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PREFACE 

This study is concerned with the effect of divalent impurities on 

the mechanical properties alkali halides. The primary objective is to 

determine the strengthening of KCl single crystals as a function of the 

concentration of divalent impurity-vacancy pairs. The divalent impurity 

used is Eu++ and the concentration analysis of this ion in the crystal 

constituted a major problem in this study. 

The author wishes to express his appreciation to his major adviser, 

Dr. J. J. Martin, for his guidance and assistance throughout this study. 

Appreciation is also extended to Dr. Zuhair Al-Shaieb for his assistance 

with the atomic absorption analysis. 

Finally, special thanks is expressed to my son, Steven, for his 

cooperation and many sacrifices. 
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CHAPTER I 

INTRODUCTION 

Alkali halides are of interest as possible window materials for 

high power co2 lasers. KCl is of particular interest since it has a low 

optical absorption at 10.6 microns, the wavelength at which the co2 

laser operates. KCl is also inexpensive and readily available. One of 

the disadvantages of pure KCl is its low mechanical strength. 

This problem of low mechanical strength may have a possible solution 

in that significant hardening is observed when tetragonal lattice dis

tortions are created in the crystal. One method of creating tetragonal 

lattice distortions is by irradiation with high energy electrons. Irra

diation causes this type of defect by converting a negative ion into a 

neutral atom, moving the atom to an interstitial position, and leaving 

an electron in the vacancy that now exists in the original position. 

This forms a Farbzentren or F center. It has been shown by Sibley and 

Sander (1) and Nadeau (2,3) that F center creation produces significant 

hardening of alkali halides. In 1932 Edner (4), Metag (5), and Schonfeld 

(6) showed that when small concentrations of divalent cations were grown 

into the crystal lattice of NaCl there was an increase in the flow 

stress. The divalent ions create tetragonal distortions, because for 

the sample to remain electrically neutral a positive ion vacancy is 

created nearby. The divalent ion pairs with the vacancy creating a 

tetragonal defect. 
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Divalent Eu has been shown to enter the KCl lattice substitutional-

+ 
ly 

1
for a K ion. In order to maintain charge neutrality a nearest neigh-

+ ++ + 
bor K vacancy is formed (7). This Eu - K vacancy forms a tetragonal 

defect similar to the defect produced by divalent alkaline earth ions in 

alkali halides and, therefore, would be expected to significantly 

++ ++ 
strengthen KCl. Since Eu can be detected optically, the KCl:Eu 

crystal forms a particularly convenient system for mechanical property 

versus dopant concentration studies. The purpose of this work is to 

compare the increase in mechanical strength of Eu doped KCl with the 

increase in strength observed in earlier work done on alkaline earth 

doped alkali halides. 

++ 
The degree of hardening obtained by the doping of KCl with Eu as 

compared to pure KCl was measured by uniaxial compression. There has 

been considerable work done with various alkali halides and many diva-

lent ions. The increase in hardness observed in KCl when doped with 

++ 
Eu will be compared to theory, to work done on NaCl, NaBr, and KBr 

++ ++ ++ 
containing divalent additions of Ca , Sr and Ba This work was 

done by Chin, et al. (8) and by Pratt et al. (9). The results will also 

be compared to results obtained by Sibley et al. (10) on KCl doped with 

++ 
Sr 



CHAPTER II 

THEORY 

Fleischer (11) has shown theoretically that the increased flow 

stress due to a tetragonal defect is proportional to the square root of 

the defect concentration. The crystal yields under stress by disloca-

tions moving along slip planes. When impurity-vacancy pairs are present 

one must consider the dislocation-defect interaction. Fleischer assumes 

the interaction to be of a short range nature, and the defect concentra-

tion to be small. Only those defects which lie along the slip plane 

were considered. If each defect exerts a force F on the dislocation, 
max 

then the maximum force per unit length of dislocation is F /£, where £ 
max 

is the average distance between defects. The stress necessary to move 

the dislocation must be increased by an amount 

~T F /b£ 
max 

where b is the magnitude of the Burger's vector" The atomic defect con

centration C on the slip plane is A/£ 2 where A is the area the defect 

occupies. Thus 

~T F C~/bA~ 
max 

giving a C~ relationship. Fleischer relates the force F to the shear 
max 

modulus G and geometrical factors. As a simplification the increase in 

the flow stress predicted by this theory can be written as 

3 



~ (G/n) C . 
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Fleischer has calculated n to be 10 for an interstitial defect and to be 

100 for a divacancy defect. This theory is in good agreement with the 

results obtained by Chin, et al. (8) and by Sibley, et al. (10). 

