"" ' ,-•' -· .. - - ... . ' ---~-~-~-~--- ,_- --

hardware implementing the multiply, the most used function. Not only 
~- ---''' ,..~-,..-~ .. ··------~-- --~ .. - -·' ----~-------··.,.-.., ............ " -

is multiplication a heavily used instruction in the system, but it is 

also required in the firmware implementation of the remaining functions. 

Furthermore firmware implemented multiplication would require at least 

thirty times the execution time of those instructions under the miscel-

laneous heading in Table I. This means the multiplication function 

would account for roughly 85 percent of the execution time while only 

accounting for 18 percent of the total number of instructions. Thus, 

hardware implementation of the multiply instruction could be used to 
----~-------~· ..•. '"·~------~-·~-- ...... _____ .. --------~---- -.. - . -- ~--'·----~- .• __ .,_,_,._.,,J.,.-. • ' ...... ... ' . - . - - ·· .. ' .... ., .•.. -,.._ ..... ,.,...~, .............. ·- -•' •. . -.. - -~ ...... ,.., .• ? ~ •• , •.•• ,, •• -.. 

in<::_r:~~se._~he speed of the firmware implemented functions and increase 

the ___ ()Verall throughput. The final decision as to which method to use 

is dependent upon the microprocessor selected. 

If the multiply is implemented in hardware, the remaining functions 
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60-BIT R1 REGISTER ~-------" I ;;;... X I 
I 

60-BIT R2 REGISTER 

60-BIT R3 REGISTER 

p w 

BIT, PERIOD AND WORD TIMING ROM 

B D 

Figure 5. Decimal Cordie' Computer (37) 



(sin, cos, tan, exponential and squareroot) can be implemented in firm-

ware using rational approximations. These algorithms were investigated 

independently (28). The implementation of the rational approximation 

requires a series of multiplies and adds of the argument and certain 

constants. Thus another required instruction to implement the rational 

16 

approximations would be a load immediate function or the ability to input 

constants from program memory. The number of constants required by each 

function is shown in Table II. The additional number of multiplies is 

really not significant when compared to the program requirements of 1100 

multiplies. For example, only eight multiplies are required for the sin 

algorithm execution. 

Function 

Sin 
Cos 
Tan 
Exp 
Sqrt 

TABLE II 

REQUIRED CONSTANTS FOR IMPLEMENTATION OF 
SPECIAL FUNCTIONS 

Required Constants Accuracy (Decimal digits) 

4 
6 
0 

10 
5 

10 
10 
10 
12 
25 

The number of constants will have little effect on memory require­

ments. Each constant must be stored in memory, but either program memory 

or working memory may be used for storage. The constants must be 



17 

accounted for when the memory requirements are finalized. 

Thus the throughput of the controller is very dependent upon the 

multiply instruction execution and will be important in the microproces­

sor selection. The previous discussion shows that the fire control sys­

tem will require more general computing power than actual controller 

type functions. 

2.2 Input/Output Parameters 

The microprocessor must interface with an external memory and some 

type of radar data channel. The only periodic input data will be the 

radar data which are range, range rate, azimuth and elevation. From 

preliminary simulations done at Oklahoma State University, a data ac­

curacy of at least 32 bits is desirable. The 32-bit accuracy may be 

obtained by double precision operation of a 16-bit processor but at the 

cost of reduced throughput. The tradeoff between the increased hard­

ware required for parallel 32-bit operation and the slower but decreased 

hardware of a 16-bit double precision system must be explored and deter­

mined during the microprocessor sel~ction period. 

The program memory will be somewhere between 4 kilo (K) and BK bytes 

as seen from the previous discussion of the instruction mix. Also the 

firmware will have many matrix operations requiring external data stor­

age. The matrix operations may involve as large as a six by six matrix 

(37). The exact·working memory requirements are hard to determine but 

about 128 to 256 bytes of memory will probably be necessary, each byte 

being 32-bits. These requirements can be determined more accurately 

when the software has been better defined and the microprocessor system 

outlined. 
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2.3 Special Constraints 

The major system constraints come from the working environment. 

The final system is intended to be a field portable artillary fire con-

trol processor. Thus, the microprocessor must function over the military 

temperature range for field use and be relatively small in size to be 

portable. The power requirements will also necessarily be minimized 

for portability. These constraints will be observed as nearly as pos­

sible, but the operating requirements must first be met. The high speed 
------·- --- - --· --.. "'~ 

"Qr large throughpu~ requjr~J11~~tmay require a 1 ~r~JTIQ_Yn:t_Qf ___ p.o.w_er_, ___ _ 

The basic system will actually have the characteristics of a mini­

computer, a large throughput system requiring medium-size-processor num­

erical ability. It will not have the characteristics of what is usually 

termed a controller. ~A powerful interrupt ability is not required. A 

direct memory access ability is not required since large data block 

transfers are not involved. 

A final consideration which may become a constraint is the necessary 

manpower to develop a working system. This includes hardware and system 

design and software support. After the system has been designed, it 

must be transformed into the code of the microprocessor, which requires 

coding time and an assembler. If an assembler is not available for the 

chosen microprocessor, this must also be written. Debug software and 

special debug hardware will also be required. Thus, the project will 

require effort which goes beyond the implementation of the controller 

system. The choice of the microprocessor greatly effects the amount of 

manpower required for completion of the project. 

General system requirements have been discussed so that an orderly 

microprocessor selection may begin. Actual system design would require 



greater detail, but our concern is an overall picture of necessary 

functions and objectives. 
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CHAPTER III 

OVERVIEW OF MICROPROCESSORS 

3.1 Introduction 

This chapter will introduce terminology and basic ideas relating 

to microprocessors. Its purpose is to characterize the different types 

of available microprocessors and to narrow down the spectrum which will 

be useful for the fire control application. Once the spectrum of use­

ful microprocessors has been determined, the study and analysis of 

those which have the most potential may begin. Chapter IV will be ded-

icated to specific microprocessors presently on the market which meet 

the present needs. 

3.2 Basic Definitions 

A processor may be defined as a device which fetches and executes 

instructions. Figure 6 is a block diagram showing the primary sections 

of a basic computer. The four computer sections are identified as 

follows: 

1. Memory - For storage of programs 

2. Arithmetic - For performance of calculations on 
data and instructions 

3. Input/Output - For exchange of data with external 
world and 

4. Control - For primary control of the arithmetic 
section with minimal control of the other two 
sections. 

20 



Those sections which fetch and execute the instructions are the 

arithmetic and control sections, and thus constitute the processing 

unit. 

MEMORY 

I 
I I 

CONTROL ARITHMETIC 

I I 

I 

I/0 

Figure 6. Basic Computer 
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A microprocessor is a set of circuits necessary and sufficient to 

perform the functions of a general purpose processor. The number of 

circuits is relatively small and the packaging density of most of the 

circuits within this set is in the category of large scale integration 

(LSI). A detailed block diagram of the elements common to most micro­

processors is shown in Figure 7. First a means must be provided to ad­

dress the memory. Once the instruction has been sent from memory to the 

processor, it is loaded in the instruction register. Also, instruction 

decode circuitry must be provided to determine what the instruction is 
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and to generate the signals required to implement the instructions. 

Some instructions require an arithmetic or logical operation on data. 

Thus, the processor must contain an arithmetic logic unit (ALU). Since 

other instructions may involve temporary storage of intermediate re-

sults, various service registers are also provided. Furthermore, a 

method must be provided to sequence addresses through memory, which 

means that a program counter is necessary. Finally, address modifica-

tion, such as indexing or subroutine location, requires various address 

registers or a register stack. All these elements, together with a 

timing and control section including I/0 drivers and receivers, make up 

the major blocks of a microprocessor. 

rl MEMORY 
ADDRESS CONTROL INSTRUCTION ~ 

't REGISTER 
!PROGRAM COUNTER 

-1 ADDRESS AND .,. INSTRUCTION I/0 
INDEX REGISTERS DECODE 

-"" 
RECEIVER 

LOGIC DRIVER 
~ MULTIPLEXER 

I MISC. REG. ACCUMULATOR ~ t .. 
TIMING AND - ARITHMETIC 

CONTROL ~ LOGIC UNIT 

Figure 7. Elements Common to Most Microprocessors 

Thus, a microprocessor is a very small and inexpensive processor 

contained in a single integrated circuit chip or a set of integrated 
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circuits. The set of integrated circuits refers to the microprocessor 

slice configuration in which 2-bit or 4-bit "slices" are paralleled to 

form larger data path systems. The single chip is called a monolithic 

microprocessor and it has a fixed width data path. 

3.2.1 Microprocessor Slice 

The microprocessors which have been designed to allow a modularity 

of data paths and whose control sections can support this modularity are 

considered to be in the "slice" configuration (14). The basic set of 

chips which together produce a processor include: 

1. Processor Slice - Arithmetic unit which may be 
used in parallel to achieve the necessary 
data path width (ALU). 

2. Look-Ahead Carry Generator - Capability of 
multilevel look-ahead for high-speed 
arithmetic operations over large word 
1 engths. 

3. Microprogram Sequence or Control Unit -
Control unit containing the instruction 
register, program counter, etc. 
depending on the particular manufacturer•s 
system arrangement. 

4. Read Only Memory (ROM) - Memory where the 
microprogram is stored. 

These chip sets may also include such extras as timing function chip, 

slice/memory interface (34), cyclic redundancy check (CRC) generator/ 

checker, serial/parallel first in-first out (FIFO) buffer, data path 

switch (DPS), p-stack, data access register (DAR) (25), multi-mode latch 

buffer, priority interrupt control unit, and inverting bi-directional 

bus driver (30). 

Figures 8 and 9 show 16-bit and 8-bit microprocessor chip level 

architecture where both microprocessors utilize the same chip set 
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with minor modifications to the control circuits. These systems are 

implemented with 4-bit microprocessor slices and each block represents 

a chip. The diagrams show that the slice microprocessor can be expand­

ed to different data path lengths but at the expense of more chips and 

complexity. 

3.2.2 Monolithic Processor 

The other category of microprocessors is where the design of chips 

has been optimized for a fixed data path of either 4, 8, 12 or 16 bits. 

These microprocessors usually combine both control and arithmetic func­

tions into a single chip processor. Although these fixed data path 

processors have all the processor functions in one chip, they still may 

have peripheral chips such as read only memories, random access memories, 

interface adapters and communication interface adapters. On the other 

hand the single chip may be as complete as to have all control, arith­

metic, memory and interface circuitry internal. Thus, in general this 

class of microprocessors will be called a monolithic processor although 

it may be part of a set of chips which together produce a working sys­

tem. 

These two categories, monolithic and slice, developed due to the 

different integrated circuit (IC) technologies. To understand the ad­

vantages and disadvantages between these two types of microprocessors, 

one must first understand the different IC technologies being used to 

manufacture microprocessors. 

3.3 Integrated Circuit Technologies 

At this point it is not necessary to discuss in detail the different 
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manufacturing techniques but instead to point out the distinguishing 

characteristics of the major technologies. MOS and bipolar are the two 

major groups under which the major technologies can be placed. MOS 

technology is based on the Metal-Oxide-Silicone-Field-Effect Transistor 

(MOSFET), while bipolar technology is based on the familiar epitaxial 

transistor. 

3.3.1 MOS Technologies 

The most mature MOS process is PMOS or p-channel MOS. Most first 

generation microprocessors were PMOS. These were monolithic processors 

~Jth.~~ow speed Cqp(ibilities. The major advantage of PMOS is rrigb pack-
··---·-·~., ........ .. 

ing density, which is very important for LSI microprocessor development. 

These devices also have relatively l_ow __ E~.~er consumption but require 

multiple power soyrces.. PMOS thresholds, the highest of all existing 

technologies, often require level translation from transistor-transistor 

logic (TTL) (bipolar) levels to guarantee that minimum thresholds are 

achieved (7). 

N-channel MOS or NMOS has the potential for significantly highgr __ 

~-than PMOS microprocessors. N-channel devices require a positive 

gate-to-source voltage and have a threshold of 1-volt or less. Thus, 

they are more easily driven by TTL drivers which are pulled-up by re­

sistors (15). Also n-channel outputs are easily made TTL compatible 

and n-channel silicon-gate MOS can run on a single 5-V power supply if 

required. These advantages are at the cost of increased fabrication 

C,9.111Pl exitY-· but with bigb packing densi t;)l. There are many present gen­

eration NMOS monolithic microprocessors {9). 

One of the latest MOS technologies is CMOS or complementary MOS. 
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CMOS uses n-channel devices as drivers and p-channel devices for the 

load. In this configuration only one transistor is on in the quiescent 

state producing low standby power dissipation. The advantages of CMOS 

inc 1 ude h ig_t} __ ~q_i?_e _imrny~-~t.y,__ .wi de .. to 1 eranc:~. tg __ F.<?W.~L.sURRlY. v.~~_i_a ti on, 

lOJ'Ltempe.rature _sen_!)itivity and .. low.,.power dis.si.p(!Jjq_r:t .L?l- The CMOS 

process also requires isolation between n-channel and p-channel devices 

which again i.nc..r.eases.the process complexity __ _anc;t_cost .•... - The lower pack­

ing density, the major disadvantage, has for the most part kept CMOS 

out of the LSI microprocessor applications, but next generation CMOS 

microprocessors are being developed by RCA and Intersil {16). Finally, 

SOS or silicon-on-sapphire is again an improvement in speed but at the 

cost of process complexity and cost. An SOS process type microprocessor 

is being developed by Inselek {16). 

In genera 1 , the present MOS techno 1 ogi es are lli!t_t~~} . .Y ~J..ruL.wtt~ .. 

high packin~ensity useful for single chip processors. The second 
--·-......_..__.~. . ••. .._..,_.._Jr.--..,.~-< 

major technology is bipolar, which can only be utilized in the slice 

configuration. 

