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PREFACE

This study investigates the performance of various iterative and
extrapolation methods when applied to the numerical solution of two
elliptic boundary value prdblems. The methods used can be applied to
most boundary value problems in the elliptic class of partial differen-
tial equations.

I would like to express my deep appreciation to my adviser, Dr.
J.P. Chandler, for his guidance and assistance through all phases of
fhis project. A special thanks is extended to Dr. D.D. Fisher and
Dr. G.E. Hedrick, the other two members on my committee. Iﬁ addition,
I would also like to thank all the other members of the faculty and
graduate assistants for making these past two years the most enjoyable
ones of my college career. Finally; thanks to my typist, Pam Haught,
who spent many long hours typing the numerous equations that appear

throughout the text.
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CHAPTER I
INTRODUCTION

The purpose of this thesis is to analyze and solve two selected
boundary value problems: the first problem is used as a model problem
to help develop numerical techniques for the second problem; the second
problem is a practical problem of interest in semiconductor research.

These two boundary value problems are acﬁually two dimensional
elliptic partial differential equations. There are many numerical tech-
niques for solving partial differential equations. One of these, which
is applicable to both linear and nonlinear equations, is the method of
finite differences (5). This method can, in general, be applied to
equations in n dimensions. Since the numerical solution of the differ-
ence equations resulting from the method of finite differences is
a large undertaking, it is almost always done with the aid of automatic
digital computers.

The first problem, which is used to develop and test certain
iterative methods and acceleration methods, is the Dirichlet problem
for Laplace's equation (7). Some of these iterative methods include the
following: Jacobi, Gauss-Seidel, successive overrelaxation, simulta-
neous overrelaxation, and symmetric successive overrelaxation
(17,18,19,20). While it is not obvious at the moment, these methods
employ a reasonable amount of matrix theory, some of which is presented

in sections of this paper where appropriate.



Not as widely known as some of the iterative methods, are various
extrapolation techniques designed primarily to accelerate the conver-
gence of particular iterative methods. One of these, modified vector
Aitken extrapolation (8,1), will be examined in detail and applied fo
the iterative methods mentioned above.

The second problem, the numerical solution of the diffuéed semi~
conductor resistor, can be formulated usiﬁg an elliptic partial differ-
ential equation in two dimensions, which is more complex than Laplace's
equation, with boundary conditions somewhat different from the Dirichlet
problem. Physically; the diffused resistor is composed of some material
such as silicon with one or more metallic contacts attached to it (9).
The author's version will have the contacts on the top left and right
sides of a rectangular resistor. Diffused resistors are used exten-
sively in integrated circuits, so this problem is of interest in the
field of semiconductor .research.

Chapter II presents some of the background of partial differential
equations and boundary valﬁe problems. The Dirichlet problem is also
introduced here. Chapter III contins numerical solutions of the
Dirichlet problem, using a model problem developed by the author, and
also Young's (17) model problem. These problems are solved by the
various iterative methods mentioned earlier along with vector Aitken
extrapolation. Chapter IV introduces the diffused semiconductor resis-
tor and derives the appropriate finite difference approximations for it.
Chapter V presents numerical solutions of the diffused resistor problem
with the methods developed in Chapter III. Finaly, Chapter VI presents

some conclusions and areas for further research.



CHAPTER II

BACKGROUND ON BOUNDARY VALUE PROBLEMS

IN PARTIAL DIFFERENTIAL EQUATIONS

The general form of a second order partial differential equation
in two dimensions, which is linear in the second derivatives only,
can be described as follows (7). Given a two-dimensional region R:

a(x,y,u,ux,uy)uxx + 2b(x,y,u,ux,uy)uxy + c(x,y,u,ux,uy)u

+ f(x,y,u,ux,uy) =0 s , (2.1)

and at each point of R
a?+b2+c? 40 .

Partial derivatives; such as, %& and %;% , will be represented by u
and U e respectively, throughout this paper. Equation (2.1) is linear
when a = a(x,y), b = b(x,y), ¢ = c(x,y), and f = d(x,y)ux + e'(x,y)uy
+ g(x,y)u + h(x,y). The notation used here iﬁdicates that a, b, and c
are functions of x and y alone. |

Depending upon the values of a, b, and ¢, equations (2.1) may be
in one of three general classes. If bz.— ac < 0 the equation is said
to be elliptic. For example, Laplace's equation (2.2), whichbis some-
times called the potential equation, is an elliptic partial differential
equation (7).

+ =0 2.2
Uy uyy ( )

In equation (2.2), if u is time independent, it might represent the



electric potential or the temperature. The variables x and y are often

spatial coordinates. Equation (2.2) can also be written as:
Vi = 0 | (2.3)
or
Ay=0 (2.4)
If b2 ~ ac = 0 the equation is said to be parabolic. An example
of a parabolic equation is the heat equation (2.5) (7).
Uy T uy =0 (2.5)
In this equation, u might be the temperature, y the time, and x a spa-
tiél coordinate.
And finally, if b? - ac > 0, the equation is in the hyperbolic
class. The wave equation (2.6) is hyperbolic (7).
u _ =-u_ =20 2.6
XX yy (2.6)
For the wave equation, u is often the amplitude (or pressure) and
either x or y is time, with the other one being a spatial coordinate.
This paper will discuss andvsolve'fwo particular problems in the
elliptié class. The methods used will apply to most other problems

in this class. To be more specific, these two problems are known as

boundary value problems.

In a boundary value problem the solution to the differential equa-
tion, partial or ordinary, is desired at many points within a region.
This region may be of.any shape in general. One of the boundary value
problems used by the author to study numerical techniques for the
solution of elliptic equatioﬂs, is the Dirichlet problem.

The Dirichlet problem can be stated as follows 7). Let S be the
boundary, which is piecewise continuously differentiable. Let R be
the interior region. If f(x,y) is given and continuous on S, then we

want to find a function u(x,y) which is:



1) Defined and continuous on R and S.

2) Equal to f(x,y) on S.

3) Can be computed from an approximation of Laplace's
gquation on R.

This situation is depicted graphically in Figure 1.

Figure 1. Geometric Description of the
Dirichlet Problem



The analytical determination of u(x,y) is nontrivial in most cases,
even for the most simple boundary S. If S is a rectangle, circle, or
ellipse, the solution may possibly be found by use of a Fourier series
or Poisson integral. Even in these cases, however, the integral may be
too complex to evaluate analytically in terms of éimple functions. And
for most other cases there do not seem to exist analytical methods
available to determine u(x,y) (7).

A commonly used numerical technique for solving boundary value

probléms of this nature is the method of finite differences. This method
consists of replacing the derivatives of an ordinary differential equa-
tion or the partial derivatives of a partial differential equation by
approximations derived from Taylor's series, called divided differences.

Divided differences for the first and second derivatives can be
derived rather easily by use of a Taylor series expansion and provide
the basis for methods to be discussed later in this paper. Finite
difference methods can usually be implemented on the computer with ease,
which partly accounts for their widespread use.

Usually when solving boundary value problems, a mesh or lattice as
it is sometimes called, is used to specify the boundary, S, and the
interior region, R. The points within this mesh are called mesh points
and can either be a uniform distance,h, apart or more generally a non-

uniform distance, h,, apart.

i
To illustrate the method of finite differences we will'derive the
approximation to Laplace's equation, assuming equal h's. We first

expand u(xth,y) and u(x-h,y) about the point (x,y) using Taylor's

series.



u(xth,y) = u(x,y)+((xth)-x)u, (x,y) + (y-y)u (x,y)
+ 5L 0 (1Y) + 2(@H)-x) G-yu ()

+ <y-y>2uyy<x,y>1 + 0(h3)

u(eth,y) = u(x,y) +hu (xy) +5hu_Gy) + 067 @.D)
Similarly,
ux-h,y) = uCx,y)-hu (x,y) + hlu_ (x,y) + 0(h) (2.8)

Adding (2.7) and (2.8) gives:
v (%,y) = %Q[u(x+h,y)~2u(x,y) + u(x-h,y)] + 0(h%) (2.9)
Similarly we can derive uyy(x,y) to be:
u,(6Y) = f2luCeyH)-2u(xy) + uGry-h)] + 065 (2.10)
Therefore, Laplace's equation can be approximated by:
u, t L. 2 %2[u(x+h,Y) + u(x-h,y) * u(x,y+h) + u(x,y=h) - 4u(x,y)] =0
(2.11)

It can be seen that equation (2.11) uses five different points

and hence is sometimes referred to as the five point rule. In

general, the four points (x+h,y),‘.(x,y+h), (x-h,y), and (x,y-h) may
not be the same distance, h, from the point (x,y). So, we can define
four new points: (x+h1,y), (x,y+h2), (xuh3,y), and (x,y—h4) where
hlff#'.h2 # h3 # h4. Figure 2 graphically represents the five point rule
for this case.

Thus, using the same techniques which were used to derive
equation (2.11) we can derive another approximation to Laplace's
equation for the general case of unequal h's. For notational pur-
poses, let u, = u(x+h1,y), u, = u(x,y+h2), us = u(x—h3,y),

1

u, = u(x,y-h4), and u, = u(x,y). Also since all derivatives are func-

0
tions of x and y alone they will be written without the (x,y) part.



$ Gxy+hy)

(x—h39Y)$ .(X’Y) :(X+hl’Y)

o(x,y-h,)

Figure 2. Five Point Rule Using Unequal
h's.

Expanding uy and ug about the point (x%,y) using Taylor's series gives:

2 3
= 1
U =y, + hlux + 2h1uxx + O(hl) (2.12)
B L 2 3
uy = uy - h3ux + 2h3uxx + 0(h3) (2.13)

Adding (2.12) and (2.13) and simplifying gives:
R 2u1 ‘2u3 2uo

= + -
XX -hl(hl + h h3(h1 + h3) hlh3

u

(2.14)
3)

Similarly, expanding u, and u, about the point (xX,y) using Taylor's

series gives:

2 3
= L
u, = u, + h2uy + 2h2uyy + O(hz) (2.15)
i, . 12 0ch (2.16)
u, = ug - 4uy + 4h4uyy + (h4) .

Adding (2.15) and (2.16) and simplifying gives:

. 2 u, 2 u, 2 Uy (2.17)

u = + - -
v7 hy(hy +hy) o hy(hy +hy) o hohy




The approximation for Laplace's equation for unequal h's follows
directly:

2 uy 2 u, _ 2 u, 2 U,

= + : +
xx ~ yy  hy(h +hy) T hy(h, +hy)  hy(hy +hy) " h,(h, +hy)

- 265 + )y, rom® =0 (2.18)
173 274
It should be'noted that the above equation (2.18) reduces to (2.11)
if h1 = h2 = h3 = h4 = h. |

Depending upon the boundary, S, either equation (2.11) or (2.18)
could be used to solve the Dirichlet probelm. 1In the Dirichlet
problem we want to compute u(x,y) (ﬁo) for all points in the region R.
Therefore we will have, in general, n equations of the form of equation
'(2.11) or (2.18) which must be solved simultaneously.

Equations (2.11) and 2.18) are both linear and hence may be solved
by a direct method such as Gaussian elimination (13). The coefficient
matrix for these equations is very sparse, each row consisting of at
most five nonzero coefficients (5). If the entire coefficient matrix is
stored, n2 storage locations would be required.

For most practical problems n is very large, so that solution by
a direct method becomes impractical. Hence, iterative methods have
been developed which can solve these equations using cin storage
locations, wﬁere ¢ is usually less than five.

Although the finite difference method has been used extensively.

there is another method, the finite element method (21), which should

be discussed briefly. Using this method, the solution to the partial
differential equation can be computed by finding a function, u, which
minimizes an appropriate integral. This integral comes from applying

the Euler conditions of the calculus of variations to the partial



10
differential equation, and for Laplace's equation, may be given as (21)

2 2
=1
I=1% 55(ux +u)dxdy . (2.19)
The boundary conditions remdin unchanged, and the integration is
carried out over the whole region.
The region, R, can be divided up into small elements, such as

triangles, as shown in Figure 3.

Figure 3. TFinite Elements

Zienkiewicz and Cheung (21) then describe how the function u can be
uniquely specified within an element whose nodal values arévui, uj’ and
U by a linear funetion of the coordinates x and y. The function varies
linearly along the lines connecting the nodal points and therefore must
be uniQuely defined by two nodal values from any triangular element.
In other words, the solution u(x,y) must be the same on the boundary
between any two triangular elements,)otherwise the resulting &is—
continuity would cause the integral (2.19) to become infinite.

Geometric shapes other than the triangle could be used for the

basic element, such as the parallelogram. These other shapes may



result in a better approximation, depending upon the problem, but the
basic procedure is not changed greatly. Although not used by the
author, the finite element method appears to be a reasonably good,

although rather complex method.

11



CHAPTER III

ITERATIVE AND EXTRAPOLATION METHODS FOR SOLVING

ELLIPTIC BOUNDARY VALUE PROBLEMS

When solving elliptic partial differential equations by a finite
difference method, one is usually confronted with the problem of solv-
ing a large system of equations. If the partial differential equation
is linear (as are Laplace's equation and the equation for the diffused
resistor), this system is linear and the coefficient matrix is usually
very large and very sparse (20).

