
MICROPROCESSOR FEASIBILITY STUDY AND PRELIMINARY

DESIGN FOR AN ARTILLERY FIRE CONTROL APPLICATION

By

DAVID ERNEST WEST
H

Bachelor of Science in Electrical Engineering

University of Oklahoma

Norman, Oklahoma

1974

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE

May, 1976

-r\"e s \·s
l Of7(p

.w5tlm
c..op,~

! .
, . '

MICROPROCESSOR FEASIBILITY STUDY AND PRELIMINARY

DESIGN FOR AN ARTILLERY FIRE CONTROL APPLICATION

Thesis Approved:

Thesis Adviser

Dean of the Graduate College

9476 'i9

ii

O r,L..-,HO N.A

STATE UNIVERSITY
U8RARY

AUG :.!6 1976

PREFACE

A project is underway at Oklahoma State University to develop an

artillery fire control system. A preliminary study has been concluded

which demonstrated the feasibility of the proposed system approach by

computer simulations. This is a similar preliminary study as to the

feasibility of using a microprocessor as the basis of the hardware im­

plementation as an alternative to completely discrete components.

I wish to express my thanks to Dr. Edward Shreve, my thesis adviser,

for his valuable guidance. Also, I would like to thank the remaining

committee members, Professor Craig S. Sims and Dr. McCollom, for their

assistance in the preparation of the final manuscript.

Finally, I would like to express my gratitude to Mrs. Janice Cronch

for her excellent typing of the many drafts and the final copy.

iii

Chapter

I.

II.

I I I.

IV.

TABLE OF CONTENTS

INTRODUCTION

1.1 Background
1.2 System Description
1.3 Objectives
1.4 Analysis Procedure

DETERMINATION OF MICROPROCESSOR REQUIREMENTS

2.1 Throughput
2.2 Input/Output
2.3 Special Constraints .. .

OVERVIEW OF MICROPROCESSORS

3.1
3.2

3.3

3.4
3.5

. 3. 6
3.7

Introduction
Basic Definitions
3.2.1 Microprocessor Slice
3.2.2 Monolithic Processor ..
Integrated Circuit Technologies
3.3.1 MOS Technologies
3.3.2 Bipolar Technologies .. .
3.3.3 Technology Comparison
Monolithic and Slice Comparison
Previous Work in Evaluation of Microprocessors for

Military Applications
Reduction of Microprocessor Spectrum for Analysis .
Conclusion

FINAL SELECTION FROM A SURVEY OF AVAILABLE
MICROPROCESSORS

4.1 Microprocessor Analysis
4.2 Multiplication with Peripheral Hardware
4.3 Fixed Data Path Microprocessors

4.3.1 Feasibility of Using the IMP-16C
4.4 Variable Data Path Microprocessors

4.4.1 Intel 3000 Series Microprocessor
4.4.2 9400 Series Macrologic .. .
4.4.3 Am2900 Series
4.4.4 M10800 Microprocessor System .
4.4.5 Comparison

iv

Page

1

1
1
5
6

8

9
17
18

20

20
20
23
25
25
26
27
28
31

35
38
39

40

40
42
46
49
53
54
58
60
64
65

Chapter

v.

VI.

TABLE OF CONTENTS (Continued)

Page

APPLICATION OF THE Am2900 SERIES ... 71

5.1 Introduction 71
5.2 System Specification and Design 71

5.2.1 Memory System 74
5.2.2 Branch Control 81
5.2.3 Firmware Register Control 85
5.2.4 Pipeline Register Operation 87
5.2.5 Shift and Rotate Functions . 91
5.2.6 Multiplication Hardware . . . 93
5.2.7 Macrocode and Microcode Summary 96

5.3 Approximate Instruction Execution Times and Package
Count 99

CONCLUSIONS AND RECOMMENDATIONS

6.1
6.2

Summary and Conclusions
Project Continuance

104

104
105

BIBLIOGRAPHY . 108

APPENDIX A - IMP-16 INSTRUCTION SET 111

APPENDIX B - MICROPROGRAMED MICROPROCESSOR INSTRUCTION SETS 116

v

Table

I.

II.

I I I.

IV.

v.
VI.

VII.

VII I.

IX.

X.

XI.

XI I.

XIII.

XIV.

XV.

XVI.

XVII.

XVII I.

XIX.

XX.

LIST OF TABLES

Page

Instruction Mix for Extended Kalman Filter Implementation 12

Required Constants for Implementation of Special Functions 16

Technology Comparison

Summary of the Differences Between the Two Types of
Microprocessors

Instruction Mix for Avionics Fire Control

Available Microprocessor Performance

Am25S05 Configurations

16-Bit Microprocessors

Hardware Support

Software Support
Microprocessor Functional Summary

Microprocessor Comparison

System Elements , . . .
Input/Output Operations

Descriptive Symbols

Firmware Execution with Pipeline Register

Execution of Conditional Branch Instructions .

Shift Control Code ...

Instruction Execution Time Summary .

Package Count

vi

30

34

36

37

44

47

48-

48

67

70

72

78

87

88

91

93

100

102

Table

XXI.

XXII.

XXI I I.

XXIV.

XXV.

XXVI.

XXVI I.

XXVI I I.

XXIX.

XXX.

XXXI.

XXXII.

XXXI I I.

XXXIV.

LIST OF TABLES (Continued)

Memory Reference Instructions .

Register Reference Instructions .

Input/Output, Flag and Halt Instructions

Transfer of Control Instructions

Extended Instruction Set

Intel 3001

Intel 3002

Explanation of Symbols

Instruction Set for the 9404

!-Field Assignment

Instruction Set for the 9406

Instruction Set for the 9407

2901 Microcode

MC10800 ALU Function Set

vii •

...

Page

112

113

114

114

115

117

118

120

. 121

123

124

125

126

127

LIST OF FIGURES

Figure

1. Fire Contra 1 Sys tern

2. Fire Control Program Structure

3. Extended Kalman Filter Implementation

4. Flowchart of Extended Kalman Filter

5. Decimal Cordie Computer .

6. Basic Computer

7. Elements Common to Most Microprocessors .

8. 16-Bit Microprocessor .

9. 8-Bit Microprocessor

10. Speed/Power/Complexity Comparison .

11. Basic Microprogrammable System

12. Parallelogram Configuration

13. IMP-16C Card Assembly Block Diagram

14. RALU Block Diagram

15. Block Diagram of a Typical System

16. Intel 3002 Block Diagram

17. Am2901 Block Diagram

18. Am2909 Block Diagram

19. Typical System Using 2900 Family Elements

20. M10800 Family - Pipeline Processor Example

21. Basic Block Outline .

22. Memory System ...

vii i

Page

1

3

10

11

15

21

22

24

24

29

32

45

50

51

55

58

61

62

63

65

73

75

LIST OF FIGURES (Continued)

Figure Page

23. I/0 Bi-Directional Bus System 77

24. Am2905 Block Diagram 77

25. Input/Output Control Circuit 80

26. Input/Output Bus Circuit 82

27. Microcycle Timing 83

28. Branch Control Circuit 84

29. Firmware Control Using Two Bits of Microcode 86

30. Firmware Control Using Three Bits of Microcode 86

31. Clock Timing During Conditional Branch 90

32. Hardware for Clock Control for Conditional Branch 90

33. Shift Control Circuit 92

34. Multiplication Hardware Modification 95

35. Macrocode Summary 97

36. Microcode Summary 97

37. Program Development Chart . 107

ix

CHAPTER I

INTRODUCTION

1.1 Background

This document involves the application of microprocessors to a

tactical artillery fire control system. It is part of an overall pro­

gram to develop a field portable fire control system. Feasibility was

established by previous work done by the Electrical Engineering Depart­

ment of Oklahoma State University. A simulation of the system has been

implemented on the IBM 360/65 with encouraging results. Further work

is required in software development, so that a flexible hardware imple­

mentation is desirable. Thus, microprocessors shall be studied in the

hope that they can produce a reasonable alternative to completely hard­

wired logic.

1.2 System Description

The fire control system must predict the point of impact and then

calculate necessary corrections to the firing azimuth and elevation to

achieve the desired impact position. These functions must be performed

in real time so that additional rounds may be fired if necessary before

the sensor round has impacted. The advantage of the system is that the

meteorological effects from temperature, density and winds do not have

to be precisely known before firing to enable compensation. The pro­

jectile itself serves as a sensor which enables automatic compensation

1

2

without individual attention to each parameter.

The overall system can best be described using Figure 1. The radar

tracks the projectile to provide position and range rate data. This

data is fed into the fire control system at a rate of 20 samples/second.

The fire control system then uses this data to estimate the position

and velocity of the projectile. These are used to predict the impact

point and adjust the firing parameters of the artillery for predicted

impact errors.

ARTILLERY

FIR-E
RADAR CONTROL

SYSTEM

Figure 1. Fire Contra 1 System

The general program structure which implements the fire control

system is shown in Figure 2. Required operations for this process in­

clude coordinate transformations, input data filtering, integration of

the state transition matrix and control.

This report will look exclusively at the problem of implementing

the Kalman filter and coordinate transformations for the following rea-

sons: the microprocessor analysis must begin by carefully determining

no

no

Update Estimat
~--+---f Using Initial

Values

yes

Figure 2. Fire Control Program Structure

3

Figure 2. (Continued)

Increment
Time

STOP

4

yes

5

the system specifications, which include power requirements, speed, in­

put/output (I/0) and software. Before these can be determined, the

overall system must first be studied to find the subsystem which presents

the greatest requirements. The Kalman filter processor has been deemed

the most critical not only for numerical accuracy, but also for required

speed. The Kalman filter determines the system•s accuracy and it must

complete calculations within the 20 sample/second data rate. Thus, the

microprocessor requirements such as speed and required instructions will

be derived from analysis of the Kalman filter and coordinate transform­

ation algorithms.

1.3 Objectives

The major objectives of this analysis are first to make a selection

of the required microprocessor and second to begin the application of

this processor to the fire control system. This report is part of a

preliminary project; therefore, the selection process will be well doc­

umented and written on such a level as to enable re-evaluation of the

material in the event of system requirement changes. Also, material as

to what is termed next generation processors will be included due to

the uncertain time schedule of the project. In the event of a signifi­

cant time delay in the system design, this material may become useful

since faster systems are being designed which may become available

commercially.

The applications material will be written using a single best choice

if one exists. In the event that a clear choice does not exist, appli­

cation of each will be done to give an idea as to their distinct advan­

tages. A further objective of the application material is to give an

6

estimate of the required manpower and resources involved to complete the

project. Manpower requirements are seen as an important aspect of this

problem.

1.4 Analysis Procedure

The study organization has been broken into seven logical steps as

shown below:

1. System description,

2. Determination of microprocessor requirements from
the system description,

3. Overview of available microprocessors,

4. Reduction of microprocessor spectrum for analysis,

5. Study of available microprocessors within reduced
spectrum of analysis,

6. Detailed comparison and selection and

7. Microprocessor application.

The study will begin with the determination of the microprocessor

requirements to implement the Kalman filter and coordinate transform­

ation algorithms. This will include determining the required number of

bits of accuracy, the time limit for execution and the instruction set.

Included in the software requirements will be the necessary subroutine

functions.

With the system requirements in mind, an overview of available

microprocessors will be presented including an introduction to micro-

processors and integrated circuit technologies. From this overview

one can reduce the spectrum of microprocessors to those with the most

potential for this application. A study of particular processors on

the market, which from preliminary analysis satisfy the basic require-

7

ments, will be made. After the detailed study of individual processors,

a comparison and selection process can begin. Finally after the selec­

tion is made, Chapter V will be dedicated to the application of the

chosen microprocessor. Application material will include hardware sys­

tem alternatives, hardware multiplication and subroutine implementation

if necessary, software organization, instruction definition and program­

ming examples. Manufacturer-supplied software support will be described

along with required software support which must be developed.

CHAPTER II

DETERMINATION OF MICROPROCESSOR

REQUIREMENTS

Before a search for the best microprocessor can begin one must

first investigate the system requirements and working environment of

the processor. This chapter will try to document the basic requirements

and any special constraints which the chosen microprocessor must meet.

Also a look at the problem in detail will give better understanding of

the required firmware functions. Preliminary work has been done at

Oklahoma State University in the area of software simulations. The basic

Kalman filter equations have been studied and some different algorithms

for implementing required functions have been documented. These studies

will be used to determine the microprocessor requirements.

This chapter will basically draw from previous work to determine

specific requirements and will not try to specify the fire controller

functions. Specification of the fire control system is presently being

done and is not yet in a concrete form. A complete specification of the

fire controller is not necessary at this point since one of the basic

reasons for selecting a microprocessor system is the added flexibility

of firmware.

The system characteristics will be studied to determine three major

areas of interest: throughput, input/output (I/0) parameters and special

constraints. Throughput requirements are based on the number and type

8

9

of functions which the processor must execute in a given amount of time.

The I/0 parameters specify such requirements as the type of data, re­

quired bit-accuracy of various operations and external control or com­

munication requirements outside of the controller system. Finally the

special constraints will be specific characteristics which will neces­

sarily constrain selection of the microprocessor.

2.1 Throughput

The firmware implementation of the fire control system has not been

completed. The basic variable seems to be in the type of data filter

needed to smooth the radar tracking data. Two different methods have

been simulated, a polynomial filter and a Taylor series filter, with

encouraging results. It is thought that a third method, the extended

Kalman filter, would give even better results (38). Thus the extended

Kalman filter method, which was the subject of an independent study will

be used to determine the throughput requirements.

The time limitation for the execution of this state estimation

loop is 0.05 second. This is the time to when the next radar data will

be available. Thus the extended Kalman filter calculations must have

been concluded so that real time estimation can be obtained of the test

projectile path. Figure 3 is a block diagram of the extended Kalman

filter prospective implementation. In this diagram the loop of interest

includes the integration of the model and transition matrix and the ex­

tended Kalman filter. Although the integration routine is shown separ­

ately it is actually part of the extended Kalman filter as shown in

Figure 4. Figure 4 shows the extended Kalman filter in detail where

block two, COMPUTE THE PREDICTED STATE, includes the Runge-Kutta inte­

gration routine.

<

Integrate
Model and

Transition
Matrix

10

Linearized About Latest
Estimate. ~(t.,t)
and ~(ti,O) both 3p~ated

Process observation and
update estimate.

~(tiMPACT'tiPP)
calculated here.

A+ + + A+ oxiMPACT=xdes(tiMPACT)-x(tiMPACT) ox = difference ~-----.------_J between desired and predicted impact

Figure 3. Extended Kalman Filter Implementation

11

(ENTRY

I k = o I

(1) ~STORE THE FILTER STATE
. {~(kjk), P(kjk)}

(2) COMPUTE THE PREDICTED STATE
A

x(k+lJk) (Ru nge Kutta)

(3) COMPUTE THE PREDICTED ERROR COVARIANCE MATRIX
P(k+ljk)

(4) COMPUTE THE FILTER GAIN MATRIX
K(k+l)

\It

(5) PROCESS THE OBSERVATION
yk+l' ~(k+ljk+l)

(6) COMPUTE THE NEW ERROR COVARIANCE MATRIX
P(k+ljk+l)

~
k = k+l

Figure 4. Flowchart of Extended Kalman Filter {28)

The required functions for the execution of the extended Kalman

filter system including the Runge-Kutta integration routine are shown

in Table I. This instruction mix was part of the results obtained by

a separate study (28). Table I was derived by looking at the functions

which must be implemented in the extended Kalman filter loop. These

are the functions which must be executed during the 0.05 second sample

time. The primary purpose of this instruction mix will be to compute

the execution time of the critical Kalman filter loop for prospective

microprocessors. The number of required executions of each function

shown in Table I does not include the use of one function to execute

another function.

TABLE I

INSTRUCTION MIX FOR EXTENDED KALMAN
FILTER IMPLEMENTATION

Function

Add-subtract
Multiply
Divide
Sin } Cos
Tan
Square root
Exponential
Miscellaneous

Number Required

900
1100
14

7

10
1

4000

12

The functions of Table I are only the major functions which must be

13

available as either an instruction or a subroutine. They do not include

the many memory reference instructions, register manipulation instruc­

tions and jump instructions which will also be required. As a rough

estimate 4000 miscellaneous instructions of these types will be included

in the instruction mix. This is about twice the number of the special

functions. These types of instruction have roughly the same execution

times especially when compared to the more complex special functions.

As a measure of the basic throughput requirements, the execution time

of the extended Ka 1 man fi 1 ter 1 oop will be ca 1 cu 1 a ted based on the in~

struction mix of Table I. This type of throughput calculation is very

rough and only intended as a first approximation. A more accurate in­

struction mix would require programming the application on each processor

being considered. In many cases the execution times of the functions

wi 11 even have to be estimated. These estimates wi 11 be based on the

performance of a similar microprocessor with the same function.

One has the alternative of using hardware or firmware for the im­

plementation of these special functions. The only functions of the

ones shown in Table I which are generally offered by most microprocessors

are the add and subtract functions. The multiply and divide functions

are sometimes offered but they are no more than internal firmware im­

plemented requiring long execution times. The remaining functions must

be implemented either in hardware or as subroutines. The minimization

of hardware would ,lead to the software implementation of these functions

·depending on the speed of the chosen microprocessor. It is doubtful that

a total firmware solution would have the required throughput. Thus a

tradeoff between hardware and firmware implementations will probably be

necessary. Although the determination of this tradeoff is part of the

. 1

14

system design, two alternatives will be discussed here.

The first alternative is to use Cordie in the implementation of

these functions. Cordie algorithms are implemented using both firmware

and hardware. A general decimal Cordie computer is shown in Figure 5.

The basis of Cordie is the use of a look-up table in read only memory

(ROM) for certain constants which are then used by hardware in the cal­

culation of the required function. The process requires a great deal

of control and timing hardware, but it is a fast method of implementa-

tion { 37).