3.3.2 Bipolar Technologies 

The general characteristics of bipolar ICs are high speed, low_. 
---··--~- -· _..,.._ ..•. ~ .. ' --· 

p~cking d.eiJ.stty __ _gnd _higher_ GQ.S.-t... The higher cost results from the fact 

that the manufacture of bipolar circuits of all types involves five to 

seven masking steps to print the circuit patterns, as opposed to three 

for MOS (15). TTL is the most popular and most used bipolar logic fam­

ily. The major advantages of TTL are the high speed, TTL compatibility, 

and a single +5-volt power supply.· The major disadvantages are the 

high power consumption and the low packing density (7). The latest 
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improvement in TTL bipolar devices is the use of a Schottky diode clamp 

between the base and collector to keep the transistor from saturating. 

This has produced even better speed performance. Also, low power 

Schottky devices have been introduced which have about one-fifth the 

power consumption of regular TTL logic. Present generation slice micro­

processors are generally low-power Schottky/TTL (16). 

Next generation bipolar technologies include ECL and r2L. ECL or 

emitter coupled logic has ultra high speed, more power consumption, 

temperature sensitivity, nonstandard power supply voltages and complex 

interconnection requirements (7). However, high-transient switching 

currents are avoided reducing peak current requirements over similar 

TTL chips and thereby making power distribution problems somewhat eas­

ier. Motorola is presently developing an ECL 4-bit slice microproces­

sor (34). r2L or integrated injection logic is seen as the process 

with the potential of giving the best of bipolar and MOS with good 

speed and high packing density (10). I2L attacks the isolation require-

ment of bipolar devices by careful partitioning and judicious removal 

of unnecessary resistors. Using this technique, gates can be fabricated 

which require no isolation within the gate structure (7). At present, 

I2L is not as fast as Schottky TTL and does not have the density to 

produce a monolithic processor. Texas Instruments is presently devel­

oping a 4-bit, r2L slice microprocessor (16). 

3.3.3 Technology Comparison 

At this point it is possible to compare the different technologies 

being used to manufacture microprocessors. Figure 10 shows how CMOS, 

r2L and LS/TTL fit into the speed/power/complexity picture. CMOS 
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standard family logic dominates the low-power corner while low-power 

Schottky TTL takes over when speed requirement goes into the megahertz 

{MHz) region {2). The new I2L is expected to be only applicable at the 

LSI level of complexity, fitting somewhere between CMOS and LS/TTL with 

respect to speed/power. 

1 

Figure 10. Speed/Power/Complexity Comparison 

Source: (2), p. 26. 

Finally, an overall technology comparison is made in Table III 

where each technology is rated from one to ten in each of the categor­

ies. Bipolar devices are seen as the best performance devices for 
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speed but have .lJj_gh power consumption_ and 1 ow packing density. The MOS 

devices have the opposite characteristics of low power consumption, low 

speed and high packing densities. This analysis has included the latest 

technologies being used in microprocessors but one must remember that 

final recommendations must be made using present generation processors 

or those in production with reasonable hardware and software document­

ation. Many problems can arise from trying to use a processor before 

final specifications are documented, documentation errors are elimin-

ated and software development has been completed to some degree. Thus, 

final recommendations as to which microprocessor to use in the fire 

control system will also be based on the extent of development of the 

chip set. 

Technology 
Characteristic 

Speed 
Reliability 
Power Consumption 
Density 
Complexity 
Process Maturity 
Multiple Sourcing 

TABLE I II 

TECHNOLOGY COMPARISON 

MOS 
PMOS NMOS CMOS 

4 7 5 
6 9 8 
7 8 9 
8 9 5 
6 8 8 
9 7 6 
9 8 2 

Source: ( 7)' pp. 64-65. 

BIPOLAR 
I2L TTL ECL 

8 9 6 
5 4 5 
2 1 8 c.:-:~------

6 2 8 
9 4 8 
9 8 6 
8 2 1 

) 
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From the preceding discussion we can see how the two types of 

microprocessors emerged. The monolithic processor was produced using 

MOS, but in order to obtain the better performance of the TTL technol­

ogy, designers had to· fragment the microprocessor chip into a slice due 

to the lower packing density of TTL. The slice configuration not only 

enables the use of less dense technologies but it also has important 

system differences. The ability to use faster technologies and the 

increased fexlibility of the slice configuration has led to the incred­

ibly fast development of bipolar slice microprocessors. 

3.4 Monolithic and Slice Comparison 

The slice microprocessor has introduced more versatility and great­

er speed than monolithic or fixed data path processors. The features 

which make it versatile are its expandable data path and microprogram­

mable capacity. The microprogram is a flexible firmware system which 

can be specifically designed to execute a special purpose macro-instruc­

tion set. A special purpose instruction set which is tailored to a 

specific application can be designed. 

To better understand the microprogrammable system, a block outline 

of such a system is shown in Figure 11. Basically, the microprogram 

ROM and microprogram control unit replace the instruction decode logic 

shown in Figure 7. The macro-instruction is placed on the data bus 

from the memory. The micro-instruction address is determined by the 

macro-instruction and the previous micro-instruction. The microprogram 

then executes the macro-instruction. Conditional jump commands may be 

executed from the micro-instruction and feedback flag lines from the CP 

array. The macro-instruction execution ends with a micro-instruction 
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which returns microprogram address control to the macro-instruction bus 

which is the data bus from memory. During instruction execution the 

micro-instruction controls the central processing array. 

Figure 11 describes the Intel 3000 series microprocessor slice 

which uses standard architecture except for the micro-instruction ad­

dressi·ng scheme. The Intel set actually executes a jump the the next 

instruction where the more standard approach is to use a microprogram 

counter to sequentially execute the microprogram. In this manner, the 

macro-instruction or main program counter determines the beginning micro­

instruction address which is then incremented for the next address of 

microprogram. 

MICRO-
PROGRAM MICRO-INSTRUCTION 

MEMORY 

NEXT 
ADD RESS ADDRESS 

CONTROL 

CONTROL 
MICROPROGRAM 

CONTROL - FLAG BIT 

l 
INSTRUCTION BUS 

MEMORY 
ADDRESS 
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11 

'I' 
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DATA 
BUS TO 
MEMORY 
ll 

DATA FROM DEVICE 

DATA FROM MEMORY 

Figure 11. Basic Microprogrammable System 

s 
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The microprogram is usually stored in a read only memory (ROM) or a 

programmable read only memory (PROM). The micro-instruction program is 

usually not changed after it has been designed to execute a given in­

struction set and thus is stored in a nonvolatile memory. ROMs and 

PROMs also have much better access times and data storage density than 

random access memories or read/write memories. Macro-instruction pro­

grams can be stored in either RAM or ROM depending on the system. Some 

systems use a loader program stored in a ROM to automatically load the 

operating macroprogram into RAM. This is useful when the system has 

several software options or functions it can perform without hardware 

modification. 

It is not manditory for slice microprocessor systems to have a 

macro-instruction set. The entire software system may be programed on 

the microlevel but this adds more complexity to the software design. 

In this application the micro-instructions provide an even faster sys­

tem. 

The slice configuration has been shown to be the higher performance 

system but it has two important disadvantages. First, it requires a 

much more complex hardware system with a higher package count, and sec­

ond, it requires much greater software development effort. The manu­

facturers are unable to provide the same software support, such as 

assemblers and simulators, when the instruction set is variable. Also, 

the programming on the microlevel is on a lower level and thus more 

difficult than with assembler language. 

Assemblers for slice microprocessors are being developed with a 

great deal of flexibility designed into them to handle the variable 

micro-instruction sets (28). This type of support for slice micropro-
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cessors is new and will not be available for present use except for only 

one manufacturer, Intel. Naturally, there are no assemblers available 

for the macro-instructions since they are user defined. 

The major system characteristics for slice and monolithic micro-

processors are summarized in Table IV. There are exceptions to the 

characteristics given in Table IV. There are combinations of these two 

major groups, such as monolithic processors which are microprogrammable 

and slice processors which use MOS technology, but presently bipolar 

technology is confined to slice configurations. This table is a reflec­

tion of the present microprocessor trends. Future development will be 

trying to produce faster systems with both flexibility and simplicity. 

These systems will probably use bipolar technology with improved speed 

and packing density. 

; TABLE IV 

vi SUMMARY OF THE DIFFERENCES BETWEEN 
THE TWO TYPES OF MICROPROCESSORS 

Monolithic Processors 
a) Main processor functions in a single chip 
b) Fixed instruction set 
c) Better software support 
d) MOS technology - slower cycle times 
e) Simpler system design - smaller chip count 
f) Fixed data path - requires use of software for expansion 
Slice Microprocessors 
a) Chip set centered around processor slice 
b) Microprogrammable - variable macrolanguage 
c) Less software support 
d) Bipolar technology - fastest cycle times, more power 
e) Complex system design - high chip count 
f) More versatile - expandable data path 
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A paper by Gregory Fox (6) considers the evaluation and comparison 

of the performance of commercial microprocessors and a discussion of 

potential military system applications. The paper begins by showing 

the exponential growth rate of available microprocessors and then points 

out the difficulty of selecting the best microprocessor for a given ap­

plication. The difficulty arises when trying to evaluate scaled down, 

integrated versions of general purpose computer CPUs with documentation 

consisting of 20 to 30 pages of specifications. Microprocessors cannot 

be effectively evaluated on a data sheet basis. 

Fox states that the performance of a microprocessor is a function 

of three factors: (1) cycle time, (2) number of cycles for each in­

struction and (3) the power of the instruction set. As a measure of 

these three factors, the author used throughput to compare different 

types of microprocessors, In order to obtain an estimate of a proces­

sor's throughput from the instructions• execution times, an instruction 

mix must be assumed. Table V shows the instruction mix assumed by the 

author. The instruction mix is a function of the microprocessor appli­

cation and this mix is for an avionics fire control system. The mix is 

determined from the percentage use of a certain instruction and that 

instruction's execution time. It must be noted that this is not the 

same type of fire control system but is still an interesting evaluation. 

Results from a comparison of an 8-bit, single chip, NMOS and a 

16-bit, PMOS, slice microprocessor show that better throughput was ob­

tained from the 16-bit slice. Although the 8-bit processor had a 
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faster cycle time, the use of double precision arithmetic reduced the 

throughput below that of a slower 16-bit machine designed with slice 

processors. One important advantage of the slice machine was having 

both multiply and divide instructions where the 8-bit processor did not. 

The author points out that the 16-bit processor's multiply requires fif­

ty percent longer than the time indicated in the specification sheet. 

A further advantage of the 16-bit machine was the shift instruction use­

ful for scaling incoming data. The 8-bit machine only had a rotate in­

struction which wraps the shifted bit around to the other end. Thus, 

processors with higher hardware bit accuracy which have the required 

instructions can overcome smaller but faster machines. 

TABLE V 

INSTRUCTION MIX FOR AVIONICS FIRE CONTROL 

Instruction 

Load 
Store 
Branch conditional 
Branch unconditional 
Add 
Logical 
Multiply 
Shift 
Subtract 
Divide 
Others 

Source: (6), p.7. 

Percent 
Utilization 

29.2 
18.1 
14.1 
9.4 
8.8 
5.4 
5.2 
4.0 
2.5 
1.3 
2.0 
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The author cautions potential users about analyzing only instruction 

times or throughput. These studies are crude and only give rough ideas 

of a processor's usefulness for a particular application. Further study 

is required of memory addressing options, number and flexibility of the 

registers, and the variety of branch conditions available. These are 

factors which require either actual programming or a great deal of com-

puter experience to evaluate. 

Finally, the author does a comparison between different types of 

processors which is shown in Table VI. He shows that the bipolar slice 

machine has a considerably better throughput than any other processor 

configuration. The author also estimates the required throughput for 

a ground based fire control system as about 10 to 100 KOPS (thousand 

operations per second). 

TABLE VI 

AVAILABLE MICROPROCESSOR PERFORMANCE 

Microprocessor 

8-bit NMOS 
8-bit NMOS 
Byte Slice 
Byte Slice Bipolar 

Word Length 
(bits) 

8 
16** 
16 
16 

* Using Instruction Mix in Table V 
** Double Precision Arithmetic 

Source: (6), p. 8. 

Throughput* 
(KOPS) 

35 
17 
42 

400-500 
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The slice configuration processors give the best speed performance 

due to system and technology advantages, which is the major system re­

quirement. The major disadvantages are higher power consumption, lack 

of software support, increased system complexity, and a large chip 

count. The only one of these disadvantages which will not affect the 

present problem significantly is the power consumption. However, a 

monolithic microprocessor would be considerably slower with a maximum 

of a 16-bit data path configuration. With a slice microprocessor it is 

conceivable to use eight 4-bit slices or sixteen 2-bit slices to form a 

32-bit hardware data path system. This size system may be approaching 

a minicomputer in hardware and software design complexity. Thus, the 

best solution seems to be to use the faster slice configuration with at 

least a 32-bit data path. 

An analysis of the available slice type microprocessors is now re­

quired. Because of the expected complexity of a slice configuration of 

32 bits, an analysis of a 16-bit monolithic processor will also be done. 

The limited manpower and resources of this project may become the de­

termining factor. So, one must determine if the slice configuration 

speed advantage can warrant the increased design effort, or if the mono­

lithic microprocessor system is even a working alternative due to its 

lack of speed. Chapter IV will be a study of the available micropro­

cessors including the newest of the slice microprocessors and one or 

two 16-bit monolithic processors. The emphasis is on the slice pro­

cessors for they seem to be the best hope for a microprocessor system 

solution to the fire control problem. 



39 

3.7 Conclusion 

In conclusion, we have introduced the basic concepts of micropro­

cessors showing the effect integrated circuit technologies have had in 

producing two different types of microprocessors. These two types have 

been compared and a selection of an expandable data path slice micro­

processor,~.(}.~ been made based primarily on its speed advantages over 

monolithic.PE?cessors. Chapter IV has been allocated to a complete 

study of the most recent slice microprocessors. Secondly, a monolithic 

16-bit processor will be included for purposes of determining if a mono­

lithic microprocessor is a viable alternative in case a large slice 

system demands excessive manpower. 



CHAPTER IV 

FINAL SELECTION FROM A SURVEY 

OF AVAILABLE MICROPROCESSORS 

4.1 Microprocessor Analysis 

Analysis to determine the best microprocessor for a given applica­

tion is very difficult unless the system is restricted by some special 

characteristics such as size or power consumption. The present major 

consideration is speed, the most difficult of all parameters to pre­

cisely measure for a microprocessor unless the exact application is 

programmed on each processor being considered through benchmark programs. 