This chapter examines some of thé iterative methods used by Young
(17), Varga (14), Wachspress (15), and Smith (12) in an attempt to
compare their speed and storage requirements;

In developing these methods, the square mesh in Figure 4 is used
to specify the boundary.and interior region, using h = 1/3. This mesh
is similar to the mesh used by Young (17,18,19,20) for his model prob-
lem. His model problem used f(x,y) = O to specify u(x,y) at the bound-
ary. This mesh contains 16 total points, 12 of them boundary points at
‘which the value of u(x,y) is given as f(x,y), and 4 interior points at
which the value of u(x,y) can be computed approximately from the differ-
ence equations. Reference will be made to u(x,y) throughout this paper
and it should be remembered that this is an approximation.

Obviously the value of u(x,y) could be computed directly by

elimination methods, but in most problems of this nature such as

12
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L 6 7 8

#3 24 g5 6 4
0

Figure 4. Sample Mesh

‘neutron diffusiony; fluid flow, elasticity, steady-state heat flow, and_
weather prediction (17), the mesh may cbntain many points, making direct
solution impractical. Some of the iterative methods for solving linear
systems are outlined next. They are illustrated using the equations
which result from applying the five-point rule to the model problem, but

they are not restricted to that case.
The Jacobi Method

The system of difference equations generated from the finite
difference method are of the form of equation (2.8), and for Figure 4

are as follows:

4u1 Uy -uUg - uy - uy = 0
bu, - u;hn - u, - u, -u, _
2 10 7 l‘ 4 =0 (3.1)
hug — v, —uymugy muy, =0
4u4 - u12 -u, - u3 - U =0

Moving the boundary values to the right hand side, the equations in

coefficient form may be written as:
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[ 4 -1 -1 o fu, | [ug +ug | [?]
-1 4 0 -1 u, u, + Y0 b2
= = (3.2)
-1 0 4 -1 ug Ul + U4 b3
L__O -1 -1 4_ _i‘4_ 112 T ugs b,
TIn matrix form this may be written as:
Au=b , (3.3)
where A is the coefficient matrix of the original system, Let L and U
be the strictly lower and upper triangular matrices shown below.
o 0 0 o] o b 0|
Y 0 0 0 0 0 0 Y
L= U= (3.4)
A 0 0 0 0 0 0 4
0 4 % 0 0 0 0 0
A matrix, MJ, can be defined s;;h that—— B
L+U=NM; . (3.5)
So, using Mj, the system may also be written in the form:
l1_>= MJE +c , (3.6)

where ¢ = %b.

This form becomes the basis for the first iterative method to be

considered, the Jacobi method.

ul(i+1) = %uéi) + %u3(i) +cg
u2(1+1) = %ul(i) + %u:i) + c, |
3.7
u3(1+1) _ l‘“l(i) + %.uii) ‘e,
w, &0 %uéi) N ;"“3(1) te,
Here u(i) and u(i+l) denote the values of a particular u after the ithn

(0)

th
and (i+l) = iterations, respectively. The choice of u is arbitrary.
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Hence, the approximate value of u(x,y) at the interior points

of the mesh may be computed by (3.8).

I oy = e @ e,y + o @y + 0@ en,y) + 0@ x,y-n)10
' (3.8).
(i+1)

where each u is computed.from the u's of the it? iteration, and can
be computed in any order (12).

The Jacobi method (also called the method of simultaneous displace-
ments) has been shown to be slow in convergence and not effective: for
meshes containing a large number of points (12,14,17). However, it is

of theoretical value and provides a starting point for developing other

methods.
The Gauss-Seidel Method

The system (3.7) can obviously be altered slightly to the

follwoing:
u{i+l) = %uéi) + %u;i) +cg
oy a4 (3.9)
u§i+1) _ ;ﬂu](_i+]_) + ;‘“z(,i) + ¢4 .
uéiﬂ) _ l/au§1+1) L 1/4113(i+1) +e,
This system may be written in matrix form
.E(i+l) - LE(i—'—l) + UE(i) +e (3.10)
which is equivélent to (18) ,
| \E(iﬂ) =,MGSu(i) + (I-i.)-l_c_:_ , (3.11)
where M o = a-1) o, ) | | | (3.12)

In this case we are using‘the latest iterdtive values when computing

5, D G, (D

2 ’ . This variation is called the Gauss-Seidel

Uz

method. Equation (3.13) describes the iterative process for computing
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the value of u(x,y) at the interior points (12).

u(+l)(x,y) = %[u(i)(x+h,y) + u(i+l)(x,y+h) + u(i+1)(x—h,y)

+u® y-m1 (3.13)
In order to use the (i+l) values in the (i+1)th iteration they must»have
been computed previousiy. The order which is implied by the sjstem
(3.9) is sometimes called reading order; that is, from left to right
and top to bottom of the mesh;

An implementation advantage of this method is that the u's from the
previous iteration do not have to be stored, thus reducing storage
requirements when compared to the Jacobi method. Smith (12) and others
(14,15,17) have shown that the Gauss-Seidel method converges about twice

as fast as the Jacobi method.
The Successive Overrelaxation Method

The Gauss-Seidel iteration may also be written as (12):
WE D oy = 0Py + 5 e,y + o i) + 0@ @n,y)
+ u® y-n) = w® (x5

Py + 2Py, (3.14)

so that R(l)(x,y) is the change in the value of u(x,y) for one Gauss-

Seidel iteration. The new method, called successive overrelaxation

(SOR), uses a larger change in u(i)(x,y). So, the value of u(x,y) at
the interior points may be computed by (3.15)

u(i+;)(x,Y) = u(i)(x,Y) + WR(i)(X’y)
(i+1)
u (x

9 = P,y + wik@® oth,y) + o@D (1, p4n)

i+1 . ‘t .
+u P @y + oD ey P a1 6o
In matrix form, this may be written as:

LGS G P O U T g €O B (3.16)
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which is equivalent to (18)

LD MSORg(i) + (1=L) T (3.17)

where MﬁOR = (I—WL)_l[wU+(14w)I]. (3.18)
This w is termed the relaxation factor. Note that when w is equal
to one, fhe SOR iteration is the same as Gauss-Seidel iteration.
Young (17) shows that if A is a symmetric matrix with positive diagonal
elements then the SOR method converges if and only if A is positive
definite and 0 < w < 2, Positive definite means that A is nonsingular,
with positive diagonal elements, and that the eigenvalues of A are real
and positive (19).
Young (17) and others (5,12,14,15) describe methods for determining

the optimum w for SOR. Using the matrix M, defined by equation (3.5),

the optimum w may be determined by

W = 2 (3.19)

> 1e1-s2u)1”

where S(MJ) is the spectral radius of M. The spectral radius of a

matrix is the magnitude of the largest eigenvalue.

Computing the spectral radius of MJ would not be a trivial task

and was not done by the author. S(Mj) is known for Young's model
problem, and is given later.
Forsythe and Wasow (5) describe a slightly different method for

computing Wy which is given below.

-2 1
Y T TH@-d)? 0 (3'20)
(i+1)_u(i)

where d = lim U = — H1
o || uPy @D
- - 1

(3.21)

The constant d must be computed from the u's using the Gauss-Seidel
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(1+1)_ (1)

method. The L1 norm of (u ) can be computed during an
iteration of Gauss-Seidel, éo d does not require much additional compu-

tation.
The Simultaneous Overrelaxation Method

A method éimilar to the SOR method, but based on the Jacobi method,

is the simultaneous overrelaxation (JOR) method (17). Equation (3.22)

describes the iterative process for computing u(x,y) at the interior

points.

D vy = o P,y + win® 1)

Y (1)

(xth,y) + u 7 (x,yth)

(x=h,y) + u " Gy-h) - u@ (93], (3.22)

Here, the u's may be computed in any order, as in the Jacobi method.

Using matrix notation, the JOR method may be expressed as

.E‘i+l) (1)

= W(MJE +c) + (l—w)gﬁi) s (3.23)

whish is equivalent to (17)

(i+1) _ (1)
= = Myor®

where MJOR = WMJ + (1-w)I . (3.25)

+ we . (3.24)

Young (17) shows that if the Jacobi method converges then the JOR
method will converge for 0 < w < 1.
The matrices MJ, MGS’ MSOR’ and MJOR are usually called the

iteration matrices of the Jacobi, Gauss-Seidel, SOR, and JOR methods,

respectively (14). They are not computed explicitly during the applica-
tion of one of these methods, but their eigenvalues are of theoretical

interest which will be mentioned later.
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Other Rules

Although the iterative methods above were illustrated by the
linear system from the basic five-point rule for Laplace's equation with
fixed h's, other rules do exist and the.respective Jacobi, Gauss-Seidel,
SOR, and JOR methods can be applied to any of them. Two of these rules
are described below.

An alternétive five point rule for Laplace's equation with equal

h's can be given as (10)

ug = H(u tubugte) + omd) (3.26)

~which is the same as before, except that the five points used are

those shown in Figure 5.

U3 & -,

Figure 5. Alternate Five-
Point Rule
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Another rule, the nine-point rule, is described by the foilowing
equation, using fixed h's (10)
1 1 6
== +u +u,) + m=(u.t + .
u, 5(ul+u2 uy u4) 20(u5 u6+u7+u8) + 0(h") (3.27)

This rule uses the nine points shown in Figure 6.

u u u

Figure 6. Nine-Point Rule

The truncation error is of order h6 as shown by.Forsythe and Wasow (5)
for Laplace's equation. In all other instances the truncation error
would be 0(h4). Even so, this is higher order accuracy than the 0(h2)

of the five-point rule.

Numerical Solution of the

Dirichlet Problem

The Dirichlet problem was solved numerically using the basic five-

point rule with fixed h's equal to one. The mesh of Figure 7, containing
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a total of 121 points, was used to specify the boundary and interior

region.

y
1
X
0 ' 1
Figure 7. Author's Model
1
Mesh, h =10

The function f(x,y) = 5(x+y) was used to specify u(x,y) on the
boundary. This leaves a total of 81 interior points at which the value
of ﬁ(x,y) must be computed from the difference equations, using an
appropriate iterative method. The initial wvalue of u(x,y) at these
interior points was arbitrarily chqsen to be zero. Remember that there
will be 81 equations to solve. A program was developed which incorpor-
ates the methods diséussed previquslyband was used to solve the Dirichlet
problem. |

Before analyzing the results, the convergence criterion should be

discussed briefly. Two different indicators of convergence have been
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used :
’ _ oo (k) 2%
P = lOglO[kgl(R (x,5)) ] (3.28)
and n
(k)
SN CR A . (3.29)
where n is the number of difference equations. The value of R(k)(x,y),

from equation (3.14), is available directly in each iteration of all the
methods, so little additional computation is réquired to compute either
P or G. P is actually the 1og10 of the L, norm of the Au vector, when
using either Gauss—~Seidel or Jacobi. This value should theoretically
approach minus infinity. G is the Ll norm of the Au vector when using
Gauss—Seidel or Jacobi. This value, which should approach zero, is used
as the stopping criterion for all of the methods.

Numerical solution of the Dirichlet problem was done with the

Jacobi, Gauss-Seidel, and SOR methods initially. The results are shown

in Table 1I.

TABLE I

RESULTS OF THE JACOBI, GAUSS-SEIDEL,
AND SOR METHODS

1

Method _ P50 _ -
Jacobi ’ =0.7774 45.58
Gauss—Seidel -1.5263 23.04

SOR, w=1.5348 -10.8067 3.94
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The m-value in Table I is the slope of the curve P vs Iter which

is computed as follows:

P_.-P
_ 50 25
m = 5555 R (3.30)
where P_. and P_ . are the values of P .after 50 and 25 iterations

50 25

respectively. So, the value of - % is the number of iteratiops required
to reduce the norm of the residual vector, R(x,y), by a factor of ten,
or to add one more digit of accuracy to u.

The value of - i-appears to be a reasonably good indicator of how
a method is converging. For éxample, SOR produces one digit of accuracy
after about 4 iterations, Gauss—-Seidel requires about 23 iterations, and
Jacobi requires about 46 iterations. Thus, Gauss—-Seidel does indeed
converge about twice as fast as Jacobi, bﬁt still considerably slower
than SOR. This is conéistent with Young's (17) theory and his work .
with the model problem.

The value of the optimum w, Wy, was found to be about 1.5348 using
equations (3.20) and (3.21). Recall that when using these equations,
the value of the optimum w is computed during each iteration of Gauss-
Seidel method. The vaiue of the optimum w stated above came from the
17th iteration of Gauss-Seidel. When the SOR method was applied with
other w's, the values of - i'were larger, which means that these w's
were not optimum. Figure 8 displays graphically P vs w after 20 itera-
tions of SOR, using various values of w. Figure 9 illustrates the per-
formance of Jacobi, Gauss-Seidel, and SOR with Wy .

The graph of Figure 8 is very similar to Young's (17) graph of

S( ) vs w for his model problem. He shows that as the value of w

MSOR

approached w,, the slope of S(M_._ ) approached minus infinity,

b SOR

Figure 8 also shows this square root dependence on the left side of the



(w, ,—2.80)

Figure 8. P vs w for SOR

24
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Figure 9. ‘Comp’arison of Jacobi, Gauss-Seidel, and SOR
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minimum (wb). On the right side of Vs the graph is linear. Thus, small

decreases in the value of w result in a much larger relative change-

in the rate of convergence than corresponding increases in w,
Summarizing, Young (18) determined'tﬁe following values for his

model problem.

