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PREFACE 

This study investigates the performance of various iterative and 

extrapolation methods when applied to the numerical solution of two 

elliptic boundary value problems. The methods used can be applied to 

most boundary value problems in the elliptic class of partial differen

tial equations. 

I would like to express my deep appreciation to my adviser, Dr. 

J.P. Chandler, for his guidance and assistance through all phases of 

this project. A special thanks is extended to Dr. D.D. Fisher and 

Dr. G.E. Hedrick, the other two members on my committee. In addition, 

I would also like to thank all the other members of the faculty and 

graduate assistants for making these past two years the most enjoyable 

ones of my college career. Finally, thanks to my typist, Pam Haught, 

who spent many long hours typing the numerous equations that appear 

throughout the text. 
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CHAPTER I 

INTRODUCTION 

The purpose of this thesis is to analyze and solve two selected 

boundary value problems: the first problem is used as a model problem 

to help develop numerical techniques for the second problem; the second 

problem.is a practical problem of interest in semiconductor research. 

These two boundary value problems are actually two dimensional 

elliptic partial differential equations. There are many numerical tech

niques for solving partial differential equations. One of these, which 

is applicable to both linear and nonlinear equations, is the method of 

finite differences (5). This method can, in general, be applied to 

equations in n dimensions. Since the numerical solution of the differ

ence equations resulting from the method of finite differences is 

a large undertaking, it is almost always done with the aid of automatic 

digital computers. 

The first problem, which is used to develop and test certain 

iterative methods and acceleration ~thods, is the Dirichlet problem 

for Laplace's equation (7). Some of these iterative methods include the 

following: Jacobi, Gauss~Seidel, successive overrelaxation, simmlta

neous overrelaxation, and symmetric successive overrelaxation 

(17,18,19,20). While it is not obvious at the moment, these methods 

employ a reasonable amount of matrix theory, some of which Is presented 

in sections of this paper where appropriate. 
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Not as widely known as some of the iterative methods, are various 

extrapolation techniques desigrted primarily to accelerate the conver

gence of particular iterative methods. One of these, modified vector 

Aitken extrapolation (8,1), will be e~amined in detail and applied to 

the iterative methods mentioned above. 

2 

The second problem, the numerical solution of the diffused semi~ 

conductor resistor, can be formulated using an elliptic partial differ

ential equation in two dimensions, which is more complex than Laplace's 

equation, with boundary conditions somewhat different from the Dirichlet 

problem. Physically, the diffused resistor is composed of some material 

such as silicon with one or more metallic contacts attached to it (9). 

The author's version will have the contacts on the top left and right 

sides of a rectangular resistor. Diffused resistors are used exten

sively in integrated circuits, so this problem is of interest in the 

field of semiconductor.research. 

Chapter II presents some of the background of partial differential 

equations and boundary value problems. The Dirichlet problem is also 

introduced here. Chapter III contins numerical solutions of the 

Dirichlet problem, using a model problem developed by the author, and 

also Young's (17) model problem. These problems are solved by the 

various iterative methods mentioned earlier along with vector Aitken 

extrapolation. Chapter IV introduces the diffused semiconductor resis

tor and derives the appropriate finite difference approximations for it. 

Chapter V presents numerical solutions of the diffused resistor problem 

with the methods developed in Chapter III. Finaly, Chapter VI presents 

some conclusions and areas for further research. 



CHAPTER II 

BACKGROUND ON BO~ARY VALUE PROBLEMS 

IN PARTIAL DIFFERENTIAL EQUATIONS 

The general form of a second order partial differential equation 

in two dimensions, which is linear in the second derivatives only, 

can be described as follows (7). Given a two-dimensional region R: 

a(x,y,u,u ,u )u + 2b(x,y,u,u ,u )u + c(x,y,u,u ,u )u xyxx xyxy xyyy 

and at each point of .R 

+ f(x,y,u,u ,u ) = 0 
X y 

a 2 + b 2 + c 2 I 0 

(2.1) 

au ;/u 
Partial derivatives; such as, ax and ax2 , will be represented by ux 

and u , respectively, throughout this paper. Equation (2.1) is linear 
XX 

when a= a(x,y), b = b(x,y), c = c(x,y), and f = d(x,y)u + e(x,y)u 
X y 

+ g(x,y)u + h(x,y). The notation used here indicates that a, b, and c 

are functions of x and y alone. 

Depending upon the values of a, b, and c, equations (2.1) may be 

in one of three general classes. If b 2 - ac < 0 the equation is said 

to be elliptic. For example, Laplace's equation (2.2), which is some-

times called the potential equation, is an elliptic partial differential 

equation (7). 

u + u = 0 
XX YY 

(2.2) 

In equation (2.2), if u is time independent, it might represent the 

3 
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electric potentia1 or the temperature. The variables x and y are often 

spatial coordinates. Equation (2.2) can also be written as: 

V2u = 0 (2. 3) 
or 

!::. u :::: 0 (2 .4) 

If b 2 - ac = 0 the equation is said to be parabolic. An example 

of a parabolic equation is the heat equation (2.5) (7). 

uxx- u y = 0 (2 .5) 

In this equation, u might be the temperature, y the time, and x a spa-

tial coordinate. 

And finally, if b 2 - ac > 0, the equation is in the hyperbolic 

class. The wave equation (2.6) is hyperbolic (7). 

u - u = 0 
XX yy 

(2. 6) 

For the wave equation, u is often the amplitude (or pressure) and 

either x or y is time, with the other one being a spatial coordinate. 

This paper will discuss and solve two particular problems in the 

elliptic class. The methods used will apply to most other problems 

in this class. To be more specific, these two problems are known as 

boundary value problems. 

In a boundary value problem the solution to the differential equa-

tion, partial or ordinary, is desired at many points within a region. 

This region may be of any shape in general. One of the boundary value 

problems used by the author to study numerical techniques for the 

solution of elliptic equations, is the Dirichlet problem. 

The Dirichlet problem can be stated as follows (7). Let S be the 

boundary, which is piecewise continuously differentiable. Let R be 

the interior region. If f(x,y) is given and continuous on S, then we 

want to find a function u(x,y) which is: 



1) Defined and continuous on R and S. 

2) Equal to f(x,y) on S. 

3) Can be computed from an approximation of Laplace's 

equation on R. 

This situation is depicted graphically in Figure 1. 

X 

u 

f 

Figure 1. Geometric Description of the 
Dirichlet Problem 

5 



The analytical determination of u(x,y) is nontrivial in most cases, 

even for the most simple boundary S. If S is a rectangle, circle, or 

ellipse, the solution may possibly be found by use of a Fourier series 

or Poisson integral. Even in these cases, however, the integral may be 

too complex to evaluate analytically in terms of simple functions. And 

for most other cases there do not seem to exist analytical methods 

available to determine u(x,y) (7). 

6 

A commonly used numerical technique for solving boundary value 

problems of this nature is the method of finite differences. This method 

consists of repla~ing the derivatives of an ordinary differential equa

tion or the partial derivatives of a partial differential equation·by 

approximations derived from Taylor's series, called divided differences. 

Divided differences for the fi~st and second derivatives can be 

derived rather easily by use of a Taylor series expansion and provide 

the basis for methods to be discussed later in this paper. Finite 

difference methods can usually be implemented on the computer with ease, 

which partly accounts for their widespread use. 

Usually when solving boundary value problems, a mesh or lattice as 

it is sometimes called, is used to specify the boundary, S, and the 

int;erior region, R. The points within this mesh are called mesh points 

and can either be a uniform distance,h, apart or more generally a non

uniform distance, hi, apart. 

To illustrate the method of finite differences we will derive the 

approximation to Laplace's equation, assuming equal h's. We first 

expand u(x+h,y) and u(x-h,y) about the point (x,y) using Taylor's 

series. 



u(x+h,y) = u(x,y)+((x+h)-x)u (x,y) + (y-y)u (x,y) 
X y 

+ ~[((x+h)-x) 2u (x,y) + 2((x+h)-x) (y-y)u (x,y) 
XX . xy 

+ (y-y) 2u (x,y)] + O(h3) yy 

u(x+h,y) = u(x,y) + hu (x,y) + ~h2u (x,y) + O(h3) 
X XX 

Similarly, 

u(x-h,y) = u(x,y)-hu (x,y) + ~h2u (x,y) + O(h3) 
X XX 

Adding (2.7) and (2.8) gives: 

u (x,y) = h12[u(x+h,y) ..... 2u(x,y) + u(x-h,y)] + O(h2) 
XX 

Similarly we can derive u (x,y) to be: yy 

u (x,y) = h12[u(x,y+h)-2u(x,y) + u(x,y-h)] + O(h2) yy 

Therefore, Laplace's equation can be approximated by: 

7 

(2.7) 

(2. 8) 

(2. 9) 

(2.10) 

uxx + uyy ~ ~[u(:x+h,y) + u(x-h,y) +. u(x,y+h) + u{x,y~b) - 4u(x,y)] ~ 0 

(2.11) 

It can be seen that equation (2.11) uses five different points 

and hence is sometimes referred to as the five point rule. In 

general, the four points (x+h,y), (x,y+h), (x-h,y), and (x,y-h) may 

not be the same distance, h, from the point (x,y). So, we can define 

four new points: (x+h1 ,y), (x,y+h2), (x-h3,y), and (x,y-h4) where 

h1' =l~h2 :f h3 :f h4• Figure 2 graphically represents the five point rule 

for this case. 

Thus, using the same techniques which were used to derive 

equation (2.11) we can derive another approximation to Laplace's 

equation for the general case of unequal h's. For notational pur-

poses, let u1 = u(x+h1 ,y), u2 = u(x,y+h2), u3 = u(x-h3,y), 

u4 = u(x,y-h4), and u0 = u(x,y). Also since all derivatives are func

tions of x and y alone they will be written without the (x,y) part. 



(x,y) 

Figure 2. Five Point Rul~ Using Unequal 
h's. 

Expanding u1 and u3 about the point (x,y) using Taylor'·s series gives: 

2 3 
u1 = u0 + h1ux + ~hluxx + O(h1) (2.12) 

2 3 
u3 = u0 - h3ux + ~h3uxx + O(h3) (2.13) 

Adding (2.12) and (2.13) and simplifying gives: 

• 2 u1 2 u3 
u = + .,--..,--=---:--

XX h1 (hl + h3) h3 (hl + h3) 
(2.14) 

Similarly, expanding u2 and u4 about the point (x,y) using Taylor's 

series gives: 
2 3 

u2 = u0 + h2uy + ~h2uyy + O(h2) (2.15) 

2 3 
u4 = u0 - h4uy + ~h4uyy + O(h4) (2.16) 

Adding (2.15) and (2.16) and simplifying gives: 

(2.17) 
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The approximation for Laplace's equation for unequal h's follows 

directly: 

u +u 
XX yy 

1 1 2 
- 2 (h h + ~)u0 + o (h ) = o (2.18) 

1 3 2 4 

It should be noted that the above equation (2.18) reduces to (2.11) 

if hl = h2 = h3 = h4 = h. 

Depending upon the boundary, S, either equation (2.11) or (2.18) 

could be used to solve the Dirichlet probelm~ In the Dirichlet 

problem we want to compute u(x,y) (u0) for all points in the region R. 

Therefore we will have, in general, n equations of the form of equation 

"(2.11) or (2.18) which must be solved simultaneously. 

Equations (2.11) and 2.18) are both linear and hence may be solved 

by a direct method such as Gaussian elimination (13). The coefficient 

matrix for these equations is very sparse, each row consisting of at 

most five nonzero coefficients (5}. If the entire coefficient matrix is 

2 
stored, n storage locations would be required. 

For most practical problems n is very large, so that solution by 

a direct method becomes impractical. Hence, iterative methods have 

been developed which can solve these equations using c:n storage 

locations, where c is usually less than five. 

Although the finite difference method has been used extensively. 

there is another method, the finite element method (21), which should 

be discussed briefly. Using this method, the solution to the partial 

differential equation can be computed by finding a function, u, which 

minimizes an appropriate integral. This integral comes from applying 

the Euler conditions of the calculus of variations to the partial 
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differential equation, and for Laplace's equation, may be given as (21) 

I =~55 (u! + u~)dxdy (2.19) 

The boundary conditions remain unchanged, and the integration is 

carried out over the whole region. 

The region, R, can be divided up into small elements, such as 

triangles, as shown in Figure 3. 

R 

X -r----------------------+--
Figure 3. Finite Elements 

Zienkiewicz and Cheung (21) then describe how the function u can be 

uniquely specified within an element whose nodal values are u., u., arid 
l J 

~ by a linear function of the coordinates x and y. The function varies 

linearly along the lines connecting the nodal points and therefore must 

be uniquely defined by two nodal values from any triangular element. 

In other words, the solution u(x,y) must be the same on the boundary 

between any two triangular elements, otherwise the resulting dis-

continuity would cause the integral (2.19) to become infinite. 

Geometric shapes other than the triangle could be used for the 

basic element, such as the parallelogram. These other shapes may 



result in a better approximation, depending upon the problem, but the 

basic procedure is not changed greatly. Although not used by the 

author, the finite element method appears to be a reasonably good, 

although rather complex method. 

11 



CHAPTER III 

ITERATIVE AND EXTRAPOLATION METHODS FOR SOLVING 

ELLIPTIC BOUNDARY VALUE PROBLEMS 

When solving elliptic partial differential equations by a finite 

difference method, one is usually confronted with the problem of solv

ing a large system of equations. If the partial differential equation 

is linear (as are Laplace's equation and the equation for the diffused 

resistor), this system is linear and the coefficient matrix is usually 

very large and very sparse (20). 