This difficulty arises in trying to evaluate the many parameters which 

determine speed. A microprocessor•s speed is a function of how it is 

used, software arrangement and chip architecture. One cannot determine 

the fastest microprocessor directly, but can, through the evaluation of 

its architecture, determine the processors with the most potential. 

The factors which are going to be considered in the determination 

of a processor•s potential include the number of registers or length of 

stack, the instruction set, cycle time, instruction average execution 

times, subroutine linkage facilities, external flags and general arch­

itectural characteristics. These factors will help determine if the 

processor can handle the required throughput. Other important factors 

include chip set complexity, system level of implementation and support 

software. These all determine manpower requirements. The system level 

40 
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of implementation refers to whether one designs with large system blocks 

or with less functional but more flexible small system blocks. Also, 

the importance of software support cannot be over stressed. This type 

of software includes assemblers, editors, simulators, and loader pro­

grams. Assemblers are required in all phas·es of firmware development 

and simulators enable the parallel development of hardware and firmware. 

Support software when not supplied by the manufacturer becomes a neces­

sary burden upon the designers during system implementation. 

Extensive throughput analysis will not be done for the selection 

process of the slice microprocessor. This type of analysis requires 

the knowledge of each instruction's execution time and the instruction 

mix. To obtain instruction execution times would require the micropro­

gramming of a predesigned macro-instruction set. The results derived 

giving throughput of each processor would be related to its cycle time 

and the previously discussed characteristics. Thus the conclusions 

reached from the throughput analysis would probably be the same as the 

more general analysis of the architecture. Other factors such as devel­

opmental manpower requirements are just as important and make the 

slightly more accurate throughput analysis unnecessary. 

Also the selection analysis will not be a process of finding the 

processor which just meets the speed requirements. The firmware devel­

opment will be simplified as the percent utilization of the processor's 

available speed is decreased. A processor with 50 percent utilization 

requires less programming effort and memory than one with 80-90 percent 

utilization. Slower processors will be considered only when other 

unique advantages are obtained from their use. 

Previous analysis has led to the selection of a 32-bit bipolar 
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slice system. This decision is based on the improved speed of the 32-

bit hardware versus a 16-bit double precision arithmetic system and the 

decreased cycle time of bipolar technology. The advantages of the mono­

lithic systems, with better software support and smaller chip counts 

leading to less manpower requirements, have been discussed. The slower 

speed of these processors reduced the probability of their use, but the 

necessity of further study was shown. Thus this chapter will include a 

feasibility study of the use of a monolithic processor and a study of 

available slice microprocessors leading to the selection of the best 

slice processor. 

Also, from the results of Chapter II, the extensive use of a multi­

ply instruction was seen. Because of the long execution time of a 

firmware multiply instruction, the use of a hardware multiplication 

system has been deemed useful to reduce the ~ystem speed requirements. 

The first section of this chapter will deal with hardware multiplica­

tion so that the following analysis of microprocessors may use these 

results for execution time estimates. 

4.2 Multiplication with Peripheral Hardware 

There are many methods to achieve hardware multiplication which 

1 give different ratios of the hardware versus speed tradeoff. Systems 

which use readily available large scale integration (LSI) and medium 

scale integration (MSI) circuits to improve the existing processor•s 

arithmetic logic unit (ALU) multiplication ability give the lower speed 

improvement with a small cost in hardware. At the other end of the 

spe~trum is the specialized multiplication chip which requires little 

or no ALU functions to give very fast execution times but with increased 
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hardware cost. The alternative to hardware multiplication is the micro-
,.1-,_. 

program multiply which requires 170 microse<:;onds (p!)} for th~. lM.P-J6C -- "' ,- '------- "--- ._ .. - ,.,. - .-... , 

and 3Q 11~Jqr tb~ Int~])qqo series for two 16-.bit -~perands. These are 
~ 

the execution times which must be significantly reduced to justify the 

use of a hardware multiply. 

Schmid (17) discusses hardware multiplication systems and in part­

icular a system for the IMP-16C. His application requires no special 

purpose chips and improves the multiplication time tq:33~~iwith a 6.5 

megahertz (MHz) clock operation. The analysis and application of his 

system is given in detail. The added circuit blocks, multiplication 

register and control signal generator, are described along with the 

software and interface problems. Although Schmid's system has a good 

balance between hardware and speed improvement, it is more complex and 

slower than specialized chip multiplication. 

An example of specialized chip multiplication is the~dvanced Micro 

.Q_e-yi~-~~~---(~~91_~!'!f_~~Q5 four-.~x:~-~~--t~o • s CC?~e-~~~~-r.!!_lll_LD_!.tP-li er. It is 

especially useful for the present application since it is expandable to 

any array size, available in the military temperature range and !_~ __ very_ 

high speed. Flexibility in the hardware-speed tradeoff is also given 

by use of different chip configurations. Speed can be increased by use 

of look-ahead carry chips as shown in Table VII. 

Other configurations which are not given in Table VII and which 

are time sequenced arrangements are discussed by Schmid (17) or by Ghest 

(8) in an AMD application note. Time sequenced arrangements are slower 

and more complicated but require less hardware. 

The hardware increase is sizeable when compared to a microprocessor 

which may consist of 30-60 packages without the multiplication hardware. 
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Also the package count in the table does not include any holding regis-

ters that may be required or any clock control circuitry for stopping 

the clock during multiplication if the cycle time is less than the mult­

iplication delay time. On the other hand, the speed of the slowest 

configuration is 0.315 ~s, almost 100 times faster than the Intel micro­

programmed soltuion which was for a 16-bit operand. 

Configuration 

1. Para 11 el ogram 
carries stay in 
same row 

2. Parallelogram -
r~rries from lower 
order multiplica-
tion skip to 
alternate rows 
where possible 

3. S p 1 i t i n to two 
parts which are 
added with high-
speed carry look-
ahead adder 

TABLE VII 

Am25S05 CONFIGURATIONS 

Array Size Total Time (~s) 
(bits) for Multiplication 

32 X 32 .315 

32 X 32 .187 

32 X 32 .152 

Package Count 
25505 54$18 

128 5 

128 15 

128 32 

Caution must be used when comparing the 0.315 ~s time to other ex­

ecution times. This time does not include the time required to input 

the operands and output the result. This time will vary according to 



45 

the microprocessor being used. This chip does produce a significant 

increase in speed without added system complexity and with little soft­

ware requirements from the ALU other than set-up type instructions. 

Th~ ~pJ;tU_~a-!:to_n. ___ 9J. .. .t.tte __ Am25S 0 5. is .. u ncompl ica ted.....b.y_:t . .th..E:! .. f:l~!:~~a r_: __ 2_~-

c rea~j.s __ ~Jgt1jfi £.C!ll..t. .. 
------

The parallelogram configuration, the first configuration of Table 

VII, is shown in Figure 12. This configuration requires the lowest num- r~ 

ber of additional chips of the non-sequenced configurations and is sim­

pler to apply than the sequenced configurations. For these reasons it 

is probably the best choice of the multiplication hardware systems if 

the 128 additional required packages are ~c;c:_ep~abl~_: 

Am25S05 Am25S05 . . . Am25S05 

Am25S05 Am25S05 ... Am25S05 

Am25S05 Am25S05 ... Am25S05 

Figure 12. Parallelogram Configuration 
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4.3 Fixed Data Path Microprocessors 

Three representatives of 16-bit fixed data path microprocessors 

are compared in Tables VIII, IX and X. Table VIII gives an architecture 

and general characteristics comparison while Tables IX and X give the 

hardware and software support comparisons, respectively. This is not a 

complete listing of all 16-bit fixed data path microprocessors but only 

a representation. The total number of 16-bit processors is not large 

since the greatest number of fixed data path microprocessors are of the 

8-bit structure. The National Semiconductor•s IMP-16 is actually de­

signed around a 4-bit slice microprogrammable chip set. Offered as the 

IMP-16, it is a 16-bit fixed data path, fixed instruction set processor 

and is thus put into this category. 

This comparison again shows the advantage of the lower development 

manpower requirements due to the hardware and software support. All 

three microprocessors have resident and cross assemblers, debug, diag­

nostic, and edit programs and are available on a predesigned card. 

This type of support is almost necessary for sma 11 quantity development 

programs. 

The IMP-16 processor also shows what most experts believe is going 

to be the growing trend in processor development. This is the predesign 

of slice microprocessor boards with fixed instruction sets enabling the 

manufacturers to develop the required support products. As certain MOS 

chips become established, manufacturers could offer transistor-transis­

tor logic (TTL) slice equivalent systems where improved speed is desired. 

Engineers could utilize previous experience with the well established 

chip and save the cost and time of a new learning process. Certain 



Manufacturer 
Model 

General 
structure 
Technology 
No. of devices 
per CPU 
CPU size (pins) 
Supp1y vo1tage 
CPU pwr. 
dissipation (mW) 
Data word size 
(bits) 
Instruction word 
size (bits) 
Directly addres-
sable instruction 
words (no.) 
Clock frequency 
(Hz/ phases 
required) 
Register to 
register add time 
(lls/data word) 
No. of registers 

Arithmetic 
Index 
General 
purpose 
Return stack 
(no. x bits) 

Interrupts 
Type 

Direct memory 
access 
BCD arithmetic 
(hardware) 
Microprogrammable 
Extended tempera-
ture range 
available 
Delivery start 
(qtr. year) 

TABLE VIII 

16-BIT MICROPROCESSORS 

National General 
Semiconductor Instrument 
IPC-16 (PACE) CP-16007 

16-bit CPU 16-bit CPU 

PMOS NMOS 
1 1 

40 40 
-12, 5 -3' 5' 12 

700 750 

8 or 16 16 

16 10' 20' 30 

65K 65K 

2 MHz/20 5 MHz/20 

8 2.4 

0 0 
0 0 
4 8 

10 X 16 External RAM 

Standard Standard 
Vectored, Vectored, 
6 Level multilevel 
Optional Standard 

Standard No 

No No 

3 Qtr. 75 3 Qtr. 74 
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National 
Semiconductor 

IMP-16 

4-bit slice 

PMOS 

24 
-12, 5 

16 

16 

65K 

700 KHz/40 

4.6 

4 
0 
0 

16 X No. of bits 

Standard 
1/2/2 Level 

Optional 

No 

Yes 
-55°C to 85°C 

1 Qtr. 73 



Manufacturer 
Model 

Processor cards (CPU 
system on a card) 
Prototyping system 
(hardware and software 
development system) 
In-system emulator 
(tests system in place) 

Manufacturer 
Model 

Resident assembler 
Cross assembler 
Simulator 
High level language 
Programs (firmware) 

Debug 
Diagnostic 
Edit 

TABLE IX 

HARDWARE SUPPORT 

National 
Semi conductor 
IPC-16 (PACE) 

Yes 

Yes 

No 

TABLE X 

SOFTWARE SUPPORT 

National 
Semiconductor 
IPC-16 (PACE) 

Yes 
FORTRAN IV 

No 
SM/PL 

Yes 
Yes 
Yes 
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General National 
Instrument Semiconductor 
CP-1600 IMP-16 

Yes Yes 

Yes Yes 

No No 

General National 
Instrument Semiconductor 
CP-1600 IMP-16 

Yes Yes 
FORTRAN IV FORTRAN IV 
FORTRAN IV No 

No SM/PL 

Yes Yes 
Yes Yes 
Yes Yes 
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options can be made available such as extended instruction sets through 

additional boards or chips. Even special purpose microprogrammed in­

structions would be available by working with the manufacturer. These 

are precisely the advantages which prompted the selection of the IMP-16 

for the feasibility study of the use of a 16-bit fixed data path micro­

processor in the fire control system. The IMP-16 has an optional ex­

tended instruction set which includes multiply, divide, and double 

precision add and s~btract. A total of 43 basic instructions are 

offered with an optional 17 instructions. See Appendix A. The IMP-16 

is also a well established system initially being offered in the first 

quarter of 1973. 

4.3.1 Feasibility of Using the IMP-16C 

The IMP-16C is a microprocessor card assembly with the functional 

blocks as shown in Figure 13. The card assembly is a self-contained 

16-bit parallel processor with 256 16-bit words of read/write memory. 

The off-card memory may be expanded in increments of 4,096 16-bit words 

to provide a total memory of 65,536 words. Two new versions of the 

IMP-16C are being offered, the IMP-16C/200 and the IMP-16C/300. The 

new versions have one extra control read only memory (CROM) for pur­

poses of expanding the basic instruction set. The IMP-16C/200 leaves 

the socket empty so the user may microprogram desired instructions 

while the IMP-16C/300 comes with a pre-programed CROM for the extended 

instruction set. The IMP-16P is also available which is a complete 

microcomputer. 

The architecture of the register and arithmetic logic unit (RALU) 

is straightforward as shown in Figure 14. There are four working reg-
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isters (AC)~ AC1, AC2, AC3), a status flag register, a program counter 

(PC), memory data register (MDR), a memory address register (MAR) and a 

16-word register stack for subroutine and interrupt return addresses. 

Two of the accumulator registers (AC2 and AC3) are used as index regis-

. ters. The status flag register is updated by hardware and includes a 

link bit, overflow bit, carry bit and 13 general-purpose flag bits. 

The PC, MDR and MAR serve hardware functions and are not directly avail­

able to the programmer. 

..... - CONTROL 
~ FLAGS 

CONDITIONAL 
~ JUMP ~ 

MULTIPLEXER 

CLOCK 
GENERATOR 

- INPUT CENTRAL _J DATA tr .. 
MULTIPLEXER PROCESSING --1 BUFFER 

UNIT (CPU) 

.... J ADDRESS 
~ -I LATCHES 

..... 
ON - CARD 

MEMORY .... ..... 