S(MJ) = cosTh (3.31)
S(Myg) = cosZah (3.32)
_1-sinmh
SMgor) = T¥sinth (3.33)
and ‘ w, = 2 (3.34)

b 1+sinTh

Hence, SOR does appear to be one of the best methods available to
solve the Dirichlet problem. .Its major advantages are its fast conver-
gence, and low storage requirements (only one u vector). Its major dis-
advantage is the difficulty in détefmining Wy . This problem was -not of
major concern for the author's model problem, but Forsythe.and Wasow (5)
state a major disadvantage of computing vy from equations (3.20) and
(3.21): A prohibitive number of iterations of Gauss-Seidel would prob-
ably be required to compute L for.very fine meshes. This comes from
the fact that d is computed using a limit. So, numericél analysts have

developed other methods which compete favorably with SOR. One of these

is the next topic of this chapter.
Modified Vector Aitken Extrapolation

Scalar Aitken extrapolation replaces a linearly converging

1 @
1 2

sequence xo, xl, XgseeesX by a faster converging sequence X s X ,

.s X where x is the desired limiting value (4).
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If for a convergent sequence the limit
lim | X, —X | -
k > o ———————-—k =C
| % _;7%| g

(3.35)

exists, and C is not zero, then the sequence is said to converge to x
with order q. We will consider the case of linear convergence, for which
q = 1. Thus, we have

X ~X = C(xk_l—x) s (3.36)
where x and C are unknown. To solve for x, we need another equation of

the form (3.36), such as

X 17X = C(#k-x) . (3.37)
Solving equations (3.36) and (3;37) will give an approximation to x
which we will call xél).
xél) = X Y SR (3.38)
i

(3.39)

where s =
| X1 2N 1
Since the u's in the Dirichlet problem actually form a vector u,
it would be reasonable to believe that component-by-component scalar
extrapolation of u would work well. However, Aitken has attempted this,
and has found that it does not work well. A few components of u may be
extrapolated a long way, or in the wrong direction. So, a different
method of vector extrapolation ﬁust be devised.
| One could replace the scalars of equations (3.38) and (3.39) by
the u vectors and then extrapolatevthe three vectors R Ek’ and
. _q> except that division by a vector is undefined. To eliminate this
problem, we can premultiply the denominator and numerator of s by the

transpose of an appropriate vector, which will reduce s to scalar form.

Equations (3.40) and (3.41) describe this modification, which will be
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called modified vector Aitken extrapolation (1,8).

G DR CeD I CO N (3.40)

where s = G+ @
-2u

z'(u + g(i—l),) (3.41)

Jennings (8) calls the vector z a weight vector. This vector
may have two natural forms, which are discussed next. Suppose that, in

analogy to equation (3.36)

s (3.42)
where u is the desired limiting vector and M is the iteration matrix.

If M is symmetric, z can be given as
z = 2‘1_1)f2(1) . (3.43)

However, if M is unsymmetric, Jennings (8) states that there is the
possibility of cancellation in the denominator of s in equation (3.41)

if (3.43) is used. In this case, equation (3.44) should be used for z.
2 = 2(1+1)-22(1)

+ 4D (3.44)
Equations (3.43) and (3.44) are sometimes,called the first difference

modulation (FDM) and the second difference modulation (SDM) (8). Note

that the SDM form is also valid‘when the iteration matrix is symmetric.

Additional references on vector extrapolation include separate
articles by Wynn (16) and Gekeler (6), and an article by Brezinski.
and Rieu (2).

Referring to equation (3.41), the value of s indicates the amount
of change the extrapolation will cause as a multiple of the last
iteration (8). Boyle and Jennings (1), during their elastic-plastic
stress analysis, had s-values ranging from one half to five.

It was found that extrapolation did not always improve convergence
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of certain iterative methods as much as expected. Examining the Au vec-
tor computed by these iterative methods showed that it was changing in
sign or value in a rhythmic pattern. That is, it was zigzagging. The

type of zigzagging observed is depicted in Figure 10.

Figure 10. Au Zigzags

H]

It can be seen from Figure 10 that extrapolating_g(i) .5(2), and
2(3)

E(i)

will probably not help convergeﬁce much. However if every other
is discarded, and the remaining u's extrapolated, convergence may
be improved. This would correspond to extrapolating along the peaks or
valleys of Figure 10.

Jennings (8) shows that when extrapolating an iterative ﬁethod
whose iteration matrix is symmetric with eigenvalues'betwéen -1 and 1,
convergence was not improved very much, which is similar to the results
observed when the Au vector zigzags. So, it is worthwhile to reexamine

some of the iteration matrices for the methods we have developed.
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Table II outlines some of the aspects of the iteration matrices for

the iterative methods discussed so far (8,17). The matrix,

MSSOR’ comes
from an iterative method which will be discussed later.
. TABLE II
ITERATION MATRICES
Iteration _
Matrix Type Eigenvalues
MJ | symmetric real, -1 to 1
MﬁOR symmetric real, -1 to 1
MGS unsymmetric mostly real, O to 1
MSOR unsymmetric complex, when W=y
MSSOR unsymmetric real, O to 1

The results in Table II are true if A, the coefficient matrix,

is positive definite.

D) (@) g D

Table II shows that when u are extrapolated

b
using the Jacobi method (or the JOR ﬁethod) convergence will not improve

(1-1)

much. Jennings (8) suggested thét it is better to extrapolate u .
u(l+l), and.g(l+3)

, which has the effect of squaring the iﬁeration
matrix, giving only positive eigenvalues. This same conclusion was
reached when observing the Au vector earlier. Thus, in actual practice
it is not necessary to compute the eigenvalues to determine which u

vectors to extrapolate. The terms period one and period two will be
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(i-1)

used to indicate if extrapolation was performed on the vectors u

_3(1), andlg(1+l), or g‘l_l),_g(1+l), and E‘l+3), respectively.

Repeated Aitken Extrapolation

The scalar Aitken extrapolation described by equation (3.38) may
be repeated, producing an even faster converging sequence. That is, the

@)

extrapolated values X s Xy s+ ++,X may be extrapolated producing the
(2) _(2)

sequence X, ", X3 ,..e, X This process may be repeated until only one

or two values remain. Figure 11 gives an example of this.

>< zz\xm
i::::>*<:::::i )/,,//”””/’/’> 2
/

Figure 11. Repeated Aitken

The superscriptes indiéate the number of times extrapolatién has been
applied. Here, the results of the previous extrapolation, the x(i)
values must be stored before they may be extrapolated producing the
x(i+l) values.

Jennings (8) describes a version of repeated Aitken extrapolation,

called double extrapolation. Double extrapolation, using FDMy is done

using vector iterates in the same manner the scalar iterates are extra-

polated in Figure 11. The rate of convergence was found to be about 7,9
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times faster than the convergence rate without extrapolation (8).
Another form of repeated vector Aitken extrapolation is similar in

technique to Steffensen iteration for scalars (4). This form, which

will be called super extrapolation, is illustrated in Figure 12.

1{_0‘
. \?s](-l) x§2)
52/353 |

54

Figure 12, Super Extrapolation

Using this technique only three vectofs need to be stored when extra-
polation is applied once, and only five.vectors need to be stored when
it is repeated one time.

The actual motivation for super extrapolation came from observing
the s-values after the original extrapolations were performed. In most
cases, these s-values oscillated (zigzagged) in a high/low pattern simi-
lar to the way the Au vector zigzagged when extrapolating the Jacobi
method. So, it was found that extrapolating z‘kfl), Xﬁk+1), and z‘k+3);
where the jfs are the results from extrapolating the u's, produced large

improvements in convergence. We will again use the terms: period two

and period one, to indicate whether or not the s-values are oscillating.
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An Impleméntation and Results of Modified -

Vector Aitken Extrapolation

Chanlder (3) has written a modified vector Aitken extrapolation
subroutine, VAITK, which incorporates many of the features of extrapo-
1étion discussed préviously. Extrapolation and super extrapolation.are
both available, using either FDM or SDM. The technique of Steffensen
iteration, discussed previously, is used to reduce storage requirements.

Boyle and Jennings (1) found that, for their stress analysis
problem, when zigzagging is not occurring, it is best to extrapolate as
soon as the u vectors are available; that is, after every two iteratiomns.
This was found not to be true in general. At times it may be desirable
to perform one or two preparatory iterations and then begin saving the u
vectors for extrapolation. Intuitively, this gives the u vector time to
"settle down'" after an extrapolation, before extrapolating again.
Shortly and Weller (11) speak of allowing the error in‘g(i) to smooth
out and assume a 'pillow-shaped" form. This feature of allowing prepar-
atory iterations is also incorporated into VAITK.

The results of extrapolation and supér extrapolation, using SDM
when applied to Gauss-Seidel are shown in Table III. The périod of the
iterations is indicated in the table. When super extrapolation is
applied, an extrapolation period of two is used. The abbreviation

"Prep.'" means preparatory. So, 'No. of Prep. Iter." means the number of

preparatory iterations done before the u vectors are saved for an extra-

polation. Similarily. "No. of Prep. Extrap."

means the number of prepa-
ratory extrapolations performed before the v vectors are saved for a
super extrapolation. NA means '"not applicable", and indicates that

" super extrapolation was not used in that particular instance.
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TABLE IIT

GAUSS-SEIDEL WITH SDM EXTRAPOLATION

No. of Period No. of Prep.

Prep. Iter. of Iter. - Extrap. _'%
0 1 NA 4.94
1 1 NA 6.90
2 1 \ NA 7.26

1 2 | NA 8.11
0 1 2 4.93
2 1 | 4,73
1 2 1 6.57

The slopes in Table III, and the ones which follow, are computed

from equation (3.45) below.
P -P
b-"a

. b-a b

where a and b.are chosen to be iterations near 25 and 50 respectively.

m = (3.45)
For —-% to indicate reliably how the iterations were converging, a and b
were chosen to be iterations where an extﬁapolation had jusﬁ occurred.
This is illustrated in Figure 13.

It should be mentioned again that in the author's implementation,
the error, P, is computed during an iteration. So, the slope in Figure

13 would be computed from two points on the dashed line.
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35

30 Iter

Figure 13.

—-1—

Gauss-Seidel, SDM Extrapolation After Every 2 Iterations
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Referring to Table III again, SDM extrapolation after every two
iterations improved accuracy by one digit abouf every five iterations.
However, performing an extrapolation every four iterations worked best
when super extrapolation was applied. The réason is that a clear extra-
bolation period of two was established. in this case, thus making super
extrapolation more effective.

Hence it appears that super gxtrapolation does indeed provide
an alternative to SOR. Table I showed that SOR produced one digit of
accuracy in slightly under four iterations, and Table III shows that
super extrapolation requires a little over four iterations to do the
same,

Table IV outlines the fesults using the other version of extra-
polation, FDM, when applied to Gauss-Seidel. An iteration period of

one and an extrapolation period of two are used.

TABLE IV

GAUSS~SEIDEL WITH FDM EXTRAPOLATION

No. of Prep. No. of Prep. _1
Iter. Extrap. m

0 NA 5.90

1 NA 6.21

2 NA 7.18

2 2 5.11
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Table IV shows that the FDM extrapolation performed fairly Qell.
However, when observing the error cfiterion, P, after some extrapola-
tions were performed, it could be seen that the results were erratic.
At times, an extrapolation with a large s-value would degrade the con-
vergence, which is contrary to the previous results and the results to
be shown later. The reason for this behavior comes from the fact that
the iteration matrix for Gauss-Seidel is unsymmetric and Jennings (8)‘
states that FDM extrapolation should only work well for symmetric
iteration matrices. The - %-values in Table IV are thus perhaps slight-
ly low in this case.

Table V outlines the results of applying SDM extrapolation to the
Jacobi method. The iteration and extrapolation periods are given

in the table.

TABLE V

JACOBI WITH SDM EXTRAPOLATION

No. of Prep. Period No. of Prep. Period of _1
Iter. ‘ of Iter. Extrap. » Extrap. m

1 1 NA NA 45.64

0 2 NA NA 15.36

1 2 | NA NA 14.70

0 2 2 2 8.75

1 2 : 1 2 6.60

1 | 2 1 1 10.39
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Table V. clearly shows that the iteration and extrapolation periods
for Jacobi must be two. This was expected since Mﬁ is symmetric with
eigenvalues in the rénge -1 to 1. Super.extrapolation performed well,
requiring slightly over six iterations.to produce one digit of accuracy.

Table VI illustrates the results of applying the FDM éxtrapolation
to the Jacobi method. The iteration period and extrapolation period

were both set to two.

TABLE VI

JACOBI WITH FDM EXTRAPOLATION

No. of Prep. No. of Prep; _ £
Iter. Extrap. m
0 MA 15.27
1 NA 13.76
2 NA 13.47
3 NA 14.20
4 NA 14.75
0 ' 2 9.18
1 1 11.58
1 | 2 8.12
2 | 1 9.79

2 2 7.07
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Table VI shows that FDM extrapqlation performed better than SDM
extrapolation when super extrapolation waé not used. The reason here
is probably the fact that FDM extrapolation works particularly well
when applied to iterative methods which have symmetric iteration
matrices (8). However, Table V shows that super extrapolation using
SDM when apblied to Jacobi produced slightly more accurate results
than super extrapolation using FDM. It is thus the author's opinion
that extrapolation with SDM should be used in most cases.

