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PREFACE 

This thesis is a description of a microprogrammed simulation 

system for general purpose register and fixed purpose register minicom­

puters. Such systems aid in the efficiency in which assembler programs 

are developed for certain classes of minicomputers. The description is 

designed to instruct the reader in microprogramming techniques and how 

these techniques might be implemented. 
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George E. Hedrick and Dr. James R. Van Doren, for their invaluable 
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CHAPTER I 

INTRODUCTION 

This thesis is a presentation of a method for developing a 

microprogrammed simulation system for minicomputers chosen under two 

classifications (14): general purpose register systems and fixed 

purpose register systems. Of the classes of minicomputers, these two 

represent the largest number of minicomputers available on the market 

today. They are also more closely related than any other two classes 

of minicomputers. 

The first classification consists of minicomputers with a General 

Purpose Register (GPR) structure. The hardware registers of this 

type of machine serve many functions. Two functions the registers 

serve are ( 1) index registers and (2) general purpose accumulators. 

In one section of an assembler program, a register may be u8ed as an 

index register to· obtain the effective address of an operand, which 

is to be used in computations of some form; and in that same section 

of the program the register may be used to contain the operand itself. 

Examples of machines with this hardware register configuration are 

the MODCOMP II and III (15) and the INTERDATA 7/16 (10). A subset 

of the instructions for the INTERDATA 7/16 has been defined for 

simulation purposes and is contained in Appendix C along with a 

sample assembler program run. 

Minicomputers in the second classification have a Fixed Purpose 
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Register (FPR) structure. There are several different types of hard­

ware registers used in such systems. Accumulators are designed to 

hold intermediate results of computations and serve a significant 

role in the Arithmetic Logic Unit (ALU). Index registers are used to 

determine the effective address of some operands and serve as an im­

portant tool in the use of data arrays as a primary data structure 

at the machine level. Extension registers, usually of one bit, serve 

as overflow or carry indicators for the accumulators. Depending upon 

the particular system, there may be many more registers that serve 

various purposes. Examples of machines with this hardware register 

configuration are the HEWLETT-PACKARD 2114A, 2115A, and 2116B (1), 

the VARIAN 520/i (20) and the INTERDATA Model 1 (9). A subset of the 

set of instructions for the HEWLETT-PACKARD 2114A has been defined 

for simulation purposes and is contained in Appendix C along with a 

sample assembler program ruil. 

Simulators can be written for a large number of minicomputers in 

high level languages, such as FORTRAN or PL/I, on large host computers. 

This facilitates the incorporation ofmore sophisticated diagnostics 

into the simulation system, thereby decreasing the amount of debugging 

time required for any particular assembler language program. One 

reason this sophistication is usually not built into most minicomputer 

translation systems is the relatively small amount of main core 

storage available to the system. With this restriction, the producers 

of systems software must keep the size of the translators down to a 

minimum. 

Minicomputers are playing an increasingly more important role in 

the computing industry. This is one J;'eason for the development of 
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more generalized simulation systems. Minicomputers are used for 

such purposes as laboratory machines to monitor experiments, inter-

face devices in computer networks and interface devices between iarge 

computer systems and peripheral devices. In some cases they are 

even used for •utomobile care and maintenance. Their versatility is 

mainly due to the fact that D10st minicomputers are bus oriented 

machines. A data bus allows information from external devices or 

internal registers to be transferred to logic units and back again 

along a single data path. This helps to lower hardware costs and 

make the system more flexible. It is not unusual .for as many as 256 

external devices to be connected to a single data bus. 

An introduction to the subject of microprogramming is given in 

Chapter II. Background information and an illustration of a small 

microprogrammed system are discussed. · An explanation of some of the 

differences between fixed instruction computers and microprogrammed 

computers is also given. 

The simulation system itself is composed of a_cross assembler and 

an interpreter. The two pass assembler is described in Chapter III. 

The scanner for detecting labels 811d operation codes, pass I symbol 

table construction and object (machine) code generation in pass II are 

discussed. Assembly time error detection and-diagnostics are also 

discussed. 

The object code generated by the assembler is input to the inter-

preter. The interpreter is actually a microprogrammable pseudo-machine 

for which microprograms are design,ed Fo simulate instruction execution 

for a des;l.red system. Pass II of the assembler loads the simulated 

memory with the generat.d'object ~ode and it is from this simulated 
' ' 
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memory that the interpreter obtains the machine instructions. Chapter 

IV contains a description of instruction fetch and execution, execution­

time error detection, and input/output formats. Microinstruction 

formats and the development of microprograms for the simulated instruc­

tions are also discussed. It is not the purpose of this thesis to 

treat the subjects of input/output and interrupt servicing in great 

detail. Therefore, these subjects are only briefly discussed in terms 

of the microinstructions required to perform their basic functions. 

The simulation process can be thought of as a sequence of state 

transitions. Figure 1 and Table I illustrate the state transitions in­

volved in the simulation process. 

Figure 1. State Transitions of the Simulation Process. 

Chapter V is a Users Manual and describes the deck setup and op­

tions for us~ng the assembler-interpreter. The assembler output format 

and error messages are also discussed. A summary and further study is 

presented in Chapter VI. Appendix A contains a list of symbols used in 



the description of the simulation system. A .logic block diagram of 

the system is given in Appendix B and Appendix C contains sample 

assembler program runs and the output. Appendix D is a systems pro-

grammers guide to modifications of the simulation system. 

TABLE I 

DESCRIPTION OF STATE TRANSITIONS 
FOR FIGURE 1 

State 

0 (Start state) 
1 
2 
3 
4 
5 (Final state) 

Description 

Hardware register definition 
Instruction set definition 
Job control recognition 
AEtsembly of source program 
Object program interpretation 
Termination of job stream 

The basis for the method of construction of the simulator pre-

sented in this thesis was developed by Hill and Peterson (7) in their 

description of a microprogrammed Small Instructional Computer (SIC). 

This computer has a fixed purpose register structure with two 

accumulators, 'two index registers and one extension register. The 

instruction set is sufficiently large ·to illustrate most points about 

a microprogrammed system. The design of the microinstruction set was 

influenced by Husson (8) in. his description of the microprogramming 

techniques for large scale computers. 
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CHAPTER II 

MICROPROGRAMMING 

Introduction 

The term microprogramming was first coined by Professor M. V. 

Wilkes of the Cambridge University Mathematical Laboratory in 1951 (21, 

22). In his thesishe stated that one can envision the control portion 

of a computer as effecting a number of register-to-register transfers of 

information in order to carry out the execution of a single machine in­

struction. Each of these steps can itself be thought of as the execu­

tion of an instruction for some machine (whose existence is unknown to 

the programmer). The steps used tq effect a single instruction in the 

user machine can be thought of as constituting a program, usually 

called a microprogram. Microprograms can also be used for other nec­

essary operations which are in some sense invisible to the programer, 

for example, fetching the next instruction or computing effective 

addresses. 

There are at least' two approa¢1es to microprogrammed control, and 

they differ significantly from one another. One, called "vertical or 

sequential microprogramming" ( 18), relies on the more traditional 

c~cept of programming in which an instru~tion contains an operation 

code, secondary modifiers and one or more address fields. Iri this 

case tbre~ adpressable storage areas are associated with the host 

machine: (1) main store, (2) control store and (3) local store. 
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Local store consists of registers and can be conceived of as being a 

general purpose storage area for use by the microprograms. 

The other approach, called "horizontal microprogramming" (18), 

uses the microinstructions as control words whose individual bits are 

used to select specific data paths within the machine. In this case 

there are no addresses other than those implicitly specified by the 

bits of the control words. Although this scheme is less general than 

vertical microprogramming, it is possible to make more efficient use 

of the hardware of machines organized in this way. A modified version 

of the horizontal microprogramming scheme is used in the interpreter 

which is described in detail in Chapter IV. 

In either case, the microinstructions generally are held in a 

control store, usually faster than main store, for which there must be 

some form of aecessing mechanism. The majority of such systems use a 

non-destructive read-only store (ROS or ROM) for reasons of speed and 

economy. The read-only nature of these devices also insures the inte~ 

grity of the simulated machine. 

Alternatively, a few machines are now equipped with writable con­

trol stores implemented in core arrays. Such core arrays generally 

are built so that they have the properties of fast reading and slow 

writing (16). Fast reading is necessary for performance and slow 

writing can help in cost reduction. 

Fixed Instruction Computers 

In order to contrast some of the aspects of fixed instruction 

computers and microprogrammed computers, a description of some of the 

major characteristics Of fixed instruction compqters follows. 

7 



The hardware of fixed instruction computers generally is divided 

into four units (Figure 2): (1) an input/output unit, (2) memory (or 

storage), (3) an arithmetic-logic unit, and (4) a control unit. In 

general, the input/output unit consists of more than one physical de-

vice but input and output are often considered together. 

Figure 2. 

CONTROL 
UNIT 

ARITHMETIC 
UNIT 

Simplified Block Diagram for Fixed Instruction Stored 
· Program General Purpose Computers [!rom Micropro­

grannning Handbook (14)] 

Memory is considered in ~ts conventional way, a series of memory 

cells and registers used to store the instructions of a program while 

in execution. Addresses are associated with each memory cell and with 

8 

all registers •. The control unit of the computer can refer to a storage 
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register by its number (or address). This is called the address pro­

perty of the storage register (6). Storage registers have two other 

properties: (1) non-destructive read-out and (2) destructive write-in. 

Non-destructive read-out refers to the property of accessing the con­

tents of a register without destroying it. Destructive write-in refers 

to the property of destroying the previous contents of a register when 

information is stored into the register. 

All arithmetic is performed in the arithmetic-logic unit. There is 

at least one accumulator or general purpose register in the ALU of any 

computer. The structure of the machine is such that the contents of the 

accumulator or general purpose register can be tested to determine the 

characteristics of the value. Usually, this simply means to determine 

if the value is less than, equal to, or greater than zero. This is the 

basis for all logical and conditional operations that may be performed 

by the system. 

The control unit coordinates the interaction of all the other units. 

When a program is in execution, the control unit retrieves instructions 

from memory in the proper order and also initiates the execution of each 

instruction. In the simplified case, the control unit has two special 

registers: (1) the instruction register (IR) and (2) the program coun­

ter (PC) or program status word. The PC contains the address of the 

next instruction to be executed. The IR contains the machine instruc­

tion currently being executed. Generally, the ALU and the control unit 

are together called the Central Processinf Unit (CPU). 

Microprogrammed Computers 

Microprogrammed computers are very similar to fixed instruction 
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computers, but there is one significant difference: the control 

memory (Figure 3). Control memory is divided into sections. Each 

section contains the microinstructions that perform the operations of 

a particular machine instruction. Each time a machine instruction is 

fetched, it goes through a decoding process that breaks the instruction 

up into its appropriate fields and then control is transferred to the 

microprogram associated with the particular instruction. In the most 

general sense, microprograms can have some degree of modularity with 

the use of branching instructions and microprogram subroutines. 

CONTROL 
MEMORY 

CONTROL 
UNIT 

" 
Figure 3. Simplified Block Diagram for :Hicroprog~ammed Computers 

(From Microprogramming Handbook (13)] . 



-------

Microprogramming represents a systemic approach to control. 

Figure 4 depicts a ficticious vertical microprogrammed machine and 

its control functions. The characteristics of this machine can be 

summarized as: stored program, word organized, single address (18). 

MEMORY 

MAR 

9 

PC 

·Figure' 4. 

11 
-READ 

1 

16 

ADDERS 
2 

ACC ZERO 

CLEAR 

7 CONTROL 

8 15 

A Simple Fixed Purpose Register Machine 
[From Rosin (18)] 

6 

5 

11 
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The register and storage structure is not unlike many modern fixed 

purpose register computers. But, in general, many modern computers 

have a series of accumulators, multiple address instructions, and a 

multipurpose Program Status Word (PSW). The machine in Figure 4 does 

not use the bus concept of data transfer; for ease of illustration~ 

The execution or interpretation of an instruction can be consi-

dered as a series of register-to-register transfers. A few other 

primitive functions have been added, such as clearing a register and 

initiating main memory reads and writes. Table II summarizes the valid 

operations of the machine in terms of these primitives (18). 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17. 
18 

TABLE .II 

CONTROL LINES FOR FIGURE 4 
[From Rosin (18)] 

MDR~ ACC 
ADDERS.._ MDR 
ADDERS +- ACC 
.ACC +-ADDERS 
ACC +- MDR 
IR +- MDR 
MAR+- ADDRESS PART 
PC ._ ADDRESS PART 
MAR+- PC 
PC+- PC+ 1 
MS READ 
MS WRITE 
CLEAR ACC 
CLEAR ADDERS 

BRANCH INSTRUCTION 
CONTROL ~ OPCODE 
CONTROL ~ AC • 0 
CONTROL +- AC NEG 
UNCONDITIONAL 

'.j,· 
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' For this particular machine the ACC is used strictly for computa­

tional purposes and for conditional (negative or zero) branching. The 

ADDERS work together with the ACC to perform the necessary arithmetic. 

The machine instructions consist of an operation code and an operand 

field and the IR is used in decoding the instructions. The MDR and 

MAR are used ::t.n conjunction to perform the memory access functions. 

The MDR contains the data word and the MAR contains the address of the 

data word. The PC is used as a pointer to the current i~truction for 

instruction fetch and may only be incremented to point to the next 

memory word. The functions of the CONTROL unit, in this ease, are few 

in nwnber: fetch and decode the next instruction and handle any nee-

essary branching. 

To implement a simple ADD instru~tion (addition of the contents 

of the MDR to the contents of the ACC) this sequence of microinstruc-

tiona may be specified. 

14 CLEAR ADDERS 

2 ADDERS ~ ACC 

3 ADDERS ~ MDR 

1 ACC +- ADDERS 

Except for the fact that these four instructions contain no address 

parts, the sequence resembles a short conventional program. 

As in any other automatic computer, microprograms require the 

capability to execute branches of control, bqth conditional and un­
\ 

conditional. In this simplified machine, conditional branches may be 

baaed fn a zero or negative value in the ~C or the opcode itself. 

In the latter case, the value of the opcode determines the destination 

of the branch. For instructions 16, 17, ~d 18, a single address 
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part must be specified. 

Figure 5 contains a set of microprograms which simulates a simple 

machine using the organization of Figure 4. Address modification is 

not used and, in this case, it is not possible to modify the micro­

program store. IFETCHl simply updates the PC to point to the next 

instruction. IFETCH2 loads the next machine instruction into the IR 

and transfers the control of the program to the control unit. Note 

that the PC must be initialized at some point before the execution of 

the first machine· instruction. ADD fetches a data word from memory 

and adds the data word to the contents of ACC. The result is placed 

into the ACC. CLEAR ADD simply fetches a data word from memory and 

loads it into the ACC• STORE ACC stores the contents of the ACC into 

the memory word designated by the address part of the IR. TRA loads 

the address part of the inStfuction into the PC and branches to IFETCH2 

{a conventional branch or jump). TRA IF ACC NEG tests the ACC for a 

negative value. If the value is negative, then a branch is made to 

TRA, otherwise the next sequential instruction is fetched. STORE ZERO 

uses the ACC to store a zero value in a memory data word. 

Figure 5 illustrates how the instruction set of a simple machine 

may be represented by a set of microprograms. The same concepts apply 

to the instruction sets of more sophisti,cated machines. Chapter IV 

discusses a more general approach to the development of the instruction 

sets for GPR and FPR minicomputers than the approach discussed in this 

chapter. 
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10 · IFETCH1: PC+- PC + 1 
9 IFETCH2: MAR+- PC 

11 READ 
6 IR+- MDR 

15 CONTROL ~ OPCODE 

7 ADD: MAR +- ADDRESS PART 
11 READ 
14 CLEAR ADDERS 

2 ADDERS +- ACC 
3 ADDERS +- MDR 
4 ACC +- ADDERS 

18 (IFETCHl) GO TO IFETCH1 

7 CLEAR ADD: MAR ~ADDRESS PART 
11 READ 
5 ACC ~MDR 

18 (IFETCHl) GO TO lFETCH1 

7 STORE ADD: MAR+- ADDRESS PART 
1 MDR~ACC 

12 WRITE 
18 (IFETCHl) GO TO IFETCH2 

8 TRA: PC +-ADDRESS PART 
18 (IFETCH2) GO TO IFETCH2 

17 TRA IF ACC NEG: IF ACC < 0 GO TO TRA 
18 (IFETCHl) GO TO IFETCHl 

14 STORE ZERO: CLEAR ADDERS 
3 ADDERS +- ACC 

13 CLEAR ACC 
1 MDR~ACC 

7 MAR +-ADDRESS PART 
12 WRITE 

4 ACC ~ADDERS 
18 (IFETCH1) GO TO IFETCH1 

Figure 5. A Simple Simulator 
(!rom Rosin (18)] 



CHAPTER III 

THE CROSS ASSEMBLER 

The first step in the simulation process is the conversion of 

assembler language source code into machine executable object code. 

