
A MICROPROGRAMMED SIMULATION SYSTEM FOR

GENERAL PURPOSE REGISTER AND FIXED

PURPOSE REGISTER MINICOMPUTERS

By

GLENN RAY THOMPSON
II

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1974

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE

May, 1976

' ':", '

I hes(~
\~((p

T Lllln"\.
Cop. OL

. d.

.. . .

' . '
" ..

t ..

A MICROPROGRAMMED SIMULATION SYSTEM FOR

GENERAL PURPOSE REGISTER AND FIXED

PURPOSE REGISTER MINICOMPUTERS

Thesis Approved:

Thesis Adviser f

V::::Z.L ~~

Dea~the Graduate College

947669

ii

OKLAHOMA

ITATE lJNIVtRSITY
UBRARY

AUG :!6 1976

PREFACE

This thesis is a description of a microprogrammed simulation

system for general purpose register and fixed purpose register minicom­

puters. Such systems aid in the efficiency in which assembler programs

are developed for certain classes of minicomputers. The description is

designed to instruct the reader in microprogramming techniques and how

these techniques might be implemented.

The author wishes to express his appreciation to his major advisor,

Dr. Donald D. Fisher, for his guidance and assistance throughout this

study. Appreciation is also expressed to other committee members, Dr.

George E. Hedrick and Dr. James R. Van Doren, for their invaluable

assistance in the preparation of the thesis.

Finally, special gratitude is expressed to my wife, Vicki, for

her understanding and encouragement.

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION • . . • • •

II. MICROPROGRAMMING • . . •

III.

IV.

v.

VI.

Introduction
Fixed Instruction Computers •
Microprogrammed Computers •

THE CROSS ASSEMBLER •

Scanner •.
Symbol Table Construction and Processing.
Pass I

Label Field
Mnemonic Op Code Field •
Operand Field.

Pass II •
Error Detection •
Assembler Output.
Loader •

THE INTERPRETER

•

Instruction Fetch and Execution •
Machine Instruction Decoding
-Error Detection •
Debugging Aids
Other Simulation Systems

USERS MANUAL •

Initial Machine Description •
The Cross Assembly Language •

Symbols
Addressing Specifications.
Operands • •
Pseado Operations
Assembly Error Messages.

Control Cards and JCL •
Deck Setup

SUMMARY AND FURTHER STUDY.

iv

..

•

Page

1

6

6
7
9

16

17
18
20
20
21
21
21
26
27
27

28

28
32
42
42
43

44

44
48
48
48
49
51
52
52
54

56

Chapter Page

A SELECTED BIBLIOGRAPHY •• 58

APPENDICES • • 60

APPENDIX A -LIST OF SYMBOLS •• • • • • • • . . . 61

APPENDIX B - LOGIC BLOCK DIAGRAM • • 64

APPENDIX C - SAMPLE RUNS AND OUTPUt 70

APPENDIX D - SYSTEMS PROGRAMMERS GUlDE • • . . . 103

·v

LIST OF TABLES

Table Page

I. Description of State Transitions for Figure 1 • . . 5

II. Control Lines for Figure 4 12

III. Operand Field Syntax for General Purpose Register
Systems -. • 22

IV. Operand Field Syntax for Fixed Purpose Register
Systems • • • • • • • • • • • • • • • • • • • . . . • • 23

V. Conditional Statements for General and Fixed Purpose
Register Systems • • • • • • • • • • • • • • • • • 35

VI. Input Bus Scheme for General Purpose Register Systems • • 36

VII. Special I/0, Debug and Operate Functions for General
Purpose Register Systems. • • • • • • • • 37

VIII. Input Bus Connections for General and Fixed
Purpose Register Systems. • • • • •

IX. Output Bus Connections for General Purpose Register

. . .
Systems •

x.

XI.

XII.

XIII.

XIV.

XV.

Input Bus Scheme for Fixed Purpose Register Systems

Special I/0, Debug and Operate Functions for Fixed
Purpose Register Systems ••••••••••••

Output Bus Connections for Fixed Purpose Register
Systems • • • • • • • • • • • • • • ~ • • •

Implementation of Add Register to Register and
Branch on Zero . • • . . • •

Implf!mentation of Load Accumulator From Index
Register and Branch on Negative • .

Input Card Formats for Machine Desc~iption of
General Purpose Register Systems ••••••

vi

. .

. .
.

.

. . .

. . •

. • .

37

38

39

40

41

41

42

45

Table

XVI. Input Card Formats for Machine Description of Fixed
Purpose Register Systems ••••••••••

XVII.

XVIII.

Addressing Modes for Fixed Purpose Register Systems

Field Boundaries for Assembler Language Statements
of General Purpose Register Systems • • • • • • •

XIX. Field Boundaries for Assembler Language Statements

Page

46

. . 49

. . . . so

of Fixed Purpose Register Systems • • • • • • • • 50

xx. Assembler Lansaage Operand Specifications • . . • • 51

XXI. Assembly Error Messages •••••••••• 53

vii

LIST OF FIGURES

Figure

1.

2.

State Transitions of the Simulation Process ••
Simplified Block Diagram for Fixed Instruction Stored

Program General Purpose Computers ••••••••••

3. Simplified Block Diagram for Microprogrammed Computers

4. A Simple Fixed Purpose Register Machine ••

5. A Simple Simulator • • • • •

6. FSA for Recognizing Label Identifiers ••• . .

. . .

. . .

7. The Identifier Symbol Table. • •
8. Node Formats for Symbol Table.
9. Grammar for Parsing Operand Fields of General Purpose

Register Systems • • • • • • • • • • • • • • . .
10. Grammar for Parsing Non-operate Operand Fields of

Page

4

8

10

11

15

17

19

20

24

Fixed Purpose Register Systems • • • • • • • • • • • • • • 25

11. Grammar for Parsing Register Operate Operand Fields
of Fixed Purpose Register Systems. • ••• 26

12. Instruction Fetch and Execution Cycle. . . • • 29

13. Machine Instruction Formats for General Purpose
Register Systems • 31

14. Machine Instruction Formats for Fixed Purpose
Register Sys terns • 32

15. The Microinstructions for the Microprogrammable
Pseudo-machine • • • • • • • • • • • • • • 33

16. Register and Bus Configuration for the Microprogrammable
Pseudo-machine • • • • • • • • • • • • • 34

17. Sample Program Setup • 54

viii

Figure

18. Deck Setup • • • • • • • •

ix

• • •

Page

55

CHAPTER I

INTRODUCTION

This thesis is a presentation of a method for developing a

microprogrammed simulation system for minicomputers chosen under two

classifications (14): general purpose register systems and fixed

purpose register systems. Of the classes of minicomputers, these two

represent the largest number of minicomputers available on the market

today. They are also more closely related than any other two classes

of minicomputers.

The first classification consists of minicomputers with a General

Purpose Register (GPR) structure. The hardware registers of this

type of machine serve many functions. Two functions the registers

serve are (1) index registers and (2) general purpose accumulators.

In one section of an assembler program, a register may be u8ed as an

index register to· obtain the effective address of an operand, which

is to be used in computations of some form; and in that same section

of the program the register may be used to contain the operand itself.

Examples of machines with this hardware register configuration are

the MODCOMP II and III (15) and the INTERDATA 7/16 (10). A subset

of the instructions for the INTERDATA 7/16 has been defined for

simulation purposes and is contained in Appendix C along with a

sample assembler program run.

Minicomputers in the second classification have a Fixed Purpose

1

Register (FPR) structure. There are several different types of hard­

ware registers used in such systems. Accumulators are designed to

hold intermediate results of computations and serve a significant

role in the Arithmetic Logic Unit (ALU). Index registers are used to

determine the effective address of some operands and serve as an im­

portant tool in the use of data arrays as a primary data structure

at the machine level. Extension registers, usually of one bit, serve

as overflow or carry indicators for the accumulators. Depending upon

the particular system, there may be many more registers that serve

various purposes. Examples of machines with this hardware register

configuration are the HEWLETT-PACKARD 2114A, 2115A, and 2116B (1),

the VARIAN 520/i (20) and the INTERDATA Model 1 (9). A subset of the

set of instructions for the HEWLETT-PACKARD 2114A has been defined

for simulation purposes and is contained in Appendix C along with a

sample assembler program ruil.

Simulators can be written for a large number of minicomputers in

high level languages, such as FORTRAN or PL/I, on large host computers.

This facilitates the incorporation ofmore sophisticated diagnostics

into the simulation system, thereby decreasing the amount of debugging

time required for any particular assembler language program. One

reason this sophistication is usually not built into most minicomputer

translation systems is the relatively small amount of main core

storage available to the system. With this restriction, the producers

of systems software must keep the size of the translators down to a

minimum.

Minicomputers are playing an increasingly more important role in

the computing industry. This is one J;'eason for the development of

2

more generalized simulation systems. Minicomputers are used for

such purposes as laboratory machines to monitor experiments, inter-

face devices in computer networks and interface devices between iarge

computer systems and peripheral devices. In some cases they are

even used for •utomobile care and maintenance. Their versatility is

mainly due to the fact that D10st minicomputers are bus oriented

machines. A data bus allows information from external devices or

internal registers to be transferred to logic units and back again

along a single data path. This helps to lower hardware costs and

make the system more flexible. It is not unusual .for as many as 256

external devices to be connected to a single data bus.

An introduction to the subject of microprogramming is given in

Chapter II. Background information and an illustration of a small

microprogrammed system are discussed. · An explanation of some of the

differences between fixed instruction computers and microprogrammed

computers is also given.

The simulation system itself is composed of a_cross assembler and

an interpreter. The two pass assembler is described in Chapter III.

The scanner for detecting labels 811d operation codes, pass I symbol

table construction and object (machine) code generation in pass II are

discussed. Assembly time error detection and-diagnostics are also

discussed.

The object code generated by the assembler is input to the inter-

preter. The interpreter is actually a microprogrammable pseudo-machine

for which microprograms are design,ed Fo simulate instruction execution

for a des;l.red system. Pass II of the assembler loads the simulated

memory with the generat.d'object ~ode and it is from this simulated
' '

3

4

memory that the interpreter obtains the machine instructions. Chapter

IV contains a description of instruction fetch and execution, execution­

time error detection, and input/output formats. Microinstruction

formats and the development of microprograms for the simulated instruc­

tions are also discussed. It is not the purpose of this thesis to

treat the subjects of input/output and interrupt servicing in great

detail. Therefore, these subjects are only briefly discussed in terms

of the microinstructions required to perform their basic functions.

The simulation process can be thought of as a sequence of state

transitions. Figure 1 and Table I illustrate the state transitions in­

volved in the simulation process.

Figure 1. State Transitions of the Simulation Process.

Chapter V is a Users Manual and describes the deck setup and op­

tions for us~ng the assembler-interpreter. The assembler output format

and error messages are also discussed. A summary and further study is

presented in Chapter VI. Appendix A contains a list of symbols used in

the description of the simulation system. A .logic block diagram of

the system is given in Appendix B and Appendix C contains sample

assembler program runs and the output. Appendix D is a systems pro-

grammers guide to modifications of the simulation system.

TABLE I

DESCRIPTION OF STATE TRANSITIONS
FOR FIGURE 1

State

0 (Start state)
1
2
3
4
5 (Final state)

Description

Hardware register definition
Instruction set definition
Job control recognition
AEtsembly of source program
Object program interpretation
Termination of job stream

The basis for the method of construction of the simulator pre-

sented in this thesis was developed by Hill and Peterson (7) in their

description of a microprogrammed Small Instructional Computer (SIC).

This computer has a fixed purpose register structure with two

accumulators, 'two index registers and one extension register. The

instruction set is sufficiently large ·to illustrate most points about

a microprogrammed system. The design of the microinstruction set was

influenced by Husson (8) in. his description of the microprogramming

techniques for large scale computers.

5

CHAPTER II

MICROPROGRAMMING

Introduction

The term microprogramming was first coined by Professor M. V.

Wilkes of the Cambridge University Mathematical Laboratory in 1951 (21,

22). In his thesishe stated that one can envision the control portion

of a computer as effecting a number of register-to-register transfers of

information in order to carry out the execution of a single machine in­

struction. Each of these steps can itself be thought of as the execu­

tion of an instruction for some machine (whose existence is unknown to

the programmer). The steps used tq effect a single instruction in the

user machine can be thought of as constituting a program, usually

called a microprogram. Microprograms can also be used for other nec­

essary operations which are in some sense invisible to the programer,

for example, fetching the next instruction or computing effective

addresses.

There are at least' two approa¢1es to microprogrammed control, and

they differ significantly from one another. One, called "vertical or

sequential microprogramming" (18), relies on the more traditional

c~cept of programming in which an instru~tion contains an operation

code, secondary modifiers and one or more address fields. Iri this

case tbre~ adpressable storage areas are associated with the host

machine: (1) main store, (2) control store and (3) local store.

6

Local store consists of registers and can be conceived of as being a

general purpose storage area for use by the microprograms.

The other approach, called "horizontal microprogramming" (18),

uses the microinstructions as control words whose individual bits are

used to select specific data paths within the machine. In this case

there are no addresses other than those implicitly specified by the

bits of the control words. Although this scheme is less general than

vertical microprogramming, it is possible to make more efficient use

of the hardware of machines organized in this way. A modified version

of the horizontal microprogramming scheme is used in the interpreter

which is described in detail in Chapter IV.

In either case, the microinstructions generally are held in a

control store, usually faster than main store, for which there must be

some form of aecessing mechanism. The majority of such systems use a

non-destructive read-only store (ROS or ROM) for reasons of speed and

economy. The read-only nature of these devices also insures the inte~

grity of the simulated machine.

Alternatively, a few machines are now equipped with writable con­

trol stores implemented in core arrays. Such core arrays generally

are built so that they have the properties of fast reading and slow

writing (16). Fast reading is necessary for performance and slow

writing can help in cost reduction.

Fixed Instruction Computers

In order to contrast some of the aspects of fixed instruction

computers and microprogrammed computers, a description of some of the

major characteristics Of fixed instruction compqters follows.

7

The hardware of fixed instruction computers generally is divided

into four units (Figure 2): (1) an input/output unit, (2) memory (or

storage), (3) an arithmetic-logic unit, and (4) a control unit. In

general, the input/output unit consists of more than one physical de-

vice but input and output are often considered together.

Figure 2.

CONTROL
UNIT

ARITHMETIC
UNIT

Simplified Block Diagram for Fixed Instruction Stored
· Program General Purpose Computers [!rom Micropro­

grannning Handbook (14)]

Memory is considered in ~ts conventional way, a series of memory

cells and registers used to store the instructions of a program while

in execution. Addresses are associated with each memory cell and with

8

all registers •. The control unit of the computer can refer to a storage

9

register by its number (or address). This is called the address pro­

perty of the storage register (6). Storage registers have two other

properties: (1) non-destructive read-out and (2) destructive write-in.

Non-destructive read-out refers to the property of accessing the con­

tents of a register without destroying it. Destructive write-in refers

to the property of destroying the previous contents of a register when

information is stored into the register.

All arithmetic is performed in the arithmetic-logic unit. There is

at least one accumulator or general purpose register in the ALU of any

computer. The structure of the machine is such that the contents of the

accumulator or general purpose register can be tested to determine the

characteristics of the value. Usually, this simply means to determine

if the value is less than, equal to, or greater than zero. This is the

basis for all logical and conditional operations that may be performed

by the system.

The control unit coordinates the interaction of all the other units.

When a program is in execution, the control unit retrieves instructions

from memory in the proper order and also initiates the execution of each

instruction. In the simplified case, the control unit has two special

registers: (1) the instruction register (IR) and (2) the program coun­

ter (PC) or program status word. The PC contains the address of the

next instruction to be executed. The IR contains the machine instruc­

tion currently being executed. Generally, the ALU and the control unit

are together called the Central Processinf Unit (CPU).

Microprogrammed Computers

Microprogrammed computers are very similar to fixed instruction

10

computers, but there is one significant difference: the control

memory (Figure 3). Control memory is divided into sections. Each

section contains the microinstructions that perform the operations of

a particular machine instruction. Each time a machine instruction is

fetched, it goes through a decoding process that breaks the instruction

up into its appropriate fields and then control is transferred to the

microprogram associated with the particular instruction. In the most

general sense, microprograms can have some degree of modularity with

the use of branching instructions and microprogram subroutines.

CONTROL
MEMORY

CONTROL
UNIT

"
Figure 3. Simplified Block Diagram for :Hicroprog~ammed Computers

(From Microprogramming Handbook (13)] .

Microprogramming represents a systemic approach to control.