Hencé, extrapolation does perfbrm effectively on the Dirichlet
problem. When super extrapolation is used convergence is almost equal
to that of SOR. Chandler (3) in some work with linear least squares
problems found an even greater improvement in convergence when using
super extrapolation.

Each of these methods has its own disadvantages. Using SOR, the
optimum w must be computed. Using super extrapolation, the period of
the iterations, and the period of the original extrapolations must be
determined. Also, additional storage is used. However, it is usually
easier to extrapolate correctly than to compute the best w. For exam—
ple, we know that if Jacobi is extrapolated the iteration period is
probably two and if Gauss-Seidel is extrapolated the iteration period
is probably one. An when super éxtrapolation is applied, the extrapo-
lation period is probably two. In other words, the parameters for
extrapolation are independent of n (the number of equations) and the
dptimum w for SOR is not; This point is shown conclusively in Chapter V.

One might wonder if it is possible to extrapolate the SOR method,
accelerating.convergence further. Unfortunately, when w > 1, the

eigenvalues of M

SOR become complex and when w = LR all of the eigen-
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-

values are complex (14,17); When this is the case, a éigzagging pattern
cannot be determined in fewer-ﬁhan n iterations, and hence extrapolation
becomes ineffective. Experimentally, extrapolation of SOR using the
optimum w produces negative s-values and did not improve convergence.

Using SOR with w not equal to w,, extrapolation may possibly be

b
done (17), although the extrapolations will cause less improvement
because of the small positive s-values. Even in this case, some of
the s-values produced may be negative which means that, in our case,
convergence would not be improved. Table VII outlines the results
obtained when extrapolating SOR, using an iteration period of one.
Super extrapolation, when used, is applied using two preparatory extra-
polations and a period of two.

As w approached Vs extrapolation of SOR degraded to unextrapolated
SOR as expected. Super extrapolation was ineffective in all cases. One
interesting result in Table VII is that when w = 1.2, SOR with extrapo-
lation slightly outperformed uneéxtrapolated SOR with Wy It is not

expected that this would always be the case, although little theory is

available in this area.
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TABLE VII

SOR WITH SDM EXTRAPOLATION

No. of Prep. Super _ 1

Y Iter. . Extrap. m
1.1 1 : NO 5.78
2 NO. 5.85

2 YES Y

1.2 1 NO | 3.30
2 NO 3.09

1.3 1 NO 4,52
2 NO : 3.61

1.4 1 NO 4.84
2 ‘ NO » 4,28

1.5 1 N 3.86

2 NO 3.56

The Symmetric Successive Overrelaxation Method

A less widely known methodvrecently reexamined by Young (18,19,20)

is the symmetric successive overrelaxation (SSOR) method. - The SSOR

method can be considred as two half iterations.  The first half itera-
tion is the same as SOR. The second half iteration is the SOR method
with the equations evaluated in reverse order, or backwards reading

order, from right to left and bottom to top of fhe mesh.,
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The major advantage of the SSOR method is that it may be accele-
rated by extrapolation even when the optimum w is used. In fact, if the
coefficient matrix, A, is positive definite and if 0 < w < 2, then the

eigenvalues of the iteration matrix, M » are real, nonnegative, and

SSOR
less than one, thus making extrapolation possible (18).

The iterative form for computing u(x,y) at the interior points in

the mesh is given below.

WD 5y = u Py + wBi@® e,y + 0D (1, y4m)
Fu® Gy + Py P a1 Guse)
and | |
I vy = a0y + w B e,y + 0D (5, y4m)
+ 09 Ly + 0O G yn)) - T 1,90 1
| (3.47)
In matrix form, we have (19)
WO G ) @ |
WD L D G ) (3.48)
Simplifying this may be reduced to
uD _ o + @D+ we ]
) e+ ew DD ke 42
Eliminating 2(14—1/2) gives
PR TS | (3.50)
where
Mogop = (I-W0) (L + (1-)I) (I=vL) L + (1-w)T) (3.51)
and

k = w(2—w)(I—wU)—l(I—wL)_¥g
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The method for choosing the optimum w for‘SSOR is similar to the
method used for SOR. The method described by equations (3.20) and
(3.21) was used by the author, but thé value of the computed w was found
not to be the optimum. Experimentally, the optimum w was found to be
about 1.6, slightly larger than Wy for SOR. This is similar to some of
Young's (17) results.

The results obtained using SSOR are displayed in Table VIII, when
using SDM extrapolation. It should be noted that since one iteration
of SSOR is almost as time consuﬁing as two iterations of SOR, the
results shown by the author count each sweep of the mesh as a full
iteration. Therefore, reasonable comparisons can be made with the other

methods discussed. When extrapolation is applied, the iteration period

is one.
TABLE VIII
SSOR, w = 1.6, WITH SDM EXTRAPOLATION
No. of Prep. No. of Prep. Period of _1
Iter. Extrap. Extrap. m
NA | NA NA 10.66
0 NA NA 4.88
1 NA NA : 4.96
0 0 1 4.26
0 1 1 4.22

1 1 2 4.22
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The slopes, when using the SSOR method, are computed from the
values of P, in the same manner as described earlier. Table VIII shows
that using unextrapolated SSOR, with w = Wi required over ten itera-
tions to produce one digit of accuracy. This is not as good as SOR with
its optimum w, but Young (17). describes similar results.

The value of SSOR becomes apparent when it is extrapolated. Using
SDM extrapolation, SSOR required only about four iterations to produce
one digit of accuracy. Figure 14 displays graphically P vs Iter for
SSOR with and without super extrapolation. It can be seen that SSOR
with super extrapolation (SSOR-SE) converges much faster than unextra-

polated SSOR.
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25 - : 50 Iter

~10

B ‘ SSOR-SE

Figure 1l4. P vs Iter for SSOR



Table IX outlines the results obtained when applying FDM extra-

polation to SSOR. An iteration period of one is used.

TABLE IX

SSOR, w = 1.6, WITH FDM EXTRAPOLATION

No. of Prep. No. of Prep. Period of 1
Iter. Extrap. Extrap. m

0 NA NA 4.10

1 NA NA 4.92

2 .NA NA 4.62

0 2 2 4.22

1 1 1 8.00

2 1 1 6.02

Table IX shows that FDM extrapolation of SSOR also performed
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reasonably well, usually requiring about four iterations to produce one

digit of accuracy.

Thus, SSOR does provide an accurate method for solving the

Dirichlet problem. However, since it has the advantages of both SOR

and extrapolation, it also has the disadvantages of both methods.

To

use SSOR effectively, the optimum w or near optimum w must be deter-

mined, along with the iteration and extrapolation periods when super

extrapolation is used. Super extrapolation would probably not be
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required when using SSOR on meshes containing fewer than 100 interior
points, siﬁce regular extrapolatiop accelerates convergence almost as
fast.

Before leaving the Dirichlet problem it is worth mentioning a
variation of vector extrapolation tried by the author. Instead of using

s for our extrapolation factor we may use a value called Smin which is

computed using quadratic interpolation. Quadratic interpolation is used
-to fit a quadratic equation through three points. The minimum of that
quadratic then may be found anaiytically.

In our case, we want to determine the equation of a paraboia which
passes through the three points (-1,Q), (0,Q2) and (s,QS), where the Q's
are computed from equation (3.53) below.

> |
o= 1 @R®x,yn? (3.53)

(k)

where n is the number of equations, and R is the residual. Q1 and
Q2 are computed after an appropriate iteration,'and QS is computed after

a normal extrapolation. The minimum of this parabola will be some point

), where Qsmin is less than QS. That is, Q . 1is smaller

(Smin’ Q smin

smin
at Smin than anywhere else along the direction of extrapolation
(u + s*Au).
Let equation (3.54) be the equation of our parabola.
ax2 + bx + c =Q (3.54)
To find the minimum of (3.54) we take the derivative and set it equal

to zero, which gives

S . =75= . (3.55)

Substituting the values -1, 0, and s for x into equation (3.54) and

solving the resulting system gives the following values for a and b.
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s:Q, +Q_ - s:Q, - Q
a=——2L1 8 2 2 (3.56)

'sz + s

b=a- Ql + Q2 (3.57)
Thus, Smin may be determined from (3.56) and (3.57). In actual
practice the values of s and Smin differed only slightly, and hence this

method was not considered further. Although this method was not used,
it does indicate that vector Aitken extrapolation is probably performing
nearly as well as possible, in the senée of minimizing Q along the
direction of extrapolation.

Before concluding this chapter, the validity of our error estimates,
and a direct comparison of the results of the author's model problem and
Young's model problem need to be shown. Recall that Young's (17) model
problem used the square mesh in Figure 4, at the beginning of this chap-
ter, with various h values. f(x,y) = 0 was used to define u(x,y) on
the boundary, and the u values in the interior of the mesh were iﬁitial—
ized to one. Since the boundary is set to zero, the actual solution
will be u = 0. Thus, the u vector will not only be the solution vector,
but also the actual error vector.

So, to show that the - i'values given previously are valid conver-
gence indicators, Young's model problem was implemented using h = %-and
=-fs . When h =~% , the mesh contained a totallof 16 interior points,

and when h = i%', the mesh contained 81 interior points. -Since the u

h

vector in this case is the actual error vector, we may compute the
value of P for it as we did for the residual vector. Equation (3.58) is
the equation for this value which we will call Pu.

u o 2
= Z
P = log,, (I, U

k )2, | (3.58)
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where n is the number of equations. Thus PY is the'log10 of the L2
norm of u. We may compute the slope, mu,.of the line pY vs Iter in

the same way m was computed earlier.

u u
P - P
- 50 25
™y~ 750 - 25 G359
Table X give the results of the author's implementation of Young's
model problem for h = %-and h = 10 using Jacobi and Gauss-Seidel.
TABLE X

YOUNG'S MODEL PROBLEM

Method h - 1 -1
m m,
. 1
Jacobi 3- 10.86 ‘ 10.86
J bi iL' 45.88 45.88
acobi 10 . .
) 1
Gauss—Seidel g‘ 5.43 5.43
. 1
Gauss-Seidel Ia 23.04 22.98

1
The values given for - i-and - in Table X are very close indeed.
u

This indicates that computing - $~from the residual vector, using P,
gives a very good estimate of convergence. It should also be noted

1
that the - i'values for Jacobi and Gauss-Seidel with h = 1o are very

close to the - %'values for these methods in Table I with h = The

'1_0' .

reason for this is that the behavior of the error is independent of the
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boundary values as long_as tﬁe boundary value function, f(x,y), is
well-behaved.

-Also, it can be seen in Table X that when h is halved, from %
to f%', the qumber of iterations required for convergence using either
Gauss—Seidel or Jacobi increases by a factor of about 4. In other
words, the number of iterations required for convergence is proportional

-2

to h ©. Table XI summarizes these results for Young's model problem

(19).

TABLE XI

POWERS OF h FOR YOUNGS'S
MODEL PROBLEM

Order of the No.

Method of iter. required
Jacobi ‘ h_2
. . ' -1
Jacobi-SI h
. -2
Gauss-Seidel h
Gauss—Seidel-SI h_l
SOR pt
SSOR pt
-1
SSOR-SI : h *

SI: semi-iterative extrapolation
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Table XI showed that the h_2 value for Jacobi and Gauss-Seidel
1
increases from 25 to 100 as h decreases from %‘to 10 * The accelera-
tion techniques mentioned in Table XI are various semi-iterative methods
used by Young (17).

The results of the author's model problem should compare reason-
ably with Young's results in Table XI. To begin, we know that the
following is ture.

N =M (- D) (3.60)

m b
where N is the number of iterations required to produce M digits of
accuracy, and - i-is the number of iterations required to produce one
digit of accuracy. N may also be given by:
. a

N = C+h , (3.61)
. . . 1 1
where a < 0, as in Table XI. Thus, using h = — and h = 7= , we may

10 20
use equations (3.60) and (3.61) to form the following system.

1 1 1l a
M- [——(h: —)] = C- (-_
10
" 10 (3.62)
1 , 1l a
. [-=(h= = C. (—
M- [ m( 20)] € (20
Solving for a gives
1 1
- E(h:ﬁ)
a = logy—7———5— (3.63)
g.l(h=3;)
m 20

So, to compare the results of our model problem.with Young's
results in Table XI, we need to compute a using the - %-Values when
h = Ea“and h = i%’. Table XII summarizes the results for all of our
methods, including SDM extrapolation, for h =‘£6 and h = 20 ° The
results shown were obtained using the optimum parameters. The optimum
w for SOR was determined from equations (3.20) and (3.21) to be about
1.730249, and the optimum w for SSOR was experimentally determined to

be about 1.75, when h = é%-.
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1
The - i’(h = ia) values in Table XII were obtained from the pre-

1
The - l-(h = ——
m

vious tables for the various methods when h = 20

13 .
values were computed in the same manner, with the exception of the
Jacobi method. When h = é% » our mesh contained 361 interior points
where the value of u(x,y) was initially set to zero. Since the Jacobi
method is so slow, additional iterations are required to replace these

zeros by appropriate approximations. So, the values of P at iterations

‘ 1
75 and 100 were used to compute - i’(h = 569 in this case.