This chapter contains a discussion of how this -objective is achieved. 

Included is the assembly process, code generation, error detection and 

processing and loading the generated code into the simulated memory 

for execution. 

To translate the source assembly program, the assembler must (1) 

replace each mnemonic op code with its equivalent binary code, and 

(2) replace each symbolic address with its corresponding location in 

memory. To achieve the former a table is kept with all the mnemonic 

op codes and corresponding binary code along with other vital informa­

tion. for the assembly process. Each time an assembler source state­

ment is encountered, a table lookup is performed in order to determine 

the binary code equivalent. The op code table is generated in an earlier 

phase of the simulation process. This topic is discussed in Chapter· V. 

In order to achieve (2) it is necessary to keep another table, called 

a symbol table. Each time a symbolic reference is made, a table look­

up is performed in order to determine the corresponding absolute 

machine address. 

Two scans of the source code are required to complete the assembly 

process for the cross assembler. It is possible to make only one 

16 
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scan and achieve the same end, but· the process is much more complicated 

and requires additional uhousekeeping". The first scan determines 

which location in memory is to be assigned to each symbol and during 

the second scan the assembler produces the binary object code. Each 

phase of the assembly process is described in the following paragraphs 

along with the method used for its implementation. 

Scanner 

The scan phase serves two purposes: ( 1) allows the label identi-

fier to be separated from the source statement so it may be placed in-

to the symbol table, and (2) allows the op code to be separated from 

the source statement so that a search may be made of the op code table 

to find the equivalent binary code. The process of isolating the iden-

tifier can be handled in several ways. One way to accomplish this is 

by the development of a Finite State Automaton (FSA) to recognize the 

identifiers. Figure 6 represents a possible FSA for recognizing 

identifiers. 

ALPHABETIC 
CHARACTER 

Figure 6. 

ALPHABETIC CHARACTER OR 
DECIMAL DIGIT 

FSA for Recognizing Label Identifiers 

State 1 is the "start" and a transit~on to the "final" state, 
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state 2. may only be made \Dlder an alphabetic character. A transi-

tion from state 2 to state 2 may be made under an alphabetic character 

or a decimal digit. As each transition is made, the character recog-

nized is catenated onto the current symbol to form the complete iden-

tifier. Notice that a count must be kept of the length. of the symbol 

so that the symbol will not become larger than the space available 

for the identifier in the symbol table. 

Another method for isolating the identifier, which is similar 

to the first method. is the simple catenation of valid characters in 

the label field onto the current symbol. The catenation process is 

continued until a blank character or the end of the field is encoun-

tered. The latter mathod is the one used in the cross assembler 

described later in this chapter. 
' 

The scan phase for recognizing the mnemonic op codes can be 

constructed in exactly the same way as th~ phase for recognizing the 

label identifiers. The only difference being in the mnemonic op code 

table lookup performed after the field has been scanned. 

Symbol Table Construction and Processing 

The operation code symbol table is constructed prior to the 

assembly process so it will not be treated in this section. It is 

. discussed in detail in Chapter V. The table discussed in this section 

is the identifier symbol table and its general structure is shown in 

Figure 7. Notice that the symbol table is actually composed of two 

tables: ( 1) the symbol definition table, and (2) the symbol refer­

ence table. Table (1) contains the identifier, its value, the 

statement number in which it was defined and a pointer to the reference 
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table (Figure Sa). Table (2) contains the statement numbers where the 

identifier is referenced. The reference for each identifier are 

linked by means of pointers to the subsequent references. The refer-

ence table is kept so that a cross-reference listing may be printed 

after a program has been assembled. Figure 8b shows the node structure 

for each entry in the symbol reference table. 

Symbol Definition Table Symbol Reference Table 

s v D REF ... 

5 
~ 

• 
1\ 

.. • CJ 
I I /\ 
I I 
I I 

I 
I 

I 

Figure 7. The Ident~fier Symbol Table 

The symbol table is constructed in a sequential manner and table 

lookup also is done sequentially. This method may be somewhat slower 

than other methods, such as "hashing" techniques or binary searching, 

when the table becomes very large, but it is straight forward and does 
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not require function evaluations and/or pointer updating when a symbol 

is defined or referenced. 

Identifier . Value 
· St.atemertt 

declared 

(a) node format for symbol definition table 

Statement 
referenced 

Pointer to 
next reference 

(b) node format for symbol reference table 

Pointer to the 
reference table 

Figure 8. NodeFormats for Symbol Table 

Pass I 

Pass I has two primary tasks: (1) to construct the identifier 

symbol table, and (2) to determine the binary code representation for 

the mnemonic op code and substitute it into the maChine instruction. 

A location counter (or p:ogram counter) is kept in both pass I and pass 

II in order to determine the exact location in the simulated memory 

to place the instruction. Afte.r eaCh instruction is interpreted, the 

program counter is incremented by the length of the instruction. 

The firSt step is to read a new line. of the source assembly 

program. Since pass II will need to reread the input source program, 

a copy of the input is produced on an auxiliary storage device • 

Label Field • 

An identifier found in the label field is placed into the symbol 



table along with the current value of the program counter. Before an 

identifier is placed into the table, a search is made to ensure that 

the symbol has not been previously defined. 

Mnemonic Op Code Field 

After a mnemonic op code has bee.n recognized, an operation 

code table lookup is performed. If the mnemonic is not present, a 

record of the error is kept. If present, the binary code equivalent 

is placed into the machine instruction. 

Operand Field 
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There are five instructions for which the operand field is parsed 

during pass ~: (1) EQU, (2) ORG, (3) DC, (4) DS and (5) END. For 

these instructions it is possible to interpret the contents of the 

operand field the first time the instruction is encountered. Note that 

this places a restriction upon the use of the EQU, DC, and DS instruc­

tions. It must be possible to resolve all symbolic references at the 

time the instructions are first encountered. These instructions are 

provided by the simulation system and need not be defined by the user. 

The formats. for these instructions are given in Chapter v. 

Pass II 

The purpose of pass II is to complete the machine instructiqns by 

using the symbol table constructed in pass I and to resolve all sy~ 

bolic reference•. The oper&nd field may be divided into as many as 

five separate fields, depending upon the type of machine being simu­

lated. Commas are used as delimiters in the operand field. The 
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relative position of a value in the operand field dictates its posi-

tion in the machine instruction. The assembler language operand field 

syntax for GPR systems is given in Table III and the operand field 

syntax for FPR systems ls given in Table IV. 

Type 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

TABLE III 

OPERAND FIELD SYNTAX FOR GENERAL PURPOSE 
REGISTER SYSTEMS 

Syntax 

X1 
D1 
R1,R2 
B1,D1 
R1,K1 
R1 ,D1 
R1,X1 
81 
R1.S1 
R1,R2,S1 
R1 ,Xl ,S1 
R1 ,D1,S1 
B1 ,D1 ,Sl 
R1 ,Il 
R1,B1,D1 
Sl,S2 
S1,Il 
D1,S1 
R1 ,D1 ,D2 
R1 ,R2 ,D1 
blank field 

The instruction type dominate~ the valid combinations of operands 

in the operand field. The meaning of the symbols used in the operand 

field definitions of the two classes of machines is given in Appendix A. 
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Examples of the types of operandS that can be specified for GPR ma-

chines, taken from Table III, follow. The syntax of the operand 

specifications closely resemble that of the simulated test machine, 

the INTERDATA 7/16. 

2 +12 
8 SYM-2400 

11 o.15,*+48 
13 12.-64,* 
16 SYMl,SYM2+4 
17 SYM 1•A(*-28) 
20 9'.10,+8 

Examples of the types of operands that can be specified for FPR ma-

chines, t~en from Table IV, follow. The syntax of the operand speci­

fications closely re·semble that of the simulated test machine, the 

HEWLETT-PACKARD 2114A. 

1 ALPHA+4 
2 •X 100FF 1 

3 OPR1,0PR2 10PR3 
5 12 

TABLE IV 

OPERAND FIELD SYNTAX FOR FIXED PURPOSE 
REGISTER SYSTEMS 

Type 

1 
2 
3 

4 
5 

Syntax 

S1 
I1 
operate function 1, ••• , eperate . 

function 5 
blank field 
K1 
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Grammars are constructed to aid in the translation of the operand 

field. Since PL/I supports recursive procedures, the grammars are 

coded directly into the PL/ I source language. Figure 9 illustrates 

the grammar used to parse the operand fields of the assembler state­

ments for GPR systems. Figure 10 illustrates the grammar used to. 

parse the operand fields of non-operate instructions for FPR systems 

and the grammar used for operate instructions is given in Figure 11. 

ARFLD: DECL; DSTOR; RSPEC; ASPEC; ASPEC , ASPEC; ASPEC , ASPEC , ASPEC. 
DECL: B QDIGITS; F QDIGITS; X QDIGITS; A LADDR. 
QDIGITS: ' SDIGITS '• 
SDIGITS: + DIGITS; - DIGITS; DIGITS. 
DIGITS: DIGIT DIGITS; DIGIT. 
DSTOR: PDV DECL. 
LADDR: ( ASPEC ) • 
RSPEC: SERPDV; ASPEC, • DECL; PDV; ASTARTH , ASP:ii:.C; ASTARTH. 
SERPDV: PDV ADITSPEC. 
ADITSPEC: COMPDV; COMASPEC. 
COMPDV: CTERMPDV COMASPEC; CTERMPDV. 
CTERMPDV: , PDV; , ASTARTH. 
COMASPEC: • ASPEC; , ASTARTH. 
PDV: DECINT. 
DECINT: INT DECINT; INT. 
ASPEC: * ASTARTH; *; SYMADDR; PDV. 
ASTARTH: + PDV; - PDV. 
SYMADDR: SYMI ASTARTH; SYMI. 
SYMI: LET SYMJ; LET. 
SYMJ : LET SYMJ ; INT SYMJ ; LET ; INT. 
INT : 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 • 
LET: A; B; C; D; E; F; G; H; I; J; K; L; M; N; 0; P; Q; R; S; T; U; 

V; W; X; Y; Z; &; $; %; II; @. 
DIGIT: 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; A; B; C; D; E; F. 

Figure 9. Grammar for Parsing Operand Fields of GeneraL Purpose 
Register Systems 

The grammars illustrated in Figures 9, 10 and 11 use certain con-

ventions for distinguishing metasymbols, non terminal symbols and 
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terminal symbols (5). The nonterminal symbols on the left hand side of 

a rule are always followed by the metasymbol, colon ( :) • The right hand 

side alternatives of the rules immediately follow the colon and are 

separated by a semi-colon (;). The last alternative of a rule is fol-

lowed by a period (.). All symbols not appearing on the left hand 

side of a rule are terminal symbolS and all other symbolS which are 

not metasymbols are nonterminal symbols. 

ARFLD: DECL; DSTOR; ASPEC; a DECL. 
DECL: B QDIGITS; F QDIGITS; X QDIGITS; A LADDR. 
QDIGITS: I SDIGITS '· 
SDIGITS: +DIGITS; - DIGITS; DIGITS. 
DIGITS: DIGIT DIGITS; DIGIT. 
DSTOR: PDV DECL. 
LADDR: ( ASPEC ) • 
PDV: DECINT. 
DECINT: !NT DECINT; INT. 
ASPEC: * ASTARTH; * ; SYMADDR; PDV. 
ASTARTH: + PDV; - PDV. 
SYMADDR: SYMI ASTARTH; SYMI. ·· 
SYMI: LET SYMJ; LET. 
SYMJ: LET SYMJ; INT SYMJ; LET; INT. 
INT: 0; 1; 2; 3; 4; 5; 6; 1; 8; 9 •. 
LET: A; B; C; D; E; F; G; H; I; J; K; L; M; N; 0; P; Q; R; S; T; U; 

V; W; X; Y; Z; &; $; %; II; @. 
DIGIT: ,0; 1; 2; 3; 4; 5; 6; 7; 8; 9; A; B; C; D; E; F. 

Figure 10. Grammar for Parsing Non-Operate Operand Fields o,f 
Fixed Purpose Register Systems. 

Grammars give a systematic method for parsing the operand fields 

of the assembler statements. Using a grammarallows the operand 

field to be separated into.sub-fields and the semantic meaning of each 

sub-field determined. For example, if an identifier is encountered, 

a sequential search through the symbol table can be made to find the 



value of the identifier. Once the value has been determined, parsing 

of the field may continue in order to evaluate any modifiers of the 

symbol value. 

OPRSPEC: OPRLIST. 
OPRLIST: OPR , OPRLIST; OPR. 
OPR: ALPHA ACHAR; ALPHA. 
ACHAR: ALPHA ACHAR; NUM ACHAR; ALPHA; NUM. 
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ALPHA: A; B; C; D; E; F; G; H; I; J; K; L; M; N; 0; P·; Q; R; S; T; U; 
V; W; X; Y; Z; &; $; %; II; i. 

NUM: 0; 1; 2; 3; 4; 5; 6; 7; 8; 9. 

Figure 11. Grammar for Parsing Register Operate Operand Fields 
of Fixed Purpose Register Systems 

Error Detection 

Error detection. is accomplished in both passes of the assembler. 

Invalid symbols and mnemonics are detected by the scanner in pass I. 

Syntactical errors are detected during the evaluation of the expres-

sions in the operand fields. The use of grammars aids in the error 

detection facility. The grammars define the form that must be fol-

lowed in specifying operands. An error occurs any time the form is 

not followed. As each error is detected, the code for the error is 

placed into the identification record for the a~sembler statement. 

When the source listing is printed in pass II, the errors detected 

in each statement are printed immediately following the statement. 

A list of all assembly errors is given in Chapter V. 
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Assembler Output 

In addition to code generation, the assembler normally produces 

a printed output. The output consists of the location of each instruc-

tion (in hex), the object code (in hex); the statement number artd a 

listing of each source statement. Errors, if any, are indicated imme-

diately following the statement in error. Following .the source listing 

is the symbol table and cross-reference dictionary which contains the 

symbols, their associated values (in hex) and a list of the statements 

in which the symbol is referenced. An indication as to the number of 

assembly errors is also given. 

Loader 

The machine instructions generated throughout the assembly pro-

cess are loaded into the simulated memory for execution. For a GPR 

system, loading begins at memory location zero. But for FPR systems, 

loading begins at the first location in page one of the simulated 

memory. In this context, a page refers to a physical memory page used 

by most fixed purpose register minicomputers in address/page mapping 

schemes. Page zero is used by the assembler for patching direct and 

indirect addresses that cannot be .accessed in the current page. The 

user is not permitted to access any memory location in page zero, 

other than location zero. This helps to keep all indirect references 

intact. Once loading is completedthe program is ready for execution • 
• 



CHAPTER IV 

THE INTERPRETER 

The binary object code generated by the assembler is loaded into 

the simulated memory for execution. The machine instructions must be 

interpreted to carry out the processes of the simulated machine. This 

chapter describes how the machine instructions are fetched from memory 

and decoded, how the microinstructions are used in the decoding pro­

cess, error detection and debugging aids. 