Figure 4 depicts a ficticious vertical microprogrammed machine and

its control functions. The characteristics of this machine can be

summarized as: stored program, word organized, single address (18).

MEMORY

MAR

9

PC

·Figure' 4.

11
-READ

1

16

ADDERS
2

ACC ZERO

CLEAR

7 CONTROL

8 15

A Simple Fixed Purpose Register Machine
[From Rosin (18)]

6

5

11

12

The register and storage structure is not unlike many modern fixed

purpose register computers. But, in general, many modern computers

have a series of accumulators, multiple address instructions, and a

multipurpose Program Status Word (PSW). The machine in Figure 4 does

not use the bus concept of data transfer; for ease of illustration~

The execution or interpretation of an instruction can be consi-

dered as a series of register-to-register transfers. A few other

primitive functions have been added, such as clearing a register and

initiating main memory reads and writes. Table II summarizes the valid

operations of the machine in terms of these primitives (18).

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15
16
17.
18

TABLE .II

CONTROL LINES FOR FIGURE 4
[From Rosin (18)]

MDR~ ACC
ADDERS.._ MDR
ADDERS +- ACC
.ACC +-ADDERS
ACC +- MDR
IR +- MDR
MAR+- ADDRESS PART
PC ._ ADDRESS PART
MAR+- PC
PC+- PC+ 1
MS READ
MS WRITE
CLEAR ACC
CLEAR ADDERS

BRANCH INSTRUCTION
CONTROL ~ OPCODE
CONTROL ~ AC • 0
CONTROL +- AC NEG
UNCONDITIONAL

'.j,·

13

' For this particular machine the ACC is used strictly for computa­

tional purposes and for conditional (negative or zero) branching. The

ADDERS work together with the ACC to perform the necessary arithmetic.

The machine instructions consist of an operation code and an operand

field and the IR is used in decoding the instructions. The MDR and

MAR are used ::t.n conjunction to perform the memory access functions.

The MDR contains the data word and the MAR contains the address of the

data word. The PC is used as a pointer to the current i~truction for

instruction fetch and may only be incremented to point to the next

memory word. The functions of the CONTROL unit, in this ease, are few

in nwnber: fetch and decode the next instruction and handle any nee-

essary branching.

To implement a simple ADD instru~tion (addition of the contents

of the MDR to the contents of the ACC) this sequence of microinstruc-

tiona may be specified.

14 CLEAR ADDERS

2 ADDERS ~ ACC

3 ADDERS ~ MDR

1 ACC +- ADDERS

Except for the fact that these four instructions contain no address

parts, the sequence resembles a short conventional program.

As in any other automatic computer, microprograms require the

capability to execute branches of control, bqth conditional and un­
\

conditional. In this simplified machine, conditional branches may be

baaed fn a zero or negative value in the ~C or the opcode itself.

In the latter case, the value of the opcode determines the destination

of the branch. For instructions 16, 17, ~d 18, a single address

14

part must be specified.

Figure 5 contains a set of microprograms which simulates a simple

machine using the organization of Figure 4. Address modification is

not used and, in this case, it is not possible to modify the micro­

program store. IFETCHl simply updates the PC to point to the next

instruction. IFETCH2 loads the next machine instruction into the IR

and transfers the control of the program to the control unit. Note

that the PC must be initialized at some point before the execution of

the first machine· instruction. ADD fetches a data word from memory

and adds the data word to the contents of ACC. The result is placed

into the ACC. CLEAR ADD simply fetches a data word from memory and

loads it into the ACC• STORE ACC stores the contents of the ACC into

the memory word designated by the address part of the IR. TRA loads

the address part of the inStfuction into the PC and branches to IFETCH2

{a conventional branch or jump). TRA IF ACC NEG tests the ACC for a

negative value. If the value is negative, then a branch is made to

TRA, otherwise the next sequential instruction is fetched. STORE ZERO

uses the ACC to store a zero value in a memory data word.

Figure 5 illustrates how the instruction set of a simple machine

may be represented by a set of microprograms. The same concepts apply

to the instruction sets of more sophisti,cated machines. Chapter IV

discusses a more general approach to the development of the instruction

sets for GPR and FPR minicomputers than the approach discussed in this

chapter.

15

10 · IFETCH1: PC+- PC + 1
9 IFETCH2: MAR+- PC

11 READ
6 IR+- MDR

15 CONTROL ~ OPCODE

7 ADD: MAR +- ADDRESS PART
11 READ
14 CLEAR ADDERS

2 ADDERS +- ACC
3 ADDERS +- MDR
4 ACC +- ADDERS

18 (IFETCHl) GO TO IFETCH1

7 CLEAR ADD: MAR ~ADDRESS PART
11 READ
5 ACC ~MDR

18 (IFETCHl) GO TO lFETCH1

7 STORE ADD: MAR+- ADDRESS PART
1 MDR~ACC

12 WRITE
18 (IFETCHl) GO TO IFETCH2

8 TRA: PC +-ADDRESS PART
18 (IFETCH2) GO TO IFETCH2

17 TRA IF ACC NEG: IF ACC < 0 GO TO TRA
18 (IFETCHl) GO TO IFETCHl

14 STORE ZERO: CLEAR ADDERS
3 ADDERS +- ACC

13 CLEAR ACC
1 MDR~ACC

7 MAR +-ADDRESS PART
12 WRITE

4 ACC ~ADDERS
18 (IFETCH1) GO TO IFETCH1

Figure 5. A Simple Simulator
(!rom Rosin (18)]

CHAPTER III

THE CROSS ASSEMBLER

The first step in the simulation process is the conversion of

assembler language source code into machine executable object code.

This chapter contains a discussion of how this -objective is achieved.

Included is the assembly process, code generation, error detection and

processing and loading the generated code into the simulated memory

for execution.

To translate the source assembly program, the assembler must (1)

replace each mnemonic op code with its equivalent binary code, and

(2) replace each symbolic address with its corresponding location in

memory. To achieve the former a table is kept with all the mnemonic

op codes and corresponding binary code along with other vital informa­

tion. for the assembly process. Each time an assembler source state­

ment is encountered, a table lookup is performed in order to determine

the binary code equivalent. The op code table is generated in an earlier

phase of the simulation process. This topic is discussed in Chapter· V.

In order to achieve (2) it is necessary to keep another table, called

a symbol table. Each time a symbolic reference is made, a table look­

up is performed in order to determine the corresponding absolute

machine address.

Two scans of the source code are required to complete the assembly

process for the cross assembler. It is possible to make only one

16

17

scan and achieve the same end, but· the process is much more complicated

and requires additional uhousekeeping". The first scan determines

which location in memory is to be assigned to each symbol and during

the second scan the assembler produces the binary object code. Each

phase of the assembly process is described in the following paragraphs

along with the method used for its implementation.

Scanner

The scan phase serves two purposes: (1) allows the label identi-

fier to be separated from the source statement so it may be placed in-

to the symbol table, and (2) allows the op code to be separated from

the source statement so that a search may be made of the op code table

to find the equivalent binary code. The process of isolating the iden-

tifier can be handled in several ways. One way to accomplish this is

by the development of a Finite State Automaton (FSA) to recognize the

identifiers. Figure 6 represents a possible FSA for recognizing

identifiers.

ALPHABETIC
CHARACTER

Figure 6.

ALPHABETIC CHARACTER OR
DECIMAL DIGIT

FSA for Recognizing Label Identifiers

State 1 is the "start" and a transit~on to the "final" state,

18

state 2. may only be made \Dlder an alphabetic character. A transi-

tion from state 2 to state 2 may be made under an alphabetic character

or a decimal digit. As each transition is made, the character recog-

nized is catenated onto the current symbol to form the complete iden-

tifier. Notice that a count must be kept of the length. of the symbol

so that the symbol will not become larger than the space available

for the identifier in the symbol table.

Another method for isolating the identifier, which is similar

to the first method. is the simple catenation of valid characters in

the label field onto the current symbol. The catenation process is

continued until a blank character or the end of the field is encoun-

tered. The latter mathod is the one used in the cross assembler

described later in this chapter.
'

The scan phase for recognizing the mnemonic op codes can be

constructed in exactly the same way as th~ phase for recognizing the

label identifiers. The only difference being in the mnemonic op code

table lookup performed after the field has been scanned.

Symbol Table Construction and Processing

The operation code symbol table is constructed prior to the

assembly process so it will not be treated in this section. It is

. discussed in detail in Chapter V. The table discussed in this section

is the identifier symbol table and its general structure is shown in

Figure 7. Notice that the symbol table is actually composed of two

tables: (1) the symbol definition table, and (2) the symbol refer­

ence table. Table (1) contains the identifier, its value, the

statement number in which it was defined and a pointer to the reference

19

table (Figure Sa). Table (2) contains the statement numbers where the

identifier is referenced. The reference for each identifier are

linked by means of pointers to the subsequent references. The refer-

ence table is kept so that a cross-reference listing may be printed

after a program has been assembled. Figure 8b shows the node structure

for each entry in the symbol reference table.

Symbol Definition Table Symbol Reference Table

s v D REF ...

5
~

•
1\

.. • CJ
I I /\
I I
I I

I
I

I

Figure 7. The Ident~fier Symbol Table

The symbol table is constructed in a sequential manner and table

lookup also is done sequentially. This method may be somewhat slower

than other methods, such as "hashing" techniques or binary searching,

when the table becomes very large, but it is straight forward and does

20

not require function evaluations and/or pointer updating when a symbol

is defined or referenced.

Identifier . Value
· St.atemertt

declared

(a) node format for symbol definition table

Statement
referenced

Pointer to
next reference

(b) node format for symbol reference table

Pointer to the
reference table

Figure 8. NodeFormats for Symbol Table

Pass I

Pass I has two primary tasks: (1) to construct the identifier

symbol table, and (2) to determine the binary code representation for

the mnemonic op code and substitute it into the maChine instruction.

A location counter (or p:ogram counter) is kept in both pass I and pass

II in order to determine the exact location in the simulated memory

to place the instruction. Afte.r eaCh instruction is interpreted, the

program counter is incremented by the length of the instruction.

The firSt step is to read a new line. of the source assembly

program. Since pass II will need to reread the input source program,

a copy of the input is produced on an auxiliary storage device •

Label Field •

An identifier found in the label field is placed into the symbol

table along with the current value of the program counter. Before an

identifier is placed into the table, a search is made to ensure that

the symbol has not been previously defined.

Mnemonic Op Code Field

After a mnemonic op code has bee.n recognized, an operation

code table lookup is performed. If the mnemonic is not present, a

record of the error is kept. If present, the binary code equivalent

is placed into the machine instruction.

Operand Field

21

There are five instructions for which the operand field is parsed

during pass ~: (1) EQU, (2) ORG, (3) DC, (4) DS and (5) END. For

these instructions it is possible to interpret the contents of the

operand field the first time the instruction is encountered. Note that

this places a restriction upon the use of the EQU, DC, and DS instruc­

tions. It must be possible to resolve all symbolic references at the

time the instructions are first encountered. These instructions are

provided by the simulation system and need not be defined by the user.

The formats. for these instructions are given in Chapter v.

Pass II

The purpose of pass II is to complete the machine instructiqns by

using the symbol table constructed in pass I and to resolve all sy~

bolic reference•. The oper&nd field may be divided into as many as

five separate fields, depending upon the type of machine being simu­

lated. Commas are used as delimiters in the operand field. The

22

relative position of a value in the operand field dictates its posi-

tion in the machine instruction. The assembler language operand field

syntax for GPR systems is given in Table III and the operand field

syntax for FPR systems ls given in Table IV.

Type

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

TABLE III

OPERAND FIELD SYNTAX FOR GENERAL PURPOSE
REGISTER SYSTEMS

Syntax

X1
D1
R1,R2
B1,D1
R1,K1
R1 ,D1
R1,X1
81
R1.S1
R1,R2,S1
R1 ,Xl ,S1
R1 ,D1,S1
B1 ,D1 ,Sl
R1 ,Il
R1,B1,D1
Sl,S2
S1,Il
D1,S1
R1 ,D1 ,D2
R1 ,R2 ,D1
blank field

The instruction type dominate~ the valid combinations of operands

in the operand field. The meaning of the symbols used in the operand

field definitions of the two classes of machines is given in Appendix A.

23

Examples of the types of operandS that can be specified for GPR ma-

chines, taken from Table III, follow. The syntax of the operand

specifications closely resemble that of the simulated test machine,

the INTERDATA 7/16.

2 +12
8 SYM-2400

11 o.15,*+48
13 12.-64,*
16 SYMl,SYM2+4
17 SYM 1•A(*-28)
20 9'.10,+8

Examples of the types of operands that can be specified for FPR ma-

chines, t~en from Table IV, follow. The syntax of the operand speci­

fications closely re·semble that of the simulated test machine, the

HEWLETT-PACKARD 2114A.

1 ALPHA+4
2 •X 100FF 1

3 OPR1,0PR2 10PR3
5 12

TABLE IV

OPERAND FIELD SYNTAX FOR FIXED PURPOSE
REGISTER SYSTEMS

Type

1
2
3

4
5

Syntax

S1
I1
operate function 1, ••• , eperate .

function 5
blank field
K1

24

Grammars are constructed to aid in the translation of the operand

field. Since PL/I supports recursive procedures, the grammars are

coded directly into the PL/ I source language. Figure 9 illustrates

the grammar used to parse the operand fields of the assembler state­

ments for GPR systems. Figure 10 illustrates the grammar used to.

parse the operand fields of non-operate instructions for FPR systems

and the grammar used for operate instructions is given in Figure 11.

ARFLD: DECL; DSTOR; RSPEC; ASPEC; ASPEC , ASPEC; ASPEC , ASPEC , ASPEC.
DECL: B QDIGITS; F QDIGITS; X QDIGITS; A LADDR.
QDIGITS: ' SDIGITS '•
SDIGITS: + DIGITS; - DIGITS; DIGITS.
DIGITS: DIGIT DIGITS; DIGIT.
DSTOR: PDV DECL.
LADDR: (ASPEC) •
RSPEC: SERPDV; ASPEC, • DECL; PDV; ASTARTH , ASP:ii:.C; ASTARTH.
SERPDV: PDV ADITSPEC.
ADITSPEC: COMPDV; COMASPEC.
COMPDV: CTERMPDV COMASPEC; CTERMPDV.
CTERMPDV: , PDV; , ASTARTH.
COMASPEC: • ASPEC; , ASTARTH.
PDV: DECINT.
DECINT: INT DECINT; INT.
ASPEC: * ASTARTH; *; SYMADDR; PDV.
ASTARTH: + PDV; - PDV.
SYMADDR: SYMI ASTARTH; SYMI.
SYMI: LET SYMJ; LET.
SYMJ : LET SYMJ ; INT SYMJ ; LET ; INT.
INT : 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 •
LET: A; B; C; D; E; F; G; H; I; J; K; L; M; N; 0; P; Q; R; S; T; U;

V; W; X; Y; Z; &; $; %; II; @.
DIGIT: 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; A; B; C; D; E; F.

Figure 9. Grammar for Parsing Operand Fields of GeneraL Purpose
Register Systems

The grammars illustrated in Figures 9, 10 and 11 use certain con-

ventions for distinguishing metasymbols, non terminal symbols and

25

terminal symbols (5). The nonterminal symbols on the left hand side of

a rule are always followed by the metasymbol, colon (:) • The right hand

side alternatives of the rules immediately follow the colon and are

separated by a semi-colon (;). The last alternative of a rule is fol-

lowed by a period (.). All symbols not appearing on the left hand

side of a rule are terminal symbolS and all other symbolS which are

not metasymbols are nonterminal symbols.

ARFLD: DECL; DSTOR; ASPEC; a DECL.
DECL: B QDIGITS; F QDIGITS; X QDIGITS; A LADDR.
QDIGITS: I SDIGITS '·
SDIGITS: +DIGITS; - DIGITS; DIGITS.
DIGITS: DIGIT DIGITS; DIGIT.
DSTOR: PDV DECL.
LADDR: (ASPEC) •
PDV: DECINT.
DECINT: !NT DECINT; INT.
ASPEC: * ASTARTH; * ; SYMADDR; PDV.
ASTARTH: + PDV; - PDV.
SYMADDR: SYMI ASTARTH; SYMI. ··
SYMI: LET SYMJ; LET.
SYMJ: LET SYMJ; INT SYMJ; LET; INT.
INT: 0; 1; 2; 3; 4; 5; 6; 1; 8; 9 •.
LET: A; B; C; D; E; F; G; H; I; J; K; L; M; N; 0; P; Q; R; S; T; U;

V; W; X; Y; Z; &; $; %; II; @.
DIGIT: ,0; 1; 2; 3; 4; 5; 6; 7; 8; 9; A; B; C; D; E; F.

