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PREFACE

This thesis is a description of a microproérammed simulation
system for general purpose register and fixed purpose register minicom-
puters. Such systems aid in the efficiency in which assembler programs
are developed for certain classes of minicomputers. The description is
designed to instruct the reader in.microprogramming techniques and how
these techniques might be implemented.
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CHAPTER I
INTRODUCTION

This thesis is a presentation of a method for developing a
microprogrammed simulation system for minicomputers chosen under two
classifications (14): general ﬁurpose register systems and fixed
purpose register systems. Of the classes of minicomputers, these two
represent the largest number of minicomputers available on the market
today. They are also more closely related than any other two classes
of minicomputers. |

The first classification consists of minicomputers with a General
Purpose Register (GPR) structgré. The hardware registers of this
type of machine serve many functions. Two functions the registers
serve are (1) index registers and (2) general purpose accumulators.

In one section of an assembler program, a register may Be used as an
index register to obtain the effective address of an operand, whiéh

is to be used in computations of some form; and in that same section
of the program the register may be used to contain the operand itself.
Examples of machines with this hardware register configuration are
the MODCOMP II and III (15) and the INTERDATA 7/16 (10). A subset

of the instructions for the INTERDATA 7/16 has been defined for
simulation purposes and is contained in Appendix C along with a
samplé assembler program run.

Minicomputers in the second classification have a Fixed Purpose



Register (FPR) structure. There are several different types of hard-
ware registers used in such systems. Accumulators are designed to
hold intermediate results of computations and serve a significant
role in the Arithmetic Logic Unit (ALU). Index registers are used to
determine the effective address of some operands and serve as an im
portant tool in the use of data arrays as a primary data structure

at the machine level. Extension registefs, usually of one bit, serve
aé overflow or carry indicators for the accumulators. Depending upon
the particular system, there may be many more registers that serve
various purposes.i Examples of machines with this hardware register
configuration are the HEWLETT-PACKARD 2114A, 21154, and 21168 (1),
the VARIAN 520/i (20) and the INTERDATA Model 1 (9)f A subset of the
set of instructions for the HEWLETT-PACKARD 2114A hag been defined
for simulation purposes and is contained in Appendix C along with a
sample asseﬁbler program run.

Simulators can be written for a large number of minicomputers in
high level languages, such as FORTRAN or PL/I, on large host computers.
This facilitates the incorporation of mofe sophisticated diagnostics
into the simulation system,'tﬁereby decreasing the amount of debugging
time required for any particular assembler language program. One
reason this sophistication is usually not built into most minicomputer
translation systems is the relati;elyvsmall amount of main core
storage available to the system. With this restriction, the producers
of systems software must keép ﬁhe size df the translators down to a
minimum,

Minicomputefs are playing an increasingly more imporﬁant role in

the computing industry. This is one reason for the development of



more generalized simulation systems, Minicomputers are used for
such purposes as laboratory machines to monitor experiments, inter-
face devices in computer networks and interface devices between large
computer systems and peripheral devices. In some cases they are
even used for autombbile care and maintenance. Their versatility is
mainly due to the fact that most minicomputers are bus oriented
machines. A data bus allows information from external devices or
internal registers to be transferred to logic units and back again
‘along a single dﬁta path. This helpé to lowér hgrdware costs and
make the system more flexible. It is not unusual for as many as 256
external devices to be connected to a single data bus.

An introduction to the subject of microprogramming is given in
Chapter II. Background information and an illustration of a small
micfopfogrammed system are discussed. An explanation of some of the
differences between fixed instruction‘computérs and microprogrammed
computers is also given.

The simulation system itself is‘composed of a cross assembler and
an interpreter. The two pass assembler is described in Chapter III.
The scanner for detecting labels and operation codes, pass I symbol
table constructioﬁ and object (machine) code generation in pass II are
discussed. Assembly time error detection and diagnostics are also
discussed.

The object code generated By the assembler is input to the inter-
preter., The interpreter is actuélly a microprogrammable pseudo-machine
for which microprograms are desigqu to simulate instrucﬁion execution
for a desired system. Pass II of ﬁhe assembler loads the simulated

memory with the generated‘object code and it is from this simulated



memory that the interpreter obtains the méchine instfuctions. Chapter
IV contains a description of instruction fetch and execution, execution-
time error detection, and inbut/output formats. Microinstruction
formats and the development of microprograms for the simulated instruc-
‘tions are also‘discussed. It is not the purpbse of this thesis to
treat the subjects of input Joutput and interrupt servicing in great
detail. Therefore, these subjects are only briefly discussed in terms
of the microinstructions required to perform their basic functioms.

The simulation process can be thought of as a sequence of state
transitions. Figure 1 and Table I illustrate the state transitions in-

volved in the simulation process.

Figure 1, State Transitions of the Simulation Process.

Chapter V is a Users Manual and describes the deck setup and op-
tions for using the assembler-interpreter. The assembler output format
and error messages are also discussed. A summary and further study is

presented in Chapter VI. Appendix A contains a list of symbols used in



the description of the simulation system. A logic block diagram of
the system is given in Appendix B and Appendix C contains sample
assembler program runs and the output. Appendix D is a systems pro-

grammers guide to modifications of the simulation system.

TABLE I

DESCRIPTION OF STATE TRANSITIONS
FOR FIGURE 1

State : Description

0 (Start state) Hardware register definition
1 Instruction set definition

2 Job control recognition

3 Assembly of source program

4 Object program interpretation
5 (Final state) Termination of job stream

The basis for the method of construction of the simulator pre-
sented in this thesis was developed by Hill and Peterson (7) in their
description of a microprogrammed Small Instructional Computer (s10).
This computer has a fixed purpose register structure with two
accumulators, two index registers #nd one extension register. The
" instruction set is sufficiently large to illustrgte most points about
a microprogrammed system. The design of.thg mi;roinstruction set was
influenced by Husson (8) in his description of the microprogramming

techniques for large scale computers.



CHAPTER 11
MICROPROGRAMMING
Introduction

The term microprogramming was first coined by Professor M., V.
Wilkes of the Cambridge University Mathematical Laboratory in 1951 (21,
22), In his thesis he stated that one can envision the control portion
of a computer as effecting a number of register-~to-register transfers of
information in order to carry out the execution of a single machine in-
struction. Each of these steps can itself be thought of as the execu-
tion of an instruction for some machine (whose existence is unknown to
the programmer). The steps used to effect a single instruction in the
user machine can be thought of as constituting a program, usually
called a microprogram. Microprograms can also be used for other nec-
essary operations which are in some sense invisible to the programer,
for example, fetching the next instruction or computing effective
addresses.

There are at least’ two approaches to microprogrammed control, and
they‘differ significantly from one another. One, cailed "vertical or
sequential microprogramming" (18), felies on the more traditional
concept of programming in which an instruction contains an operation
code, secondary modifiers and one or more address fields. In this 7
case tt_lreq addressable stofage areas are associated with the host
machine: (1)'ﬁain store, (2) control store and (3) local store.

6



Local store consists of registers and can be conceived of as being a
general purpose storage area for use by the microprograms.

The other approach, called "horizontal microprogramming" (18),
uses the microinstructions as control words whose individual bits are
used to select specific data paths within the machine. In this case
there are no ‘addresses other than those implicitly specified by the
bits.of the control words. Althodgh this scheme is less general than
vertical microprogramming, it is possible to make more efficient use
of the hardware of machines organized in this way. A modified version
of the horizontal micr0programming scheme is used in the interpreter
which is described in detail in Chapter 1V,

In either case, the microinstructions generally are held in a
controlbstore, usually fasterithan main store, for which there must be
some form of aecessing mechanism. fhe majority of such systems use a
non~destructive read-only store (ROS or RCM) for reasons of speed and
economy. The read-only nature of these devices also insures the inte-
grity of the simulated machine.

Alternatively, a few machines are now equipped with writable con-
trol stores implemented in core arrays. Such core arrays generally
are built so that they have the properties of fast reading and slow/
writing (16). Fast reading is necessary for performance and slow

writing can help in cost reduction.
Fixed Instruction Computers

In order to contrast some of the aspects of fixed instruction
computers and ﬁicroprogrammed computers, a description of some of the

major characteristics of fixed instruction computers follows.



The hardware of fixed instruction computers generally is divided
into four units (Figure 2): (1) an input/output unit, (2) memory (or
storage), (3) an arithmetic-logic unit, and (4) a control unit. In
general, the input/output unit coﬁsists of more than one physical de-

vice but input and output are often considered together.

CONTROL
UNIT

INPUT

MEMORY

OUTPUT

ARITHMETIC
UNIT

Figure 2, Simplified Block Diagram for Fixed Instruction Stored
‘ " Program General Purpose Computers [From Micropro-
~ gramming Handbook (14)]

1

Memory is considered in its conventional way, a series of memory
cells and registers used to store the instructions of a program while
in execution. Addresses are associated with each memory cell and with

all registers., . The control unit of the computer can refer to a storage

v



register by its number (or address). This is called the address pro-
perty of the storage register (6). Storage registers have two other
pfoperties: (1) non-destructive read-out and (2) destructive write-in.
Non-destructive read-out refers to the property of accessing the con-
tents of a register without destroying it. Destructive write-in refers
to the property of destroying the previous contents of a register when
information is stored into the register.

All arithmetic is performed in the arithmetic-logic unit. There is
at least one accumulator or general purpose register in the ALU of any
computer, The structure of the machine is such that the contents of the
accumulator or general purpoée register can be tested to determine the
characteristics of the value. Usually, this simply means to determine
if the value is less than, equal to, or greater than zero. This is the
basis for all logical and conditionaljoperations that may be performed
by the system.,

The control unit coordinates the interaction of all the other units.
When a program is in execution, the control unit retrieves instructions
from memory in the proper order and also initiates the execution of each
instruction. In the simplified case, the control unit has two special
registers: (1) the instruction register (IR) and (2) the program coun-
ter (PC) or program status word. The PC contains the address of the
next instruction to be'éxecuﬁed. The IR contains the machine instruc-
tion currently being executed. Génerally, the ALU and the control unit

are tdgether called the Central Processing Unit (crU).
Microprogrammed Computers

Microprogrammed computers are very similar to fixed instruction
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computers, but there is one éignificant difference: the control
memory (Figure 3). Control memory is divided into sections. Each
section contains the mic;oinstruqtions that perform the operations of

a particular machine instruction., Each time a machine instruction is
fetched, it goes through a decoding process that breaks the instruction
up into its appropriate fields and then control is transferred to the
microprogram associatad with the particular instruction. 1In the most
gengral sense, microprogfams can have some degree of modularity with

the use of branching instructions and microprogram subroutines.

CONTROL
MEMORY

l

CONTROL -
UNIT

=N e B
=

MEMORY —OUTPUT

ARITHMETIC
UNIT

Figure 3. Simplified Block Diagram for Microprogrammed Comﬁuters
[From Microprogramming Handbookv(13)]




Microprogramming represents a systemic approach to control.

Figure 4 depicts a ficticious vertical microprogrammed machine and

its control functionms.

summarized as:

The characteristics of this machine can be

stored program, word organized, single address (18).

11

MDR 7y
ADDERS
1 2 . * *
11 4 3 14
lt-— READ v CLEAR
MEMORY
12 ACCUMULATOR [%*5]
- — A
WRLTE ACC_ZERO |
i 16 acc NE¢ 17 '13
| : I CLEAR
|
I
MAR l7 CONTROL
. 6
I |
pC < | 15 oP ADDRESS
. CODE PART
10
Figure: 4, A Simple Fixed Purpose Register Machine

[?rom Rosin (18)]
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The register and storage structure is not unlike many modern fixed
purpose register computers., But, in general, many modern computers
have a series of accumulators, multiple addiess instructions, and a
multipurpose Program Status Word (PSW). The machine in Figure 4 does
not use the bus concept of data transfer, for ease of illustration.

The execution or interpretation of an instruction can be consi-
dered as a series of register-to-register transfers. A few other
primitive functions have been added, such as clearing a register and
initiating main memory reads and writes. Table II summarizes the valid

operations of the machine in terms of these primitives (18).

TABLE II

CONTROL LINES FOR FIGURE 4
[From Rosin (18)7]

1 MDR < ACC

2 ADDERS ¢« MDR

3 ADDERS <« ACC

4 ACC < ADDERS

5 ACC « MDR

6 IR « MDR

7 MAR <« ADDRESS PART
8 PC < ADDRESS PART
9 MAR « PC
10 PCe<PC + 1

11 MS READ

12 MS WRITE

13 CLEAR ACC

14 CLEAR ADDERS

BRANCH INSTRUCTION

15 CONTROL < OPCODE
16 CONTROL « AC = 0
17 CONTROL « AC NEG

18 UNCONDITIONAL
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" For this particular machine the ACC is used sﬁrictly for computa-
tional purposes and for conditional (negative or zero) branching. The
ADDERS work together with the ACC to perform the necessary arithmetic.
The machine instructions consist of an operation code and an operand
field and the IR is used in decoding the instructioms. The‘MDR and
MAR are used in conjunction to perform the memory access functions.
The MDR contains the data word and the MAR contains the address of the
data word. The PC is used as a pointer to the current instruction for
instruction fetch and may only Be incremented to point to the next
memory word. The functions of the CONTROL unit,‘in this case, are few
in numbef: fetch and decode the next instruction and handle any nec-
essary branching.