Instruction Fetch.and Execution 

Execution begins with the first instruction of the machine 

language program.· The address of this instruction, along with other 

vital information is known to the interpreter through the use of 

"global" variables. Once the addres~ is determined in the assembly 

phase of the .simulation process, the global variable is assigned the 

address of the first executable instruction. The information con­

tained in the global variable is passed to the PC and primes the in­

struction fetch cycle. The complete instruction fetch and execution 

cycle, as shown by Hedrick (6), is illus.trated in Figure 12. This 

is an overview of the subject matter discussed in the remaining 

portion of the chapter. The actual implementation of the fetch-execute 

process is much more complicated than is shown. The PC and IR are the 

most important registers used in the fetch-execute cycle. Once the 

28 



29 

address of the next instruction is determined, the instruction is 

extracted from memory and loaded into the IR. 

START 

SET TO 
FETCH 
CYCLE 

... ,, 
FETCH DECODE 

INSTRUCTION FETCH FETCH EXECUTE AND EXECUTE 
AND PUT IN IR - OR EXECUTE r THE 

CYCLE? INSTRUCTION 

, , 
INCREMENT SET TO 

CONTENTS FETCH 
OF PC CYCLE 

, , 
SET TO 
EXECUTE 

CYCLE 

, 

Figure 12. Instruction Fetch and Execution Cycle 
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At this point the PC is updated and the instruction is subjected to the 

decoding process. The decoding process consists of determining the 

registers and/or addresses specified in the instruction, performing a 

table lookup of the binary operation code and executing the correspon­

ding microprogram. The machine instruction formats for GPR and FPR 

systems are displayed in Figures 13 and 14, respectively. (See Appen­

dix A for the symbols used in the two figures.) Notice that the 

operation code must appear in the same field of every instruction. The 

interpreter mus.t know where the operation code resides within the ma­

chine instruction even before the instruction format is known~ This 

and other related information is part of the initial machine definition 

and is .discussed in Chapter V. 

The implementation of a simutation system for the INTERDATA 7/16 

required the use of eight of the instruction formats displayed in 

Figure 13: 1, 3, 5, 8, 9, 11, 14; and 21. Fifty-four of the instruc­

tions for the INTERDATA 7/16 have been simulated and a number of them 

tested in a sample program (See 4Ppendix C). 

The implementation of the HEWLETT-PACKARD 2114A required the use 

of three of the instruction formats of Figure 14: 1, 3, and 4. 

Appendix C displays the program used to test the simulation system 

for the H~WLETT-PACKARD 2114A. Machine instruction format 3, Figure 

14, is used to specify the register operate instructions. Operate 

instructions manipulate the contents of internal hardware registers 

and exercise certain control functions withoqt referencing the random 

access simulated memory. 
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1. l()p CODE X1 

2. loP CODE D1 

3. lo:P CODE R1 I R2 

4. loP CODE B1 D1 

5. loP CODE R1 K1 

6. loP CODE R1 D1 

7. lOP CODE R1 X1 

8. loP CODE S1 

9. I§P CODE R1 S1 

10. loP CODE R1 R2 S1 

11. loP CODE R1 I X1 S1 

12. loP CODE R1 D1 S1 

13. loP CODE B1 D1 S1 

14. loP CODE R1 X1 

15. loP CODE I R1 B1 D1 

16. loP CODE S1 S2 

17. lOP CODE S1 Il 

18. loP CODE D.l S1 

19. lOP CODE R1 D1 D2 

20. lOP CODE -R1 R2 D1 

21. loP CODE I 0 
I 

Figure 13. Machine Instruction Formats for General Purpose 
Register Systems 
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2. 

3. 

4. 

5. 

I OP CODE ADDRESSING MODE Sl 

I OP CODE 11 

I OP CODE REGISTER OPERATE MICROINSTRUCTIONS 

I OP CODE 0 

I OP CODE Kl 

Figure 14. Machine Instruction Formats for Fixed Purpose 
Register Systems 

Machine Instruction Decoding 

As part of the execution phase of the simulation system, the 

decoding process. consists of three main operations: (1) performing 

a table lookup of the binary operation code, (2) determining the reg-

isters and memory locations involved in the execution of the instruc-

tion, and (3) executing the microprogram that corresponds to the 

instruction. 

The first operation is relatively simple. The operation code 
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is extracted from the instruction and placed into a temporary location. 

The op code table is then searched sequentially until the op code is 

found. Once the operation code is located, all information (instruc-

tion format, instruction l~ngtp, number of operands, etc.) concerning 

the instruction becomes available. 

The function of the instruction format is to show how the operand 

fields of the instruction are to be used. It specifies when an oper-

and field of a machine instruction represents a register or when it 

represents an absolute memory address. For example, if instruction 
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format 1 (Figure 13) is used, field 2 of the instruction specifies an 

index register·. The information contained in the operand fields of 

the machine instructions is used in the execution of the microprogram. 

This explains the function of operation (2). 

The tbi~d operation, executing the microprogram, is the most 

complex of the three operations. Each eleven digit microinstruction 

is placed into the Micro Instruction Register (MIR) (see Figure 15) 

and is subjected to a decoding process of its own. The MIR is a de-

eimal register ~d the sequence of decimal digits specify the micro-

operations to be performed. Figure 16 displays the register and bus 

configuration for valid micro-operation specifications for the 

mieroprogrammable pseodo-maehine. The user need only concern himself 

with the microinstructions necessary to accomplish the simulation of 

a desired instruction set. Instruction fetch and program counter up-

date are taken care of automatically by tne interpreter. The micro-

operations are defined in te.rms of data paths to and from input/output 

buses and specific hardware registers. In some eases, data paths are 

provided to work areas for the microprograms and also to areas eon-

taining the operand fields of machine instructions. 

I 0 I 1 

Conditional 
Operation 

Figure 15. 

~ 
Input_ 
Bus 1 

5 6 

~ 

Input 
Bus 2 

7 8 9 10 

~ ~ 
Input Output Bus 
Bus Connection 

Connection 

The Microinstructions for the Mieroprogrammable 
Pseudo-machine 
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MPR MAR PC WORK3 

MDR MAR PC WORK3 

Figure 16. Register and Bus Configuration for the Micropro­
grammable J.Tseudo-machiDe 

Positions 0-2 of the MIR are .used to specify conditional opera-

tiona. The contents of·work area registers may be tested and program 

.control determined from the results. Table V shows how the conditional 

operations may be specified. 

If position 0 of· the MIR is set to 1. positions 1 and 2 are de-

coded and the test operation performed. All other positions of the 

microinstruction are ignored. If the result of the test is "true"• 

the remaining microinstructions are decoded and executed. If the 

result is "false", the remaining microinstructions are not executed 

and control is transferred to the next sequential machine instruction. 

If position 0 of the MIR is set to o. positions 3-10 are decoded 

as are the remaining microinstructions. 

The entries in Table V are used to specify conditional operations 
' 

for both GPR and FPR systems. 



MIR 
1 2 

0 0 
0 1 
0 2 
0 3 
0 4 
0 5 
0 6 
0 7 
0 8 
0 9 
1 0 
1 1 
1 2 
l 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
2 0 
2 1 
2 2 
2 3 
2 4 

TABLE V 

CONDITIONAL STATEMENTS FOR GENERAL AND FIXED 
PURPOSE REGISTER SYSTEMS 

CONDITION 

Filler 
Compare T1 and T2 
Compare T1 and T2 
T1 • T2 
T1 rj. T2 
T1 < T2 
T1 > T2 
T1 < .. T2 
T1 > .. T2 
T1 <O 
T1 >O 
T1 - 0 
T1 - 1 
T1 - -1 
T1 even 
T1 odd 
T1 all l's 
T2 < 0 
'!2 > 0 
T2 • 0 
T2 "" 1 
T2 • -1 
T2 even 
T2 odd 
T2 all 1' 2 

immediate 

Table VI illustrates the input bus scheme for the microinstruc-

tiona designed for GPR systems. Position 3 and 4 of the MIR specify 

the register or work area data path for input bus 1 and positions 5 

and 6 specify the same for input bus 2. 

Table VI~ shows that positions 3 and 4 of the MIR also serve to 

specify special I/0, debug and operate functions for GPR systems. 

When an intert)Upt is signalled by the use]i (2p it~. positions 3 and 4 
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of the MIR), positions 5-10 of the MIR are used to specify the type of 

interrupt that has occurred. 

TABLE VI 

INPUT BUS SCHEME FOR GENERAL PURPOSE 
REGISTER SYSTEMS 

MIR MIR 
3 4 IBUS 1 INPUTS 5 6 IBUS2 INPUTS 

0 0 Filler 0 0 Filler 
0 1 MDR 0 1 MDR 
0 2 MAR 0 2 MAR 
0 3 PC 0 3 PC 
0 4 e 0 4 e 
0 5 e 0 5 e 
0 6 R1 0 6 R1 
0 7 R2 0 7 R2 
0 8 B1 (explicit) 0 8 B1 (explicit) 
0 9 B (implicit) 0 9 B (implicit) 
1 0 D1 1 0 D1 
1 1 D2 1 1 D2 
1 2 51 1 2 S1 
1 3 S2 1 3 S2 
1 4 Xl 1 4 X1 
1 5 Il 1 5 Il 
1 6 WORK1 1 6 WORK1 
1 7 WORK2 1 7 WORK2 
1 8 WORK3 1 8 WORK3 

Table VIII consists of the valid input bus connections. Some 

connections involve both input buses some involve only one. A list 

the functions used is given in Appendix A. Posfti~n 7 and 8 of the 

MIR specify the input bus connections for both GPR and FPR systems. 



MIR 
3 4 

1 9 
2 0 
2 1 
2 2 
2 3 
2 4 
2 5 
2 6 

MIR 
7 8 

0 0 
0 1 
0 2 
0 3 
0 4 
0 5 
0 6 
0 7 
0 8 
0 9 
1 0 
1 1 
1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
2 0 
2 1 
2 2 

TABLE VII 

SPECIAL I/0, DEBUG AND OPERATE FUNCTIONS FOR 
GENERAL PURPOSE REGISTER SYSTEMS 

FUNCTION 

Input data block (list directed) 
Output data block (list directed) 

·Memory dump 
Register trace "on" 
Register trace "off" 
Halt 
No operation 
Signal interrupt 

TABLE VIII 

INPUT BUS CONNECTIONS FOR GENERAL AND FIXED 
PURPOSE REGlSTER SYSTEMS 

CONNECTION 

Filler 
IBUS1 
IBUS1 
IBUS2 
IBUS2 
INC (IBUS1) 
INC (IBUS2) 
DECR (IBUS1) 
DECR (IBUS2) 
ADD (IBUS1, IBUS2) 
SUB (IBUS1, IBUS2) 
MUL (IBUS1, IBUS2) 
DIV (IBUS1, IBUS2) 
MOD. (IBUS1, IBUS2) 
ABS (IBUSl) 
ABS (IBUS2) 
NEG (IBUS1) 
NEG (IBUS2) 
AND (IBUS1, IBUS2) 
OR (IBUS1, IBUS2) 
XOR (IBUS1, IBUS2) 
MDR +- M(MDR) 
M(MAR) ~ MDR 
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Table IX contains the valid output bus connections for GPR 

systems. Once the input bus connection has been made, the data is 

transferred to the output bus and from there to an appropriate re-

gister. Positions 9 and 10 of the MIR delegate to what register or 

work area the output bus connection is made. 

MIR 
9 10 

0 0 
0 1 
0 2 
0 3 
0 4 
0 5 
0 6 
0 7 
0 8 
0 9 
1 0 
1 1 
1 2 
l 3 
l 4 
l 5 
1 6 
1 7 
1 8 
1 9 

TABLE IX 

OUTPUT BUS CONNECTIONS FOR GENERAL PURPOSE 
REGISTER SYSTEMS 

CONNECTION 

Filler 
!IDR ~ OBUS 
MAR~ OBUS 
PC+ OBUS 
R1 +- OBUS 
R2 ~ OBUS 
T1 ~ OBUS 
T2 ~ OBUS 
WORKl ~ OBUS 
WORK2 +- OBUS 
WORK3~ OBUS 
Bl ~ OBUS 
B + OBUS 
Xl + OBUS 
(Rl + l) ~ OBUS 
(R2 + 1) ~ OBUS 
Rl +- Kl t OBUS 
Rl .- Kl + OBUS 
Rl ~ Kl 'l OBUS 
Rl .- Kl '~ OBUS 
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The input bus scheme for FPR systems is shown in Table X. Notice 

that some of the same registers are used for FPR systems as GPR sys-

stems. Such operations as branching and data transfers are common to 



both systems. Positions 3 and 4 of the MIR specify the register or 

work area data path for input bus 1 and positions 5 and 6 specify the 

same for input bus 2. 

MIR 
3 4 

0 0 
0 1 
0 2 
0 3 
0 4 
0 5 
0 6 
0 7 
0 8 
0 9 
1 0 
1 1 
1 2 
1 3 
1 4 
1 5 
1 6 

TABLE X 

INPUT BUS SCHEME FOR FIXED PURPOSE 
REGISTER SYSTEMS 

MIR 
IBUS1 INPUTS 5 6 IBUS2 INPUTS 

Filler 0 0 Filler 
MDR 0 1 MDR 
MAR 0 2 MAR 
PC 0 3 PC 
e 0 4 e 
e 0 5 ~ 

1 0 6 1 
ACC A 0 7 ACC A 
ACC B 0 8 ACC B 
XR1 0 9 XR1 
XR2 1 0 XR2 
Il 1 1 Il 
S1 1 2 S1 
L 1 3 L 
WOR.Kl 1 4 WORK1 
WORK2 1 5 WORK2 
WORK3 1 6 WORK3 

As with the GPR systems, Table XI shows that positions 3 and 4 

of the MIR also serve to specify special I/0, debug and operate func-

tiona for FPR systems. When an interrupt is signalled by the user 

(24 in positions 3 and 4 of the MIR), positions 5-10 of the MIR are 

used to specify the type of interrupt that has occurred. 

Table XII contains the valid output bus connections for FPR sys-
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tems. Once the input bus connection has been made, the data is 

transferred to the output bus and from there to the appropriate re-

gister. Positions 9 and 10 of the MIR delegate to ~hat register or 

work area the output bus connection is made. 

MIR 
3 4 

1 7 
1 8 
1 9 
2 0 
2 1 
2 2 
2 3 
2 4 

TABLE XI 

SPECIAL I /0 DEBUG AND OPERATE FUNCTIONS FOR 
FIXED PURPOSE REGISTER SYSTEMS 

FUNCTION 

Input data block (list directed) 
Output data block (list directed) 
Memory dump 
Register trace "on" 

·Register trace "off" 
Halt 
No operation 
Signal interrupt 
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Table XIII illustrates the 'JI\i.cr9instructions necessary to add the 

the contents of two general purpose registers (of a GPR system) and 

branch if the contents of the destination register is zero.. For this 

operation, instruction format 10 (Figure 13) must be specified. Table 

XIV illustrates the microinstructions necessary to load the contents 

of index register 1 into the accumulator (of an FPR system) and branch 

if the contents of the accumulator is negative. Instruction format 1 

(Figure 14) -mQst 1>~ &lpecified for this· operation •. 



MIR 
9 10 

0 0 
0 1 
0 2 
0 3 
0 4 
0 5 
0 6 
0 7 
0 8 
0 9 
1 0 
1 1 
1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
2 0 
2 1 
2 2 

INSTRUCTION 
NUMBER 

1. 
2. 
3. 

4. 

TABLE XII 

OUTPUT BUS CONNECTIONS FIXED PURPOSE FOR 
REGISTER SYSTEMS 

CONNECTION 

Filler 
MDR+- OBUS 
MAR.- OBUS 
PC'*"'" OBUS 
XR1 +- OBUS 
XR2 +- OBUS 
T1+- OBUS 
T2+ OBUS 
WORK1+- OBUS 
WORK2 +- OBUS 
WORK3 +- OBUS 
ACC A+- OBUS 
ACC B+- OBUS 
L +- OBUS 
K1 +- OBUS 
ACC A +- K1 t OBUS 
ACC A ~ K1 _. OBUS 
ACC A+- K1 t OBUS 
ACC A+- K1 i OBUS 
ACC B +- K1 t OBUS 
ACC B-t- K1 -L- OBUS 
ACC B +- K1 t OBUS 
ACC B +- K1 ~ OBUS 

TABLE XIII 

IMPLEMENTATION OF ADD REGISTER TO REGISTER 
AND BRANCH ON ZERO 

MIR DESCRIPTION 

R1 +- R1 + R2 
T1 +- R1 
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00006070905 
00007000106 
11100000000 If T1 • 0 then go to next; 

else decode next machine 

00012000103 
. instruction 
next : P C +- S 1 



INSTRUCTION 
NUMBER 

1. 
2. 
3. 