Figure 13. IMP-16C Card Assembly Block Diagram 
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~ 16-WORD STACK 

~ STATUS FLAG 

~ PC 

-- MDR 

~ MAR 

~ ACO 
-· 

~ ACl 

~ AC2 

-- AC3 

16 bits / / v 
/ 

16 bits 

-
ALU 1 COMPLEMENT~ 

~~INPUT/OUTPUT SECTION~ 

~ 

Figure 14. RALU Block Diagram 

There are three addressing modes: direct, relative and index. One 

may address direct to only the base page (0 to 255). To address above 

255 one uses either relative, which adds or subtracts from the PC, or 

index, which adds the contents of the desired index register to the PC. 

The above system is implemented with a 2-bit mode field and a displace-
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ment field. 

The basic and extended instruction sets are shown in Appendix A. 

The execution times are calculated for purposes of throughput analysis. 

These calculations are based on a 1.4 ~s micro-instruction cycle time 

and a 1.75 ~s read/write memory cycle time. The execution time is thus 

calculated using 

or 

t (1 4)x(Number of ) + 0 35 (Number of ) 
ex = · execution cycles · x read/write cycle~ ~s (2) 

Using the instruction mix derived in Chapter II, the critical worst 

case execution time is calculated below for two cases. These calcula-

tions are a very rough first approximation effort. 

Case 1 Firmware Multiply Instruction 

16-bit multiply: (172 ~s) x 1100 multi.plies/cycle 
Double precision add-subtract: (18.2 ~s) x 900 

instr./cycle 
Firmware 16-bit DIV: (223.65 ~s) x 14 instr./cycle 
Trigonometric instr. (Cordie): (87 ~s) x 7 

instr./cycle 
Memory access instr.: (8 ~s) x 4000 instr./cycle 

Total 

* ms =millisecond 

Case 2 Hardware 32-bit Multiply 

32-bit multiply: (.315 ~s) x 1100 instr./cycle 
Double precision add-subtract: (18.2 ~s) x 900 

instr./cycle 
Firmware 16-bit DIV: (223.65 ~s) x 14 instr./ 

cycle 
Trigonometric instr.: (87 ~s) x 7 instr./cycle 
Memory access instr.: (8 ~s) x 4000 instr./cycle 

Total 

= 

= 
= 

= 

= 

= 

= 
= 
= 

189 ms* 

16 ms 
3 ms 

.609 ms 
32 ms 

241 ms 

.346 ms 

16 ms 

3 ms 
.609 ms 

32 ms 
51.96 ms 

( 3) 

~-~~ 
( 6} 
(7) 

( 8) 

(9) 

(10) 
( 11) 
(12) 
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These calculations show that without any modification the IMP-16 

is too slow. With the addition of a hardware multiply system it may be 

able to work at the 0.1 second data rate. The 50 percent margin is not 

excessive with these rough calculations. System time requirements and 

memory requirements usually become accurate only with extensive exper­

ience with the microprocessor. If the advantages of the IMP-16 warrant 

its use even at this speed a further, more detailed time calculation 

would be required using the instruction execution times in Appendix A. 

This IMP-16 description and analysis was included mainly to give 

insight into the manpower requirement advantage and speed limitation of 

the fixed data path systems. If manpower and project schedule require­

ments restrict the use of the obviously capable slice microprocessors 

then one must explore the newer, faster systems. The IMP-16 had the 

smallest manpower requirements while the newer fixed data path systems 

will be somewhere between the IMP-16 and slice systems. The slice ap­

plication is a very large jump in manpower from any fixed data path 

system. 

4.4 Variable Data Path Microprocessors 

The following sections give brief discussions of five slice config­

uration microprocessors which represent the state of the art in micro­

processors. The discussions will be limited to mainly architecture 

until the comparison section which will include a hardware comparison 

table. Also the instruction sets or control words are shown in tabular 

form for each processor in Appendix B. 

Each of these microprocessors has the speed for this application. 

The selection factor is thus more related to the ease of application or 
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manpower requirements than speed. 

A similar calculation is done below for slice microprocessors as 

was done for the IMP-16. Using the slowest times of the 5-slice systems, 

the critical times are calculated as before. 

Firmware mult. 32-bit: 80 ~s x 1100 instr. 
Add-sub. instr. 32-bit: 1 ~s x 900 instr. 
Firmware div. 32-bit: 80 ~s x 14 instr. 
Trig. functions (Cordie): 87 ~s x 7 instr. 
Mem. access instr.: 1 ~s x 4000 instr. 

Total 

= 
= 
= 
= 
= 

Hardware mult. 32-bit: 1 ~s x 1100 instr. = 
Add-sub. instr. 32-bit: 1 ~s x 900 instr. = 
Firmware div. 32-bit: 80 ~s x 14 instr. = 
Trig. functions (Cordie): 87 ~s x 7 instr. = 
Mem. access instr.: 1 ~s x 4000 instr. = 

New Total 

88 ms 
0.9 ms 
1.12 ms 
0.61 ms 
4.0 ms 

94.6 ms 

1.1 ms 
0.9 ms 
1.12 ms 
0.61 ms 
4.0 ms 

---r.D ms 

(13) 
(14) 
(15) 
(16) 
(17) 

(18) 
(19) 
( 20) 
(21) 
(22) 

These calculations show that the firmware multiplication instruc­

tion requires 88 percent of the 100 millisecond data rate alone. Yet 

the total time requirements of the hardware multiplication system is 

seven percent of the data rate. The importance of the hardware multi­

plication system is that the 50 millisecond data rate may be obtained 

with ease and with room for expansion due to either experimental firm­

ware or double precision arithmetic. 

4.4.1 Intel 3000 Series Microprocessor 

The Intel 3000 series microprocessor set is a family of Schottky 

bipolar LSI circuits which include the 3001 microprogram control unit 

(MCU), 3002 central processing element (CPE), 3003 look-ahead carry gen­

erator, 3212 multi-mode latch buffer, 3214 priority interrupt control 

unit, 3226 inverting bi-directional bus driver and the 3301, 3304, 3601, 
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3604 memories. A block diagram of a typical system is shown in Figure 

15. 

MICRO-
PROGRAM 
MEMORY 

ADDRESS IN 

MICRO-
INSTRUCTION 

-

CONTROL TO 
MEM I/0 

OPTIONAL 
PIPELINE 
REGISTER 

FC0-3 

AC0-6 -
MCU FO 
3001 

'""- F1 
SXO-PX7 

F0-6 

r--

,.--

MEM 
ADDRESS 

BUS 
I I 

A OUTPUTS 

DATA 
BUS 

f I 
D OUTPUTS 

CP ARRAY 
3002's BQ 

Ll Cl 
co M INPUT I INPUT 

' K 
INPUTS 

-

DATA DATA FROM 
FROM MEM DEVICES 

Figure 15. Block Diagram of a Typical System 

One of the most important and unusual system blocks is the MCU 

which has the functions of address control. The unusual aspect of the 

MCU is the addressing scheme in which each read only memory (ROM) loca-

tion is represented by a row and column address. Furthermore, the in­

struction fetch is accomplished through the execution of micro-instruction 
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jump commands such as jump in current row or jump in current column 

{see Appendix B). The jump command is encoded in each micro-instruction 

in a special jump field. This is in contrast to the often used sequen­

tial address selection using a program counter. The 3001 addressing 

scheme allows a jump unconditionally in one operation anywhere in the 

present row or column. It is not possible however, to jump anywhere 

in the address matrix. For a given location in the matrix, there is a 

fixed subset of microprogram addresses that may be selected as the next 

address. 

Thispresent address dependency leads to some microprogramming 

difficulty. The recommended procedure for assigning memory locations 

to each instruction is as follows: 

1. First write the microprogram without regard to the assignment. 
For conditional jumps, use the basic conditional jumps provided 
by the MCU {JFL, JCF, JZF, JPR, JLL, JRL, JPX), noting the number 
of possible destinations for the conditional jump chosen. How­
ever, when a sequence of instructions is to be executed uncon­
ditionally, do not indicate what jump codes will be used to 
advance to the next state unless the JCE enable feature is required. 
Similarly for unconditional jumps use the non-committal code JMP 
rather than selecting a JCC, JZR, or JCR. 

2. Prepare a state sequence flowchart for the program. According 
to the programmer•s preference, this may be done before, during 
or after the actual writing of the code. Label the conditional 
jump points on the flowchart. 

3. Using the flowchart as a guide, perform the assignment. In 
general, conditional jumps should be assigned first, with clusters 
of conditional jumps assigned before isolated jumps. Leave long 
chains of unconditional sequences for last. The process of as­
signment can be assisted by using a diagram of the control memory 
showing the 32 rows and 16 columns. As each state is assigned, 
the control memory diagram is marked to show occupancy of that 
word and the flowchart marked to show the assignment of the state. 
With the assignment complete, the numbers are copied from the 
flowchart (29). 

One can see that the complicated addressing scheme of the 3001 can 

be a disadvantage; yet Intel is the only manufacturer of slice micro-
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processors which has developed a micro-assembler. This micro-assembler 

(XMAS) is written in FORTRAN IV and is designed to assemble microcode 

to produce a ROM programming file. Other user aids such as a micro­

program memory map and a cross-reference dictionary are also provided 

but actual assignment of microprogram memory addresses to micro­

instructions is left to the user. XMAS is flexible and extensible in 

both micro-instruction length and microprogram memory address space. 

Also fields may be added to the micro-instruction word length to as 

large as 64 bits. Thus, one of the advantages of the Intel set is the 

micro-assembler. 

The basic micro-instruction is made up of three fields which are 

seven bits of micro-instruction sequence control to the MCU, four bits 

of carry control to the MCU, and seven bits of function selection to 

the CPE array. This basic micro-instruction of 18 bits is then extended 

to control special purpose functions such as interrupt control, I/0 

controls, CPE clock inhibit and generation of constants to be issued 

to the CPE array. The CPE clock inhibit field (one bit) is very useful 

because it allows non-destructive testing of CPE registers via the MCU 

carry logic. The carry logic in the MCU responds just as if the micro­

instruction were executed, but the fact that the CPE clock was inhibited 

leaves the CPE unaltered. 

Another important system block which requires detailed discussion 

is the 3002 CPE which is a 2-bit slice register and arithmetic logic 

unit. It•s capabilities include two•s complement arithmetic, logical 

AND, OR, NOT and exclusive OR, incrementing and decrementing, shifting 

left or right, bit testing and zero detection, carry look-ahead genera­

tion and multiple data and address buses. The 3002 has 11 scratchpad 
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registers designated R0 through Rg and T, and one accumulator (AC). 

The block diagram is shown in Figure 16 and the CPE microfunctions 

are given in Appendix B. 
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Figure 16. Intel 3002 Block Diagram 

4.4.2 9400 Series Macrologic 

1--

r--

r- ENABLE 
·nATA 

c 
R 

ARRY IN 

0 RIGHT 
OUT 

The Fairchild Schottky TTL 9400 series macrologic is designed at a 

lower level, meaning more system blocks are required to produce a work­

ing processor. The system blocks include 9401 cyclic redundancy check 

(CRC), generator/checker, 9403 serial/parallel FIFO, 9404 data path 
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switch (DPS), 9405 arithmetic logic register (ALRS), 9406 p-stack, 9407 

data access register (DAR), and 9410 16 x 4 clocked random access memory 

(RAM). The basic processor functions are broken into four chips, the 

9404 DPS, 9405 ALRS, 9406 p-stach and the 9407 DAR. 

The 9405 ALRS consists of a 4-bit ALU, an 8-word by 4-bit RAM with 

output latches, an instruction decode network, control logic, and a 

4-bit output register. Data for ALU functions are provided from the 

RAM and from the input data lines (D0 - o3). The instructions are shown 

in Appendix B. Rx is the RAM location. 

The 9406 program stack consists of an input multiplexer, a 16 x 4 

RAM with output latches addressed by the stack pointer (SP), an incre­

menter, control logic, and output buffers. The 9406 implements four 

instructions as determined by inputs ! 0 and r1. (See Appendix B.) 

Thus the main function of this device is control of subroutine execu­

tion. This device is also expandable as a 4-bit slice. 

The 9407 DAR performs memory address arithmetic for RAM resident 

stack applications. It contains three 4-bit registers intended for pro­

gram counter (R0 ), stack pointer (R1), and operand address (R2). The 

9407 implements the 16 instructions shown in Appendix B. 

The overall microprocessor functions are broken into smaller func­

tions producing more system flexibility but also increasing complexity. 

Each member is also a 4-bit slice. The ALRS has only eight registers 

and the ALU inputs are fixed to the data input bus and one internal 

register. The ALRS seems to be the weakest link in the system. The 

9406 program stack and the 9407 DAR on the other hand are strong points. 

These two chips may be useful when combined with other manufacturers 1 

systems which have more flexible ALU and register systems but lack 
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program control logic. Overall the macrologic does not provide the sys­

tem simplicity we desire. 

4.4.3 Am2900 Series 

The Advanced Micro Devices (AMD) Am2900 series microprocessor cir­

cuits are low-power SchottkY devices with a total of 14 different chips 

in the family.. The major blocks in the system are the Am2901, 4-bit 

bipolar microprocessor slice and the Am2909 microprogram sequencer. 

The Am2901 is almost a complete system including register and data con­

trol, internal register matrix and ALU. A block diagram of the Am2901 

is shown in Figure 17. The impressive architectural features include 

16 general purpose registers, one Q-register, two separate shifting 

networks, and internal ALU input selection. 

This ALU input selector can select eight different input combin­

ations between the Q-register, direct input and two of the 16 internal 

registers. The two internal registers selected from the 16 total are 

addressed from the A and B address buses which may be used to select 

the same register at the same time. An output multiplexer is also in­

cluded for direct access to the register file or ALU output. 

Hardware advantages include a faster cycle time than the 3000 

series, less power consumption and fewer required chips due to the 4-

bit slice architecture. Also the total architecture requires only two 

different major chips other than I/0 and holding register requirements. 

The micro-instruction word is nine bits, three bits for ALU source 

operand selection, three bits for ALU function selection and three bits 

for ALU destination control. These fields and their associated func­

tions are shown in Appendix B. 
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RO/Ll 

LO/R1 

When discussing the Am2901 one must also mention the Monolithic 

Memories Inc. (MMI) 6701 which is architecturally identical to the 

Am2901. The major difference is the Am2901 is twice as fast and has 

some architecture improvements. Also the MMI 6701 does not have any 

peripheral chips such as the Am2909 microprogram sequencer at present. 