The other alternative is lto allocate the hardware resources to a
-~·--···•·~·-···· ,.,,_ "'-•w ••~----~~ ... "'•·'<-• ••

·-·. . - .. ~--- ··-·· .. -.,-,~-'"'""''•"''-"'~'""··· ... ~~-~- -~--..,.--~.,.-.... ----,
single function which can be used together with firmware <:Q.!llf()l to im­

plement the remaining functions. All the special functions could be

implemented with the addition and subtraction instructions as a base .

;'But a better solution is to increase the number of base functions by . - .. - ".,._ __ ., ... -"" ' ,-•' -· .. - - ' ---~-~-~-~--- ,_- --

hardware implementing the multiply, the most used function. Not only
~- ---''' ,..~-,..-~ .. ··------~-- --~ .. - -·' ----~-------··.,.-.., " -

is multiplication a heavily used instruction in the system, but it is

also required in the firmware implementation of the remaining functions.

Furthermore firmware implemented multiplication would require at least

thirty times the execution time of those instructions under the miscel-

laneous heading in Table I. This means the multiplication function

would account for roughly 85 percent of the execution time while only

accounting for 18 percent of the total number of instructions. Thus,

hardware implementation of the multiply instruction could be used to
----~-------~· ..•. '"·~------~-·~-- _____ .. --------~---- -.. - . -- ~--'·----~- .• __ .,_,_,._.,,J.,.-. • ' ' . - . - - ·· .. ', .•.. -,.._ ,.,...~, ·- -•' •. . -.. - -~ ,.., .• ? ~ •• , •.•• ,, •• -..

in<::_r:~~se._~he speed of the firmware implemented functions and increase

the ___ ()Verall throughput. The final decision as to which method to use

is dependent upon the microprocessor selected.

If the multiply is implemented in hardware, the remaining functions

X I

o--.-ql

y

A

I
. I

o---<:iJ
r
I

CLOCK

15

60-BIT R1 REGISTER ~-------" I ;;;... X I
I

60-BIT R2 REGISTER

60-BIT R3 REGISTER

p w

BIT, PERIOD AND WORD TIMING ROM

B D

Figure 5. Decimal Cordie' Computer (37)

(sin, cos, tan, exponential and squareroot) can be implemented in firm-

ware using rational approximations. These algorithms were investigated

independently (28). The implementation of the rational approximation

requires a series of multiplies and adds of the argument and certain

constants. Thus another required instruction to implement the rational

16

approximations would be a load immediate function or the ability to input

constants from program memory. The number of constants required by each

function is shown in Table II. The additional number of multiplies is

really not significant when compared to the program requirements of 1100

multiplies. For example, only eight multiplies are required for the sin

algorithm execution.

Function

Sin
Cos
Tan
Exp
Sqrt

TABLE II

REQUIRED CONSTANTS FOR IMPLEMENTATION OF
SPECIAL FUNCTIONS

Required Constants Accuracy (Decimal digits)

4
6
0

10
5

10
10
10
12
25

The number of constants will have little effect on memory require­

ments. Each constant must be stored in memory, but either program memory

or working memory may be used for storage. The constants must be

17

accounted for when the memory requirements are finalized.

Thus the throughput of the controller is very dependent upon the

multiply instruction execution and will be important in the microproces­

sor selection. The previous discussion shows that the fire control sys­

tem will require more general computing power than actual controller

type functions.

2.2 Input/Output Parameters

The microprocessor must interface with an external memory and some

type of radar data channel. The only periodic input data will be the

radar data which are range, range rate, azimuth and elevation. From

preliminary simulations done at Oklahoma State University, a data ac­

curacy of at least 32 bits is desirable. The 32-bit accuracy may be

obtained by double precision operation of a 16-bit processor but at the

cost of reduced throughput. The tradeoff between the increased hard­

ware required for parallel 32-bit operation and the slower but decreased

hardware of a 16-bit double precision system must be explored and deter­

mined during the microprocessor sel~ction period.

The program memory will be somewhere between 4 kilo (K) and BK bytes

as seen from the previous discussion of the instruction mix. Also the

firmware will have many matrix operations requiring external data stor­

age. The matrix operations may involve as large as a six by six matrix

(37). The exact·working memory requirements are hard to determine but

about 128 to 256 bytes of memory will probably be necessary, each byte

being 32-bits. These requirements can be determined more accurately

when the software has been better defined and the microprocessor system

outlined.

18

2.3 Special Constraints

The major system constraints come from the working environment.

The final system is intended to be a field portable artillary fire con-

trol processor. Thus, the microprocessor must function over the military

temperature range for field use and be relatively small in size to be

portable. The power requirements will also necessarily be minimized

for portability. These constraints will be observed as nearly as pos­

sible, but the operating requirements must first be met. The high speed
------·- --- - --· --.. "'~

"Qr large throughpu~ requjr~J11~~tmay require a 1 ~r~JTIQ_Yn:t_Qf ___ p.o.w_er_, ___ _

The basic system will actually have the characteristics of a mini­

computer, a large throughput system requiring medium-size-processor num­

erical ability. It will not have the characteristics of what is usually

termed a controller. ~A powerful interrupt ability is not required. A

direct memory access ability is not required since large data block

transfers are not involved.

A final consideration which may become a constraint is the necessary

manpower to develop a working system. This includes hardware and system

design and software support. After the system has been designed, it

must be transformed into the code of the microprocessor, which requires

coding time and an assembler. If an assembler is not available for the

chosen microprocessor, this must also be written. Debug software and

special debug hardware will also be required. Thus, the project will

require effort which goes beyond the implementation of the controller

system. The choice of the microprocessor greatly effects the amount of

manpower required for completion of the project.

General system requirements have been discussed so that an orderly

microprocessor selection may begin. Actual system design would require

greater detail, but our concern is an overall picture of necessary

functions and objectives.

19

CHAPTER III

OVERVIEW OF MICROPROCESSORS

3.1 Introduction

This chapter will introduce terminology and basic ideas relating

to microprocessors. Its purpose is to characterize the different types

of available microprocessors and to narrow down the spectrum which will

be useful for the fire control application. Once the spectrum of use­

ful microprocessors has been determined, the study and analysis of

those which have the most potential may begin. Chapter IV will be ded-

icated to specific microprocessors presently on the market which meet

the present needs.

3.2 Basic Definitions

A processor may be defined as a device which fetches and executes

instructions. Figure 6 is a block diagram showing the primary sections

of a basic computer. The four computer sections are identified as

follows:

1. Memory - For storage of programs

2. Arithmetic - For performance of calculations on
data and instructions

3. Input/Output - For exchange of data with external
world and

4. Control - For primary control of the arithmetic
section with minimal control of the other two
sections.

20

Those sections which fetch and execute the instructions are the

arithmetic and control sections, and thus constitute the processing

unit.

MEMORY

I
I I

CONTROL ARITHMETIC

I I

I

I/0

Figure 6. Basic Computer

21

A microprocessor is a set of circuits necessary and sufficient to

perform the functions of a general purpose processor. The number of

circuits is relatively small and the packaging density of most of the

circuits within this set is in the category of large scale integration

(LSI). A detailed block diagram of the elements common to most micro­

processors is shown in Figure 7. First a means must be provided to ad­

dress the memory. Once the instruction has been sent from memory to the

processor, it is loaded in the instruction register. Also, instruction

decode circuitry must be provided to determine what the instruction is

22

and to generate the signals required to implement the instructions.

Some instructions require an arithmetic or logical operation on data.

Thus, the processor must contain an arithmetic logic unit (ALU). Since

other instructions may involve temporary storage of intermediate re-

sults, various service registers are also provided. Furthermore, a

method must be provided to sequence addresses through memory, which

means that a program counter is necessary. Finally, address modifica-

tion, such as indexing or subroutine location, requires various address

registers or a register stack. All these elements, together with a

timing and control section including I/0 drivers and receivers, make up

the major blocks of a microprocessor.

rl MEMORY
ADDRESS CONTROL INSTRUCTION ~

't REGISTER
!PROGRAM COUNTER

-1 ADDRESS AND .,. INSTRUCTION I/0
INDEX REGISTERS DECODE

-""
RECEIVER

LOGIC DRIVER
~ MULTIPLEXER

I MISC. REG. ACCUMULATOR ~ t ..
TIMING AND - ARITHMETIC

CONTROL ~ LOGIC UNIT

Figure 7. Elements Common to Most Microprocessors

Thus, a microprocessor is a very small and inexpensive processor

contained in a single integrated circuit chip or a set of integrated

23

circuits. The set of integrated circuits refers to the microprocessor

slice configuration in which 2-bit or 4-bit "slices" are paralleled to

form larger data path systems. The single chip is called a monolithic

microprocessor and it has a fixed width data path.

3.2.1 Microprocessor Slice

The microprocessors which have been designed to allow a modularity

of data paths and whose control sections can support this modularity are

considered to be in the "slice" configuration (14). The basic set of

chips which together produce a processor include:

1. Processor Slice - Arithmetic unit which may be
used in parallel to achieve the necessary
data path width (ALU).

2. Look-Ahead Carry Generator - Capability of
multilevel look-ahead for high-speed
arithmetic operations over large word
1 engths.

3. Microprogram Sequence or Control Unit -
Control unit containing the instruction
register, program counter, etc.
depending on the particular manufacturer•s
system arrangement.

4. Read Only Memory (ROM) - Memory where the
microprogram is stored.

These chip sets may also include such extras as timing function chip,

slice/memory interface (34), cyclic redundancy check (CRC) generator/

checker, serial/parallel first in-first out (FIFO) buffer, data path

switch (DPS), p-stack, data access register (DAR) (25), multi-mode latch

buffer, priority interrupt control unit, and inverting bi-directional

bus driver (30).

Figures 8 and 9 show 16-bit and 8-bit microprocessor chip level

architecture where both microprocessors utilize the same chip set

CONTROL CONTROL TIMING

T I / r
/N

REGISTERS REGISTERS REGISTERS REGISTERS
& & & &

ARITHMETIC ARITHMETIC ARITHMETIC ARITHMETIC

..,.,
....

.... -

/
k v 4 v 4 / 4 / /
I
16

Figure 8. 16-Bit Microprocessor (Each Block
Represents a Chip)

/
v 4

CONTROL CONTROL TIMING

I
8

I
N/

REGISTERS REGISTERS
& &

ARITHMETIC ARITHMETIC

I
v

4
v 4 " /

Figure 9. 8-Bit Microprocessor (Each Block
Represents a Chip)

...... _,

---;;>'

24

25

with minor modifications to the control circuits. These systems are

implemented with 4-bit microprocessor slices and each block represents

a chip. The diagrams show that the slice microprocessor can be expand­

ed to different data path lengths but at the expense of more chips and

complexity.

3.2.2 Monolithic Processor

The other category of microprocessors is where the design of chips

has been optimized for a fixed data path of either 4, 8, 12 or 16 bits.

These microprocessors usually combine both control and arithmetic func­

tions into a single chip processor. Although these fixed data path

processors have all the processor functions in one chip, they still may

have peripheral chips such as read only memories, random access memories,

interface adapters and communication interface adapters. On the other

hand the single chip may be as complete as to have all control, arith­

metic, memory and interface circuitry internal. Thus, in general this

class of microprocessors will be called a monolithic processor although

it may be part of a set of chips which together produce a working sys­

tem.

These two categories, monolithic and slice, developed due to the

different integrated circuit (IC) technologies. To understand the ad­

vantages and disadvantages between these two types of microprocessors,

one must first understand the different IC technologies being used to

manufacture microprocessors.

3.3 Integrated Circuit Technologies

At this point it is not necessary to discuss in detail the different

26

manufacturing techniques but instead to point out the distinguishing

characteristics of the major technologies. MOS and bipolar are the two

major groups under which the major technologies can be placed. MOS

technology is based on the Metal-Oxide-Silicone-Field-Effect Transistor

(MOSFET), while bipolar technology is based on the familiar epitaxial

transistor.

3.3.1 MOS Technologies

The most mature MOS process is PMOS or p-channel MOS. Most first

generation microprocessors were PMOS. These were monolithic processors

~Jth.~~ow speed Cqp(ibilities. The major advantage of PMOS is rrigb pack-
··---·-·~.,

ing density, which is very important for LSI microprocessor development.

These devices also have relatively l_ow __ E~.~er consumption but require

multiple power soyrces.. PMOS thresholds, the highest of all existing

technologies, often require level translation from transistor-transistor

logic (TTL) (bipolar) levels to guarantee that minimum thresholds are

achieved (7).

N-channel MOS or NMOS has the potential for significantly highgr __

~-than PMOS microprocessors. N-channel devices require a positive

gate-to-source voltage and have a threshold of 1-volt or less. Thus,

they are more easily driven by TTL drivers which are pulled-up by re­

sistors (15). Also n-channel outputs are easily made TTL compatible

and n-channel silicon-gate MOS can run on a single 5-V power supply if

required. These advantages are at the cost of increased fabrication

C,9.111Pl exitY-· but with bigb packing densi t;)l. There are many present gen­

eration NMOS monolithic microprocessors {9).

One of the latest MOS technologies is CMOS or complementary MOS.

27

CMOS uses n-channel devices as drivers and p-channel devices for the

load. In this configuration only one transistor is on in the quiescent

state producing low standby power dissipation. The advantages of CMOS

inc 1 ude h ig_t} __ ~q_i?_e _imrny~-~t.y,__ .wi de .. to 1 eranc:~. tg __ F.<?W.~L.sURRlY. v.~~_i_a ti on,

lOJ'Ltempe.rature _sen_!)itivity and .. low.,.power dis.si.p(!Jjq_r:t .L?l- The CMOS

process also requires isolation between n-channel and p-channel devices

which again i.nc..r.eases.the process complexity __ _anc;t_cost .•... - The lower pack­

ing density, the major disadvantage, has for the most part kept CMOS

out of the LSI microprocessor applications, but next generation CMOS

microprocessors are being developed by RCA and Intersil {16). Finally,

SOS or silicon-on-sapphire is again an improvement in speed but at the

cost of process complexity and cost. An SOS process type microprocessor

is being developed by Inselek {16).

In genera 1 , the present MOS techno 1 ogi es are lli!t_t~~} . .Y ~J..ruL.wtt~ ..

high packin~ensity useful for single chip processors. The second
--·-......_..__.~. . ••. .._..,_.._Jr.--..,.~-<

major technology is bipolar, which can only be utilized in the slice

configuration.

3.3.2 Bipolar Technologies

The general characteristics of bipolar ICs are high speed, low_.
---··--~- -· _..,.._ ..•. ~ .. ' --·

p~cking d.eiJ.stty __ _gnd _higher_ GQ.S.-t... The higher cost results from the fact

that the manufacture of bipolar circuits of all types involves five to

seven masking steps to print the circuit patterns, as opposed to three

for MOS (15). TTL is the most popular and most used bipolar logic fam­

ily. The major advantages of TTL are the high speed, TTL compatibility,

and a single +5-volt power supply.· The major disadvantages are the

high power consumption and the low packing density (7). The latest

28

improvement in TTL bipolar devices is the use of a Schottky diode clamp

between the base and collector to keep the transistor from saturating.

This has produced even better speed performance. Also, low power

Schottky devices have been introduced which have about one-fifth the

power consumption of regular TTL logic. Present generation slice micro­

processors are generally low-power Schottky/TTL (16).

Next generation bipolar technologies include ECL and r2L. ECL or

emitter coupled logic has ultra high speed, more power consumption,

temperature sensitivity, nonstandard power supply voltages and complex

interconnection requirements (7). However, high-transient switching

currents are avoided reducing peak current requirements over similar

TTL chips and thereby making power distribution problems somewhat eas­

ier. Motorola is presently developing an ECL 4-bit slice microproces­

sor (34). r2L or integrated injection logic is seen as the process

with the potential of giving the best of bipolar and MOS with good

speed and high packing density (10). I2L attacks the isolation require-

ment of bipolar devices by careful partitioning and judicious removal

of unnecessary resistors. Using this technique, gates can be fabricated

which require no isolation within the gate structure (7). At present,

I2L is not as fast as Schottky TTL and does not have the density to

produce a monolithic processor. Texas Instruments is presently devel­

oping a 4-bit, r2L slice microprocessor (16).

3.3.3 Technology Comparison

At this point it is possible to compare the different technologies

being used to manufacture microprocessors. Figure 10 shows how CMOS,

r2L and LS/TTL fit into the speed/power/complexity picture. CMOS

29

standard family logic dominates the low-power corner while low-power

Schottky TTL takes over when speed requirement goes into the megahertz

{MHz) region {2). The new I2L is expected to be only applicable at the

LSI level of complexity, fitting somewhere between CMOS and LS/TTL with

respect to speed/power.

1

Figure 10. Speed/Power/Complexity Comparison

Source: (2), p. 26.

Finally, an overall technology comparison is made in Table III

where each technology is rated from one to ten in each of the categor­

ies. Bipolar devices are seen as the best performance devices for

30

speed but have .lJj_gh power consumption_ and 1 ow packing density. The MOS

devices have the opposite characteristics of low power consumption, low

speed and high packing densities. This analysis has included the latest

technologies being used in microprocessors but one must remember that

final recommendations must be made using present generation processors

or those in production with reasonable hardware and software document­

ation. Many problems can arise from trying to use a processor before

final specifications are documented, documentation errors are elimin-

ated and software development has been completed to some degree. Thus,

final recommendations as to which microprocessor to use in the fire

control system will also be based on the extent of development of the

chip set.

Technology
Characteristic

Speed
Reliability
Power Consumption
Density
Complexity
Process Maturity
Multiple Sourcing

TABLE I II

TECHNOLOGY COMPARISON

MOS
PMOS NMOS CMOS

4 7 5
6 9 8
7 8 9
8 9 5
6 8 8
9 7 6
9 8 2

Source: (7)' pp. 64-65.