Pratt, et al. (9) have proposed a treatment of the Snoek effect 

that considers the dislocation-defect interaction to be long ranged in 

nature. They suggest a long range ordering of the impurity-vacancy 

dipoles in the stress field of a moving dislocation. In an unstrained 

alkali halide lattice all of the twelve impurity-vacancy pair orienta-

tions are equivalent in energy, whereas in the stress field of a dislo-

cation t~is is no longer true. The dipoles or impurity-vacancy pairs 
I . 
I 

will ass~e the orientations of lowest energy provided they are free to 

reorient. Along a stationary dislocation the dipoles will be distributed 

in the stress field among the twelve possible orientations according to 

a Boltzmann distribution, lowering the energy of the dislocation. If it 

were now possible to freeze in this distribution and move the disloca-

tion out of this ordered atmosphere into one of random distribution the 

difference in energy of the two states must be supplied by the applied 

stress. The depth of the energy well produced is proportional to the 

atomic concentration of dipoles. If the dislocation is moving, and the 

dipoles have enough time to reorient while it is passing them, the dis-

location will appear to drag an ordered atmosphere along with it. In a 

steady state the dislocation will be part way up on the side of the 

potential valley, experiencing a continuous retarding force. Thus the 

flow stress would be predicted to be proportional to the concentration 

of dipoles. The work done by Pratt, et al. (9) on NaCl with Ca++ as the 
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divalent impurity is in good agreement with this theory. In summary, 

the two theories are, one that the interaction between the dislocation 

and impurity-vacancy pair is short ranged giving a C~ dependency, and 

one suggesting a long ranged interaction giving a linear in C dependency. 



CHAPTER III 

EXPERIMENTAL PROCEDURE 

Crystal Growth 

The crystal growth phase of this project was to provide single 

crystals for mechanical measurements on pure KCl and KCl doped with vary-

ing concentrations of EuCl3 o The crystals were pulled by theKyropoulous-

Czochralski method from starting material that was first treated by "Re-

active Atmosphere Processing". To eliminate oxygen compounds in the 

starting material boules were grown in a Bridgman crystal growth system 

using a technique developed by Pastor and Pastor (12), in which cc14 

vapor in an inert gas atmosphere is passed over the melt. At high tern-

peratures the cc14 breaks down and Cl is rele~sed which displaces the 

oxygen compounds in the melto The procedure is as follows. A vitreous 

carbon crucible is filled with Baker Analyzed KCl powder along with the 

appropriate amount of Euc1 3 for the desired dopant concentrationo The 

crucible is placed in a mullite growth chamber, and the chamber purged 

of air with gettered Argon for a period of two to three hourso cc1 4 is 

then started bubbling into the chamber at a rate of 10 to 16 bubbles 

per minute. The gas and starting material are mixed by raising the tern-

perature to 300°C and cycling the furnace at a rate of 15 mm/hr. This 

step is repeated at 600°c. 
0 

After the 600 C cycle the furnace is raised 

0 
to 900 C to melt the KCl, and a growth run is started at a furnace lift 

rate of 0.75 mm/hr. At the end of the growth run the furnace is pro-

6 
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grammed down to room temperature and the boule removed. Prior to being 

placed in the Kyropoulous furnace the top of the boule is removed so 

that any impurities which may have been picked up by the zone refining 

action of. the Bridgman furnace are removed. The boule is then polished 

with HCl and rinsed in acetone. A number of crystals were grown with Eu 

concentrations from 0 to 500 atomic ppm. 

Dopant Concentration Analysis 

In order to determine flow stress as a function of concentration it 

was necessary to find a.method whereby each sample could be non-destruc-

tively measured for dopqnt concentration. 