To implement a simple ADD instruction (addition of the contents
of the MDR to the contents of the ACC) this sequénce of microinstruc-
tions may be specified.

14 CLEAR ADDERS

2 ADDERS « ACC

3 ADDERS <« MDR

1 ACC « ADDERS
Except for the faét that these four instructions contain no address
parts, the sequence resembles a short conventional program.

As in any other automatic computer, microprograms require the
capability to execute branches of control, b%th Fonditional'and un-
conditional. In this simplified machine, conditional branches may be
based on a zero or negative value in thg ACC or the opcode itself.

In the latter case, the value of the opcode determines the destination

of the branch. For instructions 16, 17, gnd 18, a single address
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part must be specified.

Figure 5 contains a set of microprograms which simulates a simple
machine using the organization of'Figure 4, Address modification is
not used and, in this case, it is not possible to modify the micro-
program store. IFETCHl1 simply updates the PC to point to the next
instruction. IFETCH2 loads the next machine instruction into the IR
and transfers the control of the progfam to the dontrol unit. Note
that the PC must be initialized at some point before the execution of
the first machine instruction. ADD fetches a data word from memory
and adds the data word to the contents of ACC. The result is placed
into the ACC. CLEAR ADD simply fetches a data word from memory and
loads it into the ACC. STORE ACC stores the contents of the ACC into
the memory word designated by the address part of the IR.' TRA loads
the address part of the instruction into the PC and branches to IFETCH2
(a conventional branch or jump). TRA IF ACC NEG tests the ACC for a
negative value. If the value is negative, then a branch is made to
TRA, otherwise the next sequentiél inétrﬁction is fetched. STORE ZERO
uses the ACC to store a zero value in a memory data word.

Figure 5 illustrates how the instr;ction set of a simple machine
may be represented by a set of microprogramé. The same concepts apply
to the instruction sets of more sophisticated machines. Chapter IV

‘discusses a more gene:al'approach to the development of the instruction
sets for GPR and FPR minicomputers than the approach discussed in this

chapter.
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12
18

oo Co

17
18

14

13

12

18

(IFETCH1)

(IFETCH1)

(IFETCH1)

(IFETCH2)

(IFETCH1)

(IFETCH1)

Figure 5.

IFETCHI1:
IFETCH2:

ADD:

CLEAR ADD:

STORE ADD:

TRA:
TRA IF ACC NEG:

' STORE ZERO:

15

PC<«<PC+ 1

MAR « PC

READ

IR « MDR

CONTROL « OPCODE

MAR < ADDRESS PART
READ

CLEAR ADDERS
ADDERS « ACC

ADDERS « MDR

ACC « ADDERS
GO TO IFETCH1

MAR & ADDRESS PART
READ

ACC « MDR

GO TO IFETCH1

MAR « ADDRESS PART
MDR < ACC

WRITE

GO TO IFETCH2

PC <« ADDRESS PART
GO TO IFETCH2

IF ACC < 0 GO TO TRA
GO TO IFETCH1

CLEAR ADDERS
ADDERS < ACC

CLEAR ACC

MDR < ACC

MAR < ADDRESS PART
WRITE

ACC « ADDERS

GO TO IFETCHI

A Simple Simulator

[From Rosin (18)]



CHAPTER III
- THE CROSS ASSEMBLER'

The first step in the simulation process is the conversion of
assembler language source code intovmachine executable object code.
This chapter con;ains a discussion of how this .objective is achieved.
Included is the assembly process, code generation, error detection and
processing and loading the generated code into the simulated memory
for execution. |

To translate the source assembly program, the assembler must (1)
replace each mmemonic op code with ité equivalent binary code, and
(2) replace each symbolic address with its corresponding location in
memory. To achieve the former a table is kept with #ll the mnemonic
op codes and corresponding binary code along with other vital informa-
tion. for the assembly process. Each time an assembler source state-
ment is encountered, a table lookup is performed in order to determine
the binary code equivalent, The op code table is generated in an earlier
phase of the simulation process. This topic is discussed‘in Chapter V.
In order to achieve (2) 1tyis necéssary fo keep another table, called
a éymbol table. Each time a symbolic reference is made, a table look-
up is performed in order to determine the corresponding absolute
machine address.

Two scans of the source code are required to complete the assembly

process for the cross assembler. It is possible to make only one

16
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scan and achieve the same end, but the process is much more complicated
and requires additional “housekeeping'". The first scan determines
which location in memory is to be'assigned to each symbol and during
the second scan the assembler produces the binary object code. Each
phaée of the assembly process is described in the following paragraphs

along with fhe method used for its implementation.
Scanner

The scan phase serves two purposes: (1) allows the label identi-
fier to be separéted’from the source statementvso it may be placed in-
to the symbol table, and (2) allows the op code to be separated from
the source statement so that a search may be made of the op code table
to find the equivalent binary cbde. The process of isolating the iden-
tifier can be handled in several ways. One way to accomplish this is
by the development of a Finiﬁe StateJAntomaton (FSA) to recognize the
identifiers. Figure 6 represents a possible FSA for recognizing

identifiers.

ALPHABETIC ALPHABETIC CHARACTER OR

@ CHARACTER - DECIMAL DIGIT

Figure 6., FSA for Recognizing Label Identifiers

State 1 is the "start" and a tramsition to the "final" state,
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state 2, may only be made under an alphabetic character. A transi-
tion from state 2 to state 2 may be made under an alphabetic character
or a decimal digit. As each transition is made, the character recog-
nized is catenated onto the current symbol to form the complete iden-
tifier. Notice that a count mist be kept of the length of the symbol
so that the symbol will not becomé larger than the space available
for the identifier in the symbol table.

Another method for isolating the identifier, which is similar
to the first method, is the simple cgtenation of valid characters in
the label field onto the current symbo;. The catenation process is
continued until a blank character or the end of the field is encoun-
tered. The latter mathod is the one used in the cross assembler
described later in this chapter.

Thé scan phase for recognizing tﬁé mﬁemonié op codes cén be
constructed in exactly the same way as the phase for recognizing the
label identifiers. The only difference being in the mnemonic op code

table lookup performed after the field has been scanned.
Symbol Table Construction and Processing

The operation code symbol table is constructed prior to the
assembly process so it will not be treated in this section. It is
_discussed in detail in Chapter V. The table discussed in this section
is the identifier symbol table and its general structure is shown in
Figure 7. Notice that the symbol table is actually composed of two
tables: (1) the symbol definition table, and (2) the symbol refer-
ence table. Table (1) contains the identifier, its value, the

statement number in which it was defined and a pointer to the reference

EE
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table (Figure 8a). Table (2) contains the statement numbers where the
identifier is referenced. The refergnce for each identifier are

linked by means of pointers to the subsequent references. The refer-
ence table is kept so that a cross-reference listing may be printed
after a progfam has been assembled. Figure 8b shows the node structure

for each entry in the symbol reference table.

Symbol Definition Table Symbol Reference Table
S ViD| e > REF \0-:]
[ .-:-—l
A
> o—<—_|
| | A
| |
' |
[
I

Figure 7. The Idéntifier Symbol Table

The symbol table is constructed in a sequential manner and table
lookup also is done seqqentialiy; This method may be somewhat slower
than other methods, such as "hashing" techniques or binary searching,

when the table becomes very large, but it is straight forward and does

\
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not require function evaluations and/or pointer updating when a symbol

is defined or referenced.

' "~ Statement Pointer to the
Identifier . Value declared reference table

(a) node format for symbol definition table

Statement Pointer to
referenced next reference

(b) node format for symbol reference table

Figure 8. NodeFormats for Symbol Table

Pass 1

Pass I has two primary tasks: (1) to construct the identifier
symbol table, and (2) to determine the binary code representation for
the mnemonic op code and substitute it into the machine instruction.
A location counter (or program counter) is’keptin both pass I and pass
II in order to determine the exact location in the simulated memory
to place the instruction. After each instruction is interpreted, the
program counter is incremented by the length of the instruction.

The first step is to read a new line of the source assembly
program, Since pass II will need‘to reread the input source program,

a copy of the input is produced on an auxiliary storage device.

Label Field ¢

An identifier found in the label field is placed into the symbol
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table along with the current value of the program counter. Before an
identifier is placed into the table, a search is made to ensure that

the symbol has not been previously defined.

Mnemonic Op Code Field

After a mnemonic op code has been recognized, an operation
code table lookup is performed. If the mnemonic is not present, a
record of the error is kept. If present, the binary code equivalent

is placed into the machine instruction.

Operand Field

There are five instructions for which the operand field is parsed
during pass I: (1) EQU, (2) ORG, (3) DC, (4) DS and (5) END. For
these instructions it is possible to interpret the contents of the
operand field the first time ;he instruction is eﬁcountered, Note that
this places a restriction upon the use of the EQU, DC, and DS instruc-
tions. It must be possible to resolve all symbolic references at the
time the instructions are first encountered. These instructions are
provided by the simulation system and need not be defined by the user.

The formats for these instructions are given in Chapter V.
Pass II

The purpose of pass II is to complete the machine instructions by
using the symbol table constructed in pass I and to resolve all sym—
bolic referencei. The operand field may be divided into as many as
five separate fields, depending upon the type of machine being simu-

lated. Commas are used as delimiters in the operand field. The
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relative position of a value in the operand field dictates its posi-
tion in the machine instruction. The assembler language operand field
syntax for GPR systems is given in Table III and the operand field

syntax for FPR systems 1s given in Table IV,

TABLE III

OPERAND FIELD SYNTAX FOR GENERAL PURPOSE
REGISTER SYSTEMS

Type Syntax

1 X1

2 D1

3 R1,R2

4 B1,D1

5 R1,K1

6 R1,D1

7 R1,X1

8 Sl

9 R1,S1

10 R1,R2,S1
11 R1,X1,s1
12 ‘ R1,D1,S1
13 B1,D1,S1
14 R1,I1

15 : R1,B1,D1
16 S1,S82

17 S1,Il

18 D1,S1

19 R1,D1,D2
20 R1,R2,D1

21 blank field

The instruction type‘ddminateg the valid combinations of operands
in the operand field, The meaning of the symbols used in the operand

field definitions of the two classes of machines is given in Appendix A.
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Examples of the types of operands that can be specified for GPR ma-
chines, taken from Table III, follow. The syntax of the operand |
specifications closely resemble thét of the simulated test machine,
the INTERDATA 7/16.

2 +12

8 SYM-2400

11 0,15,%+48
13 12,64 %

16 SYM1,SYM2+4
17 SYM,=A(*-28)
20 9,10,+8

Examples of the types of operands that can be specified for FPR ma-
chines, taken from Table IV, follow. The syntax of the operand speci-
fications closely resemble that of the s;mulated test machine, the
HEWLETT-PACKARD 2114A.,

ALPHA+4

=X'00FF'

OPR1,0PR2,0PR3
12

VWi -

TABLE IV

OPERAND FIELD SYNTAX FOR FIXED PURPOSE
REGISTER SYSTEMS

Type Syntax
1 S1
2 I1 .
3 operate function 1,...,9perate.

function 5
blank field
K1

wvt &
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Grammars are constructed to aid in the translation of the operand
field. Since PL/I supports recursive procedures, the grammars are
coded directly into the PL/I source language. Figure 9 illustrates
the grammar used to parse the operand fields of the assembler state-
ments for GPR systems. Figure 10 illustrates the grammar used to
parse the opefand fields’of non-operate instructions for FPR systems

and the grammar used for operate instructions is given in Figure ll.

ARFLD: DECL; DSTOR; RSPEC; ASPEC; ASPEC , ASPEC; ASPEC , ASPEC , ASPEC.
DECL: B QDIGITS; F QDIGITS; X QDIGITS; A LADDR.

QDIGITS: ' SDIGITS '.

SDIGITS: + DIGITS; ~ DIGITS; DIGITS.

DIGITS: DIGIT DIGITS; DIGIT.

DSTOR: PDV DECL.

LADDR: ( ASPEC ).

RSPEC: SERPDV; ASPEC, = DECL; PDV; ASTARTH , ASPEC; ASTARTH.
SERPDV: PDV ADITSPEC. o

ADITSPEC: COMPDV; COMASPEC.

COMPDV: CTERMPDV COMASPEC; CTERMPDV.

CTERMPDV: , PDV; , ASTARTH,

COMASPEC: , ASPEC; , ASTARTH.

PDV: DECINT,

DECINT: INT DECINT; INT.

ASPEC: * ASTARTH; *; SYMADDR; PDV.

ASTARTH: + PDV; - PDV.

SYMADDR: SYMI ASTARTH; SYMI.

SYMI: LET SYMJ; LET.

SYMJ: LET SYMJ; INT SYMJ; LET; INT.