4. 
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TABLE XIV 

IMPLEMENTATION OF LOAD ACCUMULATOR FROM 
INDEX REGISTER AND BRANCH ON NEGATIVE 

MIR 

00009000111 
00007000106 
10900000000 

00012000103 

Error Detection 

DESCRIPTION 

ACC A+- XR1 
T1 ~ ACC A 
If Tl < 0 then go to next; 
else decode next machine 
instruction 
next: PC +- Sl 

Errors occurring during execution time are detected by the inter-

preter and appropriate messages are printed. . Errors such as addressing 

and operation exceptions are detected during normal execution. In all 

cases the occurence of an execution time error causes termination of 

the program. This is due to the fact that there are no error correc-

tion capabilities built into the simulation system. The cause of the 

error must be determined and corrected and the program resubmitted 

for execution. 

Debugging Aids 

Instructions used as tools for debugging may be defined with the 

micro-operations provided. Two such instructions are the instruction 

trace and memory dump operations. The instruction trace may be turned 

"on" and "off" as desired and causes the contents of all hardware re-

gisters to be printed (in decimal) after the execution of any subse-



quent instructions. The dump instruction provides a means of deter­

mining the contents of memory within a certain region. Pre-execution 

and post-execution memory dumps are provided without specification. 

Other Simulation Systems 
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Other types of hardware simulation. languages have been developed. 

Two of these are APL (the interactive terminal laitguate) {3) and 

PMSL (12). Both APL and PMSL require strict krtowiedge of the simu­

lated computer system but treat the simulation process on different 

levels. 

APL makes use of a special character set, which includes both 

an upper and lower case alphabet, to achieve parallelism with AHPL 

{A Hardware Programming Language), the hardware "description" language. 

At the APL level of sitnulation, register transfer, memory access, I/0 

buffering, etc. can be specified in detail not unlike that of the simu­

lated system. Thus, detailed knowledge of the interaction of registe!s, 

memory and peripherals is necessary. 

PMSL, as designed by Knudsen (12), is a conversational facility 

for the creation, modification, storage, retrieval and analysis of 

descriptions of computer hardware at the top system level, where work 

is performed on processors, memories, controllers, channels and peri­

pherals. PMSL provides a powerful tool to the design ~&ineers of 

computer systems. Performance, cost and device utilization can be 

monitored to give the designer a look at critical aspects of new sys­

tem designs. The language is based on the P~S (Processors, Memories 

and Switches) notations in Bell and Newell (2). 



CH.Al?TERV 

USERS MANUAL 

This chapter describes how to use the simulation system. The 

machine description phase, assembly language statements and options, 

deck setup and output, and control cards are discussed. At certain 

points, the current restrictions of the simulation system are also 

discussed. 

Initial Ma.chine Description 

The first phase of the simulation process is the machine des­

cription. The user is required to supply necessary information about 

the simulated machine in the form of input cards. The details of the 

card formats for the input informati.on are given in Tables XV and XVI. 

Information about the hardware of the machine such as the types of 

registers used, the size of the registers, and the memory word size 

must be specified. Other details about the instruction set and formats 

must also be specified. If at any time a specification is requested 

that does not apply to the particular machine, a negative or zero 

value should be placed in the corresponding field of the input card. 

The input formats for the machine definition must be followed exactly 

to ensure correct results in later phases of simulation. Note that 

all charaFte~ and bit values must be left justified in the appropriate 

fields and all numeric values must be right justified in the 
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appropriate fields. 

CARD 
SET. 

1 

2 

3 

TABLE XV 

INPUT CARD FORMATS FOR MACHINE DESCRIPTION OF 
GENERAL PURPOSE REGISTER SYSTEMS 

CARD. 

COLUMNS 

1 

3-5 
7-11 

13 

15-19 
21-25 
27-56 

1-5 

7-11 
13-17 
19-23 
25-29 
31-35 
37-41 
43-47 
49-53 

55-59 

61-65 

1-5 
7-11 

13-17 
19-23 
25-29 
31-35 
37-41 
43-47 
49-53 
55-59 

FIELD 
TYPE 

Bit 

Char •. 
Numeric 
Bit 

Numeric 
Numeric 
Char. 
Numeric 

Numeric 
Numeric 
Numeric 
Numeric 
Numeric 
Numeric 
Numeric 
Numeric 

Numeric 

Numeric 

Numeric 
Numeric 
Numeric 
Numeric 
Numeric 
Numeric 
Numeric 
Numeric 
Numeric 
Numeric 

DESCRIPTION 

Specify 1 if output of machine de-
scription is desired 

Specify 0 for no output 
Machine typet GPR 
Memory word size 
Specify 1 if output of assembly debug 

statements is desired 
Specify 0 for no output 
(Should normally be set to 0) 
Number of operations to be defined 
Bit length of the binary op code 
Machine name 
Number of general purpose registers 

(max. of 16) 
GPR size 
MDR size 
MAR size 
PC size 
Number of words in the IR (max. of 2) 
Total IR size 
Implicit base register 
Number of instruction formats to be 

used 
Number of words read in a READ in­

struction 
Number of words written in a WRITE 

instruction 
Instruction format number 
Number of words in the instruction 
Field 1 starting position 
Field 1 ending position 
Field 2 starting position 
Field 2 ending position 
Field 3 starting position 
Field 3 ending position 
Field 4 starting position 
Field 4 ending position 
(Repeat above 10 fields for each 

instruction format used) 



CARD 
SET 

4 

CARD 
SET 

1 
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TABLE XV (CONTINUED) 

CARD FIELD 
COLUMNS TYPE DESCRIPTION 

1-~ •• Bit Binary operation code (max. length 
of 32)' 

34-38 Char. Mnemonic operation code 
40-44 Numeric Number of machine cycles required 
46-50 Numeric Instruction format number 
52-56 Numeric Number of microinstructions that de-

fine the machine instruction (max 
of 20). 

1-11 Numeric Microinstruction 
13-23 Numeric Microinstruction 
25-35 Numeric Microinstruction 
37-47 Numeric Microinstruction 
59-59 Numeric Microinstruction 
61-71 Numeric Microinstruction 

(Repeat above 6 fields until micro-
definition is complete (max. of 
20) and repeat above 11 fields for 
each machine instruction) 

TABLE XVI 

INPUT CARD FORMATS FOR MACHINE DESCRIPTION OF 
FIXED PURPOSE REGISTER SYSTEMS 

CARD 
COLUMNS 

1 

3-5 
7-11 

13 

15-19 

21-25 
27-31 
33-r37 

FIELD 
TYPE 

Bit 

Char. 
Numeric 
Bit 

Numeric 

Numeric 
Numeric 
Numeric 

DESCRIPTION 

Specify 1 if output of machine 
descriptio~ is desired 

Specify 0 for no output 
Machine type, FPR 
Memory word size 
Specify \ if. out,put of assembly de-

bug statements is desired 
Specify 0 for no output 
(Should normally be set to 0) 
Number of non-operate operation 

codes 
Number of operate operation codes 
Length o~ bi~ary operation codes 
Number of bits in the mode specifi-

cation 



CARD 
SET 

2 

3 

4 

5 

6 

7 

8 

CARD 
COLUMNS 

39-43 
45-74 

1-5 
7-11 

13-17 
19-23 
25-29 
31-35 

37-41 
4.3-47 
49-53 
55-59 

61-65 

67-71 

1-5 
7-11 

13-17 
19-23 
25-29 
31-35 
37-41 
43-47 

1-5 

7- ••• 

1-5 

7-••• 

7-11 
13-17 
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TABLE XVI (CONTINUED) 

FIELD 
TYPE 

Numeric; 
Char. 
Numeric 
Numeric 
Numeric 
Numeric 
Numeric 
Numetic 

Numeric 
Numeric 
Numeric 
Numeric 

Numeric 

Numeric 

Numeric 
Numeric 
Numeric 
Numeric 
Numeric 
Numeric 
Numeric 
Nt.aneric 

Char. 

Bit 

Numeric 

Numeric 

Char. 

Numeric 
,~umeric 

DESCRIPTION 

Number of words in a memory page 
Machine name 
Number of index registers (1 or 2) 
Index register size 
MDR size 
MAR size 
PC size 
Number of words in the IR (max. of 

2) 
Total IR size 
Accumulator A size 
Accumulator B size 
Number of instruction formats to be 

used 
Number of words read in a READ in­

struction 
Number of words written in a WRITE 

instruction 
Instruction format number 
Number of words in the instruction 
Field 1 starting position 
Field 1 ending position 
Field 2 starting position 
Field 2 ending position 
Field 3 starting position 
Field 3 ending position 
(Input is the same as shown in Table 

XV, card set 4, for GPR machines) 
Op code field mnemonic for operate 

functions 
Binary op code for operate functions 

(max. length of 32) 
Number of positions in the instruc­

tion that are set 
Bit positions in the instruction 

that are set for ~he operate 
function 

(Must be separated by one blank 
column using a two column field 
for the position numbers) 

Operand field mnemonic for the oper­
ate function 

Number of machine cycles required 
Number of microinstructions that 

define the mach~ne instruction 
(Input for the microinstructions is 

the same as s~own in Table XV, 
card set 4, for GPR machines) 



CARD 
SET 

CARD 
COLUMNS 

TABLE XVI (CONTINUED) 

Fl;ELD 
TYPE DESCRIPTION 
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9 1-••• Bit Binary code for each mode, separated 
by one blank column 

The Cross Assembly Language 

This section describes the format of the statements for the cross 

assembler. The format is not unlike those used by many assemblers, 

but it does have its unique characteristics. 

Symbols 

All symbols and identifiers must begin with an alphabetic charac-

ter. The remaining characters may be alphabetic or numeric. The 

alphabet in this case consists of all letters in the Roman alphabet 

plus the special characters $, @, II, &, and %. Label identifiers must 

begin in column 1 of an input catd and may be no longer than eight 

characters. The mnemonic op code symbols must begin in column 10 and 

may be no longer than five characters. 

Addressing Specifications 

For fixed purpose register systems, column 16 of the assembler 

statement is used as an address specification field. This field is 

used to specify direct or indirect addressing, or index registers. For 

indirect addressing an "I11 is used. To specify the use of index re­

gister 1, a "1" or "A" is used. To specify the use of .index register 



2, a "2" or "B" is used. Direct addressing is specified by leaving 

the address specification field blank. The addressing modes used by 

the simulation system for FPR machines are described in Table XVII. 

Operands 

TYPE 

1 
2 
3 
4 
5 
6 

TABLE XVII 

ADDRESSING MODES FOR FIXED PURPOSE 
REGISTER SYSTEMS 

MODE 

Direct to current sector 
Direct through zero sector 
Indirect through current sector 
Indirect through zero sector 
Indexed, register 1 
Indexed, register 2 
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The number of operands in the operand field may vary depending on 

the type of machine being simulated. For GPR systems, the maximum 

number of operands is three. For FPR systems, the maximum number of 

operands is five (for register operate functions). In either case the 

operands are separated by commas and there can be no imbedded blanks 

in the field. Also, each assembler stateme~t must be contained in its 
' 

entirety on one input card. Assembler statements may not be continued 

acros~ card boundaries. 

Comments may follow the operand field if a blank column separates 

the two f~elds. A comment can also be s~ecified by an asterisk (*) in 



column one. In this case the entire card is treated as a comment. 

An identification or sequence value may appear in columns 73-80. A 

summary of the assembler statement field boundaries appears in Tables 

XVIII and XIX. 

TABLE XVIII 

FIELD BOUNDARIES FOR ASSEMBLER LANGUAGE 
STATEMENTS OF GENERAL PURPOSE 

REGISTER SYSTEMS 

CARD COLUMNS· DESCRIPTION 

1 - 8 
10 - 14 
20 - 39 
41-- 72 
t3- 80 

TABLE XIX 

Label field 
Mnemonic op code 
Operand field 
Comments 
Identification sequence 

FIELD BOUNDARIES FOR ASSEMBLER LANGUAGE 
STATEMENTS OF FIXED PURPOSE 

REGISTER SYSTEMS 

CARD COLUMNS DESCRIPTION 

1 - 8 
10 - 14 
16 
20 - 39 
41 - 72 
73 - 80 

Label field 
Mnemonic op code 
Addressing specification 
Operand field 
Comments 
Identification sequence 
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Pseado Operations 

There are five psaedo operation codes that the user need not 

define: (1) EQU, (2) ORG, (3) DC, (4) DS, and (5) END. The EQU pseudo 

op assigns the absolute or resolved value of the symbolic address in 

the operand field to the identifier in the label field. Note that any 

symbolic references in the operand field must be defined before the 

occurrence of the EQU statement. The ORG pseudo op reinitializes the 

PC to the positive decimal value in the operand field. Table XX 

illustrates the valid operand specifications for the DC and DS instruc-

tions as well as for other instructions. The END pseudo op designates 

the end of the assembly process and may have a label identifier in 

the operand field. 

TABLE XX 

ASSEMBLER LANGUAGE OPERAND SPECIFICATIONS 

DC 

OS 

OPERAND DESCRIPTION 

B' positive or negative binary value' 
F' positive or negative decimal value' 
X' positive or negative hexadecimal value' 
A (symbolic or absolute address) 
positive decimal value B'positive or negative 

binary value' 
F'positive or negative 

decimal value' 
X'positive or negative 

hexadecimal value' 
A(symbolic or absolute 

address) 
positive decimal value 
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TABLE XX (CONTINUED) 

OPERAND DESCRIPTION 

IMMEDIATE SPECIFICATION 

Same operand specification as for DC instruction 
preceded by an equal sign (•) 

REGISTER 

SYMBOLIC ADDRESS 

Assembly Error Messages 

Positive decimal value (register number) or 
s~bol equat~d to register number 

S~bol. 
Symbol + positive decimal value 
Symbol - positive decimal value 
* (reference to current PC value) 
* + positive decimal value 
* - positive decimal value 
Positive decimal value (absolute address) 

The occurrence of any assembly time errors causes execution of 

the object program to be suspended. To aid in the elimination of 

assembly errors, descriptive error messages are printed immediately 

following the statement in error. A listing of these error messages 

is given in Table XXI. 

Control Cards and JCL 

Each program begins with a >>JOB card. Other control cards may 

be specified in order to restrict the execution of the object module. 
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The >>TIME card specifies the maximum number of machine cycles allowed 

for execution before termination of the program. The ))REGION card 

specifies the size of the memory region (in words) in which the object 

program is to be loaded. Column 12 of the >>EXEC card must contain 

the character 'E' or 'A'. With option 'l!:', the user program: is assem-

bled and if no assembly errors are detected, the object module is 

loaded and executed. If option 'A' is specified, the user program 

is assembled but not executed. A sample program setup is given in 

Figure 17. 