This chapter examines some of the iterative methods used by Young 

(17), Varga (14), Wachspress (15), and Smith (12) in an attempt to 

compare their speed and storage requirements. 

In developing these methods, the square mesh in Figure 4 is used 

to specify the boundary.and interior region, using h = 1/3. This mesh 

is similar to the mesh used by Young (17,18,19,20) for his model prob

lem. His model problem used f(x,y) = 0 to specify u(x,y) at the bound

ary. This mesh contains 16 total points, 12 of them boundary points at 

which the value of u(x,y) is given as f(x,y), and 4 interior points at 

which the value of u(x,y) can be computed approximately from the differ

ence equations. Reference will be made to u(x,y) throughout this paper 

and it should be remembered that this is an approximation. 

Obviously the value of u(x,y) could be computed directly by 

elimination methods, but in most problems of this nature such as 

12 
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1 5 6 7 8 

9 h 12 10 ,- r-
1 I 

11_ -+3-- .t 
I I 

13 5 16 X 

0 1 

Figure 4. Sample Mesh 

neutron diffusion,· fluid flow, elasticity, steady-state heat flow, and 

weather prediction (17), the mesh may contain many points, making direct 

solution impractical. Some of the iterative methods for solving linear 

systems are outlined next. They are illustrated using the equations 

which result from applying the five-point rule to the model problem, but 

they are not restricted to that case. 

The Jacobi Method 

The system of difference equations generated from the finite 

difference method are of the form of equation (2.8), and for Figure 4 

are as follows: 

4u - u2 - u6 - u - u3 = 0 
1 9 

4u2 - ulO - u7 - ul - u4 = 0 
(3.1) 

4u3 - u - u - ull - ul4 = 0 
4 1 

4u - ul2 - u2 - u3 - ul5 = 0 4 

Moving the boundary values to the right hand side, the equations in 

coefficient form may be written as: 
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4 -1 -1 0 u1 u6 + U9 b1 

-1 4 0 -1 u2 u7 + ulO b2 
= = (3.2) 

-1 0 4 -1 u3 u11 + ul4 b3 

0 -1 -1 4 u4 u12 + ul5 b4 

Tn matrix form this may be written as: 

Au = b (3.3) 

where A is the coefficient matrix of the original system. Let L and U 

be the strictly lower and upper triangular matrices shown below. 

0 0 0 0 0 !.z; !.z; 0 

!.z; 0 0 0 0 0 0 !t; 
L = ' U= (3.4) 

!.z; 0 0 0 0 0 0 !.z; 

0 !t; !.z; 0 0 0 0 0 

A matrix, M3 , can be defined such that 

L + U = MJ (3.5) 

So, using M3 , the system may also be written in the form: 

u = MJu + .£ , (3.6) 

where c = !.z;b. 

This form becomes the basis for the first iterative method to be 

considered, the Jacobi method. 

(i+l) 1 (i) + !.z;u (i) ul ::t;U' + cl 2 3 

(i+l) = ~ (i) 
(i) 

u2 + !.z;u4 + c2 1 (3. 7) 
(i+l) - !ru (i) (i) 

u3 - 4 1 + ~u4 + c3 

(i+l) (i) (i) 
u4 = !.z;u + ~u3 + c4 2 

Here (i) d (i+l) u an u denote the values of a i 1 f h . th. part cu ar u a ter t e 1. ;, 

. th . and (1.+l) . J.terations, respectively. The choice of u(O) is arbitrary. 
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Hence, the approximate value of.u(x,y) at the interior points 

of the mesh may be computed by (3.8). 

u(i+l)(x,y) = ~[u(i)(:x:+h,y) + u(i)(:;,y+h) + u(i)(x-h,y) + u(i)(x,y-h)r 

(3.8) 

(i+l) . . th 
where each u is computed from the u's of the i iteration, and can 

be computed in any order (12). 

The Jacobi method (also called the method of simultaneous displace-

ments) has been shownto be siow in convergence and not effectivetfor 

meshes containing a large number of points (12,14,17). However, it is 

of theoretical value and provides a starting point for developing o~her 

methods. 

The Gauss-Seidel Method 

The system (3.7) can obviously be altered slightly to the 

follwoing: 

(i+l) 1 (i) 1 (i) 
+ ul = 't;U2 + 't;U cl :3 

(i+l) ~(i+l) + ~(i) 
u2 = + c2 1 4 

u(i+l) ~(i+l) + ~(i) + c3 = 4 3 1 

(i+l) 
u4 = 1 (i+l) + 1 (i+l) 

't;U2 't;U3 + c4. 

This system may be written in matrix form 

(i+l) 1 (H·l) . (i) 
u = u + Uu + c 

which is equivalent to (18) 

(i+l) (i) . -1 
u = MGSu + (I-1) £ 

(3.9) 

(~.10) 

(3.11) 

(3.12) 

In this case we are using the latest iterative values when computing 

u2 (i+l), u3 (i+l), and u4 (i+l). This variation is called the Gauss-Seidel 

method. Equation (3.13) describes the iterative process for computing 
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the value of u(x,y) at the interior points (12). 
(+1) (.) . (i+l) ( '+1) 

u (x,y) = ~[u 1 (x+h,y) + u (x,y+h) + u 1 (x-h,y) 

+ u(i)(x,y-h)] (3.13) 

In order to use the (i+l) values in the (i+l)th iteration they must have 

been computed previously. The order which is implied by the system 

(3.9) is sometimes called reading order; that is, from left to right 

and top to bottom of the mesh. 

An implementation advantage of this method is that the u's from the 

previous iteration do not have to be stored, thus reducing storage 

requirements when compared to the Jacobi method. Smith (12) and others 

(14,15,17) have shown that the Gauss-Seidel method converges about twice 

as fast as the Jacobi method. 

The Successive Overrelaxation Method 

The Gauss-Seidel iteration may also be written as (12): 

u(i+l)(x,y) = u(i)(x,y) + ~[u(i)(x+h,y) + u(i+l)(x,y+h) + u(i+l)(x-h,y) 

(') (') 
+ u 1 (x,y-h) - 4u 1 (x,y)] 

= u (i) (x,y) + R (i) (x,y) (3.14) 

so that R(i)(x,y) is the change in the value of u(x,y) for one Gauss-

Seidel iteration. The new method, called successive overrelaxation 

(SOR), uses a larger change in u(i)(x,y). So, the value of u(x,y) at 

the interior points may be computed by (3.15) 

u(i+l)(x,y) = u(i)(x,y) + wR(i)(x,y) 

u(i+l)(x,y) = u(i)(x,y) + w[~(u(i)(x+h,y) + u(i+l)(x,y+h) 

+ u(i+l)(x-h,y) + u(i)(x,y-h))-u(i)(x,y)] (3.15) 

In matrix form, this may be written as: 

u(i+l) = w(Lu(i+l) + U~(i)+c) + (1-w)~(i) (3.16) 
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which is equivalent to (18) 

(i+l) _ M (i) 
u - so# 

where MSOR = (1-wL)-1 [wU+(l-w)1]. 

-1 
+ (1-wL) we (3.17) 

(3.18) 

This w is termed the relaxation factor. Note that when w is equal 

to one, the SOR iteration is the same as Gauss-Seidel iteration. 

Young (17) shows that if A is a symmetric matrix with positive diagonal 

elements then the SOR method converges if and only if A is positive 

definite and 0 < w < 2. Positive definite means that A is nonsingular, 

with positive diagonal elements, and that the eigenvalues of A are real 

and positive (19). 

Young (17) and others (5,12,14,15) describe methods for determining 

the optimum w for SOR. Using the matrix MJ defined by equation (3.5), 

the optimum w may be determined by 

2 w. I = -----..;._-:-
b 2 :!., 

l+[l;..S (M ) ] 2 
J 

(3.19) 

where S(MJ) is the spectral radius of MJ. The spectral radius of a 

matrix is the magnitude of the largest eigenvalue. 

Computing the spectral radius of MJ would not be a trivial task 

and was not done by the author. S(MJ) is known for Young's model 

problem, and is given later. 

Forsythe and Wasow (5) describe a slightly different method for 

computing wb which is given below. 

where d lim 
i--)>00 

2 
wb = 1+(1-d)~ (3.20) 

(3.21) 

The constant d must be computed from the u's using the Gauss-Seidel 



18 

method. 
(i+l) (i) . The 11 norm of (~ -~ ) can be computed during an 

iteration of Gauss-Seidel, so d does not require much additional compu-

tation. 

The Simultaneous Overrelaxation Method 

A method similar to the SOR method, but based on the Jacobi method, 

is the simultaneous overrelaxation (JOR) method (17). Equation (3.22) 

describes the iterative process for computing u(x,y) at the interior 

points. 

u(i+l)(x,y) = u(i)(x,y) + w[~(u(i)(x+h,y) + u(i)(x,y+h) 

(i) (i) ( + u (x-h,y) + u (x,y-h))- u i)(x,y)]. (3.22) 

Here, the u's may be computed in any order, as in the Jacobi method. 

Using matrix notation, the JOR method may be expressed as 

Ci+l) Ci) c·) u = w(MJu +.£) + (1-w);!. 1 

whish is equivalent to (17) 

(i+l) (i) . 
MJOR;!. + W.£_ u 

where MJOR = wMJ + (1-w)I 

Young (17) shows that if the Jacobi method converges then the JOR 

method will converge for 0 < w ~ 1. 

(3.23) 

(3. 24) 

(3. 25) 

The matrices MJ, MGS' MSOR' and MJOR are usually called the 

iteration matrices of the Jacobi, Gauss-Seidel, SOR, and JOR methods, 

respectively (14). They are not computed explicitly during the applica-

tion of one of these methods, but their eigenvalues are of theoretical 

interest which will be mentioned later. 
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Other Rules 

Although the iterative methods above were illustrated by the 

linear system from the basic five-point rule fo.r Laplace's equation with 

fixed h's, other rules do exist and the respective Jacobi, Gauss-Seidel, 

SOR, and JOR methods can be applied to any of them. Two of these rules 

are described below. 

An alternative five point rule for Laplace's equation with equal 

h's can be given as (10) 

which is the same as before, except that the five points used .are 

those shown in Figure 5. 

u 

u 

2 

uo 

3 

Figure 5. Alternate Five
Point Rule 

u4 

(3. 26) 
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Another rule, the nine-point rule, is described by the following 

equation, using fixed h's (10) 

uO = t<ul+u2+u3+u4) + :o<us+u6+u7+u8) + O(h6) (3. 27) 

This rule uses the nine points shown in Figure 6. 

u3 u7 

uo u4 

ul u8 

Figure 6. Nine-Point Rule 

6 The truncation error is of order h as shown by Forsythe and Wasow (5) 

for Laplace's equation. In all other instances the truncation error 

. 4 2 
would be O(h ). Even so, this is higher order accuracy than the O(h ) 

of the five-point rule. 

Numerical Solution of the 

· Dirichlet Problem 

The Dirichlet problem was solved numerically using the basic five-

point rule with fixed h's equal to one. The mesh of Figure 7, containing 



a total of 121 points, was used to specify the boundary and interior 

region. 

y 
1 

0 

Figure 7. Author's Model 
1 

Mesh, h - 10 

1 

X 

The function f(x,y) = 5(x+y) was used to specify u(x,y) on the 
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boundary. This leaves a total of 81 interior points at which the value 

of u(x,y) must be computed from the difference equations, using an 

appropriate iterative method. The initial value of u(x,y) at these 

interior points was arbitrarily chosen to be zero. Remember that there 

will be 81 equations to solve. A program was developed which incorpor-

ates the methods discussed previously and was used to solve the Dirichlet 

problem. 

Before analyzing the results, the convergence criterion should be 

discussed briefly. Two different indicators of convergence have been 
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used, 
(3.28) 

and 
(3.29) 

where n is the number of difference equations. 
(k) 

The value of R (x,y), 

from equation (3.14), is available directly in each iteration of all the 

methods, so little additional computation is required to compute either 

P or G. P is actually the log10 of the L2 norm of the b.£ vector, when 

using either Gauss-Seidel or Jacobi. This value should theoretically 

approach minus infinity. G is the L1 norm of the flu vector when using 

Gauss-Seidel or Jacobi. This value, which should approach zero, is used 

as the stopping criterion for all of the methods. 

Numerical solution of the Dirichlet problem was done with the 

Jacobi, Gauss-Seidel, and SOR methods initially. The results are shown 

in Table I. 

TABLE I 

RESULTS OF THE JACOBI, GAUSS-SEIDEL, 
AND SOR METHODS 

Method P5o 

Jacobi -o. 7774 

Gauss-Seidel -:-1.5263 

SOR, w=l. 5348 -10.8067 

1 
m 

45.58 

23.04 

3.94 
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The m-value in Table I is the slope of the curve P vs Iter which 

is computed as follows: 

m = (3.30) 

where P50 and P25 are the values of P .after 50 and 25 iterations 

respectively. 
1 . 

So, the value of - - is the number of iterations required 
m 

to reduce the norm of the residual vector, ~(x,y), by a factor of ten, 

or to add one more digit of accuracy to .!:!.· 

1 The value of - - appears to be a reasonably good indicator of how 
m 

a method is converging. For example, SOR produces one digit of accuracy 

after about 4 iterations, Gauss-Seidel requires about 23 iterations, and 

Jacobi requires about 46 iterations. Thus, Gauss-Seidel does indeed 

converge about twice as fast as Jacobi, but still considerably slower 

than SOR. This is consistent with·Young's (17) theory and his work 

with the model problem. 