BIPOLAR
I2L TTL ECL

8 9 6
5 4 5
2 1 8 c.:-:~------

6 2 8
9 4 8
9 8 6
8 2 1

)

31

From the preceding discussion we can see how the two types of

microprocessors emerged. The monolithic processor was produced using

MOS, but in order to obtain the better performance of the TTL technol­

ogy, designers had to· fragment the microprocessor chip into a slice due

to the lower packing density of TTL. The slice configuration not only

enables the use of less dense technologies but it also has important

system differences. The ability to use faster technologies and the

increased fexlibility of the slice configuration has led to the incred­

ibly fast development of bipolar slice microprocessors.

3.4 Monolithic and Slice Comparison

The slice microprocessor has introduced more versatility and great­

er speed than monolithic or fixed data path processors. The features

which make it versatile are its expandable data path and microprogram­

mable capacity. The microprogram is a flexible firmware system which

can be specifically designed to execute a special purpose macro-instruc­

tion set. A special purpose instruction set which is tailored to a

specific application can be designed.

To better understand the microprogrammable system, a block outline

of such a system is shown in Figure 11. Basically, the microprogram

ROM and microprogram control unit replace the instruction decode logic

shown in Figure 7. The macro-instruction is placed on the data bus

from the memory. The micro-instruction address is determined by the

macro-instruction and the previous micro-instruction. The microprogram

then executes the macro-instruction. Conditional jump commands may be

executed from the micro-instruction and feedback flag lines from the CP

array. The macro-instruction execution ends with a micro-instruction

32

which returns microprogram address control to the macro-instruction bus

which is the data bus from memory. During instruction execution the

micro-instruction controls the central processing array.

Figure 11 describes the Intel 3000 series microprocessor slice

which uses standard architecture except for the micro-instruction ad­

dressi·ng scheme. The Intel set actually executes a jump the the next

instruction where the more standard approach is to use a microprogram

counter to sequentially execute the microprogram. In this manner, the

macro-instruction or main program counter determines the beginning micro­

instruction address which is then incremented for the next address of

microprogram.

MICRO-
PROGRAM MICRO-INSTRUCTION

MEMORY

NEXT
ADD RESS ADDRESS

CONTROL

CONTROL
MICROPROGRAM

CONTROL - FLAG BIT

l
INSTRUCTION BUS

MEMORY
ADDRESS

BUS
11

'I'

ALU

DATA
BUS TO
MEMORY
ll

DATA FROM DEVICE

DATA FROM MEMORY

Figure 11. Basic Microprogrammable System

s

33

The microprogram is usually stored in a read only memory (ROM) or a

programmable read only memory (PROM). The micro-instruction program is

usually not changed after it has been designed to execute a given in­

struction set and thus is stored in a nonvolatile memory. ROMs and

PROMs also have much better access times and data storage density than

random access memories or read/write memories. Macro-instruction pro­

grams can be stored in either RAM or ROM depending on the system. Some

systems use a loader program stored in a ROM to automatically load the

operating macroprogram into RAM. This is useful when the system has

several software options or functions it can perform without hardware

modification.

It is not manditory for slice microprocessor systems to have a

macro-instruction set. The entire software system may be programed on

the microlevel but this adds more complexity to the software design.

In this application the micro-instructions provide an even faster sys­

tem.

The slice configuration has been shown to be the higher performance

system but it has two important disadvantages. First, it requires a

much more complex hardware system with a higher package count, and sec­

ond, it requires much greater software development effort. The manu­

facturers are unable to provide the same software support, such as

assemblers and simulators, when the instruction set is variable. Also,

the programming on the microlevel is on a lower level and thus more

difficult than with assembler language.

Assemblers for slice microprocessors are being developed with a

great deal of flexibility designed into them to handle the variable

micro-instruction sets (28). This type of support for slice micropro-

34

cessors is new and will not be available for present use except for only

one manufacturer, Intel. Naturally, there are no assemblers available

for the macro-instructions since they are user defined.

The major system characteristics for slice and monolithic micro-

processors are summarized in Table IV. There are exceptions to the

characteristics given in Table IV. There are combinations of these two

major groups, such as monolithic processors which are microprogrammable

and slice processors which use MOS technology, but presently bipolar

technology is confined to slice configurations. This table is a reflec­

tion of the present microprocessor trends. Future development will be

trying to produce faster systems with both flexibility and simplicity.

These systems will probably use bipolar technology with improved speed

and packing density.

; TABLE IV

vi SUMMARY OF THE DIFFERENCES BETWEEN
THE TWO TYPES OF MICROPROCESSORS

Monolithic Processors
a) Main processor functions in a single chip
b) Fixed instruction set
c) Better software support
d) MOS technology - slower cycle times
e) Simpler system design - smaller chip count
f) Fixed data path - requires use of software for expansion
Slice Microprocessors
a) Chip set centered around processor slice
b) Microprogrammable - variable macrolanguage
c) Less software support
d) Bipolar technology - fastest cycle times, more power
e) Complex system design - high chip count
f) More versatile - expandable data path

3.5 Previous Work in Evaluation of

Microprocessors for Military

Applications

35

A paper by Gregory Fox (6) considers the evaluation and comparison

of the performance of commercial microprocessors and a discussion of

potential military system applications. The paper begins by showing

the exponential growth rate of available microprocessors and then points

out the difficulty of selecting the best microprocessor for a given ap­

plication. The difficulty arises when trying to evaluate scaled down,

integrated versions of general purpose computer CPUs with documentation

consisting of 20 to 30 pages of specifications. Microprocessors cannot

be effectively evaluated on a data sheet basis.

Fox states that the performance of a microprocessor is a function

of three factors: (1) cycle time, (2) number of cycles for each in­

struction and (3) the power of the instruction set. As a measure of

these three factors, the author used throughput to compare different

types of microprocessors, In order to obtain an estimate of a proces­

sor's throughput from the instructions• execution times, an instruction

mix must be assumed. Table V shows the instruction mix assumed by the

author. The instruction mix is a function of the microprocessor appli­

cation and this mix is for an avionics fire control system. The mix is

determined from the percentage use of a certain instruction and that

instruction's execution time. It must be noted that this is not the

same type of fire control system but is still an interesting evaluation.

Results from a comparison of an 8-bit, single chip, NMOS and a

16-bit, PMOS, slice microprocessor show that better throughput was ob­

tained from the 16-bit slice. Although the 8-bit processor had a

36

faster cycle time, the use of double precision arithmetic reduced the

throughput below that of a slower 16-bit machine designed with slice

processors. One important advantage of the slice machine was having

both multiply and divide instructions where the 8-bit processor did not.

The author points out that the 16-bit processor's multiply requires fif­

ty percent longer than the time indicated in the specification sheet.

A further advantage of the 16-bit machine was the shift instruction use­

ful for scaling incoming data. The 8-bit machine only had a rotate in­

struction which wraps the shifted bit around to the other end. Thus,

processors with higher hardware bit accuracy which have the required

instructions can overcome smaller but faster machines.

TABLE V

INSTRUCTION MIX FOR AVIONICS FIRE CONTROL

Instruction

Load
Store
Branch conditional
Branch unconditional
Add
Logical
Multiply
Shift
Subtract
Divide
Others

Source: (6), p.7.

Percent
Utilization

29.2
18.1
14.1
9.4
8.8
5.4
5.2
4.0
2.5
1.3
2.0

37

The author cautions potential users about analyzing only instruction

times or throughput. These studies are crude and only give rough ideas

of a processor's usefulness for a particular application. Further study

is required of memory addressing options, number and flexibility of the

registers, and the variety of branch conditions available. These are

factors which require either actual programming or a great deal of com-

puter experience to evaluate.

Finally, the author does a comparison between different types of

processors which is shown in Table VI. He shows that the bipolar slice

machine has a considerably better throughput than any other processor

configuration. The author also estimates the required throughput for

a ground based fire control system as about 10 to 100 KOPS (thousand

operations per second).

TABLE VI

AVAILABLE MICROPROCESSOR PERFORMANCE

Microprocessor

8-bit NMOS
8-bit NMOS
Byte Slice
Byte Slice Bipolar

Word Length
(bits)

8
16**
16
16

* Using Instruction Mix in Table V
** Double Precision Arithmetic

Source: (6), p. 8.

Throughput*
(KOPS)

35
17
42

400-500

3.6 Reduction of Microprocessor Spectrum

for Analysis

38

The slice configuration processors give the best speed performance

due to system and technology advantages, which is the major system re­

quirement. The major disadvantages are higher power consumption, lack

of software support, increased system complexity, and a large chip

count. The only one of these disadvantages which will not affect the

present problem significantly is the power consumption. However, a

monolithic microprocessor would be considerably slower with a maximum

of a 16-bit data path configuration. With a slice microprocessor it is

conceivable to use eight 4-bit slices or sixteen 2-bit slices to form a

32-bit hardware data path system. This size system may be approaching

a minicomputer in hardware and software design complexity. Thus, the

best solution seems to be to use the faster slice configuration with at

least a 32-bit data path.

An analysis of the available slice type microprocessors is now re­

quired. Because of the expected complexity of a slice configuration of

32 bits, an analysis of a 16-bit monolithic processor will also be done.

The limited manpower and resources of this project may become the de­

termining factor. So, one must determine if the slice configuration

speed advantage can warrant the increased design effort, or if the mono­

lithic microprocessor system is even a working alternative due to its

lack of speed. Chapter IV will be a study of the available micropro­

cessors including the newest of the slice microprocessors and one or

two 16-bit monolithic processors. The emphasis is on the slice pro­

cessors for they seem to be the best hope for a microprocessor system

solution to the fire control problem.

39

3.7 Conclusion

In conclusion, we have introduced the basic concepts of micropro­

cessors showing the effect integrated circuit technologies have had in

producing two different types of microprocessors. These two types have

been compared and a selection of an expandable data path slice micro­

processor,~.(}.~ been made based primarily on its speed advantages over

monolithic.PE?cessors. Chapter IV has been allocated to a complete

study of the most recent slice microprocessors. Secondly, a monolithic

16-bit processor will be included for purposes of determining if a mono­

lithic microprocessor is a viable alternative in case a large slice

system demands excessive manpower.

CHAPTER IV

FINAL SELECTION FROM A SURVEY

OF AVAILABLE MICROPROCESSORS

4.1 Microprocessor Analysis

Analysis to determine the best microprocessor for a given applica­

tion is very difficult unless the system is restricted by some special

characteristics such as size or power consumption. The present major

consideration is speed, the most difficult of all parameters to pre­

cisely measure for a microprocessor unless the exact application is

programmed on each processor being considered through benchmark programs.

This difficulty arises in trying to evaluate the many parameters which

determine speed. A microprocessor•s speed is a function of how it is

used, software arrangement and chip architecture. One cannot determine

the fastest microprocessor directly, but can, through the evaluation of

its architecture, determine the processors with the most potential.

The factors which are going to be considered in the determination

of a processor•s potential include the number of registers or length of

stack, the instruction set, cycle time, instruction average execution

times, subroutine linkage facilities, external flags and general arch­

itectural characteristics. These factors will help determine if the

processor can handle the required throughput. Other important factors

include chip set complexity, system level of implementation and support

software. These all determine manpower requirements. The system level

40

41

of implementation refers to whether one designs with large system blocks

or with less functional but more flexible small system blocks. Also,

the importance of software support cannot be over stressed. This type

of software includes assemblers, editors, simulators, and loader pro­

grams. Assemblers are required in all phas·es of firmware development

and simulators enable the parallel development of hardware and firmware.

Support software when not supplied by the manufacturer becomes a neces­

sary burden upon the designers during system implementation.

Extensive throughput analysis will not be done for the selection

process of the slice microprocessor. This type of analysis requires

the knowledge of each instruction's execution time and the instruction

mix. To obtain instruction execution times would require the micropro­

gramming of a predesigned macro-instruction set. The results derived

giving throughput of each processor would be related to its cycle time

and the previously discussed characteristics. Thus the conclusions

reached from the throughput analysis would probably be the same as the

more general analysis of the architecture. Other factors such as devel­

opmental manpower requirements are just as important and make the

slightly more accurate throughput analysis unnecessary.

Also the selection analysis will not be a process of finding the

processor which just meets the speed requirements. The firmware devel­

opment will be simplified as the percent utilization of the processor's

available speed is decreased. A processor with 50 percent utilization

requires less programming effort and memory than one with 80-90 percent

utilization. Slower processors will be considered only when other

unique advantages are obtained from their use.

Previous analysis has led to the selection of a 32-bit bipolar

42

slice system. This decision is based on the improved speed of the 32-

bit hardware versus a 16-bit double precision arithmetic system and the

decreased cycle time of bipolar technology. The advantages of the mono­

lithic systems, with better software support and smaller chip counts

leading to less manpower requirements, have been discussed. The slower

speed of these processors reduced the probability of their use, but the

necessity of further study was shown. Thus this chapter will include a

feasibility study of the use of a monolithic processor and a study of

available slice microprocessors leading to the selection of the best

slice processor.

Also, from the results of Chapter II, the extensive use of a multi­

ply instruction was seen. Because of the long execution time of a

firmware multiply instruction, the use of a hardware multiplication

system has been deemed useful to reduce the ~ystem speed requirements.

The first section of this chapter will deal with hardware multiplica­

tion so that the following analysis of microprocessors may use these

results for execution time estimates.

4.2 Multiplication with Peripheral Hardware

There are many methods to achieve hardware multiplication which

1 give different ratios of the hardware versus speed tradeoff. Systems

which use readily available large scale integration (LSI) and medium

scale integration (MSI) circuits to improve the existing processor•s

arithmetic logic unit (ALU) multiplication ability give the lower speed

improvement with a small cost in hardware. At the other end of the

spe~trum is the specialized multiplication chip which requires little

or no ALU functions to give very fast execution times but with increased

43

hardware cost. The alternative to hardware multiplication is the micro-
,.1-,_.

program multiply which requires 170 microse<:;onds (p!)} for th~. lM.P-J6C -- "' ,- '------- "--- ._ .. - ,.,. - .-... ,

and 3Q 11~Jqr tb~ Int~])qqo series for two 16-.bit -~perands. These are
~

the execution times which must be significantly reduced to justify the

use of a hardware multiply.

Schmid (17) discusses hardware multiplication systems and in part­

icular a system for the IMP-16C. His application requires no special

purpose chips and improves the multiplication time tq:33~~iwith a 6.5

megahertz (MHz) clock operation. The analysis and application of his

system is given in detail. The added circuit blocks, multiplication

register and control signal generator, are described along with the

software and interface problems. Although Schmid's system has a good

balance between hardware and speed improvement, it is more complex and

slower than specialized chip multiplication.

An example of specialized chip multiplication is the~dvanced Micro

.Q_e-yi~-~~~---(~~91_~!'!f_~~Q5 four-.~x:~-~~--t~o • s CC?~e-~~~~-r.!!_lll_LD_!.tP-li er. It is

especially useful for the present application since it is expandable to

any array size, available in the military temperature range and !_~ __ very_

high speed. Flexibility in the hardware-speed tradeoff is also given

by use of different chip configurations. Speed can be increased by use

of look-ahead carry chips as shown in Table VII.

Other configurations which are not given in Table VII and which

are time sequenced arrangements are discussed by Schmid (17) or by Ghest

(8) in an AMD application note. Time sequenced arrangements are slower

and more complicated but require less hardware.

The hardware increase is sizeable when compared to a microprocessor

which may consist of 30-60 packages without the multiplication hardware.

44

Also the package count in the table does not include any holding regis-

ters that may be required or any clock control circuitry for stopping

the clock during multiplication if the cycle time is less than the mult­

iplication delay time. On the other hand, the speed of the slowest

configuration is 0.315 ~s, almost 100 times faster than the Intel micro­

programmed soltuion which was for a 16-bit operand.

Configuration

1. Para 11 el ogram
carries stay in
same row

2. Parallelogram -
r~rries from lower
order multiplica-
tion skip to
alternate rows
where possible

3. S p 1 i t i n to two
parts which are
added with high-
speed carry look-
ahead adder

TABLE VII

Am25S05 CONFIGURATIONS

Array Size Total Time (~s)
(bits) for Multiplication

32 X 32 .315

32 X 32 .187

32 X 32 .152

Package Count
25505 54$18

128 5

128 15

128 32

Caution must be used when comparing the 0.315 ~s time to other ex­

ecution times. This time does not include the time required to input

the operands and output the result. This time will vary according to

45

the microprocessor being used. This chip does produce a significant

increase in speed without added system complexity and with little soft­

ware requirements from the ALU other than set-up type instructions.

Th~ ~pJ;tU_~a-!:to_n. ___ 9J. .. .t.tte __ Am25S 0 5. is .. u ncompl ica ted.....b.y_:t . .th..E:! .. f:l~!:~~a r_: __ 2_~-

c rea~j.s __ ~Jgt1jfi £.C!ll..t. ..

The parallelogram configuration, the first configuration of Table

VII, is shown in Figure 12. This configuration requires the lowest num- r~

ber of additional chips of the non-sequenced configurations and is sim­

pler to apply than the sequenced configurations. For these reasons it

is probably the best choice of the multiplication hardware systems if

the 128 additional required packages are ~c;c:_ep~abl~_:

Am25S05 Am25S05 . . . Am25S05

Am25S05 Am25S05 ... Am25S05

Am25S05 Am25S05 ... Am25S05

Figure 12. Parallelogram Configuration

46

4.3 Fixed Data Path Microprocessors

Three representatives of 16-bit fixed data path microprocessors

are compared in Tables VIII, IX and X. Table VIII gives an architecture

and general characteristics comparison while Tables IX and X give the

hardware and software support comparisons, respectively. This is not a

complete listing of all 16-bit fixed data path microprocessors but only

a representation. The total number of 16-bit processors is not large

since the greatest number of fixed data path microprocessors are of the

8-bit structure. The National Semiconductor•s IMP-16 is actually de­

signed around a 4-bit slice microprogrammable chip set. Offered as the

IMP-16, it is a 16-bit fixed data path, fixed instruction set processor

and is thus put into this category.

This comparison again shows the advantage of the lower development

manpower requirements due to the hardware and software support. All

three microprocessors have resident and cross assemblers, debug, diag­

nostic, and edit programs and are available on a predesigned card.