For these reasons the MMI 6701 was not included in the microprocessor 

selection process. 

The second important system block~ the Am2909 microprogram se-
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quencer, is shown in Figure 18. This chip includes a register stack for 

subroutine return address storage, program register and incrementer, in-

struction register and associated multiplex and control circuits for 

branch and subroutine control. This microprogram control chip is tot-

ally different from the Intel 3001. The major differences are the 

program addressing schemes and the Intel •s lack of subroutine execution 

hardware. The Intel chip would require an external RAM with either an 

up-down counter for stack pointer or additional bits in the micro­

instruction for control. The 3001 has the advantage of internal control 

circuits for condition jump execution. 
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Figure 18. Am2909 Block Diagram 
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Finally, a typical central processor unit using the Am2900 series 

microprocessor circuits is shown in Figure 19. This shows the other 

family members in a typical system arrangement. 
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Figure 19. Typical System Using 2900 Family Elements 
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4.4.4 M10800 Microprocessor System 

Motorola•s M10800 microprocessor family is the fastest system to 

be discussed, being an emitter coupled logic (ECL) chip set, and it 

also has a well thought-out architecture. The family members include 

the MC10800 4-bit processor slice, MC10801 control function, MC10802 

timing function, MC10803 slice/memory interface and the MC10804 slice 

look-ahead carry. The architecture is designed at about the same level 

as the 9400 series but with distinct differences. The 10800 family is 

also the most versatile system (see Figure 20). The basic functions 

are included in four chips requiring external multiplexers and a RAM 

for ALU registers. The basic functions of each member are described 

in the comparison table, Table XI. 

Very little application literature is available, since official 

announcement of the M10800 microprocessor family won•t be until 1976. 

The only additional information given other than a general description 

is the ALU function set shown in Appendix B. This shows the very com­

plete function set of the ALU. The distinguishing features which make 

the system versatile are the ability to use external RAM for the ALU 

working registers and the use of external multiplexers. Detailed an­

alysis is impossible without better data, but the system blocks are 

conveniently segmented. At this point. however. this level of per­

formance is not necessary and would require more hardware and devel­

opment manpower. 
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Figure 20. M10800 Family - Pipeline Processor Example 

4.4.5 Comparison 

The Fairchild 9400 series and the Motorola 10800 series are almost 

in a different class from the Intel and AMD processor families. The 

9400 and 10800 series both break up the processor into smaller system 

blocks requiring more packages to build a basic processor. Of these 

two, the MC10800 series seems to have two major advantages. The first 

is the increased speed provided by the use of ECL technology and the 
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second is a better architectural arrangement. The MC10800 series has 

a more powerful ALU and the registers are added externally. This means 

one can design the system to have the number of registers required by 

the application. Neither manufacturer is planning to supply software 

support. 

The major disadvantage of both processors is the increased devel­

opment manpower and external hardware required. Also the MC10800 has 

a disadvantage of working with a new technology. The 9400 series has 

no real system advantages and is slower than the Am2900 series. The 

MC10800 system is impressive but is not scheduled to be released until 

some time in 1976. 

The choice for the fire control processor lies between the Intel 

3000 series and the Am2900 series. The Am2900 series has a faster cy­

cle time, a simpler architecture, a more complete chip set, more power­

ful ALU functions and more registers. The 3000 series has a complicated 

addressing scheme which reduces the bit size of the micro-instruction 

but increases the software development time. It 1 S greatest advantage 

is an existent cross assembler for the ALU chip. This assembler is 

only a microcode assembler and a second macro-assembler is still needed. 

Further examination of the instruction sets also shows the Am2900 

to be stronger. This type of comparison is difficult because each 

manufacturer presents the instruction set in a different form. The 

Intel 3002 instruction set is shown with a mnemonic for each function 

because Intel has an assembler for their instruction set. The Am2901 

shows the instructions as a function of the bit code and it is broken 

into three groups. The 3002 appears to have more functions but actual­

ly it has fewer, and has less destination and source control. The most 
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obvious difference is the absence of subtraction in the 3002 functions 

where the 2901 includes both R-S and S-R subtraction. Also according to 

the Advanced Micro Devices• engineers, the 2901 has 203 source operand 

combinations to the ALU, while the 3002 has 24 (23). Also the Am2901 

has simultaneous shift and arithmetic operations, while the 3002 does 

not. Furthermore, the Am2901 has a more flexible register addressing 

mode where any of the 16 registers may be a source or destination of 

an ALU operation. The 3002 requires the use of the T or AC registers 

as the destination register. Also the 3002 is very difficult to sub­

routine on the microlevel requiring external hardware. 

The above advantages have prompted the selection of the Am2900 

series for application for the fire control system. The 3000 series 

seems to be suited mainly for controller type applications and not for 

general processing functions which are the primary needs of the present 

system. Thus Chapter V will begin the hardware application of the 

Am2900. The four microprocessor families discussed are summarized in 

Table XI. Also a comparison of the four families is shown in Table XII. 

Device 

Intel 3001 
microprogram 
control unit 

TABLE XI 

MICROPROCESSOR FUNCTIONAL SUMMARY 

Description 

Maintains microprogram address register, selects 
next micro-instruction based on flags, instruction 
and present address. Completely different 
concept of address control from program counter 
approach. · 



Device 

Intel 3002 
central 
processing 
element 
(2-bit slice) 

Fairchild 9404 
data path switch 
(4-bit slice) 

Fairchild 9405 
arithmetic logic 
register stack 
(4-bit slice) 

Fairchild 9406 
program stack 
(4-bit slice) 

Fairchild 9407 
data access 
register (4-bit 
slice 

Am2901 
microprocessor 
slice (4;...bit 
slice) 

Am2909 
microprogram 
sequencer 
(4-bit slice) 

MC10800 
microprocessor 
slice (4-bit 
slice) (ECL) 

TABLE XI (Continued) 

Description 

Operations include ALU functions, data path 
manipulation, and register control. Three input 
and two output buses are available and 11 general 
purpose registers with one full function 
accumulator. 

Only executes the functions of data path manip_ 
ulation which include dual 4-input multiplexer, 
a true/complement one/zero generator, and a 
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shift left/shift right array. A 5-bit instruction 
word selects function. 

Performs ALU functions and register control. Eight 
internal registers are provided. Register selec­
tion requires three bits and the instruction word 
is three bits. 

Provides return address storage for nested sub­
routines. Executes four instructions: Return, 
Branch, Call, and Fetch. Program stack is 
16 x 4 bits. 

Contains three 4-bit registers intended for program 
counter, stack pointer and operand address. 
Implements 16 instructions for address control. 

Performs ALU, register control and data path manip­
ulation between registers and ALU. Instruction 
word is nine bits, and two 4-bit words select re­
gister address. 16 general purpose registers and 
one Q-register are provided. 

Performs address control with an instruction 
register, stack pointer, 4-word stack, and micro­
program counter register. Branch, program counter 
increment and subroutine function are all control­
led by the 2909. 

Performs ALU functions with only data latches and 
an accumulator as internal registers. Very power­
ful ALU instruction set with 16-bit instructions. 
A register file must be externally provided using 
a RAM. 



Device 

MC10801 
control function 
(4-bit slice) (ECL) 

MC10802 timing 
function (ECL) 

MC10803 slice/ 
memory interface 
circuit 

TABLE XI (Continued) 

Description 

Performs microprogram address control including 
status, branching and interrupt operations. 

Ties other system blocks together by providing 
various clock phases and control. 

Performs main program address control and allows 
for more complex addressing techniques. 
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TABLE XII 

MICROPROCESSOR COMPARISON 

Manufacture Model Intel Fairchild Am MC 
3002 9405 2901 10800 

Structure 2-bit slice 4-bit slice 4-bit slice 4-bit slice 

Technology TTL TTL TTL ECL 

Supply voltage (V) 5 5 5 -5.2, -2.0 

Pwr. diss. (mW) 800 X 2 470 925 1300 

Other main system 3001 9404, 2909 MC10801 
parts 9406, 9407 10802' 10803 

Cycle time (ns) 150 125 55 

Clock frequency 6 MHz 10 MHz 10 MHz 

Phases required Single Single Single Double 

No. of registers 11 8 17 External RAM 

Return stack size None 16 (9406) 4x4 (2909) 

BCD arithmetic No No No Yes 

Microprogrammable Yes Yes Yes Yes 

Software support Yes No No No 

Simultaneous shift No Yes Yes 
and arithmetic 

Number of microcode 7 9404-5 9 16 
control inputs 9405-3 

9406-2 
9407-4 

Temp. range -55°C to -55°C to -55°C to 0°C to 
125°C 125°C 125°C 75°C 

Availability 1972 1975 1975 1976 

PINS 28 X 2 24 each 40 48 



CHAPTER V 

APPLICATION OF THE Am2900 SERIES 

5.1 Introduction 

The selection process has been completed and the next objective 

is to define the development time and required resources. The hard­

ware and preliminary micro-firmware specification will be investigated 

and project flowcharts outlined. The project flowcharts show the de­

velopment phases and required parallel development of firmware and 

hardware. Chapter VI will be devoted to the project flowcharts and 

overall foreseeable problems. At this point preliminary hardware de-
-----·---------- ...... - ·-·- ... _.- -------~--- ----~--~----------~----~·-"- -·-

sign will begin for the purposes of showing system complexity and to 
-------------------~--.. -. 

obtain an approximate package count. The hardware design will also 

produce a preliminary microcode definition. Table XIII defines the 

system elements which will frequently be referenced by their associa­

ted abbreviation. 

5.2 System Specification and Design 

At this point one must make primary system decisions. The address 

bus size, data size, macro-instruction length, micro-instruction word 

and many other factors must be defined. The design goals are to out­

line a system which has a general and flexible microcode function base 

with expandable ROM and RAM capabilities. Possible system debug 

problems must also be anticipated during design. 
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TABLE XIII 

SYSTEM ELEMENTS 

Name (Abbr.) 

Program counter (PC) 
Instruction register (IR) 
A address register (A) 
B address register (B) 
Memory address reg. (MA) 
Memory data register (MD) 
Memory data reg. 1 (MD1) 
Memory data reg. 2 (r1D2) 
Microprogram counter (MPC) 
Micro-instruction reg. (MIR) 
Read only memory (ROM) 
Random access memory (RAM) 
Either ROM or RAM (MEM) 

Definition 

One of 16 internal registers of 2901 
16-bit macro-instruction register 
3-bit section of IR for A address 
4-bit section of IR for B address 
16-bit hardware register 
32-bit hardware register 
First 16 bits of MD 
Last 16 bits of MD 
Register internal to 2909 
Pipeline register 
Microprogram memory 
Working memory 
Total memory system for macro system 

The starting point is the basic block outline shown in Figure 21. 

The bus system must be defined from data and instruction length re-

quirements. The micro-instruction word will consist of several func-

tional fields which will be defined as required during hardware design. 

The macrocode will only consist of three fields. One field is required 

for the ROM starting address and two fields to specify the CPU register 

addresses. The macrocode word is not decoded by hardware but will in­

clude a field which is the ROM address of the microcode program which 

executes the macro-instruction. The macrocode word will be limited to 

16 bits which means nine bits will be ROM address and seven bits will 

specify the CPU register addresses. The Am2901 requires four bits for 

each A and B register address selection. Because there are only seven 
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bits, complete access to all 16 registers through address B is possible 

but only eight through address A. The Am2901 allows one to address 

through A and B buses, one of 16 internal registers as input to the ALU 

(see Figure 17). The ALU results are written back into the register 

selected by address B. The macrocode word is shown below. 

ROM STARTING ADDRESS ADDRESS A ADDRESS 8 

nine bits three bits four bits 

(maximum of 512 micros) 

The above macro-instruction is the first and primary instruction 

but it may be followed by two more instruction words. The second word 

will be either a 16-bit address for memory reference instructions or 

part of a 32-bit constant. A third byte will be the second half of the 

32-bit constant. Thus a maximum of three macrocode words may be accessed 

during an instruction execution. The ability to read a 32-bit constant 

from macrocode program memory allows the programmer to load internal 

registers with either a decrementing constant for loop control or a 

masking constant. 

5.2.1 Memory System 

The external memory system will consist of RAM working memory and 

ROM macroprogram memory. This is not to be confused with the micro­

instruction memory which will also be in ROM but considered internal 

memory. The address bus structure is shown in Figure 22. The actual 

addressing requires 14 bits for the ROM of which eight are shared with 

the RAM memory. The ROM system is divided into 1K sections. Ten bits 



16 bits--------------------~-------------------
256 x 4 TTL RAM Fairchild 93422 

(40 ns type Ace 

2 bits extra 

.~---------...,.-------=---------------~ RAM ENABLE 

4 bits 
934o4 or 
Am2961 

I IROMl "EN ~ 2 ROMS ~ECODER · 1 j16 x 1K I -~0 bits, 
--

Y t=f 2 ROMS 
rl16 X 1K 

10 bits 

4 bits Time) 

.___ 
---,~ I _,1~ ~0~~ I 10 bit~ ~8 bM4 ~A~56: I 

(DATA) 
{16 bits) 

15 14 13 12 11 10 9 8 
ROM ADDR E E 0 A A A A A 
RAM ADDR E E 1 X X X X X 

E - EXTRA 
A - ADDRESS 
X - DON'T CARE 

t=:f 2 ROMS ~ 
r=-116 X 1K 

Expandable to 8K bytes 

7 6 5 4 3 2 1 0 
A A A A A A A A 
A A A A A A A A 

Figure 22. Memory System 

·~RAMl I ,8 b}\4 X 256 I 

~RAM t I ~4 X 256 I 

J2-bit Data 

'-J 
<..TI 



76 

are used to address each of the 1K ROMs and four bits are used to select 

a particular chip. This arrangement allows preliminary work to start 

with a rough estimate of ROM size and add new ROM when necessary in 1K 

increments up to 8K bytes. The RAM system will provide 256 bytes of 

32-bit data which can also be increased to lK if necessary. The ad­

dressing scheme is also shown in the figure. Address 0 to 1FFF (hex­

adecimal) will select ROM while address 2000 to 3FFF will select RAM. 