The value of the optimum w, wb' was found to be about 1.5348 using 

equations (3.20) and (3.21). Recall that when using these equations, 

the value of the optimum w is computed during each iteration of Gauss-

Seidel method. The value of the optimum w stated above came from the 

17th iteration of Gauss-Seidel. Hhen the SOR method was applied with 

1 other w's, the values of --were larger, which means that these w's 
m . 

were not optimum. Figure 8 displays graphically P vs w after 20 itera-

tions of SOR, using various values of w. Figure 9 illustrates the per-

formance of Jacobi, Gauss-Seidel, and SOR with wb. 

The graph of Figure 8 is very similar to Young's (17) graph of 

S(MSOR) vs w for his model problem. He shows that as the value of w 

approached wb' the slope of S(MSOR) approached minus infinity~ 

Figure 8 also shows this square root dependence on the left side of the 
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p 1 2 w 

0 

-1 

-2 

-3 

Figure 8. P vs w for SOR 



25 

.25 50 
~~------------------~----------------------~ 

-1 

-3 

-5 

-7 

-9 

-11 
SOR 

Figure 9. Comparison of Jacobi, Gauss-Seidel, and SOR 
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minimum (wb). On the right side of wb, the graph is linear. Thus, small 

decreases in the value of w result in a much larger relative change' 

in the rate of convergence than corresponding increases in w. 

Summarizing, Young (18) determined the following values for his 

model problem. 

S(M3 ) = cos 'IT h (3. 31) 

S(MGS) = . 2 h cos 7f (3.32) 

S(MSOR) 
l-sin7Th (3. 33) 
l+sin7Th 

and 2 (3. 34) wb = l+sin7Th 

Hence, SOR does appear to be one of the best methods available to 

solve the Dirichlet problem .. Its major advantages are its fast conver-

gence, and low storage requirements (only one u vector). Its major dis-

advantage is the difficulty in determining wb. This problem was not of 

major concern for the author's model problem, but Forsythe and Wasow (5) 

state a major disadvantage of computing wb from equations (3.20) and 

(3.21): A prohibitive number of iterations of Gauss-Seidel would prob-

ably be required to compute wb for very fine meshes. This comes from 

the fact that d is computed using a limit. So, numerical analysts have 

developed other methods which compete favorably with SOR. One of these 

is the next topic of this chapter. 

Modified Vector Aitken Extrapolation 

Scalar Aitken extrapolation replaces a linearly converging 

(1) (1) 
sequence x0 , x1 , x2 , ... ,x by a faster converging sequence x1 , x2 , 

... , x where xis the desired limiting value (4). 
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If for a convergent sequence the limit 

lim 
k -+ ()() (3. 35) 

exists, and C is not zero, then the sequence is said to converge to x 

with order q. We will consider the case of linear convergence, for which 

q = 1. Thus, we have 

(3. 36) 

where x and C are unknown. To solve for x, we need another equation of 

the form (3.36), such as 

(3. 37) 

Solving equations (3.36) and (3.37) will give an approximation to x 

which we will call 
:(!) 
~· 

~1) = (3. 38) 

where (3.39) 

Since the u's in the Dirichlet problem actually form a vector~· 

it would be reasonable to believe that component~by-component scalar 

extrapolation of u would work well. However, Aitken has attempted this, 

and has found that it does not work well. A few components of u may be 

extrapolated a long way, or in the wrong direction. So, a different 

method of vector extrapolation must be devised. 

One could replace the scalars of equations (3.38) and (3.39) by 

the u vectors and then extrapolate the three vectors ~+l' ~· and 

~-l' except that division by a vector is undefined. To eliminate this 

problem, we can premultiply the denominator and numerator of s by the 

transpose of an appropriate vector, which will reduce s to scalar form. 

Equations (3.40) and (3.41) describe this modification, which will be 
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called modified vector Aitken extrapolation (1,8). 

(i+l) . ( (i+l) (i)) 
u = .!!_ . + s • .!! -u (3.40) 

T ( (i) (i+l) 
~ • .!!. -.!!. ) 

where s = --~~~~--~~----~~~ 
T .( (i+l) 2 (i) + · (i-1)) z . u - u . u - - - - . 

(3. 41) 

Jennings (8) calls the vector ~ a weight_v_ector. This vector 

may have two natural forms, which are discussed next. Suppose that, in 

analogy to equation (3.36) 

(3.42) 

where.!! is the desired limiting.vector and M is the iteration matrix. 

If M is symmetric, z can be given as 

- . (i-1) (i) z - u -u .. (3.43) 

However, if M is unsymmetric, Jennings (8) states that there is the 

possibility of cancellation in the denominator of s in equation (3.41) 

if (3.43) is used. In this case, equation (3.44) should be used for z. 

(i+l) 2 (i) + (i-1) z = u - u u - - - - (3.44)· 

Equations (3.43) and (3.44) are sometimes .called the first difference 

modulation (FDM) and the second difference modulation (SDM) (8). Note 

that the SDM form is also vali4 when the iteration matrix is symmetric. 

Additional references on vector extrapolation include separate 

articles by Wynn (16) and Gekeler (6), and an article by Brezinski. 

and Rieu (2). 

Referring to equation (3.41), the value of s indicates the amount 

of change the extrapolation will cause as a multiple of the last 

iteration (8). Boyle and Jennings (1), during their elastic-plastic 

stress analysis, had s-values ranging from one half to five. 

It was found that extrapolation did not always improve convergence 
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of certain iterative methods as much as expected. Examining the 6u vee-

tor computed by these iterative methods .showed that it was changing in 

sign or value in a rhythmic pattern. rhat is, it was zigzagging. The 

type of zigzagging observed is depicted in Figure 10. 

u 
(4) 

(1) 
u (3) 

u 

Figure 10. ~~. Zigzags 

It can be seen from Figure 10 that extrapolating u(i), u(2), and 

u(3) will probably not help convergence much. However if every other 

(i) 
u is discarded, and the remaining ~'s extrapolated, convergence may 

be improved. This would correspond to extrapolating along the peaks or 

valleys of Figure 10. 

Jennings (8) shows that when extrapolating an iterative method 

whose iteration matrix is symmetric with eigenvalues between -1 and 1, 

convergence was not improved very much, which is similar to the results 

observed when the 6u vector zigzags. So, it is worthwhile to reexamine 

some of the iteration matrices for the methods we have developed. 
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Table II outlines some of the aspects of the iteration matrices for 

the iterative methods discussed so far (8,17). The matrix, MSSOR' comes 

from an iterative method which will be discussed later. 

TABLE II 

ITERATION MATRICES 

Iteration 
Matrix Type Eigenvalues 

:MJ sym.metric real, -1 to 1 

MJOR symmetriC: real, -1 to 1 

MGS unsynunetric mostly real, 0 to 1 

MSOR unsynunetric complex, when w=wb 

MSSOR unsynunetric real, 0 to 1 

The results in Table II are true if A, the coefficient matrix, 

is positive definite. 

Table II shows that when u(i-l) u(i) 
- ' - ' 

( .+1) 
and ~ 1 are extrapolated 

using the Jacobi method (or the JOR method) convergence will not improve 

much. 

(i+l) 
~ ' 

(i-1) Jennings (8) suggested that it is better to extrapolate u , 

and u(i+J), which has the effect of squaring the iteration 

matrix, giving only positive eigenvalues. This same conclusion was 

reached when observing the ~u vector earlier. Thus, in actual practice 

it is not necessary to compute the eigenvalues to determine which u 

vectors to extrapolate. The terms period one and period two will be 
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(i-1) 
used to indicate if extrapolation was performed on the vectors u , 

(i) d (i+l) (i-1) (i+l) d (i+3) 
~ , an u , or u , .!!. , an u , respectively. 

Repeated Aitken Extrapolation 

The scalar Aitken extrapolation described by equation (3.38) may 

be repeated, producing an even faster converging sequence. That is, the 

extrapolated values xi1>, x~1 >, •.. ,x may be extrapolated producing the 

(2) (2) 
sequence x2 , x3 , ••• , x. This process may be repeated until only one 

or two values remain. Figure 11 gives an example of this. 

Figure 11. Repeated Aitken 

(2) 
x2 

The superscriptes indicate the number of times extrapolation has been 

applied. Here, the results of the previous extrapolation, the x(i) 

values must be stored before they may be extrapolated producing the 

(i+l) 
x values. 

Jennings (8) describes a version of repeated Aitken extrapolation, 

called double extrapolation. Double extrapolation, using FDM, is done 

using vector iterates in the same manner the scalar iterates are extra-

polated in Figure 11. The rate of convergence was found to be about 7!9 
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times faster than the convergence rate without extrapolation (8). 

Another form of repeated vector Aitken extrapolation is similar in 

technique to. Steffensen iteration for scalars (4). This form, which 

will be called super extrapolation, is illustrated in Figure 12. 

fE6 

Figure 12. Super Extrapolation 

Using this technique only three vectors need to be stored when extra-

polation is applied once, and only five vectors need to be stored when 

it is repeated one time. 

The actual motivation for super extrapolationcame from observing 

the s-values after the original extrapolations were performed. In most 

cases, these s-values oscillated (zigzagged) in a high/low pattern simi-

lar to the way the ~u vector zigzagged when extrapolating the Jacobi 

h d . f d h 1 . (k-1) (k+l) d (k+3), met o • So, 1.t was oun t at extrapo at1.ng y_ , v , an y_ ; 

where the v's are the results from extrapolating the u's, produced large 

improvements in convergence. We will again use the terms: period two 

and period one, to indicate whether or not the s-values are oscillating. 



An Implementation and Results of Modified · 

Vector Aitken Extrapolation 

Chanlder (3), has written a modified vector Aitken extrapolation 

subroutine, VAITK, which incorporates many of the features of extrapo-
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lation discussed previously. Extrapolation and super extrapolation are 

both available, using either FDM or SDM. The technique of Steffensen 

iteration, discussed previously, is used to reduce storage requirements. 

Boyle and.Jennings (1) found that, for their stress analysis 

problem, when zigzagging is not occurring, it is best. to extrapolate as 

soon as the u vectors are available; that is, after every two iterations. 

This was found not to be true in general. At times it may be desirable 

to perform one or two preparatory iterations and then begin saving the u 

vectors for extrapolation. Intuitively, this gives the~ vector time to 

"settle down" after an extrapolation,_ before extrapolating again. 

Shortly and Weller (11) speak of allowing the error in E_ (i) to smoo·th 

out and assume a "pillow-shaped" form. This feature of allowing prepar-

atory iterations is also incorporated into VAITK. 

The results of extrapolation and super extrapolation, using SDM 

when applied to Gauss-Seidel are shown in Table III. The period of the 

iterations is indicated in the table. When super extrapolation is 

applied, an extrapolation period of two is used. The abbreviation 

"Prep." means preparatory. So, 'N.o. of Prep. Iter." means the number of 

preparatory iterations done before the u vectors are saved for an extra-

polation. Similarily. "No. of Prep.· Extrap." means the number of prepa-

ratory extrapolations performed before the ~ vectors are saved for a 

super extrapolation. NA means "not applicable", and indicates that 

super extrapolation was not used in that particular instance. 
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TABLE III 

GAUSS-SEIDEL WITH SDM EXTRAPOLATION 

No. of Period No. of Prep. 1 
Prep. Iter. Of Iter. Extrap. m 

0 1 NA 4.94 

1 1 NA 6.90 

2 1 NA 7.26 

1 2 NA 8.11 

0 1 2 4.93 

2 1 1 4.73 

1 2 1 6.57 

The slopes in Table III, and the ones which follow, are computed 

from equation (3.45) below. 
p -P 

b a 
b-a m= (3.45) 

where a and b care chosen to be iterations near 25 and 50 respectively. 

For - .!. to indicate reliably how the iterations were converging, a and b 
m 

were chosen to be iterations where an extrapolation had just occurred. 

This is illustrated in Figure· 13. 

It should be mentioned again that in the author's implementation, 

the error, P, is computed during an iteration. So, the slope in Figure 

13 would be computed from two points on the dashed line. 
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30 Iter 

Gauss-Seidel, SDM Extrapolation After Every 2 Iterations 
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Referring to Table III again, SDM extrapolation after every two 

iterations improved accuracy by one digit about every five iterations. 

However, performing an extrapolation every four iterations worked best 

when super extrapolation was applied. The reason is that a clear extra-

polation period of two was established in this case, thus making super 

extrapolation more effective. 

Hence it appears that super extrapolation does indeed provide 

an alternative to SOR. Table I showed that SOR produced one digit of 

accuracy in slightly under four iterations, and Table III shows that 

super extrapolation requires a li~tle over four iterations to do the 

same. 

Table IV outlines the results using the other version of extra-

polation, FDM, when applied to Gauss-Seidel. An iteration period of 

one and an extrapolation period of two are used. 

TABLE IV 

GAUSS-SEIDEL WITH FDM EXTRAPOLATION 

No. of Prep. No. of Prep. 1 
Iter. Extrap. m 

0 NA 5.90 

1 NA 6.21 

2 NA 7.18 

2 2 5.11 
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Table IV shows that the FDM extrapolation performed fairly well. 

However, when observing the error criterion, P, after some extrapola-

tions were performed, it could be seen that the results were erratic. 

At times, an extrapolation with a large s-value would degrade the con-

vergence, which is contrary to the previous results and the results to 

be shown later. The reason for this behavior eomes from the fact that 

the iteratiqn matrix for Gauss-Seidel is unsynrmetric and Jennings (8) 

states that FDM extrapolation should only work ~ell for symmetric 

iteration matrices. 1 The - - values in Table tv are thus perhaps slight
m 

ly low in this case. 

Table V outlines the results of applying SDM extrapolation to the 

Jacobi method. The iteration and extrapolation periods are given 

in the table. 