This type of support is almost necessary for sma 11 quantity development

programs.

The IMP-16 processor also shows what most experts believe is going

to be the growing trend in processor development. This is the predesign

of slice microprocessor boards with fixed instruction sets enabling the

manufacturers to develop the required support products. As certain MOS

chips become established, manufacturers could offer transistor-transis­

tor logic (TTL) slice equivalent systems where improved speed is desired.

Engineers could utilize previous experience with the well established

chip and save the cost and time of a new learning process. Certain

Manufacturer
Model

General
structure
Technology
No. of devices
per CPU
CPU size (pins)
Supp1y vo1tage
CPU pwr.
dissipation (mW)
Data word size
(bits)
Instruction word
size (bits)
Directly addres-
sable instruction
words (no.)
Clock frequency
(Hz/ phases
required)
Register to
register add time
(lls/data word)
No. of registers

Arithmetic
Index
General
purpose
Return stack
(no. x bits)

Interrupts
Type

Direct memory
access
BCD arithmetic
(hardware)
Microprogrammable
Extended tempera-
ture range
available
Delivery start
(qtr. year)

TABLE VIII

16-BIT MICROPROCESSORS

National General
Semiconductor Instrument
IPC-16 (PACE) CP-16007

16-bit CPU 16-bit CPU

PMOS NMOS
1 1

40 40
-12, 5 -3' 5' 12

700 750

8 or 16 16

16 10' 20' 30

65K 65K

2 MHz/20 5 MHz/20

8 2.4

0 0
0 0
4 8

10 X 16 External RAM

Standard Standard
Vectored, Vectored,
6 Level multilevel
Optional Standard

Standard No

No No

3 Qtr. 75 3 Qtr. 74

47

National
Semiconductor

IMP-16

4-bit slice

PMOS

24
-12, 5

16

16

65K

700 KHz/40

4.6

4
0
0

16 X No. of bits

Standard
1/2/2 Level

Optional

No

Yes
-55°C to 85°C

1 Qtr. 73

Manufacturer
Model

Processor cards (CPU
system on a card)
Prototyping system
(hardware and software
development system)
In-system emulator
(tests system in place)

Manufacturer
Model

Resident assembler
Cross assembler
Simulator
High level language
Programs (firmware)

Debug
Diagnostic
Edit

TABLE IX

HARDWARE SUPPORT

National
Semi conductor
IPC-16 (PACE)

Yes

Yes

No

TABLE X

SOFTWARE SUPPORT

National
Semiconductor
IPC-16 (PACE)

Yes
FORTRAN IV

No
SM/PL

Yes
Yes
Yes

48

General National
Instrument Semiconductor
CP-1600 IMP-16

Yes Yes

Yes Yes

No No

General National
Instrument Semiconductor
CP-1600 IMP-16

Yes Yes
FORTRAN IV FORTRAN IV
FORTRAN IV No

No SM/PL

Yes Yes
Yes Yes
Yes Yes

49

options can be made available such as extended instruction sets through

additional boards or chips. Even special purpose microprogrammed in­

structions would be available by working with the manufacturer. These

are precisely the advantages which prompted the selection of the IMP-16

for the feasibility study of the use of a 16-bit fixed data path micro­

processor in the fire control system. The IMP-16 has an optional ex­

tended instruction set which includes multiply, divide, and double

precision add and s~btract. A total of 43 basic instructions are

offered with an optional 17 instructions. See Appendix A. The IMP-16

is also a well established system initially being offered in the first

quarter of 1973.

4.3.1 Feasibility of Using the IMP-16C

The IMP-16C is a microprocessor card assembly with the functional

blocks as shown in Figure 13. The card assembly is a self-contained

16-bit parallel processor with 256 16-bit words of read/write memory.

The off-card memory may be expanded in increments of 4,096 16-bit words

to provide a total memory of 65,536 words. Two new versions of the

IMP-16C are being offered, the IMP-16C/200 and the IMP-16C/300. The

new versions have one extra control read only memory (CROM) for pur­

poses of expanding the basic instruction set. The IMP-16C/200 leaves

the socket empty so the user may microprogram desired instructions

while the IMP-16C/300 comes with a pre-programed CROM for the extended

instruction set. The IMP-16P is also available which is a complete

microcomputer.

The architecture of the register and arithmetic logic unit (RALU)

is straightforward as shown in Figure 14. There are four working reg-

50

isters (AC)~ AC1, AC2, AC3), a status flag register, a program counter

(PC), memory data register (MDR), a memory address register (MAR) and a

16-word register stack for subroutine and interrupt return addresses.

Two of the accumulator registers (AC2 and AC3) are used as index regis-

. ters. The status flag register is updated by hardware and includes a

link bit, overflow bit, carry bit and 13 general-purpose flag bits.

The PC, MDR and MAR serve hardware functions and are not directly avail­

able to the programmer.

..... - CONTROL
~ FLAGS

CONDITIONAL
~ JUMP ~

MULTIPLEXER

CLOCK
GENERATOR

- INPUT CENTRAL _J DATA tr ..
MULTIPLEXER PROCESSING --1 BUFFER

UNIT (CPU)

.... J ADDRESS
~ -I LATCHES

.....
ON - CARD

MEMORY

Figure 13. IMP-16C Card Assembly Block Diagram

MICR
co

OPROGRAM
NTROL

I
I SHIFTER

51

~ 16-WORD STACK

~ STATUS FLAG

~ PC

-- MDR

~ MAR

~ ACO
-·

~ ACl

~ AC2

-- AC3

16 bits / / v
/

16 bits

-
ALU 1 COMPLEMENT~

~~INPUT/OUTPUT SECTION~

~

Figure 14. RALU Block Diagram

There are three addressing modes: direct, relative and index. One

may address direct to only the base page (0 to 255). To address above

255 one uses either relative, which adds or subtracts from the PC, or

index, which adds the contents of the desired index register to the PC.

The above system is implemented with a 2-bit mode field and a displace-

52

ment field.

The basic and extended instruction sets are shown in Appendix A.

The execution times are calculated for purposes of throughput analysis.

These calculations are based on a 1.4 ~s micro-instruction cycle time

and a 1.75 ~s read/write memory cycle time. The execution time is thus

calculated using

or

t (1 4)x(Number of) + 0 35 (Number of)
ex = · execution cycles · x read/write cycle~ ~s (2)

Using the instruction mix derived in Chapter II, the critical worst

case execution time is calculated below for two cases. These calcula-

tions are a very rough first approximation effort.

Case 1 Firmware Multiply Instruction

16-bit multiply: (172 ~s) x 1100 multi.plies/cycle
Double precision add-subtract: (18.2 ~s) x 900

instr./cycle
Firmware 16-bit DIV: (223.65 ~s) x 14 instr./cycle
Trigonometric instr. (Cordie): (87 ~s) x 7

instr./cycle
Memory access instr.: (8 ~s) x 4000 instr./cycle

Total

* ms =millisecond

Case 2 Hardware 32-bit Multiply

32-bit multiply: (.315 ~s) x 1100 instr./cycle
Double precision add-subtract: (18.2 ~s) x 900

instr./cycle
Firmware 16-bit DIV: (223.65 ~s) x 14 instr./

cycle
Trigonometric instr.: (87 ~s) x 7 instr./cycle
Memory access instr.: (8 ~s) x 4000 instr./cycle

Total

=

=
=

=

=

=

=
=
=

189 ms*

16 ms
3 ms

.609 ms
32 ms

241 ms

.346 ms

16 ms

3 ms
.609 ms

32 ms
51.96 ms

(3)

~-~~
(6}
(7)

(8)

(9)

(10)
(11)
(12)

53

These calculations show that without any modification the IMP-16

is too slow. With the addition of a hardware multiply system it may be

able to work at the 0.1 second data rate. The 50 percent margin is not

excessive with these rough calculations. System time requirements and

memory requirements usually become accurate only with extensive exper­

ience with the microprocessor. If the advantages of the IMP-16 warrant

its use even at this speed a further, more detailed time calculation

would be required using the instruction execution times in Appendix A.

This IMP-16 description and analysis was included mainly to give

insight into the manpower requirement advantage and speed limitation of

the fixed data path systems. If manpower and project schedule require­

ments restrict the use of the obviously capable slice microprocessors

then one must explore the newer, faster systems. The IMP-16 had the

smallest manpower requirements while the newer fixed data path systems

will be somewhere between the IMP-16 and slice systems. The slice ap­

plication is a very large jump in manpower from any fixed data path

system.

4.4 Variable Data Path Microprocessors

The following sections give brief discussions of five slice config­

uration microprocessors which represent the state of the art in micro­

processors. The discussions will be limited to mainly architecture

until the comparison section which will include a hardware comparison

table. Also the instruction sets or control words are shown in tabular

form for each processor in Appendix B.

Each of these microprocessors has the speed for this application.

The selection factor is thus more related to the ease of application or

54

manpower requirements than speed.

A similar calculation is done below for slice microprocessors as

was done for the IMP-16. Using the slowest times of the 5-slice systems,

the critical times are calculated as before.

Firmware mult. 32-bit: 80 ~s x 1100 instr.
Add-sub. instr. 32-bit: 1 ~s x 900 instr.
Firmware div. 32-bit: 80 ~s x 14 instr.
Trig. functions (Cordie): 87 ~s x 7 instr.
Mem. access instr.: 1 ~s x 4000 instr.

Total

=
=
=
=
=

Hardware mult. 32-bit: 1 ~s x 1100 instr. =
Add-sub. instr. 32-bit: 1 ~s x 900 instr. =
Firmware div. 32-bit: 80 ~s x 14 instr. =
Trig. functions (Cordie): 87 ~s x 7 instr. =
Mem. access instr.: 1 ~s x 4000 instr. =

New Total

88 ms
0.9 ms
1.12 ms
0.61 ms
4.0 ms

94.6 ms

1.1 ms
0.9 ms
1.12 ms
0.61 ms
4.0 ms

---r.D ms

(13)
(14)
(15)
(16)
(17)

(18)
(19)
(20)
(21)
(22)

These calculations show that the firmware multiplication instruc­

tion requires 88 percent of the 100 millisecond data rate alone. Yet

the total time requirements of the hardware multiplication system is

seven percent of the data rate. The importance of the hardware multi­

plication system is that the 50 millisecond data rate may be obtained

with ease and with room for expansion due to either experimental firm­

ware or double precision arithmetic.

4.4.1 Intel 3000 Series Microprocessor

The Intel 3000 series microprocessor set is a family of Schottky

bipolar LSI circuits which include the 3001 microprogram control unit

(MCU), 3002 central processing element (CPE), 3003 look-ahead carry gen­

erator, 3212 multi-mode latch buffer, 3214 priority interrupt control

unit, 3226 inverting bi-directional bus driver and the 3301, 3304, 3601,

55

3604 memories. A block diagram of a typical system is shown in Figure

15.

MICRO-
PROGRAM
MEMORY

ADDRESS IN

MICRO-
INSTRUCTION

-

CONTROL TO
MEM I/0

OPTIONAL
PIPELINE
REGISTER

FC0-3

AC0-6 -
MCU FO
3001

'""- F1
SXO-PX7

F0-6

r--

,.--

MEM
ADDRESS

BUS
I I

A OUTPUTS

DATA
BUS

f I
D OUTPUTS

CP ARRAY
3002's BQ

Ll Cl
co M INPUT I INPUT

' K
INPUTS

-

DATA DATA FROM
FROM MEM DEVICES

Figure 15. Block Diagram of a Typical System

One of the most important and unusual system blocks is the MCU

which has the functions of address control. The unusual aspect of the

MCU is the addressing scheme in which each read only memory (ROM) loca-

tion is represented by a row and column address. Furthermore, the in­

struction fetch is accomplished through the execution of micro-instruction

56

jump commands such as jump in current row or jump in current column

{see Appendix B). The jump command is encoded in each micro-instruction

in a special jump field. This is in contrast to the often used sequen­

tial address selection using a program counter. The 3001 addressing

scheme allows a jump unconditionally in one operation anywhere in the

present row or column. It is not possible however, to jump anywhere

in the address matrix. For a given location in the matrix, there is a

fixed subset of microprogram addresses that may be selected as the next

address.

Thispresent address dependency leads to some microprogramming

difficulty. The recommended procedure for assigning memory locations

to each instruction is as follows:

1. First write the microprogram without regard to the assignment.
For conditional jumps, use the basic conditional jumps provided
by the MCU {JFL, JCF, JZF, JPR, JLL, JRL, JPX), noting the number
of possible destinations for the conditional jump chosen. How­
ever, when a sequence of instructions is to be executed uncon­
ditionally, do not indicate what jump codes will be used to
advance to the next state unless the JCE enable feature is required.
Similarly for unconditional jumps use the non-committal code JMP
rather than selecting a JCC, JZR, or JCR.

2. Prepare a state sequence flowchart for the program. According
to the programmer•s preference, this may be done before, during
or after the actual writing of the code. Label the conditional
jump points on the flowchart.

3. Using the flowchart as a guide, perform the assignment. In
general, conditional jumps should be assigned first, with clusters
of conditional jumps assigned before isolated jumps. Leave long
chains of unconditional sequences for last. The process of as­
signment can be assisted by using a diagram of the control memory
showing the 32 rows and 16 columns. As each state is assigned,
the control memory diagram is marked to show occupancy of that
word and the flowchart marked to show the assignment of the state.
With the assignment complete, the numbers are copied from the
flowchart (29).

One can see that the complicated addressing scheme of the 3001 can

be a disadvantage; yet Intel is the only manufacturer of slice micro-

57

processors which has developed a micro-assembler. This micro-assembler

(XMAS) is written in FORTRAN IV and is designed to assemble microcode

to produce a ROM programming file. Other user aids such as a micro­

program memory map and a cross-reference dictionary are also provided

but actual assignment of microprogram memory addresses to micro­

instructions is left to the user. XMAS is flexible and extensible in

both micro-instruction length and microprogram memory address space.

Also fields may be added to the micro-instruction word length to as

large as 64 bits. Thus, one of the advantages of the Intel set is the

micro-assembler.

The basic micro-instruction is made up of three fields which are

seven bits of micro-instruction sequence control to the MCU, four bits

of carry control to the MCU, and seven bits of function selection to

the CPE array. This basic micro-instruction of 18 bits is then extended

to control special purpose functions such as interrupt control, I/0

controls, CPE clock inhibit and generation of constants to be issued

to the CPE array. The CPE clock inhibit field (one bit) is very useful

because it allows non-destructive testing of CPE registers via the MCU

carry logic. The carry logic in the MCU responds just as if the micro­

instruction were executed, but the fact that the CPE clock was inhibited

leaves the CPE unaltered.

Another important system block which requires detailed discussion

is the 3002 CPE which is a 2-bit slice register and arithmetic logic

unit. It•s capabilities include two•s complement arithmetic, logical

AND, OR, NOT and exclusive OR, incrementing and decrementing, shifting

left or right, bit testing and zero detection, carry look-ahead genera­

tion and multiple data and address buses. The 3002 has 11 scratchpad

58

registers designated R0 through Rg and T, and one accumulator (AC).

The block diagram is shown in Figure 16 and the CPE microfunctions

are given in Appendix B.

ENABLE
ADDR

AD{_ LOOK AHE

CARRY

CARRY OU

LEFT IN

T

I

BUFFER
MAR

I

ALU

l MUL TIPLEXERI

L SCRATCHPAD
REGISTERS

MICRO­
FUNCTION

BUS
DECODE

RO - Rg' T

MEM
DATA

IN 2 BITS

BUFFER
AC REG

1._
l

I
I MULTIPLEXER I

l

EXT
DEVICE IN

2 BITS

MASK
IN

2 BITS

Figure 16. Intel 3002 Block Diagram

4.4.2 9400 Series Macrologic

1--

r--

r- ENABLE
·nATA

c
R

ARRY IN

0 RIGHT
OUT

The Fairchild Schottky TTL 9400 series macrologic is designed at a

lower level, meaning more system blocks are required to produce a work­

ing processor. The system blocks include 9401 cyclic redundancy check

(CRC), generator/checker, 9403 serial/parallel FIFO, 9404 data path

59

switch (DPS), 9405 arithmetic logic register (ALRS), 9406 p-stack, 9407

data access register (DAR), and 9410 16 x 4 clocked random access memory

(RAM). The basic processor functions are broken into four chips, the

9404 DPS, 9405 ALRS, 9406 p-stach and the 9407 DAR.

The 9405 ALRS consists of a 4-bit ALU, an 8-word by 4-bit RAM with

output latches, an instruction decode network, control logic, and a

4-bit output register. Data for ALU functions are provided from the

RAM and from the input data lines (D0 - o3). The instructions are shown

in Appendix B. Rx is the RAM location.

The 9406 program stack consists of an input multiplexer, a 16 x 4

RAM with output latches addressed by the stack pointer (SP), an incre­

menter, control logic, and output buffers. The 9406 implements four

instructions as determined by inputs ! 0 and r1. (See Appendix B.)

Thus the main function of this device is control of subroutine execu­

tion. This device is also expandable as a 4-bit slice.

The 9407 DAR performs memory address arithmetic for RAM resident

stack applications. It contains three 4-bit registers intended for pro­

gram counter (R0), stack pointer (R1), and operand address (R2). The

9407 implements the 16 instructions shown in Appendix B.

The overall microprocessor functions are broken into smaller func­

tions producing more system flexibility but also increasing complexity.

Each member is also a 4-bit slice. The ALRS has only eight registers

and the ALU inputs are fixed to the data input bus and one internal

register. The ALRS seems to be the weakest link in the system. The

9406 program stack and the 9407 DAR on the other hand are strong points.

These two chips may be useful when combined with other manufacturers 1

systems which have more flexible ALU and register systems but lack

60

program control logic. Overall the macrologic does not provide the sys­

tem simplicity we desire.