INT: O3 l; 23 3; 4; 5; 6; 73 8; 9.
LET: A; B; C; D3 E; F; G; H; I; J; K; Ly M; N; 0; P; Q; R; S5 T; Uj
Vs Wi X5 Y5 Z; &5 $3 %5 45 @,

DIGIT: O; 1l; 2; 3; 43 5; 63 7; 8; 9;’A; B; C; D; E; F.

Figure 9. Grammar for Parsing Operand Fields of General Purpose
Register Systems

The grammars illustrated in Figures 9, 10 and 11 use certain con-

ventions for distinguishing metasymbols, nonterminal symbols and



25

terﬁinal symbols (5). The nonterminal syﬁbols on the left hand side of
" a rule are always followed by the metasymbol, colon (:). The right hand
side alternatives of the rules immediately follow the colon and are
separated by a semi-colon (;). The last alternative of a rule is fol-
lowed by a period (.). All‘symbdls‘not appearing on the left hand

side of a rule are terminal symbols and all other symbols which are

not metasymbols are nonterminal symbols.

ARFLD: DECL; DSTOR; ASPEC; = DECL.

DECL: B QDIGITS; F QDIGITS; X QDIGITS; A LADDR.

QDIGITS: ' SDIGITS '.

SDIGITS: + DIGITS; - DIGITS; DIGITS.

DIGITS: DIGIT DIGITS; DIGIT.

DSTOR: PDV DECL.

LADDR: ( ASPEC ).

PDV: DECINT. ' :

DECINT: INT DECINT; INT.

ASPEC: * ASTARTH; * ; SYMADDR; PDV,

ASTARTH: + PDV; - PDV,

SYMADDR: SYMI ASTARTH; SYMI.

SYMI: LET SYMJ; LET.

SYMJ: LET SYMJ; INT SYMJ; LET; INT.

INT: O0; 1; 2; 3; 4; 5; 63 7; 83 9.

LET: A; B; C; D; E; F; Gy H; I3 J; K; L; M; N; O; P; Q; Ry S; T; U
Vs Wy X; Ys Z; &; S %3 #; @,

DIGIT: O3 1; 2; 3; 4; 5; 63 7; 8; 93 A; B; C; D; E; F,

Figure 10, Grammar for Parsing Non-Operate Operand Fields of
Fixed Purpose Register Systems,

Grammars give a systematic method for parsing the operand fields
of the assemblér statements., Using a grammar allows the operand
field to be separated into sub-fields and the semantic meaning of each
sub-field determined. For example, if an identifier is encountered,

a sequential searqh through'the symbol table can be made to find the
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value of the identifier. Once the value has been determined, parsing
of the field may continue in order to evaluate any modifiers of the

symbol value,

OPRSPEC: OPRLIST.

OPRLIST: OPR , OPRLIST; OPR.

OPR: ALPHA ACHAR; ALPHA,

ACHAR: ALPHA ACHAR; NUM ACHAR; ALPHA; NUM. ‘ .

ALPHA: A; B; C; D; E; F; G; H; I; J; K; L; M; N; O3 P; Q3 R; S; T; Us
Vi W3 X; Y3 Z; &5 $3 %3 #; @.

NUM: O3 1; 2; 3; 4; 5; 63 7; 8; 9.

Figure 1l. Grammar for Parsing Register Operate Operand Fields
of Fixed Purpose Register Systems

Error Detection

Error detection is éccompliéhed in both passes of the assembler.
Invalid symbols and mnemonics are:detected by the scanner in pass I,
Syntactical errors are detected during the evaluation of the expres-
sions in the operand fields. The use of grammars aids in the error
detection fgcility. The'grammars define the form that must be fol-
lowed in specifying 6perandé. An error occurs anyvtime the form is
not followed. As each error is detected, the‘code for the error is
placed into.the identification record for the assembler statement.
When the source listing is printed in pass II, the errors detected
in each statement are printed immediately following the statement.

A list of all assembly errors is given in Chapter V.
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Asgembler Output

In addition to code generation, the assembler normally produces
a printed output. The output consists of the location of each instruc-
tion (in hex), the object code (in hex), the'statgment number and a
listing‘of each source statement. Errors, if any, are indicated imme-
diately following the statement in error. Following the source listing
is the symbol table and cross-~reference dictionary which contains the
symbols, their associated values (in hex) and a list of the statements
in which the symbol is referenced. An indication as to the number of

assembly errors is also given.,
Loader

The machine instrgctions generated throughout the assembly pro-
cess are loaded into the simulated memory for execution. For a GPR
system, loading begins at memory location zero. But for FPR systems,
loading begins at the first location in page one of the simulated
memory. In this context; a page refers to a physical memory page used
by most fixed purpose register minicomputers in address/page mapping
schemes., Page zero is used by the assembler for patching direct and
indirect addresses that cannot be accessed in the current page. The
user is not pefmitted to access aﬁy memory location in page zero,
other than location zero. This helps to keep all indirect references

intact. Once loading is completed the program is ready for execution.



CHAPTER IV
THE INTERPRETER

' The binary object code generated by the assembler is loaded into
the simulated memory for execution. The machine instruétions must be
interpreted to carry out the processes of the simulated machine. This
chapter describes how the machine instructions are fetched from memory
and decoded, how the microinstructions are used in the decoding pro-

cess, error detection and debugging aids.
Instruction Fetch.and Execution

Execution begins with the firét instruction of the machine
language program. The address of this instruction, along with other
vital information is known to the interpreter through the use of
"global" variables. Once the address is determined in the assembly
phase of the simulation process; the global variable is assigned the
address of the first executable instruction. The information con-
tained in the global variable is passed to the PC and primes the in-
struction fetch cycle. The complete instruction fetch and execution
cycle, as shown by Hedrick (6), is illustrated in Figure 12. This
is an overview of the subject matter discussed in the remaining
portion of the chapter. The actual implementation of the fetch-execute
process is much more complicated than is shown. The PC and IR are the

most important registers used in the fetch-execute cycle. Once the

28



address of the next instruction is determined, the instruction is

extracted from memory and loaded into the IR,

SET TO
FETCH
CYCLE
FETCH o , DECODE
iNsTrucTION |FETCH EXECUTE | AND EXECUTE
AND PUT IN IR THE
, INSTRUCTION
INCREMENT SET TO
. CONTENTS FETCH
OF PC CYCLE

SET TO
EXECUTE
CYCLE

]

Figure 12. Instruction Fetch and Execution Cycle
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At this point the PC is updated and the instruction is subjected to the
decoding process. The decoding process consists of determining the
registers and/or addresses specified in the instruction, performing a
table lookup of the binaryloperation code and executing the correspon-
ding microprogram. The machine instruction formats for GPR and FPR
systems are displayed in Figures 13 and 14, respectively. (See Appen-
dix A for the symbols used in the two figures.) Notice that the
operatidn code must appear in the same field of every instruction. The
interpreter must know where the operation code resides within the ma-
chine instruction even before the instruction format is known. This
and other related information is part of the initial machine definition
and is .discussed in Chapter V.

The implementation of a simuiation system for the INTERDATA 7/16
required the use of eight of the instruction formats displayed in
Figure 13: 1, 3, 5, 8, 9, 11, 14, and 21, Fifty-four of the instruc-
tions for the INTERDAIA 7/16 havé been simulated and a number of them
tested in a sample program (See Appendix C).

The implementation of the HEWLETT-PACKARD 2114A required the use
of three of the instruction formats of Figure 14: 1, 3, and 4.
Appendix C displays the program used to test the simulation system
for the HEWLETT—PACKARD 2114A. Machine instruction format 3, Figure
14, is used to specify the register operate instructions. Operate
instructions manipulate the contents of internal.hardware registers
and exercige certain control functionms withogt referencing the random

access simulated memory.
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11.
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14,
15.
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fop_CoDE | X1 ]
[oP_CODE | D1

[oP CODE | R1 1 R2

[P CODE | _ B1 | D1

{[OP CODE | R1 [ K1

[OP CODE | R1 | D1

IOP CODE | Rl [ X1

{[oP CODE | S1

[OP CODE | R1 { Sl

[OP CODE | Rl { R2 | S1 B
[P CODE |  RI T X1 | S1

[oP CODE | Rl [ D1 | S1

{oP CODE | Bl [ D1 B Sl [
[OP CODE ] R1 [ X1 ]
[oP CoDE | R1 [ Bl [ D1

{OP CODE [ Sl | S2

[OP CODE | S1 [ 11

[0P CODE | D1 [ S1

[0P GODE | &L T Pl T D2

[P CODE | RI [ R2 [ D1

[oP CODE_]_ 0

Figure 13. Machine Instruction Formats for General Purpose

Register Systems
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1. | OP CODE | ADDRESSING MODE { Sl ]

2. {oP CODE | I1

3. | OP CODE | REGISTER OPERATE MICROINSTRUCTIONS

4. [OP CODE | 0 ]

5. | OP CODE | K1

Figure 14, Machine Instruction Formats for Fixed Purpose
Register Systems

Machine Instruction Decoding

As part of the executioﬁ'bhase of the simulation system, the
decoding brocess_consists of three main operations: (1) performing
a table lookup of the binary operation code, (2) determining the reg-
isters and memory locations involved in the execution of the instruc-
.tion, and (3) executing the microprogram that corresponds to the
instruction.

The first operation is ‘relatively simple. The operation code
is extracted from the instruction and placed into a temporary location.
The op code table is then searched sequentially until the op code is
found. Once the operation code is located, all information (instruc-
tion format, instruction length, number of operands, etc.) concerning
" the instruction becomes available.

The function of the instruction format is to show how the operand
fields of the instruction are to be used. It»spécifies when an oper-
and field of a machine instruction represents a register or when it

represenﬁs an absolute memory address. For example, if instruction
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format 1 (Figure 13) is used, field 2 of the instruction specifies an
index register, The information contained in the operand fields of
the hachine instructions is used in the execution of the microﬁrogram.
This explains the function of operation (2).

The third operation, executing the microprogram, is the most
complex of the three operations. Each eleven digit microinstruction
is placed into the Micro Instruction Register (MIR) (see Figure 15)
and 1s subjected to a decoding process of its own. The MIR is a de-
cimal register and the sequence of decimal digits specify the micro-
operations to be performed. Figure 16 displays the register and bus
configuration for valid micro-operation specifications for the
microprogrammable pseado-machine. The user need only concern himself
with the microinstructions necessary to accomplish the simulation of
a desired instruction set. Instruction fetch and program counter up-
date are taken care of automatically by the interpreter. The micro-
bperations are defined in terms of data paths to and from input/output
buses and specific hardware registers. 1In soﬁe cases, data paths are
provided to work areas for the micropfograms and also to areas con-

taining the operand fields of machine instructionms.

0 1 2 3 4 5 6 7 8 9 10
[ — - — — -
Conditional Input Input Input Output Bus
Operation Bus 1 Bus 2 Bus Connection
Connection

Figure*15; The Microinstructions for the Microprogrammable
Pseudo-machine
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| MR l MAR | PC — — 7 |womk3

[ wr | e | — = — [uoms

Figure 16. Register and Bus Configuration for the Micropro-
grammable Psendo-machine

Positions 0-2 of the MIR are used to specify conditional opera-
tions. The contents of:work area registers may be tested and program
.control determined from theAresults. Table V shows how the conditional
operations hay be specified. | |

If position O of the MIR is seﬁ to 1, positions 1 and 2 are‘de-
coded and the test operation performed. All other positions of the
microinstruction are ignored. If the result of the test is "true",
the remaining microinstructions are decoded and executed. If the
result is "false", the remaining microinstructions are not executed
and control is transferred to the next sequentialvmachine instruction.

If pﬁsition 0 of the MIR is set to 0, positions 3-10 are decoded
as are the remaining microinstructions.

The entries in Table V are used to specify conditional operationms

for both GPR and FPR systems.
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CONDITIONAL STATEMENTS FOR GENERAL AND FIXED
PURPOSE REGISTER SYSTEMS

MIR

12 CONDITION

Tl
Tl
Tl
T1
Tl
Tl
Tl
Tl
Tl
Tl
Tl
Tl
Tl
Tl
T2
T2
T2
T2
T2
T2
T2
T2

NN im - == 0000000000
SFULOUDNPFOOVWOENINOUSPWLNEHEOVONOOUVMIERWNEO

Filler
Compare Tl and T2
Compare Tl and T2 immediate

= T2
¥ T2
< T2
> T2
< = T2
= T2

-~ O OO

>
<
>

-1
even
odd
all 1's
<0
>0

= (

= ]

= -]
even
odd

all 1'2

Table VI illustrates the input bus scheme for the microinstruc-

tions designed for GPR systems. Position 3

and 4 of the MIR specify

the register or work area data path for input bug 1 and positions 5

and 6 specify the gsame for input bus 2.

Table VII shows that positions 3 and 4

of the MIR also serve to

specify special 1/0, debug and operate functions for GPR systems.

When an interrupt is signalled by the user (26 in positions 3 and 4



of the MIR), positions 5-10 of the MIR are used to specify the type of

interrupt that has occurred.