TABLE V 

JACOBI WITH SDM EXTRAPOLATION 

No. of Prep. Period No. of Prep. Period of 1 --Iter. of Iter. Ext rap. Extrap. m 

1 1 NA NA 45.64 

0 2 NA NA 15.36 

1 2 NA NA 14.70 

0 2 2 2 8.75 

1 2 1 2 6.60 

1 2 1 1 10.39 
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Table V clearly shows that the iteration and extrapolation periods 

for Jacobi must be two. This was expected since MJ is symmetric with 

eigenvalues in the range -1 to 1. Super,extrapolation performed well, 

requiring slightly over six iterations to produce one digit of accuracy. 

Table VI illustrates the results of applying the FDM extrapolation 

to the Jacobi method. The iteration period and extrapolation period 

were both set to two. 

TABLE VI 

JACOBI WITH FDM EXTnAPOLATION 

No. of Prep. No. of Prep. 1 
Iter. Extrap. m 

0 NA 15.27 

1 NA 13.76 

2 NA 13.47 

3 NA 14.20 

4 NA 14.75 

0 2 9.18 

1 1 11.58 

1 2 8.12 

2 1 9.79 

2 2 7.07 



Table VI shows that FDM extrapolation performed better than SDM 

extrapolation when super extrapolation was not used. The reason here 

is probably the fact that FDM extrapolation works particularly well 

when applied to iterative methods which have symmetric iteration 

matrices (8). However, Table V shows that super extrapolation using 

SDM when applied to Jacobi produced slightly more accurate results 

than super extrapolatiort using FDM. It is thus the author's opinion 

that extrapolation with SDM should be used in most cases. 

Hence, extrapolation does perform effectively on the Dirichlet 

problem. When super extrapolation is used convergence is almost equal 

to that of SOR. Chandler (3) in some work with linear least squares 

problems found an even greater improvement in convergence when using 

super extrapolation. 

Each of these methods has its own disadvantages. Using SOR, the 

optimum w must be computed. Using super extrapolation, the period of 

the iterations, and the period of the original extrapolations must be 

determined. Also, additional storage is used. However, it is usually 

easier to extrapolate correctly than to compute the best w. For exam

ple, we know that if Jaconi is extrapolated the iteration period is 

probably two and if Gauss-Seidel is extrapolated the iteration period 
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is probably one. An when super extrapolation is applied, the extrapo

lation period is probably two. In other words, the parameters for 

extrapolation are independent of n (the number of equations) and the 

optimum w for SOR is not. This point is shown conclusively in Chapter V. 

One might wonder if it is possible to extrapolate the SOR method, 

accelerating convergence further. Unfortunately, when w > 1, the 

eigenvalues of MSOR become complex and when w = wb all of the eigen-
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values are complex (14,17). When this is the case, a zigzagging pattern 

cannot be determined in fewer than n iterations, and hence extrapolation 

becomes ineffective. Experimen~ally, extrapolation of SOR using the 

optimum w produces negative s-values and did not improve convergence. 

Using SOR with w not equal ·tO wb, extrapolation may possibly be 

done (17), although the extrapolations will cause less improvement 

because of the small positive s-values. Even in this case, some of 

the s-values produced may be negative which means that, in our case, 

convergence would not be improved. Table VII outlines the results 

obtained when extrapolating SOR, using an iteration period of one. 

Super extrapolation, when used, is applied using two preparatory ext;ra

polations and a period of two. 

As w approached wb' extrapolation of SOR degraded to unextrapolated 

SOR as expected. Super extrapolation was ineffective in all cases. One 

interesting result in Table VII is that when w = 1.2, SOR with extrapo

lation slightly outperformed unextrapolated SOR with wb. It is not 

expected that this would always be the case, although little theory is 

available in this area. 
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TABLE VII 

SOR WITH SDM EXTRAPOLATION 

No. of Prep. Super 1 
w Iter. Ext rap. m 

1.1 1 NO 5.78 

2 NO 5.85 

2 YES 4.47 

1.2 1 NO 3.30 

2 NO 3.09 

1.3 1 NO 4.52 

2 NO 3.61 

1.4 1 NO 4.84 

2 NO 4.28 

1.5 1 NO 3.86 

2 NO 3.56 

. The Symmetric Successive Overrelaxation Method 

A less widely known method recently reexamined by Young (18,19,20) 

is the symmetric successive overrelaxation (SSOR) method. The SSOR 

method can be considred as two half iterations. The first half itera-

tion is the same as SOR. The second half iteration is the SOR method 

with the equations evaluated in reverse order, or backwards reading 

order, from right to left and bottom to top of the mesh. 
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The major advantage of the SSOR method is that it may be accele-

rated by extrapolation even when the optimum w is used. In fact, if the 

coefficient matrix, A, is positive definite and if 0 < w < 2, then the 

eigenvalues of the iteration matrix, MSSOR' are real, nonnegative, and 

less than one, thus making extrapolation possible (18). 

The iterative form for computing u(x,y) at the interior points in 

the mesh is given below. 

(i~~) ( ) u x,y = 
(i) (i) (i~) 

u (x,y) + w[~(u (x+h,y) + u (x,y+h) 

+ u(i~~)(x-h,y) + u(i)(x,y-h))-u(i)(x,y)] (3.46) 

and 

(i+l) ( ) u x,y = u(i~)(x,y) + w~(u(i+l)(x+h,y) + u(i~~)(x,y+h) 

+ (i~) ( .h ) + (i+J_) ( h)) (i~-1) ( ) ] u x- ,y u x,y- -u x,y 

In matrix form, we have (19) 

u 

u 

(i+~) 

(i+l) 

w(L~(i~~) + U~(i) + £) + (1-w)~(i) 

w(L~(i~-1) + Uu(i+l) + £) (1-w)~(i~-1) 

Simplifying this may be reduced to 

u 

u 

(i~~) 

(i+l) 

(I-wL) -L [(wU + (1-w) I)~ (i) + W£] 

(I-wU) -l [(wL + (1-w) I)~ (i~-1) + W£] 

Eliminating ~(i~~) gives 

(i+l) (i) 
MSSORu + k 

where 

and 

u 

MSSOR = (I-wU)-l(wL + (1-w)I)(I-wL)-l(wU + (1-w)I) 

-1 -1 
~ = w(2-w)(I-wU) (I-wL) £ 

(3. 4 7) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 
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The method for choosing the optimum w for SSOR is similar to the 

method used for SOR. The method described by equations (3.20) and 

(3.21) was used by the author, but the value of the computed w was found 

not to be the optimum. Experimentally, the optimum w was found to be 

about 1.6, slightly larger than wb for SOR. This is similar to some of 

Young's (17) results. 

The results obtained using SSOR are displayed in Table VIII, when 

using SDM extrapolation. It should be noted that since one iteration 

of SSOR is almost as time consuming as two iterations of SOR, the 

results shown by the author count each sweep of the mesh as a full 

iteration. Therefore, reasonable comparisons can be made with the other 

methods discussed. When extrapolation is applied, the iteration period 

is one. 

TABLE VIII 

SSOR, w 1.6, WITH SDM EXTRAPOLATION 

No. of Prep. No. of Prep. Period of 1 
Iter. Extrap. Extrap. m 

NA NA NA 10.66 

0 NA NA 4.88 

1 NA NA 4.96 

0 0 1 4.26 

0 1 1 4.22 

1 1 2 4.22 
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The slopes, when using the SSOR method, are computed from the 

values of P, in the same manner as described earlier. Table VIII shows 

that using unextrapolated SSOR, with w = wb, required over ten itera

tions to produce one digit of accuracy. This is not as good as SOR with 

its optimum w, but Young (17). describes similar results. 

The value of SSOR becomes apparent when it is extrapolated. Using 

SDM extrapolation, SSOR required only about four iterations to produce 

one digit of accuracy. Figure 14 displays graphically P vs Iter for 

SSOR with and without super extrapolation. It can be seen that SSOR 

with super extrapolation {SSOR-SE) converges much faster than unextra

polated SSOR. 
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p 25 50 Iter 

0 

-2 

-4 

-6 

-8 

-1 SSOR-SE 

Figure 14. P vs Iter for SSOR 
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Table IX outlines the results obtained when applying FDM extra-

polation to SSOR. An iteration period of one is used. 

TABLE IX 

SSOR, w = 1.6, WITH FDM EXTRAPOLATION 

No. of Prep. No. of Prep. Period of 1 
Iter. Extrap. Extrap. m 

0 NA NA 4.10 

1 NA NA 4.92 

2 NA NA 4.62 

0 2 2 4.22 

1 1 1 8.00 

2 1 1 6.02 

Table IX shows that FDM extrapolation of SSOR also performed 

reasonably well, usually requiring about four iterations to produce one 

digit of accuracy. 

Thus, SSOR does provide an accurate method for solving the 

Dirichlet problem. However, since it has the advantages of both SOR 

and extrapolation, it also has the disadvantages of both methods. To 

use SSOR effectively, the optimum w or near optimum w must be deter~ 

mined, along with the iteration and extrapolation periods when super 

extrapolation is used. Super extrapolation would probably not be 
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required when using SSOR on meshes containing fewer than 100 interior 

points, since regular extrapolation accelerates convergence almost as 

fast. 

Before leaving the Dirichlet problem it is worth mentioning a 

variation of vector extrapolation tried by the author. Instead of using 

s for our extrapolation factor we may use a value called S . which is 
m1.n 

computed using quadratic interpolation. Quadratic interpolation is used 

to fit a quadratic equation through three points. The minimum of that 

quadratic then may be found analytically. 

In our case, we want to determine the equation of a parabola which 

passes through the three points (-l,Q), (O,Q2) and (s,Qs)' where the Q's 

are computed from equation (3.53) below. 

Q = ~ (R(k)(x,y))2 
k=l 

(3.53) 

where n is the number of equations, and R(k) is the residual. Q1 and 

Q2 are computed after an appropriate iteration, and Qs is computed after 

a normal extrapolation. The minimum of this parabola will be some point 

(S . , Q . ), where Q . is less than Q . m1.n sm1.n sm1.n s That is, Q . is smaller sm1.n 

at S . than anywhere else along the direction of extrapolation m1.n 

Let equation (3.54) be the equation of our parabola. 

2 ax + bx + c = Q (3. 54) 

To find the minimum of (3.54) we take the derivative and set it equal 

to zero, which gives 

s . m1.n 
-b =-
2a 

(3. 55) 

Substituting the values -1, 0, and s for x into equation (3.54) and 

solving the resulting system gives the following values for a and b. 
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a = 
s•Ql + Qs - s·Qz - Q2 

. s 2 + s 
(3.56) 

b = a - Q1 + Q2 (3.57) 

Thus, S . may be determined from (3.56) and (3.57). In actual 
m1.n 

practice the values of s and S . differed only slightly, and hence this 
m1.n 

method was not considered further. Al;hough this method was not used, 

it does indicate that vector Aitken extrapolation is probably performing 

nearly as well as possible, in the sense of minimizing Q along the 

direction of extrapolation. 

Before concluding this chapter, the validity of our error estimates, 

and a direct comparison of the results of the author's model problem and 

Young's model problem need to be shown. Recall that Young's (17) model 

problem used the square mesh in Figure 4, at the beginning of this chap-

ter, with various h values. f(x,y) = 0 was used to define u(x,y) on 

the boundary, and the u values in the interior of the mesh were initial-

ized to one. Since the boundary is set to zero, the actual solution 

will be u = 0. Thus, the u vector will not only be the solution vector, 

but also the actual error vector. 

1 So, to show that the - -values given previously are valid conver
m 

1 gence indicators, Young's model problem was implemented using h =-and 
5 

h = 1~ . When h = ~ , the mesh contained a total of 16 interior points, 

1 and when h = 10 , the mesh contained 81 interior points. Since the u 

vector in this case is the actual error .vector, we may compute the 

value of P for it as we did for the residual vector. Equation (3.58) is 

the equation for this value which we will call Pu. 

n 2 1 

Pu = loglO Ckfl uk )"2 (3.58) 



where n is the number of equations. Thus Pu is the log10 of the L2 

norm of u. We may compute the slope, m , of the line Pu vs Iter in 
u 

the same way m was computed earlier. 

u u 
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m 
u 

p50 - p25 

50 - 25 
(3.59) 

Table X give the results of the author's implementation of·Young's 

1 
model problem for h = l and h 

5 
= 10 using Jacobi and Gauss-Seidel. 

TABLE X 

YOUNG'S MODEL PROBLEM 

Method h 
1 l 
m mu 

Jacobi 
1 

10.86 10.86 
5 

1 
Jacobi 

10 
45.88 45.88 

Gauss-Seidel 
1 

5.43 5.43 
5 

Gauss-Seidel 
1 

23.04 22.98 
10 

1 1 
The values given for - - and - -- in Table X are very close indeed. 

m ffiu 
This indicates that computing - l from the residual vector, using P, 

m 

gives a very good estimate of convergence. It should also be noted 

that the 

close to 

1 - - values for 
m 

1 
the - - values 

m 

Jacobi and Gauss-Seidel with 
1 

h = 10 are very 

1 
for these methods in Table I with h = 10 . The 

reason for this is that the behavior of the error is independent of the 



boundary values as long as the boundary value function, f(x,y), is 

well-behaved. 

1 
Also, it can be seen in Table X that when h is halved, from 5 

1 
to 10 , the number of iterations required for convergence using either 

Gauss-Seidel or Jacobi increases by a factor of about 4. In other 

50 

words, the number of iterations required for convergence is proportional 

-2 
to h • Table XI summarizes these results for Young's model problem 

(19). 