4.4.3 Am2900 Series

The Advanced Micro Devices (AMD) Am2900 series microprocessor cir­

cuits are low-power SchottkY devices with a total of 14 different chips

in the family.. The major blocks in the system are the Am2901, 4-bit

bipolar microprocessor slice and the Am2909 microprogram sequencer.

The Am2901 is almost a complete system including register and data con­

trol, internal register matrix and ALU. A block diagram of the Am2901

is shown in Figure 17. The impressive architectural features include

16 general purpose registers, one Q-register, two separate shifting

networks, and internal ALU input selection.

This ALU input selector can select eight different input combin­

ations between the Q-register, direct input and two of the 16 internal

registers. The two internal registers selected from the 16 total are

addressed from the A and B address buses which may be used to select

the same register at the same time. An output multiplexer is also in­

cluded for direct access to the register file or ALU output.

Hardware advantages include a faster cycle time than the 3000

series, less power consumption and fewer required chips due to the 4-

bit slice architecture. Also the total architecture requires only two

different major chips other than I/0 and holding register requirements.

The micro-instruction word is nine bits, three bits for ALU source

operand selection, three bits for ALU function selection and three bits

for ALU destination control. These fields and their associated func­

tions are shown in Appendix B.

s A ADORES

B ADORE ss

DIRECT
INPUT

MICRO­
CODE

OUTP
CONT

I
I

9

UT
ROL

LO/Rl-
RAM SHIFT Q SHIFT

RO/Ll-

I I

.... 14 .. -1 Q REGISTER I I 16 x 4 RAM
/4

f ,.-

i

'4
It

I DECODE
· !sELECTOR I

I

_}.~ { ~n+4 OVR
c.- ALU F=O 1n ~

lF
F3

~ of

I MULTIPLEXER I
l/4

I

OUTPUT

'

Figure 17. Am29.01 Block Diagram

-
-

61

RO/Ll

LO/R1

When discussing the Am2901 one must also mention the Monolithic

Memories Inc. (MMI) 6701 which is architecturally identical to the

Am2901. The major difference is the Am2901 is twice as fast and has

some architecture improvements. Also the MMI 6701 does not have any

peripheral chips such as the Am2909 microprogram sequencer at present.

For these reasons the MMI 6701 was not included in the microprocessor

selection process.

The second important system block~ the Am2909 microprogram se-

62

quencer, is shown in Figure 18. This chip includes a register stack for

subroutine return address storage, program register and incrementer, in-

struction register and associated multiplex and control circuits for

branch and subroutine control. This microprogram control chip is tot-

ally different from the Intel 3001. The major differences are the

program addressing schemes and the Intel •s lack of subroutine execution

hardware. The Intel chip would require an external RAM with either an

up-down counter for stack pointer or additional bits in the micro­

instruction for control. The 3001 has the advantage of internal control

circuits for condition jump execution.

I
'4

REG :--~ INSTRUCTION
ENABLE REGISTER

so--~

S1.---~---r---_j

OR ---+----.

ZERO ·-----r--a

PUSH/POP
,.------ FILE ENABLE

MICROPROGRAM
COUNTER
REG STER

4

~----------~-----~Cout
.-----+----,

OUTPUT
CONTROL--.._

OUTPUT

Figure 18. Am2909 Block Diagram

63

Finally, a typical central processor unit using the Am2900 series

microprocessor circuits is shown in Figure 19. This shows the other

family members in a typical system arrangement.

BR, JI 11
l

Am2909 1 s CLOCK Am2918 Am2918
MICROPROGRAM ~ SOURCE OPERAND DESTINATION .,

SEQUENCER REGISTER OPERAND
REGISTER

JA B

' Am2960/70 Am2901 1s
ROM/PROM MICROPROCESSOR D MICROPROGRAM SLICE ~

MEM(RY I (with Am2902 1 s)

-~ I v
Am2918 1 s I MICROWORD
REGISTER Am2905/6/7 DATA

~ BUS ~ BUS
TRANSCEIVER

Am2905/6/7 1 S ADDRESS
' ~ BUS BUS

TRANSCEIVER

Am2914 ~ CPU Am2905/6/7 CONTROL
PRIORITY CONTROL . :--.. BUS BUS ·-INTERRUPT 4 TRANSCEIVER

1ft ·.r. I

Figure 19. Typical System Using 2900 Family Elements

64

4.4.4 M10800 Microprocessor System

Motorola•s M10800 microprocessor family is the fastest system to

be discussed, being an emitter coupled logic (ECL) chip set, and it

also has a well thought-out architecture. The family members include

the MC10800 4-bit processor slice, MC10801 control function, MC10802

timing function, MC10803 slice/memory interface and the MC10804 slice

look-ahead carry. The architecture is designed at about the same level

as the 9400 series but with distinct differences. The 10800 family is

also the most versatile system (see Figure 20). The basic functions

are included in four chips requiring external multiplexers and a RAM

for ALU registers. The basic functions of each member are described

in the comparison table, Table XI.

Very little application literature is available, since official

announcement of the M10800 microprocessor family won•t be until 1976.

The only additional information given other than a general description

is the ALU function set shown in Appendix B. This shows the very com­

plete function set of the ALU. The distinguishing features which make

the system versatile are the ability to use external RAM for the ALU

working registers and the use of external multiplexers. Detailed an­

alysis is impossible without better data, but the system blocks are

conveniently segmented. At this point. however. this level of per­

formance is not necessary and would require more hardware and devel­

opment manpower.

65

MC10803 l ..
SLICE/MEMORY I MUX I ~

IB
INTERFACE _,_ ~ I MC10801

I J IMC10145J MUX
CONTROL

'I' '
OB

f J,

I MUX I
t

r-- I MC101761

MC108021 TIMING TIMING j '' ,IJ
'-- OB A

MC10800

PROCESSOR SLICE

B

Figure 20. M10800 Family - Pipeline Processor Example

4.4.5 Comparison

The Fairchild 9400 series and the Motorola 10800 series are almost

in a different class from the Intel and AMD processor families. The

9400 and 10800 series both break up the processor into smaller system

blocks requiring more packages to build a basic processor. Of these

two, the MC10800 series seems to have two major advantages. The first

is the increased speed provided by the use of ECL technology and the

66

second is a better architectural arrangement. The MC10800 series has

a more powerful ALU and the registers are added externally. This means

one can design the system to have the number of registers required by

the application. Neither manufacturer is planning to supply software

support.

The major disadvantage of both processors is the increased devel­

opment manpower and external hardware required. Also the MC10800 has

a disadvantage of working with a new technology. The 9400 series has

no real system advantages and is slower than the Am2900 series. The

MC10800 system is impressive but is not scheduled to be released until

some time in 1976.

The choice for the fire control processor lies between the Intel

3000 series and the Am2900 series. The Am2900 series has a faster cy­

cle time, a simpler architecture, a more complete chip set, more power­

ful ALU functions and more registers. The 3000 series has a complicated

addressing scheme which reduces the bit size of the micro-instruction

but increases the software development time. It 1 S greatest advantage

is an existent cross assembler for the ALU chip. This assembler is

only a microcode assembler and a second macro-assembler is still needed.

Further examination of the instruction sets also shows the Am2900

to be stronger. This type of comparison is difficult because each

manufacturer presents the instruction set in a different form. The

Intel 3002 instruction set is shown with a mnemonic for each function

because Intel has an assembler for their instruction set. The Am2901

shows the instructions as a function of the bit code and it is broken

into three groups. The 3002 appears to have more functions but actual­

ly it has fewer, and has less destination and source control. The most

67

obvious difference is the absence of subtraction in the 3002 functions

where the 2901 includes both R-S and S-R subtraction. Also according to

the Advanced Micro Devices• engineers, the 2901 has 203 source operand

combinations to the ALU, while the 3002 has 24 (23). Also the Am2901

has simultaneous shift and arithmetic operations, while the 3002 does

not. Furthermore, the Am2901 has a more flexible register addressing

mode where any of the 16 registers may be a source or destination of

an ALU operation. The 3002 requires the use of the T or AC registers

as the destination register. Also the 3002 is very difficult to sub­

routine on the microlevel requiring external hardware.

The above advantages have prompted the selection of the Am2900

series for application for the fire control system. The 3000 series

seems to be suited mainly for controller type applications and not for

general processing functions which are the primary needs of the present

system. Thus Chapter V will begin the hardware application of the

Am2900. The four microprocessor families discussed are summarized in

Table XI. Also a comparison of the four families is shown in Table XII.

Device

Intel 3001
microprogram
control unit

TABLE XI

MICROPROCESSOR FUNCTIONAL SUMMARY

Description

Maintains microprogram address register, selects
next micro-instruction based on flags, instruction
and present address. Completely different
concept of address control from program counter
approach. ·

Device

Intel 3002
central
processing
element
(2-bit slice)

Fairchild 9404
data path switch
(4-bit slice)

Fairchild 9405
arithmetic logic
register stack
(4-bit slice)

Fairchild 9406
program stack
(4-bit slice)

Fairchild 9407
data access
register (4-bit
slice

Am2901
microprocessor
slice (4;...bit
slice)

Am2909
microprogram
sequencer
(4-bit slice)

MC10800
microprocessor
slice (4-bit
slice) (ECL)

TABLE XI (Continued)

Description

Operations include ALU functions, data path
manipulation, and register control. Three input
and two output buses are available and 11 general
purpose registers with one full function
accumulator.

Only executes the functions of data path manip_
ulation which include dual 4-input multiplexer,
a true/complement one/zero generator, and a

68

shift left/shift right array. A 5-bit instruction
word selects function.

Performs ALU functions and register control. Eight
internal registers are provided. Register selec­
tion requires three bits and the instruction word
is three bits.

Provides return address storage for nested sub­
routines. Executes four instructions: Return,
Branch, Call, and Fetch. Program stack is
16 x 4 bits.

Contains three 4-bit registers intended for program
counter, stack pointer and operand address.
Implements 16 instructions for address control.

Performs ALU, register control and data path manip­
ulation between registers and ALU. Instruction
word is nine bits, and two 4-bit words select re­
gister address. 16 general purpose registers and
one Q-register are provided.

Performs address control with an instruction
register, stack pointer, 4-word stack, and micro­
program counter register. Branch, program counter
increment and subroutine function are all control­
led by the 2909.

Performs ALU functions with only data latches and
an accumulator as internal registers. Very power­
ful ALU instruction set with 16-bit instructions.
A register file must be externally provided using
a RAM.

Device

MC10801
control function
(4-bit slice) (ECL)

MC10802 timing
function (ECL)

MC10803 slice/
memory interface
circuit

TABLE XI (Continued)

Description

Performs microprogram address control including
status, branching and interrupt operations.

Ties other system blocks together by providing
various clock phases and control.

Performs main program address control and allows
for more complex addressing techniques.

69

70

TABLE XII

MICROPROCESSOR COMPARISON

Manufacture Model Intel Fairchild Am MC
3002 9405 2901 10800

Structure 2-bit slice 4-bit slice 4-bit slice 4-bit slice

Technology TTL TTL TTL ECL

Supply voltage (V) 5 5 5 -5.2, -2.0

Pwr. diss. (mW) 800 X 2 470 925 1300

Other main system 3001 9404, 2909 MC10801
parts 9406, 9407 10802' 10803

Cycle time (ns) 150 125 55

Clock frequency 6 MHz 10 MHz 10 MHz

Phases required Single Single Single Double

No. of registers 11 8 17 External RAM

Return stack size None 16 (9406) 4x4 (2909)

BCD arithmetic No No No Yes

Microprogrammable Yes Yes Yes Yes

Software support Yes No No No

Simultaneous shift No Yes Yes
and arithmetic

Number of microcode 7 9404-5 9 16
control inputs 9405-3

9406-2
9407-4

Temp. range -55°C to -55°C to -55°C to 0°C to
125°C 125°C 125°C 75°C

Availability 1972 1975 1975 1976

PINS 28 X 2 24 each 40 48

CHAPTER V

APPLICATION OF THE Am2900 SERIES

5.1 Introduction

The selection process has been completed and the next objective

is to define the development time and required resources. The hard­

ware and preliminary micro-firmware specification will be investigated

and project flowcharts outlined. The project flowcharts show the de­

velopment phases and required parallel development of firmware and

hardware. Chapter VI will be devoted to the project flowcharts and

overall foreseeable problems. At this point preliminary hardware de-
-----·---------- - ·-·- ... _.- -------~--- ----~--~----------~----~·-"- -·-

sign will begin for the purposes of showing system complexity and to
-------------------~--.. -.

obtain an approximate package count. The hardware design will also

produce a preliminary microcode definition. Table XIII defines the

system elements which will frequently be referenced by their associa­

ted abbreviation.

5.2 System Specification and Design

At this point one must make primary system decisions. The address

bus size, data size, macro-instruction length, micro-instruction word

and many other factors must be defined. The design goals are to out­

line a system which has a general and flexible microcode function base

with expandable ROM and RAM capabilities. Possible system debug

problems must also be anticipated during design.

71

72

TABLE XIII

SYSTEM ELEMENTS

Name (Abbr.)

Program counter (PC)
Instruction register (IR)
A address register (A)
B address register (B)
Memory address reg. (MA)
Memory data register (MD)
Memory data reg. 1 (MD1)
Memory data reg. 2 (r1D2)
Microprogram counter (MPC)
Micro-instruction reg. (MIR)
Read only memory (ROM)
Random access memory (RAM)
Either ROM or RAM (MEM)

Definition

One of 16 internal registers of 2901
16-bit macro-instruction register
3-bit section of IR for A address
4-bit section of IR for B address
16-bit hardware register
32-bit hardware register
First 16 bits of MD
Last 16 bits of MD
Register internal to 2909
Pipeline register
Microprogram memory
Working memory
Total memory system for macro system

The starting point is the basic block outline shown in Figure 21.

The bus system must be defined from data and instruction length re-

quirements. The micro-instruction word will consist of several func-

tional fields which will be defined as required during hardware design.

The macrocode will only consist of three fields. One field is required

for the ROM starting address and two fields to specify the CPU register

addresses. The macrocode word is not decoded by hardware but will in­

clude a field which is the ROM address of the microcode program which

executes the macro-instruction. The macrocode word will be limited to

16 bits which means nine bits will be ROM address and seven bits will

specify the CPU register addresses. The Am2901 requires four bits for

each A and B register address selection. Because there are only seven

I

BR j Am2909
-;::::::> r~ I CROP ROG RAM

SEQUENCER

Am2960/70
RmVPROM

I MICRO-
PROGRAr1 I
MEMORY

I

~

H

Am290l•sj2902•s ~

SLICE

Am2918 1 s I I II Y,., _____ --£

MICROWORD
REGISTER

I

\

CLOCK
CONTROL

_ I/0
CONTROL

Figure 21. Basic Block Outline

r
Am2905/6 BUS ::>I TRANS CE I v E Rl<::::;::=::;-:;::.;>

.-4~ and MUX
DATA

BUS

Am2905/6 BUS
I l.:::>l TRANSCEIVER,<:; !> DATA
~ and MUX BUS

'-.I
w

74

bits, complete access to all 16 registers through address B is possible

but only eight through address A. The Am2901 allows one to address

through A and B buses, one of 16 internal registers as input to the ALU

(see Figure 17). The ALU results are written back into the register

selected by address B. The macrocode word is shown below.

ROM STARTING ADDRESS ADDRESS A ADDRESS 8

nine bits three bits four bits

(maximum of 512 micros)

The above macro-instruction is the first and primary instruction

but it may be followed by two more instruction words. The second word

will be either a 16-bit address for memory reference instructions or

part of a 32-bit constant. A third byte will be the second half of the

32-bit constant. Thus a maximum of three macrocode words may be accessed

during an instruction execution. The ability to read a 32-bit constant

from macrocode program memory allows the programmer to load internal

registers with either a decrementing constant for loop control or a

masking constant.

5.2.1 Memory System

The external memory system will consist of RAM working memory and

ROM macroprogram memory. This is not to be confused with the micro­

instruction memory which will also be in ROM but considered internal

memory. The address bus structure is shown in Figure 22. The actual

addressing requires 14 bits for the ROM of which eight are shared with

the RAM memory. The ROM system is divided into 1K sections. Ten bits

16 bits--------------------~-------------------
256 x 4 TTL RAM Fairchild 93422

(40 ns type Ace

2 bits extra

.~---------...,.-------=---------------~ RAM ENABLE

4 bits
934o4 or
Am2961

I IROMl "EN ~ 2 ROMS ~ECODER · 1 j16 x 1K I -~0 bits,
--

Y t=f 2 ROMS
rl16 X 1K

10 bits

4 bits Time)

.___
---,~ I _,1~ ~0~~ I 10 bit~ ~8 bM4 ~A~56: I

(DATA)
{16 bits)

15 14 13 12 11 10 9 8
ROM ADDR E E 0 A A A A A
RAM ADDR E E 1 X X X X X

E - EXTRA
A - ADDRESS
X - DON'T CARE

t=:f 2 ROMS ~
r=-116 X 1K

Expandable to 8K bytes

7 6 5 4 3 2 1 0
A A A A A A A A
A A A A A A A A

Figure 22. Memory System

·~RAMl I ,8 b}\4 X 256 I

~RAM t I ~4 X 256 I

J2-bit Data

'-J
<..TI

76

are used to address each of the 1K ROMs and four bits are used to select

a particular chip. This arrangement allows preliminary work to start

with a rough estimate of ROM size and add new ROM when necessary in 1K

increments up to 8K bytes. The RAM system will provide 256 bytes of

32-bit data which can also be increased to lK if necessary. The ad­

dressing scheme is also shown in the figure. Address 0 to 1FFF (hex­

adecimal) will select ROM while address 2000 to 3FFF will select RAM.

Two extra bits are left for I/0 control of radar data.

The l/0 bus control system is shown in Figure 23. Am2905s (or

2906s if parity is required) will be used for bus drivers and control.