Figure 10. Grammar for Parsing Non-Operate Operand Fields o,f
Fixed Purpose Register Systems.

Grammars give a systematic method for parsing the operand fields

of the assembler statements. Using a grammarallows the operand

field to be separated into.sub-fields and the semantic meaning of each

sub-field determined. For example, if an identifier is encountered,

a sequential search through the symbol table can be made to find the

value of the identifier. Once the value has been determined, parsing

of the field may continue in order to evaluate any modifiers of the

symbol value.

OPRSPEC: OPRLIST.
OPRLIST: OPR , OPRLIST; OPR.
OPR: ALPHA ACHAR; ALPHA.
ACHAR: ALPHA ACHAR; NUM ACHAR; ALPHA; NUM.

26

ALPHA: A; B; C; D; E; F; G; H; I; J; K; L; M; N; 0; P·; Q; R; S; T; U;
V; W; X; Y; Z; &; $; %; II; i.

NUM: 0; 1; 2; 3; 4; 5; 6; 7; 8; 9.

Figure 11. Grammar for Parsing Register Operate Operand Fields
of Fixed Purpose Register Systems

Error Detection

Error detection. is accomplished in both passes of the assembler.

Invalid symbols and mnemonics are detected by the scanner in pass I.

Syntactical errors are detected during the evaluation of the expres-

sions in the operand fields. The use of grammars aids in the error

detection facility. The grammars define the form that must be fol-

lowed in specifying operands. An error occurs any time the form is

not followed. As each error is detected, the code for the error is

placed into the identification record for the a~sembler statement.

When the source listing is printed in pass II, the errors detected

in each statement are printed immediately following the statement.

A list of all assembly errors is given in Chapter V.

27

Assembler Output

In addition to code generation, the assembler normally produces

a printed output. The output consists of the location of each instruc-

tion (in hex), the object code (in hex); the statement number artd a

listing of each source statement. Errors, if any, are indicated imme-

diately following the statement in error. Following .the source listing

is the symbol table and cross-reference dictionary which contains the

symbols, their associated values (in hex) and a list of the statements

in which the symbol is referenced. An indication as to the number of

assembly errors is also given.

Loader

The machine instructions generated throughout the assembly pro-

cess are loaded into the simulated memory for execution. For a GPR

system, loading begins at memory location zero. But for FPR systems,

loading begins at the first location in page one of the simulated

memory. In this context, a page refers to a physical memory page used

by most fixed purpose register minicomputers in address/page mapping

schemes. Page zero is used by the assembler for patching direct and

indirect addresses that cannot be .accessed in the current page. The

user is not permitted to access any memory location in page zero,

other than location zero. This helps to keep all indirect references

intact. Once loading is completedthe program is ready for execution •
•

CHAPTER IV

THE INTERPRETER

The binary object code generated by the assembler is loaded into

the simulated memory for execution. The machine instructions must be

interpreted to carry out the processes of the simulated machine. This

chapter describes how the machine instructions are fetched from memory

and decoded, how the microinstructions are used in the decoding pro­

cess, error detection and debugging aids.

Instruction Fetch.and Execution

Execution begins with the first instruction of the machine

language program.· The address of this instruction, along with other

vital information is known to the interpreter through the use of

"global" variables. Once the addres~ is determined in the assembly

phase of the .simulation process, the global variable is assigned the

address of the first executable instruction. The information con­

tained in the global variable is passed to the PC and primes the in­

struction fetch cycle. The complete instruction fetch and execution

cycle, as shown by Hedrick (6), is illus.trated in Figure 12. This

is an overview of the subject matter discussed in the remaining

portion of the chapter. The actual implementation of the fetch-execute

process is much more complicated than is shown. The PC and IR are the

most important registers used in the fetch-execute cycle. Once the

28

29

address of the next instruction is determined, the instruction is

extracted from memory and loaded into the IR.

START

SET TO
FETCH
CYCLE

... ,,
FETCH DECODE

INSTRUCTION FETCH FETCH EXECUTE AND EXECUTE
AND PUT IN IR - OR EXECUTE r THE

CYCLE? INSTRUCTION

, ,
INCREMENT SET TO

CONTENTS FETCH
OF PC CYCLE

, ,
SET TO
EXECUTE

CYCLE

,

Figure 12. Instruction Fetch and Execution Cycle

30

At this point the PC is updated and the instruction is subjected to the

decoding process. The decoding process consists of determining the

registers and/or addresses specified in the instruction, performing a

table lookup of the binary operation code and executing the correspon­

ding microprogram. The machine instruction formats for GPR and FPR

systems are displayed in Figures 13 and 14, respectively. (See Appen­

dix A for the symbols used in the two figures.) Notice that the

operation code must appear in the same field of every instruction. The

interpreter mus.t know where the operation code resides within the ma­

chine instruction even before the instruction format is known~ This

and other related information is part of the initial machine definition

and is .discussed in Chapter V.

The implementation of a simutation system for the INTERDATA 7/16

required the use of eight of the instruction formats displayed in

Figure 13: 1, 3, 5, 8, 9, 11, 14; and 21. Fifty-four of the instruc­

tions for the INTERDATA 7/16 have been simulated and a number of them

tested in a sample program (See 4Ppendix C).

The implementation of the HEWLETT-PACKARD 2114A required the use

of three of the instruction formats of Figure 14: 1, 3, and 4.

Appendix C displays the program used to test the simulation system

for the H~WLETT-PACKARD 2114A. Machine instruction format 3, Figure

14, is used to specify the register operate instructions. Operate

instructions manipulate the contents of internal hardware registers

and exercise certain control functions withoqt referencing the random

access simulated memory.

31

1. l()p CODE X1

2. loP CODE D1

3. lo:P CODE R1 I R2

4. loP CODE B1 D1

5. loP CODE R1 K1

6. loP CODE R1 D1

7. lOP CODE R1 X1

8. loP CODE S1

9. I§P CODE R1 S1

10. loP CODE R1 R2 S1

11. loP CODE R1 I X1 S1

12. loP CODE R1 D1 S1

13. loP CODE B1 D1 S1

14. loP CODE R1 X1

15. loP CODE I R1 B1 D1

16. loP CODE S1 S2

17. lOP CODE S1 Il

18. loP CODE D.l S1

19. lOP CODE R1 D1 D2

20. lOP CODE -R1 R2 D1

21. loP CODE I 0
I

Figure 13. Machine Instruction Formats for General Purpose
Register Systems

1.

2.

3.

4.

5.

I OP CODE ADDRESSING MODE Sl

I OP CODE 11

I OP CODE REGISTER OPERATE MICROINSTRUCTIONS

I OP CODE 0

I OP CODE Kl

Figure 14. Machine Instruction Formats for Fixed Purpose
Register Systems

Machine Instruction Decoding

As part of the execution phase of the simulation system, the

decoding process. consists of three main operations: (1) performing

a table lookup of the binary operation code, (2) determining the reg-

isters and memory locations involved in the execution of the instruc-

tion, and (3) executing the microprogram that corresponds to the

instruction.

The first operation is relatively simple. The operation code

32

is extracted from the instruction and placed into a temporary location.

The op code table is then searched sequentially until the op code is

found. Once the operation code is located, all information (instruc-

tion format, instruction l~ngtp, number of operands, etc.) concerning

the instruction becomes available.

The function of the instruction format is to show how the operand

fields of the instruction are to be used. It specifies when an oper-

and field of a machine instruction represents a register or when it

represents an absolute memory address. For example, if instruction

33

format 1 (Figure 13) is used, field 2 of the instruction specifies an

index register·. The information contained in the operand fields of

the machine instructions is used in the execution of the microprogram.

This explains the function of operation (2).

The tbi~d operation, executing the microprogram, is the most

complex of the three operations. Each eleven digit microinstruction

is placed into the Micro Instruction Register (MIR) (see Figure 15)

and is subjected to a decoding process of its own. The MIR is a de-

eimal register ~d the sequence of decimal digits specify the micro-

operations to be performed. Figure 16 displays the register and bus

configuration for valid micro-operation specifications for the

mieroprogrammable pseodo-maehine. The user need only concern himself

with the microinstructions necessary to accomplish the simulation of

a desired instruction set. Instruction fetch and program counter up-

date are taken care of automatically by tne interpreter. The micro-

operations are defined in te.rms of data paths to and from input/output

buses and specific hardware registers. In some eases, data paths are

provided to work areas for the microprograms and also to areas eon-

taining the operand fields of machine instructions.

I 0 I 1

Conditional
Operation

Figure 15.

~
Input_
Bus 1

5 6

~

Input
Bus 2

7 8 9 10

~ ~
Input Output Bus
Bus Connection

Connection

The Microinstructions for the Mieroprogrammable
Pseudo-machine

34

MPR MAR PC WORK3

MDR MAR PC WORK3

Figure 16. Register and Bus Configuration for the Micropro­
grammable J.Tseudo-machiDe

Positions 0-2 of the MIR are .used to specify conditional opera-

tiona. The contents of·work area registers may be tested and program

.control determined from the results. Table V shows how the conditional

operations may be specified.

If position 0 of· the MIR is set to 1. positions 1 and 2 are de-

coded and the test operation performed. All other positions of the

microinstruction are ignored. If the result of the test is "true"•

the remaining microinstructions are decoded and executed. If the

result is "false", the remaining microinstructions are not executed

and control is transferred to the next sequential machine instruction.

If position 0 of the MIR is set to o. positions 3-10 are decoded

as are the remaining microinstructions.

The entries in Table V are used to specify conditional operations
'

for both GPR and FPR systems.

MIR
1 2

0 0
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0 9
1 0
1 1
1 2
l 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4

TABLE V

CONDITIONAL STATEMENTS FOR GENERAL AND FIXED
PURPOSE REGISTER SYSTEMS

CONDITION

Filler
Compare T1 and T2
Compare T1 and T2
T1 • T2
T1 rj. T2
T1 < T2
T1 > T2
T1 < .. T2
T1 > .. T2
T1 <O
T1 >O
T1 - 0
T1 - 1
T1 - -1
T1 even
T1 odd
T1 all l's
T2 < 0
'!2 > 0
T2 • 0
T2 "" 1
T2 • -1
T2 even
T2 odd
T2 all 1' 2

immediate

Table VI illustrates the input bus scheme for the microinstruc-

tiona designed for GPR systems. Position 3 and 4 of the MIR specify

the register or work area data path for input bus 1 and positions 5

and 6 specify the same for input bus 2.

Table VI~ shows that positions 3 and 4 of the MIR also serve to

specify special I/0, debug and operate functions for GPR systems.

When an intert)Upt is signalled by the use]i (2p it~. positions 3 and 4

35

36

of the MIR), positions 5-10 of the MIR are used to specify the type of

interrupt that has occurred.

TABLE VI

INPUT BUS SCHEME FOR GENERAL PURPOSE
REGISTER SYSTEMS

MIR MIR
3 4 IBUS 1 INPUTS 5 6 IBUS2 INPUTS

0 0 Filler 0 0 Filler
0 1 MDR 0 1 MDR
0 2 MAR 0 2 MAR
0 3 PC 0 3 PC
0 4 e 0 4 e
0 5 e 0 5 e
0 6 R1 0 6 R1
0 7 R2 0 7 R2
0 8 B1 (explicit) 0 8 B1 (explicit)
0 9 B (implicit) 0 9 B (implicit)
1 0 D1 1 0 D1
1 1 D2 1 1 D2
1 2 51 1 2 S1
1 3 S2 1 3 S2
1 4 Xl 1 4 X1
1 5 Il 1 5 Il
1 6 WORK1 1 6 WORK1
1 7 WORK2 1 7 WORK2
1 8 WORK3 1 8 WORK3

Table VIII consists of the valid input bus connections. Some

connections involve both input buses some involve only one. A list

the functions used is given in Appendix A. Posfti~n 7 and 8 of the

MIR specify the input bus connections for both GPR and FPR systems.

MIR
3 4

1 9
2 0
2 1
2 2
2 3
2 4
2 5
2 6

MIR
7 8

0 0
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0 9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2

TABLE VII

SPECIAL I/0, DEBUG AND OPERATE FUNCTIONS FOR
GENERAL PURPOSE REGISTER SYSTEMS

FUNCTION

Input data block (list directed)
Output data block (list directed)

·Memory dump
Register trace "on"
Register trace "off"
Halt
No operation
Signal interrupt

TABLE VIII

INPUT BUS CONNECTIONS FOR GENERAL AND FIXED
PURPOSE REGlSTER SYSTEMS

CONNECTION

Filler
IBUS1
IBUS1
IBUS2
IBUS2
INC (IBUS1)
INC (IBUS2)
DECR (IBUS1)
DECR (IBUS2)
ADD (IBUS1, IBUS2)
SUB (IBUS1, IBUS2)
MUL (IBUS1, IBUS2)
DIV (IBUS1, IBUS2)
MOD. (IBUS1, IBUS2)
ABS (IBUSl)
ABS (IBUS2)
NEG (IBUS1)
NEG (IBUS2)
AND (IBUS1, IBUS2)
OR (IBUS1, IBUS2)
XOR (IBUS1, IBUS2)
MDR +- M(MDR)
M(MAR) ~ MDR

37

Table IX contains the valid output bus connections for GPR

systems. Once the input bus connection has been made, the data is

transferred to the output bus and from there to an appropriate re-

gister. Positions 9 and 10 of the MIR delegate to what register or

work area the output bus connection is made.

MIR
9 10

0 0
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0 9
1 0
1 1
1 2
l 3
l 4
l 5
1 6
1 7
1 8
1 9

TABLE IX

OUTPUT BUS CONNECTIONS FOR GENERAL PURPOSE
REGISTER SYSTEMS

CONNECTION

Filler
!IDR ~ OBUS
MAR~ OBUS
PC+ OBUS
R1 +- OBUS
R2 ~ OBUS
T1 ~ OBUS
T2 ~ OBUS
WORKl ~ OBUS
WORK2 +- OBUS
WORK3~ OBUS
Bl ~ OBUS
B + OBUS
Xl + OBUS
(Rl + l) ~ OBUS
(R2 + 1) ~ OBUS
Rl +- Kl t OBUS
Rl .- Kl + OBUS
Rl ~ Kl 'l OBUS
Rl .- Kl '~ OBUS

38

The input bus scheme for FPR systems is shown in Table X. Notice

that some of the same registers are used for FPR systems as GPR sys-

stems. Such operations as branching and data transfers are common to

both systems. Positions 3 and 4 of the MIR specify the register or

work area data path for input bus 1 and positions 5 and 6 specify the

same for input bus 2.

MIR
3 4

0 0
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0 9
1 0
1 1
1 2
1 3
1 4
1 5
1 6

TABLE X

INPUT BUS SCHEME FOR FIXED PURPOSE
REGISTER SYSTEMS

MIR
IBUS1 INPUTS 5 6 IBUS2 INPUTS

Filler 0 0 Filler
MDR 0 1 MDR
MAR 0 2 MAR
PC 0 3 PC
e 0 4 e
e 0 5 ~

1 0 6 1
ACC A 0 7 ACC A
ACC B 0 8 ACC B
XR1 0 9 XR1
XR2 1 0 XR2
Il 1 1 Il
S1 1 2 S1
L 1 3 L
WOR.Kl 1 4 WORK1
WORK2 1 5 WORK2
WORK3 1 6 WORK3

As with the GPR systems, Table XI shows that positions 3 and 4

of the MIR also serve to specify special I/0, debug and operate func-

tiona for FPR systems. When an interrupt is signalled by the user

(24 in positions 3 and 4 of the MIR), positions 5-10 of the MIR are

used to specify the type of interrupt that has occurred.

Table XII contains the valid output bus connections for FPR sys-

39

tems. Once the input bus connection has been made, the data is

transferred to the output bus and from there to the appropriate re-

gister. Positions 9 and 10 of the MIR delegate to ~hat register or

work area the output bus connection is made.

MIR
3 4

1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4

TABLE XI

SPECIAL I /0 DEBUG AND OPERATE FUNCTIONS FOR
FIXED PURPOSE REGISTER SYSTEMS

FUNCTION

Input data block (list directed)
Output data block (list directed)
Memory dump
Register trace "on"

·Register trace "off"
Halt
No operation
Signal interrupt

40

Table XIII illustrates the 'JI\i.cr9instructions necessary to add the

the contents of two general purpose registers (of a GPR system) and

branch if the contents of the destination register is zero.. For this

operation, instruction format 10 (Figure 13) must be specified. Table

XIV illustrates the microinstructions necessary to load the contents

of index register 1 into the accumulator (of an FPR system) and branch

if the contents of the accumulator is negative. Instruction format 1

(Figure 14) -mQst 1>~ &lpecified for this· operation •.