TABLE XI 

POWERS OF h FOR YOUNGS'S 
MODEL PROBLEM 

Method 

Jacobi 

Jacobi-SI 

Gauss-Seidel 

Gauss-Seidel-SI 

SOR 

SSOR 

SSOR-SI 

Order of the No. 
of iter. required 

-2 
h 

-1 
h 

-2 
h 

-1 
h 

-1 
h 

-1 
h 

-k: h 2 

SI: semi-iterative extrapolation 
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-2 
Table XI showed that the h value for Jacobi and Gauss-Seidel 

1 1 
increases from 25 to 100 as h decreases from 5 to lO • The accelera-

tion techniques mentioned in Table XI are various semi-iterative methods 

used by Young (17). 

The results of the author's model problem should compare reason-

ably with Young's results in Table XI. To begin, we know that the 

following is ture. 

1 
N=M·(--) 

m 
(3. 60) 

where N is the number of iterations required to produce M digits of 

accuracy, and -lis the number of iterations required to produce one 
m 

digit of accuracy. N may also be given by: 

(3.61) 

1 1 
where a < 0, as in Table XI. Thus, using h ~.--and h 

10 
- 20 , we may 

use equations (3.60) and (3.61) to form 

1 1 
M· [-;Ch=10)] 

1 1 
M • [ -;Ch=W) ] 

the following 

1 a 
C·(lO) 

1 a 
C· (-) 

20 

Solving for a gives 

a = 

1 1 
--(h=-) 

m 10 
log2 1 1 

- -(h=-) 
m 20 

system. 

So, to compare the results of our model problem with Young's 

(3.62) 

(3. 63) 

results in Table XI, 
1 

we need to compute a using the - - values when 
m 

1 1 
h = 10 ·and h = 20 • Table XII summarizes the results for all of our 

1 1 
methods, including SDM extrapolation, for h = 10 and h = 20 . The 

results shown were obtained using the optimum parameters. The optimum 

w for SOR was determined from equations (3.20) and (3.21) to be about 

1.730249, and the optimum w for SSOR was experimentally determined to 

1 
be about 1.75, when h = 20 • 



1 1 
The - m (h = 10) values in Table XII were obtained from the pre-

1 
vious tables for the various methods when h = 10 . 

1 1 
The -- (h = -) 

m 20 

values were computed in the same manner, with the exception of the 

Jacobi method. 
1 

When h = 20 , our mesh contained 361 interior points 
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where the value of u(x,y) was initially set to zero. Since the Jacobi 

method is so slow, additional iterations are required to replace these 

zeros by appropriate approximations. So, the values of P at iterations 

1 1 
75 and 100 were used to compute - ; (h = 20 ) in this case. 

TABLE XII 

SUMMARY OF THE DIRICHLET PROBLEM 

Super 1 1 1 1 --(h= -) --(h=-) a 
Method Extrap. .h:xtrap. m 10 m 20 

Jacobi NO NO 45.58 177.04 -1.96 

Jacobi YES NO 14.70 49.75 -1.76 

Jacobi YES YES 6.60 14.27 -1.11 

Gauss-Seidel NO NO 23.04 84.20 -1.87 

Gauss-Seidel YES NO 4.94 13.98 -1.50 

Gauss-Seidel YES YES 4.73 11.30 -1.26 

SOR NO NO 3.94 7.66 - .96 

SSOR NO NO 10.66 21.90 -1.04 

SSOR YES NO 4.88 7.98 - .71 

SSOR YES YES 4.16 5.65 - .44 
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Hence, most of the values.of a in Table XII compare favorably with 

the exponents of h in Table XI. Negative a-values nearest to zero 

indicate the fastest convergence. For example, when h is reduced from 

l l SOR . b 2 . ' ' 
10 to 20 , requ1res a out t1mes as many 1terat1ons to converge. 

Similarly, SSOR with super extrapolation requires only about~ times 

an many iterations to converge when h is reduced by ~. It appears that 

SSOR with super extrapolation clearly outperforms the other methods 

when the number of equations is increased. Comparing the a-values in 

Tables XI and XII, shows that SSOR-SE and SSOR-Sl produce similar 

results. 

Shortly and Weller (11) show that the error function that results 

from computing~· is "pillow-shaped," with a maximum at the center of 

the mesh. If the interior of Young's model mesh was initialized to a 

pillow-sh~ped function of the form: 

r(x,y) = 2 16 2 
X •y 
max max 

·x(x -x)y(y -y) max max 

where x and 
max 

y are equal to one, the slopes during the early 
max 

(3.64) 

iterations would stabil~ze much faster. In other words, overrelaxation 

is best demonstrated on a pillow-shaped function. 

This concludes our examination of the Dirichlet problem and we 

will now turn our attention to a more difficult and practical problem, 

the diffused semiconductor resistor. 



CHAPTER IV 

INTRODUCTiON TO THE DIFFUSED RESISTOR PROBLEM 

Diffused resistors.are used extensively in integrated circuits, 

but actually there exists little theoretical information on their elec

trical properties. A typical two-dimensional rectangular resistor is 

shown in Figure 1~. 

X 

3 10 

Figure 15. A Two Dimensional Diffused Resistor 

54 



55 

Electrical conduction between the two metallic contacts taKes place 

through a semiconducting material in the interior of the resistor. This 

semiconducting material may be composed of silicon, along with some 

small impurities, such as atoms of boron or iron (9). 

The lines of current flow, shown in Figure 15, are uniformly 

spaced near the right contact and become crowded together near the right 

end of the top contact. They are approximately parallel to the length 

of the resistor further away from the top contact, and are perpendicular 

to each contact. When the conductivity within the resistor is noncon

stant, the lines of current flow are changed and the numericaL solution 

can become more complex. 

These lines of current flow in the diffused resistor are somewhat 

similar to the electric field lines of a certain Dirichlet problem 

involving an L-shaped region. Figure lb depicts this situation. The 

crowding shown in Figure 16 near the right angle bend is similar to the 

crowding observed in Figure 15 for the diffused resistor. Such a 

"re-entrant angle" (obtuse internal angle) is known to introduce a mild 

singularity into the solution of the Dirichlet problem (5), which 

increases the order of the discretization error. The same sort of 

thing occurs in the diffused resistor problem. 

The operation of the diffused resistor can be approximated by a 

boundary value problem. Its solution will give us the electric poten

tial at particular points within the resistor which result from applying 

a potential difference to the contacts. Each contact is assumed to ex

tend across the entire width of the resistor; therefore it can be 

approximated by a two-dimensional analytical model (9). The two-
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Figure 16. L-Shaped Region 

dimensional elliptic partial differential equation used is given below. 

g(x,y)·u (x,y) + g(x,y).u (x,y) + g (x,y)•u (x,y) + gy(x,y)·uy(x,y)~O 
XX YY X X 

(4.1) 

where g(x,y) is the conductivity. ~quation (4.1) is an approximate 

model for a certain case where no net charge exists anywhere in the 

semiconducting material. Note that the conductivity, g(x,y), is a 

function of position. 

The finite difference approximations to equation (4.1) may be 
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derived in much the same way as for the Dirichlet problem. The deriva-

tions given below assume unequal h's for generality. Letting 

and expanding about the point u0 = u(x,y) using Taylor's series as before 

gives: 

2 
+ O(hi) ul = uo + h1u + ~h1u X XX 

+ h2uy 
2 

u2 = uo + ~h2u + yy 
2 

u3 uo - h u + ~h3u + 
3 X XX 

2 
u4 = uo - h u + ~h u + 

4 y 4 yy 

Adding (4.2) and (4.4) and simplifying gives 

. :t.u1 · 2u3 
u 

hl(hl+hj) + h3(hl+h3) XX. 

Adding (4.3) and (4.5) and simplifying gives 
2u2 . . 2u4 

uyy- h2(h2+h4) + h4(h2+h4) 

Solving for u using (4.2) and (4.4) gives 
X 

u 
X 

Solving for u using (4.3) 
y 

and (4.5) gives 

2 2 
• h2(u0-u4) + h4(u2-u0) 

u 
y 2 2 

h2h4 + h2h4 

O(h;) 

O(h;) 

O(h~) 

_ 2u0 

hlh3 

(4 ~ 2) 

(4. 3) 

(4. 4) 

(4. 5) 

(4. 6) 

(4. 7) 

(4. 8) 

(4. 9) 

(4.10) 
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~quation (4.10) can be transformed to the following: 

(4.11) 

Equation (4.11)" is the five-point rule for the diffused resistor 

problem, using unequal h's. In the case where h1 = h2 ~ h3 = h4 = h , 

equation (4.11) may be reduced to: 

u0 ~ ig[(2g+gxh)u1 + (2g+gyh)u2 + (2g-gxh)u3 + (2g-gyh)u4 ] (4.12) 

So the Jacobi, Gauss-Seidel, and SOR methods may be given by 

equations (4.13), (4.14), and (4.15), respectively, using fixed h's. 

u (i+l) (x,y) = 81 [(2g+g h) u (i) (x+h,y) + (Zg+g h) u (i) (x,y+h) 
g X y 

(') (i) 
+(2g-g h) u 1 (x-h,y) + (2g-g h)u (x,y-h)] 

X y 
(4.13) 

('+1) 1 (') ('+1) 
u 1 (x,y) = Sg (Zg+gxh) u 1 (x+h,y) + (Zg+gyh)u 1 (x,y+h) 

+(2g-g h) u(i+l)(x-h,y) + (2g-g h)u(i)(x,y-h) (4.14) 
X y 

(i+l) (i) G [ (i) 
u (x,y) = u (x,y) + w~g (2g+gxh) u (x+h,y) + 

(2g+g h)u(i+l)(x;y+h) + (2g-g h) u(i+l)(x-h,y) + 
, y X 

(2g-gyh)u (i) (x,y-h)] -u (i) (x,y~ (4.15) 

The JOR method is identical to equation (4.15) when the i+l iterates 

1 d .b .th . 
are rep ace y the 1 1terates. 

The boundary_ conditions for the diffused resistor are somewhat 

different from those for the Dirichlet problem. Here, the only parts of 

the boundary where u(x,y) is given as f(x,y) are at the contacts. This 

situation is sometimes called mixed boundary conditions (7). The author 

used f(x,y) = 0 to define u(x,y) on the top contact and f(x,y) = 1 to 

define u(x,y) on the right contact. 



u2 

' i 
u3 u4 

~2 u4 

u3 .- ·- ·- ul 

tll4 u2 

u3 ul 

I 

• u4 

Figure 17. Mixed Boundary Conditions 

Figure 17 illustrates how the five-point rule can be applied to 

portions of the boundary where a contact is not located. Considering 

the top boundary for a moment, we can see that u2 is located outside 

the boundary of the resistor and hence cannot be used in equations 

(4.11) or (4.12). The potential gradient at the boundary is parallel 

to the boundary where the contact is not located, so u 
0 y 

0. Using 

equation (4.9) derived earlier we may compute an approximate value for 

u2 in terms of u4 . 

Setting u = 0 in equation (4.9) gives 
y 
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- 0 (4 .16) 

Solving for u2 , we find that -h2 

2 
u2 - h2 (u0-u4) + uO 

4 

(4.17) 
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Taking h2 = h4 we have 

(4.18) 

Thus we can reflect u2 across the boundary and use the value of u4 

for u2 as shown in Figure 17. 

A similar argument can be made for the bottom boundary, except 

that in this case we would reflect u4 across the boundary. Similarly, 

at the left boundary, we have u = 0. Setting u . = 0 in equation 
X X 

(4.8) gives 

(4.19) 

Solving for u3 and taking h1 = h3 gives 

. 
u3 ul (4.20) 

Thus, when computing the value of u0 along the left boundary, we may 

reflect u3 across the boundary and use the value of u1 for u3 . 

Convergence of the diffused resistor problem is not expected to be 

as fast as it was for the Dirichlet problem for the reason discussed 

below .. It can be shown that the crowding of the lines of current flow 

in the diffused resistor is associated with a square root singularity 

in u. In this area, near the right end of the top contact, u(x,y) may 

be given as: 
. k 

u(x,y) = C·(~(x+r)) 2 (4. 21) 

where 2 2 k 
r = (x + y ) 2 (4.22) 

and C is some constant. Equations (4.21) and (4.22) come from the use 

of a conformal mapping and their derivation in beyond the scope of this 

paper. A square root singularity in£ also exists in the Dirichlet 

problem with an L-shaped region (5). 

In an attempt to improve the accuracy in this area of crowding, 
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variable h's instead of fixed h's were used. Additional mesh points 

were added near the area of crowding and the mesh points were spread out 

farther in other areas. One simple method to compute these variable h's 

is given below. 

The h's in the x-direction from the right end of the top contact 

to the right contact may be defined by (4.23) below. 

= d bi h. 
l. r 

(4.23) 

Each h. increases by a factor of b as the right contact is approached. 
l. 

If b is given, then dr can be computed from (4.24). 

Eh = C 
i r 

where C is the distance. Using Figure 15, C = 7 in our case. 
r r 

(4.24) 

Similarly, the h's in the x-direction from the right end of the 

top contact to the left boundary can be computed by (4.25) below. 

h = d bi 
i L 

where Eh = c 
i y 

And the h's in they-direction from the top boundary to the bottom 

boundary can be computed by (4.27) 

where 

h. = d bi 
l. y 

Eh. = c 
l. y 

(4.25) 

(4.26) 

(4. 27) 

(4.28) 

The convergence criterion used tor the diffused resistor, problem 

is similar to that ·used for the Dirichlet problem. R, P, and G are 

given by the following equations: 

R(i)(x,y) = .81 [(2g+g h) u(i)(x+h,y) + 
g X 

("+1) ("+1) 
(2g+g h)u 1 (x,y+h) + (2g-g h)u 1 (x-h,y) + 

y X 

(2g-g h) u(i)(x,y-h) ]-u(i)(x,y) 
y 

where (i+l) is replaced by (i) when using Jacobi or JOR. 