Two extra bits are left for I/0 control of radar data. 

The l/0 bus control system is shown in Figure 23. Am2905s (or 

2906s if parity is required) will be used for bus drivers and control. 

The 2905 block diagram is shown in Figure 24. This system enables 

four types of data transfer: 

1. 32 bits of data from RAM to ALU 

2. 16 bits of instruction from ROM to instruction 
register 

3. Two bytes of 16 bits of instruction from ROM 
to ALU 

4. 16 bits of address from ROM to memory address 
register (MA) 

Also because each 2905 has internal data latches they will also 

function as the memory data register (MD). The 2905 which controls the 

memory address bus will be used as the memory address register (MA). 

The 2905 block diagram shows the control lines available which include 

an input select line, buffer clock line, an output enable, an input 

enable and a load buffer line. The output buffer is clocked by an edge 

and the input buffer is loaded by a level. Each of these lines must 

be controlled as a function of the microword to perform the desired 

output states. The design of this circuit will be discussed next. 
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To specify the I/0 control functions one must first define the 

types of I/0 operations to be performed and relate them back to the sys-

tern clock. Certain types of instructions and their associated required 

I/0 functions are shown below. 

Instruction 

All instructions 

Mem reference 

Load immediate 

Mem reference 

TABLE XIV 

I/0 OPERATIONS 

I/0 Function 

Load MA 
Fetch instruction 

Data address fetch 

Fetch two word constant 

Fetch 32-bit RAM data 
Output result 

I/0 Path 

(ALU) PC to MA 
MEM to MD2 to IR 

MEM to t1D2 to MA 

MEM to MD2 to MD 1 
MEM to MD2 

MEM to MD 
ALU to MD 

The table shows that several I/0 operations may be required by a 

single instruction. The problem becomes how to divide the I/0 func-

tions. For example, one may make a single transfer, memory to MD2, 

one cycle and the transfer, MD2 to IR, the next cycle or more operations 

may be performed in a single cycle. The logical breaks for I/0 oper­

ations are determined by when data are available and the time delays 

within the system. The above is given where each I/0 path shown is 



one cycle of microcode execution time. These functions give the best 

use of the available I/0 capabilities of the 2905 and only require a 

single phase clock. Further combining of the operations into more 

powerful functions would require multiphase clocks and a slower cycle 

time. Multiphase clocks were avoided by using the 29o5•s multiplexer 

capabilities to shorten I/0 paths. 

Hardware for the control of each I/0 operation as a function of 
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the system clock and the microcode word must now be designed. The hard­

ware design is shown in Figures 25 and 26. The design is basically 

centered around the use of a 4 to .16 line decoder chip. The design 

utilizes the tradeoffs between the microcode bit assignments and the 

decoder output. The seven required states could have been defined using 

only three microcode bits but a fourth was added so large numbered input 

gates could be eliminated in the decode hardware. Also this system is 

easily expandable with only seven of the available 16 lines used. Fin­

ally, the system debug problem was simplified by the use of the decoder. 

Each I/0 state is now defined by a single lead. 

The system timing had to be specified during the I/0 control de­

sign for each microcode execution cycle. A 5-megahertz (MHz) system 

clock or 200 nanoseconds (ns) cycle time was chosen based on the set-up 

and delay times within the system. The Am2900 family chips are new and 

not well specified as to timing. The only hard specification is 135 ns 

delay from the A or B address inputs of the Am2901 to the ALU output Y. 

This delay is a maximum for the Am2901DM or military temperature range 

device. The cycle time must be greater than 135 ns + delay of input 

registers. Most of the registers are clocked on the raising edge of 

the system clock cycle. The timing is shown in Figure 27. 
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This figure shows a simplified timing scheme where each register 

load operation is shown. The timing was not derived in detail and is 

not meant as a final design. The basic considerations were that the 

200 ns cycle time be greater than the I35 ns ALU delay plus worst case 

delay of the other internal registers. The worst case delay of the 

registers was not available but it is felt that 200 ns cycle time is 

more than adequate. The other consideration is that the negative edge 

to positive edge time of the system clock be greater than 30 ns, an 

Am290I requirement. This delay must also be great enough to allow MD2 

to be loaded at the negative edge and MDI to be clocked at the positive 

edge, thus allowing a single cycle transfer of data from the ROM to MDI, 

IR, or MA. 

Once a general timing scheme was derived, the I/0 control circuit 

was completed by producing the required control signals from the DE­

CODER and the system clock. The two lines RAM EN and ROM EN are the 

only lines not going to the Am2905 I/0 chips. These lines are required 

to control the tri-state bus which the ROM and RAM memories share. The 

lower order I6 bits of RAM data bus are shared with the ROM data bus. 

A separate microcode bit will be used for RAM read/write control 

as shown in Figure 26. It also controls the I/0 direction on the RAM 

data bus. 

5.2.2 Branch Control 

The Am290I provides three bits of status information which can be 

used for conditional branch operations. Figure 28 shows a circuit 

which provides the indicated operations based on three microcode bits. 

If more branch operations are required, a larger multiplexer could be 
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used at the expense of an additional microcode bit. The outputs, s0 , 

s1, feed into the Am2909 microprogram control chip. These two bits 

are multiplex select lines internal to the Am2909 which select one of 

either the micro-instruction register, the microprogram counter, the 

internal register file or an external input. The external input is 

connected to the micro-instruction register branch field so that one 

may select the branch address from the microword. The selected lines 

are then multiplexed into the microcode memory address lines. 

Five branch conditions are provided including a branch on start 

bit which can be used for external control. Once the switch is activ­

ated it becomes an unconditional branch. Thus, this branch condition 

provides a firmware start condition which, once active, can be used as 

an unconditional jump instruction. 

5.2.3 Firmware Register Control 
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At least some of the 16 registers within the 2901 will be used as 

special purpose registers such as a program counter, stack pointer or 

status register. Firmware must be able to access these special purpose 

registers while maintaining the macrocode•s ability to specify regis­

ters. The circuit shown in Figure 29 provides firmware control of three 

special purpose registers while the macrocode still specifies an external 

address. The fourth input shall be the macrocode•s specified address. 

Thus firmware may select one of three special registers or the macro­

code specified register. This system requires two multiplexer packages 

and two microcode control bits. 

A second method is to use a 2-input 4-bit multiplexer to select 

either the macrocode address or a microcode address. One microcode 
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bit is required for selection and up to four additional bits, depending 

on the number of firmware controlled registers required. If only four 

special purpose registers were required, three microcode bits would be 

necessary. This system requires only one multiplexer package and is 

shown in Figure 30. 

If a status register is actually going to be implemented it would 

require further hardware to input status information into the register. 

Input multiplexing and probably one bit microcode control would be 

required. 

5.2.4 Pipeline Register Operation 

The pipeline register or micro-instruction register (MIR) is used 

so that the next micro-instruction can be fetched during the execution 

of the present instruction. Table XVI shows the pipeline operation 

during normal program execution. Explanation of the symbols used is 

given in Table XV. 

+ 

+1 

TABLE XV 

DESCRIPTIVE SYMBOLS 

load into 
increment 

an/reg left-most n bits of 

wn/reg 
register 
right-most n bits of 

( ) 
register 
as a function of 

-1 decrement 



Address 

0 

1 

2 

TABLE XVI 

FIRMWARE EXECUTION WITH PIPELINE REGISTER 

Am2909 Functions 

MPC + MPC + 1, MIR + ROM (MPC) 

MPC + MPC + 1, MIR +ROM (MPC) 

MPC + a9/IR + 1, MIR +ROM (a9/IR) 

Instruction Execution 

If two word instruction: 
MPC + MPC + 1, MIR +ROM (MPC) 

If one word instruction: 
MPC + MPC + 1, MIR +ROM (MPC) 

Execution of Instruction 

End: 
MPC + 1, MIR +ROM (0) 

or 
MIR + ROM (File) 

Am2901 Functions 

PC+ PC + 1, MA + w16tPC 

IR + MEM (MA) 
16 PC + PC + 1, MA + w /PC 

ALU or MA + MEM (MA) 

PC + PC - 1 

(Last function required) 

co 
co 
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Lines 0, 1, and 2 are the instruction fetch cycle in microcode. 

The Am2909 functions are those actions taken by the micro-controller, 

and the Am2901 functions are the macro-instruction execution control. 

Microprogram control is not transferred to the macro-instruction reg­

ister until line 2, for this is the point where the first macro-instruc­

tion is available. At this point the PC is loaded into MA so that if 

the instruction is multiword a continuous fetch can take place. If the 

next instruction is a single word, the PC is decremented to its original 

value because the memory access is not done. Lines 0, 1, 2 and the last 

line are common to all instructions. Line 2 is a jump to the particular 

instruction's execution code based on the contents of IR. The last 

line shows the transfer of control either back to the next macrocode 

fetch or a subroutine return to a microcode execution point. 

Conditional branch instructions require special clock control be­

cause the next micro-instruction address is a function of the present 

execution results. On a conditional branch instruction the next micro­

code fetch is halted until the present execution is complete. Then 

the ALU clock must be stopped while the next microcode word is fetched. 

Thus one cycle time is lost during a conditional branch instruction 

execution. Table XVII shows the functional timing and Figure 31 shows 

the clock timing. Finally, Figure 32 shows the required hardware to 

control the system clocks during this process. 
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TABLE XVII 

EXECUTION OF CONDITIONAL BRANCH INSTRUCTIONS 

Am2909 Functions 

No new MPR load, stop MPRCLK 
Branch on results (same ~code) 

Continue 

5.2.5 Shift and Rotate Functions 

Am2901 Functions 

Function 
loose 1 cycle time Stop ALUCLK 

Function 
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Shift and rotate hardware are discussed in Am2901 application lit-

erature. These functions are discussed as part of the multiplication 

scheme used by the Am2901. The present application requirements are 

for a zero shift function for data scaling but if the Am2901 multipli-

cation scheme is used, two additional shift functions are required. 

The external circuit consists of two multiplexers which allow a right 

or left shift of one of four types. The four types are zero, one, ro­

tate and arithmetic. The first three are the familiar shift functions 

offered by most processors, while the arithmetic shift is used specif­

ically during a multiply routine execution. On a right arithmetic 

shift a zero is loaded into the Q-register least significant bit (LSB), 

and the Q-register most significant bit (MSB) is loaded into a select­

ed ALU register•s LSB. 

The shift control circuit is shown in Figure 33. This circuit 

requires two microcode bits for shift type selection. The direction 

of the shift is determined by r7 of the Am2901 instruction code. 
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The microcode bits 16, 17 and 18 are the ALU destination control. These 

also control the shift operation within the Am2901. Table XVIII shows 

the bit codes required for each combination of type and direction of a 

shift operation. The Am74S253s are dual 4-input multiplexers with tri-

state outputs. 

Code 
I7 s1 

0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
1 1 
1 1 

TABLE XVII I 

SHIFT CONTROL CODE 

Direction 
so 

0 Right 
0 Right 
0 Right 
1 Right 
0 Left 
1 Left 
0 Left 
1 Left 

5.2.6 Multiplication Hardware 

Type 

Zero 
One 

Rotate 
Arithmetic 

Zero 
One 

Rotate 
Arithmetic 

It has been determined previously that some type of hardware multi-

plication scheme is necessary to increase the throughput of the system. 

The Am2901 already has l.iJII~e~_2~_q_L!f:!DS..e_E_,_t¥.P_~_,_h,sr:c;lxt51X:~!llul tipl icatton 

capabilities without external hardware. The basic technique used is 

the "add and shift" algorithm. The multiplier and multiplicand are in 

R0 and R1, respectively, and the result is placed in R2 and R3. The 
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exact firmware and hardware details are given in the Am2901 applica­

tions literature. The multiplication execution requires 37 cycle times 

for a 32-bit multiplier. Thus L.~ __ lJ_s._a.re required for one multiply. 

The other scheme mentioned was the use of 8~.f-~SQ2 ... !1J.Y.lli121ier ~b.i~ 

for a completely hardware multiply. This requires 128 additionsl chips 

and six cycle times for execution. Two cycles are required for instruc­

tion fetch, one loads the multiplier register, one outputs the multi­

plicand to theY outputs of the ALU, one is a no-op cycle for time 

delay and the last cycle time loads the result into an ALU register. 

Execution requires([~_-.!:,~ Figure 34 shows a block diagram of the re-

quired system changes for this arrangement. 

required can be reduced from 128 to]8 jf a_ ttUJlC.ilted r~_syJt js a c-
. . - . - ...... ,,. ······ ·""·' ..... '"" .. ,. .. , .... ,.. ..... ~~ -~-----,~---~· ... --,. .. :~· •'• . . . . ·'' ., . . . ' . ., ,. 

ceptable. This is not to be confused with a rounded-off result which 

would also be 32 bits. Rounded results require 128 chip arrangement. 

T __ !::_~!}f.il.ti on a 1 so has no speed advantage. 

One very important detail has been ignored during the multipli­

cation hardware discussion. This is the method in which data is to be 

represented. Both of these scheme·s will require some type of"~scali-ng-­

depending on the data representation. Many ways of data scaling exist. 

The data can be represented as a fixed integer, as a scaled integer 

or as e1: "s~aled.Jntc:_~_iQ_l}. The data representation choice must be made 

by looking at the data form available from the radar and the operations. 
--·--~" ·- -~ ---· "''"'' -~~ •:..•. . . . . -.. 

~-?.be perforrn~d on the d.ata. These aspects of the design are not spec­

ified so the multiplication hardware cannot be discussed in detail. 

The time sequenced method is fast enough if the scaling require­

ments are not extensive. The scaling must not require more time than 
~-···----'"·-··· . . .. -·- . .....-.- ~ ~~------- ~- '''"'''••"·•-·- .... ,............ ·--- ..... 

~~ltiply o~~rati()_!l· These scaling requirements can also be handled 
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by hardware if necessary. The other multiplication scheme is approx­

imately six times faster but still requires scaling. Another advantage 

of the Am25S05s is that they can also be used as a hardware squareroot 

generator and reciprocal evaluation. The required additional hardware 

would have to be determined. 