MIR
9 10

0 0
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0 9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2

INSTRUCTION
NUMBER

1.
2.
3.

4.

TABLE XII

OUTPUT BUS CONNECTIONS FIXED PURPOSE FOR
REGISTER SYSTEMS

CONNECTION

Filler
MDR+- OBUS
MAR.- OBUS
PC'*"'" OBUS
XR1 +- OBUS
XR2 +- OBUS
T1+- OBUS
T2+ OBUS
WORK1+- OBUS
WORK2 +- OBUS
WORK3 +- OBUS
ACC A+- OBUS
ACC B+- OBUS
L +- OBUS
K1 +- OBUS
ACC A +- K1 t OBUS
ACC A ~ K1 _. OBUS
ACC A+- K1 t OBUS
ACC A+- K1 i OBUS
ACC B +- K1 t OBUS
ACC B-t- K1 -L- OBUS
ACC B +- K1 t OBUS
ACC B +- K1 ~ OBUS

TABLE XIII

IMPLEMENTATION OF ADD REGISTER TO REGISTER
AND BRANCH ON ZERO

MIR DESCRIPTION

R1 +- R1 + R2
T1 +- R1

41

00006070905
00007000106
11100000000 If T1 • 0 then go to next;

else decode next machine

00012000103
. instruction
next : P C +- S 1

INSTRUCTION
NUMBER

1.
2.
3.

4.

42

TABLE XIV

IMPLEMENTATION OF LOAD ACCUMULATOR FROM
INDEX REGISTER AND BRANCH ON NEGATIVE

MIR

00009000111
00007000106
10900000000

00012000103

Error Detection

DESCRIPTION

ACC A+- XR1
T1 ~ ACC A
If Tl < 0 then go to next;
else decode next machine
instruction
next: PC +- Sl

Errors occurring during execution time are detected by the inter-

preter and appropriate messages are printed. . Errors such as addressing

and operation exceptions are detected during normal execution. In all

cases the occurence of an execution time error causes termination of

the program. This is due to the fact that there are no error correc-

tion capabilities built into the simulation system. The cause of the

error must be determined and corrected and the program resubmitted

for execution.

Debugging Aids

Instructions used as tools for debugging may be defined with the

micro-operations provided. Two such instructions are the instruction

trace and memory dump operations. The instruction trace may be turned

"on" and "off" as desired and causes the contents of all hardware re-

gisters to be printed (in decimal) after the execution of any subse-

quent instructions. The dump instruction provides a means of deter­

mining the contents of memory within a certain region. Pre-execution

and post-execution memory dumps are provided without specification.

Other Simulation Systems

43

Other types of hardware simulation. languages have been developed.

Two of these are APL (the interactive terminal laitguate) {3) and

PMSL (12). Both APL and PMSL require strict krtowiedge of the simu­

lated computer system but treat the simulation process on different

levels.

APL makes use of a special character set, which includes both

an upper and lower case alphabet, to achieve parallelism with AHPL

{A Hardware Programming Language), the hardware "description" language.

At the APL level of sitnulation, register transfer, memory access, I/0

buffering, etc. can be specified in detail not unlike that of the simu­

lated system. Thus, detailed knowledge of the interaction of registe!s,

memory and peripherals is necessary.

PMSL, as designed by Knudsen (12), is a conversational facility

for the creation, modification, storage, retrieval and analysis of

descriptions of computer hardware at the top system level, where work

is performed on processors, memories, controllers, channels and peri­

pherals. PMSL provides a powerful tool to the design ~&ineers of

computer systems. Performance, cost and device utilization can be

monitored to give the designer a look at critical aspects of new sys­

tem designs. The language is based on the P~S (Processors, Memories

and Switches) notations in Bell and Newell (2).

CH.Al?TERV

USERS MANUAL

This chapter describes how to use the simulation system. The

machine description phase, assembly language statements and options,

deck setup and output, and control cards are discussed. At certain

points, the current restrictions of the simulation system are also

discussed.

Initial Ma.chine Description

The first phase of the simulation process is the machine des­

cription. The user is required to supply necessary information about

the simulated machine in the form of input cards. The details of the

card formats for the input informati.on are given in Tables XV and XVI.

Information about the hardware of the machine such as the types of

registers used, the size of the registers, and the memory word size

must be specified. Other details about the instruction set and formats

must also be specified. If at any time a specification is requested

that does not apply to the particular machine, a negative or zero

value should be placed in the corresponding field of the input card.

The input formats for the machine definition must be followed exactly

to ensure correct results in later phases of simulation. Note that

all charaFte~ and bit values must be left justified in the appropriate

fields and all numeric values must be right justified in the

44

45

appropriate fields.

CARD
SET.

1

2

3

TABLE XV

INPUT CARD FORMATS FOR MACHINE DESCRIPTION OF
GENERAL PURPOSE REGISTER SYSTEMS

CARD.

COLUMNS

1

3-5
7-11

13

15-19
21-25
27-56

1-5

7-11
13-17
19-23
25-29
31-35
37-41
43-47
49-53

55-59

61-65

1-5
7-11

13-17
19-23
25-29
31-35
37-41
43-47
49-53
55-59

FIELD
TYPE

Bit

Char •.
Numeric
Bit

Numeric
Numeric
Char.
Numeric

Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric

Numeric

Numeric

Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric

DESCRIPTION

Specify 1 if output of machine de-
scription is desired

Specify 0 for no output
Machine typet GPR
Memory word size
Specify 1 if output of assembly debug

statements is desired
Specify 0 for no output
(Should normally be set to 0)
Number of operations to be defined
Bit length of the binary op code
Machine name
Number of general purpose registers

(max. of 16)
GPR size
MDR size
MAR size
PC size
Number of words in the IR (max. of 2)
Total IR size
Implicit base register
Number of instruction formats to be

used
Number of words read in a READ in­

struction
Number of words written in a WRITE

instruction
Instruction format number
Number of words in the instruction
Field 1 starting position
Field 1 ending position
Field 2 starting position
Field 2 ending position
Field 3 starting position
Field 3 ending position
Field 4 starting position
Field 4 ending position
(Repeat above 10 fields for each

instruction format used)

CARD
SET

4

CARD
SET

1

46

TABLE XV (CONTINUED)

CARD FIELD
COLUMNS TYPE DESCRIPTION

1-~ •• Bit Binary operation code (max. length
of 32)'

34-38 Char. Mnemonic operation code
40-44 Numeric Number of machine cycles required
46-50 Numeric Instruction format number
52-56 Numeric Number of microinstructions that de-

fine the machine instruction (max
of 20).

1-11 Numeric Microinstruction
13-23 Numeric Microinstruction
25-35 Numeric Microinstruction
37-47 Numeric Microinstruction
59-59 Numeric Microinstruction
61-71 Numeric Microinstruction

(Repeat above 6 fields until micro-
definition is complete (max. of
20) and repeat above 11 fields for
each machine instruction)

TABLE XVI

INPUT CARD FORMATS FOR MACHINE DESCRIPTION OF
FIXED PURPOSE REGISTER SYSTEMS

CARD
COLUMNS

1

3-5
7-11

13

15-19

21-25
27-31
33-r37

FIELD
TYPE

Bit

Char.
Numeric
Bit

Numeric

Numeric
Numeric
Numeric

DESCRIPTION

Specify 1 if output of machine
descriptio~ is desired

Specify 0 for no output
Machine type, FPR
Memory word size
Specify \ if. out,put of assembly de-

bug statements is desired
Specify 0 for no output
(Should normally be set to 0)
Number of non-operate operation

codes
Number of operate operation codes
Length o~ bi~ary operation codes
Number of bits in the mode specifi-

cation

CARD
SET

2

3

4

5

6

7

8

CARD
COLUMNS

39-43
45-74

1-5
7-11

13-17
19-23
25-29
31-35

37-41
4.3-47
49-53
55-59

61-65

67-71

1-5
7-11

13-17
19-23
25-29
31-35
37-41
43-47

1-5

7- •••

1-5

7-•••

7-11
13-17

47

TABLE XVI (CONTINUED)

FIELD
TYPE

Numeric;
Char.
Numeric
Numeric
Numeric
Numeric
Numeric
Numetic

Numeric
Numeric
Numeric
Numeric

Numeric

Numeric

Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Nt.aneric

Char.

Bit

Numeric

Numeric

Char.

Numeric
,~umeric

DESCRIPTION

Number of words in a memory page
Machine name
Number of index registers (1 or 2)
Index register size
MDR size
MAR size
PC size
Number of words in the IR (max. of

2)
Total IR size
Accumulator A size
Accumulator B size
Number of instruction formats to be

used
Number of words read in a READ in­

struction
Number of words written in a WRITE

instruction
Instruction format number
Number of words in the instruction
Field 1 starting position
Field 1 ending position
Field 2 starting position
Field 2 ending position
Field 3 starting position
Field 3 ending position
(Input is the same as shown in Table

XV, card set 4, for GPR machines)
Op code field mnemonic for operate

functions
Binary op code for operate functions

(max. length of 32)
Number of positions in the instruc­

tion that are set
Bit positions in the instruction

that are set for ~he operate
function

(Must be separated by one blank
column using a two column field
for the position numbers)

Operand field mnemonic for the oper­
ate function

Number of machine cycles required
Number of microinstructions that

define the mach~ne instruction
(Input for the microinstructions is

the same as s~own in Table XV,
card set 4, for GPR machines)

CARD
SET

CARD
COLUMNS

TABLE XVI (CONTINUED)

Fl;ELD
TYPE DESCRIPTION

48

9 1-••• Bit Binary code for each mode, separated
by one blank column

The Cross Assembly Language

This section describes the format of the statements for the cross

assembler. The format is not unlike those used by many assemblers,

but it does have its unique characteristics.

Symbols

All symbols and identifiers must begin with an alphabetic charac-

ter. The remaining characters may be alphabetic or numeric. The

alphabet in this case consists of all letters in the Roman alphabet

plus the special characters $, @, II, &, and %. Label identifiers must

begin in column 1 of an input catd and may be no longer than eight

characters. The mnemonic op code symbols must begin in column 10 and

may be no longer than five characters.

Addressing Specifications

For fixed purpose register systems, column 16 of the assembler

statement is used as an address specification field. This field is

used to specify direct or indirect addressing, or index registers. For

indirect addressing an "I11 is used. To specify the use of index re­

gister 1, a "1" or "A" is used. To specify the use of .index register

2, a "2" or "B" is used. Direct addressing is specified by leaving

the address specification field blank. The addressing modes used by

the simulation system for FPR machines are described in Table XVII.

Operands

TYPE

1
2
3
4
5
6

TABLE XVII

ADDRESSING MODES FOR FIXED PURPOSE
REGISTER SYSTEMS

MODE

Direct to current sector
Direct through zero sector
Indirect through current sector
Indirect through zero sector
Indexed, register 1
Indexed, register 2

49

The number of operands in the operand field may vary depending on

the type of machine being simulated. For GPR systems, the maximum

number of operands is three. For FPR systems, the maximum number of

operands is five (for register operate functions). In either case the

operands are separated by commas and there can be no imbedded blanks

in the field. Also, each assembler stateme~t must be contained in its
'

entirety on one input card. Assembler statements may not be continued

acros~ card boundaries.

Comments may follow the operand field if a blank column separates

the two f~elds. A comment can also be s~ecified by an asterisk (*) in

column one. In this case the entire card is treated as a comment.

An identification or sequence value may appear in columns 73-80. A

summary of the assembler statement field boundaries appears in Tables

XVIII and XIX.

TABLE XVIII

FIELD BOUNDARIES FOR ASSEMBLER LANGUAGE
STATEMENTS OF GENERAL PURPOSE

REGISTER SYSTEMS

CARD COLUMNS· DESCRIPTION

1 - 8
10 - 14
20 - 39
41-- 72
t3- 80

TABLE XIX

Label field
Mnemonic op code
Operand field
Comments
Identification sequence

FIELD BOUNDARIES FOR ASSEMBLER LANGUAGE
STATEMENTS OF FIXED PURPOSE

REGISTER SYSTEMS

CARD COLUMNS DESCRIPTION

1 - 8
10 - 14
16
20 - 39
41 - 72
73 - 80

Label field
Mnemonic op code
Addressing specification
Operand field
Comments
Identification sequence

50

51

Pseado Operations

There are five psaedo operation codes that the user need not

define: (1) EQU, (2) ORG, (3) DC, (4) DS, and (5) END. The EQU pseudo

op assigns the absolute or resolved value of the symbolic address in

the operand field to the identifier in the label field. Note that any

symbolic references in the operand field must be defined before the

occurrence of the EQU statement. The ORG pseudo op reinitializes the

PC to the positive decimal value in the operand field. Table XX

illustrates the valid operand specifications for the DC and DS instruc-

tions as well as for other instructions. The END pseudo op designates

the end of the assembly process and may have a label identifier in

the operand field.

TABLE XX

ASSEMBLER LANGUAGE OPERAND SPECIFICATIONS

DC

OS

OPERAND DESCRIPTION

B' positive or negative binary value'
F' positive or negative decimal value'
X' positive or negative hexadecimal value'
A (symbolic or absolute address)
positive decimal value B'positive or negative

binary value'
F'positive or negative

decimal value'
X'positive or negative

hexadecimal value'
A(symbolic or absolute

address)
positive decimal value

52

TABLE XX (CONTINUED)

OPERAND DESCRIPTION

IMMEDIATE SPECIFICATION

Same operand specification as for DC instruction
preceded by an equal sign (•)

REGISTER

SYMBOLIC ADDRESS

Assembly Error Messages

Positive decimal value (register number) or
s~bol equat~d to register number

S~bol.
Symbol + positive decimal value
Symbol - positive decimal value
* (reference to current PC value)
* + positive decimal value
* - positive decimal value
Positive decimal value (absolute address)

The occurrence of any assembly time errors causes execution of

the object program to be suspended. To aid in the elimination of

assembly errors, descriptive error messages are printed immediately

following the statement in error. A listing of these error messages

is given in Table XXI.

Control Cards and JCL

Each program begins with a >>JOB card. Other control cards may

be specified in order to restrict the execution of the object module.

53

The >>TIME card specifies the maximum number of machine cycles allowed

for execution before termination of the program. The))REGION card

specifies the size of the memory region (in words) in which the object

program is to be loaded. Column 12 of the >>EXEC card must contain

the character 'E' or 'A'. With option 'l!:', the user program: is assem-

bled and if no assembly errors are detected, the object module is

loaded and executed. If option 'A' is specified, the user program

is assembled but not executed. A sample program setup is given in

Figure 17.

TABLE XXI

ASSEMBLY ERROR MESSAGES

NO. MESSAGE

1. Invalid character in label field
2. Imbedded blanks in label field
3. Label doesn't begin with an alphabetic character
4. Previously defined identifier in label field
5. Invalid or missing data type on DS statement
6. Invalid or missing da£a type on DC statement
7.- Invalid or missing operation code
8. Invalid addressing option specified
9. Negative address specified

10. Invalid operand specified
11. Operand missing
12. Undefined operand specified
13. Qne or more undefined operate functions in operand field
14. Maximum number of operate functions has been exceeded
15. Missing END card, one has been generated for a•sembly
16. Label appea~s on ORG or END statement
17. Storage allocation on DS statement exceeds region size
18. Operand on ORG statement causes the destruction of previously

assembled program segment
19. Operand on ORG statement extends beyond region size
20. Operand and instruction type do not match
21. Region size too small to assemble the followin~ po~tion of the

program
22. Write-protect violated, operand specifies page zero address

))JOB namel

))TIME•550

))REGION•200

))EXEC ASM E

))ASM. PROG

User program

))ASM. DATA

>>
))JOB

•

>>
•

User program data

name2

Figure 17. Sample Program Setup

Deck Setup

54

The deck setup consists of the simulation system, which operates

on one or more uaer programs, the machine description, the user pro-

grams, and a file used by the assembler1when generating intermediate

object code. The deck setup to use the implemented simulation system

is shown in Figure 18.

55

~ //.BPACEm(l44,250),DCB•BLKSIZE•l44

/ I /GO. INTRMD DD UNIT•SYSDA,

~ User Programs, JCL and Data

/ 1/GO.SYSIN DD *
~ Machine Description

/ I /GO.DEFN DD *
~ Simulation System and OS/360 JCL

Figure 18. Deck Setup

CHAPTER VI

SUMMARY AND FURTHER STUDY

Using the methods discussed in this thesis, a microprogrammed

simulation system has been implemented in PL/1 on the IBM System 360/65.