(4.29) 
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p = n (k) . 2 ~ 
loglO[k~l(R (x,y)) ] (4. 30) 

and 

n (k) 
G = k~ljR (x,y)! (4.31) 

where n is the number of difference equations. 



CHAPTER V 

THE NUMERICAL SOLUTION FO THE DIFFUSED 

RESISTOR PROBLEM 

Numerical solution of the diffused resistor problem proved to be 

a more difficult task than solving the Dirichlet problem. Preliminary 

solutions used equation (5.1) for the conductivity of the rectangualar 

resistor in Figure 15. 

g(x,y) = e0.2y (5 .1) 

The variable mesh scheme, outlined in Chapter IV was used 

initially. Figure 18 illustrates this further. Using SOR with w equal 

to 1.8, the results were satisfactory but convergence was slow. Comput-

ing the slope as described irt Chapter III, us1ng P50 and P25 , the 

1 
value of --was found to be 27.19, which indicates that about 27 itera

m 

tions were required to produce one digit of accuracy. 

Obviously, these results are not as good as those obtained for the 

Dirichlet problem. The apparent reason for this is the fact that the 

mesh points became too spread out near the lower right and lower left 

of the resistor shown in Figure 18. Possibly a different method for 

computing the h's could be used, but this was not pursued further. 

The discussion presented next will use fixed h's. 

USing h = 1, ~~ and ~. and the variable conductivity in equation 

(5.1), the results of the SOR method is shown in Table XIII. 

63 
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5 

3 10 

Figure 18. Variable Mesh 

The optimum w shown in Table XIII when h = 1 and h = ~ was computed 

using Gauss-Seidel and equations (3.20) and (3.21) given in Chapter III. 

vfuen h = ~ (861 mesh points) this method proved ineffective. Forsythe 

and Wasow (5) cite this major disadvantage when computing the optimum w 

for fine meshes. Th1s is due to the fact that d in (3.20) is computed 

from a limit. The results in Table XIII also seem to indicate that the 

value of the optimum w increases as the number of mesh points increases. 

This is shown by Young (17) and is analogous to our results of the 

Dirichlet problem. 



TABLE XIII 

SOR, VARIABLE CONDUCTIVITY 

h 
1 

w a m 

1 1.64478=wb 4.975 -1.00 
~ 1.80129=wb 9.94 

-0.87 
~ 1.89 18.19 .. 

The slopes in Table XIII have been computed using the methods of 

Chapter III, also. When h = 1, P50 and P25 were used to compute m. 

When h = ~. P75 and P50 were used, and when h = %, P100 and P75 were 

used to compute m. 

The values of a shown in Table XIII were computed by equation 

1 
(3.63) using the - - values for h = 1 and h = ~. and for h = ~ and 

m 
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h = ~. Young (17) has shown that a = -1 when using SOR on the Dirichlet 

problem. It appears that for the diffused resistor problem, the number 

-1 
of iterations required for convergence is also proportional to h , 

when using SOR. This is investigated further for the case when the 

conductivity is equal to one. Table XIV outlines the results when using 

the SOR method with g(x,y) = 1. 

Table XIV shows that when the conductivity is constant, the results 

are similar to those in Table XIII when the conductivity is variable. 

1 1 The - - values in Tables XIII and XIV for SOR are larger than the - -
m m 

value for SOR in Table I, even though the diffused resistor mesh con-

tains fewer points. So, convergence of the diffused resistor problem 
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TABLE XIV 

SOR, CONSTANT CONDUCTIVITY 

h 
1 

w a 
m 

1 1.65150=wb 5.215 -1.04 
~ 1.81625=wb 10.69 . . 

. -1.08 
1t; 1.905 22.66 

is probably slower than it is for the Dirichlet problem. It would 

appear that the mixed boundary conditions are probably more of an 

influence on convergence than the nonconstant conductivity. The singu-

larity in u near the right end of the top contact is probably also 

influencing the convergence here. 

Table XV outlines the results of the Gauss-Seidel, Jacobi, and 

JOR methods for the case where h = 1. The slopes shown here were 

TABLE XV 

GAUSS-SEIDEL, JACOBI, AND JOR, 
h = 1 AND g(x,y) = 1 

Method w 

Gauss-Seidel 1.00 

Jacobi 1.00 

JOR .95 

1 
m 

50.28 

99.39 

74.30 



67 

computed using P100 and P75 • Table XV shows that Gauss-Seidel, Jacobi, 

and JOR are all very slow methods even when h = 1. This was expected. 

Table XV also shows that Gauss-Seidel is about twice as fast as Jacobi. 

The same result was obtained by the author and others (12,14,15,17) 

for the Dirichlet problem. 

A Note On Discretization Error 

When forming the approximations for Laplace's equation and the 

diffused resistor equation, we replaced each partial differential 

equation by a system of n divided difference equations. This process is 

called discretization (5), and is only as accurate as the difference 

approximations used. The error which occurs during the process of dis-

cretization, is termed the discretization error (5). In Chapters II and 

2 III, we showed that this error was O(h ) for Laplace's equation when 

using the five-point rule. 

We may approximate the discretization error of equation (4.12) 

for the diffused resistor as follows. Using Taylor's series, the fol-

lowing equation may be used to compute this error. 

u(h) = u(O) + C·hp + ... (5.2) 

where u(h) is the value of u(x,y) at a particular mesh point for some 

h, and u(O) is:the value of u(x,y) at that point when h = 0. Using 

the values of u(l), u(~), and u(~} the following system can be formed. 

u(l) - u(O) + C·lp 

u(~) 
. u(O) + C· (~)p = (5.3) 

u(~) 
. u(O) + C· (~)p 

This system has the following solution: 

u~l~-u(~) . 2P 
u(~)-u(~) 

(5.4) 
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Using the values of u(x,y) at the mesh point (x,y) = (8,2) obtained 

from the SOR method, we may compute p from the equation below • 

. 7864-. 7910 

.7910-.7934 
(5. 5) 

p = .997 (5. 6) 

Since p = 1, the discretization error appears to be O(h1) for the dif-

fused resistor. Performing similar computations at the mesh point 

(x,y) = (3,4), which is near the area of "crowding", p,;, .995. The 

singularity in u is probably the cause for this slower order of conver-

gence of the discretization error to zero. Forsythe and Wasow (5) show 

that the discretization error for the Dirichlet problem with a L-shaped 

region is also O(h1) as h approaches zero. 

Vector Aitken Extrapolation of the 

Diffused Resi~tor Problem 

Vector Aitken extrapolation and super extrapolation can be applied 

to the diffused resistor problem in the same manner as they were applied 

to the Dirichlet problem. The results from Chapter III proved to be 

useful when applying vector extrapolation to the diffused resistor. 

The results of extrapolation of the Gauss-Seidel method are 

displayed in Table.XVI. SDM extrapolation is used exclusively, since 

the results of the Dirichlet problem and Jennings' (8) work show that 

FDM extrapolation only works effectively on iteration methods which 

have symmetric iteration matrices. In Table XVI, h = 1, g(x,y) = 1, 

the iteration period is one, and the extrapolation period is two. 



No. 

TABLE XVI 

SDM EXTRAPOLATION OF GAUSS-SEIDEL 
h = 1 AND g(x,y~ = 1 

9f Prep. No. of Prep. 
Iter. Extrap. 

0 NA 

1. NA 

2 NA 

3 NA 

2 1 

2 2 

3 1 

1 
m 

8.14 

4.68 

10.86 

11.03 

8.11 

8.84 

9.62 

The slopes in Table XVI, and in all the tables which contain the 

results of extrapolation, are computed from equation (3.45) in the 
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same manner as discussed in Chapter III. Pa and Pb were chosen from 

iterations where extrapolation with a large s-value or super extrapola-

tion occurred. In Table XVI, iterations near 25 and 50 were used. In 

later tables where Jacobi or large meshes were used, iterations near 

100 and 50 were used for Pa and Pb' respectively. 

Table XVI shows that extrapolation of Gauss-Seidel using one 

preparatory iteration converged the fastest. Between four and five 

iterations were required to produce one digit of accuracy. This result 

is even better than that obtained using SOR with the optimum w shown in 

Table XIV. 
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Performing one preparatory iteration corresponds to extrapolating 

after every 3 iterations. This result is different from the results 

shown by Boyle and Jennings (1). For .their problem, they found that 

extrapolating after every two iterations (no preparatory iterations) was 

best. 

Super extrapolation did not perform as well as expected. It will 

be shown later that when h = ~' super extrapolation becomes more effec-

tive. 

Table XVII outlines the results of SDM extrapolation of Jacobi. 

Here, h = 1, and g(x,y) = 1. 

No. of Prep. 
Iter. 

1 

1 

2 

3 

2 

3 

TABLE XVII 

SDM EXTRAPOLATION OF JACOBI 
h = 1 AND g(x,y) = 1 

Period No. of Prep. 
of Iter. Extrap. 

1 NA 

2 NA 

2 NA 

2 NA 

2 1 

2 1 

Period 1 
of Extrap. m 

NA 99.39 

NA 15.91 

NA 27.22 

NA 28.86 

2 15.06 

1 32 .• 44 
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Table XVII shows clearly that the iteration period for the Jacobi 

method is two. This reinforces the theory dealing with the eigenvalues 

and type of iteration matrix (8) and the zigzagging of the ~Q vector 

developed in Chapter III. Extrapolation, using one preparatory itera

tion, again performed very well. Since our iteration period is two, 

this corresponds to extrapolating after every five iterations. Super 

extrapolation showed only minimal additional improvement, requiring 

about 15 iterations to produce one digit qf accuracy. 

Table XVIII illustrates the results of SDM extrapolation of the 

Gauss-Seidel method when h = ~. When super extrapolation is used, the 

extrapolation period is two. 

With h = ~ and the mesh containing 231 points, extrapolation with 

two preparatory iterations and an iteration period of one, performed 

the best. Around 14 iterati.ons were required to produce one digit of 

accuracy. This is slightly more iterations than SOR required. 

Table XVIII also shows that when using almost every reasonable 

combination of periods and preparatory iterations, super extrapolation 

did not outperform regular extrapolation. It should be noted that, 

when super extrapolation was app.lied to the results of the best regular 

extrapolation, the number of iterations to produce one digit of accuracy 

increased from about 14 to 43. The reason for this is the s-values from 

the regular extrapolation were irregular and did not oscillate, so that 

super extrapolation was ineffective. 

Table XIX outlines the results of SDM extrapolation of Gauss

Seidel with h = ~. When super extrapolation is used, the period of 

extrapolation is two. 



No. of Prep. 
Iter. 

0 

1 

2 

3 

1 

1 

1 

2 

2 

3 

TABLE XVIII 

SDM EXTRAPOLATION OF GAUSS-SEIDEL 
h = ~ AND g(x,y) = 1 

Period No. of Prep. 
of Iter. Extrap. 

1 NA 

1 NA 

1 NA 

1 NA 

2 NA 

1 1 

1 2 

1 1 

1 2 

1 2 
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1 
m 

18.49 

29.51 

14.51 

51.28 

53.53 

19.28 

19.73 

43.59 

42.56 

24.81 

Table XIX shows that super extrapolation performed the best when 

h = ~. Since the mesh now contains 861 points, convergence has slowed 

considerably. Even when using super extrapolation, around 39 iterations 

are required for one digit of accuracy. Table XIV shows that this is 

somewhat slower than SOR with h = ~. 

SDM extrapolation of Gauss-Seidel is summarized in Table XX for 

h = 1, ~ and ~. The values shown are the optimum values obtained from 

previous tables. 



No. of Prep. 
Iter. 

0 

1 

2 

1 

1 

1 

2 

2 

TABLE XIX 

SDM EXTRAPOLATION OF GAUSS-SEIDEL 
h = ·~ AND g(x,y) = 1 

Period No. of Prep. 
of Iter. Ext rap. 

1 NA 

1 NA 

1 NA 

2 NA 

1 1 

1 2 

1 1 

1 2 

1 
m 

91.47 

57.48 

44.28 

56.83 

76.16 

39.21 

45.39 

44.75 

The values for a in Table XX were computed by the methods dis-
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cussed in Chapter .III. Table XX shows that these a-values for the dif-

fused resistor are similar to those obtained for the Dirichlet problem 

in Table XII. The number of iterations required for convergence is 

. 1 . 1 0 (h-1. 6) . 1 1 . d approx~mate y propor~ona to us~ng regu ar extrapo at~on an 

O(h-l) using super extrapolation. So, ash is reduced by~' extrapola-

tion alone will require over 3 times as many iterations to converge, 

and super extrapolation will require around 2 times as many iterations 

to converge. 



h 

1 

~ 

~ 

1 

~ 

~ 

TABLE XX 

SUMMARY OF SDM EXTRAPOLATION FOR THE 
DIFFUSED RESISTOR PROBLEM 

Super 1 
Extrapolation Extrapolation m a 

YES NO 4.685 -1.63 
YES NO 14.51 . 

-1.61 
YES NO 44.28 

YES YES 8.115 -1.25 
YES YES 19.28 . 

. 1.02 
YES YES 39.21 

Comparisons and Conclusions 

Now that we have analyzed and solved both the Dirichlet problem 

and the diffused resistor problem, some general comparisons and con-

elusions can be drawn. 
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The particular form of variable mesh used was ineffective in solv-

ing the diffused resistor problem. The variable h method may be 

feasible as long as the distance between two adjacent mesh points does 

not become too large, as it did here. 