TABLE XII

SUMMARY OF THE DIRICHLET PROBLEM

Method Extrap. Eitiz;. '%<h=fﬁ) —i(h=§3 a
Jacobi NO NO 45.58 177.04 -1.96
Jacobi YES NO 14.70 49.75 -1.76
Jacobi YES YES 6.60 14.27 -1.11
Gauss-Seidel NO NO 23.04 84.20 . -1.87
Gauss-Seidel  YES NO 4.94 13.98 -1.50
Gauss-Seidel YES YES 4.73 11.30 -1.26
SOR NO NO 3.94 7.66 - .96
SSOR NO . NO 10.66 21.90 ~1.04
SSOR YES NO ‘ 4.88 7.98 - .71

SSOR YES YES 4.16 5.65 - .44
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Hence, most of the values.of a in Table XI1 compare favorably with
the exponents of h in Table XI. Negative a-values nearest to zero
indicate the fastest convergence. For example, when h is reduced from

1 1 . . . . :
—— to ==, SOR requires about 2 times as many iterations to converge.

10 20°

Similarly, SSOR with super extrapolation requifes only about\/f— times
an many iterations to converge when h is reduced by %. It appears that
SSOR with super extrapolation clearly outberforms the other methods
when the number of equations is increased. Comparing the a-values in
Tables XI aﬁd XI1, shows that SSOﬁ—SE»and SSOR-SI produce similar
results.

Shortly and Weller (11) show that the error function that results
from computing u, is "piliow—shaped," with a méximum at the center of
the mesh. If the interior of Young's model mesh was initialized to a
pillow-shaped function of the form:

16
r(x,y) = 5 5 cx(x Ry V), (3.64)

max ymax

where x and y are equal to one, the slopes during the early
max max
iterations would stabilize much faster. In other words, overrelaxation
is best demonstrated on a pillow-shaped function.
This concludes our examination of the Dirichlet problem and we
will now turn our attention to a more difficult and practical problem,

the diffused semiconductor resistor.



CHAPTER IV
INTRODUCTLON TO THE DIFFUSED RESISTOR PROBLEM

Diffused resistors are used extensively in integrated circuits,
but actually there exists little theoretical information on their elec-
trical properties. A typical two-dimensional rectangular resistor is

shown in Figure 1b).

&

3 ' 10

Figure 15. A Two Dimensional Diffused Resistor

54
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Electrical conduction between the two metallic contacts takes place
through a semiconducting material in the interior of the resistor, vThis
semiconducting ﬁaterial may be compbsed of silicon, along with some
small impurities, such as atoms 6f boron or iron (9).

The lines of current flow, shown in Figure 15, are uniformly
spaced near the right contact and become crowded together near the right
end of the top contact. They are approximately parallel to the length
of the resistor further away from the top contact, and are perpendicular
to each contact. When the conductivity within the resistor is noncon-
stant, the lines of currenf flow are éhanged and the numerical selution
‘can become more complex.

These lines of current flow in the diffused resistor are somewhat
similar to the electric field lines of a certain Dirichlet»problem
involving an L-shaped region. Figure 16 depicts this situation. The
crowding shown in Figure 16 near the right angle bend is similar to the
crowding observed in Figure 15 for the diffused resistor. Such a
"re-entrant angle" (obtuse internal angle) is known to introduce a mild
singularity into the solution of the Dirichlet problem (5), which
increases the order of the discretization error. The same sort of
thing occurs in the diffused resistor problem.

The operation of the diffused resisfor can be approximated by a
boundary value problem. Its solution will give us the electric poten-
tial at particular points within the resistor which result from épplying
a potential difference to the contacts. Each contact is assumed to ex-
tend across the entire width of the resistor; therefore it can be

approximated by a two-dimensional analytical model (9). The two-
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=

Figure 16. L-Shaped Region

dimensional elliptic partial differential equation used is given below.
g(x,y) u  (x,y) + g(x,y)-u (x,5) + g, (x,7) u, (x,5) + g, (x,¥) u_ (x,5)%0

(4.1)
where g(x,y) is the conductivity. Equation (4.1) is an approximate
model for a certain case where no net charge exists anywhere in the
semiconducting material. Note that the conductivity, g(x,y), is a
function of position.

The finite difference approximations to equation (4.1) may be
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derived in much the same way as for the Dirichlet problem. The deriva-
tions given below assume unequal h's for generality. Letting

ul = U(X'i'hl,}’), u2 = U(X,Y"H‘lz), u3 = u(x_thY)’ and u4 = U(X,Y'h4),

and expanding about the point u, = u(x,y) using Taylor's series as before

0
gives: .
u, = u, + h,u + ‘hzu + 0(h3) 4,2)
1 0 1x 1 xx 1
2 3
= + L .
u, = ug hzuy + /zhzuyy + O(hz) (4.3)
2 3
= - + ! + .
ug = ug h3ux shau_ 0(h3) (4.4)
2 3
=u. - + 3 + .
u, = U, h4uy /zh4uyy 0(h4) (4.5)
Adding (4.2) and (4.4) and simplifying gives
: 2u,’ 2 2
U T H (hu}-h y & (huih )~ hug | (4.6)
B T T 3703 173
Adding (4.3) and (4.5) and simplifying gives
2 2
U S h (:luih 7t g (hu-l:-h y ~ hug (4.7)
A A ) 4202 24
Solving for u using (4.2) and (4.4) gives
2, 2
. hl(u0 u3) + h3(ul uo)
u_ = ) 5 (4.8)
hJ_h3 + hlh3
Solving for uy using (4.3) and (4.5) gives
2 2
. Py (ugmy,) + By (uymug)
u, = 5 5 (4.9)
h
- hyhl 4+ hoh,
Thus, finite difference approximation to equation (4.1) is
B 2 2 2u_
. 2ul N 2u3 _ u, s 2_u2 \ u, _ EQ
+ + + h
h) (h +h ) "hy(hy+hy) hohothy (hyt+h)) h, (h,+h, ) hyh,
- : (4.10)
2 2 2 2
- + - - + -
|y tugug )Ry Cuy ) F‘z(uo A U
* w2 4+ n2 " & h.h% + h> "0
| M3t yhy I_ AL
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kquation (4.10) can be transformed to the following:

us hlh2h3h4 (2g+g h, )u1
0 (g, (h =h )-Zg)h h +(g (h, -h ) 2g)h h hl(h + )
(4.11)
(2gtg h ) (2g-g,h.) (Zg—g h )
iy Y2 ey U h(hm)
272 4 3713

Equation (4.11) is the five-point rule for the diffused resistor

problem, using unequal h's. In the case where h1 = h2 = h3 = h4 =h ,

equation (4.11) may be reduced to:
.L_L - -
u, = 8g[(2g+gxh)u1 + (2g+gyh)u2 + (2g gxh)u3 + (2g gyh)u4] (4.12)
So the Jacobi, Gauss-Seidel, and SOR methods may be given by

equations (4.13), (4.14), and (4.15), respectively, using fixed h's.

Wy = legrem o e,y + Gerg ) o Gy
+(2g—gxh) u(i)(x-h,y) + (Zg—gyh)u(i)(x,y—h)] (4.13)
W,y = g oy oD oy + e T Gy
+2gmg ) oV ny) + 28-g ™ Guy-n) (4.14)
WPy = a Wy + ulgg g o Gy +
(2gvg 1w Y Gy + 2gmgh) w T Geny)
(Zg—gyh)u(i)(x,y-h)]—u(i)(x,{E] (4.15)

The JOR method is identical to equation (4.15) when the i+l iterates
‘ .th |
are replaced by the i iterates.
The boundary conditions for the diffused resistor are somewhat
different from those for the Dirichlet problem. Here, the only parts of
the boundary where u(x,y) is given as f(x,y) are at the contacts. This

situation is sometimes called mixed boundary conditions (7). The author

used f(x,y) = 0 to define u(x,y) on the top contact and f(x,y) = 1 to

define u(x,y) on the right contact.
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Figure 17. Mixed Boundary Conditions

Figure 17 illustrates how the five-point rule can be applied to
portions of the boundary where a contact is not located. Considering
the top boundary for a moment, we cén see that u, is located outside
the boundary of the resistor and hence cannot be used in equations
(4.11) or (4.12). The potential gradient at the boundary is parallel
to the bouﬁdary where the contact is not located, so uy = 0. Using
equation (4.9) derived earlier we may compute an‘approximate value for
u, in terms of uy -

Setting uy = 0 in equation (4.9) gives

2 2
h2 (uo—u4) + h4 (uz—uo)

2 5 =0 (4.16)
h2h4 + h2h4
Solving for u,, we find that 2
-h
22 (4 -
u, = ﬁz (u0 u4) + u, (4.17)
4
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Taking h2 = h4 we have
u, =" u, (4.18)
Thus we can reflect u, across £he boundary and use the value of u,
for u, as.shown in Figure 17.
A similar argument can be made for tﬁe bottom boundary, except

that in this case we would reflect u, across the boundary. Similarly,

at the left boundary, we have u = 0. Setting u, = 0 in equation

(4.8) gives
’ 2 2
h (u.-u_ ) + h_(u,-u.)
10 73 ; 32 1 0" . 0 (4.19)
h1h3 + hlh3
Solving for ug and taking h1 = h3 gives
ug = uy (4.20)

Thus, when computing the value of u, along the left boundary, we may -

0

reflect u, across the boundary and use the value of uy

Convergence of the diffused resistor problem is not expected to be

for uj.

as fast as it was for the Dirichlet problem for the reason discussed
below. It can be shown that the crowding of the lines of current flow
in the diffused resistor is associated with a square root singularity
in u. In this area, near the right end of the fop contact, u(x,y) may
be given as:
. 5
u(x,y) = C*(s(xtr)) (4.21)

1
where r = (x2 + y2)6 (4.22)

and C is some constant. Equations (4.21) and (4.22) come from the use
of a conformal mapping and their derivation in beyond the scope of this
paper. A square root singularity in u also exists in the Dirichlet
problem with an L-shaped region (5).

In an attempt to improve the accuracy in this area of crowding,
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variable h's instead of fixed h's were used. Additional mesh points
were added near the area of crowding and the mesh points were spread out
farther in other areas. One simple method to compute these variable h's
is given below.

The h's in the x-direction from the right ehd of the top contact
to the right contact may be defined by (4.23) below.

h, = drbl (4.23)

Each hi increases by a factor of b as the right contact is approached.
If b is given, then dr can be computed from (4.24).

Zh, = C (4.24)
B | r

where Cr is the distance. Using Figure 15, Cr = 7 in our case.
Similarly, the h's in the x-direction from the right end of the

top contact to the left boundary can be computed by (4.25) below.
i

hi dLb (4.25)

C

where Zhi = (4.26)

y
And the h's in the y-direction from the top boundary to the bottom

boundary can be computed by (4.27)
h, = d bt (4.27)

y
where Zhi = Cy (4.28)

The convergence criterion used for the diffused resistor, problem
is similar to that used for the Dirichlet problem. R, P, and G are

given by the following equations:

i
® (xtn,y) +
(i+1)

i 1
R(l)(x,y) = §E{(2g+gxh) u

2gre e T G,y + gmg T ety +
(2g—gyh) u(i)(x,y—h)]—u(i)(x,y) ' (4.29)

where (i+l) is replaced by (i) when using Jacobi or JOR.



(k)

n 1
P = log o[ 2, R™ (x,y))° T2

and

(k)

n
G = kEIlR (st)I

where n is the number of difference equations.
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(4.30)

(4.31)



CHAPTER V

THE NUMERICAL SOLUTION FO THE DIFFUSED

RESISTOR PROBLEM

Numerical solution of the diffused resistor problem provéd to be
a more difficult task than solving the Dirichlet problem. Preliminary
solutions used equation.(5.1) for the conductivity of the rectangualar
resistor in Figure 15.

0.2y (5.1)

g(x,y) = e

The variable mesh scheme, outlined in Chapter IV was used
initially. Figure 18 illustrates this further. Using SOR with w equal
to 1.8, the results were satisfactory but convergence was slow. Comput-
ing the slope as described in Chéptef III, using PSO and P25, the
value of - I was found to be 27.19, which indicates that about 27 itera-
tions were required to produce one digit of accuracy.

Obviously, these results are not as‘good as those obtained for the
. Dirichlet problem. The apparent reason for this is the fact that the
mesh points became too spread out near the lower right and lower left
of the resistor shown in Figure 18. Possibly a different method for
computing the h's could be used, but this was not pursued further.
The discussion presented next will use fixed h's.

Gsing h = 1, %, ahd %, and the variable chductivity in equation

(5.1), the results of the SOR method is shown in Table XIII.