TABLE VI

INPUT BUS SCHEME FOR GENERAL PURPOSE

REGISTER SYSTEMS
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MIR MIR _

34 IBUS1 INPUTS 56 IBUS2 INPUTS
00 Filler 00 Filler

01 MDR 01 MDR

02 MAR 02 MAR
03 PC 03 PC
04 e 04 e
05 e 05 e

06 R1 06 R1
07 R2 . 07 R2
08 Bl (explicit) 08 Bl (explicit)
09 B (implicit) 09 B (implicit)
10 Dl 10 D1
11 D2 11 D2
12 sl 12 sl
13 S2 13 s2
14 X1 14 X1
15 I1 15 Il

16 WORK1 16 WORK 1
17 WORK2 17 WORK2
18 WORK3 138 WORK3

Table VIII consists of the valid input bus connections.

Some

connections involve both input buses some involve only one. A list
the functions used is given in Appendix A. Pos?tign 7 and 8 of the

MIR specify the input bus connections for both GPR and FPR systems.



TABLE VII

SPECIAL I/0, DEBUG AND OPERATE FUNCTIONS FOR
GENERAL PURPOSE REGISTER SYSTEMS

MIR
FUNCTION ~

w
S

Input data block (list directed)
Output data block (list directed)
Memory dump

Register trace "on"

Register trace "off"

Halt

No operation

Signal interrupt

NN
AU WN=OY

TABLE VIII

INPUT BUS CONNECTIONS FOR GENERAL AND FIXED
PURPOSE REGISTER SYSTEMS

MIR

~
(o]

CONNECTION

Filler

IBUS1

1BUS1

IBUS2

IBUS2

INC (IBUSI1)

~INC (IBUS2)

DECR (IBUS1)

DECR (IBUS2)

ADD (IBUS1, IBUS2)
SUB (IBUS1, IBUS2)
MUL (IBUS1, IBUS2)
DIV (IBUS1, IBUS2)
MOD (IBUS1, IBUS2)
ABS (IBUS1)
~ ABS (IBUS2)

NEG (IBUS1)

NEG (IBUS2) ’
AND (IBUS1, IBUS2)
OR (IBUS1, IBUS2)
XOR (IBUS1, IBUS2)
MDR « M(MDR)
M(MAR) « MDR

NN b et pd s o el = =2 OO0 O OO0 O0O0OO0OOO0
N~ OWONOOUIRLONNOOYWONOTULEEWLWND-O
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Table IX contains the valid 6utput bus connections for GPR

systems., Once the input bus connection has been made, the data is

transferred to the output bus and from there to an appropriate re-

gister. Positions 9 and 10 of the MIR delegate to what register or

work area the output bus connection is made.

TABLE IX

OUTPUT BUS CONNECTIONS FOR GENERAL PURPOSE
REGISTER SYSTEMS

MIR
9 10

CONNECTION

Pt it et it b ot et e = = OO OCOOOOCO0OO

Filler
MDR « OBUS

MAR < OBUS

PC « OBUS

Rl « OBUS

R2 « OBUS

T1 « OBUS

T2 « OBUS

WORK1 <« OBUS
WORK2 <« OBUS
WORK3 « OBUS

Bl « OBUS

B <« OBUS

X1 « OBUS

(Rl + 1) <« OBUS
(R2 + 1) <« OBUS
Rl « K1 * OBUS
Rl « K1 { OBUS
Rl « K13 OBUS
Rl « K1'¢ OBUS

The input bus scheme for FPR systems is shown in Table X. Notice

that some of the same registers are dsed for FPR systems as GPR sys-

stems. Such operations as branching and data transfers are common to
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both systems., Positions 3 and 4 of the MIR specify the register or
work area data path for input bus 1 and positions 5 and 6 specify the

same for input bus 2,

TABLE X

INPUT BUS SCHEME FOR FIXED PURPOSE
REGISTER SYSTEMS

MIR MIR
34 IBUS1 INPUTS 56 IBUS2 INPUTS
00 Filler 00 Filler
01 MDR 01 MDR
02 MAR 02 MAR
03 PC 03 PC
04 e 04 e
05 3 05 L1
06 1 06 1
07 ACC A 07 ACC A
08 ACC B 08 ACC B
09 XR1 09 XR1
10 XR2 10 XR2
11 I1 11 Il
12 Sl 12 S1
13 L 13 L
14 WORK1 14 WORK1
15 WORK2 15 WORK2
16 WORK3 16 WORK3

As with the GPR systems, Table XI shows that positions 3 and 4
of the MIR also serve to specify special I/O; debug and operate func-
tions for FPR systems. When an interrupt is signalled by the user
(24 in positions 3 and 4 of the MIR), positions 5-10 of the MIR are
used .to specify the type of intefrupt that has occurred.

Table XII contains the valid output bus connections for FPR sys-
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tems. Once the input bus connection has been made, the data is
transferred to the output bus and from there to the appropriate re-
gister. Positions 9 and 10 of the MIR delegate to what register or

work area the output bus connection is made.

TABLE XI

SPECIAL I/0 DEBUG AND OPERATE FUNCTIONS FOR
FIXED PURPOSE REGISTER SYSTEMS

MIR
FUNCTION

w
»H

Input data block (list directed)
Output data block (list directed)
Memory dump

Register trace "on"

‘Register trace "off"

Halt

No operation

Signal interrupt

NN =
WO WO

Table XIII illustrates the micrginstructions necessary to add the
the contents of two general purpose registers (of a GPR system) and
branch if the contents of the destination register is zero. For this
operation, instruction format 10 (Figure 13) must be specified. Table
XIV illustrates the microinstructioné necessary to load'thg contents
of index register 1 into the accumulator (of an FPR system) and branch
if the contents of the accumulator is negative. Instruction format 1

(Figure 14) must be specified for this operation.
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TABLE XII

OUTPUT BUS CONNECTIONS FIXED PURPOSE FOR
REGISTER SYSTEMS

=
=

9 10 CONNECTION

Filler

MDR « OBUS

MAR « OBUS

PC « OBUS

XR1 « OBUS

XR2 « OBUS

Tl « OBUS

T2 <« OBUS
WORK1 <« OBUS
WORK2 « OBUS
WORK3 « OBUS
~ACC A< OBUS

ACC B« OBUS

L « OBUS

Kl « OBUS

ACC A « K1 % OBUS
ACC A « K1 § OBUS
ACC A« K1 4% OBUS
ACC A« K1 § OBUS
ACC B« K14 OBUS
ACC Be K1V OBUS
ACC B« K14 OBUS
ACC B« K1§ OBUS

RN et e e e e OO0 O0O0O0O0O0.O
NHOVWONOOTUIESEWNEFHEOWOUONOWULESWNMO

TABLE XIII

IMPLEMENTATION OF ADD REGISTER TO REGISTER
AND BRANCH ON ZERO

INSTRUCTION \
NUMBER MIR DESCRIPTION
1, : 00006070905 Rle Rl + R2
2. 00007000106 Tl « R1 '
3. 11100000000 If Tl = 0 then go to next;
else decode next machine
. instruction

4, 00012000103 next: PCe« Sl
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TABLE XIV

IMPLEMENTATION OF LOAD ACCUMULATOR FROM
INDEX REGISTER AND BRANCH ON NEGATIVE

INSTRUCTION
NUMBER MIR . DESCRIPTION
1. 00009000111 ACC A« XR1
2, 00007000106 Tle ACC A
3. 10900000000 If Tl < 0 then go to next;
else decode next machine
. instruction
4, 00012000103 next: PC €« Sl

Error Detection

Errors occurting during execution time are detected by the inter-
breter and apfropfiate messages aré printed. Errors such as addressing
and operation exceptions are detected during normal execution. In all
cases the occurence of an execution time error causes termination of
the program. This is due to the fact that there are no error correc-
tion capabilities built into the simulation system. The cause of the
error must be determined and corrected and the program resubmitted

for execution.
Debugging Aids

Instructions used as tools for debugging may be defined with the
micro-operations provided. Two such instructions are the instruction
trace and memory dump operations. The instruction trace may be turned
"on".and "off" as desired and causes the contents of all hardware re-

gisters to be printed (in decimal) after the execution of any subse-
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quent instructions. The dump instruction provides a means of deter-
mining the contents of memory within a certain region. Pre-execution

and post-execution memory dumps are provided without specification.
Other Simulation Systems

Other types of hardware simulation 1anguages have been developed.
Two of these are APL (the interactive terminal languate) (3) and
PMSL (12). Both APL and PMSL require strict knowiédge of the simu-
lated compufer system but treat the simulation process on different
levels. |

APL makes use of a special character set, which includes both
an upper and lower_case alphabet, to achieve parallelism with AHPL
(A Hardware Programming Lanéuage), the hardware "description" language.
At the APL level of simulation, register transfer, memory access, I/0
buffering, etc. can be specified in detail not unlike that of the simu-
lated system. Thus, detailed knowledge of the interaction of registers,
memory and peripherals is necessary.

PMSL, as designed by Knudsen’(12), is a conversational facility
for the creation, modification, storage, retrieval and analysis of
descriptions of computer hardware at the top system level, where work
is performed on processors, memories, controllers, channels and peri-
pherals. PMSL provides a powerful tool to the design engineers of
computer systems. Performance, cost and device utilization can be
monitored to give the designer a look at critical aspects of new sys-
tem designs. The language is based on the PpS (Processors, Memories

and Switches) notations in Bell and Newell (2).



CHAPTER V
USERS MANUAL

- This chapter describes how to use the simulation system. The
machine description phase, assembly language statements and options,
deck setup and output, and control cards are discussed. At certain
poiﬁts, the current restrictions of the simulation system are also

discussed.
Initial Machine Description

The first phase of the simulation process is the machine des-
cription. The user is required to supply necessary information about
the simulated machine in the form §f input cards. The details of the
card formats for the input information are given in Tables XV and XVI.
Information about the hardware of the machine such as the types of
registers used, the size of the registers, and the memory word size
must be specified. Other details about the instruction set and formats
must also be specified. If at any ﬁime a specification is requested
that does not apply to the particular‘machine, a negative or zero
value should be placed in the corresponding field of the input card.
The input formats for the machine definition must be followed exactly
to ensure correct results in later phases of simulation. Note that
all charapte; and bit values must be left justified in the appropriate

fields and all numeric values must be right justified in the

44



45

appropriate fields.

TABLE XV

INPUT CARD FORMATS. FOR MACHINE DESCRIPTION OF
GENERAL PURPOSE REGISTER SYSTEMS

CARD CARD' FIELD
SET. COLUMNS TYPE DESCRIPTION
1 1 Bit Specify 1 1if output of machine de-
scription is desired
: Specify 0 for no output
3-5 Char, . Machine type, GPR
7-11 Numeric Memory word size
13 Bit Specify 1 if output of assembly debug
statements is desired
Specify 0 for no output
‘ (Should normally be set to 0)
15-19 Numeric Number of operations to be defined
21-25 Numeric Bit length of the binary op code
27-56 ’ Char. Machine name
2 1-5 Numeric Number of general purpose registers
‘ (max. of 16)
7-11 Numeric GPR size
13~-17 Numeric . MDR size
19-23 Numeric MAR size
25-29 Numeric PC size
31-35 ‘Numeric Number of words in the IR (max. of 2)
37-41 Numeric Total IR size
43-47 Numeric Implicit base register
49-53 Numeric Number of instruction formats to be
used
55-59 Numeric Number of words read in a READ in-
struction
61-65 Numeric Number of words written in a WRITE
instruction
3 o 1-5 Numeric Instruction format number
7-11 Numeric Number of words in the instruction
13-17 Numeric Field 1 starting position
19-23 Numeric Field 1 ending position
25~-29 Numeric Field 2 starting position
31-35 Numeric Field 2 ending position
37-41 Numeric Field 3 starting position
43-47 Numeric Field 3 ending position
49-53 Numeric Field 4 starting position
55=-59 Numeric Field 4 ending position

(Repeat above 10 fields for each
instruction format used)
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TABLE XV (CONTINUED)

CARD CARD FIELD
SET COLUMNS TYPE DESCRIPTION
4 I-..0 Bit Binary operation code (max., length
of 32)°
34-38 Char. Mnemonic operation code
40-44 Numeric Number of machine cycles required
46-50 Numeric Instruction format number
52-56 Numeric Number of microinstructions that de-
fine the machine instruction (max
of 20).
1-11 Numeric Microinstruction
13-23 Numeric Microinstruction
25-35 Numeric Microinstruction
37-47 Numeric Microinstruction
59-59 Numeric Microinstruction
61-71 Numeric Microinstruction
(Repeat above 6 fields until micro-
definition is complete (max. of
20) and repeat above 1l fields for
each machine instruction)
TABLE XVI
INPUT CARD FORMATS FOR MACHINE DESCRIPTION OF
FIXED PURPOSE REGISTER SYSTEMS
CARD CARD FIELD
SET COLUMNS TYPE DESCRIPTION
1 1 ‘Bit Specify 1 if output of machine
descriptiopn is desired
Specify 0 for no output
3-5 Char. Machine type, FPR
7-11 Numeric Memory word size
13 Bit Specify 1 if output of assembly de-
bug statements is desired
Specify 0 for no output
(Should normally be set to 0)
15-19 Numeric Number of non-operate operation
codes
21-25 Numeric Number of operate operation codes
27-31 Numeric Length of binary operation codes
33+37 Numeric Number of bits in the mode specifi-

cation
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TABLE XVI (CONTINUED)