TABLE XXI 

ASSEMBLY ERROR MESSAGES 

NO. MESSAGE 

1. Invalid character in label field 
2. Imbedded blanks in label field 
3. Label doesn't begin with an alphabetic character 
4. Previously defined identifier in label field 
5. Invalid or missing data type on DS statement 
6. Invalid or missing da£a type on DC statement 
7.- Invalid or missing operation code 
8. Invalid addressing option specified 
9. Negative address specified 

10. Invalid operand specified 
11. Operand missing 
12. Undefined operand specified 
13. Qne or more undefined operate functions in operand field 
14. Maximum number of operate functions has been exceeded 
15. Missing END card, one has been generated for a•sembly 
16. Label appea~s on ORG or END statement 
17. Storage allocation on DS statement exceeds region size 
18. Operand on ORG statement causes the destruction of previously 

assembled program segment 
19. Operand on ORG statement extends beyond region size 
20. Operand and instruction type do not match 
21. Region size too small to assemble the followin~ po~tion of the 

program 
22. Write-protect violated, operand specifies page zero address 



))JOB namel 

))TIME•550 

))REGION•200 

))EXEC ASM E 

))ASM. PROG 

User program 

))ASM. DATA 

>> 
))JOB 

• 

>> 
• 

User program data 

name2 

Figure 17. Sample Program Setup 

Deck Setup 
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The deck setup consists of the simulation system, which operates 

on one or more uaer programs, the machine description, the user pro-

grams, and a file used by the assembler1when generating intermediate 

object code. The deck setup to use the implemented simulation system 

is shown in Figure 18. 
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~ //.BPACEm(l44,250),DCB•BLKSIZE•l44 

/ I /GO. INTRMD DD UNIT•SYSDA, 

~ User Programs, JCL and Data 

/ 1/GO.SYSIN DD * 
~ Machine Description 

/ I /GO.DEFN DD * 
~ Simulation System and OS/360 JCL 

Figure 18. Deck Setup 



CHAPTER VI 

SUMMARY AND FURTHER STUDY 

Using the methods discussed in this thesis, a microprogrammed 

simulation system has been implemented in PL/1 on the IBM System 360/65. 

The system supports the simulation of general purpose and fixed purpose 

register minicomputers. 

The most significant input to the system is in the form of cross 

assembly language programs. There are two options available to the 

user when assembling a program. Using the JCL and control statements 

of the simulation system,. the user may specify assembly of the program 

and execution of the load module, or only assembly of the program. 

Other control statements. are available to restrict the execution of 

the load module. 

The simulation. system makes possible the simulation of a large 

percentage of the instructions for general and fixed purpose register 

m:l.nicomputers. Specification of the input/output instructions contains 

the least flexibility. Input from the card reader (list directed) and 

output to the line printer (list directed) is the only type of I/0 

supported. More extensive work in this area would make possible the 

simulation of the input/output instructions and the interrupt structure 

for the types of minicomputers discussed. Also, the microinstruction 

set could be extended to support "special" instructions unique to 

specific machines. 
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Two types of special instructions that are common on most modern 

minicomputers are circular list processing instructions and hardware 

stack instructions. Usually, hardware pointers are involved in both 

types of instructions. For list processing, pointers to the top and 

bottom of the list must be kept so that overlapping of the elements in 

the list can be detected. For stack processing, pointers to the top 

and bottom of the stack are also kept. But, in this case, data items 

are inserted and deleted only from the top of the stack; only one 

pointer is usually updated. This allows overflow and underflow condi­

tions to be detected. 

In order for the stack and list processing instructions to be 

implemented using microinstructions, either specific hardware registers 

or locations in memory must be used for the necessary pointers. Once 

these registers or locations are determined, the microinstructions for 

updating the pointers can ea~ily be const~ucted. Testing for overflow 

and underflow of the stack and overlapping of the list can be performed 

with the micro-operations currently implemented. 

The cross assembler is an important tool for testing the simulated 

machine instructions. But it is necessary for the user to translate 

the assembler programs written for the simulated machine to. the cross 

assembly language for testing. The simulation system could be further 

generalized to allow a description of the assembler language syntax for 

the simulated machine to be input. This would make possible the direct 

assembly of the programs written for the simulated machine. 
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SYMBOL 

ABS 
ACC A 
ACC B 
ADD 
ALU 
AND 
B 
B1 
CPU 
DECR 
DIV 
D1, D2 
e 
FILLER 
FPR 
GPR 
IBUS1 
IBUS2 
INC 
IR 
11 
K1 
L 
M 
MAR 
MDR 
MIR 
MOD 
MUL 
NEG 
OBUS 
OR 
PC 
PSW 
ROM 
ROS 
R1, R2 
SIC 
SUB 
Sl, S2 
Tl, T2 
WORK1 
WORK2 
WORK3 
XOR 
XR1, XR2 
X1 

" 4--

MEANING 

absolute value function 
accumulator A 
accumulator B 
integer addition of two operands 
arithmetic logic unit 
logical "AND" of two operands 
implicit base register (0-15) 
explicit base register (0-15) 
central processing unit 
decrement value by one 
integer division of two operands 
positive or negative displacements 
a binary value of all l's 
no micro-operation specified 
fixed purpose register 
general purpose register 
input bus 1 
input bus 2 
increment value by one 
instruction register 
"immediate" operand 
shift or rotation count 
link bit for accumulators 
simulated memory 
memory address register 
memory data (buffer) register 
microinstruction register 
residue modulo 
integer multiplication of two operands 
negation 
output bus 
logical "OR" of two operands 
program counter 
program status word 
read-only memory 
read-only store 
general purpose registers 
small instructional computer 
integer subtraction of two operands 
resolved symbolic references 
registers used for comparisons and testing 
microprogram work area register 1 
microprogram work area register 2 
microprogram work area register 3 
logical "EXCLUSIVE OR" of two operands 
index register 1, index register 2 
index register (0-15) 
null pointer 
assignment 
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SYMBOL MEANING 

left rotation 
right rotation 
left shift 
right shift 
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START 

OPEN CARD 
FILE DEFN 

INPUT 
MACHINE 

. -STRU(;TURE 

INPUT 
INSTRUCTION 

FORMATS 

INPUT 
INSTRUCTIONS & 
MICROPROGRAMS 

OUTPUT 
MACHINE 

SPECIFICA=TI __ 

CLOSE FILE 
SYSIN 

CLOSE FILE 
DEFN 

OPEN CARD 
FILE SYSIN 

INPUT JCL 

CROSS­
ASSEMBLER 

65 



66 

INTERPRETER 



..----....__-_-..,---E 
OPEN FILE 

INTRMD 
OUTPUT 

·INPUT 
ASSEMBLER 

SOURCE 
STATEMENT 

PARSE OPERAND YES 
FIELD AND 
DETECT ERRORS 

INSERT 
IDENTIFIER 

INTO SYMBOL 
TABLE 

NO 

PERFORM OPCODE 
TABLE LOOKUP 

INSERT 
OPCODE INTO 

MACHINE 
INSTRUCTION 
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YES 

----E 
CLOSE FILE 

INTRMD 

OPEN FILE 
INTRMD 
INPUT 

INPUT 
SOURCE 
RECORD 

FROM INTRMD 

TEST THE NUM­
..,.-...._,.BER OF ERRORS; 

SET CONDITION 
CODE 

PARSE 
OPERAND 

FIELD 

DETECT 
ERRORS 

COMPLETE THE 
GENERATION OF 

OBJECT CODE 

" OUTPUT THE 
SOURCE STATE­
MENT & ERRORS 
(if any 

LOA» THE 
MACHINE IN­

TRUCTION INTO 
SIMULATED 

MEMORY 
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INITIALIZE 
PROGRAM 
COUNTER 

INCREMENT 
PROGRAM 
COUNTER 

FETCH 
NEXT 

INSTRUCTION 

PERFORM 
BINARY 

OPCODE TABLE 
LOOKUP 

DECODE 
OPERANDS 

YES 

DETECT 
ERRORS 

EXECUTE 
MICROPROGRAM 

NO 
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M A C H ! N E 0 ;: F>. N T C N 

~ * ~ * * * * * * * ~ * * * * * * * • • * * * ~ 4 * * * * * * ~ * * ~ * * * * * * ~ ~ * * * * * * * 
Gc'lEFAL PtJ'P::JSE R::GISTER 1 GPR l SYSTEM lNTERDATt. 7/16 

~lr~3ER CF GPI<'S 16 

G~R SIZE !0 

.. "'D~ S!z~-: 16 

~!A. SIZE 16 

PC s:zc. 32 

~UI-!io~i< Ci' l~'S z 
IR S! Z E 32 

!M~~IClT BASE REGISTER 0 

NIJ'~eES. OF H:STRUCT!ON FORMATS USED 8 

~L~ECR CF C? CQGE~ 54 

L~NGTH CF CP COD~$ 8 

~UMEER OF WO~CS READ IN A READ !NSTR 

~U~il€-R OF WORDS··-w"UTTEN IN A WRITE INSTil. 

iJ.'J.=c:; SiZE l6 

~ * * ~ • ~ • * ~ 

" .... 



72 

... 
"' 
0 ,_ 

"' .... 

"' "' .... "' .... 
"' .... "' 

C) 0 0 C) 0 
V) >- >· >·· .... ,_ 
UJ 

N N "' N N 

"' ., 
0 
?. -· , •. j -· .... 
::J .... .... ") 
u 

"' 0 0 0 0 u CJ 0 
'7 

,_ ,_ >- .... ,_ 
a 
_J "" "' 0} <0 ro "' "' l.ll 
~ 

·~ ..:: ..:: ..... ..... ..... ,.. ,... ,... 
L. 
C) 

CJ 0 \0 CJ u 0 CJ 0 ,_ .... >- ,_ 
~- ~- ,_ ,_ ,_ 

Ll 
.::> 0 0 u 0 0 0 0 0 
u: , .. . ...: . 
~'; '" "' m "' ~ ,., 

.... .... "' 



CP CCDES A\0 T~EI~ MICRC-DEFI~!TICNS 

1 . ~:-l :::-to·-: c ;.n 
EIT FA i£R~ c:OOlClO 
MACHIN CYCLES l 
!N$7;0 TIC\ TYPE 11. 
~lCRC- EFI~iT!O~ 00Jl4l20902 00000002100 000010~0904 

2. P:~E~C~.IC ~h: 
?IT p;.~-~~;:J~ 1001-G-10 
~lCrl!~~ CY(L l 
T.'lSTRUCT!Oj·~ YE 14 
.-!·'!C~C-CC-FH~r CN OCOG6l5QgQ.;. 

3. ~~ ~ ~!C H~ 
B= ~77 J!lCQCCl 
~~ H NE L S 2 
l~ ; UCT yp~ ll 
,..: R -DE i r.:.-. CC0l4l2G9C2 OOJOCOOZluC GOOJlOUJ90l COOG0002200 

4. ~\~~G~!C ~H~ 
~! T PlTT2Kl~ 00001010 
,~.~;:..,(~ !:"~E CYCL S l 
INST~UCT!O\ YP~ 3 
M!CRO-DEF: Nl r CN OCG06070904 

5. ~NE~JNIC ~!S 

,~--- ~-.......----- -----...__...r~---------
6.~ 

e!T P!T~i~~~ COlOo::o 
M:..C:-il',E CYCL.tS 
H~STt;:JCTlO\l TYPE 
)J1C~c-n::FJ_N~T !::~ 

M~ MU~~IC D 

9 
000l:<0609Q<, 

~~ P~TTERN 00110000 
~L H!~E CYCL~S 1 
!.'iST~.CCTIJ."~ ~-Y?E 

:,..~ CF..C--Di:::f!:'. !i lJ.\l 
8 
J~Ol2000i03 

7.. ~ ¥C:\ C t;.L 
f P!.. T;:P.:\ 1000001 
~ HI~~ CYCL l 

:• j;.i'_; T!Ct-. p::_ ll 
~l ~=- =:.:: r~: ~ c~.J OCOC3GC01CB 00Cl214JSJ3 OCJl60COL04 

a... 1-':-.E'·)C.·~:c. :~:.:__.-:: 
s:~ o~rrE~N a~c~ooo1 

t~-".Cn I.\ E CYCL 
l~S7RJCT!C~~ TYP~ 

~EC~C-6~F!~ITIC~ 

9.: M~~-~E~.:>;!c BE 

JC0~3000103 000070001J3 00Ji6UOJlC<, 

2!1 ;ATT~R~ lOll~O!l 

.,.~C:1I~ .. :: CYCL:": S l 
! L S T l':J C T I W:~ ~- Y P E 
!-'!C RC-DCF! :;: T! GN 

a 
10300JSOCOO 00012000103 

....... 
f..,.) 



'.0. ,.,r-., ~C\!C 3L 
8! ?A Ti ?.:~ 00101000 
~;. ~!\E 'r'CL s 1 
! r, T F<l.3C T ·::~t YPi: 8 
:~I R:-DE ..... .~. ION 1C50COOCOOJ 00012000103 

1L ,_H·~:::{C."~! C gM 
9! T ~~TTSR.r\ 00100001 
~!CHINE CYCLES 1 
I~JSTRJCT!O\ TYPE 9 
~!CRG-O~~I!~!7ICN OO~O~OOOlOo 00900000000 00012000103 

12 ~N~~CNrC S~E 
eli ?tiT ~N iJlOOOll 
~~Crii~E YSL S 1 
!~~S~R·JCT G\ YP2 8 
u:SRC~D~ :~I !C~ 10~00000000 000120001~3 

13. ~~~MG~[C 6~~L 
IT P~TT r~ QOllL:OJ 
~CHI~~ CLES l 
~sr~uc~ ri TYPE s 

I'ICRC-CcF!:>.iT ION lCBCOOGJOOo 000~2000103 

1~.. ~~ V,f.~ C. E'\.~ 

~ P~ 7E~N OCtlGCJl 
:--' r.~:: SYCLES 
!:iST~~CT:C~ TYPE 
M!~~C-UEF!N!T!GN 

9 
OCOCoOOOlOb 11COOOOOOOO ll10DOJ0000 00012000103 

l 5o t<:JJC.'t; C g~~P 

16 

:T P!TTEkN JOllOCl~ 

..:..Cr.!;-..;E r:YC:L 5 l 
~.5BUCT!O,\ YP2 9 
ICRC-OEF.i~~~ IC:\ 

:w M !":, c c.:;z 

OC00600C1C~ 000050001J7 1010000~000 10700000000 OO~l20GC103 

f ~ T~~~ OJlCOJll 
~ ~ ~~ CYCL~S l 
!~:ST~".J::: !;J~ YPE 9 
1-'I CRC -D::fr:~::-: J~~ OC00cOGGlJ6 OJC0500GlJ7 lOlCOCJCJCO lC4000G~Oi.lO GJC12v00103 

17 f',t,Ct1C'.i!C B? 
e:r PITT0R~ oc:ooolo 
~ACHINE CYCLES 1 
INSTRUCTION TYPE 
~!CRC-CEF!~:T!ON 

13. MNEMONIC 9R 

9 
00006000106 11000000000 00012000103 

~IT P~TTE~N 00110100 
'~CH!~E CYCLES l 
INSTRUCTIO~ TYPE 
MICRG-DEFIN!TION 

l 
OC014000103 

...... 
~ 



19 ~··NEMONIC 5Z 
21r FATTERN OOl:OOll 
M~CHI~E CYCL S 1 
!riSTRUCTIO~ Y?E 9 
I'!CRC-OEFIN: :G:J 0000o000l0o 11100000000 00012000103 • 

2!.:L. •. ~t""U!:M N:C. C:-i 
2lT ~TT ~~ OlOGlOOl 
~ACH NE YCL S 2 
INST UCT ON Y?E 11 
J~!CR -CE !~JI IQ~~ 00012140902 00000002100 00006000106 000~1000107 :o:oooooooo 

2:i... ~NE.~C..~~IC CriK. 
BiT PlTT~R~ 00001001 
~~Ch!~E C~CLES l 
l'JST~-~\JCTfClN TYPE 3 
M[C~~-DEF!ri!TIDN OC006000l06 OOC07000107 10100000000 

2~u ~~~Mer. C Cri! 
8! T PA TER'I 11001001 
~!CH!N CYCLES l 
!NSTRU TiCN TYPE 14 
I',JCi<.iJ- EF!~!TICN OC0.06000106 00015000107 10100000000 

23. ~~E~~~ C CLH 
~! T FA T 'l 01000101 
M.!.CH:'"< CLES 2 
IN5T~:J T N TV?::: 11-
l'\iC"<U- E .'I!T:G;l 000121'.0902 OOCCOO:J2100 OOOJ60CJ106 ·OOJCH000107 lOlOJO<;OOOJ 

2;.. ~~:E!-\O'~IC CLHP 
£iT ?~TTE~~; COOOOlOl 
~t...CH!\!E CYCL S l 
17·-t:r~--uc: IU'·I v~E 3 
1-·r~r.:-o~F1~n rcr\j 00006000106 000070~0107 101JOOOOJ0C 