The SOR method worked well for both the Dirichlet and diffused 

resistor problems. For both problems, the optimum w was shown to 

increase as the number of mesh points increases. In other words, the 

value of the optimum w is dependent upon the number of finite difference 



equations to be solved. It also should be noted that the optimum w 

could not be computed from equations (3.20) and (3.21) when h < ~for 

the diffused resistor problem. The large number of mesh points, mixed 

boundary conditions, and singularity in u were probably all factors in 

this case. 
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Vector Aitken extrapolation worked well for both the Dirichlet 

problem and the diffused resistor problem. However, super extrapolation 

was not as effective on the diffused resistor problem. The reason for 

this is that in some cases, the s-values from the original extrapolation 

were not constant, or did not oscillate in a rhythmic pattern. So, when 

super extrapolation was applied, little improvement in convergence was 

shown. 

Usually, extrapolation is easier to use than SOR. The.iteration 

period and extrapolation period are not dependent upon the number of 

equations to be solved. The periods and the recommended type of extra

polation (SDM of FDM) are shown in Table XXI. The results shown are 

applicable to both problems. 

The mixed boundary conditions of the diffused resistor made it 

impractical to apply the SSOR method. The forward/backward iterations 

of SOR in SSOR would almost double the amount of code required, and the 

results of the Dirichlet problem indicate that for meshes containing a 

small number of points, little additional improvement in convergence 

would be shown. However, the author's results and Young's (18,19,20) 

results indicate that SSOR with extrapolation show more improvement 

when applied to finer meshes; that is, meshes containing a larger 

number of points. 
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TABLE XXI 

RECOMMENDED PARAMETERS FOR EXTRAPOLATION 

Iteration Type of Iter. Extrap. 
Method Extrap. Period Period 

Jacobi FDM or SDM 2 2 

Gauss-Seidel SDM 1 2 

SSOR SDM 1 2 



CHAPTEk VI 

SUMMARY AND CONCLUSIONS 

The numerical analysis and solution of the Dirichlet and diffused 

resistor problems have been completed with some interesting results. 

These results and the methods developed can be applied to most other 

boundary value problems in the elliptic class of partial differential 

equations. 

The most likely method to be used for the numerical solution of 

the difference equations would be successive overrelaxation, if storage 

is at a premium. However, if adequate storage is available, modified 

vector Aitken extrapolation plus super extrapolation of either the 

Gauss-Seidel or Jacobi methods does indeed provide a feasible alterna-

tive. The advantages and disadvantages of both of these choices have 

been discussed previously. Table XXII presents a summary of the stor-

age requirements for the methods which have been discussed in this 

paper. This table gives the maximum number of equations which can be 

solved, assuming 1000 storage locations are available for componments 

of u. 

Table XXII shows that when using a direct elimination method, a 

maximum of 31 equations can be solved if the coefficient matrix is 

2 unsymmetric, since n storage locations are required. For symmetric 

coefficient matrices, ~(n-1) storage locations are required. Gauss-

Seidel, SOR, and SSOR require only n locations when extrapolation is 
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not used and either 3n or 5n locations when extrapolation or super 

extrapolation is used. Table XXII also shows that 2n storage locations 

are required by the Jacobi (or JOR) method. When using a square or 

rectangular mesh and applying the Jacobi method in reading order, only 

th (i+l) 
two rows of the i mesh need to be stored when computing ~ . 

In this case, only n+c storage locations would be required. 

TABLE XXII 

SUMMARY OF STORAGE REQUIREMENTS 

Max. No. of 
Method(s) Equations (n) 

Direct Elimination 31 or 44* 

GS,SOR,SSOR 1000 

Jacobi, JOR 500 

GS,SSOR+VA 333 

Jacobi+VA 250 

GS,SSOR+SE 200 

Jacobi+SE 167 

1000 - Storage Locations 

* - Symmetric coefficient matrix 

VA - Vector Aitken extrapolation 

SE - Super Extrapolation 
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The method recently reexamined by Young (18,19,20), symmetric 

successive overrelaxation, does appear to be promising when extrapo

lated. If storage is at a premium, it may be necessary to extrapolate 

SSOR using semi-iterative methods (17) rather than Aitken extrapolation. 

tion. 
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APPENDIX 

PROGRAM LISTINGS OF VAITK 

AND DRIVER ROUTINE 
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~UBROUTINE VAITK CN,X,TA,TBrMETHO,KOUNT,NPREP,NPER,KPER, 
* SMAX,SMIN,NTRAC,KW,S,XOUTJ 

VAITK 1 
VA ITK 2 
VAITK 3 c 

c 
c 
c 
c 

VAITK 1.3 A.N.s.I. STANDARD BASIC FORTRAN MARCH 1976 VAITK 4 
VECTOR AITKEN EXTRAPOLATION VAITK 5 

VAITK 6 
VAITK 7 
VA ITK 8 
VA ITK 9 
VAITK 10 
VA ITK 11 
VAITK 12 
VAITK 13 
VA ITK 14 
VAITK 15 
VAITK 16 

J. P. CHANDLER, COMPUTER SCIENCE DEPT., OKLAHOMA STATE UNIVERSITY 

C A. 
c 
c e. 
c e. 
c c. 
C P. 
c 

JENNINGS, ACCELERATING THE CONVERGENCE OF MATRIX ITERATIVE 
PROCESSES,. J.INST.MATH.APPLIC. 8 (19711 99-110 

F. BOYLE AND A. JENNINGS, INT.J.NUM.METH.ENG. 7 (1974J 232-235 
GEKELERt MATHEMATICS OF COMPUTATION 26 Cl972J 427-436 
BREZINSKI AND A. C. RIEU, MATH. OF COMP. 28 (1974) 731-741 
WYNN, MATH. OF COMP. 16 (19621 301-322 

c INPUT QUANTITIES••••• N,Xl*I,METHO,KOUNT,NPREP,NPER,KPER,SHAX,SMINt 
NTRAC, KW c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

OUTPUT QUANTITIES •••• 
SCRATCH ARRAYS••••••• 

KOUNT,KPER,S,XOUTC*) 
TAC*,TBC*) 

VAITK 17 
VAITK 18 
VAITK 19 

N 
XC*I 
ME THO 

KOUNT 
NPREP 

NPER 

KPER 
SMAX 
SHIN 

NTRAC 

KW 

NUMBER OF COMPONENTS IN EACH VECTOR VAITK 20 
INPUT VECTOR ITERATE VAITK 21 
=1 TO USE THE FDM METHOD OF JENNINGS, VA ITK 22 
•2 TO USE THE SOH METHOD VAITK 23 

(USUALLY METHD=2 WORKS BETTER, BUT NOT ALWAYS. J VA ITK 24 
ITERATION COUNTER VA ITK 25 
NUMBER OF ITERATES DISCARDED BEFORE EACH VAITK 26 

EXTRAPOLATION VAITK 27 
CNPREP.GE.O IS USUALLY FASTEST. NPREP•-1 GIVES VAITK 28 

THE METHJD OF BOYLE AND JENNINGS. I. VAITK 29 
=1 IF THE Xt*J ITERATES ARE CONVERGING lOR DIVERGINGJVAITK 30 

SMOOTHL Yt VA ITK 31 
=2 IF THE XC*) ITERATES ARE Z.IGZAGGING WITH VAITK 32 

PER 100 =2, ETC. VA ITK 33 
CNPER.=2 CORRESPONDS TO THE -SQUARED- VAITK 34 

EXTRAPOLATION METHODS OF JENNINGS.) VAITK 35 
COUNTER FOR ZIGZAGGING VAITK 36 
UPPER LIMIT ON THE EXTRAPOLATION FACTOR VAITK 37 
LOWER LHilT ON THE EXTRAPOLATION FACTOR VAITK 38 

CSUGGESTIDN... SET SHAX•100. SET SHIN~o. IF VAITK 39 
THE ITERATION IS KNOWN TO BE MONOTONICALLY VAITK 40 
CONVERGENT COR DIVERGENT It AND SET SHIN•-100. VAITK 41 
OTHERWISE. J VAITK 42 

PRINT SWITCH, SET EQUAL TO VAITK 43 
+1 TO OBTAIN FULL PRINT, VAITK 44 

0 TO OBTAIN NORMAL PRINT, VAITK 45 
-1 TO OBTAIN NO PRINT VAITK 46 

LOGICAL UNIT NUMBER OF THE PRINTER VAITK 47 CX> 
w 



C ~ -- RETURNS THE VALUE OF THE EXTRAPOLATION FACTOR VAITK 48 
C XOUTl*l -- RETURNS THE OUTPUT VECTOR AT EACH CALL TO VAITK VAlTK 49 
C VAITK 50 
C THE USER CALLS VAITK REPEATEDLY. THE Xl*l VECTORS ARE SUCCESSIVE VAITK 51 
C VECTORS FROM SOME ITERATION SCHEME HAVING ROUGHLY LINEAR CONVERGENCE.VAITK 52 
C ON RETURN FROM EACH CALL TO IJAITK, THE VECTOR XOUTl*l CONTAINS THE VAITK 53 
C BEST EXTRAPOLATED EXTIMATE OF THE LIMIT OF THE INFINITE SEQUENCE VAITK 54 
C OF Xl*l VECTORS. VAITK 55 
C Xl ) AND XOUTl I MAY BE THE SAME ARRAY. VAITK 56 
C THE COUNTERS KOUNT AND KPER MUST BE SET TO ZERO BEFORE THE FIRST VAITK 57 
C CALL TO VAITK FOR A GIVEN PROBLEM, AND NOT CHANGED UNTIL THE NEXT VAITK 58 
C PROBLEM IS TO BE STARTED, AT WHICH TIME THEY MUST BE SET TO ZERO VAITK 59 
C AGAIN. VAITK 60 
C VAITK 61 
C DOUBLE PRECISION X,TA,TB,SMAX,SMIN,S,•XOUTt VAITK 62 
C X DXHAX,DXSQ,DXDOX,ODXSQ,OX,ABSDX VAITK 63 
C DIMENSION XlNI,TA(NI,TB(NitXOUT(NI VAITK 64 

DIMENSION Xlli,TAlli,TBl11eXOUTill VAITK 65 
c 

S=O. 
MXP=NPREP 
IF I HXPI 1000,1010, 1010 

1000 MXP::O 
· 1010 IF(KOUNT-MXP11020t1050tl030 
1020 KOUNT=KOUNT+l 

c 
c 
c 

GO TO 1370 
1030 IF(KPER-(NPER-1111040,1050,1050 
1040 KPERaKPER+l 

GO TO 1370 
1050 KPER=O 

KDUNT=KOUNT+l 
IFlKDUNT-lMXP+2111350w1330,1060 

.IT IS TIME TO EXTRAPDLAT E. COMPUTE THE 
EXTRAPOLATION FACTOR, S. 

1060 OXMAX=O. 
oxsa~o. 

1070 
1080 
1090 

oxooxso. 
DDXSCJaO. 
DO 1110 J=l,N 

DX=X(J I-TA (J J 
OOX=DX-TBCJ) 
ABSDX=DX 
IFfABSDX 11070,1080, 1080 
ABSOX::a-ABSDX 
IFCABSDX-DXMAX)1100tll00tl090 
OXMAX•ABSDX 

VAITK 66 
VAlTK 67 
VAITK 68 
VAITK 69 
VA ITK 70 
VAITK 71 
VAITK 72 
VAITK.73 
VAITK 74 
VAITK 75 
VAITK 76 
VAITK 77 
VA. ITK 78 
VA ITK 79 
VAITK 80 
VAITK 81 
VAITK 82 
VAITK 83 
~AITK 84 
VA ITK 85 
VAITK 86 
VA ITK 87 
VAITK 88 
VAITK 89. 
VA ITK 90 
VAITK 91 
VAUK 92 
VAITK 93 
V~ITK 94 GO 

.j::oo 



1100 DXSQ=DXSQ+OX*DX 
DXOOX=OXOOX+DX*DDX 

1110 DDXSQ=DDXSQ+DDX*DDX 
IFIMETHD-1)1120r1120,1140 

c 
C METHD=1 

11ZO.IFCDXDDXI1130e1330,1130 
1130 S=-DXSC/DXDDX 

GO TO 1160 

••• 

C METHD~2 ••• 
1140 IFCDDXSQI1150tl330,1150 
1150 S=-DXDDX/DDXSQ 

S = -(OX,OX)/(OOX,OX) 

S = -(OX,O.OX)J(DOX,OOX) 

C CHECK THE L IMlTS ON S. 
1160 IFCS-SMAX)1180,1180,1170 
1170 S=SMAX 
1180 IFCS-SMINtl190ol200r1200 
1190 S=SMIN 
1200 IFlSl1210r1330~1210 
1210 CONTINUE 

c PRINT INFORMATION IF REQUESTED. 
IFINTRAC)l300,1220t12ZO 

.1220 WRITECKW~1230IDXMAX,S 

c 

1230 FORMAT(/9H VAitK ••• ,5X,9H DXMAX • tE14.7,5X,5H S • rE12.5) 
IFINTRACt1300,1300,1240 

121t0 JROW=O 
1250 JL=JROW+1 

JH=JROW+lO 
IFCJH-NI1270,1270t1260 

1260 JH=N 
1270 WRITECKW,1280)JRQW,(X(J),J•JL,JHI 
1280 FORHATC/1Xtl4o5Xol0E11.31 

WRITElKW,1290)(TB(J),JsJL,JH) 
1290 FORHAT(l0X,10E11.3) 

JROW=JH 
IFCJROW-NJ1Z50,1300,1300 

C EXTRAPOLATE. 

c 
c 

1300 DO 1310 J= lt N 
XOUTlJ)=XlJJ+S*lXlJJ-TACJII 

1310 TA(JJ=XOUT(J) . 
KOUNT=O 
IFlNPREPI1320,1390,1390 

1320 KOUNT• 1 
GO TO 1390 

1330 DO 1340 J•ltN 

ON THE NEXT CYCLE WE WILL EXTRAPOLATE. 
SAVE THE FIRST DIFFERENCE VECTOR. 