CARD CARD FIELD
SET COLUMNS TYPE DESCRIPTION
39-43 Numeric Number of words in a memory page
45-74 Char. Machine name
2 1-5 Numeric Number of index registers (1 or 2)
7-11 Numeric Index register size
13-17 Numeric MDR size
19-23 Numeric MAR size
25-29 Numeric PC size
31-35 Numeric Number of words in the IR (max. of
‘ 2) .
37-41 Numeric Total IR size
43-47 Numeric Accumulator A size
49-53 Numeric Accumulator B size
55-59 Numeric Number of instruction formats to be
used
61-65 Numeric Number of words read in a READ in-
struction
67-71 Numeric Number of words written in a WRITE
instruction
3 1-5 Numeric Instruction format number
7-11 Numeric Number of words in the instruction
13-17 Numeric Field 1 starting position
19-23 Numeric Field 1 ending position
25-29 Numeric Field 2 starting position
31-35 "Numeric Field 2 ending position
37-41 Numeric Field 3 starting position
43-47 Numeric Field 3 ending position
4 (Input is the same as shown in Table
XV, card set 4, for GPR machines)
5 1-5 Char. Op code field mnemonic for operate
' functions
T=eee Bit Binary op code for operate functions
(max. length of 32)
6 1-5 Numeric Number of positions in the instruc-
tion that are set
T=eeo Numeric Bit positions in the instruction
that are set for the operate
function
(Must be separated by one blank
column using a two column field
for the position numbers)
7 1-5 Char. Operand field mnemonic for the oper-
ate function
7-11 Numeric Number of machine cycles required
13-17 Numeric Number of microinstructions that
' define the machine instruction
8 - (Input for the microinstructions is

the same as shown in Table XV,
card set 4, for GPR machines)
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TABLE XVI (CONTINUED)

CARD CARD ~FIELD

SET COLUMNS TYPE DESCRIPTION
9 1-... Bit Binary code for each mode, separated

by one blank column

The Cross Assembly Language

This section describes the format of the statements for the cross
assembler. The format is not unlike those used by many assemblers,

but it does have its unique characteristics.

Symbols

All symbéls and idgntifiers must begin with an alphabetic charac-
ter. The remaining characters may be alphabetic or numeric. The
alphabet in this case consistszéf all letters in the Roman alphabet
plus the special characters‘$; @, #, &, and %Z. Label identifiers must
begin in column 1 of an input card and may be no longer than eight
ACharacters. The mnemonic op code symbols must begin in column 10 and

may be no longer than ‘five characters.

Addressing Specifications

For fixed purpose register systems, column 16 of the assembler
statemént is used as an address specification field. This field is
used to specify direct or indirect addressing, or index registers. For
indirect addyessing an "I" is used. To specify the use of index re-

gister 1, a "1" or "A" is used. To specify the use of index register
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2, a "2" or "B" is used. Direct addressing is specified by leaving
the address specification field blank. The addressing modes used by

the simulation system for FPR machines are described in Table XVII.

TABLE XVII

ADDRESSING MODES FOR FIXED PURPOSE
REGISTER SYSTEMS

TYPE MODE

Direct to current sector
Direct through zero sector
Indirect through current sector
Indirect through zero sector
Indexed, register 1

Indexed, register 2

oUW =

Operands

The number of opefaﬁds in the operand field may vary depending on
the type of machine being simulated. For GPR systems, the maximum
number of operands is three. For FPR systems, the maximum number of
operands is five (for register operate functions). In either case the
operands are separated by commas and there can be no imbedded blanks
in the field. Also, each assembler statemeqt must be contained in its
entirety on one input card.. Assembler statements may not be continued
across card boundaries.

Comments may follow the operand field if a blank column separates

the two fields. A comment can also be specified by an asterisk (*) in



column one. In this case the entire card is treated as a comment.
An identification or sequence value may appear in colummns 73-80. A
summary of the assembler statement field boundaries appears in Tables

XVIII and XIX.

TABLE XVIII

FIELD BOUNDARIES FOR ASSEMBLER LANGUAGE
STATEMENTS OF GENERAL PURPOSE
REGISTER SYSTEMS

50

CARD COLUMNS DESCRIPTION
1-28 Label field
10 - 14 Mnemonic op code
- 20 - 39 Operand field
41. - 72 . ' Comments
73 - 80 Identification sequence
. TABLE XIX

FIELD BOUNDARIES FOR ASSEMBLER LANGUAGE
STATEMENTS OF FIXED PURPOSE
REGISTER SYSTEMS

CARD COLUMNS DESCRIPTION

1-28 Label field
10 - 14 ' Mnemonic op code
16 Addressing specification
20 - 39 ‘ Operand field
41 - 72 _ Comments

73 - 80 Identification sequence
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Psaudo Operations

There are five pseado operation codes that the user need not
define: (1) EQU, (2) ORG, (3) DC, (4) DS, and (5) END. The EQU pseudo
op assigns the absolute or resolved value of the symbolic address in
the operaﬁd field to the identifier in the label field. Note that any
symbolic references in the operand field must be defined before the
occurrence of the EQU statement. The ORG pseudo op reinitializes the
PC to the positive decimal value in the operand field. Table XX
illustrates the valid operand specifications for the DC and DS instruc-
tions as well as for other instructions. The END pseuado op designates
the end of the assembly process and may have a label identifier in

the operand field.

TABLE XX

ASSEMBLER LANGUAGE OPERAND SPECIFICATIONS

OPERAND DESCRIPTION

DC B' positive or negative binary value'
F' positive or negative decimal value'
X' positive or negative hexadecimal value'
A (symbolic or absolute address)
DS positive decimal value B'positive or negative
' binary value'
F'positive or negative
decimal value'
X'positive or negative
hexadecimal value'
A(symbolic or absolute
address)
positive decimal value

)
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TABLE XX (CONTINUED)

OPERAND DESCRIPTION

IMMEDIATE SPECIFICATION

Same opérand specification as for DC instruction
preceded by an equal sign (=)

REGISTER

Positive decimal value (register number) or
symbol equated to register number

SYMBOLIC ADDRESS

Symbol.

Symbol + positive decimal value

Symbol - positive decimal value

* (reference to current PC value)

* 4+ positive decimal value

* - positive decimal value

Positive decimal value (absolute address)

Asgembly Error Messages

The occurrence of any assembly time errors causes execution of
the object program to be suspended. To aid in the elimination of
assembly errors, descriptive error messages are printed immediately
following the statement in erfor. A listing of these error messages

is given in Table XXI.
Control Cards and JCL

Each program begins with a »> JOB card. Other control cards may

be specified in order to restrict the execution of the object module.
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The D)>TIME card specifies the maximum number of machine cyqles allowed
for execution before termination of the program. The >> REGION card
specifies the size of the memory region (in words)‘in which the object
program is to be loaded. Column 12 of the »)> EXEC card must contain
the character "E' or 'A'. With optipn 'E', the user program is assem-
bled and if no assembly errors are detected, the object module is
loaded and executed. If option 'A' is specified, the user program

is assembled but not executed. A sample program setup is given in

Figure 17.

TABLE XXI

ASSEMBLY ERROR MESSAGES

MESSAGE

2
e

Invalid character in label field

Imbedded blanks in label field

Label doesn't begin with an alphabetic character

Previously defined identifier in label field

Invalid or missing data type on DS statement

Invalid or missing data type on DC statement

Invalid or missing operation code

Invalid addressing option specified

Negative address specified

10. Invalid operand specified

Operand missing

12, Undefined operand specified

13, One or more undefined operate functions in operand field

14, Maximum number of operate functions has been exceeded

15, Missing END card, one has been generated for assembly

16. Label appears on ORG or END statement

17. Storage allocation on DS statement exceeds region size

18. Operand on ORG statement causes the destruction of previously
assembled program segment

19. Operand on ORG statement extends beyond region size

20, Operand and instruction type do not match

21. Region size too small to assemble the following portion of the
program

22, Write-protect violated operand specifies page zero address

oo psLN -
L]

[
—
.
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>> JOB namel
>>TIME=550
>>REGION=200
>> EXEC ASM E
>>ASM. PROG

User program
>>ASM. DATA

User program data

>
>>JOB - name2

Figuré 17, Sample Program Setup

Deck Setup

The deck setup consists of the simulation system, whiéh operates
on one or more user.prbgrams, the machine description, the user pro-
grams, and a file use& by the assembler when generating intermediate
object code. The deck setup to use the implemented simulation system

is shown in Figure 18.
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yal

/T7 8PACE=(144,250) , DCB=BLKSIZE=144

/" 77G0.INTRMD DD UNIT=SYSDA,

/ User Programs, JCL and Data

/" //GO.SYSIN DD *

// Machine Description

/~ //GO.DEFN DD *

///r Simulation System and 0S/360 JCL

Figure 18, Deck Setup



CHAPTER VI
SUMMARY AND FURTHER STUDY

Using the methods discussed in this thesis, a microprogrammed
simulation system has been implemented in PL/I on the IBM System 360/65.
The system supports the simulation of general purpose and fixed purpose
register minicomputers.

The most significant input to the system is in the form of cross
assembly language ﬁrograms. There are two options available to the
user when assembling a program. Using the JCL and control stateménts
ofbthe simulatién systeﬁ,,the user may specify assembly of the program
and execution of the load module, or only assembly of the program.
Other control statements are available to restrict the execution of
the load module,

The simulation,system-makes possible the simulation of a large
percenﬁage of the instructions for general and fixed purpose register
mipicomputers. Specification of the input/output instructions contains
the least flexibility. Input from the card reader (list directed) and
output to the line printer (list directed) is the only type of I/0
supported. More ektensive work in this area would make possible the
simulation of the input/outpﬁt instfuctions and the interrupt structure
for the types of minicomputers discussed. Also, the microinstruction
set could be extended to support "gpecial" instructions unique to

specific machines.

56
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Two types of special instructions that are common on most modern
minicomputers are circular list processing instruétions and hardware
stack instructions. Usually, hardware pointers are involved in both
types of instructions. For list processing, pointers to the top and
bottom of the list must be kept sd that overlapping of the elements in
the list can be detected. For stack processing, pointers to the top
and bottom of the stack are also kept. But, in this case, data items
are inserted and deleted only from the top of the stack; only one
pointer is usually updated. This alloﬁs overflow and underflow condi-
tions to be detected.

In ordef fdr the stack and list processing instructions to be
implemented using microinstructions, either specific hardware registers
or locations in memory must be used for the necessary pointers. Once
these registers or locations are detefmined, ﬁhe microinstructions for
updating the pointers can easily“be constiructed. Testing for overflow
and underflow of the stack and overlapping of the list can be performed
ﬁith the micro-operations currgnély,implemented. |

The cross assembler is an important tool for testing the simulated
machine instructions. But it is necessary for the user to translate
the assembler programs written for the simulated machine to the cross
assembly language for testing. The simulaﬁion systém could be further
lgenéralized to allow a description of the assembler language syntax for
the simulated machine to be input. This would make possible the direct

assembly of the programs written for the simulated ﬁachine.
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SYMBOL . MEANING

ABS absolute value function
ACC A accumulator A
ACC B accumulator B
ADD integer addition of two operands
ALU arithmetic logic unit
AND logical "AND" of two operands

B implicit base register (0-15)

Bl explicit base register (0-15)

CPU central processing unit

DECR decrement value by one

DIV integer division of two operands
D1, D2 positive or negative displacements
e a binary value of all 1l's

FILLER no micro-operation specified

FPR fixed purpose register

GPR general purpose register

IBUS1 input bus 1

IBUS2 input bus 2

INC increment value by one

IR instruction register

I1 "immediate" operand

K1 shift or rotation count

L link bit for accumulators
M simulated memory
MAR memory address register
MDR memory data (buffer) register
MIR microinstruction register
MOD residue modulo
MUL integer multiplication of two operands
NEG- negation

OBUS output bus

OR logical "OR" of two operands

PC program counter

PSW program status word

ROM read-only memory

ROS read-only store

R1l, R2 general purpose registers

SIC small instructional computer

SUB integer subtraction of two operands
S1, S2 resolved symbolic references
Tl, T2 registers used for comparisons and testing
WORK1 microprogram work area register 1
WORK2 microprogram work area register 2
WORK3 microprogram work area register 3
XOR logical "EXCLUSIVE OR" of two operands
XR1l, XR2 index register 1, index register 2
X1 index register (0-15)

) null pointer

<

assignment
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SYMBOL

MEANING

&oor €& —>

left rotation
right rotation
left shift
right shift
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OPEN CARD
FILE DEFN

CLOSE FILE
DEFN

INPUT
MACHINE
_-STRUCTURE

OPEN CARD
FILE SYSIN

INPUT

INSTRUCTION
FORMATS 3

INPUT

INSTRUCTIONS &
MICROPROGRAMS

INPUT JCL

CLOSE FILE
SYSIN

OUTPUT
MACHINE
SPECIFICATI

CROSS~

ASSEMBLER
STOP
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OUTPUT
SYMBOL
TABLE

OUTPUT
CONDITION MEMORY
CODE >0 DUMP

OUTPUT
MEMORY
DUMP

INTERPRETER




CROSS~-
: ASSEMBLER

O

OPEN FILE
INTRMD
OUTPUT

PASS 1

—]

PARSE OPERAND
FIELD AND
DETECT ERRORS

-~ INPUT

ASSEMBLER
SOURCE

STATEMENT

PSUEDO-
OPERATION?