25. ~~~E~C\!C CL~~ 
;; 1T ~oTTE~~i 1180010..1 
~-!.·-:Hit·::: CYCL::S l 
!:-JST:~i.JCT!CP~ TY?E 14 
~lCP.C-C2F!r.IT iC'' GOCCC.OGCl06 OOC~500ill07 :ClOJCOCJCO 

26. ~~~~;C~!C DU~? 
B!T ~!TTE ~ CCClCl~O 
~ACH!~l~ C CL S lG 
!~ST~~C7: ~ YP~ 21 
~IC~J-~EF NI 10~ C002l00C000 

27~ ~~~MCNIC H~LT 
E!7 PAlTE~~ 00010010 
~ACHINE CYC~ES 1 
INSTRUCTICN TYPE 21 
MlCKO-DEriN!TlGN 00024000000 

"'-1 
V1 



28o. ,_.~cC~C:\:!C LCS 
BIT ?ATTE~H 00101001 
~ACH;~E CYCL S ! 
n·lST?.l..CTlGN YPC: 9 
MICRO-DEFl~! 10~ OCD12001604 

29. ~~~~CNIC LH 
o!T PATTE~~ ulCOlOOO 
~ICHIN~ CYClES 1 
l\ST;~CT!O\ TYP~ 11 
HICRC-DEFIN!TIO~ 000121409C2 0000000210b OJOQ10001J4 

30~ ~N ~C,!C LH! 
2! P!l. TT:R~-; 11 COl 000 
'!~ HINE c"YCLES 1 
!r< TRUCT!GN TYPE ~4 
~~ RC-C~F:NI~ICN OC0l5GOJ104 

31. ~ MCN!C LH~ 
8 P~TT~R~ 00001000 
~ H tr;E C YCLE.i 
!~STRiJ(TION·~yp~ 

~:C?C-DEF!N!T!:S 

32~ ~Nf~ONIC LIS 

3 
0000700010:. 

t!T PATT~kN 0J1001DO 
~~CHIN~ CYCL~S 1 
!~ST~UCTIO:, fYP~ 

~!CRC-S~F!~!TION 

l3. ~1N P'.C:\lC Nh 

9 
o·ao:zcoo104 

~~ PArT ON OlOOOlOJ 
V~ H!~~ YCL.~S 2 
U! T~UCT C"J TYPE ll 
~~ RC-0~ !NIT!CN 00012140902 OOCOCOD2100 000060~!604 

3~. ~ ~ ~1C ~H! 
S .!.TT~~;,, llCOClOJ. 
1-.1 i-i ! I~ CY C L S l 
1 r ucr:o~ ~PE 14 
I" i\ -D~F!r;l !0~ OC006151804 

35. V~f.~·=N C ~iH=-i. 
B~T PA TEK~ 000~0100 

~ACr: I:; CY·:.LES 
r~lST~UCTI~~ TYP~ 

~11 CRC:-UEF ird T I ON 

36 ~~EMO~ C NDP 

3 
0000607180.:. 

e!i ?~ TER\ OOClOOOl 
~~CrlH~ CYCL~S 0 
lNSTKiJ T!GN TY?E 21 
~:CRC- EFI~IT!ON 00025000000 

...., 
0\ 



37. ~ ~ NIC o~ 
B ATTE~~ OlCO~llO 

""' H ~tE CYCLf3. 2 
T UCTION TYPE 11 

~! R -:EF!~iTION OOJ12140S02 OOC000021JO 0000601190~ 

33 ..,.-r.=.:.·.c~.j c Ghi 
?li FAT RN 11000110 
~~CHIN YCLES l 
i~5T~U T ~N 7V~E 14 
~:CRC- _ IN!TION 00006151904 

39. ;,._,~EHC~~ !C en::.. 
2IT PATTE~~ 00000110 
,.~ACh!~E; CYCU:S 1 
!t~STR~CTIJ~~ TYPS 
i-'I~RC-s::r:r:lT IO~ 

40. ~ MQ:~lC ~H 

3 
OOOJ6071904 

~ PATT~~N 1011001 
~ ~I~E CYCL 3 

T?UCT:C~ P~ ll 
~ Rc-t~FI~! o:~ ocol214G90l coc:scoo·coo 

41~ ~~ ~C :c SH 
Al P TT~R:~ OlCOlC!l 
~~ H~ ~ CYCL S l 
I~ T~ C~!O~ YP~ 11 
~! ?2-DEF!r;I ID\ 

42.. ~\E."'!C·"~I':: Srl.I 

00~:.:.120902 JOJ~0002lOO COOJ10~1004 

Ec T PAT:EI'~~ llOGlOlc 
t-", C. Ch i~l E CYCLES 
!':ST!=iUC-T!O,". TY?E i4 
~I·::..:-D.EFit•:: ~! c:u 00006151004 

.;.:3 ~-'\E·~:· .. ~c s:"~. 
s:·; ;:;~:T::~\ O!JC0l·O:.l 
!,.l rl ! ·'~ ~ Y C LC 
~ T P.U cr J~~ 7' P E 3 

1" q.;::-D~ U-..Ii :Jh 000'06071004 

44~ !) MCN S SIS 
~ ;L T~~~~ ~0100111 
~ H!~ CYCL~S l 
I~i~7~UCT!C~ TYPE 
~iC~C-CEFl\!TIC~ 

45. ~~=~C~!C SLLS 

9 
00006121004 

BIT PATTE~~ 10010001 
II.!.C INE CYC~ S l 
!,\S 8LCTI2N YPE 5 
~IC G-DCflf.;! ICN OCCG6000ll3 

\ 

-...! 
-...! 



46. ~NEMO~rC SRLS 
BIT PATTE~~ lJJlOOOO 
~ACH!~~ CYCLES 1 
!NST~UCT!ON TYPE 5 
foi!CR::-DEF!~IT !GN OOJJ6000ll9 

47. ~N HG~IC ST~ 
&I PATTE~N OlOOOJOO 
Y! HINE CYCL S l 
I-·~ Tp.t,;C TI Of\ Y?E ll 
M! qO-DEF!Nl ION. 00012140902 00006000101 C0000002200 

43.. ~~- ~ ~n c iH! 
&I ti7 ~~ 11000011 
I'.! H .'·;E YCL S l 
I~ T UCT CN YPE 14 
~: ~ -J~ iNI ION OCOG6000106 CGG1500Jl07 lOlOOCOC~OJ 

49. ~~;~MC~i!C T~CFF 
eiT P'TT~RN 00010101 
MACHINE CYCLES 1 
lr:STRJCTtG~ TYPE 21 
~!C~G-OEF:~~IT!ON . 00023CCOCOJ 

50 ~NEMCN!C TRCN 
EIT PATTE~~ QOOlCOll 
!~~.CH!NE CYCLES 1 
!~~ST~~CTIQN TY~E 21 
~ I-C?. :::-ccr: l r.~ r.r r CN 

51. Ml~ MCNiC ~~j 

OC02200QOGO 

?. ! Pt~TTEfU~ 1011000 
~~ ri!N2 CYC~ 3 
~~~ TRJCTIG~ P~ 11 
!J~ t{C-OEFI\:: :JN ooot21409D2 coczccaocoo 

~2~ ~ ~:~. c z;, 
?~ i ~:i 2!:~~111 

~" ril~-; '.'CL S 2 
'' TRG ~ .:;: YPc ll 
i1! ;..:- :: l!-.I 1JN J·C012l4C902 ~:JOOCOOZlJC OJOOC.Ol200~ 

53~ ~ \:~~IC X~: 
8 ?ATT k~J l~JGlll 

:-·. H!;--JE YCL l 
1 r;:ucT ;y,~ ?E 14-
"" Q,(:.-0£: I:·,! C0l J00061S2G04 

54 ~.\Ef'.:J~·l IC Xt-IF. 
~IT PATT ~N 

~~CHINE YCL 
!~~5T~UCT SN 
~!CRC-D~ !N! 

COOOO·l ~ i 
s 
YPE r 
l:N OJ006072004 

-...) 

00 



r4 
:>:: 
c> . 1U 
a. cJ 
r-o<V.7.:t..')"'.( 
VlG" 11 v'! or 
1JJ f'11 ~~- .. -.: <:r: .-.r 
t-IICJ C\...C) 

Li.l ., •• t..l • .. 
(j) y ·.~J :tl :I_ ::s: 
l.J , .. ul X vl Vl 
..., ·- .:-:~ tl! ... f <t 
/\ 1\ /\ /\ 1\ /\ 1\ 
1\ /\ ,, /\ 1\ 1\ 1\ 
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AC::R. INSTRUCTION 

coooccco llCO 

A S S E H B L E R 

SOURCE S T N G 

STMT SOURCE • * * * • ~ • ~ * ~ $ * ~ * * * * ~ ~ c * * * * * * ·o ~ * * • * • ~ ~ ~ ~ • 
.. iHE FOLLC;HING PRUGr.:.AM TESTS SOME OF THE li\STr<U:T!:JNS 

2 * II'PLE~i:NTED F:JR THE !NTERDATA 7116 BY GENERATING THE F!;tST 

3 * N NU~.!l~RS !N THE F!Bu,..ACCI SEOUE:NCE STARTING W!TH ZeRO. Th:? 

4 * VALUE, ~. IS READ FROM AN INPUT CARD AND SEVERAL SEQUENCES 

5 .,. MAY BE Gt~ERATED BY SUPPLY!~~ THE DES!RtD VALUE FuR N. THE 

b * Pi<CGRAH IS TEPHIN:.TEO WhEN A VALUE OF ZERO OR t.. NEGATIVE VALUE 

7 * !S READ FOR N. 

e 

9 TESTPGMl !\JP 

lC RO !:QU 0 " 
u Rl E.:IU 

12 R2 .::ou 2 • 
i3 R3 EOU 3 " 
14 F.4 E:lU 4 .. 
15 R5 EQU 5 '" 
16 Ro EQU 6 .. 
17 R7 eou 7 • :-..AM:: Ai...L REG!STE::(S 

18 R8 ECU 13 * FOR CL~RlF!CATlJN 

lS R9 EQU " 
20 RlO EQU 10 * 
21 kll EQU 11 "" 
22 Rl.2 EOU 1<. * 
23 Rl3 E:JU 13 .. 
24 fi.l4 EQU 14 

25 R15 EQU 15 * 
2b * 
27 RHON EOU " 

00 
0 



CCCCCCCl C 8FC 003E 28 LHI Rl5,=AO;) i<.l5 CONTAINS ;.cor. Gr N 

CJCOOC03 caEo DOl F 29 Lrll R~4,=X 1 00lf 1 Rl4 CQNTA!t><S "DU/oi~Yu CEV ICE 

cocooocs D9EF 0000 30 RH Rl4,Rl5,Q INPUT N 

cao::occ7 4BDF 0000 31 LH iU3,R 1:>, 0 LOAD Rl3 WITh N 

000000.09 3200 C0 3D 32 BNP R~3.T::SHI<D TEST FOR ENC-OF-F!Lc 

cccccccs C3CO 002F 33 LHI Rl2,=X'002F' Rl2 CONTAINS "DUMMY" DEVICE 

00 ~CO COD DBCF 0000 34 WH R~2,Rl5,0 OUTPUT N 

OGOOCCOF C5DO JCOl 35 CLHI Rl3,==F•t• TEST FJ~~ .N :; l 

COJOOOll ~300 COl a 36 BNE MCK~ "tOKE THt.N :JNE NU.V.BER 

oo:;:_Jl3 2700 COOl 37 SIS Rl3 ol SU!lTPACT l FP.CM N 

COOC0015 4CDr 0000 38 STH Rl3,Rl5,0 S TUf< E NEW N 

00000017 C8CF 0000 39 >JH ~-~2,Rl5.0 OUTPUT VALL;~ IN N 

COOGGC19 3000 0001 40 B RE"-ON BRANCH TO READ ANOTHER N 

41 I-lOR:;; 2Qi.J « 

CCOOOOiB C8BO 003F 42 LHI Rll, -A(ZERO) Rll CONTAI"'S. AODR OF ZERO 

C<JOCCClD. C8AO C040 43 LHI RlO,=A(DNEl RlO CCNTAINS ADDR OF ONE 

ODOOOOlF 4 39F 0000 44. LH R9,Ri.5o0 ~9 CCNT.t:NS N 

C000002l 4870 cooo 45 LH R7,Rll,O LOAD ZEHJ !)ITO R7 

000-~0023 .:ace oooo. 46 WH id2,Rll,O WR!l[ ZE;Q 

CJCC0025 t.·86~ OOQO 47 LH R6 ,R.lO ,o LOAD G~~ !~TG R6 

CCCGGC27 D8C~ 0000 4S WH Rl2,Rl0,0 WRITE ONE 

QOCCCV29 2790 0002 49 SIS R9,2 DECPEME~T N BY 2 

CC00002a c t4:.J 0041 50 Lr.l 1-<.4-,;.A~SAVEJ R4 CONTAINS ADD~ GF SAVE AitA 

51 >IR !TE EOi.J " 
COOJ00.2D cass 52 SHR R5, RS CLE.e.R R.5 

L00C(.02E C.l.57 53 AHR RS,R 7 AuD f<.7 TO RS 

COOOOC2F 01<56 54 AHR R5,R.O ADD P6 TO ~5 

CCGCC030 4C54 0000 55 STH R~,R4,J STORE R5 IN SAVE A~EA 

C0000032 DBC4 0000 56 WH RL2,R4,0 WRITE St.V~ AREA (X) 
...... 

00000034 2790 GOOl 57 SIS R9, l DEeP EM ENT R9 flY 



COOC0036 3390 0001 58 

OOOJQ038 0676 59 

COuC0039 4864 0000 60 

CCC COC3 a 30Cfl. 002 D 61 

62 TESTENO 

CCCCOC3D 1200 63 

CDOGJ03E 0001 0000 64 N 

COOCCC3F 0000 65 ZERO 

00000040 GOOl 66 o~"E 

O:JOSO e:-.1 0001 0000 i:J7 SAVE 

68 

ez 

LHR 

LH 

B 

EQU 

H.'.l..T 

OS 

cc 

DC 

OS 

Efi:O 

R9,READN 

R 7 1 ~ b 

h6, R4, 0 

Wil. lTE 

* 

lX'0000' 

F•o• 

F I 1 t 

tx •oooo• 

TESTPGMl 

TEST FJ!'. LAST VALUE 

l C.<D R7 FRC:.! R6 

LOAD Fb FROM SAV~ AREA 

CO:\TJNU~ 

00 
N 



SY.'180L i A B L E f. C R 0 S S REFEI'.ENCE D I C T I 0 N A ~ Y 

• ~ • * ~ * * * • * * * * * * * * * * * * ~ * * * * * * * • * * ~ * * * * * * * * $ ~ * * * • * ~ * * ~ • ~ ~ * ~ =· ~ * 
SYIIBOL VAlUE DC:FN REFEREI\'CES 

~ORE GOCOOO l!l 0041 0036 

I< 0000005E 0064 0026 

CNE cccooo-.o 0066 0043 

REACt< C000000l 0027 0040 00~8 

t(J COOOJ000 OCllD 

Rl COCOOOOl 0011 

i!lO OOOOOOOA 0020 0043 OC47 0048 

'11 CCCOJCQ5 0021 0042 oo .. s 0046 

Rl2 COC·:JJVOC 0022 0033 0034 G039 0046 0048 0056 

in3 0000000 D 0023 0031 0032 0035 OJH 003~ 

R::.4 CCCJOOOE: 0024 0029 0030 

"15 OOCOOOOF 0025 0028 003C 0031 0034 0038 0039 0044 

R2 00000002 OJ~2 

k3 CJC00003 0013 

1<4 00000004 0014 0050 0055 0056 0060 

R5 occoooo; 00!5 0052 0053 oos .. 0055 

Pc CJCO·JC06 JC!l6 0047 0054 0059 0060 

P7 OOC0:!007 Gbl7 0045 0053 0059 

Re CCC00'0:J3 001_8 

?9 00000009 0019 0044 0049 C0 57 005o 

SAVt: 0000004i 0067 0050 

TESTE~··D CJOOCC:3J OC62 0032 

T=STPGMl OOOOOOCJ 0009 0068 

;o: 'iE CC00002D 0051 0061 

zo:w C000003F 0065 0042 

00 
~~~~= ~U~BE~ OF ~SSE~BLY ER~ORS 0 ....., 
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:::> 
w 
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ooooo,.....oooo 
ClQ('),f'Qlf'i·"7'oO<:JU 
o o a o o ·1: ~"'' o o o 
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u_lLU..O..:ltf'l.-4000 
wua4 .Llulooo-o 
<J'U)C)rua"Jcr.ONOO 
aa_-.tu..roo ....... ao 

u.;.tL.....tU..Q...,..OOOO 
.....tNOfV"'O-f"V"t'\..100 
oooooor-·::>OO 
OoOOQONo(")Q 

a a o o co o-o o o o 
UJ U 0 CC W ·-t- 0 0 0 0 
U'.) OJ ,_ Ol C'C ~lJ 0 l..") (') 0 

uuNuuuonao 

WC)n')r-t(')N.:t'OOO 
fT' ,~\ ...... 0 0 0 w 0 u 0 
o o o o o o ro-o o a 
000(')00Cl000 

0000t:OOO-.:t00 
u ... o o o ,..... V" n -j) o o 
·:o r-1 (f) 0 m ~"-> o ''' 1..") o 
t,..J,-."1""(rn.J-NO-t00 

oo-ooo.J--0·-IO 
o o <-"1 o o o '"' ,.. .. o a 
.--ioOoonomao 
.....I()UQOO..t<JOO 

0f'()0•YlO'nC0.1r'JOO 
o () .-t ... ~ ,...,~ N _,, r·\ -r ..,,. 