The system supports the simulation of general purpose and fixed purpose

register minicomputers.

The most significant input to the system is in the form of cross

assembly language programs. There are two options available to the

user when assembling a program. Using the JCL and control statements

of the simulation system,. the user may specify assembly of the program

and execution of the load module, or only assembly of the program.

Other control statements. are available to restrict the execution of

the load module.

The simulation. system makes possible the simulation of a large

percentage of the instructions for general and fixed purpose register

m:l.nicomputers. Specification of the input/output instructions contains

the least flexibility. Input from the card reader (list directed) and

output to the line printer (list directed) is the only type of I/0

supported. More extensive work in this area would make possible the

simulation of the input/output instructions and the interrupt structure

for the types of minicomputers discussed. Also, the microinstruction

set could be extended to support "special" instructions unique to

specific machines.

56

57

Two types of special instructions that are common on most modern

minicomputers are circular list processing instructions and hardware

stack instructions. Usually, hardware pointers are involved in both

types of instructions. For list processing, pointers to the top and

bottom of the list must be kept so that overlapping of the elements in

the list can be detected. For stack processing, pointers to the top

and bottom of the stack are also kept. But, in this case, data items

are inserted and deleted only from the top of the stack; only one

pointer is usually updated. This allows overflow and underflow condi­

tions to be detected.

In order for the stack and list processing instructions to be

implemented using microinstructions, either specific hardware registers

or locations in memory must be used for the necessary pointers. Once

these registers or locations are determined, the microinstructions for

updating the pointers can ea~ily be const~ucted. Testing for overflow

and underflow of the stack and overlapping of the list can be performed

with the micro-operations currently implemented.

The cross assembler is an important tool for testing the simulated

machine instructions. But it is necessary for the user to translate

the assembler programs written for the simulated machine to. the cross

assembly language for testing. The simulation system could be further

generalized to allow a description of the assembler language syntax for

the simulated machine to be input. This would make possible the direct

assembly of the programs written for the simulated machine.

A SELECTED BIBLIOGRAPHY

(1) A Pocket Guide ~ Hewlett-Packard Computers. Palo Alto, Cali­
fornia: Hewlett-Packard Corporation.

(2) Bell, c. G. and A. Newell.
Examples. New York:

Computer Structures:
McGraw-Hill, 1971.

Readings~

(3) Bingham, H. W. "Use of APL in Microprogrammable Machine Model­
ing." Special Interest Group ~ Prograllliiling Languages. 6,
9 (October, 1971), 105-109.

(4) Fuller, s. H., V. R. Lesser, c. G. Bell and C. Kaman. Micro­
programming ~l!! Relationship~ Emulation and Technology.
Pittsburg, Pennsylvania: Carnegie~Melon University, 1974.

(5) Gries, D. Compiler Construction ~Digital Computers. New
York: John Wiley and Sons, 1971.

(6) Hedrick, G. E. ~ Introduction ~ Basic Concepts in Computer
Science: An Approach Based E.!!. Behavioral Objectives.
Stillwater, Oklahoma: Oklahome:t State University, 1972.

(7) Hill, F. J. and G. R. Peterson. Digital Systems: Hardware
Organization and Design. New York: John Wiley and Sons,
1973. .

(8) Husson, s. s. Microprogramming Principles and Practices. New
York: Prentice-Hall, 1970.

(9) Interdata Model 1. Palo Alto, California: Interdata Corporation,
1970.

(10) Interdata Reference Manual. Oceanport, New Jersey: Interdata
Corporation, 1974.

(11)

(12)

Jones, L. H. "Survey of Current Work in Microprogramming."
Computer, 8, 8 (August, 1975), 33-38.

Knudsen, J. J •. ~'~Interactive Language for System-Level
Description~ Analysis of Computer Structures. Pittsburg,
Pennsylvania: Carnegie-Melon University, 1974.

(13) Mallach, E. G. "Emulator Architecture." Computer, 8, (August,
1975), 24-32.

58

(14} Microprogramming Handbook. Santa Ana, California: Microdata
Corporation, 1971.

(15} Modular Computer Systems Assembler Reference Manual. Fort
Lauderdale, Florida: Modular Computer Systems Corporation,
1973.

(16} Opler, A. "Fourth Generation Software." Datamation, 13, 1
.. (1967}' 22-24.

59

(17} Pandit, A. V. "Simulation and APL Description of the PDP 11/40."
(Unpublished Master of Science thesis, Oklahoma State Uni­
versity, Stillwater, Oklahoma, 1975.)

(18}

(19)

Rosin, R. F. "Contemporary Concepts of Microprogramming and
Emulation." Computing Survey~, 1, 4 (December, 1969),
197-212.

Siewiorek, D. P. and M. R. Barbacci. Some Observations on Mod­
.!!!!!. Design Technology and the Use of Microprogramming-.­
Pittsburg, Pennsylvania: Carnegie-Melon University, 1974.

' (20) Varian 520/i. Irvine, California: Varian Data Machines, 1969.

(21) Wilkes, M. v. "The Growth of Interest in Microprogramming-A
Literature Survey." Computing Surveys, 1, 3 (September,
1969}, 139-145.

(22) Wilkes, M. V. "The Best Way to Design an Automatic Calculating
Machine." Manchester, England: Manchester University
Computer Inaugural Conference, 1951, 16-21.

APPENDICES

60

APPENDIX A

LIST OF SYMBOLS

61

SYMBOL

ABS
ACC A
ACC B
ADD
ALU
AND
B
B1
CPU
DECR
DIV
D1, D2
e
FILLER
FPR
GPR
IBUS1
IBUS2
INC
IR
11
K1
L
M
MAR
MDR
MIR
MOD
MUL
NEG
OBUS
OR
PC
PSW
ROM
ROS
R1, R2
SIC
SUB
Sl, S2
Tl, T2
WORK1
WORK2
WORK3
XOR
XR1, XR2
X1

" 4--

MEANING

absolute value function
accumulator A
accumulator B
integer addition of two operands
arithmetic logic unit
logical "AND" of two operands
implicit base register (0-15)
explicit base register (0-15)
central processing unit
decrement value by one
integer division of two operands
positive or negative displacements
a binary value of all l's
no micro-operation specified
fixed purpose register
general purpose register
input bus 1
input bus 2
increment value by one
instruction register
"immediate" operand
shift or rotation count
link bit for accumulators
simulated memory
memory address register
memory data (buffer) register
microinstruction register
residue modulo
integer multiplication of two operands
negation
output bus
logical "OR" of two operands
program counter
program status word
read-only memory
read-only store
general purpose registers
small instructional computer
integer subtraction of two operands
resolved symbolic references
registers used for comparisons and testing
microprogram work area register 1
microprogram work area register 2
microprogram work area register 3
logical "EXCLUSIVE OR" of two operands
index register 1, index register 2
index register (0-15)
null pointer
assignment

62

SYMBOL MEANING

left rotation
right rotation
left shift
right shift

63

APPENDIX B

LOGIC BLOCK DIAGRAM

64

START

OPEN CARD
FILE DEFN

INPUT
MACHINE

. -STRU(;TURE

INPUT
INSTRUCTION

FORMATS

INPUT
INSTRUCTIONS &
MICROPROGRAMS

OUTPUT
MACHINE

SPECIFICA=TI __

CLOSE FILE
SYSIN

CLOSE FILE
DEFN

OPEN CARD
FILE SYSIN

INPUT JCL

CROSS­
ASSEMBLER

65

66

INTERPRETER

..----....__-_-..,---E
OPEN FILE

INTRMD
OUTPUT

·INPUT
ASSEMBLER

SOURCE
STATEMENT

PARSE OPERAND YES
FIELD AND
DETECT ERRORS

INSERT
IDENTIFIER

INTO SYMBOL
TABLE

NO

PERFORM OPCODE
TABLE LOOKUP

INSERT
OPCODE INTO

MACHINE
INSTRUCTION

67

YES

----E
CLOSE FILE

INTRMD

OPEN FILE
INTRMD
INPUT

INPUT
SOURCE
RECORD

FROM INTRMD

TEST THE NUM­
..,.-...._,.BER OF ERRORS;

SET CONDITION
CODE

PARSE
OPERAND

FIELD

DETECT
ERRORS

COMPLETE THE
GENERATION OF

OBJECT CODE

" OUTPUT THE
SOURCE STATE­
MENT & ERRORS
(if any

LOA» THE
MACHINE IN­

TRUCTION INTO
SIMULATED

MEMORY

68

INITIALIZE
PROGRAM
COUNTER

INCREMENT
PROGRAM
COUNTER

FETCH
NEXT

INSTRUCTION

PERFORM
BINARY

OPCODE TABLE
LOOKUP

DECODE
OPERANDS

YES

DETECT
ERRORS

EXECUTE
MICROPROGRAM

NO

69

APPENDIX C

SAMPLE RUNS AND OUTPUT

70

M A C H ! N E 0 ;: F>. N T C N

~ * ~ * * * * * * * ~ * * * * * * * • • * * * ~ 4 * * * * * * ~ * * ~ * * * * * * ~ ~ * * * * * * *
Gc'lEFAL PtJ'P::JSE R::GISTER 1 GPR l SYSTEM lNTERDATt. 7/16

~lr~3ER CF GPI<'S 16

G~R SIZE !0

.. "'D~ S!z~-: 16

~!A. SIZE 16

PC s:zc. 32

~UI-!io~i< Ci' l~'S z
IR S! Z E 32

!M~~IClT BASE REGISTER 0

NIJ'~eES. OF H:STRUCT!ON FORMATS USED 8

~L~ECR CF C? CQGE~ 54

L~NGTH CF CP COD~$ 8

~UMEER OF WO~CS READ IN A READ !NSTR

~U~il€-R OF WORDS··-w"UTTEN IN A WRITE INSTil.

iJ.'J.=c:; SiZE l6

~ * * ~ • ~ • * ~

"

72

...
"'
0 ,_

"'

"' "' "'
"' "'

C) 0 0 C) 0
V) >- >· >·· ,_
UJ

N N "' N N

"' .,
0
?. -· , •. j -·
::J ")
u

"' 0 0 0 0 u CJ 0
'7

,_ ,_ >- ,_
a
_J "" "' 0} <0 ro "' "' l.ll
~

·~ ..:: ..:: ,.. ,... ,...
L.
C)

CJ 0 \0 CJ u 0 CJ 0 ,_ >- ,_
~- ~- ,_ ,_ ,_

Ll
.::> 0 0 u 0 0 0 0 0
u: ,: .
~'; '" "' m "' ~ ,.,

.... "'

CP CCDES A\0 T~EI~ MICRC-DEFI~!TICNS

1 . ~:-l :::-to·-: c ;.n
EIT FA i£R~ c:OOlClO
MACHIN CYCLES l
!N$7;0 TIC\ TYPE 11.
~lCRC- EFI~iT!O~ 00Jl4l20902 00000002100 000010~0904

2. P:~E~C~.IC ~h:
?IT p;.~-~~;:J~ 1001-G-10
~lCrl!~~ CY(L l
T.'lSTRUCT!Oj·~ YE 14
.-!·'!C~C-CC-FH~r CN OCOG6l5QgQ.;.

3. ~~ ~ ~!C H~
B= ~77 J!lCQCCl
~~ H NE L S 2
l~ ; UCT yp~ ll
,..: R -DE i r.:.-. CC0l4l2G9C2 OOJOCOOZluC GOOJlOUJ90l COOG0002200

4. ~\~~G~!C ~H~
~! T PlTT2Kl~ 00001010
,~.~;:..,(~ !:"~E CYCL S l
INST~UCT!O\ YP~ 3
M!CRO-DEF: Nl r CN OCG06070904

5. ~NE~JNIC ~!S

,~--- ~-.......----- -----...__...r~---------
6.~

e!T P!T~i~~~ COlOo::o
M:..C:-il',E CYCL.tS
H~STt;:JCTlO\l TYPE
)J1C~c-n::FJ_N~T !::~

M~ MU~~IC D

9
000l:<0609Q<,

~~ P~TTERN 00110000
~L H!~E CYCL~S 1
!.'iST~.CCTIJ."~ ~-Y?E

:,..~ CF..C--Di:::f!:'. !i lJ.\l
8
J~Ol2000i03

7.. ~ ¥C:\ C t;.L
f P!.. T;:P.:\ 1000001
~ HI~~ CYCL l

:• j;.i'_; T!Ct-. p::_ ll
~l ~=- =:.:: r~: ~ c~.J OCOC3GC01CB 00Cl214JSJ3 OCJl60COL04

a... 1-':-.E'·)C.·~:c. :~:.:__.-::
s:~ o~rrE~N a~c~ooo1

t~-".Cn I.\ E CYCL
l~S7RJCT!C~~ TYP~

~EC~C-6~F!~ITIC~

9.: M~~-~E~.:>;!c BE

JC0~3000103 000070001J3 00Ji6UOJlC<,

2!1 ;ATT~R~ lOll~O!l

.,.~C:1I~ .. :: CYCL:": S l
! L S T l':J C T I W:~ ~- Y P E
!-'!C RC-DCF! :;: T! GN

a
10300JSOCOO 00012000103

.......
f..,.)

'.0. ,.,r-., ~C\!C 3L
8! ?A Ti ?.:~ 00101000
~;. ~!\E 'r'CL s 1
! r, T F<l.3C T ·::~t YPi: 8
:~I R:-DE~. ION 1C50COOCOOJ 00012000103

1L ,_H·~:::{C."~! C gM
9! T ~~TTSR.r\ 00100001
~!CHINE CYCLES 1
I~JSTRJCT!O\ TYPE 9
~!CRG-O~~I!~!7ICN OO~O~OOOlOo 00900000000 00012000103

12 ~N~~CNrC S~E
eli ?tiT ~N iJlOOOll
~~Crii~E YSL S 1
!~~S~R·JCT G\ YP2 8
u:SRC~D~ :~I !C~ 10~00000000 000120001~3

13. ~~~MG~[C 6~~L
IT P~TT r~ QOllL:OJ
~CHI~~ CLES l
~sr~uc~ ri TYPE s

I'ICRC-CcF!:>.iT ION lCBCOOGJOOo 000~2000103

1~.. ~~ V,f.~ C. E'\.~

~ P~ 7E~N OCtlGCJl
:--' r.~:: SYCLES
!:iST~~CT:C~ TYPE
M!~~C-UEF!N!T!GN

9
OCOCoOOOlOb 11COOOOOOOO ll10DOJ0000 00012000103

l 5o t<:JJC.'t; C g~~P

16

:T P!TTEkN JOllOCl~

..:..Cr.!;-..;E r:YC:L 5 l
~.5BUCT!O,\ YP2 9
ICRC-OEF.i~~~ IC:\

:w M !":, c c.:;z

OC00600C1C~ 000050001J7 1010000~000 10700000000 OO~l20GC103

f ~ T~~~ OJlCOJll
~ ~ ~~ CYCL~S l
!~:ST~".J::: !;J~ YPE 9
1-'I CRC -D::fr:~::-: J~~ OC00cOGGlJ6 OJC0500GlJ7 lOlCOCJCJCO lC4000G~Oi.lO GJC12v00103

17 f',t,Ct1C'.i!C B?
e:r PITT0R~ oc:ooolo
~ACHINE CYCLES 1
INSTRUCTION TYPE
~!CRC-CEF!~:T!ON

13. MNEMONIC 9R

9
00006000106 11000000000 00012000103

~IT P~TTE~N 00110100
'~CH!~E CYCLES l
INSTRUCTIO~ TYPE
MICRG-DEFIN!TION

l
OC014000103

......
~

19 ~··NEMONIC 5Z
21r FATTERN OOl:OOll
M~CHI~E CYCL S 1
!riSTRUCTIO~ Y?E 9
I'!CRC-OEFIN: :G:J 0000o000l0o 11100000000 00012000103 •

2!.:L. •. ~t""U!:M N:C. C:-i
2lT ~TT ~~ OlOGlOOl
~ACH NE YCL S 2
INST UCT ON Y?E 11
J~!CR -CE !~JI IQ~~ 00012140902 00000002100 00006000106 000~1000107 :o:oooooooo

2:i... ~NE.~C..~~IC CriK.
BiT PlTT~R~ 00001001
~~Ch!~E C~CLES l
l'JST~-~\JCTfClN TYPE 3
M[C~~-DEF!ri!TIDN OC006000l06 OOC07000107 10100000000