PERFORM OPCODE
TABLE LOOKUP

l

INSERT
OPCODE INTO
MACHINE
INSTRUCTION

v

OUTPUT

MACHINE
INSTRUCTION
TO FILE

IN]

»,

RMD

INSERT
IDENTIFIER
INTO SYMBOL

TABLE

]
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CLOSE FILE
INTRMD

OPEN FILE
INTRMD
INPUT

PASS II

;

INPUT

SOURCE

RECORD
FROM INTRMD

PARSE
OPERAND
FIELD

l

DETECT
ERRORS

—

TEST THE NUM-

BER OF ERRORS;

SET CONDITION
CODE

RETURN

COMPLETE THE
GENERATION OF
OBJECT CODE

“OUTPUT THE

SQURCE STATE-
MENT & ERRORS

(if any

LOAD THE
MACHINE IN-
STRUCTION INTO

SIMULATED
MEMORY




INTERPRETER

INITIALIZE
PROGRAM
COUNTER

:

INCREMENT
PROGRAM
COUNTER

5

l

FETCH
NEXT
INSTRUCTION

,

PERFORM
BINARY
OPCODE TABLE
LOOKUP

'

DECODE
OPERANDS

DETECT
ERRORS

:

EXECUTE
MICROPROGRAM

HALT
INSTRUCTION
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CP CCDES AND TrelR MICRC=DEFINITICNS
1. MNEMONIC AA
BIT PATTERN (1001Gl0
MACHINE CYCLES 1
INSTRUCTICN TY? 1L
MICRT-CEFINITION 00014120902 0000GG02100 03001050504
2.

e
ey

i1

CC0141206C2 0530000210 C 230010c0901  COGCO002200

4. NIMC R
T i 00001010
ACH YC 1
INSTRUCTION TYPC 3
MICRO-DEFIMITICN 00506070504

00C12140633 0CJ15030104

00G070001303 00J160L0J104

9.  MNEMCINIC BE
2IT FATTIRN

YACnalNg CYC

INSTRUCTION TYPE 3
MICRC-DEFINITION 10200030000 00512000103

€L




00101000
Es 1

TYPE 8

TIGN 1850006000

11,

P

) )
[ :4 ape
€0 e

m ={

9
00350¢G00106

Oy ¢y =
x -~ I e’

oy

l4.

16

BIT PATTZRN  COLOCOLO

MACHINE CYCLES 1

INSTRUCTION TYPE 9
MICRC-CEFINITION 00005000106

18. MNEMONIC &R
2IT PATTERN 00110100
¥ACHINE CYCLES 1
INSTRUCTION TYPE 1
MICRC-CEFINITICN 00014000103

009030000200

000120001933

000.2000103

1100000600

T 09005000137

028050065127

11000000030

00012200103

11130000000

1010003890500

€0012000103

00012000103

10700000000 0041200C103

1C4C0005000 {COC120C0103

174



13 MNEMONIC  B8Z
BIT FATTERN 00110011
MACHINE CYCLES 1
INSTRUCTION TYPE 9

MICKC~SEFINIT ICH 000660001006
20, MNEMINIC

BIT FATTZAN 010061001

NACHINE CYCLES 2

INSTRUCTION TYPE 11

MICRC-CEF: 1o
21. MNEML

87 °

MACH]

NSTR

MICRC
22, MANSMC

BIT P

MACH I

INSTR

MICRO
23. FANZIMIONIC CLH

aIT pATTZA  010GCl01

MACHINE CYCLES 2

INSTRUCTION TYPZ 1li-

MILRG-DEFINITION 00012140902
2%.
235, MNEMINIC  Cisl

1T PATTERN 11800101

VATHIME CYCLES 1

INSTRUCTICN TYPE 14

MICRC-CZFINITION G00C&0CC1l08
2&.

€002100C000

27.  MNTHMCONIC  HALT
BIT PATTEAN 00010010
MACHINE CYCLES 1
INSTRUCTICN TYPE 21
MICRC-DEFINITICN 0C024000000

11100000600

00000002100

00CG0700C107

36015000107

00CC0022100

00007000147

00C1500C107

Q0012000103 ~

000060001 0¢

10100000000

10100050000

000360

(e}
(<)
o)
©
a

101300300040

1C103CGCaco

(=]
)
)

SL



LCs

MACHINE CYCLES
IMSTRUCTICN TYPE
MICRC-DEFINITIGON

ENZNMONIC

1

ATTERW  COLlO1001L

9

CCC12001604

LH
31T PATTERN Q1001500

MACHINE CYCLES
IANST TIGN TYPE
MICRC-CEFINITION

MNEMINIC LRI

217 PATTERN 1180

MNEMCONIC Nm

1

11

0001214C9C2

FIT PATTZEN 01000100

FACHINE CYCLES
£MSTRUCTICN TYSE
MICRE-DEF INITICH

00025000000

00000002100

00docecg21i0e

Q0001300104

000056021804

9L



37 Cr
E’RN 01002110
A CYCLES 2
INSTRUCTIGN TYPE 11
MILRC-CEFINITION 00012140602 00200002100 000050L1190%
38 FLIMCNIC QW]
21T PATTERN 11000110
MLCHINE CYCLES 1
INSTRUCTION TYPE 14
MICRI-CSFINITION | 00006151904
39, OHA
&N 00000110
CYCLES 1
ISN TyPz 32
FINITION 00036571904
49, ! XH
BT PATTEAN 11011001 )
MACHINE CYCLES 3 -
(STAUCTION TYPE 11
0C01214G9062 GGC1G0006AC
41,
1
02000002100 00001051004
42, -
53
G4,
s
1!
v
45.

T ® e
Ll Ll
Qo —=m

X

LL



47,

“9.

51.

w
w
©

54

MNEMONIC SRLS
BIT PATTEAN 10310000

VACHINZ CYCLES 1

INSTRUCTION TYPE 5
MICRC-DEFINITIGN 00035000119

MNIMON] STA

31T PATTEXRN C100030Q3

YACHINE CYCLES 1

NSTRUCTION TYPE 11

ICRO-DEFINITION, 00012140902 00005000101

D

T e

&

O

Tl

TZRN 110900011

CYCLES 1

TICN TYPE 14

ZFINITICN CCG0Go00018s 0CTLECoC107

> Lz

O O~

D -4 T
) W= VO

LK

€Yy O w4 1)

MNIMTINIC TRCFF

21T PLTTZRN C$0010101

{ACHINE CYCLES 1

INSTRUCT ION TYPE 21 :
MICRC-DEFINITION - 00023CC3000

MNEMONIC  TRIN

EIT PATTZRN 0001C011

MACHINE CYCLES 1

INSTAUCTION TYre 21
MILAC-CerlNITICN 00022050060

C3C2CC30Cad

0302C00213¢C

MACHINE CYCLES i
INSTRUCTION TYPE
MICRC-DEFINITICN 03005072004

)

€00000022C0

101802380

<

>
<
«
)

8L
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€0002CCI

INSTRUCT ION

11

n
v

Q

STMT

15

20

21

SQURCE#****;!:—*#*#:*‘*X::‘*E****tinﬂ:*’I#’#-‘xﬁ‘k

%

*

R7

R8

RS

R10

K1l

READN

p o3
%
(%)
m
x
w
r
m
n

SU KCE LISTING

THE fOLL-’.‘;':-iING PAUGRAM TESTS SOHlE CF THE INSTRUZTICNS
IMPLEMENTED FOR THE !NT_EP.DATA 7/16 BY GENERATING TKE FIRST
N NUMBERS IN THE FIBUONACCI SEQUENCE STARTING WITH ZtiC, THE
VALUE, Ns IS READ FROM AN INPUT CARD AND SEVERAL SEGUENCES
MAY BE GENERATEZD BY SUPPLYINC THZ DESIRtD VALUE FOR N. THE
PXCGRAM IS TERMINATED WhEN A VALUE OF ZERD OR A NEGATIVE VALUE

IS READ FOR N.

NJP

QU 0 *

£QU 1 =

QU 2 *

£QuU 3 =

£QU 4 *

€QuU 5 *

£QU & » :
20U 7 * NAME ALL REGISTERS
EQU 8 *® FCR CLARIFICATION
EQU Kl &

EQU 10 ®

EQU 11 =

EQU 1z *

EQU 13 ®

EQU 14 *

EQU 13 *

EQU #

¥

*

08



cocceccl C8FC O003E 28 LHI R13,=A(N) K15 CONTAINS ACDR OF N
Q

CJCC0003 C3820 O00LlF 29 trl R1&y=X'00LF" R14 CONTAINS "CUMMY® DEVICE

€0CC00Cs5 D9EF ~ C000 30 RH R1&,R15,0 INPUT N

coocoecy ééDF 0000 31 LH R13:R 1'5'0 LOAD R13 WiTh N

30600009 3'200 053D 32 BNP RL3,TESTEND TEST FOR END-GF-FILE

¢ceicces C3C0 002F 33 LHI R12.=X‘COZF‘ R12 CONTAINS "“DUMMY" DEVICE

002CcC00 08CF 000D 34 . WH Ri2yR15,0 QuUTPUT N

0CQGCCOF CiDOl 2501 35 CLHI R13,=F¢1" TEST FOR'N = 1

0200011 _A300 ool 36 BNE MOKZ MJRE THAN ONE NUMBER

00C2.013 2703 Co0l 37 SIS R12,41 SUBTKACT L FRUM N

€GCCCols 4CDF- Q00O 38 . STH RIB.;?IS.Q STURE NEW N

00000017 C8CF 0000 39 o viH Fi2,R15,0 CUTPUT VALUZ IN N

cogoece 3030 G001 40 8 READN BRANCH TC READ ANOTHE;& N
41  MOR:Z £QU *

CCi00018 €530 0Q03F 7 42 LHI R11,=A(ZERD) R11 CCNTAINS ADDR COF ZERD

CQCCCClD . CeaQ (Cos0 . 43 ' ;HI R10y =A{ONE) R10 CCNTAIY\.lS ADDR OF ONE

000900017 433%F QGCO 7 44, LH R9,R1540 R9 CONTAINS N

€Coo0021 4ET8 COOC 45 LH RT4R11.0 LOAD ZERC INTO R7

00025023 cecs 0000 46 wWH “~12,R11.0 WRITL ZEROQ

€aGo0u02s 4864 0000 ‘ 47 LH &£ 4R10,0 LOAD ONE INTC RO

(vl aoler i peCa o000 48 WH R12,R10,0 WRITE CNE

€C0CCC29 2750 0C02 T 49 SIS RG,+2 QECFEMENT N BY 2

cgeooel2s C &40 0041 50 LHI F«'A,%’A(SI;VE) R4 CONTAINS ADDF (F SAVE AR
51 WRITE EQU “

00303520 €355 52 SHR R5,R5 CLERR RS

tooceo2e CAS7 53 AdR RS,R7 A0D K7 TO RS

CoCo0Cc2F 0k55 54 AHR R5 4RO . ADD F&E TO R5

{C3oice2e 4C54 G000 55 STH R5 ¢4R4, 0 STOKE RS IN SAVE AREA

0000032 CaC4 0000 56 WH . R12+R4+0 WRITE SAVE AREA

0203C034 2790 COOL 57 SIS RI,1 DECR EMENT R9 BY 1

m

18



C0GC0G3e
00036Gz28

coulocC3s

CO0GO03E
CCOCCC3F
G80C0C40

000sCC4a1

3390
0876

4884

3000

0001
0G02
0020

QG00

0000

58
59

&0

61

62

67

68

TESTEND

ZERO
CONE

SAVE

ez
LHR

LH

EQU .
HALT

DS

R, READN

R7.36

£5¢R4» 0

x
x
I~
-
m

1X10000*
FIOI
Flll
1X 13000

TESTPGML

TEST FOR LAST VALUE
LCAD R7 FRCM Re
LOAD Ré& FROM SAVE AREA

CONTINUE

Z8




SYMBGCGL TABLE & CROSS REFERENTCE DICTIONARY

x ¥ % k & % k% % ¥ k k ¥ ¥ &k K %k ¥k ¥ %k ¥ ¥ % k X ¥ % X F ¥ ¥ ¥ kx x ¥ ¥ ¥ €k F X k x ¥ ¥ ¥k ¥ ¥ %k & F ¥k 3

SYMBOL VALUE DEFN REFERENCES

MORE C0C0001E 004l 0036 .