++ . Eu has two strong absorpt1on bands between 200 and 400 nm (13) as 

shown in Figure 1. The absorption band peak at 243 nm can be used 

routinely to determine the Eu concentration in the mechanical samples if 

the peak has been calibrated against the Eu concentration as found by 

chemical means. This peak was selected because it shows less structure 

than the 330 nm peak. By performing this: calibration it was found that 

the concentration could be .found by the equation 

C = 17.2 a 
Eu 

where CEu is the Eu concentration in atomic parts per million and a is 

the 243 nm band peak absorption coefficient as measured with a Cary 14 

spectrophotometer. This calibration equation was obtained in the fol-

lowing manner. The value a was measured on several samples of various 

concentrations, and then the actual concentration of Eu was measured by 

absorption spectroscopy. 

In order to calibrate the Perkin Elmer model 403 atomic absorption 
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spectrometer standard samples were prepared by disolving known quanti-

ties of Euc13 in distilled water. The atomic absorption spectrometer 

was calibrated to read in parts per million per milliliter by ionizing 

the standards in a nitrous oxide and acetylene flame and measuring the 

0 
absorption of the Eu 4594A line. The calibration measurements were in 

agreement to within 1.5% both before and after the test run. 

Optical test samples were prepared in the following way, Thin 

samples were cleaved from several doped crystals of different concentra-

tions. The samples were cleaved perpendicular to the growth axis in 

order to have samples of uniform dopant concentration. These samples 

were measured on a Cary 14 spectrophotometer to obtain their optical 

absorption in order that the value for a could be determined for the 243 

nm band. 

These optical samples were subsequently run on the atomic absorption 

spectrometer to evaluate the Eu concentration. The masses of the samples 

were determined by measuring on an analytical beam balance. The samples 

were dissolved in known quantities of distilled water, and the atomic 

absorption measured. Each sample was measured several times, and all 

values were within 1.4% of each other. All atomic absorption samples 

had Eu concentrations between 0.0 and 19.0 ppm per milliliter of H20. 

This result gave the optical samples concentrations ranging from 0 to 

approximately 430 ppm atomic with corresponding a values between 0 and 

-1 
25 em • Figure 2 shows that Eu concentration varies linearly as a 

function of the 243 nm band peak absorption coefficient and that the C 
Eu 

versus a line has a slope of 17.2. From this the equation 

CEu 17.2 a 
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is obtained. 

Flow Stress Measurements 

The mechanical strength of KCl:Eu as a function of Eu concentration 

was measured under uniaxial compression for a series of samples from 

different crystal boules. From this the flow stress or yield point was 

compared to the dopant concentration. In order to insure homogeneity 

thin slabs were cleaved from single crystal ingots perpendicular to the 

growth ~xis. Each slab measured approximately 1.5 mm in thickness. The 

u.v. optical absorption of each slab was then measured on a Cary 14 

spectrophotometer. The absorption coefficient a was calculated and used 

to determine the Eu concentration. 

In order to insure uniformity in thermal strain and aggregation of 

++ + 
the Eu and associated K vacancy in the different slabs, the slabs 

were held at 675°C and quenched on a metal block. No observable strain 

was detected under crossed polarizer.s. 

The flow stress was measured under uniaxial compression along the 

<100> on an Instron testing machine which records the applied force on a 

sample as it is being compressed at a constant strain rate. From the 

previously prepared KCl~Eu slabs flow stress samples were cleaved. A 

typical sample would measure 1.5 x 2.5 x 6 mm. Since the sample length 

was over th:r:ee times the width, end effects were small and could be 

neglected. Samples were compressed with a crosshead speed of 0.05 

-3 -1 
em/min •. This corresponds to a strain rate of 10 sec • Some typical 

stress~strain curves for KCl:Eu~are given in Figure 3. The engineering 

flow stress T , .is taken to be the value at the intersection of the 
e 

tangents to the elastic and the first plastic portions of the curve as 
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shown in Figure 3. The individual flow stresses of from five to seven 

samples were averaged to obtain the values recorded for each dopant con

centration. In order to compare the results with theory, the resolved 

flow stress Tr' the component of,the flow stress parallel to the primary 

slip directions was calculated. In KCl the primary slip direction is in 

the <110>; therefore, the resolved flow stre9s will equal one half the 

engineering flow stress. 