2~u ~~~Mer. C Cri!
8! T PA TER'I 11001001
~!CH!N CYCLES l
!NSTRU TiCN TYPE 14
I',JCi<.iJ- EF!~!TICN OC0.06000106 00015000107 10100000000

23. ~~E~~~ C CLH
~! T FA T 'l 01000101
M.!.CH:'"< CLES 2
IN5T~:J T N TV?::: 11-
l'\iC"<U- E .'I!T:G;l 000121'.0902 OOCCOO:J2100 OOOJ60CJ106 ·OOJCH000107 lOlOJO<;OOOJ

2;.. ~~:E!-\O'~IC CLHP
£iT ?~TTE~~; COOOOlOl
~t...CH!\!E CYCL S l
17·-t:r~--uc: IU'·I v~E 3
1-·r~r.:-o~F1~n rcr\j 00006000106 000070~0107 101JOOOOJ0C

25. ~~~E~C\!C CL~~
;; 1T ~oTTE~~i 1180010..1
~-!.·-:Hit·::: CYCL::S l
!:-JST:~i.JCT!CP~ TY?E 14
~lCP.C-C2F!r.IT iC'' GOCCC.OGCl06 OOC~500ill07 :ClOJCOCJCO

26. ~~~~;C~!C DU~?
B!T ~!TTE ~ CCClCl~O
~ACH!~l~ C CL S lG
!~ST~~C7: ~ YP~ 21
~IC~J-~EF NI 10~ C002l00C000

27~ ~~~MCNIC H~LT
E!7 PAlTE~~ 00010010
~ACHINE CYC~ES 1
INSTRUCTICN TYPE 21
MlCKO-DEriN!TlGN 00024000000

"'-1
V1

28o. ,_.~cC~C:\:!C LCS
BIT ?ATTE~H 00101001
~ACH;~E CYCL S !
n·lST?.l..CTlGN YPC: 9
MICRO-DEFl~! 10~ OCD12001604

29. ~~~~CNIC LH
o!T PATTE~~ ulCOlOOO
~ICHIN~ CYClES 1
l\ST;~CT!O\ TYP~ 11
HICRC-DEFIN!TIO~ 000121409C2 0000000210b OJOQ10001J4

30~ ~N ~C,!C LH!
2! P!l. TT:R~-; 11 COl 000
'!~ HINE c"YCLES 1
!r< TRUCT!GN TYPE ~4
~~ RC-C~F:NI~ICN OC0l5GOJ104

31. ~ MCN!C LH~
8 P~TT~R~ 00001000
~ H tr;E C YCLE.i
!~STRiJ(TION·~yp~

~:C?C-DEF!N!T!:S

32~ ~Nf~ONIC LIS

3
0000700010:.

t!T PATT~kN 0J1001DO
~~CHIN~ CYCL~S 1
!~ST~UCTIO:, fYP~

~!CRC-S~F!~!TION

l3. ~1N P'.C:\lC Nh

9
o·ao:zcoo104

~~ PArT ON OlOOOlOJ
V~ H!~~ YCL.~S 2
U! T~UCT C"J TYPE ll
~~ RC-0~ !NIT!CN 00012140902 OOCOCOD2100 000060~!604

3~. ~ ~ ~1C ~H!
S .!.TT~~;,, llCOClOJ.
1-.1 i-i ! I~ CY C L S l
1 r ucr:o~ ~PE 14
I" i\ -D~F!r;l !0~ OC006151804

35. V~f.~·=N C ~iH=-i.
B~T PA TEK~ 000~0100

~ACr: I:; CY·:.LES
r~lST~UCTI~~ TYP~

~11 CRC:-UEF ird T I ON

36 ~~EMO~ C NDP

3
0000607180.:.

e!i ?~ TER\ OOClOOOl
~~CrlH~ CYCL~S 0
lNSTKiJ T!GN TY?E 21
~:CRC- EFI~IT!ON 00025000000

....,
0\

37. ~ ~ NIC o~
B ATTE~~ OlCO~llO

""' H ~tE CYCLf3. 2
T UCTION TYPE 11

~! R -:EF!~iTION OOJ12140S02 OOC000021JO 0000601190~

33 ..,.-r.=.:.·.c~.j c Ghi
?li FAT RN 11000110
~~CHIN YCLES l
i~5T~U T ~N 7V~E 14
~:CRC- _ IN!TION 00006151904

39. ;,._,~EHC~~ !C en::..
2IT PATTE~~ 00000110
,.~ACh!~E; CYCU:S 1
!t~STR~CTIJ~~ TYPS
i-'I~RC-s::r:r:lT IO~

40. ~ MQ:~lC ~H

3
OOOJ6071904

~ PATT~~N 1011001
~ ~I~E CYCL 3

T?UCT:C~ P~ ll
~ Rc-t~FI~! o:~ ocol214G90l coc:scoo·coo

41~ ~~ ~C :c SH
Al P TT~R:~ OlCOlC!l
~~ H~ ~ CYCL S l
I~ T~ C~!O~ YP~ 11
~! ?2-DEF!r;I ID\

42.. ~\E."'!C·"~I':: Srl.I

00~:.:.120902 JOJ~0002lOO COOJ10~1004

Ec T PAT:EI'~~ llOGlOlc
t-", C. Ch i~l E CYCLES
!':ST!=iUC-T!O,". TY?E i4
~I·::..:-D.EFit•:: ~! c:u 00006151004

.;.:3 ~-'\E·~:· .. ~c s:"~.
s:·; ;:;~:T::~\ O!JC0l·O:.l
!,.l rl ! ·'~ ~ Y C LC
~ T P.U cr J~~ 7' P E 3

1" q.;::-D~ U-..Ii :Jh 000'06071004

44~ !) MCN S SIS
~ ;L T~~~~ ~0100111
~ H!~ CYCL~S l
I~i~7~UCT!C~ TYPE
~iC~C-CEFl\!TIC~

45. ~~=~C~!C SLLS

9
00006121004

BIT PATTE~~ 10010001
II.!.C INE CYC~ S l
!,\S 8LCTI2N YPE 5
~IC G-DCflf.;! ICN OCCG6000ll3

\

-...!
-...!

46. ~NEMO~rC SRLS
BIT PATTE~~ lJJlOOOO
~ACH!~~ CYCLES 1
!NST~UCT!ON TYPE 5
foi!CR::-DEF!~IT !GN OOJJ6000ll9

47. ~N HG~IC ST~
&I PATTE~N OlOOOJOO
Y! HINE CYCL S l
I-·~ Tp.t,;C TI Of\ Y?E ll
M! qO-DEF!Nl ION. 00012140902 00006000101 C0000002200

43.. ~~- ~ ~n c iH!
&I ti7 ~~ 11000011
I'.! H .'·;E YCL S l
I~ T UCT CN YPE 14
~: ~ -J~ iNI ION OCOG6000106 CGG1500Jl07 lOlOOCOC~OJ

49. ~~;~MC~i!C T~CFF
eiT P'TT~RN 00010101
MACHINE CYCLES 1
lr:STRJCTtG~ TYPE 21
~!C~G-OEF:~~IT!ON . 00023CCOCOJ

50 ~NEMCN!C TRCN
EIT PATTE~~ QOOlCOll
!~~.CH!NE CYCLES 1
!~~ST~~CTIQN TY~E 21
~ I-C?. :::-ccr: l r.~ r.r r CN

51. Ml~ MCNiC ~~j

OC02200QOGO

?. ! Pt~TTEfU~ 1011000
~~ ri!N2 CYC~ 3
~~~ TRJCTIG~ P~ 11 
!J~ t{C-OEFI\:: :JN ooot21409D2 coczccaocoo 

~2~ ~ ~:~. c z;, 
?~ i ~:i 2!:~~111 

~" ril~-; '.'CL S 2 
'' TRG ~ .:;: YPc ll 
i1! ;..:- :: l!-.I 1JN J·C012l4C902 ~:JOOCOOZlJC OJOOC.Ol200~ 

53~ ~ \:~~IC X~: 
8 ?ATT k~J l~JGlll 

:-·. H!;--JE YCL l 
1 r;:ucT ;y,~ ?E 14-
"" Q,(:.-0£: I:·,! C0l J00061S2G04 

54 ~.\Ef'.:J~·l IC Xt-IF. 
~IT PATT ~N 

~~CHINE YCL 
!~~5T~UCT SN 
~!CRC-D~ !N! 

COOOO·l ~ i 
s 
YPE r 
l:N OJ006072004 

-...) 

00 



r4 
:>:: 
c> . 1U 
a. cJ 
r-o<V.7.:t..')"'.( 
VlG" 11 v'! or 
1JJ f'11 ~~- .. -.: <:r: .-.r 
t-IICJ C\...C) 

Li.l ., •• t..l • .. 
(j) y ·.~J :tl :I_ ::s: 
l.J , .. ul X vl Vl 
..., ·- .:-:~ tl! ... f <t 
/\ 1\ /\ /\ 1\ /\ 1\ 
1\ /\ ,, /\ 1\ 1\ 1\ 

79 



AC::R. INSTRUCTION 

coooccco llCO 

A S S E H B L E R 

SOURCE S T N G 

STMT SOURCE • * * * • ~ • ~ * ~ $ * ~ * * * * ~ ~ c * * * * * * ·o ~ * * • * • ~ ~ ~ ~ • 
.. iHE FOLLC;HING PRUGr.:.AM TESTS SOME OF THE li\STr<U:T!:JNS 

2 * II'PLE~i:NTED F:JR THE !NTERDATA 7116 BY GENERATING THE F!;tST 

3 * N NU~.!l~RS !N THE F!Bu,..ACCI SEOUE:NCE STARTING W!TH ZeRO. Th:? 

4 * VALUE, ~. IS READ FROM AN INPUT CARD AND SEVERAL SEQUENCES 

5 .,. MAY BE Gt~ERATED BY SUPPLY!~~ THE DES!RtD VALUE FuR N. THE 

b * Pi<CGRAH IS TEPHIN:.TEO WhEN A VALUE OF ZERO OR t.. NEGATIVE VALUE 

7 * !S READ FOR N. 

e 

9 TESTPGMl !\JP 

lC RO !:QU 0 " 
u Rl E.:IU 

12 R2 .::ou 2 • 
i3 R3 EOU 3 " 
14 F.4 E:lU 4 .. 
15 R5 EQU 5 '" 
16 Ro EQU 6 .. 
17 R7 eou 7 • :-..AM:: Ai...L REG!STE::(S 

18 R8 ECU 13 * FOR CL~RlF!CATlJN 

lS R9 EQU " 
20 RlO EQU 10 * 
21 kll EQU 11 "" 
22 Rl.2 EOU 1<. * 
23 Rl3 E:JU 13 .. 
24 fi.l4 EQU 14 

25 R15 EQU 15 * 
2b * 
27 RHON EOU " 

00 
0 



CCCCCCCl C 8FC 003E 28 LHI Rl5,=AO;) i<.l5 CONTAINS ;.cor. Gr N 

CJCOOC03 caEo DOl F 29 Lrll R~4,=X 1 00lf 1 Rl4 CQNTA!t><S "DU/oi~Yu CEV ICE 

cocooocs D9EF 0000 30 RH Rl4,Rl5,Q INPUT N 

cao::occ7 4BDF 0000 31 LH iU3,R 1:>, 0 LOAD Rl3 WITh N 

000000.09 3200 C0 3D 32 BNP R~3.T::SHI<D TEST FOR ENC-OF-F!Lc 

cccccccs C3CO 002F 33 LHI Rl2,=X'002F' Rl2 CONTAINS "DUMMY" DEVICE 

00 ~CO COD DBCF 0000 34 WH R~2,Rl5,0 OUTPUT N 

OGOOCCOF C5DO JCOl 35 CLHI Rl3,==F•t• TEST FJ~~ .N :; l 

COJOOOll ~300 COl a 36 BNE MCK~ "tOKE THt.N :JNE NU.V.BER 

oo:;:_Jl3 2700 COOl 37 SIS Rl3 ol SU!lTPACT l FP.CM N 

COOC0015 4CDr 0000 38 STH Rl3,Rl5,0 S TUf< E NEW N 

00000017 C8CF 0000 39 >JH ~-~2,Rl5.0 OUTPUT VALL;~ IN N 

COOGGC19 3000 0001 40 B RE"-ON BRANCH TO READ ANOTHER N 

41 I-lOR:;; 2Qi.J « 

CCOOOOiB C8BO 003F 42 LHI Rll, -A(ZERO) Rll CONTAI"'S. AODR OF ZERO 

C<JOCCClD. C8AO C040 43 LHI RlO,=A(DNEl RlO CCNTAINS ADDR OF ONE 

ODOOOOlF 4 39F 0000 44. LH R9,Ri.5o0 ~9 CCNT.t:NS N 

C000002l 4870 cooo 45 LH R7,Rll,O LOAD ZEHJ !)ITO R7 

000-~0023 .:ace oooo. 46 WH id2,Rll,O WR!l[ ZE;Q 

CJCC0025 t.·86~ OOQO 47 LH R6 ,R.lO ,o LOAD G~~ !~TG R6 

CCCGGC27 D8C~ 0000 4S WH Rl2,Rl0,0 WRITE ONE 

QOCCCV29 2790 0002 49 SIS R9,2 DECPEME~T N BY 2 

CC00002a c t4:.J 0041 50 Lr.l 1-<.4-,;.A~SAVEJ R4 CONTAINS ADD~ GF SAVE AitA 

51 >IR !TE EOi.J " 
COOJ00.2D cass 52 SHR R5, RS CLE.e.R R.5 

L00C(.02E C.l.57 53 AHR RS,R 7 AuD f<.7 TO RS 

COOOOC2F 01<56 54 AHR R5,R.O ADD P6 TO ~5 

CCGCC030 4C54 0000 55 STH R~,R4,J STORE R5 IN SAVE A~EA 

C0000032 DBC4 0000 56 WH RL2,R4,0 WRITE St.V~ AREA (X) 
...... 

00000034 2790 GOOl 57 SIS R9, l DEeP EM ENT R9 flY 



COOC0036 3390 0001 58 

OOOJQ038 0676 59 

COuC0039 4864 0000 60 

CCC COC3 a 30Cfl. 002 D 61 

62 TESTENO 

CCCCOC3D 1200 63 

CDOGJ03E 0001 0000 64 N 

COOCCC3F 0000 65 ZERO 

00000040 GOOl 66 o~"E 

O:JOSO e:-.1 0001 0000 i:J7 SAVE 

68 

ez 

LHR 

LH 

B 

EQU 

H.'.l..T 

OS 

cc 

DC 

OS 

Efi:O 

R9,READN 

R 7 1 ~ b 

h6, R4, 0 

Wil. lTE 

* 

lX'0000' 

F•o• 

F I 1 t 

tx •oooo• 

TESTPGMl 

TEST FJ!'. LAST VALUE 

l C.<D R7 FRC:.! R6 

LOAD Fb FROM SAV~ AREA 

CO:\TJNU~ 

00 
N 



SY.'180L i A B L E f. C R 0 S S REFEI'.ENCE D I C T I 0 N A ~ Y 

• ~ • * ~ * * * • * * * * * * * * * * * * ~ * * * * * * * • * * ~ * * * * * * * * $ ~ * * * • * ~ * * ~ • ~ ~ * ~ =· ~ * 
SYIIBOL VAlUE DC:FN REFEREI\'CES 

~ORE GOCOOO l!l 0041 0036 

I< 0000005E 0064 0026 

CNE cccooo-.o 0066 0043 

REACt< C000000l 0027 0040 00~8 

t(J COOOJ000 OCllD 

Rl COCOOOOl 0011 

i!lO OOOOOOOA 0020 0043 OC47 0048 

'11 CCCOJCQ5 0021 0042 oo .. s 0046 

Rl2 COC·:JJVOC 0022 0033 0034 G039 0046 0048 0056 

in3 0000000 D 0023 0031 0032 0035 OJH 003~ 

R::.4 CCCJOOOE: 0024 0029 0030 

"15 OOCOOOOF 0025 0028 003C 0031 0034 0038 0039 0044 

R2 00000002 OJ~2 

k3 CJC00003 0013 

1<4 00000004 0014 0050 0055 0056 0060 

R5 occoooo; 00!5 0052 0053 oos .. 0055 

Pc CJCO·JC06 JC!l6 0047 0054 0059 0060 

P7 OOC0:!007 Gbl7 0045 0053 0059 

Re CCC00'0:J3 001_8 

?9 00000009 0019 0044 0049 C0 57 005o 

SAVt: 0000004i 0067 0050 

TESTE~··D CJOOCC:3J OC62 0032 

T=STPGMl OOOOOOCJ 0009 0068 

;o: 'iE CC00002D 0051 0061 

zo:w C000003F 0065 0042 

00 
~~~~= ~U~BE~ OF ~SSE~BLY ER~ORS 0 ....., 


.....
:::>
w
IIJ
X
w
I

tU

"' <>.