N 0000003E 0064 0028 .
oNE €0C00042 0066 0043

READN C0000001 0027 0040 0058

) 0003006 0010

R1 00000001 G011

10 0000000A 0020 0043  0C4T 048

211 cccoscos 002l 0042 0045 0046

212 . 00C5300C 0022 0033 0034 G339 0046 G048 0056
313 0000000C 0023 0031 0032 0035 0037 0038

Ri4 0020608 0024 0029 0030

k15 00GEDOIE 0025 Coz8  003C 0031 0034 0038 0039 0044
2 cocoon02 9212

&3 3600003 0013 )

Ré 00606004 0014 0050 0055 6056 0050

RS eCCO000E | 0015 0652 0053 0054 0055

e €2C00C0E 3016 C047 0054 0059 0060

w7 0005007 GOL7 0045 0053  GO05S

Re CCC00023  OOLS

29 00000309 0019 0044 0049 CO57 0058

Save 00003041 0067 0050

TESTEND  C3000033 0tz 3032

TESTPGML  000000CD - 0009 0068

WRT TE €000002D 0051 0061

ZERC CO00003F 0065 0042

wexwx NU4BER OF ASSEMBLY ERRORS 0

€8



84

dRNQ AYOR 2R

Geco
ccoo
cneco
woe
ocve
Y384
368%
3280
QCsd
3G8~»

NCILNJEX3-2%d

0000

0000
00CO
0fEE
LS%C
0000
0%C0
occo
c000
0000

€000

Cc000
00Z1
1060
S560
Y8y
cv3d
43C%

4280

4360

occo
00¢CC
gzoc
0sLc
1%C0
coce
4€00
10C¢C
3200
41¢0

ccoc
oece
GCoC
0oo¢e
$+%32
8223
0862
0GLZ
€282

0282

0000
0900
0000
289
201
coce
1000
€100
gz00
3EC0

GCoo
jegelele}
ye2

Go0s
0822
8le%y
0Co¢
ocev
0Qce
0zZe2

0Cco
1000
}LeT
hagond
0sCO
00co
0000
1033
ceeo
G011

T
O

DO OO

DO DOVWOQO
QaaOWVOV

OO0

0

J OOV OWOVO

DO MMOMOOOW
DOHCADD



~F
~r

P

4
-0

937

1597

2534

755

18646

28657

85



cocleeao
00200023
03200823
ceccic:a
[shvEneiel )
COGCIaCs8

1100
G000
0aC1
¢050
0000
€o03%
4034
0876
Gad1
G000

C8FO
3200
A3GC0
3000
4278
274¢C
0C00
4864
6FFL
0000

rxaye AATHINE CYCLES

003E
0030
Q018
0001
0000
0002
D8C«
0900
GeC

0002

C8EQ
c8Co
2700
cesQ
p3Cs
£3540
0000
3690
04Go0C
033¢C

Q01F
002F
[s]el03 ]
302F
0000
G4l
2730
302D
[eXs]ee]
0000

DQEF
08CF
400F
C8AQ
486 A
0855
0001
1200
Gcoo

0G0

POST-EXECUTION MEMORY DOUMP

0000
0060
0200
0040
0020
0457
3350
FEFF
2060
00co

430F
€500
D8CF
489F
uaca
QA58
Qo0
0000
Q00
0000

98



M ACHINE DEFINTIT IGN

* ¥ k X %k % ¥ X X ¥ ¥ * % % X ¥ * ¥ k ¥ ¥ ¥ ¥ ¥ ¥ R ¥ X ¥ ¥ ¥ ¥ & T ¥ X ¥ ¥ ¥ ¥ ¥ ¥ X ¥ k ¥ x ¥k X X ¥ ¥ X X ¥ ¥ ¥ ¥ ¥ X

FIXEC PURPGSE REGISTER (FPR) SYSTEM FEWLETT-PACKARD 2114 A
AUMBER OF INCEX REGISTERS 0

INDEX FEGISTER SIZE 0

KCR SIZE  1¢

VAR SIIE 16

PC SIZE 16

NUMBER OF INSTAUCTION REGISTERS 1

IR SIZE 16

ACCUMULATOR-A SIZE 15

ACCUMULATOR-B SIZE 16 g
NUYBER OF INSTRUCTICN FORMATS USEC 3
CGPCCZE LENCTR 4 ,

NUMBER CF wWORDS REAC IN & REAC INSTR 1
NUMBER OF WORDS WRITTEZi IN 2 wRITE INSTR 1
NUMBER GF ACN-OPERATE INSTRUCTIONS 15
NUMEER 2F REGISTER CPERATE INSTRUCT IGAS 35
WCREL STZE 16

L8
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v

NCN-OPERATE OP CODES AND THEIR MICRO-DEFINITIONS

1.

3e

4o

be

Te

8.

Se

FAEPLNIC ACA

BIT PATTERN 10G0

MACHINE CYCLES 4

INSTRUCTICN TYPE 1

MICRC-DEFINITIGN QCQ120001C2 00000002100

#NEMCNIC ADB

BIT PATTERN 1001

MACHINE CYCLES 4

INSTRUCTION TYPE 1

MICRC-DEFINITICN 60012000102 00000002100

MNEMCNIC AND

BEIT FATTZRN 0010

MACHINE CYCLES 4

INSTRUCTION TYPE 1

MICRC~DEFINITION 00012000102 0000CC021C0

MNEMCNIC CPA

BIT PATTERN 1010

PACHEINE CYCLES 4

INSTRUCTION TYPE 1

MICRC-DEFINITION -0001200G6102 <COCCCCO2100

MREMONIC  CPB

BIT PATTERN 1C11

MACHINE CYCLES 4

INSTFUCTICON TYPE 1

MICRC-DEFINITION 06012000102 00000002100

MAEMCNIC IR

BIT PATIERN 0110

MACHINE CYCLES 4

INSTRUCTICN TYPE 1

MICRC~DEF INITICN 00012000102 ©€0000002100

PNEMCNIC ISZ
BIT PATTERN 011l

MACHINE CYCLES 4

INSTRUCTION TYPE 1

FICRC-DEFINITION 00012000102 00000002100

MNEMCNIC JMP

EIT FATTERN 0101

MACHINE CYCLES 2

INSTRUCTICN TYPE 1 -
MICRC~CEFINITION 00012000103

MNEMCONIC JSB

BIT PATTERN 0011

FACHINE CYCLES 4

INSTRUCTION TYPE 1

MICRG-DEFINITION 0C0l2C0C1C2 o00cCQ2c0C10L

00007010911

00008010912

00007011811

CC007000106

€0008000106

00007011911

00001000501

€0000002200

00001000107 10100060000

00001000107 10103300000

€G000CC22C0 00CG1000106

08002000503

10400500060

1040000000C

111000C0000

00003000502

00003000503

00003000503

68



0.

it.

2.

3.

I4.

MREMONIC LDA

BET FATTERN 1100

MACHINE CYCLES &

INSTRUCTION TYPE 1
MICRE-DEFINITICN 60212000102

_MNEMENIC LDE

8IT FATTERM 1101

MACHINE CYCLES 4

INSTRUCTION TYPE 1

MICRC-DEF INITION 0€0120001¢€2

MAEMTAIC KECP

8IF PATTERN COO!

MACHINE CYCLES 2

INSTRLCTION TYPE &
MICRO-DEFINITION ¢C00000C0C0

FAEMENIC STA

217 PAVIERN 1110

MACHINE CYCLES &

THSTRUCTION TYPE 1
MICRO-DEFINITICN 0CQE2C00102

MNEMENIC STE

BI'T FATTERN 1ill

MACHINE CYCLES 4

INSTRUCEION TYPE 1
NICRE-CEFINITICN G0012000102

MNEMONEIC . TREN

BIT FPATTEZRN Q109

MACHINE CYECLES 4

INSTRUCTION TYPE 4
MICRC-CEFINITICN 028020000000

000006C621CE

coccccozlioc

00007006101

00008000101

€€CoICooll

€CCco100C112

C0o05002200

£3000002260

06



CPERATE CP CCCZS ANC TrEIR MICRO-CEFINITIONS

¥NEVCNIC OP CTDE

EIT PATTERN (000

l.

be

ba-

10.

MNEMCMNIC  ALF
B8IT POSITICNS

MACHINE "CYCLES
FICRC-CEFINITION

MNEMCNIC  ALS
81T FCSITIONS

MACHINE CYCLES |
MICRC-DEFIKITICN

MNIMCHIC BLF

BIT FCSITICNS
MACHINE CYCLES
MICRC-CEFINIT ION

MNEMONIC BLS
BIT POSITIONS

MACHINE CYCLES
MICRC-CEFINITION

MMNEMCN IC ca
gIT FLSITICNS

MACHINE CYCLES
MICRC-CEFINITION

MAEMCNIC  CC8
B8IT PCSITICONS

MACHINE CYCLES
MICRC-CEFINITICN

MNZMONIC  CCE
BIT PCSITIONS

MACHINE CYCLES
MICRC-CEFINITION

¥NEMCNIC CLA
81T POSITICNS

MACHINE CYCLES
MICRC-CEFINITICON

MNEMCNIC CLS
BIT PCSITIONS

#ACHINE CYCLES
MICRAC~JEFINITION

MNEMCNIC CLE
8IT PCSITICNS

MAChINE CYCLES
VICRC-CEFINITION

MNEMONIC  CMA
8IT POSITICONS

PACHINE CYCLES
MICRO-DEFINITION

GPR

7 8 9

03006000114

0CG0C6000114

6 7 )

G0C06000114

€

00006000114

R ¢

Q0CCC400C11L

5 & 7

00004000112

8 S

CCCC4C00113

7

00005000111

5 7

¢cacscocit2

CCCQT7001611

000C7G600115 (CCOO7C00115

00807300117

0GJ0&GC311S (CCCOS80C01119

0008000121

0QC070001L15

0CC08CI0LLY

00CG7000115

CCC03000L1%

16



12,

13.

l4a,

-
\n
.

16,

17.

13.

1s.

20.

21l.

FAENCAIC CM8

BIT POSITIONS 4
FACHINE CYCLES 2
MICRC-CEFINITION

MNEMONIC . CHE

BIT FCSITIONS 5
MACHINE CYCLES 2
MICRC-DEFINITION

HLT
PCSITICNS 5-

MNEMCNIC INA
BIT PCSITIONS 5
FACHINE CYCLES - 2
MICRC-DEFINITION

MNEMCNIC In

g7 PCSITIONS 4
MACRINE CYCLES 2
MICKC-CEFINITICN

MNEMCTNIC LIA

BIT PCSITITNS 5
NACHINE CYCLES 4
MICRC-CEFINITION

MNEMINTC L
BIT FCEITIC
MACHINE CYCL
MICRC-CEFINI

P

FANEMINIC NCP

217 POSITICNS 15
MACHINE CYCLES 2
YICRC-DEFINITICN

MNEMCNIC 274

17 POSITIONS 5
MACHINE CYCLES 4
MICRO-DEFINITICN

cveLss 2

5 6
000080C 1612
8

6co123C00213

08022800000

€CCC7000511

5 13

00003000512

7 S

3C3G3000102

5 7 S

000035¢00102

7

3C€505000102

5 7

gcgcecocice

0C000000000

7 8

0coC500C1C2

00017000000

goqgl7caccce

00017C3CA30

oocrrceecce

ogccrcocicl

00060002100

€€0000021¢CQ

0500002130

€00000021cCC

€CCJ0002200

08001000111

€CG01000112

03007C11911

GCo08011912

00C18C00000

<6



23.

24,

26,

27.

2S.

32.

33.

MNEMCNIC 078

BIT PCSITICNS 4
YACHINEZ CYCLES 4
MICRO~DEFINITION

MANEMCNIC RAL

BIT POSITICNS 6
MACHINE CYCLE 2
MICRC-CEFINITICON

HNEMTNIC  RAR

BIT PCSITIONS [}
MACHINE CYCLES 2
MICRC-DEFINITICN

PANEMCNIC REL

BIT FISITIONS &
MICHINE CYCLES 2
#iCRC=-CEFINITION

SAEMTMNIC  RER

BIT POSITIONS 4
PACHINE CYCLES 2
WICRO-DEFINITICN

MANEMINIC  SEZ

21T FCSITICAS 5
MACHINE CYCLES 2
MICRC-DEFINITION

MANEMONIC  SLA

817 POSITIONS 12
MACHINE CYCLES 2
MICRO-DEFINITION

MAEMTNIC SSA

I7T PCSITIONS S
MACHINE CYCLES 2
MICRC-DEFINITION

MNEMCNIC SS3

BIT FCSITICNS 4
MACHINE CYCLES 2
MICRC-DEFINITICN

MAEMCNIC SWP

8IT PCSITICONS 4
MACHINE CYCLES 2
MICRC-CZFINITICN

5 7 8

GCJC5000102

8

0C006000114

8 9

0C2C6Q00114

6 8

CCC0&00C114

& 8 9

0¢3C6000114

10

gCg1300C1C6

00057000105

12

0CQC8000106

11 .