63
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3 ' 10

Figure 18. Variable Mesh

The optimum w shown in Table XIII when h = 1 and h = % was computed
using Gauss-Seidel and equations (3.20) and (3.21) given in Chapter IIIL.
When h = % (861 mesh points) this method proved ineffective. Forsythe
and Wasow (5) cite this major disadvantage wnan computing the optimum w
for fine meshes. This is due to the fact that d in (3.20) is computed
from a limit. The results in Table XIII also seem to indicate that the
value of the optimum w increasés as the number of mesh points increases.
This is shown by Young (17) and is analogous to our reaults of the

Dirichlet problem.
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TABLE XIII

SOR, VARIABLE CONDUCTIVITY

1
h w -3 a
1 1.64478=w, 4.97
, -1.00
L 1.80129=w, 9.94
-0.87
Y 1.89 18.19

The slopes in Table XIII have been computed using the methods of

Chapter III, also. When h =1, P50 and P25 were used to compute m.

=1 = L
When h = %, P75 and P50 were.used, and when h 4,.P100 and P75 were

used to compute m.

The values of a shown in Table XIII were computed by equation

(3.63) using the - % values for h 1 and h =%, and for h = % and

h = %. Young (17) has shown that a = -1 when using SOR on the Dirichlet

problem. It appears that for the diffused resistor problem, the number
of iterations required for convergence is also proportional to h—l,
when using SOR. This is investigated further for the case when the
conductivity is equal to oné. Table»XIV outlines the results when using
the SOR method with g(x,y) = 1.

Table XIV shows that when the conductivity is constant, the results
are similar to those in Table XIII when the conductivity is variable.
The - i values in Tables XIII and XIV for SOR are larger than the - i

value for SOR in Table I, even though the diffused resistor mesh con-

tains fewer points. So, convergence of the diffused resistor problem-
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TABLE XIV

SOR, CONSTANT CONDUCTIVITY

h w —?:l'" a
m
1 1.65150=w, 5.21
-1.04
L 1.81625=w, 10.69
-1.08
Y 1.905 22.66

is probably slower than it is for the Dirichlet problem. It would
appear that the mixed boundary conditions are probably more of an
influence on convergence than the nonconstant conductivity. The singu-
larity in u near the right end of the top contact is probably also
influencing the convergence here.

Table XV outlines the results of thé Gauss-Seidel, Jacobi, and

JOR methods for the case where h = 1. The slopes shown here were

TABLE XV

GAUSS-SEIDEL, JACOBI, AND JOR,
h=1AND g(x,y) =1

: 1
Method w - =
m

Gauss-Seidel ' 1.00 50.28
Jacobi 1.00 99.39

JOR .95 74.30
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computed using P100 and P75. Table XV shows that Gauss-Seidel, Jacobi,
and JOR are all very slow methods even when h = 1. This was expected.
Table XV also shows that Gauss-Seidel is about twice as fast as Jacobi.

The same result was obtained by the author and others (12,14,15,17)

for the Dirichlet problem.

A Note On Discretization Error

When forming the approximations for Laplace's equation and the
diffused resistor equation, we replaced each partial differential
equation by a system of n divided difference equations. This process is

called discretization (5), and is only as accurate as the difference

approximations used. The error which occurs during the process of dis-

cretization, is termed the discretization error (5). In Chapters II and

III, we showed that this error was O(hz) for Laplace's equation when
using the five-point rule.

We may approximate the discretization error of equation (4.12)
for the diffused resistor as follows. Uéing Taylor's series, the fol-
lowing equation may be used to compute this error.

u(h) = u(0) + C-hP + ... (5.2)

where u(h) is the value of u(x,y) at a particular mesh point for some
h, and u(0) is:the value of u(x,y) at that poiﬁt when h = 0. Using

the values of u(l), u(%), and u(%) the following system can be formed.

Hle

u(l) = u(0) + c-1°

u(ks) = u(0) + C+ ()P (5.3)

uls) = u(0) + c- )P

This system has the following solution:

u(l)-uis) . ,p '
ul)—uly) 2 (5.4)
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Using the values of u(x,y) at the mesh point (x,y) = (8,2) obtained

from the SOR method, we may compute p from the equation below.

P _ .7864-.7910
2" = 79910-.7934 (5.5)
p = .997 (5.6)

Since p = 1, the discretization error appears to be O(hl) for the dif-
fused resistor.  Performing similar computations at the mesh point
(x,y¥) = (3,4), which is near the area of "crowding", p = .995. The
singularity in u is probably the cause for this slower order of conver-
gence of the discretization error to zero. Forsythe and Wasow (5) show
that the discretization error for the Dirichlet prbblem with a L-shaped

region is also O(hl) as h approaches zero.

Vector Aitken Extrapolation of the

Diffused Resistor Problem

Vector Aitken extrapolation and super extrapolation can be applied
to the diffused resistor problem in the same manner as they were appliéd
to the Dirichlet problem. The results from Chapter III proved to be
useful when applying vector extrapolation to the diffused resistor.

The results of extrapolation of the Gauss—-Seidel method are
displayed in Table.XVI. SDM extrapolation is used exclusively, since
the results of the Dirichlet problem and Jennings' (8) work show that
FDM extrapolation only works effectively on iteration methods which
have symmetric iteration matrices. In Table XVI, h = 1, g(x,y) = 1,

the iteration period is one, and the extrapolation period is two.
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TABLE XVI

SDM EXTRAPOLATION OF GAUSS-SEIDEL
h=1AND g(x,y) = 1

No. of Prep. No. of Prep. _1
Iter. Extrap. m

0 | NA 8.14

1 NA 4.68

2 ‘ NA 10.86

3 | NA 11.03

2 1 8.11

2 2 8.84

3 1 9.62

The slopes in Table XVI, and in all the tables which contain the
results of extrapolation, are computed from equation (3.45) in the
same manner as discussed in Chép;er ITI. Pa and fb were chosen from
iterations where extrapolation with a large s-value or super extrapola-
tion occurred. In Table XVI, iterations near 25 and 50 were used. 1In
later tables where Jacobi or large meshes were used, iterations near
100 and 50 were used for Pa and Pb’ respectively.

Table XVI shows that extrapblation of Gausé—Seidel using one
preparatory iteration converged the fgstest. Between four and five
iterations were required to produce one digit of accuracy. This result
is even better than that obtainéd using SOR with the optimum w shown in

Table XIV.
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Performing one preparatory iteration corresponds to extrapolating
after every 3 iterations. This result is different from the results
shown by Boyle and Jennings (1). For their problem, they found that
extrapolating after every two iterations (no preparatory iterations) was
best.

Super extrapolation did not perform as well as expected. It will
be shown later that when h = %, super extrapolation becomes more effec-
tive.

Table XVII outlines the results of SDM extrapolation of Jacobi.

Here, h = 1, and g(x,y) = 1.

TABLE XVII

SDM EXTRAPOLATION OF JACOBI
h =1 AND g(x,y) =1

No. of Prep. Period No. of Prep. Period _1
Iter. of Iter. Extrap. of Extrap. m
1 1 NA NA 99.39
1 2 ’ NA \ NA 15.91
2 2 NA | NA 27.22
3 2 NA NA 28.86
2 2 1 2 15.06

3 2 | 1 1 32.44
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Table XVII shows clearly that the iteration period for the Jacobi
method is two. This reinforces the theory dealing with the eigenvalues
and type of iteration matrix (8) and the zigzagging of the Au vector
developed in Chapter III. Extrapoléﬁion, using one preparatory itera-
tion, agaiﬁ performed very well. Since our iteration period is two,
this corresponds to extrapolating after every five iterations. Super
extrapolation showed only minimal additional improvement, requiring
about 15 iterations to produce one digit of accuracy.

Table XVIII illustrates the results of SDM extrapolation of the
Gauss-Seidel method when h = %. When super extrapolation is used, the
extrapolation period is two.

With h = % and the mesh containing 231 points, extrapolation with
two preparatory iterations and an iteration period of one, performed
the best. Around 14 iterations were required to produce one digit of
accufacy. This is slightly more iterations than SOR required.

Table XVIII also shows that when using almost every reasonable
combination of periods and preparatory iterations, super extrapolation
did not outperform regular extrapolation. It should be noted that,
when super extrapolation was apélied to the results of the best regular
extrapolation, the number of iterations to produce one digit of accuracy
increased from about 14 to 43. The reason for this is the s-values from
the regular extrapolation were irregular and did not oscillate, so that
super extrapolation was ineffective.

Table XIX outlines the results of SDM extrapolétion of Gauss-
Seidel with h = %. When super extrapolation is used, the period of

extrapolation is two.
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TABLE XVIII

SDM EXTRAPOLATION OF GAUSS-SEIDEL
h =% AND g(x,y) =1

No. of Prep. Period No. of Prep. _1
Iter. ~of Iter. Extrap. m
0 1 ‘ NA 18.49
1 1 NA 29.51
2 -1 : NA 14.51
3 1 NA 51.28
1 | 2 NA 53.53
1 1 1 19.28
1 1 2 19.73
2 1 1 43.59
2 | | 1 2 42.56
3 1 2 24.81

Table XIX shows that super extrapolation performed the best when
h = %. Since the mesh now contains 861 points, convergence has slowed
considerably. Even when using super extrapolétion, around 39 iterations
are required for one digit of accuracy. Table XIV shows that this is
somewhat slower than SOR with h = .

SDM extrapolation of Gaués—Seidel is summarized in Table XX for
h =1, % and %. The values shown are the optimum values obtained from

previous tables.
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TABLE XIX

SDM EXTRAPOLATION OF GAUSS—-SEIDEL
h =% AND g(x,y) =1

No. of Prep. Period No. of Prep. _1
Tter. of Iter. Extrap. m

0 1 ' NA 91.47

1 1 NA 57.48

2 1 NA 44,28

1 2 NA 56.83

1 1 1 76.16

1 1 2 39.21

2 1 1 : 45.39

2 1 2 44.75

The values for a in Table XX were computed by the methods dis-
cussed in Chapter III. Table XX shows that these a-values fbr‘the dif-
fused resistor are similar to those obtained for the Dirichlet problem
in Table XII. The number of iterations required for convergence 1is

—1'6) using regular extrapolation and

approximately proporional to O(h
O(h—l) using super extrapolation. So, as h is reduced by %, extrapola-
tion alone will require over 3 times as many iterations to converge,

and super extrapolation will require around 2 times as many iterations

to converge.
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TABLE XX

SUMMARY OF SDM EXTRAPOLATION FOR THE
DIFFUSED RESISTOR PROBLEM

‘Super _1
h Extrapolation ' Extrapolation m a

1 YES NO 4.68
-1.63

Y YES NO 14.51
-1.61

Y% YES NO . 44,28

1 YES ‘ YES 8.11
. ~1.25

L YES YES 19.28
1.02

4 YES YES 39.21

Comparisons and Conclusions

Now that we have analyzed and solved both the Diriéhlet problem
and the diffused resistor problem, some general comparisons and con-
clusions can be ‘drawn.

The particular form of variable mesh used was ineffective in solv-
- ing the diffused resistor proBlem. The variable h method may be
feasible as long as the distance between two adjacent mesh points does
not become.too large, as it did here.

The SOR method worked well for both the Dirichlet and diffused
resistor problems. For both problems, the optimum w was shown to
increase as the number of mesh points increases. In other words, the

value of the optimum w is dependent upon the number of finite difference
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equations to be solved. It also should be noted that the optimum w
could not be computed from equations (3.20) and (3.21) when h j_% for
the diffused resistor problem. The large number of mesh points, mixed
boundary conditions, and singularity in u were probably all factors in
this cése.

Vector Aitken extrapolation'worked well for both the Dirichlet
problem and the diffused resistor probiem. However, super extrapolation
was not as effective on the diffused resistor problem. The reason for
this is that in some cases, the s-values from the original extrapolation
were not constant, or did not oscillétevin a rhythmic patfern. So, when
super extrapolation was applied, little improvement in convergence was
shown.

Usually, extrapolation is easier to use than SOR. The iteration
period and extrapolation period are not dependent upon the number of
equations to be solved. The periods and the recommended typebof extra-
polation (SDM of FDM) are shown in Table XXI. The results shown are
applicable to both problems.

The mixed boundary conditions of the diffused resistor made it
impractical to apply the SSOR method. The forward/backward iterations
of SOR in SSOR would almost double the amountlof code required, and the
results of the Dirichlet problem indicate that for meshes containing a
small number of points, little additional improvement inkconvergence.
would be shown. However, the author's results and Young's (18,19,20)
results indicate that SSOR with extrapolation show more improvement
when applied to finer meshes; that is, meshes containing a larger

number of points.



TABLE XXI

RECOMMENDED PARAMETERS FOR EXTRAPOLATION

Type of Iter. Extrap.

Iteration

Method Extrap. Period Period
Jacobi FDM or SDM 2 2
Gauss—-Seidel SDM 1 2
SSOR SDM 1 2
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CHAPTER VI
SUMMARY AND CONCLUSIONS

The numerical analysis and solution of the Dirichlet and diffused
resistor problems have been completed with some interesting results.
These results and the methods developed can be applied to most other
boundary value problems in the elliptic class of partial differential
equations. |

The most likely method to be used for the numerical solution of
the difference equations would be successive overrelaxation, if storage
is at a premium. Howayer, if adequate storage is available, modified
vector Aitken extrapolation plus super extrapolation of either fhe
Gauss-Seidel or Jacobi methods does indeed provide a feasible alterna-
tive. The advantages and disadvantages of both of these choices have
been discussed previously. Table XXII presents a summary of the stor-
age requirements for the methods which have been discussed in this
paper. This table gives the maximum number of equations which can be
solved, assuming 1000 storage locations are available for componments
of u.