;;J.. 0 Cl 0 0 0 Cl •J 0 (.) 0 
o a .-:. •.:> a c' c 0 o <) o 
:::) IJO~.JOUOUC.Jl..JO 
--t a u (J C'J n o .-") C-' o o 

ooooooouQo 
0 (.) u 0 u ~':;) ('"".) t.l CJ u 

84 



85 

~ 0 N n ~ ro ~ ~ ~ ~ ~ m ~ 0 ~ ~ ~ ... ~ ~ ~ 
N N m ~ ~ • m ~ .~ ~ ~ ~ ro ~ ~ ~ ~ 

N M ~ ~ ~ ~ . . ~ ~ ~ ~ 
N ~ ~ 0 ~ w 

N 



!DC'R 

000 00000 110~ C8FO 003E C BE 0 
COG~0008 0000 32 DO 0030 CBCO 
C08SJ010 OJCl A 300 OOlB 2700 
C;OJOOOi3 00-JO 300J ODO 1 cee o 
C;JC ::0020 OO·JJ 4c7!l oo·oo osc 3 
OO)J002o c::~o:: 27<;C 0002 Ca40 
00QCQU.3J 4054 0000 DSC4 0000 
CCSCCC38 0876 4864 0000 3000 
QOJCQOLJ 0001 6F-Fl occc OGDO 
COCCDC45 0000 0000 0000 0000 

••:~~•I':" .'-1:<.CH HJ E CYCLES 295 

OOlF 09EF 
002F DBCF 
COOt 400F 
OC3F C8AO 
0000 486A 
0041 0855 
2790 0001 
0020 1200 
0000 0000 
0000 oooc 

POST7 EXECUT!ON McYORY GUM? 

0000 480F 
0000 C500 
O:JOO DSCF 
0040 489F 
0000 u8CA 
OA57 OA36 
3390 OOOl 
FFFF 0000 
OOOD 0000 
ooco 0000 

co 
0\ 



~ A C H I N E D E F I N T G N 

• • * * * * • * * * * * * 4 * * * • * * * * * • * * * * * * * * * • ~ * * * * • • * # • * * * * * * * • • • • • • * * • 
FIXED PURPOSE REGISTER IF?Rl SYSTEM rEWLETT-P.ICKARO 2114.4. 

~U~BER OF INCEX REGISTERS 0 

I~DEX ~2GISTE~ SIZE 0 

HC:il SIZE 16 

•;Jil S!lE 16 

PC Sill" lc 

~UMEER OF INSTRUCTION REGISTERS 

IQ SIZE 16 

ACCU~ULATO~-~ SIZE 16 

ACCUMUL~TOR-8 SIZE 16 

~U~ciER OF INST~GCT!GN FC~M~TS USED 3 

GPCCSE L ENGH 4 

hU~BEA CF kGRDS REAC IN A REAC I~STP 

~L~BEk OF WORDS WRITTEH I~ ~ •RITE INSTR 

~u~eER GF ~CN-OPE:~ATE !NSTKUCTIONS 15 

~UM5E~ ~F R2CISTER CP~PATE !NSTRUCT!G•S 35 

:..C!':C S !lE 16 

(X) 
'-1 
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NCN-QPER~TE OP CODES AND THEIR MICRD-DEFINITIONS 

1. fii.EI'Ci'IIC ACA 
BIT PATTER!\~ 1000 
I'~Chit<E CYCLES 4· 
I!I.STRUCJICN TYPE 1 
,.I Ci<C-OEFI I'll TION 00012000102 00000002100 00007010911 

2. lt'fo.EMCNiC AOB 
BI1 PATTi:RN 1001 
,..ACJ-i INE CYCLES 4 
INSTPCCT ION TYP 6 1 
MICRO-OEFI~!T!ON 00012000102 00000002100 00000010912 

3. ~f\EMCNIC AND 
EIT FATT::i<N 0010 
~ACH!NE CYCLES 4 
!NST RUCTION TYPE 1 
,..!CRC-DEF!NITION 00012000102 OOOOCC02100 C00070ll8ll 

4. ,..NE~CNIC CPA 
SIT PATTERN 1010 
I'ACHII<E CYCLES 4 
INSTRUCTION TYPE 'l 
I'! CRC-ucF !NIT !ON . 00012000102 COCCCC02100 CC007000l06 00001000107 lOlOJOOOOOO 10400000000 0000 3000 50 3 

s. ~~~~CN!C CPB 
BIT PATTERN lOll 
~ACI-<J~E CYCLES 4 
INS T Ft;C Tl ON TYP c 1 
MJCRC-DEF!N!TION OC01200Cl 02 0000 000210 0 00008000106 00001000107 10100000000 10400000000 00003000503 

6. ~~E~C'IJC ICR 
8 IT PATTERN 0110 
MACJ-i WE CYCLES 4 
nSHUCT!C~ TY?E 1 
MICRC-DEF!NITICN OC012000102 OOOOOOJ2lu0 OOO\l70119ll 

7. I'I>EMCN!C ISZ 
!!IT ?~TT:oRN 0111 
MACHINE CYCLES 4 
INST!<UCT ION TYPE 1 
~ICRC-OEF!NI!ION 00012000102 00000002100 00001000501 CCOOOCC2 2CO OOCC1000l0b lllOOOCOOOO 00003000503 

a. MNEMCNIC JMP 
EIT FATTERN 0101 
"ACHINE CYCLES 2 
INSTRUCTION TYPE 1 
~ICRC-CEFINITION 00012000103 

/ 
9. MNE.'IC'Il C JSB 

eiT PATTERN 0011 
I'ACH !~E CYCLES 4 
INSTi<LCT!ON TYPE 1 
"ICRC-DEFINIT ION OCOl2COOlC2 OOC03C0Cl0l C0000002200 OCC02000503 

00 
1.0 



11>· 1-!KEKOIII !( l !)A 
!!IT FA.TTE!'t'~ 1100> 
I\ A C. let I NE C Yf. tE S. 4 
H;STIIIUCTION TYPE 1 
!'I C~C-l'-~F I !I' IT l CN oon zooo.1o2 OOOOOC021CC CCOClCOOlll 

ll. ~NCtiEt~~ C tDE 
!!If fA.JTfliH llDl 
~ACII I 1\.E CYC tES 4 
JNSl'RUCTI0:-1 TYi>E l 
I' ICRC-IJH' P~ lT !0!11 OC0120001C2 COCCCC02lOC CCC0l00Cll2 

12. HEI'CI\l C !'lCP 
81 T P•A.TTERN CDC! 
1'-!.CH UtE CYCLeS 2 
!liSTi<lC110t< TYPE 4 
MlCRO-DEFfNITlON coocooocooo 

13. nEf_C!i.IC STA 
8! T P'A HERN 1110 
1-!ACIHNE CYCLES .. 
U!ST i<UCHu:l: TY!>E 1 
M l C.RO-DEF I Nl iJ Ct-. OCCH 2 000102 00007000101 C0i>00002200 

Ito. ~·~<~MP>IC sre 
B!l FATTERN 1111 
MAC<!INE CYCLES 4 
!NS HUCI ION l'YP E 1 
~'ICR(-t:EfiNIHCN 00012000102 00008000101 COOOOOOZZOO 

15. I'!NE:-IO'IIC TRC/'i 
E!l PAlJ~RN OlD~ 

M•tH!NE CYCLES 4 
t.\.~S"fr.:tiJ.CtlO'.I't.;. TYPE it 
~!CRC-~EF!:-.H !Ct. 0002:0•000000 

\0 
0 



OPERATE OP CCC::S ANC HEIR I'ICRO-CEFINIT!ONS 

~~E~C~!C OP coo= OPR 
EIT PtTTERN COOO 

1. ~~E~C~lC ~LF 

HIT POSITIONS 6 7 
MACH!NE'CYCLES 2 

B 9 

~!CRC-CEFI~ITION 00006000114 OOCC70001l5 CC007000ll5 00007000115 OOC0700Cll5 

2. I'NEMG"l!C !LS 
51T FCS IT IONS 6 
!'~CHI~~ CYCLES 2 
MICRC-DEF!NITICN OCOC6000ll4 00007000117 

3. ~1\o><:::•dC Bli' 
8IT FCS:TIC~S 4 6 7 s 9 
l':,c•;I~E CYCLES 2 
~!CRC-CEFIN!T!O~ 00006000114 OCJOeOC011; CCODB00Cll9 OCC08000Ll9 OCOOB000119 