Both schemes give correct results for two•s complement form multi­

plier and multiplicand. The question is whether the data must be 

scaled and whether it will be in a fractional or integer form. 

Finally, a similar scheme for a time sequenced hardware divide is 

also applicable to the Am2901. The method is actually described in 

Monolithic Memories 6701 application literature. A non-restoring two•s 

complement divide is produced by successively subtracting the divisor 

from the dividend and the result shifted left until the remainder 

changes sign. At this point the divisor has been subtracted one too 

many times and is added back until the original sign is restored. Thus 

the divide requires approximately the same execution time as a multiply. 

The remaining required functions should be firmware implemented, 

devoting-most of the hardware resources to fast multiply. Algorithms 

for the execution of each function should be investigated and deter­

mined so that exact multiply speed requirements can be determined. 

5.2.7 Macrocode and Microcode Summary 

The macrocode words are summarized in Figure 35. A maximum of 

three instruction fetches may be required with a minimum of at least 

the first macrocode. 

The microcode fields are summarized in Figure 36. The hardware 

has been specified to the point where an approximate microword may be 



Macro code 

Microcode 

START ADDR 
9 bits I A ADDR 

3 bits 

16~bit Addr or Constant 

16-bit Constant 

Figure 35. Macrocode Summary 
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9 bits bit 4 bits 

R/W 
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bit 

Push/Pop I 
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File Enable I 
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Figure 36. Microcode Summary 
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defined. The microcode word consists of 14 fields or 35 bits. All 

fields have been previously discussed during hardware design except 
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the branch control fields which include branch bit, zero bit, push/pop 

bit, file enable bit and the MPC increment bit. The MPC increment bit 

is the Cin input to the Am2909 microprogram sequencer. It simply con­

trols the incrementer so that when high the microprogram address is in­

cremented before being stored in the MPC register. The remaining bits 

control subroutine call and subroutine return execution. 

The basic hardware system has been discussed except for subroutine 

control. More hardware may be required if micro-subroutine calls are 

placed under both macrocode and microcode control. This means a sub­

routine call to the microcode which executed a multiply could be pro­

cessed without returning control at the end to the instruction fetch 

firmware. At present, when the execution of a macro-instruction is 

complete, the last micro-instruction jumps to next-instruction-fetch 

routine. The double control would allow either a jump to the fetch 

routine or a subroutine return if the code was accessed by a subroutine 

call instruction. This would require either setting a flip-flop to 

remember each subroutine call or just using a subroutine call for the 

execution of each macro-instruction. The latter method would slow the 

macro-instruction execution by adding two more cycles to each instruction. 

This type of control would be very helpful in firmware program­

ming the trigonometric and other functions requiring existing firmware. 

The trigonometric execution firmware would be able to use the multiply 

firmware without going to the macrocode level. The hardware control 

of this type of subroutine function would simply modify the jump to 

the instruction fetch routine based on whether the subroutine call 

• 
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flip-flop had been set previously. The two bits push/pop bit and file 

enable are necessary since they are used by the Am2909 during subroutine 

function execution. The push/pop bit is the push/pop input of the 

Am2909 which controls the increment or decrement of the stack pointer. 

File enable bit is the read/write control of the 2909 1 s file stack. 

The two bits, branch and zero, are included for hardware control 

and may or may not be necessary depending on the actual hardware. The 

branch bit may be necessary in setting the subroutine jump flip-flop 

when the special subroutine jump is necessary. The zero bit was in­

cluded since it conveniently allows a jump to address zero over any 

other control of the Am2909. Thus the special subroutine function has· 

been anticipated in the micro-instruction word definition but the actual 

implementation was not completed. The final micro-instruction will 

probably differ but it will be within a maximum of 36 bits. The other 

fields can be decreased if it is desired to lower the instruction size 

to 32 bits. However, this would increase the decode hardware. 

5.3 Approximate Instruction Execution Times 

and Package Count 

Two additional results may be obtained from the hardware outline, 

instruction execution times and an approximate package count. This 

preliminary system outline will enable the calculation of execution 

times for basic instruction types based on the cycle time, required 

memory accesses and the macro-instruction system definition. Table XIX 

shows the execution time of various types of instructions. Each 

instruction is separated into several execution states to show how the 

cycles are broken-up between different functions. 
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TABLE XIX 

INSTRUCTION EXECUTION TIME SUMMARY 

Instruction Execution # Cycles Execution 
Type States Time 

Memory Instruction fetch 2 
reference Data address fetch 2 1.2 llS Fetch data (RAM) 1 

Function 1 

Load Immediate Instruction fetch 2 
1st half of constant 2 1.2 ]..IS 
2nd half of constant 2 

Load (RAM) Instruction fetch 2 
Address fetch 2 1 11S 

Load 1 

Output Instruction fetch 2 
(address in MEM) Address fetch 2 1 llS 

Output to RAM 1 

Output Instruction fetch 2 
(address in Decrement PC 1 1 llS register) Note 1 Load MA 1 

Output to RAM 1 

Register to Instruction fetch 2 
register Decrement PC 1 0.8 ]..lS 
Note 1 Function 1 

Note 1 : All single word instructions lose one cycle time. 
The PC is actually decremented during the output 
to RAM cycle. 
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Single word instructions lose one cycle time due to the pipeline 

register architecture. It takes three cycle times before control is 

transferred to the macro-instruction ROM address field. Thus the micro­

instruction will increment PC and load MA as if a second macro-instruc­

tion is going to be fetched. If a second macro-instruction is not 

fetched, then the PC must be decremented before the next instruction 

fetch. This can be done during any microcode output function when the 

ALU is not being used. Also it is possible to actually gain cycles by 

using the ALU during those memory output cycles. If the last function 

of a particular instruction is a memory write, then the PC can be in­

cremented and loaded into the MA register for the next instruction at 

the same time. 

An approximate package count is calculated in Table XX. This 

calculation does not take into account two important problems. First 

ROM memory cannot be used in the prototype system. RAM can be substi­

tuted so that the system still sees ROM memory, but external hardware 

will be required to load the RAM with the program. Even after initial 

debug, PROMs will probably be used rather than ROMs. The second prob­

lem is that more control hardware and a control panel will be necessary 

for debug. The ability to stop on a given address and to single cycle 

through program execution is necessary. There are two levels of firm­

ware which means two levels of control are required. Even a second 

processor will be required to run assemblies, load memory, simulate 

the input interface, etc. The system designed to this point gives only 

an idea as to how the working or debugged system hardware will look. 

The slice interconnections were never drawn because of an effort not to 

duplicate material presented in the application literature. Furthermore, 
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the system presented was only segments of the design without a complete 

circuit being presented. Also the power supply requirements have not 

been estimated. Thus, the hardware outline presented is not complete 

in every detail. 

Function 

Multiplier 

Latches - IR 
MIR 

Microprogram sequencer 

MEM - llROM 
ROM 
RAM 

Slice-

Bus - MD 
MA 

Control 

Shift 

TABLE XX 

PACKAGE COUNT 

IC 

Am25S05 

Am2918 
Am2918 

Am2909 

256-Word by 4-bit 
1024-Word by 8-bit 

256-Word by 4-bit 

Am2901 
Am2902 
Am2905 
Am2905 

Misc. 

745253 

Total 

Number Used 

0 or 131 

2 
9 

3 

8 
8 (initial 
8 of ROM) 

8 
3 
8 
4 

12 

2 

75 or 206 

At this point, the complete fire control data processing system, 

especially the data smoothing algorithm, should be determined. After 

4K 
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software simulation of the system one must begin defining required 

macro-instructions for adopting the software to the microprocessor sys­

tem and determine the microfunctions required to implement the macro­

instructions. The system presented has a general but powerful 

microfunction base believed adequate to implement the required macrocodes. 

Only refinement and adjustment is now required as firmware development 

brings up more specialized required functions. A great deal of parallel 

development is required now for firmware and hardware. 

Chapter VI involves project development charts showing how to pro­

ceed with the project and final remarks. Approximate execution times 

for the more complex functions such as SIN, COS, etc. can now be cal­

culated. Using the algorithm discussed in Chapter II the SIN function, 

for example, may be implemented as a macrolevel subroutine requiring 

approximately eight multiplies, one subroutine call, one subroutine 

return, six .load immediates, three loads, four exchanges (load contents 

of one register into a second), three adds and one subtract. The ex­

ecution time is approximately 30 ~s for the hardware multiply system 

and 80 ~s for the semi-hardware multiply. These times could be im­

proved if the functions were executed on the microlevel but this would 

require more hardware and microcode bits for expanded micro-control 

for entering the required constants. These are the constants used in 

the execution of the rational polynomial approximations. The macro­

level execution simply uses the load immediate instruction to load 

32-bit constants. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary and Conclusions 

The feasibility study is now completed by the selection and appli­

cation of the Am2900 microprocessor. The study was begun by outlining 

some basic system requirements for the selection process. The spectrum 

of microprocessors was studied and shortened to those which met the 

processing requirements. At this point specific manufacturers• micro­

processors were examined for final selection. After the selection was 

made, a preliminary system design was outlined for purposes of instruc­

tion execution time calculations and hardware complexity determination. 

This simplified system design shows that it is feasible to implement the 

controller system using microprocessors given that the resources are 

available. 

This study shows the hardware implementation to be feasible but the 

firmware requirements are exceptional. The very complex completely dis­

crete hardware implementation has been simplified by the use of a micro­

processor but the complexity has been shifted to th~_firmwan~ de.){e}QJ?!!l§JTI· 
--~-·-·~,,,.,..., • ....,,.,.._"<•>',~o,_,_,.,_ .. ,,.,,,"'"'.;,>',;.."-~~"''~"•'--..<,,,..,.,,,..".,.."·--'-·~""~'' 'r' ,_,__ ' """"'""' 

The system approach for this study was to implement all functions if 

possible in firmware. This led to the required use of a slice micro­

processor. A second approach is to implement to a greater degree more 

functions in hardware thus reducing the microprocessor requirements. 

For example, the extended Kalman filter could be implemented in discrete 

104 
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hardware so that the firmware requirements would be reduced to decision 

making and calculation of new firing parameters. This would allow the 

use· of the 16-bit, fixed-instruction set type of microprocessors re­

ducing the firmware development significantly. Not only are the firm­

ware functions reduced, but the microprogramming requirement of a slice 

microprocessor is eliminated. It would also reduce the effectiveness of 

the microprocessor in providing the full advantages of the microproces­

sor's use, such as the flexibility of firmware and the reduced cost of 

the hardware implementation. 

The present system outlined using the Am2900 microprocessor has the 

advantage of maximum firmware use for flexibility and hardware reduction. 

The major disadvantage is the slice microprocessor requirement of micro­

programming a macro-instruction set. This is also an advantage in some 

respects, since it allows the implementation of special purpose instruc­

tions but at the cost of the increased firmware development. 

6.2 Project Continuance 

If the system approach taken by this study is accepted, then the 

next step is to completely define the firmware functions. The extended 

Kalman filter should be implemented into the existing simulation pro­

grams. It is imperative that a working simulation program is available 

so that firmware development will be mostly transforming the simulation 

program into the microprocessor's instruction set. 

The present state of development is shown in Chapter v. The hard­

ware system has been outlined to the point to at least define the basic 

microcode functions. At this point one may begin a microcode assembler, 

finish the hardware design and begin definition of the required macro-
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code functions. The design effort will require a parallel structure as 

shown by the program development chart in Figure 37. The parallel de­

velopment is required due to the feedback of each section into the other 

sections. As macrocode is developed, new microcode functions will be 

required which then lead to new hardware. 

The development chart of Figure 37 shows the complexity of the pro­

gram and the manpower requirements. There are three distinct development 

paths: hardware, microlevel and macrolevel development. The majority 

of the effort will be concentrated in firmware development. This means 

software oriented and hardware oriented people are necessary. The pro­

ject can be segmented into various development phases with one person 

responsible for each phase. This can only be done to a small degree, 

since communication problems arise and many problems surface during final 

system debug when the pieces must be put together. 

The total manhours required are impossible to determine but this 

will be a significant project requiring good organization. The manpower 

requirements were never estimated but the study was presented in such a 

manner as to give the reader a basic understanding of what will be re­

quired to complete the project. Thus, the project may begin where this 

study leaves off. Continuation has been outlined and present status 

given. Different approaches to the system have also been presented. 