The 2905 block diagram is shown in Figure 24. This system enables

four types of data transfer:

1. 32 bits of data from RAM to ALU

2. 16 bits of instruction from ROM to instruction
register

3. Two bytes of 16 bits of instruction from ROM
to ALU

4. 16 bits of address from ROM to memory address
register (MA)

Also because each 2905 has internal data latches they will also

function as the memory data register (MD). The 2905 which controls the

memory address bus will be used as the memory address register (MA).

The 2905 block diagram shows the control lines available which include

an input select line, buffer clock line, an output enable, an input

enable and a load buffer line. The output buffer is clocked by an edge

and the input buffer is loaded by a level. Each of these lines must

be controlled as a function of the microword to perform the desired

output states. The design of this circuit will be discussed next.

...... INPUT
OUTPUT 16 bits 32 bits

v 7

0 16 bits

A four 2905s DATA

16 bits 32 bits
B (~ MEM DATA REG BI RAM

-

16 bits

0

A four 2905s
16 bits 16 bits ROM

'
(~ MEM DATA REG) BI

II ,

TO MEM ADDR 2905
(MEM ADDR REG)

Figure 23. I/0 Bi-Directional Bus System

Select Load Buffer CLK Output Enable

A
BUFFER

4 bits MULTI-
B

4 oits PLEX REGISTE

4 bits

INPUT
LINE

INPUT LOAD BUFFER
ENABLE CLK

Figure 24. 2905 Block Diagram

77

78

To specify the I/0 control functions one must first define the

types of I/0 operations to be performed and relate them back to the sys-

tern clock. Certain types of instructions and their associated required

I/0 functions are shown below.

Instruction

All instructions

Mem reference

Load immediate

Mem reference

TABLE XIV

I/0 OPERATIONS

I/0 Function

Load MA
Fetch instruction

Data address fetch

Fetch two word constant

Fetch 32-bit RAM data
Output result

I/0 Path

(ALU) PC to MA
MEM to MD2 to IR

MEM to t1D2 to MA

MEM to MD2 to MD 1
MEM to MD2

MEM to MD
ALU to MD

The table shows that several I/0 operations may be required by a

single instruction. The problem becomes how to divide the I/0 func-

tions. For example, one may make a single transfer, memory to MD2,

one cycle and the transfer, MD2 to IR, the next cycle or more operations

may be performed in a single cycle. The logical breaks for I/0 oper­

ations are determined by when data are available and the time delays

within the system. The above is given where each I/0 path shown is

one cycle of microcode execution time. These functions give the best

use of the available I/0 capabilities of the 2905 and only require a

single phase clock. Further combining of the operations into more

powerful functions would require multiphase clocks and a slower cycle

time. Multiphase clocks were avoided by using the 29o5•s multiplexer

capabilities to shorten I/0 paths.

Hardware for the control of each I/0 operation as a function of

79

the system clock and the microcode word must now be designed. The hard­

ware design is shown in Figures 25 and 26. The design is basically

centered around the use of a 4 to .16 line decoder chip. The design

utilizes the tradeoffs between the microcode bit assignments and the

decoder output. The seven required states could have been defined using

only three microcode bits but a fourth was added so large numbered input

gates could be eliminated in the decode hardware. Also this system is

easily expandable with only seven of the available 16 lines used. Fin­

ally, the system debug problem was simplified by the use of the decoder.

Each I/0 state is now defined by a single lead.

The system timing had to be specified during the I/0 control de­

sign for each microcode execution cycle. A 5-megahertz (MHz) system

clock or 200 nanoseconds (ns) cycle time was chosen based on the set-up

and delay times within the system. The Am2900 family chips are new and

not well specified as to timing. The only hard specification is 135 ns

delay from the A or B address inputs of the Am2901 to the ALU output Y.

This delay is a maximum for the Am2901DM or military temperature range

device. The cycle time must be greater than 135 ns + delay of input

registers. Most of the registers are clocked on the raising edge of

the system clock cycle. The timing is shown in Figure 27.

MICRO­
CODE
BITS

DECODER
D C B A ROM TO MD2 TO MA
0 0 X X

A 1 0 0 0 ROM TO MD2 TO IR
---i

B 1 0 0 1
c 1 0 1 0

• I
I 4 10 1 0 1 1

0 1 X X
1 1 X X bALU TO MD

~- SYSTEM CLK

~-----1[>o ROM EN

RAM EN

SEL MA

IR CLK

REC-CLK-MD1

SEL MD

DR1-CLK-MD2

DR1-CLK-MD1

DR1-CLK-MA

REC-CLK-MD2

Figure 25. Input/Output Control Circuit co
0

8I

This figure shows a simplified timing scheme where each register

load operation is shown. The timing was not derived in detail and is

not meant as a final design. The basic considerations were that the

200 ns cycle time be greater than the I35 ns ALU delay plus worst case

delay of the other internal registers. The worst case delay of the

registers was not available but it is felt that 200 ns cycle time is

more than adequate. The other consideration is that the negative edge

to positive edge time of the system clock be greater than 30 ns, an

Am290I requirement. This delay must also be great enough to allow MD2

to be loaded at the negative edge and MDI to be clocked at the positive

edge, thus allowing a single cycle transfer of data from the ROM to MDI,

IR, or MA.

Once a general timing scheme was derived, the I/0 control circuit

was completed by producing the required control signals from the DE­

CODER and the system clock. The two lines RAM EN and ROM EN are the

only lines not going to the Am2905 I/0 chips. These lines are required

to control the tri-state bus which the ROM and RAM memories share. The

lower order I6 bits of RAM data bus are shared with the ROM data bus.

A separate microcode bit will be used for RAM read/write control

as shown in Figure 26. It also controls the I/0 direction on the RAM

data bus.

5.2.2 Branch Control

The Am290I provides three bits of status information which can be

used for conditional branch operations. Figure 28 shows a circuit

which provides the indicated operations based on three microcode bits.

If more branch operations are required, a larger multiplexer could be

ALU

SEL-MD

A
I,

I 16 ..,.
....

~ B

}' 16

(4 res)

MOl
_..BUS-EN

I ...
32 I ...

7

I
7 16

ALU
ALU and IR
A, B

DATA -
DR-1~-C=L~K~-M~D~l-----+------------~··~ ·~L---------~----~~R~E~C-~C~LK~-~M~Dl~-----

DR1-CLK-MD2

SEL-MA

DRl-CLK-MA

(4 res)

MD2
I .._

I 16.,..

t t
lt 16 I

..... ,,.
(4 ICs)

'

MA
I
f 16

;.-

l
R/W RAM

I
I

16

-....
:,BUS-EN
"

__...

""'

I
7

16

REC-CLK-MD2

I
1 16

.. ...

Figure 26. Input/Output Bus Circuit

- DATA
-;;;;;'

.... ADDR
.....

82

MICROCYCLE
""""--' r 200 ns --,,_. -

~ ALU FUNCTIONS HRT REG
NEXT MICRO WORD ACCESSED WRT MEM

MD2 IR
REC A

LOAD B
MIR CLK EDGE

MDI ~1A
REC MDl-DRI

LOAD MD2-DRI

Figure 27. Microcycle Timing

co
w

F=O
F~

lVRlt)-11 0

+5 -'\j\1\--.

START S
(External

Active

1

0

WITCH
Control)
Down

+5

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

1\-=F
000
001

v 010
......c: 011 8 t

100 1 H:>o-101 Mux
110
111

J I
so s1

1 1 Br
1 0 In .f 000 0 1 Fil

001 0 0 PC
-=- 010

str
e

l-- 011 8 tj
1001 ~
101 Mux
110
111

I I

Program Counter
Instru~tion Register
File
Br if F=O otherwise PC
Br if F3 otherwise PC
Br if F=o and F3 otherwise PC
Br if OVR otherwise PC
Br if START otherwise PC
Br unconditional after START = 1

Figure 28. Branch Control Circuit

84

used at the expense of an additional microcode bit. The outputs, s0 ,

s1, feed into the Am2909 microprogram control chip. These two bits

are multiplex select lines internal to the Am2909 which select one of

either the micro-instruction register, the microprogram counter, the

internal register file or an external input. The external input is

connected to the micro-instruction register branch field so that one

may select the branch address from the microword. The selected lines

are then multiplexed into the microcode memory address lines.

Five branch conditions are provided including a branch on start

bit which can be used for external control. Once the switch is activ­

ated it becomes an unconditional branch. Thus, this branch condition

provides a firmware start condition which, once active, can be used as

an unconditional jump instruction.

5.2.3 Firmware Register Control

85

At least some of the 16 registers within the 2901 will be used as

special purpose registers such as a program counter, stack pointer or

status register. Firmware must be able to access these special purpose

registers while maintaining the macrocode•s ability to specify regis­

ters. The circuit shown in Figure 29 provides firmware control of three

special purpose registers while the macrocode still specifies an external

address. The fourth input shall be the macrocode•s specified address.

Thus firmware may select one of three special registers or the macro­

code specified register. This system requires two multiplexer packages

and two microcode control bits.

A second method is to use a 2-input 4-bit multiplexer to select

either the macrocode address or a microcode address. One microcode

86

B-addr from macrocode

~4 :kt 4 sh4 ... 4
,. its bits bit~ bits

instruction

4 to 1
MICRCODE MULTIPLEXER (2 I Cs)
REGISTER v ---1 4 bits

/ / 2 bits
B

2901

I

Figure 29. Firmware Control Using 2 bits of Microcode

B-addr from macrocode
/ i

2 bits
r~ _,:...- 4 bits 4

nstruction

~el;.ct 2 to 1
/ MULTIPLEX (1 IC 1 bit)

MICROCODE
REGISTER /

v 4 bits
\

/
/ 3 bits B

2901
....

I

Figure 30. Firmware Control Using 3 bits of Microcode

87

bit is required for selection and up to four additional bits, depending

on the number of firmware controlled registers required. If only four

special purpose registers were required, three microcode bits would be

necessary. This system requires only one multiplexer package and is

shown in Figure 30.

If a status register is actually going to be implemented it would

require further hardware to input status information into the register.

Input multiplexing and probably one bit microcode control would be

required.

5.2.4 Pipeline Register Operation

The pipeline register or micro-instruction register (MIR) is used

so that the next micro-instruction can be fetched during the execution

of the present instruction. Table XVI shows the pipeline operation

during normal program execution. Explanation of the symbols used is

given in Table XV.

+

+1

TABLE XV

DESCRIPTIVE SYMBOLS

load into
increment

an/reg left-most n bits of

wn/reg
register
right-most n bits of

()
register
as a function of

-1 decrement

Address

0

1

2

TABLE XVI

FIRMWARE EXECUTION WITH PIPELINE REGISTER

Am2909 Functions

MPC + MPC + 1, MIR + ROM (MPC)

MPC + MPC + 1, MIR +ROM (MPC)

MPC + a9/IR + 1, MIR +ROM (a9/IR)

Instruction Execution

If two word instruction:
MPC + MPC + 1, MIR +ROM (MPC)

If one word instruction:
MPC + MPC + 1, MIR +ROM (MPC)

Execution of Instruction

End:
MPC + 1, MIR +ROM (0)

or
MIR + ROM (File)

Am2901 Functions

PC+ PC + 1, MA + w16tPC

IR + MEM (MA)
16 PC + PC + 1, MA + w /PC

ALU or MA + MEM (MA)

PC + PC - 1

(Last function required)

co
co

89

Lines 0, 1, and 2 are the instruction fetch cycle in microcode.

The Am2909 functions are those actions taken by the micro-controller,

and the Am2901 functions are the macro-instruction execution control.

Microprogram control is not transferred to the macro-instruction reg­

ister until line 2, for this is the point where the first macro-instruc­

tion is available. At this point the PC is loaded into MA so that if

the instruction is multiword a continuous fetch can take place. If the

next instruction is a single word, the PC is decremented to its original

value because the memory access is not done. Lines 0, 1, 2 and the last

line are common to all instructions. Line 2 is a jump to the particular

instruction's execution code based on the contents of IR. The last

line shows the transfer of control either back to the next macrocode

fetch or a subroutine return to a microcode execution point.

Conditional branch instructions require special clock control be­

cause the next micro-instruction address is a function of the present

execution results. On a conditional branch instruction the next micro­

code fetch is halted until the present execution is complete. Then

the ALU clock must be stopped while the next microcode word is fetched.

Thus one cycle time is lost during a conditional branch instruction

execution. Table XVII shows the functional timing and Figure 31 shows

the clock timing. Finally, Figure 32 shows the required hardware to

control the system clocks during this process.

TIMING:

BRANCH
BIT
SET

FLOP 1

2909

SKIPPED CLK

2901

SKIPPED CLK

1 r t r
t t

SET FLOP2 CLEAR FLOP2

CLEAR FLOP1

Figure 31. Clock Timing During Conditional Branch

HARDWARE: CLK ~ MPCCLK

ALU CLK
FROM SO-. +-JO Ql I I ID

BRANCH
CONTROL
CIRCUIT

BRANCH WcLK Q
BIT

Figure 32. Hardware for Clock Control for Conditional Branch
1.0
0

TABLE XVII

EXECUTION OF CONDITIONAL BRANCH INSTRUCTIONS

Am2909 Functions

No new MPR load, stop MPRCLK
Branch on results (same ~code)

Continue

5.2.5 Shift and Rotate Functions

Am2901 Functions

Function
loose 1 cycle time Stop ALUCLK

Function

91

Shift and rotate hardware are discussed in Am2901 application lit-

erature. These functions are discussed as part of the multiplication

scheme used by the Am2901. The present application requirements are

for a zero shift function for data scaling but if the Am2901 multipli-

cation scheme is used, two additional shift functions are required.

The external circuit consists of two multiplexers which allow a right

or left shift of one of four types. The four types are zero, one, ro­

tate and arithmetic. The first three are the familiar shift functions

offered by most processors, while the arithmetic shift is used specif­

ically during a multiply routine execution. On a right arithmetic

shift a zero is loaded into the Q-register least significant bit (LSB),

and the Q-register most significant bit (MSB) is loaded into a select­

ed ALU register•s LSB.

The shift control circuit is shown in Figure 33. This circuit

requires two microcode bits for shift type selection. The direction

of the shift is determined by r7 of the Am2901 instruction code.

-
!7 so sl
6 l I r.,
lG A B 2G

LSB MSB

lCO
H lCl lY Q0 -LO/Rl Qn-RO/L1

r-- ~ 1C2
1C3 Am74S25S Am2901

~ 2CO
H r- 2Cl 2Y RAM0 -LO/Rl RAM -RO/Ll ·

r- 2C2 n

_[2C3

-=- MSB-Fn

------ --- ------- ---------------

Figure 33. Shift Control Circuit

!7 so sl
.b I I
lG A B

lY

Am74S253

2Y

SIGN BIT

b
2G

lCO
lCl
1C2
1C3
2CO
2Cl
2C2
2C3

~ .._

-
1-H
f-

---=-j . '

\0
N

93

The microcode bits 16, 17 and 18 are the ALU destination control. These

also control the shift operation within the Am2901. Table XVIII shows

the bit codes required for each combination of type and direction of a

shift operation. The Am74S253s are dual 4-input multiplexers with tri-

state outputs.

Code
I7 s1

0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

TABLE XVII I

SHIFT CONTROL CODE

Direction
so

0 Right
0 Right
0 Right
1 Right
0 Left
1 Left
0 Left
1 Left

5.2.6 Multiplication Hardware

Type

Zero
One

Rotate
Arithmetic

Zero
One

Rotate
Arithmetic

It has been determined previously that some type of hardware multi-

plication scheme is necessary to increase the throughput of the system.

The Am2901 already has l.iJII~e~_2~_q_L!f:!DS..e_E_,_t¥.P_~_,_h,sr:c;lxt51X:~!llul tipl icatton

capabilities without external hardware. The basic technique used is

the "add and shift" algorithm. The multiplier and multiplicand are in

R0 and R1, respectively, and the result is placed in R2 and R3. The

94

exact firmware and hardware details are given in the Am2901 applica­

tions literature. The multiplication execution requires 37 cycle times

for a 32-bit multiplier. Thus L.~ __ lJ_s._a.re required for one multiply.

The other scheme mentioned was the use of 8~.f-~SQ2 ... !1J.Y.lli121ier ~b.i~

for a completely hardware multiply. This requires 128 additionsl chips

and six cycle times for execution. Two cycles are required for instruc­

tion fetch, one loads the multiplier register, one outputs the multi­

plicand to theY outputs of the ALU, one is a no-op cycle for time

delay and the last cycle time loads the result into an ALU register.

Execution requires([~_-.!:,~ Figure 34 shows a block diagram of the re-

quired system changes for this arrangement.

required can be reduced from 128 to]8 jf a_ ttUJlC.ilted r~_syJt js a c-
. . - . - ,,. ······ ·""·' '"" .. ,. .. , ,.. ~~ -~-----,~---~· ... --,. .. :~· •'• ·'' ., . . . ' . ., ,.

ceptable. This is not to be confused with a rounded-off result which

would also be 32 bits. Rounded results require 128 chip arrangement.

T __ !::_~!}f.il.ti on a 1 so has no speed advantage.

One very important detail has been ignored during the multipli­

cation hardware discussion. This is the method in which data is to be

represented. Both of these scheme·s will require some type of"~scali-ng-­

depending on the data representation. Many ways of data scaling exist.

The data can be represented as a fixed integer, as a scaled integer

or as e1: "s~aled.Jntc:_~_iQ_l}. The data representation choice must be made

by looking at the data form available from the radar and the operations.
--·--~" ·- -~ ---· "''"'' -~~ •:..•. -..

~-?.be perforrn~d on the d.ata. These aspects of the design are not spec­

ified so the multiplication hardware cannot be discussed in detail.

The time sequenced method is fast enough if the scaling require­

ments are not extensive. The scaling must not require more time than
~-···----'"·-··· -·--.- ~ ~~------- ~- '''"'''••"·•-·- ,............ ·---

~~ltiply o~~rati()_!l· These scaling requirements can also be handled

l-

T

CLK----r\

MULT BIT-l__)

I/0

CONTROL

BIT

-{>-

I--

MULT

REG

f
MULT

HARDWARE

I / 32

TRI-

STATE

OUTPUT

ALU --e-

132
t1

/
/

32

I
1/32

/

32

I MOl
32

I

~~ MD2

Figure 34. Multiplication Hardware Modification

95

v 32
I

96

by hardware if necessary. The other multiplication scheme is approx­

imately six times faster but still requires scaling. Another advantage

of the Am25S05s is that they can also be used as a hardware squareroot

generator and reciprocal evaluation. The required additional hardware

would have to be determined.