Table XXII shows that when using a direct elimination method, a
maximum of 31 equations can be solved if the coefficient matrix is
unsymmetric, since n2 storage 1ocations.are required. For symmetric
coéfficieﬁt matrices, %n(n-1) étorage locations are required. Gauss-

Seidel, SOR, and SSOR require only n locations when extrapolation is

77
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not used and either 3n or 5n locations when extrapolation or super
extrapolation is used. Table XXII also shows that 2n storage locations
are required by the Jacobi (or JOR) method. When using a square or
rectangular mesh and applying the Jacobi method in reading order, only
two rows of the ith mesh need to be stored when computing g‘i+l).

In this case, only ntc storage locations would be required.

TABLE XXII

SUMMARY OF STORAGE REQUIREMENTS

Max. No. of
Method (s) Equations (n)
Direct Elimination 31 or 44%
GS,SOR, SSOR 1000
Jacobi, JOR 500
GS,SSOR+VA 333
Jacobi+VA 250
GS,SSOR+SE 200
Jacobi+SE 167.
1000 — Storage Locations
* - Symmetric coefficient matrix
VA - Vector Aitken extrapolation
SE - Super Extrapolation
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The method recently reexamined by Young (18,19,20), symmetric
successive overrelaxation, does appear to be promising when extrapo-
lated. 1If storage is at a premium, it may be necessary to extrapolate
SSOR using semi-iterative methods (17) rather than Aitken extrapolation.

tion.



BIBLIOGRAPHY

(1) Boyle, E.F. and A. Jennings. '"Accelerating the Convergence
of Elastic-Plastic Stress Analysis.'" International Journal
of Numerical Methods in Engineering, Vol. VII (1974),
pp. 232-235.

(2) Brezinski, E. and A.E. Rieu. '"The Solution of Systems of Equations
tions Using the -Algorithm, and an Application to Boundary -
Value Problems." Mathematics of Computation, Vol. XXVIII
(1974) , pp. 731-741,

(3) Chandler, J.P. Private Communication. Stillwater, Oklahoma:
Oklahoma State University, 1976.

(4) Conte, S.D. and C. deBoor. Elementary Numerical Analysis: An
Algorithmic Approach. New York: McGraw-Hill, 1972.

(5) Forsythe, G.E. and W.R. Wasow. Finite-Difference Methods for
Partial Differential Equations. New York: John Wiley &
Sons, Inc., 1960.

(6) Gekeler, E. "On the Solution of Equations by the Epsilon
Algorithm of Wynn." Mathematics of Computation, Vol. XXVI
(1972), pp. 427-436.

(7) Greenspan, D. Discrete Numerical Methods .in Physics and Engi-
neering. New York: Academic Press, 1974.

(8) Jennings, A. '"Accelerating the Convergence of Matrix Iterative
Processes,'" Journal of the Institute for Mathematics and
Applications, Vol. VIII (1971), pp. 99-110.

(9) Kennedy, D.P. and P.E. Murley. "A Two-Dimensional Mathematic
Analysis of the Diffused Semiconductor Resistor." IBM
" Journal of Research and Development, Vol. XII (1968),
PP. 242-250.

(10) Panov, D.J. Formulas for the Numerical Solution of Partial
Differential Equations by the Method of Differences. New
York: Grederick Ungar Co., 1963.

(11) Shortley, G.H. and R. Weller. '"The Numerical Solution of
Laplace's Equation.!" Journal of Applied Physics, Vol. IX
(1938), pp. 334-348.

80



81

(12) Smith, G.D. Numerical Solution of Partial Differential Equations.
London: Oxford University Press, 1965.

(13) Stewart, G.W. Introduction to Matrix Computations. New York:
Academic Press, 1973. :

(14) Varga, R.S. Matrix Iterative Analysis. New Jersey: Prentice-
Hall, Inc., 1962.

(15) Wachspress, E.Y. Iterative Solution of Elliptic Systems and
Applications to the Neutron Diffusion Equations of
Reactor Physics. New Jersey: Prentice-Hall, Inc., 1966.

(16) Wynn, P. '"Acceleration Techniques for Iterated Vector and Matrix
Problems." Mathematics of Computation, Vol. XVI (1962),
pp. 301-322.

(17) Young, D.M Iterative Solution of Iarge Linear Systems. New
York: Academic Press, 1971.

(18) Young, D.M. '"On the Accelerated SSOR Method for Solving Elliptic
Boundary Value Problems." Proceedings of the Conference on
the Numerical Solution of Differential Equations. Dundee
Scotland: Berlin, New York, Springer-Verlag, 1973.

(19) Young, D.M. '"On the Accelerated SSOR Method for Solving Large
Linear Systems." Paper CNA-92. Austin, Texas: The University
of Texas, 1974. ’

(20) Young, D.M. "Iterative Solution of Linear and Nonlinear Systems
Derived from Elliptic Partial Differential Equations."
Proceedings of the International Conference on Computational
Methods for Nonlinear Mechanics. Austin, Texas: Texas
Institute for Computational Mechanics - The University of
Texas, 1974.

(21) Zienkiewicz, 0.C. and Y.K. Cheung, "Finite Elements in the
Solution of Field Problems." The Engineer (Sept., 1965)
pp. 507-511.




APPENDIX

PROGRAM LISTINGS OF VAITK

AND DRIVER ROUTINE

82



(2 XsXaiakaXziaksXzXaks akxkakakz Xz iaks Xz s s haraiz XalsRsXaz s Xaa Nz X2 k2 Xakaks X2 X s Xa Y22 X2}

SUBROUTINE VAITK (N¢XsTAsTByMETHDsKOUNTsNPREP 4NPERyKPER,

* SMAX s SMINyNTRAC y KW S »X0OUT )
VAITK 1.3 AcNoeSels STANDARD BASIC FORTRAN MARCH 1976

VECTOR AITKEN EXTRAPOLATION .
Je Po CHANDLER, COMPUTER SCIENCE DEPTey» OKLAHOMA STATE UNIVERSITY

A-.JENNINGS. ACCELERATING THE CONVERGENCE OF MATRIX ITERATIVE
PROCESSESy. JeINSTOMATH.APPLIC. 8 (1971) 99-110
Ee Fo BOYLE AND Ae JENNINGSy INToJNUMJMETH.ENGe 7 (1974) 232-235

Ee GEKELER,

MATHEMATICS OF COMPUTATION 26 (1972) 427-436

C. BREZINSKI AND A. C. RIEU, MATH., OF COMP. 28 (1974) 731-741

Pe WYNN,

MATH.

OF COMP. 16 (1962) 301-322

INPUT QUANTITIESeeoee NyX(*)yMETHDyKOUNTo¢NPREPoNPER ¢KPER ySMAXsSMIN,

NTRAC+KW

OUTPUT QUANTITIESeees KGUNTHKPER ¢S XOUT(*)
SCRATCH ARRAYSeecoeee TA(¥),TB(¥*)

N
X{*)}
METHD

KOUNT

NPREP

NPER

KPER
SMAX
SMIN

NTRAC

KW

NUMBER OF COMPONENTS IN EACH VECTOR
INPUT VECTOR ITERATE -
=1 TO USE THE FDM METHOD OF JENNINGS,
=2 TO USE THE SOM METHOD
(USUALLY METHD=2 WORKS BETTER, BUT NOT ALWAYS.)
ITERATION COUNTER
NUMBER OF ITERATES DISCARDED BEFORE EACH
 EXTRAPOLATION ,
(NPREP.GE. O 1S USUALLY FASTEST. NPREP=-1 GIVES
THE METHID OF BOYLE AND JENNINGS.) .

VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK

VAITK

VAITK
VAITK
VAITK

=1 IF THE X(%) ITERATES ARE CONVERGING (OR DIVERGINGIVAITK

SMOGTHL Y,
=2 IF THE X(*) ITERATES ARE ZIGZAGGING WITH
PERIOD =2, ETC.
(NPER=2 CORRESPONDS TO THE -SQUARED-
EXTRAPOLATION METHODS OF JENNINGS.)
COUNTER FOR ZIGZAGGING
UPPER LIMIT ON THE EXTRAPOLATION FACTOR
LOWER LIMIT ON THE EXTRAPOLATION FACTOR
(SUGGESTIONess SET SMAX=100. SET SMIN=0, IF
THE ITERATION IS KNOWN TO BE MONOTONICALLY
CONVERGENT (OR DIVERGENT), AND SET SMIN=-100.
OTHERWI SE. )
PRINT SWITCH, SET EQUAL TO
+1 TO OBTAIN FULL PRINT,
0 TO OBTAIN NORMAL PRINT,
-1 TO OBTAIN NO PRINT

" LOGICAL UNIT NUMBER OF THE PRINTER

VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK
VAITK

VAITK

VAITK
VAITK
VAITK
VAITK

Co~NCumPSwpne
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c 5 -- RETURNS THE VALUE OF THE EXTRAPOLATION FACTOR VAITK
c XOUT(*) == RETURNS THE OUTPUT VECTOR AT EACH CALL TO VAITK VAITK
c VAITK
C THE USER CALLS VAITK REPEATEDLY. THE X(*) VECTORS ARE SUCCESSIVE VAITK
C VECTORS FROM SOME ITERATION SCHEME HAVING ROUGHLY LINEAR CONVERGENCE.VAITK
C ON RETURN FROM EACH CALL TO VAITK, THE VECTOR XOUT(*) CONTAINS THE VAITK
C BEST EXTRAPOLATED EXTIMATE OF THE LIMIT OF THE INFINITE SEQUENCE VAITK
C OF X(*) VECTORS. VAITK
C XU ) AND XOUT( ) MAY BE THE SAME ARRAY. VAITK
C THE COUNTERS KOUNT AND KPER MUST BE SET TO ZERO BEFORE THE FIRST VAITK
C CALL TO VAITK FOR A GIVEN PROBLEM, AND NOT CHANGED UNTIL THE NEXT VAITK
C PROBLEM IS TO BE STARTED, AT WHICH TIME THEY MUST BE SET TO ZERO VAITK
C AGAIN. VAITK
c VAITK
c DOUBLE PRECISION XsTA,TBoSMAX,SMINsS¢XOUT} VAITK
c X DXMAXDXSQyDXDOXDDXSQsDX¢ABSDX . VAITK
c DIMENSION X(N) ¢TA(N)»TBIN)XOUT (N) VAITK
DIMENSION X(1)¢TA(L),TB(1)4XOUT(1) VAITK

c VAITK
$=0. VAITK
MXP=NPREP VAITK
IF{MXP)1000,1010,1010 VAITK

1000 MXP=0 VAITK
1010 IF(KOUNT=MXP)1020,1050,1030 VAITK
1020 KOUNT=KOUNT+1 VAITK
GO TO 1370 VAITK .

1030 IF(KPER=(NPER=-1))1040,1050,1050 VAITK
1040 KPER=KPER+1 VAITK
GO TO 1370 VAITK

1050 KPER=0 VAITK
KDUNT=KOUNT+1 VAITK

IF (KOUNT-(MXP+2) ) 1350,1330,1060 VAITK

c ] VAITK
c IT IS TIME TO EXTRAPOLATE. COMPUTE THE VAITK
c EXTRAPOLATION FACTOR, Se VAITK
1060 DXMAX=0. VAITK
DXSQ=0. VAITK
DXDDX=0. VAITK
DDXSQ=0. VAITK

DO 1110 J=1,N VAITK
DX=X{J)=TA(J) VAITK
DDX=DX-TB(J) VAITK

AB SD X=DX VAITK
IF(ABSDX )1070, 1080, 1080 VAITK

1070  ABSDX=-ABSDX VAITK
1080 xF(Aasox-oxMAX)1100.1100.1090 VAITK
1090  DXMAX=ABSDX VAITK
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1100

c
c

1120.

1110

1130

1140
1150

1160

1170

1180

1190

1200

(2 X 2]

(X3}

1210
1220
1230
1240
1250

1260
1270
1280

1290

1300
1310

1320

1330

DXSQ=DXSQ+DX*DX
DXDDX=DXDODX+DX*DDX

DD XSQ=DD XSQ+DDX*DDX
IF(METHD-1)1120,1120, 1140

METHD=1 eeo S = =(DX4DX)/(DDX DX}
IF{DXDDX)1130,1330,1130
$=-DXSQ/DXDDX
GO TO 1160

METHD=2 oee S = -(DXyDDX)/(DDXsDDX)

IF{DDXSQ)1150,1330,1150
S=-DXDDX/DDXSQ

CHECK THE LIMITS ON S.
I1F(S-SMAX)1180,1180,1170
S=SMAX .
IF(S-SMIN)1190,1200,1200
S=SMIN
IF{S)1210,1330,1210
CONTINUE

PRINT INFORMATION IF REQUESTEDe.
IF(NTRAC)1300,122051220 :
WRITE(KW+1230)DXMAX S
FORMAT(/9H VAITKeee15X99H DXMAX = 4E14¢795X95H S = 9El2.5)
IF(NTRAC)1300,1300, 1240 : '
JROW=0
JL=JROW+1
JH=JROW+10
IF(JH=N)1270,1270,1260
JH=N
WRITE(KWs1280)JROWs (X(J)9J=JLeJH)
FORMAT(/1X¢I1495Xy10EL1e3)
WRITE(KWy1290)(TB(J)9J=JdLedH)
FORMAT(10X,10E11.3)
JROW=JH
IF(JROW-N)12504 13004 1300

EXTRAPOLATE.
00 1310 J=1.N
XOUT(JI=X(J)+S*(X(J)-TA(J))
TA(J)=XOUT(J)
KOUNT=0
IFINPREP)1320,41390,41390
KOUNT=1
GO TO 1390

ON THE NEXT CYCLE WE WILL EXTRAPOLATE.
SAVE THE FIRST DIFFERENCE VECTOR.