The system outlined in this study must now be evaluated. If accepted, 

the project continuance will be a process of hardware modification and 

refinement and firmware development. 
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TABLE XXI 

MEMORY REFERENCE INSTRUCTIONS 

Instruction Execution Memory cycles Execution 
Cycles Read Write Time (~s) 

Load 5 2 7.7 
Load indirect 5 3 8.05 
Store 6 1 1 9.1 
Store indirect 8 2 1 12.25 
Add 5 2 7.7 
Subtract 5 2 7.7 
Jump 3 1 4.55 
Jump indirect 5 2 7.7 
Jump to subroutine 4 1 5.95 
Jump to subroutine indirect 6 2 9.1 
Increment and skip if zero 7,8 if skip 2 1 12.25 
Decrement and skip if zero 8,9 if skip 2 1 13.65 
Skip if AND is zero 6,7 if skip 2 10.5 
Skip if greater Like signs: 8,9 if skip 2 13.3 

Unlike signs: 9,10 if skip 2 14.7 
Skip if not equal 6 2 9.1 
AND 5 2 7.7 
OR 5 2 7.7 



TABLE XXII 

REGISTER REFERENCE INSTRUCTIONS 

Instruction 

Push on to stack reg 
Pull from stack 
Add immediate, skip if zero 
Load immediate 
Complement and add immediate 
Register copy 
Exchange register and top 

of stack 
Exchange registers 
Register AND 
Register exclusive OR 
Register add 
Shift left 
Shift right 
Rotate left 
Rotate right 

Execution 
Cycles 

3 
3 

4,5 if skip 
3 
3 
6 
5 

8 
6 
6 
3 

4 + 3K 
4 + 3K 
4 + 3K 
4 + 3K 

Memory Cycles 
Read Write 

1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

Note: 11 K11 equals the number of bits shifted 

Execution 
Time ( 11s) 

4.55 
4.55 
7.35 
4.55 
4.55 
8.75 
7.35 

11.55 
8.75 
8.75 
4.55 
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TABLE XXIII 

INPUT/OUTPUT, FLAG, AND HALT INSTRUCTIONS 

Instruction Execution Memory Cycles Execution 
Cycles Read Write Time (lls) 

Set flag 4 1 5.95 
Pulse flag 4 1 5.95 
Push flags on stack 4 1 5.95 
Pull flags from stack 5 1 7.35 
Register in 7 1 10.15 
Register out 7 1 10.15 
Halt 1 1. 75 

TABLE XXIV 

TRANSFER OF CONTROL INSTRUCTIONS 

Instruction Execution Memory Cycles Execution 
Cycles Read Write Time ( llS) 

Branch-on condition 4,5 if branch 1 7.35 
Return from subroutine 4 1 5.95 
Return from interrupt 5 1 7.35 
Jump to subroutine implied 4 1 5.95 



TABLE XXV 

EXTENDED INSTRUCTION SET 

Instruction Execution Memory Cycles 
Cycles Read Write 

Multiply 106 to 122 3 
Divide 125 to 159 3 
Double precision add 12 4 
Double precision subtract 12 4 
Load byte 20 (left) 4 

12 (right) 4 
Store byte 24 ( 1 eft) 4 1 

17 (right) 4 1 
Set status flag 17 to 36 1 
Clear status flag 17 to 36 1 
Skip if status flag true 19 to 39 1 
Set bit 15 to 34 1 
Clear bit 15 to 34 1 
Camp 1 em en t bit 15 to 34 1 
Skip if bit true 19 to 39 1 
Interrupt scan 9 to 80 1 
Jump indirect to 7 2 

level zero interrupt 
Jump through pointer 7 3 
Jump to subroutine 8 3 

through pointer 
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Execution 
Time (lls) 

171.85 
223.65 
18.2 
18.2 
29.4 
18.2 
35.35 
25.55 
50.75 
50.75 
54.95 
47.95 
47.95 
47.95 
54.95 

112.35 
10.5 

10.85 
12.25 



APPENDIX B 

MICROPROGRAMED MICROPROCESSOR INSTRUCTION SETS 
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Mnemonic 

JCC 
JZR 
JCR 
JCE 

JFL 
JCF 
JZF 
JPR 
JLL 
JRL 
JPX 
scz 
STZ 
STC 
HCZ 
FFO 
FFC 
FFZ 
FF1 

TABLE XXVI 

INTEL 3001 

Function 

Jump in current column 
Jump to zero row 
Jump in current row 
Jump in current column/row group 

and enable PR-latch outputs 
Jump/test F-latch 
Jump/test C-flag 
Jump/test Z-flag 
Jump/test PR-latch 
Jump/test leftmost PR-latch bits 
Jump/test rightmost PR-latch bits 
Jump/test PX-bus and load PR-latch 
Set C-flag and Z-flag to F1 
Set Z-flag to F1 
Set C-fl ag to F1 
Hold C-flag and Z-flag 
Force FO to 0 
Force FO to C 
Force FO to Z 
Force FO to 1 
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Mnemonic 

ILR 
ACM 
SRA 
LMI 
LMM 
CIA 
CSR 
CSA 
INR 
INA 
CLR 
CLA 
NOP 
LMF 
CMR 
LCM 
CMA 
ALR 
AMA 
DSM 
LDM 
DCA 
SDR 
SDA 
LDI 
ADR 
AIA 
ANR 
ANM 
ANI 

TABLE XXVII 

INTEL 3002 

Microfunction 

Rn + C1 + Rn, AC 
M + C1 +AT 
ATL + RO ATH + ATL L1 + ATH 
R + MAR R + C1 + R n n n 
M + MAR M + C1 + AT 
AT + C1 + AT 
C1 - 1 + R n 
C1 - 1 + AT 
R + C1 + R n n 
AT + C1 + AT 
C1 +CO 
C1 +CO 
C1 + CO 
C1 +CO 
C1 + CO 
C1 +CO 
C1 + CO 

0 + R n 
0 + AT 

Rn + Rn 
M + AT 
R + R n n 
M +AT 
AT+ AT 

AC + R + C1 + R , AC n n 
M + AC + Cl + AT 
11 + MAR R - 1 + C1 + R n n 
11 + MAR M - 1 + C1 + AT 
AT - 1 + C1 + AT 
AC - 1 + C1 + R n 
AC - 1 + C1 + AT 
l - 1 + C1 + AT 
AC + R + C1 + R n n 
l + AT + C1 + AT 
C1 V (Rn A AC) + CO Rn A AC + Rn 
C1 V (M A AC) + CO M A AC + AT 
C1 V (AT A I) +CO AT A 1 +AT 
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TABLE XXVII (Continued) 

Mnemonic Microfunction 

TZR C1 V Rn -+ CO R -+ R n n 
LTM C1 V M -+ CO M -+ AT 
TZA C1 V AT -+ CO AT -+ AT 
ORR C1 V AC -+ CO Rn V AC -+ Rn 
ORM C1 V AC -+ CO M V AC -+ AT 
ORI C1 v 1 -+ co 1 V AT -+ AT 
XNR C1 V (Rn AC) -+ CO Rn m AC -+ Rn 
XNM C1 V (M AC) -+ CO M j" AC -+AT 
XNI C1 V (AT 1) -+CO 1 m AT -+ AT 



Symbol 

Cl 
co 

I, K, 

Rn 
AC 
AT 

MAR 
+ 

A 

v 
(D 

-+ 

LI, RO 
L, H 

M 

TABLE XXVIII 

EXPLANATION OF SYMBOLS 

Carry input 
Carry output 

Meaning 

Data on I, K, M buses, respectively 
Contents of register n including T and AC 
Contents of accumulator 
Contents of AC or T, as specified 
Contents of memory address register 
Two's complement addition 
Two's complement subtraction 
Logical AND 
Logical OR 
Exclusive NOR 
Deposit into 
Data on left input and right output 
As subscripts, designate low and high 

order bit, respectively 
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Instruction 
Inputs LO 

14 13 12 11 lo 

L L L L L 
L L L L H 

L L L H L 
L L L H H 

L L H L L 
L L H L H 

L L H H L 
L L H H H 

L H L L L 
L H L L H 

L H L H L 
L H L H H 

L H H L L 
L H H L H 

L H H H L 
L H H H H 

H L L L L liT 
H L L ·L H 1<3 

H L L H L liT 
H L L H H D3 

H L H L L 03 
H L H L H K3 

H L H H L 
H L H H H 

H H L L L 

H H L L H 

TABLE XXIX 

INSTRUCTION SET FOR THE 9404 

o3 o2 o1 oo RO Function 

L L L L Byte Mask 
H H H H Byte Mask 

L L L H Minus "2 11 in 21 s Complement 
L L L L Minus 11 1" in 21 s Complement 

o3 o2 l\ D0 Byte mask 0-bus 
H H H H Byte mask 0-bus 

o3 o2 D1 Do Byte mask 0-bus 
L L L L Byte mask 0-bus 

L H H H Negative byte sign mask 
H H H H Positive byte sign mask 

1<3 K2 1<1 Ko Byte mask K-bus 
L L L L Byte mask K-bus 

D3 D2 D1 Do Load byte 

K3 K2 K1 Ka Load byte 

H H H L Plus "!" 
H H H H Zero 

RTRTRTRT K-bus sign extend 
K3 K2 K1 Ka K-bus extend 

RTRTRTRT 0-bus sign extend 
o3 o2 o1 Do 0-bus sign extend 

D2 ~1 ~0 Rl 0-bus shift left 
K2 K1 K0 RI K-bus shift 1 eft 

IT D3 D2 D1 Do 0-bus shift right 

03 o3 o2 Dl Do 0-bus shift right arithmetic 

IT 1<3 1<2 1<1 Ka K-bus shift right 

K3 K3 1<2 Kl Ko K-bus shift right arithmetic 
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TABLE XXIX (Continued) 

Instruction 
Inputs LO o3 o2 o1 oo RO Function 

14 13 12 11 Io 

H H L H L K3 K2 K1 Ka Byte mask K-bus 
H H L H H H H H H Byte mask K-bus 

H H H L L o3 o2 o1 Do Complement 0-bus 
H H H L H K3 K2 K1 Ka Complement K-bus 

H H H H L Unassigned 
H H H H H Unassigned 

H = High level 
L = Low level 



12 

L 
, L 

L 
L 
H 

H 

H 

H 

NOTES: 

I1 

L 
L 
H 

H 

L 
L 
H 

H 

TABLE XXX 

I-FIELD ASSIGNMENT 

Io Internal Operation 

L Rx plus D-bus plus 1 + Rx 
H Rx plus D-bus + Rx 
L Rx D-bus + Rx (logic AND) 
H D-bus + Rx 
L Rx + D-bus 
H Rx + D-bus + Rx (logic OR) 
L Rx ID D-bus + Rx (logic X-OR) 
H D-bus + Rx 

1. Rx is the RAM location addressed 
by A0 - A2. 

2. The result of any operation is always 
loaded into the output register. 

H = Logic high level 
L = Logic low level 
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I 1 I a 

L L 

L H 

H L 

H H 

Instruction 

Return (pop) 

Branch (load PC) 

Ca 11 (push) 

Fetch 
(Increment PC) 

TABLE XXXI 

INSTRUCTION SET FOR THE 9406 

Internal Operation X-bus 

Decrement stack pointer Disabled 

Load D-bus into current Disabled 
program counter location 

Increment itack pointer Disabled 
and load D-bus into new 
program counter location 

Increment current program Current 
counter if cr is low program 

counter 
while both 
CP and EX 
are low, 
disabled 
while CP or 
IT is high 

H = High level; L = Low level 

0-bus (with E00 low) 

Depending on the relative timing of EX and 
CP, the outputs will reflect the current 
program count or the new value while CP 
is low. When CP goes high again, the 
output will reflect the new value. 
Current program counter until CP goes high 
again, then updated with newly entered PC 
value. 
Depending on the relative timing of EX and 
CP, the outputs will reflect the current 
program count or the previous contents of 
the incremented SP location. When CP goes 
high again, the outputs will reflect the 
newly entered PC value. 
Current program counter until CP goes high 
again, then updated with incremented PC 
value. 

1-' 
N 
~ 



Instruction 
I3 I2 11 10 

L L L L 
L L L H 

L L H L 
L L H H 
L H L L 
L H L H 
L H H L 
L H H H 
H L L L 
H L L H 
H L H L 
H L H H 
H H L L 
H H L H 
H H H L 
H H H H 

TABLE XXXII 

INSTRUCTION SET FOR THE 9407 

Combinatorial Function Sequential Function Occurring 
Available on the X-bus on the Next Rising CP Edge 

R R0 plus D plus CI + R0 and 
R0 plus o0plus CI a-register 

R R0 plus 0 plus CI + R1 and 
R0 plus o0plus CI 0-register 

R R0 plus D plus CI + R2 and 
R0 plus o0plus CI a-register 

R R1 plus D plus CI + R1 and 
R1 plus D1plus CI a-register 

R 
D plu~ CI 

D plus CI + R2 and 0-register 

R 
D plu~ CI 

D pl uscT-+R0and 0-regi ster 

R2 
R2 plus D plus CI 

R2 plus D plus CI + R2 and 
a-register 

R 
D plu~ CI 

D plus CI + R1 and 0-register 

....... 
N 
U1 



TABLE XXXII I 

2901 MICROCODE 

Microcode 
I2 I1 I0 (Octal) 

0 
1 
2 
3 
4 
5 
6 
7 

Microcode 
I5 I4 I3 (Octal) 

0 
1 
2 
3 
4 
5 
6 
7 

Microcode RAM Function 
I8 I7 r6 (Octal) Shift Load 

0 
1 
2 None ALU 
3 None ALU 
4 Left ALU 
5 Left ALU 
6 Right ALU 
7 Right ALU 

ALU Source Operands 
R S 

A Q 
A B 
0 Q 
0 B 
0 A 
D A 
D Q 
D 0 

ALU Symbol 
Function 

R plus S R+S 
S minus R S-R 
R minus S R-S 
R or SR V S 
R and S R A S 
Rand S R A S 

R EX - OR S R ~ S 
R EX - NOR s R ~ S 

Q-Reg Function 
Shift Load 

None ALU 

Left Q-reg 

Right Q-reg 
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y 
Output 

F 
F 
A 
F 
F 
F 
F 
F 



Logic 

F = logic 0 
F = A 
F = 0 
F = A 
F = 0 
F = A + 0 
F=A+O 
F = A + 0 
F = A o 0 
F =A o 0 
F = A 0 0 
F = A$ 0 
F = A $ 0 
F = A o 0 
F = A+ 0 
F = logic 1 
F = ACC o A 
F = ACC o 0 
F = ACC + A 
F = ACC + 0 
F = ACC $ A 
F = ACC $ A 
F = ACC $ 0 
F = ACC $ 0 
F = ACC $ A 0 0 
F = ACC $ A o 0 
F = ACC $ A + 0 
F = ACC $ A + 0 

TABLE XXXIV 

MC10800 ALU FUNCTION SET 

Binary 

F = A plus 0 
F = A minus 0 
F = 0 minus A 
F = A 
F = 0 
F = A 
F = 0 
F = A minus 1 
F = 0 minus 1 
F = A minus 2 
F = 0 minus 2 
F = A plus 2 
F = 0 plus 2 
F = A plus A 
F = 0 plus 0 
F = ACC plus A 
F = ACC minus A 
F = ACC plus 0 
F = ACC minus 0 
F = ACC plus A o 0 
F = ACC minus A 0 0 
F = ACC plus A + 0 
F = ACC minus A + 0 

BCD 

F = A plus 0 
F = A minus 0 
F = 0 minus A 
F = A 
F = 0 
F = g•s compo A 
F = g•s compo 0 
F = A plus 2 
F = 0 plus 2 
F = A plus A 
F = 0 plus 0 
F = ACC plus A 
F = ACC plus 0 
F = ACC minus A 
F = ACC minus 0 
F = ACC plus A o 0 
F = ACC minus A 0 0 
F = ACC plus A + 0 
F = ACC minus A + 0 
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