LL 0 IJ* LL c.! ·D ~ 0 0 Cl
()()UO"'•~JI0C .::)00
Ol"l.::0'-0•:040C00
..:J wo..,.co'.:J.coo

ooooo,.....oooo
ClQ('),f'Qlf'i·"7'oO<:JU
o o a o o ·1: ~"'' o o o
oaoooo;'1ooo

u_lLU..O..:ltf'l.-4000
wua4 .Llulooo-o
<J'U)C)rua"Jcr.ONOO
aa_-.tu..roo ao

u.;.tL.....tU..Q...,..OOOO
.....tNOfV"'O-f"V"t'\..100
oooooor-·::>OO
OoOOQONo(")Q

a a o o co o-o o o o
UJ U 0 CC W ·-t- 0 0 0 0
U'.) OJ ,_ Ol C'C ~lJ 0 l..") (') 0

uuNuuuonao

WC)n')r-t(')N.:t'OOO
fT' ,~\ 0 0 0 w 0 u 0
o o o o o o ro-o o a
000(')00Cl000

0000t:OOO-.:t00
u ... o o o ,..... V" n -j) o o
·:o r-1 (f) 0 m ~"-> o ''' 1..") o
t,..J,-."1""(rn.J-NO-t00

oo-ooo.J--0·-IO
o o <-"1 o o o '"' ,.. .. o a
.--ioOoonomao
.....I()UQOO..t<JOO

0f'()0•YlO'nC0.1r'JOO
o () .-t ... ~ ,...,~ N _,, r·\ -r ..,,.

;;J.. 0 Cl 0 0 0 Cl •J 0 (.) 0
o a .-:. •.:> a c' c 0 o <) o
:::) IJO~.JOUOUC.Jl..JO
--t a u (J C'J n o .-") C-' o o

ooooooouQo
0 (.) u 0 u ~':;) ('"".) t.l CJ u

84

85

~ 0 N n ~ ro ~ ~ ~ ~ ~ m ~ 0 ~ ~ ~ ... ~ ~ ~
N N m ~ ~ • m ~ .~ ~ ~ ~ ro ~ ~ ~ ~

N M ~ ~ ~ ~ . . ~ ~ ~ ~
N ~ ~ 0 ~ w

N

!DC'R

000 00000 110~ C8FO 003E C BE 0
COG~0008 0000 32 DO 0030 CBCO
C08SJ010 OJCl A 300 OOlB 2700
C;OJOOOi3 00-JO 300J ODO 1 cee o
C;JC ::0020 OO·JJ 4c7!l oo·oo osc 3
OO)J002o c::~o:: 27<;C 0002 Ca40
00QCQU.3J 4054 0000 DSC4 0000
CCSCCC38 0876 4864 0000 3000
QOJCQOLJ 0001 6F-Fl occc OGDO
COCCDC45 0000 0000 0000 0000

••:~~•I':" .'-1:<.CH HJ E CYCLES 295

OOlF 09EF
002F DBCF
COOt 400F
OC3F C8AO
0000 486A
0041 0855
2790 0001
0020 1200
0000 0000
0000 oooc

POST7 EXECUT!ON McYORY GUM?

0000 480F
0000 C500
O:JOO DSCF
0040 489F
0000 u8CA
OA57 OA36
3390 OOOl
FFFF 0000
OOOD 0000
ooco 0000

co
0\

~ A C H I N E D E F I N T G N

• • * * * * • * * * * * * 4 * * * • * * * * * • * * * * * * * * * • ~ * * * * • • * # • * * * * * * * • • • • • • * * •
FIXED PURPOSE REGISTER IF?Rl SYSTEM rEWLETT-P.ICKARO 2114.4.

~U~BER OF INCEX REGISTERS 0

I~DEX ~2GISTE~ SIZE 0

HC:il SIZE 16

•;Jil S!lE 16

PC Sill" lc

~UMEER OF INSTRUCTION REGISTERS

IQ SIZE 16

ACCU~ULATO~-~ SIZE 16

ACCUMUL~TOR-8 SIZE 16

~U~ciER OF INST~GCT!GN FC~M~TS USED 3

GPCCSE L ENGH 4

hU~BEA CF kGRDS REAC IN A REAC I~STP

~L~BEk OF WORDS WRITTEH I~ ~ •RITE INSTR

~u~eER GF ~CN-OPE:~ATE !NSTKUCTIONS 15

~UM5E~ ~F R2CISTER CP~PATE !NSTRUCT!G•S 35

:..C!':C S !lE 16

(X)
'-1

88

(:J
V) "' lU

(f. ..,
"' "' 0

/
:J 0 n
0
"' "" ...
0
_;
UJ .; .

"' "' u.

"' l_] u 0
0 1-

,_ 0 0 0
u
-'
l!
V1 . .; .
z

NCN-QPER~TE OP CODES AND THEIR MICRD-DEFINITIONS

1. fii.EI'Ci'IIC ACA
BIT PATTER!\~ 1000
I'~Chit<E CYCLES 4·
I!I.STRUCJICN TYPE 1
,.I Ci<C-OEFI I'll TION 00012000102 00000002100 00007010911

2. lt'fo.EMCNiC AOB
BI1 PATTi:RN 1001
,..ACJ-i INE CYCLES 4
INSTPCCT ION TYP 6 1
MICRO-OEFI~!T!ON 00012000102 00000002100 00000010912

3. ~f\EMCNIC AND
EIT FATT::i<N 0010
~ACH!NE CYCLES 4
!NST RUCTION TYPE 1
,..!CRC-DEF!NITION 00012000102 OOOOCC02100 C00070ll8ll

4. ,..NE~CNIC CPA
SIT PATTERN 1010
I'ACHII<E CYCLES 4
INSTRUCTION TYPE 'l
I'! CRC-ucF !NIT !ON . 00012000102 COCCCC02100 CC007000l06 00001000107 lOlOJOOOOOO 10400000000 0000 3000 50 3

s. ~~~~CN!C CPB
BIT PATTERN lOll
~ACI-<J~E CYCLES 4
INS T Ft;C Tl ON TYP c 1
MJCRC-DEF!N!TION OC01200Cl 02 0000 000210 0 00008000106 00001000107 10100000000 10400000000 00003000503

6. ~~E~C'IJC ICR
8 IT PATTERN 0110
MACJ-i WE CYCLES 4
nSHUCT!C~ TY?E 1
MICRC-DEF!NITICN OC012000102 OOOOOOJ2lu0 OOO\l70119ll

7. I'I>EMCN!C ISZ
!!IT ?~TT:oRN 0111
MACHINE CYCLES 4
INST!<UCT ION TYPE 1
~ICRC-OEF!NI!ION 00012000102 00000002100 00001000501 CCOOOCC2 2CO OOCC1000l0b lllOOOCOOOO 00003000503

a. MNEMCNIC JMP
EIT FATTERN 0101
"ACHINE CYCLES 2
INSTRUCTION TYPE 1
~ICRC-CEFINITION 00012000103

/
9. MNE.'IC'Il C JSB

eiT PATTERN 0011
I'ACH !~E CYCLES 4
INSTi<LCT!ON TYPE 1
"ICRC-DEFINIT ION OCOl2COOlC2 OOC03C0Cl0l C0000002200 OCC02000503

00
1.0

11>· 1-!KEKOIII !(l !)A
!!IT FA.TTE!'t'~ 1100>
I\ A C. let I NE C Yf. tE S. 4
H;STIIIUCTION TYPE 1
!'I C~C-l'-~F I !I' IT l CN oon zooo.1o2 OOOOOC021CC CCOClCOOlll

ll. ~NCtiEt~~ C tDE
!!If fA.JTfliH llDl
~ACII I 1\.E CYC tES 4
JNSl'RUCTI0:-1 TYi>E l
I' ICRC-IJH' P~ lT !0!11 OC0120001C2 COCCCC02lOC CCC0l00Cll2

12. HEI'CI\l C !'lCP
81 T P•A.TTERN CDC!
1'-!.CH UtE CYCLeS 2
!liSTi<lC110t< TYPE 4
MlCRO-DEFfNITlON coocooocooo

13. nEf_C!i.IC STA
8! T P'A HERN 1110
1-!ACIHNE CYCLES ..
U!ST i<UCHu:l: TY!>E 1
M l C.RO-DEF I Nl iJ Ct-. OCCH 2 000102 00007000101 C0i>00002200

Ito. ~·~<~MP>IC sre
B!l FATTERN 1111
MAC<!INE CYCLES 4
!NS HUCI ION l'YP E 1
~'ICR(-t:EfiNIHCN 00012000102 00008000101 COOOOOOZZOO

15. I'!NE:-IO'IIC TRC/'i
E!l PAlJ~RN OlD~

M•tH!NE CYCLES 4
t.\.~S"fr.:tiJ.CtlO'.I't.;. TYPE it
~!CRC-~EF!:-.H !Ct. 0002:0•000000

\0
0

OPERATE OP CCC::S ANC HEIR I'ICRO-CEFINIT!ONS

~~E~C~!C OP coo= OPR
EIT PtTTERN COOO

1. ~~E~C~lC ~LF

HIT POSITIONS 6 7
MACH!NE'CYCLES 2

B 9

~!CRC-CEFI~ITION 00006000114 OOCC70001l5 CC007000ll5 00007000115 OOC0700Cll5

2. I'NEMG"l!C !LS
51T FCS IT IONS 6
!'~CHI~~ CYCLES 2
MICRC-DEF!NITICN OCOC6000ll4 00007000117

3. ~1\o><:::•dC Bli'
8IT FCS:TIC~S 4 6 7 s 9
l':,c•;I~E CYCLES 2
~!CRC-CEFIN!T!O~ 00006000114 OCJOeOC011; CCODB00Cll9 OCC08000Ll9 OCOOB000119