Both schemes give correct results for two•s complement form multi­

plier and multiplicand. The question is whether the data must be

scaled and whether it will be in a fractional or integer form.

Finally, a similar scheme for a time sequenced hardware divide is

also applicable to the Am2901. The method is actually described in

Monolithic Memories 6701 application literature. A non-restoring two•s

complement divide is produced by successively subtracting the divisor

from the dividend and the result shifted left until the remainder

changes sign. At this point the divisor has been subtracted one too

many times and is added back until the original sign is restored. Thus

the divide requires approximately the same execution time as a multiply.

The remaining required functions should be firmware implemented,

devoting-most of the hardware resources to fast multiply. Algorithms

for the execution of each function should be investigated and deter­

mined so that exact multiply speed requirements can be determined.

5.2.7 Macrocode and Microcode Summary

The macrocode words are summarized in Figure 35. A maximum of

three instruction fetches may be required with a minimum of at least

the first macrocode.

The microcode fields are summarized in Figure 36. The hardware

has been specified to the point where an approximate microword may be

Macro code

Microcode

START ADDR
9 bits I A ADDR

3 bits

16~bit Addr or Constant

16-bit Constant

Figure 35. Macrocode Summary

B ADDR
4 bits 1st Word

2nd Word

3rd Word

ALU Source I
3 bits

ALU Function! ALU Destination I Branch Control
3 bits 3 bits 3 bits

Branch Address 1· Branch j I/0 Bus Control
9 bits bit 4 bits

R/W
bit

Internal Reg.
Control 2 bits

Zero
bit

Push/Pop I
bit

File Enable I
bit

Figure 36. Microcode Summary

MPC Increment
bit

Rotate Control!
2 bits

\.0
-.....J

defined. The microcode word consists of 14 fields or 35 bits. All

fields have been previously discussed during hardware design except

98

the branch control fields which include branch bit, zero bit, push/pop

bit, file enable bit and the MPC increment bit. The MPC increment bit

is the Cin input to the Am2909 microprogram sequencer. It simply con­

trols the incrementer so that when high the microprogram address is in­

cremented before being stored in the MPC register. The remaining bits

control subroutine call and subroutine return execution.

The basic hardware system has been discussed except for subroutine

control. More hardware may be required if micro-subroutine calls are

placed under both macrocode and microcode control. This means a sub­

routine call to the microcode which executed a multiply could be pro­

cessed without returning control at the end to the instruction fetch

firmware. At present, when the execution of a macro-instruction is

complete, the last micro-instruction jumps to next-instruction-fetch

routine. The double control would allow either a jump to the fetch

routine or a subroutine return if the code was accessed by a subroutine

call instruction. This would require either setting a flip-flop to

remember each subroutine call or just using a subroutine call for the

execution of each macro-instruction. The latter method would slow the

macro-instruction execution by adding two more cycles to each instruction.

This type of control would be very helpful in firmware program­

ming the trigonometric and other functions requiring existing firmware.

The trigonometric execution firmware would be able to use the multiply

firmware without going to the macrocode level. The hardware control

of this type of subroutine function would simply modify the jump to

the instruction fetch routine based on whether the subroutine call

•

99

flip-flop had been set previously. The two bits push/pop bit and file

enable are necessary since they are used by the Am2909 during subroutine

function execution. The push/pop bit is the push/pop input of the

Am2909 which controls the increment or decrement of the stack pointer.

File enable bit is the read/write control of the 2909 1 s file stack.

The two bits, branch and zero, are included for hardware control

and may or may not be necessary depending on the actual hardware. The

branch bit may be necessary in setting the subroutine jump flip-flop

when the special subroutine jump is necessary. The zero bit was in­

cluded since it conveniently allows a jump to address zero over any

other control of the Am2909. Thus the special subroutine function has·

been anticipated in the micro-instruction word definition but the actual

implementation was not completed. The final micro-instruction will

probably differ but it will be within a maximum of 36 bits. The other

fields can be decreased if it is desired to lower the instruction size

to 32 bits. However, this would increase the decode hardware.

5.3 Approximate Instruction Execution Times

and Package Count

Two additional results may be obtained from the hardware outline,

instruction execution times and an approximate package count. This

preliminary system outline will enable the calculation of execution

times for basic instruction types based on the cycle time, required

memory accesses and the macro-instruction system definition. Table XIX

shows the execution time of various types of instructions. Each

instruction is separated into several execution states to show how the

cycles are broken-up between different functions.

100

TABLE XIX

INSTRUCTION EXECUTION TIME SUMMARY

Instruction Execution # Cycles Execution
Type States Time

Memory Instruction fetch 2
reference Data address fetch 2 1.2 llS Fetch data (RAM) 1

Function 1

Load Immediate Instruction fetch 2
1st half of constant 2 1.2]..IS
2nd half of constant 2

Load (RAM) Instruction fetch 2
Address fetch 2 1 11S

Load 1

Output Instruction fetch 2
(address in MEM) Address fetch 2 1 llS

Output to RAM 1

Output Instruction fetch 2
(address in Decrement PC 1 1 llS register) Note 1 Load MA 1

Output to RAM 1

Register to Instruction fetch 2
register Decrement PC 1 0.8]..lS
Note 1 Function 1

Note 1 : All single word instructions lose one cycle time.
The PC is actually decremented during the output
to RAM cycle.

101

Single word instructions lose one cycle time due to the pipeline

register architecture. It takes three cycle times before control is

transferred to the macro-instruction ROM address field. Thus the micro­

instruction will increment PC and load MA as if a second macro-instruc­

tion is going to be fetched. If a second macro-instruction is not

fetched, then the PC must be decremented before the next instruction

fetch. This can be done during any microcode output function when the

ALU is not being used. Also it is possible to actually gain cycles by

using the ALU during those memory output cycles. If the last function

of a particular instruction is a memory write, then the PC can be in­

cremented and loaded into the MA register for the next instruction at

the same time.

An approximate package count is calculated in Table XX. This

calculation does not take into account two important problems. First

ROM memory cannot be used in the prototype system. RAM can be substi­

tuted so that the system still sees ROM memory, but external hardware

will be required to load the RAM with the program. Even after initial

debug, PROMs will probably be used rather than ROMs. The second prob­

lem is that more control hardware and a control panel will be necessary

for debug. The ability to stop on a given address and to single cycle

through program execution is necessary. There are two levels of firm­

ware which means two levels of control are required. Even a second

processor will be required to run assemblies, load memory, simulate

the input interface, etc. The system designed to this point gives only

an idea as to how the working or debugged system hardware will look.

The slice interconnections were never drawn because of an effort not to

duplicate material presented in the application literature. Furthermore,

102

the system presented was only segments of the design without a complete

circuit being presented. Also the power supply requirements have not

been estimated. Thus, the hardware outline presented is not complete

in every detail.

Function

Multiplier

Latches - IR
MIR

Microprogram sequencer

MEM - llROM
ROM
RAM

Slice-

Bus - MD
MA

Control

Shift

TABLE XX

PACKAGE COUNT

IC

Am25S05

Am2918
Am2918

Am2909

256-Word by 4-bit
1024-Word by 8-bit

256-Word by 4-bit

Am2901
Am2902
Am2905
Am2905

Misc.

745253

Total

Number Used

0 or 131

2
9

3

8
8 (initial
8 of ROM)

8
3
8
4

12

2

75 or 206

At this point, the complete fire control data processing system,

especially the data smoothing algorithm, should be determined. After

4K

103

software simulation of the system one must begin defining required

macro-instructions for adopting the software to the microprocessor sys­

tem and determine the microfunctions required to implement the macro­

instructions. The system presented has a general but powerful

microfunction base believed adequate to implement the required macrocodes.

Only refinement and adjustment is now required as firmware development

brings up more specialized required functions. A great deal of parallel

development is required now for firmware and hardware.

Chapter VI involves project development charts showing how to pro­

ceed with the project and final remarks. Approximate execution times

for the more complex functions such as SIN, COS, etc. can now be cal­

culated. Using the algorithm discussed in Chapter II the SIN function,

for example, may be implemented as a macrolevel subroutine requiring

approximately eight multiplies, one subroutine call, one subroutine

return, six .load immediates, three loads, four exchanges (load contents

of one register into a second), three adds and one subtract. The ex­

ecution time is approximately 30 ~s for the hardware multiply system

and 80 ~s for the semi-hardware multiply. These times could be im­

proved if the functions were executed on the microlevel but this would

require more hardware and microcode bits for expanded micro-control

for entering the required constants. These are the constants used in

the execution of the rational polynomial approximations. The macro­

level execution simply uses the load immediate instruction to load

32-bit constants.

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary and Conclusions

The feasibility study is now completed by the selection and appli­

cation of the Am2900 microprocessor. The study was begun by outlining

some basic system requirements for the selection process. The spectrum

of microprocessors was studied and shortened to those which met the

processing requirements. At this point specific manufacturers• micro­

processors were examined for final selection. After the selection was

made, a preliminary system design was outlined for purposes of instruc­

tion execution time calculations and hardware complexity determination.

This simplified system design shows that it is feasible to implement the

controller system using microprocessors given that the resources are

available.

This study shows the hardware implementation to be feasible but the

firmware requirements are exceptional. The very complex completely dis­

crete hardware implementation has been simplified by the use of a micro­

processor but the complexity has been shifted to th~_firmwan~ de.){e}QJ?!!l§JTI·
--~-·-·~,,,.,..., •,,.,.._"<•>',~o,_,_,.,_ .. ,,.,,,"'"'.;,>',;.."-~~"''~"•'--..<,,,..,.,,,..".,.."·--'-·~""~'' 'r' ,_,__ ' """"'""'

The system approach for this study was to implement all functions if

possible in firmware. This led to the required use of a slice micro­

processor. A second approach is to implement to a greater degree more

functions in hardware thus reducing the microprocessor requirements.

For example, the extended Kalman filter could be implemented in discrete

104

105

hardware so that the firmware requirements would be reduced to decision

making and calculation of new firing parameters. This would allow the

use· of the 16-bit, fixed-instruction set type of microprocessors re­

ducing the firmware development significantly. Not only are the firm­

ware functions reduced, but the microprogramming requirement of a slice

microprocessor is eliminated. It would also reduce the effectiveness of

the microprocessor in providing the full advantages of the microproces­

sor's use, such as the flexibility of firmware and the reduced cost of

the hardware implementation.

The present system outlined using the Am2900 microprocessor has the

advantage of maximum firmware use for flexibility and hardware reduction.

The major disadvantage is the slice microprocessor requirement of micro­

programming a macro-instruction set. This is also an advantage in some

respects, since it allows the implementation of special purpose instruc­

tions but at the cost of the increased firmware development.

6.2 Project Continuance

If the system approach taken by this study is accepted, then the

next step is to completely define the firmware functions. The extended

Kalman filter should be implemented into the existing simulation pro­

grams. It is imperative that a working simulation program is available

so that firmware development will be mostly transforming the simulation

program into the microprocessor's instruction set.

The present state of development is shown in Chapter v. The hard­

ware system has been outlined to the point to at least define the basic

microcode functions. At this point one may begin a microcode assembler,

finish the hardware design and begin definition of the required macro-

106

code functions. The design effort will require a parallel structure as

shown by the program development chart in Figure 37. The parallel de­

velopment is required due to the feedback of each section into the other

sections. As macrocode is developed, new microcode functions will be

required which then lead to new hardware.

The development chart of Figure 37 shows the complexity of the pro­

gram and the manpower requirements. There are three distinct development

paths: hardware, microlevel and macrolevel development. The majority

of the effort will be concentrated in firmware development. This means

software oriented and hardware oriented people are necessary. The pro­

ject can be segmented into various development phases with one person

responsible for each phase. This can only be done to a small degree,

since communication problems arise and many problems surface during final

system debug when the pieces must be put together.

The total manhours required are impossible to determine but this

will be a significant project requiring good organization. The manpower

requirements were never estimated but the study was presented in such a

manner as to give the reader a basic understanding of what will be re­

quired to complete the project. Thus, the project may begin where this

study leaves off. Continuation has been outlined and present status

given. Different approaches to the system have also been presented.

The system outlined in this study must now be evaluated. If accepted,

the project continuance will be a process of hardware modification and

refinement and firmware development.

r-1 HARDWARE
DESIGN

HARDWARE ~
1 CONSTRUCTION

~

I I WRITE
L- __ MICRO-ASSEMBLER

.---~~- ---------, I r: ____ _
HARDWARE MICROCODE MICRO- MICRO- MICRO-

r--_t:=::::;-~ DEFINITION DEFINITION ASSEMBLER PROGRAM LEVEL t--

SYSTEM DEFINITION DEVELOPMENT DEBUG
DEFINITION

r-- --- ,_l HARDWARE
I
I
I

t

I "1 DEBUG I--
FIRMWARE

MACROCODE I I I MACROCODE I I)MACROPROGRAM
I ~DEFINITIONtrt1 ASSEMBLER~ DEVELOPMENT~

MACRO LEVEL
DEBUG ON

SIMULATOR DEFINITION

~ MACROLEVEL
~ SIMULATOR I-

MACRO-
~ ASSEMBLER ~

DEVELOPMENT

Figure 37. Program Development Chart

SYSTEM
DEBUG

MACROLEVEL

......
0

(1)

(2)

(3)

(4)

(5)

(7)

J (8)

(9)

BIBLIOGRAPHY

Articles

Cronenwett, W. T. and J. H. Christensen. 11 0igital Applications
and t1icroprocessors. 11 IEEE Fall Technical Seminar, Oklahoma
City, December, 1974.

Cushman, Robert H. 11 CMOS-Yesterday• s Orphan Has Greatly
Prospered. 11 EON, Vol. No. 20 (August, 1975), pp. 22-31.

Davidow, William H. 11 General-Purpose Microcontrollers Part I:
Economic Considerations ... Computer Design, Vol. No. 11
(July, 1972), pp. 75-79.

Davidow, William H. 11 General-Purpose Microcontrollers Part II:
Design and Applications. 11 Computer Design, Vol. No. 11
(August, 1972), pp. 69-75.

Faggin, F. and M. E. Hoff. 11 Standard Parts and Custom Design
Merge in Four-Chip Processor Kit. 11 Electronics, Vol. No. 45
(April, 1972), pp. 112-116.

Fox, Gregory. 11 Eva 1 ua ti on of Microprocessor Performance for
Military Systems Application. 11 IEEE Transactions on
Circuits and Systems, Vol. No. CAS-22 (April, 1975}, pp. 6-8.

Frankenberg, Robert J. 11 Designer's Guide to: Semiconductor
t,1emories - Part II . 11 EON, Vol. No. 20 (August, 1975), pp. 58-65.

Ghest, R. C. 11 A 2's Complement Digital Multiplier for the
Am2505. 11 Sunnyvale, California: Advanced Micro Devices, 1971.

Holt, Raymond and Manuel R. Lemas. 11 Current Microcomputer
Architecture.•• Computer Design, Vol. No. 13 (February, 1974),
pp. 65-73.

(10) Horton, Richard L., Jesse Englade and Gerald McGee. 11 I 2L Takes
Bipolar Integration a Significant Step Forward. 11 Electronics,
Vol. No. 48 (January, 1975), pp. 83-90.

(11) Jaeger, Robert. 11 Microprogramming: A General Design Tool. 11

Computer Design, Vol. No. 13 (August, 1974), pp. 150-157.

(12) Lewin, Morton H. 11 Integrated Microprocessors. 11 IEEE Transactions

108

on Circuits and Systems, Vol. No. CAS-22 (July, 1975),
pp. 577-585.

(13) 11 New Products - Four-Bit Bipolar/LSI Processor Slice Cuts
Microcycle Time to 100 ns. 11 Electronic Design, Vol. 15
(July, 1975), pp. 77-78.

(14) Perlowski, A. A. 11 Potential User•s Microprocessor Checklist ...

109

Plymouth, Minnesota: Microprocessors Evaluation Laboratory
Solid State Electronics Center, June, 1974.

(15) Riley, Wallace B. 11 Special Report: Semiconductor Memories
are Taking Over Data-Storage Applications ... Electronics,
Vol. No. 46 (August, 1973), p. 75.

(16) Schmid, Hermann. 11 Monolithic Processors ... Computer Design, Vol.
No. 13 (October, 1974), pp. 87-95.

>'"(17) Schmid, Hermann. 11 Speed Microcomputer r~ultiplication With A CPU
Complementary Circuit or Peripheral Multiplier. Here are
Typical Examples That Use Available ICs. 11 Electronic Design,
Vol. 9 (April, 1975), pp. 44-51.

(18) Schultz, Gaymond, Raymond Holt and Harold McFarland, Jr. 11 A Guide
to Using LSI Microprocessors ... Computer, Vol. No. 6 (June,
1973), pp. 13-19.

(19) Tarui, Tadaaki, Keiji Namimoto and Yukiharu Takahashi. 11 Twelve-Bit
Microprocessor Nears Minicomputer•s Performance Level ...
Electronics, Vol. No. 47 (March, 1974), pp. 111-116.

(20) Torrerro, Edward A. 11 Focus on Microprocessors ... Electronic
Design, Vol. 18 (September, 1974), pp. 52-68.

(21) Weisbecker, Joe. 11 A Simplified Microcomputer Architecture ...
Computer, Vol. No. 7 (March, 1974), pp. 41-48.

(22) Weissberger, Alan J. 11 Microprocessors Expand Industry Applications
of Data Acquisition ... Electronics, Vol. No. 47 (September,
1974), p.107.