00007000106

5 11

CL0C8000105

5

00007000108

80008000101

00007CCO115

00007000116

00008000120

lriiococcecce

11400000000

03005000127

0QC35CCO107

0603000111

000002002200 0G0138090000

€0033¢C005¢22
€0003000503
CCO03020503
1oibooooooo
10100000000

00014000112

1cgocccocce

10800000000

00C0300C8503

00003000503

€6



34. MNEMOINIC S2ZA

BIT POSITICNS 5 14

MACHINE CYCLES 2

MICRC-DEFINITION 00007000106 1110C€000CCQ
35« MNEMCNIC Sz3

81T PUSITIONS 4 5 14

MACHINE CYCLES 2 .

MICRO-DEFINITICN GCCC8000106 11100000000

ACCRESSING MODES

CIRECT TC CURRENT SECTGR Ol

DIRECT THROUGH ZEKD SECTCR  CO-
INCIRECT TFROUGH CURRENT SECTOR 11
INDIRECT THRCUGH ZERC SECTCR 10
INDEXED, REGISTER 1 00

INCEXEl, RECISTER 2 00

€CC03C00503

90003000503

6
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ASSEMBL ER
S3URCE LI STING
AQOR INSTRUCTICN STMT ScuRcF_:it#*u*twtct*ttttxtt::ttx*xx;ﬂttttttt*t
» 1 = THE FCLLOWIAG FRCGRAM TESTS SCME GF TEES INSTRUCTIGNS
. 2 * IMPLEMENT EC FOR ThE KEWLETT-PACKARD 21144, TdAE PRCGRAM IS
3 * OESIGNZD TC PERFORM THE PRIMITIVE STACK CPZRATICNS: (1) wpge"
4 % THE ITEM FROM THE TCP CF THE STACK, ANC (2) “PUSH" THE ITEM
5 x " CNTO TRE TCP OF ThE STACK. WhEN STACK UNDERFLOW GR STACK
& * OVERFLGW 1S DZTECTED AN ERRCF CCCE IS PRINTED ANC ThHE PROGRAM
7 % TERMINATES.
8 =* STACK GPERATICN COMMANDS ARE READ FRCM INPUT CARDS. A
S * . PCSITIVE VALUE FCLLCWED BY ThE STACX ITEM, DESIGNATES 4 "PUSH®
10 = OPERATIGN. A NEGATIVE VALUE CESIGNATES A "PCP"™ QPERATICN. A
11 = © LERC VALUZ DESIGNATES Tht &ND CF THZ STACK CCMMANDS.
12 x EACH STACK COMMAND IS PRINTED FCLLCWED BY THE CORRESPONDING
13 % STACK ITEM. THE COMPLETZD STACK AND STACK TOP PCINTER MAY BE
14 % VIEWED IN THE PCST-EXECUTION MEMORY OUHMP.
15 %°
€05CoC20 1009 16 TESTPGM2 NOP .
¢CTCeC2y ¢oco 17 CPR CLA,CLB CLEAR ACCUMUL ATORS A AND B8
<00C0022 Co0L 18 LDA LOWTEST LCAD (LCwWER 2CUNC ACOR) =1 INTO 2
CoCCoCe3 Cece 19 CPR C A  TAQ'S CUMPLEMENT CF A
cgococza E002 ' 20 STA LOWYEST STORE RESULT
€CSCo025 C0d3 21 LDA HIGHTEST LCAD (UPPER BCUNC ACDR) + 1 INTO A
cceccecze Ced0 22 OPR CMa TwC*'S COMPLEMENT OF A
£00CC027 £00¢4 23 STA HIGHTEST STCRE RESULT
24 INPUT ECQU * }
€cocoo2s 0340 25 GPR LfA INPUT STACK CCMMAND INTGC A
€30C0029 0410 26 CPR SSA SKIP IF C(A) >= O
CCCCG:CZA 54C:Z 27 JMP el PGP ITEM FRJIM TCP OF STACK
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cgcgocae
¢ccidozg

coccccad

CCCCCC2E
CCCCOO2F
000<C3C20
CCcCcCoc31

€000Ce32

£CG00033
50000624

€0CCCC35

£CeCecse
£0026637
ccceeo3s
€30€0039
ceeeceaa

CC0c0033

€CUC003C
€0$C0030
CCCCOC3E
€003623¢
£0AC0C4d

CC2COC4L

0402
541C

C4CO

Co09
800A
EGG3

5408

30
31
32
33

34

3¢&

37

39
40
41
42
43
44
45
46
47
48

49

56

57

pap

UNDRFLCK

DELETE

PUSH

CPR
LDA
ADs
cor
JHP
ECU
LoA
CPR

QPR

SZA
PUSH
FLT
*
ara

STACKP IR

STACKPTR
ar A
STACKPTR
NEGONE
STACKPTR
INPUT

.

Lis

oTA

oT8
STACKP TR
INA
STACKPTR
HIGHTEST
sza

INSERT

SKiP IF C(A) =0

PUSH ITEM ONTC TGP CF STACK
STCP RUN

"pCPM PRCCECURE

QUTPLT STACK CGOMMAND

LCAD STACK PCINTER INTb A

ACC LOWEF B2URD TEST VALUE TO A
SKIP IF Cta) =0 .

SRANCH TC CELETE ITEM FRCM STACK

LUAD STACK UNCERFLOW FLAG INTC A
QUTPUT STACK UNCERFLCW ERROR

STOP RUN

LOAD STACK TGP ITFM INTO A
QUTPUT STACK TOP ITEM

LOAD STACK PCINTER INTC A
DECREMENT STACK PJINTER BY 1
STCRE RESULT

BRANCH TC REAC ANCTHER CCMMAND
PUSK" PRCCEDURE

INPUTY NEW STACK ITEM INTC B
JQUTPUT STACK (CCMMAKDC

SUTPUT NewWw STACK ITER

LGAD STACK PCINTER IRTO A

INCREMENT STACK PCINTER BY 1

. STCRE RECSULT

ADD UPPER BOUND TEST VALUE TO A
SKIP IF C(A) = O

BRANCH TGO INSERT ITEM IN STACK

L6




00000045
ceccecss

'€00C0047

CCC00048

C0000049

C0000C44A
000C00¢4
C00G0055
G00C0056
cococces?
€000G058
€00C005%

C419
0580

400

FCl4

500D

C0O0A
CC49
FFFF
0049
0C54
0D48

D8F1

0000

58
59
60
61
&2
63
€4
65
66
67
68
69
70
71
72

73

CVERFLOW

INSERT

*
STACK

STACKPTR

 NEGONE

LOWTEST
HIGHTEST
ERRFLAGL

ERRFLAG2

£QU
LDA
CPR
aPR
EQu
sT8

JMP

" os

nC
oC
o]

oC

*
ERRFLAG2
CTA

HLT

*
STACKPTR

INPUT

10X*0009"
A(STACK-1)
Frelt
A{STACK=1)
A(STACK+10)
Ft-3888¢
£1-9999

TESTPGM2

LCAC STACK CVERFLOW FLAG INTO A
OUTPUT STACK OVERFLOW FLAG

STGP RUN

PUSH ITEM ONTO TOP OF STACK

BRANCH TC REAC ANCTHER CCMMANC

STACK AREA

INITIAL IZE STACK POINTER

DECREMENT VALUE FOR STACK POINTER
LCWER BOUNC TEST VALUE FOR STACK PTR
UPPER BOUND TEST VALUE FOR STACK PTR
UNDERFLCW FLAG *

OVERFLOW FLAG
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SYMSB8OL TABLE & CROSS REFERENCE DI CTIONARY

* ¥k F & 3 F kR K KK o3 ok ¥ K Kk K A ¥ X koK X % X k ko x ¥ x X ok k¥ ¥ ok &k ¥ X ¥ X K & &k ¥k ¥ % ox Xk X ¥ X ¥ X X X ¥ X

SYMEGL VALUE DEFN REFERENCES

DELETE €C0C0036° 0041 co3s6

ERRFLACL Q00C0V58 007~ _ co38

ERRFLAGZ (CCCOQ59 0072 0059

HIGHTEST (€0000057 0073 6021 0023  CO55

INFLT 00000028 0024 0047  0C64

INSERT €CGC0048 0062 0057 ’
" LOWTEST 0000056  006% c018  0C2¢ - €034

MEGCNE €0C00055 Q068 C045

CVERFLOW CCCCOC45 ccse .

FCP  0000002E 0031 0027

PUSH €C00003C 0048 0029

STACK 0000048 0086 0087 GC&S  COTO

STACKPTR  €0002054 0087 0033 0042 0044 0046 0052 0054  0C63

TESTPGMZ (€0CCOG2G  CCla co73 ' ' ‘ )

UNCRFLCW 00000033 0037

#+%9k NUMBER OF ASSEMBLY ERRORS 0
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ALCR

ccceccecoe
0cQcoccs
000C0C10
cccccecls
€C0C0G20
€occo02s
ccecccesc
€0Q00038
CCOCQ040
CC000048
€CQoCo0s50
CoC00Css

[oo]s]e]
3054
0000
€000
1000
0540
8GC6
€009
0404
FCl4
0000
D048

G056
0054

0000 "

0000
0D03
0410
0402
800A
E4l4
500D
03000
D8F1

0056
€055
0000

. 0000

CQo1l
540€
S4l¢
EQ0B
8417
cccc
0000
cooc¢

Gos7
0054
0000
0000
C&00

0402°

co07
5408
0402
G20
Q00¢C
0000

0057
0054
0000
0000
£002
541C
0580
0040
5408
0000

0049 -

0000

0054
0028
acee
0000
cco3
0400
0400
EEY
€419
0000
FEFF
0000

PRE-EXECUT ION MEMORY OUMP

0056
0000
cace
0000
06C0
£580
€808
0080
9530
0000
2049
0000

0058
0000
00C8
0000
E004
€005
0580
cooc
0400
0000
0054
0000

001
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POST-EXECUT ION MEMORY DUMP
ACDR

cceeecco 0000 0056 GO0S6 0057 0057 0054 0056 0058
€0000CC8 0054 (€054 0055 (€054 0054 0028 0C00 0000
00000010 10000 0000 0000 000C 0000 QCCO CCCC Q000
ccccccis €000 0000 0000 0000 0000 0000 0000 0200

coccocz0 1000 0000 COCl 060C EC02 CCO3 G64CC EO0D4
cgaceczs €540 0410 540E 0402 541C (G400 CS8C (€005
cccceese 8006 0402 . 5416 COO07 0580 0400 C308 (580

€Go00C38 C009 800A EQOB 5408 0D40 058C 0080~ COOC
€C00L0040 0404 E4l4 8417 0402 5408 (419 0580 0400
€0000048 FCl4 S50CD CC8C 0100 0200 0400 0800 10030
C00C00S50 2000 4000 QGCCC O000C O0C40 FFFF FFB7 FFAC
€0000Cs58 0048 OD8F1 0000 0000 0000 0000 0000 0000

#¥xdx VACHINE CYCLES s88

¢01
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Additions to the simulation system have been made to aid in the
maintenance of the program. Column 13 of the first input card in the
machine definition phase (Chapter V) is used to signal a trace of the
interpretation of all assembler statement operand fields. This fea-
ture aids in determining the validity of the operands in the generated
machine code; All of the generated maéhine code cdn be examined on the
assembler listing.

Features of the simulation system that may require modification
are: (1) the maximum size of the simulated memory, (2) the maximum
length of the symbol and refererice tables, and (3) the default time
and region parameters for execution.

The maximum size of a2 machine language program is 2000 words.
This should be sufficient‘memory for the execution of most programs,
but it may be increased for the execuiion of larger programs. To in-
crease the size of the siﬁulated memdry, the upper bound on the memory
array can be changed to the desired value. If it is necessary to
change the maximum memory size to 2500, for example, the PL/I program
statements

DECLARE

MEM (0:2000) BIT (32),
MEMDF (0:2000, 0:31) BIT (1) DEFINED MEM,
should be changed to ‘
DECLARE
MEM (0:2500) BIT (32),
MEMDF (0:2500, 0:31) BIT (1) DEFINED MEM,
The maximum number of identifiers that can be spécified in a single

assembler program is 100. The maximum number of references to the
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identifiers is 200, Both of these limits can be increased by changing
the upper bounds on the two arraYs. For example, if it is necessary to
change the upper bound of the symbol table array to 150 and the upper
bound of the reference.table array to 300, the PL/I program statements
DECLARE
1 SYMTBL EXTERNAL,

2 DECTBL (101),

2 REFTBL (200),

MAXSYM = 100;
MAXREF 6.200;
should be changed to
DECLARE
1 SYMTBL EXTERNAL,

2 DECTBL (151),

2 REFTBL (300),

MAXSYM = 150;

MAXREF = 300;

Thé’default number of machine cycles for the execution of a pro-
,gram is 500. The default region size is 200 words. Both of these
parameters are easily changed in the JCL for the user program (Chapter

V).

The PL/I debug options of SUBSCRIPTRANGE, SIZE, and STRINGRANGE
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have been enabled for the execution of the entire simulation system.
These features aid in the initial debugging process of a program, but
they tend to decrease the performance of a program because of the error
. checking that is performed., If desired, these debug options can be
disabled, or enabled only for specific sections of the program, which
increases the execution speed and decreases the size of the generated

object program.
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