VAITK 95 
VAITK 96 
VA ITK 97 
VA ITK 98 
VA ITK 99 
VA ITKlOO 
VA ITKlOl 
VA I TK102 
VA ITK103 
VAITK104 
VAITK105 
VA ITK106 
VAITK107 
VAITK 108 
VAITK109 
VAITKllO 
VA ITKlll 
VAITK112 
VAlTKll3 
VA ITK114 
VAITK115 
VA ITK116 
VAITK117 
VAITK118. 
VAITK119 
VAITK120 
VAl TKlZl 
VA ITK 122 
VAITK123 
VA ITK124 
VA ITK125 
VAITK126 
VA ITK127 
VA ITK1Z6 
VAITK129 
VA 1 TK130 
VAITK131 
VAITK132 
VA I.TK 133 
VAITK134 
VAtTK135 
VAITK136 
VAITK137 
VAITK1.38 
VAITK139 
VAITK140 
VAITK14l co 
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1340 . TB(J)=XCJ)-TA(J) 
c 

1350 DO 1360 J=1.N 
1360 TACJ)=X(J) 

c 
1370 DO 1380 J•1,N 
1380. XOUT(J)•X(J) 

c 
1390 RETURN 

c 
C END VAITK. 

END 

SAVE THE X(*) ITERATE. 

SET XOUH*I• 

VAITK142 
VA I TK143 
VAITK144 
VAITK145 
VA ITK 146 
VAITK147 
VAl TK148 
VA ITK 149 
VAITK150 
VAITK151 
VAITK152 
VAITK153 

• 

00 
0\ 



C TESt DRIVER FOR SUBROUTINE VAITK. MARCH 1976 
c 
c 

c 

DIMENSION XXlll,ll),X(8ll,TA(8l),TBC8l),TCC81J,TDI8l) 

KW=6 
LSIDE=lO 

.LS IDE=5 
NITA=30 
NI TBa:40 
N ITB:a30 
SMAX=100. 
SMIN=-100. 
NTRAC=O 
HUGE=l. E35 

C SET UP A SYSTEM OF LINEAR EQUATIONS WITH WHICH TO TEST VAITK. 
C THIS IS THE SYSTEM WHICH RESULTS FROM THE APPROXIMATE SOLUTION OF 
C ThE DIRICHLET PROBLEM ON A SQUARE, USING A FIVE-POINT DIFFERENCE 
C RULE. 

c 

c 

LSP=LSIDE•l 
DO 10 J= lt LSP 

DO 10 K=l, LSP 
10 XXIJ,KJ=O. 

N=ILSIDE-1)**2 
WRITElKW,20) 

20 FORMATli/1Hlt42H INITIAL ILLUSTRATION OF ITERATION WITHOUT, 
* 17H ACCELERATIONeeeel/3lH COXMAX IS THE MAXIMUM ABSOLUTE , 
*· 39H CHANGE IN ANY COMPONENT OF THE VECTOR) llH l 

CALL I NIT IN ,X) 
DO 30 IT=l,NITA 

CALL XITER (LSIOE,XX,X,DXMAX) 
30 WRITECKW,40JIT,DXMAX . 
40 FORMATC lOH ITERATION , 13, lOX, 9H DXMAX • , E 15.71 

WRITE( KW, 50) 
50 FORMATC////44H TEST VAITK USING FOUR COMBINATIONS OF HETHD , 

* l3H AND NPER•••• J 
DXBES==HUGE 
NPREP=O 
DO 100 H=l,2 

METHO=M 
DO 90 NP..,le2 

NPER=NP 
WRITEIKW,60)M,NPREP,NPER 

60 FORMAT(//////28H TEST OF VAITK WITH METHD • ,u, 
* 10H, NPREP • ,IZ,l3H, AND NPER • ei2//1H ) 

VAITDR 1 
VAITDR 2 
VA ITDR 3 
VAITDR 4 
VAITDR 5 
VA ITDR 6 
VAITDR 1 
VA ITDR 8 
VAITOR 9 
VAITDRlO 
VA I TDRll 
VA ITDR12 
VAITDR13 
VAITDR14 
VAIT DR15 
VAITDR16 
VAITDR17 
VAITOR18 
VAITDR19 
VA ITDR20 
VAITDR2l 
VA ITOR22 
VA ITDRZ3 
VAITDR24 
VA ITDR25 
VAIT DR26 
VA ITDRZ7 
VAITDR2B 
VAITDRZ9· 
VA ITDR30 
VAITDR31 
V6. ITDR32 
VA ITORH 
VAITOR34 
VA 1 TDR35 
VA ITDR36 
VAITDR37 
VA ITOR38 
VA I.f DR39 
VAITDR40 
VA ITDR41 
VAITDR42 
VAITDR43 
VAITDR44 
VAITDR45 
VAl TOR46 
VA ITDR47 00 ....., 



c 

c 

CALL INIT (N,Xl 
KOUNT=O 
KPER=O 
DO 70 IT=1,NITA 

CALL XITER (LSICE,XX,XrOXMAXI 
WRITECKW,401IT,OXMAX 

70. CALL VAITK (N,X,TA,TB,METHO,KOUNT,NPREP,NPER,KPER, 
* SMAX,SHIN,NTRAC,KW,S,XI 

IFCDXMAX-OXBESI80,90,90 
80 OXBES=OXHAX 

MESAV=HETHD 
NPSAV=NPER 

90 CONTINUE 
100 CONTINUE 

WRITE(KW,110lMESAVrNPSAV 
110 FORHATC////36H THE BEST VALUES ABOVE WERE HETHD • r11t 

* 12H AND NPER = ,I1//34H FOR THIS COMBINATION, TRY VARIOUS , 
* 17H VALUES OF NPREP. I 

HETHD=MESAV 
NPER=NPSAV 
DXBES=HUGE 
DO 150 NP=1t 4 

NPREP=NP-2 
WRITE(KW,120lNPREP 

120 · FORMAT(//////19H TEST WITH NPREP • ,I2/1H l 
CALL I NIT CN, X I 
KOUNTzO 
KPER=O 
DO 130 IT=l,NITA 

CALL XITER ILSIDE,XX,X,DXMAXI 
WRITECKW,40liT,OXMAX 

130 CALL VAITK (N,X,TArTBrMETHO,KOUNTtNPREP,NPER,KPER, 
* SHAX,SMIN,NTRACtKW,S,Xl 

IF I DXMAX-DXBES) 140, 150,150 
140 DXBES=DXMAX 

NPSAV=NPREP 
150 CONTINUE 

WRITECKW,1601NPSAV 
160 FORMATC//////29H THE BEST VALUE OF NPREP WAS r12// 

* 49H NOW TRY EXTRAPOLATING THE EXTRAPOLATED VECTORS. , 
* 36H THIS IS CALLED SUPER-EXTRAPOLATION. l 

NPREP=NPSAV 
NPREPBaO 
DO 230 MP•1r2 

METHB•MP 

VAITDR48 
VA ITDR49 
VA IT OR 50 
VA ITOR51 
VAITDR52 
VA ITOR53 
VAITOR54 
VA ITOR55 
VAITOR56 
VA1TDR57 
VA ITDR 56 
VAITDR59 
VAI TDR60 
VAITDR61 
VAITOR62 
VA 1TDR63 
VAITDR64 
VAITDR65 
VA ITDR66 
VA ITDR67 
VAITDR68 
VA ITDR69 
VAITDR70 
VAITDR1l 
VA IT OR 72 
VAITO.R73 
VAITOR74 
VAITDR75 
VA IT OR76 
VA ITOR77 
VA ITDR78 
VArTOR79 
VAITDRSO 
VAITDR81 
VAITOR82 
VA ITOR83 
VA IT DR84 
VAITDR65 
VA ITDR86 
VAUORB7 
VAITDR88 
VA ITDR69 
VAITOR90 
VA I TOR91 
VAITDR92 
VAITDR93 
VA ITDR94 00 

00 



c 
c 

DO 220 NP=1, 2 
NPERB=NP 
WRITE(KW,l70lHETHO,NPREP,NPER,METHB,NPREPB,NPERB 

170 FORMATC//////9H METHD = tll,8X,9H NPREP • ,I2,8X, 
* 8H NPER = ,I1//9H HETHB = oi1,8X,10H NPREPB • ti2r8X, 
* 9H NPERB = oi1/1H l 

CALL INIT (N,XI 
KOUNT=O 
KPER=O 
KOUNTB=O 
KPERB=O 
DO 210 IT:o:1,NI TB 

CALL XITER (LSIDE,XX,X,DXMAXl 
WRITE ( KW ,401 IT, DXHAX 
CALL VAITK (N,X,TA,TB,METHD,KOUNTrNPREP,NPER,KPER, 

* SMAX,SHIN,NTRAC,KW,S,Xl 
IFCSH80,210,180 

180 CALL VAITK (N,X,TC,TD,METHB,KOUNTB,NPREPB,NPERB,KPERB, 
* SMAX,SHIN,NTRACrKW,S,Xl . 

IFCSll90,210,190. 
190 WRITECKW,200) 
200 FORMAT (46H SUPER-EXTRAPOLATION WAS PERFORMED JUST ABOVE. I 

* lH l . 
210 CONTINUE 
220 CONTINUE 
230 CONTINUE 

STOP 

C END VAITK TEST DRIVER. 
E~ 

SUBROUTINE INIT CN,Xl 
c 
C INITIALIZES THE VECTOR XC*) FOR THE VAITK TEST DRIVER. 
c 

c 

DIMENSION XU) 
DO ZOO J=l,N 

200 X(J l=l. 
RETURN 
END 
SUBROUTINE XITER (LSIOE,XX,X,DXMAX) 

C PERFORMS ONE BASIC ITERATION ON THE VECTOR X(*lt FOR THE VAITK 
C TEST DRIVER. 
c 
C IF MITER=O, THE JACOBI METHOD CMETHOD OF SIMULTANEOUS REPLACEMENTS) 
C IS USED TO SOLVE A SYSTEM OF N LINEAR EQUATIONS. 

VA ITDR95 
VAITOR96 
VA ITDR97 
VA IT DR98 
VA I TOR99 
VA ITDlOO 
VAITD101 
VA lTD 102 
VAITD103 
VAITD104 
VAITD105 
VAITD106 
VAITD107 
VAITD108 
VAITD109 
VAITOllO 
VAITOlll 
VA ITOll2 
VAITD113 
VA ITD114 
VAIT 0115 
VA 1 TDll6 
VAITD117 
VAl TOllS 
VAITDll9 
VA ITD120 
VAITD121 
VAITD122 
VAITD123 
VAITD124 
VAITD125 
INIT 1 
INIT 2 
IN IT 3 
INIT 4 
!NIT 5 
1NIT 6 
INIT 1 
INlT 8 
INIT 9 
XITER 1 
XI TER 2 
XITER 3 
XI TER 4 
XI TER 5 
XITER 6 
XI TER 1 00 

\0 



C IF AITER=l, THE GAUSS-SEIDEL METHOD (METHOD OF SUCCESSIVE 
C REPLACEMENTS) IS USED. 
c 
c 

c 

c 

t 

c 

c 

c 

300 

310 
320 
330 
340 
350 
360 
370 

380 

DIMENSION XXC1ltll),XC8l),XNEWC81) 

MI TER•O 
. MITERa1 

RFOUR=4 
DXMAX=O. 

l"'O 
CO 300 J=2,LSIDE 

DO 300 K=2,LSIDE 
l=L+l 
XXCJ,K)•XCU 

L=O 
DO 370 J=2,LSIDE 

DO 360 K=2tLSIDE 
l=l+l 

MOVE XC*l INTO XXC*t*l• 

COMPUTE XNEWC*) FROM XXC*•*l• 

XNEW CU =CXX C J..;l ,K )+XX C J+l ,K) +XX (J,K-11 +XX CJ t K+1)) /RFOUR · 
DX=XNEWIL)-X(l) . . . 

·IFCOX)310t320,320 
DX=-DX 
IF C DX-DXHAX) 340,340,330 
OXMAX=DX . 
IFCMlTER)35~t360,350 
XX( J ,K 1= XNEWlL 1 
CONTINUE 

CONTINUE 
UPDATE Xl*) FROM XNEWC*l• 

N=C LSIDE-11**2 
DO 380 J011tN 

XCJ)•XNEWCJ) 

RETURN 

C END XITER. 
END 

XITER · 8 
XI TER 9 
XlTER 10 
XITER 11 
XI TER 12 
XITER 13 
XITER 14 
XI TER 15 
XITER 16 
XITER 17 
XITER 18 
XITER 19 
XITER 20 
XITER 21 
XITER 22 
XI TER 23 
XITER 24 
XITE.R 25 
XI TER 26 
XITER 27 
XITER 28 
XITER 29 
XITER 30 
XI TER 31 
XI TER 32 
XlTE.R 33 
XI TER 34 
XITER 35 
XITER 36 
XI TER 37 
XITER 38 
XITER 39 
XI TER 40 
XlTER 41 
XITER 42 
XI TER 43 
XITER 44 
XITER 45 
XI TER 46 
XITER 47 

\0 
0 
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