Specification Literature

(23) Advanced Micro Devices Incorporated. A Preview of the Am2900
Family. Marketing Bulletin. Sunnyvale, Callfornia, 1975.

(24) Advanced Micro Devices Incorporated. Am2900 Bipolar Microprocessor
Family. Data Catalog. Sunnyvale, California, 1975.

(25) Fairchild Corporation. 9400 Series Macrologic Composite Data
Sheet. Preliminary Technical Information. Mountain View,
California, 1975.

(26) Intel Corporation. Disk Controller Design Uses New Bipolar
Microcomputer LSI Components. Applications Note. Santa
Clara, California, 1975.

{27) Intel Corporation. Intel Microcomputers. Data Catalog. Santa
Clara, California, 1974.

~28) Intel Corporation. Preliminary Specification, Intel Bipolar
Microcomputer Set Cross Micro-assembler, XMAS. Santa Clara,
California, 1975.

(29) Intel Corporation. Using the Intel Bipolar ~1icrocomputer
Set. Santa Clara, California, 1975.

(30) Intel Corporation. 3000 Bipolar System Development Kit. Data
Sheet. Santa Clara, California, 1974.

(31) Intel Corporation. I nte 1 3001 t1i croprogram Contra 1 Unit. Data
Sheet. Santa Clara, California, 1975.

(32) Intel Corporation. Intel 3002 Central Processing Element. Data
Sheet. Santa Clara, California, 1975.

(33) Motorola Semiconductor Products Incorporated. ~New Concept~
Processor ICs. Phoenix, Arizona, 1975.

(34) Motorola Semiconductor Products Incorporated. General Information
M10800 Bipolar Microprocessor Program. Tentative Data Sheet.
Phoenix, Arizona, 1975.

(35) National Semiconductor Corporation. IMP-16 Programming and
Assembler Manual. Santa Clara, California, 1974.

(36) National Semiconductor Corporation. IMP-16C Product Description.
Santa Clara, California, 1973.

(37) Norman, Robert. Independent Study Project. Stillwater, Oklahoma:
Oklahoma State University, 1975.

(38) School of Engineering, Final Report, Real Time Registry and
Control Feasibility Study. Stillwater, Oklahoma: Oklahoma
State University, 1975.

110

(39) Texas Instruments Corporation. 11 Microprocessor Introduction Seminar ...
Oklahoma City, Oklahoma, July, 1975.

(40) Texas Instruments Corporation. SBP0400 Four-Bit Parallel Binary
Processor Element. Tentative Data Sheet. Dallas, Texas, 1975.

(41) Texas Instruments Corporation. TMSIOOO Series MOS/LSI One-r_b.:~ -
Microcomputers. ·Data Sheet. Dallas, Texas, 1975.-·-

APPENDIX A

IMP-16 INSTRUCTION SET

111

112

TABLE XXI

MEMORY REFERENCE INSTRUCTIONS

Instruction Execution Memory cycles Execution
Cycles Read Write Time (~s)

Load 5 2 7.7
Load indirect 5 3 8.05
Store 6 1 1 9.1
Store indirect 8 2 1 12.25
Add 5 2 7.7
Subtract 5 2 7.7
Jump 3 1 4.55
Jump indirect 5 2 7.7
Jump to subroutine 4 1 5.95
Jump to subroutine indirect 6 2 9.1
Increment and skip if zero 7,8 if skip 2 1 12.25
Decrement and skip if zero 8,9 if skip 2 1 13.65
Skip if AND is zero 6,7 if skip 2 10.5
Skip if greater Like signs: 8,9 if skip 2 13.3

Unlike signs: 9,10 if skip 2 14.7
Skip if not equal 6 2 9.1
AND 5 2 7.7
OR 5 2 7.7

TABLE XXII

REGISTER REFERENCE INSTRUCTIONS

Instruction

Push on to stack reg
Pull from stack
Add immediate, skip if zero
Load immediate
Complement and add immediate
Register copy
Exchange register and top

of stack
Exchange registers
Register AND
Register exclusive OR
Register add
Shift left
Shift right
Rotate left
Rotate right

Execution
Cycles

3
3

4,5 if skip
3
3
6
5

8
6
6
3

4 + 3K
4 + 3K
4 + 3K
4 + 3K

Memory Cycles
Read Write

1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

Note: 11 K11 equals the number of bits shifted

Execution
Time (11s)

4.55
4.55
7.35
4.55
4.55
8.75
7.35

11.55
8.75
8.75
4.55

113

114

TABLE XXIII

INPUT/OUTPUT, FLAG, AND HALT INSTRUCTIONS

Instruction Execution Memory Cycles Execution
Cycles Read Write Time (lls)

Set flag 4 1 5.95
Pulse flag 4 1 5.95
Push flags on stack 4 1 5.95
Pull flags from stack 5 1 7.35
Register in 7 1 10.15
Register out 7 1 10.15
Halt 1 1. 75

TABLE XXIV

TRANSFER OF CONTROL INSTRUCTIONS

Instruction Execution Memory Cycles Execution
Cycles Read Write Time (llS)

Branch-on condition 4,5 if branch 1 7.35
Return from subroutine 4 1 5.95
Return from interrupt 5 1 7.35
Jump to subroutine implied 4 1 5.95

TABLE XXV

EXTENDED INSTRUCTION SET

Instruction Execution Memory Cycles
Cycles Read Write

Multiply 106 to 122 3
Divide 125 to 159 3
Double precision add 12 4
Double precision subtract 12 4
Load byte 20 (left) 4

12 (right) 4
Store byte 24 (1 eft) 4 1

17 (right) 4 1
Set status flag 17 to 36 1
Clear status flag 17 to 36 1
Skip if status flag true 19 to 39 1
Set bit 15 to 34 1
Clear bit 15 to 34 1
Camp 1 em en t bit 15 to 34 1
Skip if bit true 19 to 39 1
Interrupt scan 9 to 80 1
Jump indirect to 7 2

level zero interrupt
Jump through pointer 7 3
Jump to subroutine 8 3

through pointer

115

Execution
Time (lls)

171.85
223.65
18.2
18.2
29.4
18.2
35.35
25.55
50.75
50.75
54.95
47.95
47.95
47.95
54.95

112.35
10.5

10.85
12.25

APPENDIX B

MICROPROGRAMED MICROPROCESSOR INSTRUCTION SETS

116

Mnemonic

JCC
JZR
JCR
JCE

JFL
JCF
JZF
JPR
JLL
JRL
JPX
scz
STZ
STC
HCZ
FFO
FFC
FFZ
FF1

TABLE XXVI

INTEL 3001

Function

Jump in current column
Jump to zero row
Jump in current row
Jump in current column/row group

and enable PR-latch outputs
Jump/test F-latch
Jump/test C-flag
Jump/test Z-flag
Jump/test PR-latch
Jump/test leftmost PR-latch bits
Jump/test rightmost PR-latch bits
Jump/test PX-bus and load PR-latch
Set C-flag and Z-flag to F1
Set Z-flag to F1
Set C-fl ag to F1
Hold C-flag and Z-flag
Force FO to 0
Force FO to C
Force FO to Z
Force FO to 1

117

Mnemonic

ILR
ACM
SRA
LMI
LMM
CIA
CSR
CSA
INR
INA
CLR
CLA
NOP
LMF
CMR
LCM
CMA
ALR
AMA
DSM
LDM
DCA
SDR
SDA
LDI
ADR
AIA
ANR
ANM
ANI

TABLE XXVII

INTEL 3002

Microfunction

Rn + C1 + Rn, AC
M + C1 +AT
ATL + RO ATH + ATL L1 + ATH
R + MAR R + C1 + R n n n
M + MAR M + C1 + AT
AT + C1 + AT
C1 - 1 + R n
C1 - 1 + AT
R + C1 + R n n
AT + C1 + AT
C1 +CO
C1 +CO
C1 + CO
C1 +CO
C1 + CO
C1 +CO
C1 + CO

0 + R n
0 + AT

Rn + Rn
M + AT
R + R n n
M +AT
AT+ AT

AC + R + C1 + R , AC n n
M + AC + Cl + AT
11 + MAR R - 1 + C1 + R n n
11 + MAR M - 1 + C1 + AT
AT - 1 + C1 + AT
AC - 1 + C1 + R n
AC - 1 + C1 + AT
l - 1 + C1 + AT
AC + R + C1 + R n n
l + AT + C1 + AT
C1 V (Rn A AC) + CO Rn A AC + Rn
C1 V (M A AC) + CO M A AC + AT
C1 V (AT A I) +CO AT A 1 +AT

118

119

TABLE XXVII (Continued)

Mnemonic Microfunction

TZR C1 V Rn -+ CO R -+ R n n
LTM C1 V M -+ CO M -+ AT
TZA C1 V AT -+ CO AT -+ AT
ORR C1 V AC -+ CO Rn V AC -+ Rn
ORM C1 V AC -+ CO M V AC -+ AT
ORI C1 v 1 -+ co 1 V AT -+ AT
XNR C1 V (Rn AC) -+ CO Rn m AC -+ Rn
XNM C1 V (M AC) -+ CO M j" AC -+AT
XNI C1 V (AT 1) -+CO 1 m AT -+ AT

Symbol

Cl
co

I, K,

Rn
AC
AT

MAR
+

A

v
(D

-+

LI, RO
L, H

M

TABLE XXVIII

EXPLANATION OF SYMBOLS

Carry input
Carry output

Meaning

Data on I, K, M buses, respectively
Contents of register n including T and AC
Contents of accumulator
Contents of AC or T, as specified
Contents of memory address register
Two's complement addition
Two's complement subtraction
Logical AND
Logical OR
Exclusive NOR
Deposit into
Data on left input and right output
As subscripts, designate low and high

order bit, respectively

120

Instruction
Inputs LO

14 13 12 11 lo

L L L L L
L L L L H

L L L H L
L L L H H

L L H L L
L L H L H

L L H H L
L L H H H

L H L L L
L H L L H

L H L H L
L H L H H

L H H L L
L H H L H

L H H H L
L H H H H

H L L L L liT
H L L ·L H 1<3

H L L H L liT
H L L H H D3

H L H L L 03
H L H L H K3

H L H H L
H L H H H

H H L L L

H H L L H

TABLE XXIX

INSTRUCTION SET FOR THE 9404

o3 o2 o1 oo RO Function

L L L L Byte Mask
H H H H Byte Mask

L L L H Minus "2 11 in 21 s Complement
L L L L Minus 11 1" in 21 s Complement

o3 o2 l\ D0 Byte mask 0-bus
H H H H Byte mask 0-bus

o3 o2 D1 Do Byte mask 0-bus
L L L L Byte mask 0-bus

L H H H Negative byte sign mask
H H H H Positive byte sign mask

1<3 K2 1<1 Ko Byte mask K-bus
L L L L Byte mask K-bus

D3 D2 D1 Do Load byte

K3 K2 K1 Ka Load byte

H H H L Plus "!"
H H H H Zero

RTRTRTRT K-bus sign extend
K3 K2 K1 Ka K-bus extend

RTRTRTRT 0-bus sign extend
o3 o2 o1 Do 0-bus sign extend

D2 ~1 ~0 Rl 0-bus shift left
K2 K1 K0 RI K-bus shift 1 eft

IT D3 D2 D1 Do 0-bus shift right

03 o3 o2 Dl Do 0-bus shift right arithmetic

IT 1<3 1<2 1<1 Ka K-bus shift right

K3 K3 1<2 Kl Ko K-bus shift right arithmetic

121

122

TABLE XXIX (Continued)

Instruction
Inputs LO o3 o2 o1 oo RO Function

14 13 12 11 Io

H H L H L K3 K2 K1 Ka Byte mask K-bus
H H L H H H H H H Byte mask K-bus

H H H L L o3 o2 o1 Do Complement 0-bus
H H H L H K3 K2 K1 Ka Complement K-bus

H H H H L Unassigned
H H H H H Unassigned

H = High level
L = Low level

12

L
, L

L
L
H

H

H

H

NOTES:

I1

L
L
H

H

L
L
H

H

TABLE XXX

I-FIELD ASSIGNMENT

Io Internal Operation

L Rx plus D-bus plus 1 + Rx
H Rx plus D-bus + Rx
L Rx D-bus + Rx (logic AND)
H D-bus + Rx
L Rx + D-bus
H Rx + D-bus + Rx (logic OR)
L Rx ID D-bus + Rx (logic X-OR)
H D-bus + Rx

1. Rx is the RAM location addressed
by A0 - A2.

2. The result of any operation is always
loaded into the output register.

H = Logic high level
L = Logic low level

123

I 1 I a

L L

L H

H L

H H

Instruction

Return (pop)

Branch (load PC)

Ca 11 (push)

Fetch
(Increment PC)

TABLE XXXI

INSTRUCTION SET FOR THE 9406

Internal Operation X-bus

Decrement stack pointer Disabled

Load D-bus into current Disabled
program counter location

Increment itack pointer Disabled
and load D-bus into new
program counter location

Increment current program Current
counter if cr is low program

counter
while both
CP and EX
are low,
disabled
while CP or
IT is high

H = High level; L = Low level

0-bus (with E00 low)

Depending on the relative timing of EX and
CP, the outputs will reflect the current
program count or the new value while CP
is low. When CP goes high again, the
output will reflect the new value.
Current program counter until CP goes high
again, then updated with newly entered PC
value.
Depending on the relative timing of EX and
CP, the outputs will reflect the current
program count or the previous contents of
the incremented SP location. When CP goes
high again, the outputs will reflect the
newly entered PC value.
Current program counter until CP goes high
again, then updated with incremented PC
value.

1-'
N
~

Instruction
I3 I2 11 10

L L L L
L L L H

L L H L
L L H H
L H L L
L H L H
L H H L
L H H H
H L L L
H L L H
H L H L
H L H H
H H L L
H H L H
H H H L
H H H H

TABLE XXXII

INSTRUCTION SET FOR THE 9407

Combinatorial Function Sequential Function Occurring
Available on the X-bus on the Next Rising CP Edge

R R0 plus D plus CI + R0 and
R0 plus o0plus CI a-register

R R0 plus 0 plus CI + R1 and
R0 plus o0plus CI 0-register

R R0 plus D plus CI + R2 and
R0 plus o0plus CI a-register

R R1 plus D plus CI + R1 and
R1 plus D1plus CI a-register

R
D plu~ CI

D plus CI + R2 and 0-register

R
D plu~ CI

D pl uscT-+R0and 0-regi ster

R2
R2 plus D plus CI

R2 plus D plus CI + R2 and
a-register

R
D plu~ CI

D plus CI + R1 and 0-register

.......
N
U1

TABLE XXXII I

2901 MICROCODE

Microcode
I2 I1 I0 (Octal)

0
1
2
3
4
5
6
7

Microcode
I5 I4 I3 (Octal)

0
1
2
3
4
5
6
7

Microcode RAM Function
I8 I7 r6 (Octal) Shift Load

0
1
2 None ALU
3 None ALU
4 Left ALU
5 Left ALU
6 Right ALU
7 Right ALU

ALU Source Operands
R S

A Q
A B
0 Q
0 B
0 A
D A
D Q
D 0

ALU Symbol
Function

R plus S R+S
S minus R S-R
R minus S R-S
R or SR V S
R and S R A S
Rand S R A S

R EX - OR S R ~ S
R EX - NOR s R ~ S

Q-Reg Function
Shift Load

None ALU

Left Q-reg

Right Q-reg

126

y
Output

F
F
A
F
F
F
F
F

Logic

F = logic 0
F = A
F = 0
F = A
F = 0
F = A + 0
F=A+O
F = A + 0
F = A o 0
F =A o 0
F = A 0 0
F = A$ 0
F = A $ 0
F = A o 0
F = A+ 0
F = logic 1
F = ACC o A
F = ACC o 0
F = ACC + A
F = ACC + 0
F = ACC $ A
F = ACC $ A
F = ACC $ 0
F = ACC $ 0
F = ACC $ A 0 0
F = ACC $ A o 0
F = ACC $ A + 0
F = ACC $ A + 0

TABLE XXXIV

MC10800 ALU FUNCTION SET

Binary

F = A plus 0
F = A minus 0
F = 0 minus A
F = A
F = 0
F = A
F = 0
F = A minus 1
F = 0 minus 1
F = A minus 2
F = 0 minus 2
F = A plus 2
F = 0 plus 2
F = A plus A
F = 0 plus 0
F = ACC plus A
F = ACC minus A
F = ACC plus 0
F = ACC minus 0
F = ACC plus A o 0
F = ACC minus A 0 0
F = ACC plus A + 0
F = ACC minus A + 0

BCD

F = A plus 0
F = A minus 0
F = 0 minus A
F = A
F = 0
F = g•s compo A
F = g•s compo 0
F = A plus 2
F = 0 plus 2
F = A plus A
F = 0 plus 0
F = ACC plus A
F = ACC plus 0
F = ACC minus A
F = ACC minus 0
F = ACC plus A o 0
F = ACC minus A 0 0
F = ACC plus A + 0
F = ACC minus A + 0

127

~

VITA

David Ernest West

Candidate for the Degree of

Master of Science

Thesis: MICROPROCESSOR FEASIBILITY STUDY AND PRELIMINARY DESIGN FOR
AN ARTILLERY FIRE CONTROL APPLICATION

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in San Antonio, Texas, January 13, 1952, the
son of Mr. and Mrs. Leonard L. West.

Education: Graduated from Northwest Classen High School, Oklahoma
City, Oklahoma, in May, 1970; received the Bachelor of Science
in Electrical Engineering degree from the University of
Oklahoma, Norman, Oklahoma, in May, 1974; completed require­
ments for the Master of Science degree at Oklahoma State
University, Stillwater, Oklahoma, in May, 1976.

Professional Experience: Member of Advanced Engineering program
of Honeywell Information Systems, Oklahoma City, Oklahoma,
from June 1974 to July 1975; Digital Systems Engineer,
Magnetic Peripherals Incorporated, Floppy Disk Controller
Development Section, Oklahoma City, Oklahoma, from July 1975.