D0 1340 J=1,N

VAITK 95
VAITK 96
VAITK 97
VAITK 98
VAITK 99
VAITK100
VAITKLO1
VAITK102
VAITK103
VAITK104
VAITK105
VAITK106
VAITKLO7
VAITK108
VAITK109
VAITKLI1O
VAITK111l
VAITKI112
VAITK113
VAITK11l4
VAITK115
VAITK116
VAITK117
VAITK1L18
VAITK119
VAITK120
VAITK121
VAITK122
VAITK123
VAITK124
VAITK125
VAITK126
VAITK127
VAITK128
VAITK1I29
VAITK130
VAITK131
VAITKL132
VALITK133
VAITK134
VAT TK135
VAITK136
VAITK137
VAITK138
VAITK139
VAITKL140
VAITK141
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1340
c
1350 DO 1360 J=1,N
1360 TALJ)=X(J)
c
1370 DO 1380 J=1,N
1380. XOUT(J)=X(J)

TB(JI=X(J)=TA(J)

c
1390 RETURN
c
C END VAITKe.
END

SAVE THE X(*) ITERATE.

SET XOUT(=*),

VAITK142
VAITK143
VAITK144
VAITK145
VAITK146
VAITK147
VAITK148
VAITK149
VAITK150
VAITK151
VAITK152
VAITK153
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C TEST DRIVER FOR SUBROUTINE VAITK. MARCH 1976
c

(2 XN sNaNg]

DIMENSION XX(11,11),X(81),TA(81)+TB(81),TC(81),TD(81)

KW=6
LSIDE=10

.LSIDE=5

SET
THI
THE

NITA=30

NI TB=40

NITB=30

SMAX=100.

SMIN=-100.

NTRAC=0

HUGE=1.,E35

UP A SYSTEM OF LINEAR EQUATIONS WITH WHICH TO TEST VAITK.

S IS THE SYSTEM WHICH RESULTS FROM THE APPROX IMATE SOLUTION OF
DIRICHLET PROBLEM ON A SQUAREs USING A FIVE-POINT DIFFERENCE

RULE.

10

20
*

*

30
40

50
*

60

LSP=LSIDE+1
DO 10 J=1,LSP
DO 10 K=1,LSP
XX(J+K)=0e

N={LSIDE=1)*%2
WRITE(KW,20)
FORMAT (//1H1,42H INITIAL ILLUSTRATION OF ITERATION WI THOUT,
17H ACCELERATIONeeee//31H (DXMAX IS THE MAXIMUM ABSOLUTE
39H CHANGE IN ANY COMPONENT OF THE VECTOR) /1H )
CALL INIT (N,X)
DO 30 IT=1,NITA
CALL XITER (LSIDEyXXsXyOXMAX)
WRITE(KWy40)IT,DXMAX |
FORMAT( 10H -ITERATION +13,10Xy9H DXMAX = 4E15.7)

WRITE(KW,50)
FORMAT (//7/44H TEST VAITK USING FOUR COMBINATIONS OF METHD ,
13H AND NPEReeees )
DXBES=HUGE
NPREP=0
D0 100 M=1,2
METHD=M
DO 90 NP=1,2
NPER=NP
WR ITE(KW 960 )My NPREP,NPER
FORMAT(//////728H TEST OF VAITK WITH METHD = ,I1,
10Hy NPREP = ,12,13Hy AND NPER = ,12//1H )}

VAITDR
VAITDR
VAITDR
VAITDR
VAITDR
VAITDR
VAITDR
VAITDR
VAITOR
VAITDR10
VAITOR11l
VAITDR12
VAITDR13
VAITDR14
VAITDR15
VAITDR16
VAITDOR17
VAITDR18
VAITDRL19
VAITDR20
VAITDR21
VAITDR22
VAITDR23
VAITDR24
VAITDR25
VAITDR26
VAITOR27
VAITDR28

we~NoWnPH LN e

VAITDR29-

VAITDR30
VAITDR31
VAITDR32
VAITOR33
VAITDR34
VAITODR35
VAITDR36
VAITDR37
VAITDR38
VA ITDR39
VAITDR40
VAITDR41
VAITDR42
VAITDR43
VAITDR44
VAITDR4S
VAITOR46
VA ITDR47
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CALL INIT (NsX) VAITDR48

KOUNT=0 VAITDR49
KPER=0 VAITDRS50
DO 70 IT=1,NITA : VAITDRS1
CALL XITER (LSICE, XX.X'DXMAX) VAITDR52
WRITE(KW+40)ITsDXMAX VA ITDR53
70 . CALL VAITK (NsX+sTAp)TByMETHD,KOUNTsNPREP ¢NPERKPER, VAITDR54
* SMAX s SMINy NTRACKW3SeX) VAITDR5S
IF(DXMAX-DXBES)80,90,90 VAITDR56
80 DXBES=DXMAX . VAITDR57
ME SAV=METHD ‘ VAITOR58
NP SAV=NPER VAITDRS9
90 CONTINUE VAITOR60
100 CONTINUE VAITODRG61
. ’ VAITDR62
WRITE(KW,110)MESAV,NPSAV VAITDR63
110 FORMAT(////36H THE BEST VALUES ABOVE WERE METHD = ,I1, VAITDR64
* 12H AND NPER = ,I1//34H FOR THIS COMBINATION, TRY VARIOUS » VAITDR6S
* 17H VALUES OF NPREP. ) VAITDR66
METHD=MESAV i VAITORGT
NPER=NPS AV : VAITOR68B
DXBE S=HUGE ' VAITDR69Y
DO 150 NP=1,4 ) VAITDRT0
NPREP=NP-2 . VAITDR71
WRITE(KW,120) NPREP VAITDRTZ2
120 FORMAT(///7//719H TEST WITH NPREP = ng/lH ) VAITOR73.
CALL INIT (N.X) . VALTDR74
KOUNT=0 ) VAITDR75
KPER=0 VAITORT6
DO 130 IT=1,NITA VAITORTT
CALL XITER (LSIDE +XX9¢X+DXMAX) VAITDR78
WRITE(KW,40)IT,DXMAX VAITDR79
130 . CALL VAITK (NsX»TAyTByMETHDy KOUNTy NPREPyNPERyKPER ) VAITDR8O
* SMA Xy SMINSNTRAC s KW+ S ¢ X) VAITDR81
1F (DXMAX-DXBES ) 140, 1504150 ) VAITOR82
140 DXBE S=DXMAX VAITDRS3
NPSAV=NPREP VAITDR84
150 CONTINUE VAITDRSS
’ VAITDRB6
WRITE(KW»160)INPSAV VAITDR8BY7
160 FORMAT(////7//29H THE BEST VALUE OF NPREP WAS ,12// VA1TORE8
* 49H NOW TRY EXTRAPOLATING THE EXTRAPOLATED VECTORSe. ¢ VAITDR8Y -
* 36H THIS IS CALLED SUPER-EXTRAPOLATION. ) VAITDR90
NPREP=NPSAV VAITDR91
NPREPB=0 ‘ VAITOR92
00 230 MP=1,2 VAITOR93
METHB=MP VAITDR94

88



‘a0

(s Xz N g}

o000

170

*

180
*

190
200
*
210
220
230

DO 220 NP=1,2

NPERB=NP
WRITE{KW,17O)METHDyNPREP 4NPERyMETHBy NPREP By NPERB
FORMAT(/////7/9H METHD = ,1148Xy9H NPREP = ,1248X,
8H NPER = 4I1//9H METHB = ,I1¢8Xy 10H NPREPB = 412,8X,
9H NPERB = ,I1/1H )
CALL INIT (N,X)
KOUNT=0
KPER=0
KOUNTB=0
KPERB=0
DO 210 IT=1,NITB
CALL XITER (LSIDEyXXsXyDXMAX)
WRITE(KW,40) IT,DXMAX
CALL VAITK (NyXsTAsTByMETHD  KOUNT ¢NPREP yNPERyKPERy
SMAX s SMINy NTRAC KWy Ss X)
IF(S)180,210,180
CALL VAITK (NyXeTCoyTDyMETHB KOUNTByNPREPB,NPERByKPERBy
SMAXy SMINs NTRACyKWy Sy X)
IF(S)190,210,190
WRITE(KW,200)
FORMAT (46H SUPER‘EXTRAPOLATION HAS PERFORMED JUST ABOVE. /
1H )
CONT INUE
CONTINUE

CONTINUE

END VAITK TEST DRIVER.

END
SUBROUTINE INIT (N,X)

INITIALIZES THE VECTOR X{*) FOR THE VAITK TEST DRIVER.

DIMENSION X (1)}

DO 200 J=1,N

200

X(J)=1.
RETURN

SUBROUTINE XITER (LSIDEsXX9XsDXMAX)

PERFORMS ONE BASIC ITERATION ON THE VECTOR X(*), FOR THE VAITK
TEST DRIVER.

IF MITER=0, THE JACOBI METHOD (METHOD OF SIMULTANEOUS REPLACEMENTS)
IS USED TO SOLVE A SYSTEM OF N LINEAR EQUATIONS.

VAITDRYS
VAITDR96
VAITOR97
VAITDRSS8
VAITDR99
VAITD100
VAITD101
VAITD102
VAITO103
VAITD104
VAITD10S5
VAITD106
VAITD107
VAITD108
VAITD109
VAITD110
VAITOL11l
VAITO112
VAITD113
VAITD1l1l4
VAIT D115
VAITD116
VAITOD117
VAITDL18
VAITD119
VAITOD120
VAITDlL21

VAITD122

VAITD123
VAITD124
VAITD125
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
XITER
XI TER
XITER
XI TER
XI TER
XITER
XI TER

NOMPVUNFOVE~NCVPWN -
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IF

MITER=1, THE GAUSS-SEIDEL METHOD (METHOD OF SUCCESSIVE

REPLACEMENTS) IS USED.

300

310

330
340
350
360
370

380

END

DIMENSION XX(11,11)+X(81)4XNEW(8L)

MITER=Q

.MITER=1

RFOUR=4
DXMAX=0e .
MOVE X (%) INTO XX(*y%)e
L=0"
DO 300 J=2,LSIDE
D0 300 K=2,LSIDE
L=L+1 .
XX (JsK)=X(L)
COMPUTE XNEW(*) FROM XX(*,.%),
L=0
DO 370 J=2,LSIDE
D0 360 K=2,LSIDE
L=L+1

XNEW(L)=(XX(J41pK)*XX(J*l,K)#XX(J,K-I)+XX(J'K+1l)/RF0UR’

DX=XNEW(L)=X(L) :
-IF(DX)3104320,320
DX==DX :
IF(DX-DXMAX)3404340,330
DXMAX=DX
IF(MITER)350+9360,350
XX(JsK)=XNEW(L)
CONTINUE
CONTINUE
: UPDATE X(*) FROM XNEW(*),.
N=(LSIDE=~1)**2 :
DO 380 J=1sN
X{(J)=XNEW(J)

RETURN

XITERe.
END

XITER

XI TER
XITER
XITER
XI TER
XITER
XITER
XI TER
XITER
XI TER
XITER
XITER
XITER
XITER
XITER
XI TER
XITER
XITER
XI TER
XITER
XITER
XI TER
XITER
XITER
XI TER
XITER
XI TER
XITER
XITER
XI TER
XITER
XITER
XI TER
XITER
XITER
XI TER
XITER
XI TER
XI TER
XITER

06



L
VITA

Ronald Charles Walters
Candidate for the Degree of

Master of Science

Thesis: THE INVESTIGATION AND NUMERICAL SOLUTION OF SELECTED BOUNDARY
VALUE PROBLEMS

Major Field: Computing and Information Sciences
Biographical:

Personal Data: Born in Miami, Oklahoma, September 24, 1952, the
son of Mr. and Mrs. Gordon L. Walters.

Education: Graduated from Miami High School, Miami, Oklahoma,
in May, 1970; received the Degree of Associate of Arts from
Northeastern A & M, Miami, Oklahoma, in May, 1972; received
the Degree of Bachelor of Science from Oklahoma State Univer-
sity, Stillwater, Oklahoma, in May, 1974; with a major. in
Mathematics; completed requirements for the Master of Science
degree at Oklahoma State University, in May, 1976.

Professional Experience: Graduate Teaching Assistant in the
Computing and Information Sciences Department at Oklahoma
State University from August, 1974 to May, 1976; member of
the Association for Computing Machinery; Vice President of
the OSU Student Chapter of the ACM from August, 1975 until
May, 1976.