CHAPTER IV 

RESULTS AND DISCUSS~ON 

++ 
Eu was found to be an effective strengthening dopant for KCl 

single crystals. The increase in flow stress was shown to be a function 

of the concentration and the amount of aggregation of the impurity-

vacancy pairs. Figure 4 shows the flow stress versus Eu concentration 

0 
for samples cleaved from freshly grown crystals, annealed at 675 C and 

quickly cooled to room temperature. The flow stress is seen to increase 

linearly with concentration. This result is in contrast to the results 

for KCl:Sr obtained in this laboratory (10) which show a /C dependence. 

The KCl:Sr curve is also shown in Figure 4. The data for the quickly 

++ 
cooled samples show that Eu is an effective hardening agent but that 

it is less effective than the alkaline earths. Crystals that were 

allowed to age at room temperature for 6 months or more often showed an 

increase in flow stress as shown by the solid points in Figure 5 which 

appear to approach the KCl:Sr line. 

The linear in C relationship does not agree with the theory sug-

gested.by Fleischer (11). Since Fleischer's theory assumes that the in-

teractions are short ranged in nature, one can construe that the inter-

actions are of a long range nature. This is in agreement with the 

treatment .. of .the Snoek effect by Pratt, et al. (9) that there is a long 

ranged ordering.of .the impurity-,.vacancy pairs when in the stress field 

of a moving dislocation. This also suggests that the majority of the 

14 
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impurity-vacancies are arranged as simple dipoles rather than in larger 

aggregates. If the dipoles had combined to form larger complexes, then 

the vacancies would no longer be free to reorient themselves and should 

u 
then approach some C dependency as described by Fliescher, where u is 

some order less than one. This order will be dependent on the amount of 

aggregation of the dipoles. A dependence of this nature has been ob-

served in the aged crystals. The crystals used in Figure 5 have been 

aged for approximately one year then quick cooled from 675°c. This sug

++ 
gests that there is an aggreation of the Eu -vacancy dipoles with time. 

++ 
When comparing the results obtained from the Eu doped KCl crys-

++ 
tals to the results of Pratt, et al. (9) for NaCl doped with Ca one 

sees agreement in the linear in C dependence obtained for the freshly 

grown crystals. 

++ 
In the aged Eu doped crystals there is a great similarity between 

the results obtained and the results obtained for KCl:Sr by Sibley, et 

al. (10). The aged crystals also agree with the results by Chin et al. 

(8) • 



FUTURE WORK 

The difference in results from the freshly grown crystals and aged 

crystals should have further study. The flow stress as compared to 

aggregation could be studied by measurement of the dielectric constant. 

A possible method of producing reproducible aggregation levels would be 

heat treatment to enhance aggregation or break up aggregates depending 

on the temperature used. 

A study of this nature may aid in explaining the difference in re-

1 .. d . . ++ ++ su ts obta1ne when KCl 1s doped w1th Eu and Sr 

18 
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APPENDIX 

++ 
TABULATION OF FLOW STRESS OF KCl:Eu CRYSTALS 

Concentration Flow Stress 
Crystal Number (Atomic ppm) (MN/m2 ) 

020874 0 1.68 

051975 0 1. 24 

030475 47 1.32 

030475 60 1.72 

030475 61 1. 78 

031775 72 1. 74 

031775 84 2.42 

060475 164 2.14; 

032775 194 2.70 

042975 279 2.96 

040275 283 2.86 

040275 290 2.60 

061675 308 2.92 

061675 325 3.07 

042975 368 3.57 

060475 389 3 0 77 

061675 414 3.67 

040275 418 3.83 

061675 320 3.04 

061675 308 2.88 

061675 470 3.99 
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Condition 

Fresh 

Fresh 

Fresh 

Fresh 

Fresh 

Fresh 

Fresh 

Fresh 

Fresh 

Fresh 

Fresh 

Fresh 

Fresh 

Fresh 

Fresh 

Fresh 

Fresh 

Fresh 

Aged 

Aged 

Aged 
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