4. foiNEMON!C BLS 
EIT POSITIONS 4 6 
~!\CHINE CYCLES 2 
~!CRC-CEFINl TION OC006000114 00008000121 

5. MNP~:JN !C cc~ 
rtr FCS lT IC~S 5 .6 7 
t<:.CH>:E CYCLES 2 
to; !CqC-CEF IN IT ION OCCC400Cll1 

6 •. V~!'MCI\IC CCB 
BIT PCSITIO~S 4 5 6 1 
"'ACH!NE CYCLES 2 
~!CRC-CEFU•IT ICI'i 00004000112 

7. H~£::;w!C,\! C CCC: 
E!T PC r:- I J:~s 5 8 9 
1'-'AU-ili\ CYCLES 2 
~!CRG- EFINIT!ON CCCC4000ll3 

a. ~~.;EMCN C CLA 
8!1 PO ITIG~S 5 7 
I~ACHIN C'fCLES 2 
'!- !CRC-CEF Ir\ !T IO~ 

9. MN~MC~!C CLB 
21T PCS!TIO~S 4 
~~CHI~E CYCLES 2 
M!CRC-J~FI~IT!GN 

10. W~ENC~!C CLE 
B!T PCS!T!G~S 10 
MAChi~~E CYCLES 2 

00005000111 

5 7 

CCOC5000112 

•!CRC-CEFI~Ii!ON OCCG500Cll3 

11. M~~xc~ c c~~ 
BIT PO IT IONS 5 6 
~~~Hih CYCLES 2 
MICRO- EF!NIT!ON CCC070016l1 

\D 
...... 



12. ~~E~CfdC c~e 

BIT ?OS! T!ONS 4 
r-~!CHH..;E CYCLES 2 
~:(.RC-!:;:Oi' I r·:l T I ON 

13. M\ E~C~ !C . C,...E 
err FCS IT IONS 5 
~ACHP<E CYCLES 2 
1o! :CRO-OEF IN IT ICJN 

14. ~~E~Ci';lC HLT 
8!i PCSlT!C\S 5· 
1-'t.Ch L\E CY Cl ::S 2 
~ICRL-C.E~!t-.IT!;:~ 

15. ~.N>:.'IC'·HC INA 
E!T POSIT IilNS 5 
I':.CHH•E CYCLES 2 
:~ !CRC-ilEF IN !T ION 

16. ~~EM~N!C I~a 
BIT POSITIONS 4 
1-L.,Ch !~~E CYCLES 2 

5 6 

00')08001612 

8 

OC0130002U 

OC022COOJOO 

l3 

CCCC70005ll 

5 13 

~ICRC-CEF!~!T!O~ OOJ030~0512 

17. I'NEMCNIC L!A 
BIT FCS IT! O"iS 5 7 '1 
I'ACh I 'IE CYCLES 4 
M!CRC-DEF!NIT!Gi< oc::csooolOZ 

1 a. !'1\!:M.C~ !C LIB 
6 I 7 ~c!:.::rc~s 4 5 ., 9 
t-AACH!~E CYCLES 4 
~I CR::-CEF lU IT !Of; 00005000102 

l <;. M.'-!EY.ONI C HI~ 
2IT POSITIONS 5 7 
~ACr-Jr>;E CYCLES 4 

~ICRC-DEFINITIC~ ·Jcc;osoooto2 

20. ,~o~r~E·1o~~ rc r~! R 
•; r 1 ;:;::siT!C.\S 4 5 7 
~ACHI~~t: CYCLCS 4 
fJ. lCP.C-OEF 1\llT I~i-\ oc-cc:coctcz 

21. ,..:-..EMC~!C NCP 
SIT ?CS!TIC:-.lS 15 
I'~CH IN~ CYCLES 2 
~1 ICXC-D£F!t..:!T!CJ\ ocooaoooooo 

22. 1'-'t\Et~G.\ C C:TA 
nr PO IT !ONS 5 7 8 
MACH! ~l CYCLES 4 
MICRD- EFINITION OCOC500Cl02 

00017000000 ooooooonoo 000010.:10111 

coo 1 7e.;c c c c CC0000021CO CCGOl 000112 

000l7CJCOJO COOOG0021JO OJ007Clt 'Ill 

OOC17CCCCCC C00000021CO CC003Cll912 

OOCC7CCC1Cl CC0000022 00 000l8000000 

\0 
N 



23. to~~ MC"'IC OTB 
8 I PCS IT JC,\S .. 5 7 a 
~A >ili\E CYCLES 4 
HI RO-DEFINITION OCOC5000102 00 00 8000 l 0 l 00000002200 OOOlSJOOOOO 

24. ~1\E>IC"'!C RAL 
BIT ?CSIT·IONS 6 8 
MACHINE CYClES 2 
l'!CRC-~cFTNIT 10:'-J 00006000114 00007CC~ll5 

25. ,..r~t.'-IC~-.1 c i<AR 
SIT POS!riOI\S 6 a 9 
~ACHH.E CYCLES 2 
~!CRC-DEF!NIT!C~ OCCC&000ll4 00007000ll6 

26. l'~E:<C~!C "'i:L 
BiT FCS!TIOI\S 4 6 8 
IHCH!'JE CYCLES 2 
~ iCRC-CEF IN IT !J~.J CCCG600Cll4 OOCCECOCll'i 

27. ~1\=1-lc~.rc RBR 
BlT PIJSI T!ONS 4 6 8 9 
~ACHTI-.E CYCLES 2 
~!CRO-DEFl~lT!CN .O~OC6000114 00008000120 

2B. ti~E""' .. ~\ IC SEZ 
2! T FCS!TlOt\S 5 10 
l<t,CHINE CYCLES 2 
~!CRC-DEFINITIJN OC01300Cl C6 ll10COCCCCC C0003C00503 

2'7. 1"~\E.~C.\IC SLA 
8 IT POSITIONS 12 
llt.CH~<E CYCLES 2 
MICRO-DfF!~ITION 00007000106 11400000000 COJ030Q0503 

30. !-i!\JEMO~~ !C SL3 
P. IT ~cs IT ;:c:--;s 4 12 
"'llChl\E C.YC.LES 2 
'"i lCrtC-D!:F lN 17 I0\1 OCOCdOOOlOe llt.CCOCCCCC CCOJ3000503 

3!.. ~1\E,..C!\!C SSA 
BIT PGS!TIONS 5 ll 
l<iACHH<E CYCL.ES 2 
~lCRC-DEf IN!TION 00007000106 00005000107 1010GOOOOGO 1C80CCCOCCC OOCC300C503 

32. l":iti'C,"JI C SSl> 
fIT PCS IT !O"S 4 5 ll 
~ACH n.2 CYCLES 2 
~~C~C-JEFINITIG~ CCOC3000106 OOCG5CC0107 10100000000 1 oaoooooooo 00ll0J000503 

33. ~~- .vc, JC S\\P 
B! PCSIT!:J!\oS 4 5 
MA HI:;E CYCLES 2 
III i<C-C~f!~.IT!Cr> 00007000108 00003000111 00014000112 

\0 
w 



34. ~~EI'C'-lC SZA 
8! T POSITIONS 5 14 
MACI->!NE CYCLeS 2 
I' I CR C-OEF IN IT ION 00007000106 

35. MNEMONIC sza 
e IT POSIT IONS 4 5 14 
I'ACH!~E CYCLES 2 
MICRO-DEFINITION CCCC800Cl06 

~CD~ESSJNG MODES 

C!RECT TC CURRENT SECTOR 01 

DIRECT THROUGH ZERO SECTCR CO 

INC!RECT T!-RC_UGH CURPENT SECTOR 11 

!~DIRECT THRC~GH lERC SECTOR 10 

INDEXED, R. EGI STER l 00 

INCEXEC, RECISTER 2 00 

lllOCOOOCCO 

11100000000 

COC03C00503 

00003000503 

\0 
-ll'-
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AOOR I P.STRUCT ION 

COOC0020 1000 

C1:CCCC21 CJCO 

CD000022 COOl 

COCCG(.:23 CCC.J 

CCOCOC24 E002 

CCOC0025 C003 

CCCCCC26 CcOO 

COOCCC27 EOO<, 

CCOG0028 0540 

COOC0029 0410 

CCCCGC2A 54CE 

A S S E M B L E R 

SOURCE L S T 1\ G 

STMT SOURCE • ~ * * * ~ * ~ ~ • $ * ~ * * * # * * ~ ~ • * ~ * * ~ * • * * * * * * * * * 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

.. 
* 

"' 
* 
"' 
* 
* 
* 
• 
* 
* 

* 

* 
* 
*. 

THE FCLLGW!I>G FRCGRA'; TESTS SOME OF TrE 11\STFUCTIONS 

!11PLE"E"'TEC FOR ThE hEWLETT-PALKt.I<D 2114~. THE PRQGRAI-I IS 

DESIGI\ED TO PERFOR~ THE PR!~IT!VE STACK CP~RATIONS: Ill "PCP" 

THE ITEM FROM THE TCP OF TrE STACK, ANC 121 "PUSr" THE ITEM 

CNTO TrE TOP OF ThE STACK. WhE~ STACK UNDERFLOW CR STACK 

OVERFLOW IS DETECTED AN ERRCF CCCE IS PRINTED ANC ThE PROGRAM 

TERMINATES. 

STACK OPERAT}ON COMMANDS ARE RE~D FRO~ INPUT CARDS. A 

POSIT !VE VALUE FCLLCWED flY ThE ST tC:<. ITEM, DES !Gr.ATES /. "PUSH" 

OPERATION. A NEGATIVE V~LUf DESIG:~ATES A hPCP•• OPERAT!CN. A 

ZERO U~LUE JES!Gh~TES Th~ E~D CF TH~ STtCK CO~MANDS. 

EACH STACK COMMA'ID IS PU~1TEO FCLLCWEO BY THE CO?RESPuNOING 

STACK !TEM. THE COMPLETED STtCK AND ST~CK TOP PO!~TEA MAY BE 

VIEWED IN THE POST-EXECUTION MEMO~Y DUMP. 

TESTPGM2 NOP 

CPR CU., CLB CLEAR ACCU~ULATORS A AND B 

LOA LO~<TEST LGAD ILCWE~ 9CU~C ADDRl - 1 INTO t 

CPR Ci~A TAO'S CC~PLE~ENT CF ~ 

STA LOW TEST ST:JRt RCSULT 

LOA HIGHTEST L CAD IU?PEP. BCJNC ADDR l + 1 INTO A 

OPR CloOA T~C'$ CO~PLE~ENT OF A 

STA HIGHTEST STC~E RESULT 

lr\PUT ECU • 
OPR LIA !~PUT STACK CCMMANO !NTG A 

CPR SSA S K lP If CIA) >= 0 

JMP ?0? POP ITEM F?.JH TG? OF STACK \0 
0\ 



CG00002B 0402 28 CP;l. SZA SKIP IF CtAI = 0 

CCGCC02C 541C 29 JMP PUSH PUSt-i ITO< DiTO TGP ~F STACK 

GOCCCC2D C4CO 30 CPR 1-L T S TGP RUN 

31 POP EOU * "PCP" ?F.CCEDURE 

CCCCCC2E 0580 32 CPR OTA OUTFUT STACK CGxMANO 

CCCC002 F C005 33 LOA STACKPTR LOAD STACK PC!NTE~ INTC A 

O:JQCGC3G SCC6 34 ADA LCW TeST ADG LCWEF BQU~D TEST VALUE TO A 

CCCC:JC31 0402 35 CPR SZA SKIP IF CUd = 0 

COOOCC32 5416 36 J'IP DELETE BRINCH TC CELETE !T EM FRO~ STACK 

37 UNDRFLOI< E'U * 
CCG00033 COOl 38 L!:lA ERi': FLAG 1 LOAD STACK UNCERFLOW FLAG !NTC A 

G0000034 C5EO 3'l CPR OTA OUTPUT STACK U~CERFLCW ERROR 

COCCCC35 0400 40 CPR t-LT STOP RUN 

41 DELETE EOL * 
CCC(CG.36 CoC8 42 L CA I STACKPTR LOAD SHCK TOP ITEM INTO A 

coo coc:n C580 43 CPR OT A OUTPuT STACK TOP ITEM 

ccccoc3o C009 44 LOA STACKPTR LOAD STACK P01~TER l~TG A 

COOC0039 800A 45 ADA NEGO~:E DECREMENT STACK POINTER BY 

CCC CCC3A E003 46 STA STACKPB STORE RESULT 

CC00003 ~ :'AOB 47 JMP INPUT BRANCH TC ~EAC ANCTHER CC"MAND 

48 PUSH E•JU * . "?US h 11 ?~ C-C EOUF· E 

CCOC003C. 0040 49 CPR LIB INPU1 N~~ STACK ITEM INTC B 

COG0003G 0580 50 OP;l. OTA OUTPUT STACK CCKMAND 

CCCCOC3E CCBG 51 CPR GT8 OUTPUT N~W STACK I TEi~ 

COO.JC -J3 r: eeoc 52 LOA STACK? Tf' LOAD STACK PC!~TER INTO A 

COOC0C4J C4C4 53 C?R INA !NCFEMGH STACK ?O!NTER BY 

CC~COC41 E4H 54 STA STACKPTR STCi'l: RE~ULT 

coococ:.z 8417 55 ftDA H!GHTEST ADO UPPEf' 80UNO TEST VALUE TO A 

COCC0043 0402 56 OPR SZ A SK!P !~ C{Al = 0 

coo:oc1.11 54Ca 57 JMF l NS ERT BRANCH TO L'-'SE~T ITEM IN STACK ID 
-...J 



58 OVERFLOW EQU 

00000045 C419 59 LOA 

CCCCCC46 oseo oO C?R 

COOC0047 0400 61 CPR 

62 INSERT EQU 

CCC00048 FC14 63 STB 

C0000049 5000 c4 JMP 

65 * 
C000004A COCA 0000 66 STACK OS 

ooocoo 54 CC49 67 STACKPTR OC 

COOC0055 FFFF 68 NEGONE OC 

COOC005b 0049 69 LOW TEST DC 

COCOCC57 0054 70 HIGHTEST cc 

C000005S 0048 71 ERRFLAGl DC 

COOC0059 OSF l 72 ERRFLAG2 ·DC 

13 END 

* 
ERRFLAG2 

GTA 

HL T 

* 
I STACKPTR 

INPUT 

l0X'0000 1 

A(STACK-11 

F '-1' 

AISTACK-11 

AISTACK+lO I 

F'-8888' 

f'-9999' 

TESTPGM2 

LCAO STACK CVERFL'OW FLAG INTO A 

OUTPUT STACK OVERFLOW FLAG 

STOP RUN 

PUSH ITEM ONTO TOP OF STACK 

BRANCH TC REAC ANCTHER COMMAND 

STACK AREA 

!NIT !AL IZE STACK POINTER 

DECREMENT VALLE FOR STACK POINTER 

LCWEP I!GUNC TEST VALUE FOR STACK PTR 

UPPER BOUND TEST VALUE FOR STACK PTR 

UNDERFLOW FLAG· 

OVER FLOW FLAG 

\0 
00 



S Y H 6 0 L T A B l E & C R 0 S S REFERENCE 0 I C T I 0 N A R Y 

* •• * * * * * ~. *. * * * * '* * * * * * * * * * * •• * * * •.•.•• * ~ * * * * ~ * * * *. * * * * * •• *. *. * 
SY~EOL VALUE OEFN REFERENCES 

DELETE CCCC0036 0041 0036 

ERRFLAGl COOCOJSB 0071 0038 

t;RqFLAG2 CCCCOC5 9 0072 0059 

H!GHTEST C0000057 0070 0021 0023 C055 

l~Pt;T 00000028 0024 0047 0064 

INSERT CCOC0048 0062 0057 

LOW TEST 00000056 0069 CC18 0020 . 0034 

~EGCIIOE 00000055 0068 0045 

CVERFLOW COCOOC45 case 

I'CP 0000002 E 0031 0027 

PUSH CCOOC03C 0048 0029 

SHCK C000004A 0066 0067 OC6S C070 

STACKPTi< COOO:J054 0067 0033 0042 0044 0046 0052 0054 OC63 

TESTPGH2 CCCCOC20 CC16 0073 

UIIOC~FLCW OOOOOOH 0037 

•**** NUMBER OF ASSEMBLY ERRORS 0 

\0 
\0 



H~R 

ccccccco coco 0056 0056 0057 
ooocooca J054 0054 C0 55 0054 
OOOCOClO 0000 oooo· oooo 0000 
GCCCCC18 cooo 0000 . 0000 0000 
CCCC0020 1000 0000 coo 1 0600 
COOC002B 0540 0410 S40E 0402 
CCCCCC3C 80C6 0402 541c C007 
C0000038 C009 SOOA EOOB 5408 
COOC0040 040t, EH4 6417 0402 
C0000048 FC14 5000 ecce CO:JO 
ococooso 0000 0000 0000 0000 
COCOOC58 0048 08Fl 0000 0000 

0057 0054 
0054 0028 
0000 occc 
0000 0000 
E 002 CC03 
541C 0400 
0580 0400 
0040 esse 
5408 C4l9 
0000 0000 
0049 FFFF 
0000 0000 

PRE-EXECUTION ~EMORY DUMP 

oosc. 0058 
0000 OJOQ 
cocc ooco 
0000 OJOO 
CoCO E004 
CSBO coos 
CBOB 05oO 
0080 ccioc 
0580 0400 
0000 0000 
0049 0054 
0000 ocoo 

.... 
0 
0 
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ACOR 

ccccccco 0000 0051> C05b 
coocoooa 0054 0054 OC55 
00000 010 .0000 0000 0000 
ccc cc.n e coco 0000 0000 
COCCOC20 1000 OOOD COOl 
COOCOC23 0540 0410 540E 
CCCCCC30 8006 0402 5t,lb 
COOOOC38 G009 800A EOOB 
COOC0040 0404 E<Tl4 8417 
C000004S FC 14 50 CD ccsc 
coo coosa 2000 4000 occc 
COOOOC58 0048 DBFl 0000 

•**•* ~ACHINE CYCLES 

005 7 0057 0054 
C0 54 0054 0026 
oooc 0000 occo 
0000 cJOOO 0000 
ObOC E C02 CC03 
04()2 541C 0400 
C007 0580 0400 
5408 001,0 0580 
0402 5408 C419 
0100 0200 0400 
oooc 0040 FFFF 
0000 0000 0000 

588 

POST-EXECUTION MEMORY DUMP 

0056 0058 
ocoo 0000 
ecce 0000 
0000 o·:>Oo 
06CC E004 
CSAC coos 
caos 0580 
0080 cooc 
0530 0400 
0800 1000 
FF87 FFAC 
0000 0000 

-0 
N 
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Additions to the simulation system have been made to aid in the 

maintenance of the program. Column 13 of the first input card in the 

machine definition phase (Chapter V) is used to signal a trace of the 

interpretation of all assembler statement operand fields. This fea­

ture aids in determining the validity of the operands in the generated 

machine c.ode. All of the generated machine code can be examined on the 

assembler listing. 

Features of the simulation system.that may require modification 

are: (1) the maximum size of the simulated memory, (2) the maximum 

length of the symbol and reference tables, and (3) the default time 

and region parameters for execution. 

The maximum size of a machine language program is 2000 words. 

This should be sufficient memory for the execution of most programs, 

but it may be increased for the execution of larger programs. To in­

crease the size of the simulated memory, the upper bound on the memory 

array can be changed to the desired value. If it is necessary to 

change the maximum memory size to 2500, for example, the PL/I program 

statements 

DECLARE 

MEM (0:2000) BIT (32), 

MEMDF (0:2000, 0: 31) BIT (1) DEFINED MEM, 

should be changed to 

DECLARE 

MEM (0:2500) BIT (32), 

MEMDF (0:2500, 0:31) BIT (1) DEFINED MEM, 

The maximum number of identifiers that can be specified in a single 

assembler program is 100. The maximum number of references to the 
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identifiers is 200. Both of these limits can be increased by changing 

the upper bounds on the two arrays. For example, if it is necessary to 

change the upper bound of the symbol table array to 150 and the upper 

bound of the reference table array to 300, the PL/I program statements 

DECLARE 

1 SYMTBL EXTERNAL, 

2 DECTBL (101), 
• 

• 
2 REFTBL (200), 

• 
• 

MAXSYM • 100; 

MAXREF • 200; 

should be changed to 

DECLARE 

1 SYMTBL EXTERNAL, 

2 DECTBL (151) , 
• 
• 

2 REFTBL (300), 
• 

• 

MAXSYM • 150; 

MAXREF • 300; 

The default number of maehine cycles for the execution of a pro-

gram is 500. The default region size is 200 words. Both of these 

parameters are easily changed in the JCL for the user program (Chapter 

V). 

The PL/I debug options of SUBSCRIPTRANGE, SIZE, and STRINGRANGE 
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have been enabled for the execution of the entire simulation system. 

These features aid in the initial debugging process of a program, but 

they tend to decrease the performance of a program because of the error 

checking that is performed. If desired, these debug options can be 

disabled, or enabled only for specific sections of t·he program, which 

increases the execution speed and decreases the size of the generated 

object program. 



VITA 

Glenn Ray Thompson 

Candidate for the Degree of 

Master of Science 

Thesis: A MICROPROGRAMMED SIMULATION SYSTEM FOR GENERAL PURPOSE 
REGISTER AND FIXED PURPOSE REGISTER MINICOMPUTERS 

Major Field: Computing and Information Sciences 

Biographical: 

Personal Data: Born in Fort Smith, Arkansas, July 16, 1952, 
the son of Mr. and Mrs. w. R. Thompson. 

Education: Graduated from Mount Saint Mary's High School, Okla­
homa City, Oklahoma, in May, 1970; received Bachelor of 
Science degree in Mathematics from Oklahoma State University 
in May, 1974; completed requirements for Master of Science 
degree at Oklahoma State University in May, 1976. 

Professional Experience: Graduate teaching assistant, Oklahoma 
State University, Computing and Information Sciences Depart­
ment, August, 1975, to May, 1976; systems analyst, Armco 
Steel Corporation, May, 1975, to August, 1975; graduate 
teaching assistant, Oklahoma State University, Mathematics 
Department, August, 1974, to May, 1975. 