4. foiNEMON!C BLS
EIT POSITIONS 4 6
~!\CHINE CYCLES 2
~!CRC-CEFINl TION OC006000114 00008000121

5. MNP~:JN !C cc~
rtr FCS lT IC~S 5 .6 7
t<:.CH>:E CYCLES 2
to; !CqC-CEF IN IT ION OCCC400Cll1

6 •. V~!'MCI\IC CCB
BIT PCSITIO~S 4 5 6 1
"'ACH!NE CYCLES 2
~!CRC-CEFU•IT ICI'i 00004000112

7. H~£::;w!C,\! C CCC:
E!T PC r:- I J:~s 5 8 9
1'-'AU-ili\ CYCLES 2
~!CRG- EFINIT!ON CCCC4000ll3

a. ~~.;EMCN C CLA
8!1 PO ITIG~S 5 7
I~ACHIN C'fCLES 2
'!- !CRC-CEF Ir\ !T IO~

9. MN~MC~!C CLB
21T PCS!TIO~S 4
~~CHI~E CYCLES 2
M!CRC-J~FI~IT!GN

10. W~ENC~!C CLE
B!T PCS!T!G~S 10
MAChi~~E CYCLES 2

00005000111

5 7

CCOC5000112

•!CRC-CEFI~Ii!ON OCCG500Cll3

11. M~~xc~ c c~~
BIT PO IT IONS 5 6
~~~Hih CYCLES 2 
MICRO- EF!NIT!ON CCC070016l1 

\D 
...... 



12. ~~E~CfdC c~e 

BIT ?OS! T!ONS 4 
r-~!CHH..;E CYCLES 2 
~:(.RC-!:;:Oi' I r·:l T I ON 

13. M\ E~C~ !C . C,...E 
err FCS IT IONS 5 
~ACHP<E CYCLES 2 
1o! :CRO-OEF IN IT ICJN 

14. ~~E~Ci';lC HLT 
8!i PCSlT!C\S 5· 
1-'t.Ch L\E CY Cl ::S 2 
~ICRL-C.E~!t-.IT!;:~ 

15. ~.N>:.'IC'·HC INA 
E!T POSIT IilNS 5 
I':.CHH•E CYCLES 2 
:~ !CRC-ilEF IN !T ION 

16. ~~EM~N!C I~a 
BIT POSITIONS 4 
1-L.,Ch !~~E CYCLES 2 

5 6 

00')08001612 

8 

OC0130002U 

OC022COOJOO 

l3 

CCCC70005ll 

5 13 

~ICRC-CEF!~!T!O~ OOJ030~0512 

17. I'NEMCNIC L!A 
BIT FCS IT! O"iS 5 7 '1 
I'ACh I 'IE CYCLES 4 
M!CRC-DEF!NIT!Gi< oc::csooolOZ 

1 a. !'1\!:M.C~ !C LIB 
6 I 7 ~c!:.::rc~s 4 5 ., 9 
t-AACH!~E CYCLES 4 
~I CR::-CEF lU IT !Of; 00005000102 

l <;. M.'-!EY.ONI C HI~ 
2IT POSITIONS 5 7 
~ACr-Jr>;E CYCLES 4 

~ICRC-DEFINITIC~ ·Jcc;osoooto2 

20. ,~o~r~E·1o~~ rc r~! R 
•; r 1 ;:;::siT!C.\S 4 5 7 
~ACHI~~t: CYCLCS 4 
fJ. lCP.C-OEF 1\llT I~i-\ oc-cc:coctcz 

21. ,..:-..EMC~!C NCP 
SIT ?CS!TIC:-.lS 15 
I'~CH IN~ CYCLES 2 
~1 ICXC-D£F!t..:!T!CJ\ ocooaoooooo 

22. 1'-'t\Et~G.\ C C:TA 
nr PO IT !ONS 5 7 8 
MACH! ~l CYCLES 4 
MICRD- EFINITION OCOC500Cl02 

00017000000 ooooooonoo 000010.:10111 

coo 1 7e.;c c c c CC0000021CO CCGOl 000112 

000l7CJCOJO COOOG0021JO OJ007Clt 'Ill 

OOC17CCCCCC C00000021CO CC003Cll912 

OOCC7CCC1Cl CC0000022 00 000l8000000 

\0 
N 



23. to~~ MC"'IC OTB 
8 I PCS IT JC,\S .. 5 7 a 
~A >ili\E CYCLES 4 
HI RO-DEFINITION OCOC5000102 00 00 8000 l 0 l 00000002200 OOOlSJOOOOO 

24. ~1\E>IC"'!C RAL 
BIT ?CSIT·IONS 6 8 
MACHINE CYClES 2 
l'!CRC-~cFTNIT 10:'-J 00006000114 00007CC~ll5 

25. ,..r~t.'-IC~-.1 c i<AR 
SIT POS!riOI\S 6 a 9 
~ACHH.E CYCLES 2 
~!CRC-DEF!NIT!C~ OCCC&000ll4 00007000ll6 

26. l'~E:<C~!C "'i:L 
BiT FCS!TIOI\S 4 6 8 
IHCH!'JE CYCLES 2 
~ iCRC-CEF IN IT !J~.J CCCG600Cll4 OOCCECOCll'i 

27. ~1\=1-lc~.rc RBR 
BlT PIJSI T!ONS 4 6 8 9 
~ACHTI-.E CYCLES 2 
~!CRO-DEFl~lT!CN .O~OC6000114 00008000120 

2B. ti~E""' .. ~\ IC SEZ 
2! T FCS!TlOt\S 5 10 
l<t,CHINE CYCLES 2 
~!CRC-DEFINITIJN OC01300Cl C6 ll10COCCCCC C0003C00503 

2'7. 1"~\E.~C.\IC SLA 
8 IT POSITIONS 12 
llt.CH~<E CYCLES 2 
MICRO-DfF!~ITION 00007000106 11400000000 COJ030Q0503 

30. !-i!\JEMO~~ !C SL3 
P. IT ~cs IT ;:c:--;s 4 12 
"'llChl\E C.YC.LES 2 
'"i lCrtC-D!:F lN 17 I0\1 OCOCdOOOlOe llt.CCOCCCCC CCOJ3000503 

3!.. ~1\E,..C!\!C SSA 
BIT PGS!TIONS 5 ll 
l<iACHH<E CYCL.ES 2 
~lCRC-DEf IN!TION 00007000106 00005000107 1010GOOOOGO 1C80CCCOCCC OOCC300C503 

32. l":iti'C,"JI C SSl> 
fIT PCS IT !O"S 4 5 ll 
~ACH n.2 CYCLES 2 
~~C~C-JEFINITIG~ CCOC3000106 OOCG5CC0107 10100000000 1 oaoooooooo 00ll0J000503 

33. ~~- .vc, JC S\\P 
B! PCSIT!:J!\oS 4 5 
MA HI:;E CYCLES 2 
III i<C-C~f!~.IT!Cr> 00007000108 00003000111 00014000112 

\0 
w 



34. ~~EI'C'-lC SZA 
8! T POSITIONS 5 14 
MACI->!NE CYCLeS 2 
I' I CR C-OEF IN IT ION 00007000106 

35. MNEMONIC sza 
e IT POSIT IONS 4 5 14 
I'ACH!~E CYCLES 2 
MICRO-DEFINITION CCCC800Cl06 

~CD~ESSJNG MODES 

C!RECT TC CURRENT SECTOR 01 

DIRECT THROUGH ZERO SECTCR CO 

INC!RECT T!-RC_UGH CURPENT SECTOR 11 

!~DIRECT THRC~GH lERC SECTOR 10 

INDEXED, R. EGI STER l 00 

INCEXEC, RECISTER 2 00 

lllOCOOOCCO 

11100000000 

COC03C00503 

00003000503 

\0 
-ll'-



.. ... ... ... 
"' a 
"' ... 
"' u ... 
"-
1 ... ,_ 

lU 
..J 
:>: 
"' J: 

"' :r. 
l-' UJ 
CL (J •0 
t-oa-::»..t~c:t 
V1 U II UJ 0 ~ 
tu"""'L<tn::<r 
..... II l.J o.. U 

UJ- U • • 
ro~~t..,w:r:;x. 
u.-.. WXVlV'l 
lt-lXW<(<\ 
l\.l\1\1\l\l\1\ 
A.l\1\/'\1\1'\1\ 

95 



AOOR I P.STRUCT ION 

COOC0020 1000 

C1:CCCC21 CJCO 

CD000022 COOl 

COCCG(.:23 CCC.J 

CCOCOC24 E002 

CCOC0025 C003 

CCCCCC26 CcOO 

COOCCC27 EOO<, 

CCOG0028 0540 

COOC0029 0410 

CCCCGC2A 54CE 

A S S E M B L E R 

SOURCE L S T 1\ G 

STMT SOURCE • ~ * * * ~ * ~ ~ • $ * ~ * * * # * * ~ ~ • * ~ * * ~ * • * * * * * * * * * 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

.. 
* 

"' 
* 
"' 
* 
* 
* 
• 
* 
* 

* 

* 
* 
*. 

THE FCLLGW!I>G FRCGRA'; TESTS SOME OF TrE 11\STFUCTIONS 

!11PLE"E"'TEC FOR ThE hEWLETT-PALKt.I<D 2114~. THE PRQGRAI-I IS 

DESIGI\ED TO PERFOR~ THE PR!~IT!VE STACK CP~RATIONS: Ill "PCP" 

THE ITEM FROM THE TCP OF TrE STACK, ANC 121 "PUSr" THE ITEM 

CNTO TrE TOP OF ThE STACK. WhE~ STACK UNDERFLOW CR STACK 

OVERFLOW IS DETECTED AN ERRCF CCCE IS PRINTED ANC ThE PROGRAM 

TERMINATES. 

STACK OPERAT}ON COMMANDS ARE RE~D FRO~ INPUT CARDS. A 

POSIT !VE VALUE FCLLCWED flY ThE ST tC:<. ITEM, DES !Gr.ATES /. "PUSH" 

OPERATION. A NEGATIVE V~LUf DESIG:~ATES A hPCP•• OPERAT!CN. A 

ZERO U~LUE JES!Gh~TES Th~ E~D CF TH~ STtCK CO~MANDS. 

EACH STACK COMMA'ID IS PU~1TEO FCLLCWEO BY THE CO?RESPuNOING 

STACK !TEM. THE COMPLETED STtCK AND ST~CK TOP PO!~TEA MAY BE 

VIEWED IN THE POST-EXECUTION MEMO~Y DUMP. 

TESTPGM2 NOP 

CPR CU., CLB CLEAR ACCU~ULATORS A AND B 

LOA LO~<TEST LGAD ILCWE~ 9CU~C ADDRl - 1 INTO t 

CPR Ci~A TAO'S CC~PLE~ENT CF ~ 

STA LOW TEST ST:JRt RCSULT 

LOA HIGHTEST L CAD IU?PEP. BCJNC ADDR l + 1 INTO A 

OPR CloOA T~C'$ CO~PLE~ENT OF A 

STA HIGHTEST STC~E RESULT 

lr\PUT ECU • 
OPR LIA !~PUT STACK CCMMANO !NTG A 

CPR SSA S K lP If CIA) >= 0 

JMP ?0? POP ITEM F?.JH TG? OF STACK \0 
0\ 



CG00002B 0402 28 CP;l. SZA SKIP IF CtAI = 0 

CCGCC02C 541C 29 JMP PUSH PUSt-i ITO< DiTO TGP ~F STACK 

GOCCCC2D C4CO 30 CPR 1-L T S TGP RUN 

31 POP EOU * "PCP" ?F.CCEDURE 

CCCCCC2E 0580 32 CPR OTA OUTFUT STACK CGxMANO 

CCCC002 F C005 33 LOA STACKPTR LOAD STACK PC!NTE~ INTC A 

O:JQCGC3G SCC6 34 ADA LCW TeST ADG LCWEF BQU~D TEST VALUE TO A 

CCCC:JC31 0402 35 CPR SZA SKIP IF CUd = 0 

COOOCC32 5416 36 J'IP DELETE BRINCH TC CELETE !T EM FRO~ STACK 

37 UNDRFLOI< E'U * 
CCG00033 COOl 38 L!:lA ERi': FLAG 1 LOAD STACK UNCERFLOW FLAG !NTC A 

G0000034 C5EO 3'l CPR OTA OUTPUT STACK U~CERFLCW ERROR 

COCCCC35 0400 40 CPR t-LT STOP RUN 

41 DELETE EOL * 
CCC(CG.36 CoC8 42 L CA I STACKPTR LOAD SHCK TOP ITEM INTO A 

coo coc:n C580 43 CPR OT A OUTPuT STACK TOP ITEM 

ccccoc3o C009 44 LOA STACKPTR LOAD STACK P01~TER l~TG A 

COOC0039 800A 45 ADA NEGO~:E DECREMENT STACK POINTER BY 

CCC CCC3A E003 46 STA STACKPB STORE RESULT 

CC00003 ~ :'AOB 47 JMP INPUT BRANCH TC ~EAC ANCTHER CC"MAND 

48 PUSH E•JU * . "?US h 11 ?~ C-C EOUF· E 

CCOC003C. 0040 49 CPR LIB INPU1 N~~ STACK ITEM INTC B 

COG0003G 0580 50 OP;l. OTA OUTPUT STACK CCKMAND 

CCCCOC3E CCBG 51 CPR GT8 OUTPUT N~W STACK I TEi~ 

COO.JC -J3 r: eeoc 52 LOA STACK? Tf' LOAD STACK PC!~TER INTO A 

COOC0C4J C4C4 53 C?R INA !NCFEMGH STACK ?O!NTER BY 

CC~COC41 E4H 54 STA STACKPTR STCi'l: RE~ULT 

coococ:.z 8417 55 ftDA H!GHTEST ADO UPPEf' 80UNO TEST VALUE TO A 

COCC0043 0402 56 OPR SZ A SK!P !~ C{Al = 0 

coo:oc1.11 54Ca 57 JMF l NS ERT BRANCH TO L'-'SE~T ITEM IN STACK ID 
-...J 



58 OVERFLOW EQU 

00000045 C419 59 LOA 

CCCCCC46 oseo oO C?R 

COOC0047 0400 61 CPR 

62 INSERT EQU 

CCC00048 FC14 63 STB 

C0000049 5000 c4 JMP 

65 * 
C000004A COCA 0000 66 STACK OS 

ooocoo 54 CC49 67 STACKPTR OC 

COOC0055 FFFF 68 NEGONE OC 

COOC005b 0049 69 LOW TEST DC 

COCOCC57 0054 70 HIGHTEST cc 

C000005S 0048 71 ERRFLAGl DC 

COOC0059 OSF l 72 ERRFLAG2 ·DC 

13 END 

* 
ERRFLAG2 

GTA 

HL T 

* 
I STACKPTR 

INPUT 

l0X'0000 1 

A(STACK-11 

F '-1' 

AISTACK-11 

AISTACK+lO I 

F'-8888' 

f'-9999' 

TESTPGM2 

LCAO STACK CVERFL'OW FLAG INTO A 

OUTPUT STACK OVERFLOW FLAG 

STOP RUN 

PUSH ITEM ONTO TOP OF STACK 

BRANCH TC REAC ANCTHER COMMAND 

STACK AREA 

!NIT !AL IZE STACK POINTER 

DECREMENT VALLE FOR STACK POINTER 

LCWEP I!GUNC TEST VALUE FOR STACK PTR 

UPPER BOUND TEST VALUE FOR STACK PTR 

UNDERFLOW FLAG· 

OVER FLOW FLAG 

\0 
00 



S Y H 6 0 L T A B l E & C R 0 S S REFERENCE 0 I C T I 0 N A R Y 

* •• * * * * * ~. *. * * * * '* * * * * * * * * * * •• * * * •.•.•• * ~ * * * * ~ * * * *. * * * * * •• *. *. * 
SY~EOL VALUE OEFN REFERENCES 

DELETE CCCC0036 0041 0036 

ERRFLAGl COOCOJSB 0071 0038 

t;RqFLAG2 CCCCOC5 9 0072 0059 

H!GHTEST C0000057 0070 0021 0023 C055 

l~Pt;T 00000028 0024 0047 0064 

INSERT CCOC0048 0062 0057 

LOW TEST 00000056 0069 CC18 0020 . 0034 

~EGCIIOE 00000055 0068 0045 

CVERFLOW COCOOC45 case 

I'CP 0000002 E 0031 0027 

PUSH CCOOC03C 0048 0029 

SHCK C000004A 0066 0067 OC6S C070 

STACKPTi< COOO:J054 0067 0033 0042 0044 0046 0052 0054 OC63 

TESTPGH2 CCCCOC20 CC16 0073 

UIIOC~FLCW OOOOOOH 0037 

•**** NUMBER OF ASSEMBLY ERRORS 0 

\0 
\0 



H~R 

ccccccco coco 0056 0056 0057 
ooocooca J054 0054 C0 55 0054 
OOOCOClO 0000 oooo· oooo 0000 
GCCCCC18 cooo 0000 . 0000 0000 
CCCC0020 1000 0000 coo 1 0600 
COOC002B 0540 0410 S40E 0402 
CCCCCC3C 80C6 0402 541c C007 
C0000038 C009 SOOA EOOB 5408 
COOC0040 040t, EH4 6417 0402 
C0000048 FC14 5000 ecce CO:JO 
ococooso 0000 0000 0000 0000 
COCOOC58 0048 08Fl 0000 0000 

0057 0054 
0054 0028 
0000 occc 
0000 0000 
E 002 CC03 
541C 0400 
0580 0400 
0040 esse 
5408 C4l9 
0000 0000 
0049 FFFF 
0000 0000 

PRE-EXECUTION ~EMORY DUMP 

oosc. 0058 
0000 OJOQ 
cocc ooco 
0000 OJOO 
CoCO E004 
CSBO coos 
CBOB 05oO 
0080 ccioc 
0580 0400 
0000 0000 
0049 0054 
0000 ocoo 

.... 
0 
0 



N .... 
"' 

... 
N 
0 ... 

a:J 
.J" 
0 

"' 

~ ...... t\1 . ...... .0 
OJ I (J> C1" 

"' """' 0 .., "' -4' 

.... 
I 

a:J .... 
0 
N 

101 



ACOR 

ccccccco 0000 0051> C05b 
coocoooa 0054 0054 OC55 
00000 010 .0000 0000 0000 
ccc cc.n e coco 0000 0000 
COCCOC20 1000 OOOD COOl 
COOCOC23 0540 0410 540E 
CCCCCC30 8006 0402 5t,lb 
COOOOC38 G009 800A EOOB 
COOC0040 0404 E<Tl4 8417 
C000004S FC 14 50 CD ccsc 
coo coosa 2000 4000 occc 
COOOOC58 0048 DBFl 0000 

•**•* ~ACHINE CYCLES 

005 7 0057 0054 
C0 54 0054 0026 
oooc 0000 occo 
0000 cJOOO 0000 
ObOC E C02 CC03 
04()2 541C 0400 
C007 0580 0400 
5408 001,0 0580 
0402 5408 C419 
0100 0200 0400 
oooc 0040 FFFF 
0000 0000 0000 

588 

POST-EXECUTION MEMORY DUMP 

0056 0058 
ocoo 0000 
ecce 0000 
0000 o·:>Oo 
06CC E004 
CSAC coos 
caos 0580 
0080 cooc 
0530 0400 
0800 1000 
FF87 FFAC 
0000 0000 

-0 
N 



APPENDIX D 

SYSTEMS PROGRAMMERS GUIDE 

103 



104 

Additions to the simulation system have been made to aid in the 

maintenance of the program. Column 13 of the first input card in the 

machine definition phase (Chapter V) is used to signal a trace of the 

interpretation of all assembler statement operand fields. This fea­

ture aids in determining the validity of the operands in the generated 

machine c.ode. All of the generated machine code can be examined on the 

assembler listing. 

Features of the simulation system.that may require modification 

are: (1) the maximum size of the simulated memory, (2) the maximum 

length of the symbol and reference tables, and (3) the default time 

and region parameters for execution. 

The maximum size of a machine language program is 2000 words. 

This should be sufficient memory for the execution of most programs, 

but it may be increased for the execution of larger programs. To in­

crease the size of the simulated memory, the upper bound on the memory 

array can be changed to the desired value. If it is necessary to 

change the maximum memory size to 2500, for example, the PL/I program 

statements 

DECLARE 

MEM (0:2000) BIT (32), 

MEMDF (0:2000, 0: 31) BIT (1) DEFINED MEM, 

should be changed to 

DECLARE 

MEM (0:2500) BIT (32), 

MEMDF (0:2500, 0:31) BIT (1) DEFINED MEM, 

The maximum number of identifiers that can be specified in a single 

assembler program is 100. The maximum number of references to the 



105 

identifiers is 200. Both of these limits can be increased by changing 

the upper bounds on the two arrays. For example, if it is necessary to 

change the upper bound of the symbol table array to 150 and the upper 

bound of the reference table array to 300, the PL/I program statements 

DECLARE 

1 SYMTBL EXTERNAL, 

2 DECTBL (101), 
• 

• 
2 REFTBL (200), 

• 
• 

MAXSYM • 100; 

MAXREF • 200; 

should be changed to 

DECLARE 

1 SYMTBL EXTERNAL, 

2 DECTBL (151) , 
• 
• 

2 REFTBL (300), 
• 

• 

MAXSYM • 150; 

MAXREF • 300; 

The default number of maehine cycles for the execution of a pro-

gram is 500. The default region size is 200 words. Both of these 

parameters are easily changed in the JCL for the user program (Chapter 

V). 

The PL/I debug options of SUBSCRIPTRANGE, SIZE, and STRINGRANGE 



106 

have been enabled for the execution of the entire simulation system. 

These features aid in the initial debugging process of a program, but 

they tend to decrease the performance of a program because of the error 

checking that is performed. If desired, these debug options can be 

disabled, or enabled only for specific sections of t·he program, which 

increases the execution speed and decreases the size of the generated 

object program. 



VITA 

Glenn Ray Thompson 

Candidate for the Degree of 

Master of Science 

Thesis: A MICROPROGRAMMED SIMULATION SYSTEM FOR GENERAL PURPOSE 
REGISTER AND FIXED PURPOSE REGISTER MINICOMPUTERS 

Major Field: Computing and Information Sciences 

Biographical: 

Personal Data: Born in Fort Smith, Arkansas, July 16, 1952, 
the son of Mr. and Mrs. w. R. Thompson. 

Education: Graduated from Mount Saint Mary's High School, Okla­
homa City, Oklahoma, in May, 1970; received Bachelor of 
Science degree in Mathematics from Oklahoma State University 
in May, 1974; completed requirements for Master of Science 
degree at Oklahoma State University in May, 1976. 

Professional Experience: Graduate teaching assistant, Oklahoma 
State University, Computing and Information Sciences Depart­
ment, August, 1975, to May, 1976; systems analyst, Armco 
Steel Corporation, May, 1975, to August, 1975; graduate 
teaching assistant, Oklahoma State University, Mathematics 
Department, August, 1974, to May, 1975. 


