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CHAPTER I 

INTRODUCTION 

Stream communities have been classified by various methods such as 

productivity (Odum 1956), species composition (Forbes 1913), faunal and 

floral zonation (Fo~bes and Richardson 1913), community diversity 

(Margalef 1951), and various physicochemical parameters (Hynes 1960). 

Gravelius (1914) s'uggested classifying streams according to the degree 

of branching, with the largest stream in a system being first order. 

A scheme based on the inverse of Gravelius' system was devised by Horton 

(1945) and modified by Strahler (1954, 1957). In Horton's system of 

stream order analysis, first order streams are the smallest unbranched 

tributaries in a basin. Two first order streams join to form a second 

order, and successive orders are formed by the joining of two streams of 

the preceding order. Order designation does not change with the 

entrance of an adventitious stream of a lower order into a higher order 

stream. 

Horton's system has several inherent physical characteristics. An 

inverse geometric relationship exists between stream order and total 

stream length and between stream order and average gradient (Horton 

. 1945). Stream order also has a direct geometric relationship with mean 

length of streams and drainage area (Horton 1945). Strahler ( 1957) 

showed a direct relationship between stream order and watershed dimen­

sions, channel size, and stream discharge. Physicochemical fluctuations 
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are more markedinupper stream reaches than in higher orders (Harrel and 

Dorris 1968, Whiteside and McNatt 1972). Turbidity and water tempera-

ture decrease with increasing stream order, while alkalinity and conduc-

tivity increase (Harrel and Dorris 1968). Thus, certain abiotic 

conditions can be predicted from a knowledge of stream order. 

Streams of a specific order have certain predictable biological, as 

well as physicochemical characteristics. Species diversity, redundancy, 

and heterogeneity of benthic macroinvertebrates decrease as stream order 

increases. In third to fifth order streams, annual numbers of species 

and total community species diversity increased 

A decrease in the sixth order was attributed to 

(Harrel and Dorris 

flooding and leavy 

siltation. Species diversity of fish has been shown to increase with 

increasing stream order (Kuehne 1962, Harrel, et al. 1967, Whiteside and 

McNatt 1972, Lotrich 1973). Increases in fish diversity have been 

attributed to greater abundance and variety of food (Lotrich 1973), 

increases in habitat, and decreases in environmental harshness in higher 

stream orders (Harrel, et al. 1967). Thus, higher stream orders support 

a more diverse assemblage of fish and benthic macroinvertebrates. 

Although the biological effects of pollution have been studied in 

many streams, the effects of succession were not considered. The sub-

jectiveness of conventional methods of stream classification makes it 

difficult to locate the same successional stages in two different 

streams. Harrel and Dorris (1968) stated that because stream order 

analysis allows quantitative comparisons of streams in the s~e order, 
i 

it may be possible to separate the effects of pollution from \hose of 

natural succession. 

The concept of stream order has been applied mainly to fish and 



3 

benthic macroinvertebrates. Most attempts to quantify natural varia-

tion of periphyton assemblages merely list the algae and their associa-

tions (Budde 1932, Symoens 1951:, Margalef 1960). A need exists to 

separate the effects of pollution and succession on periphyton, since 

these organisms are commonly used in pollution studies. In the present 

study, an attempt was made: to use stream order to delineate the natural 

succession of periphyton assemblages. 

A number of different indices have been proposed to evaluate biotic 

assemblages in streams. The following d expression is a reasonable 

mea~urement of species diversity: 

d I c:) log2 C:) (Patten 1962), 

where n. is the sample estimate of the number of individuals in the i'th 
1 

species and n is the total number of individuals sampled. Weber ( 1973) 

suggested that d lacks the sensitivity to show differences in slight to 

moderate levels of degradation. An equitability expression {J) such as 

the following may show these changes: 

J {Pielou 1966), 

with S being the number of species per sample. This equation is rela-

tively indifferent to the number of species in a sample {Sheldon 1969). 

Equations related to variety {d) have also been proposed such as: 

d = 
S-1 
inn 

(Margalef 1958). 

In the present study ct, J, and d in different stream orders were 

examined. 

Two commonly measured parameters of the periphyton assemblage are 



ash-free weight and chlorophyll .!!.· Grzenda and Brehmer ( 1960) measured 

both parameters in Red Cedar River, Michigan. ,Ash-free weight is a measure 

of the organic matter in the periphyton and averages about 20% of the dry 

weight (Sladecek and Sladeckova 196~). Chlorophyll~ has been used to 

approximate the photosynthetic rate in streams (McConnell and Sigler 

1959 }. Pheophytin .!!_, a degradation product of chlorophyll .!!_, is used 

as a physiological condition indicator that varies with different en-

vironmental conditions (Yentsch and Menzel 1963). The usefulness of 

these parameters in evaluating periphyton in different stream orders was 

evaluated in the present study. 

The following null hypotheses were tested; I 
1. H : There is no significant difference in species composition 

0 

of periphyton in different stream orders. 

2. H : There is 
0 

no significant difference in species diversity, 

equi tabil i ty, and variety of periphyton in different stream 

orders. 

3. H: There is'no significant difference in chlorophyll a of 
0 

periphyton per sample in different stream orders. 

~. H : There is no significant difference in ash-free weight of 
0 

periphyton in different stream orders. 



CHAPTER II 

LITERATURE REVIEW 

Periphyton is commonly defined as the assemblage of organisms 

growing upon free surfaces of submerged objects in water. This slippery 

brown or green layer is usually found adhering to the surfaces of water 

plants, wood, stones, or certain other objects immersed in water and may 

develop from a few gelatinous plants into a woolly, felted coat that may 

be slippery or crusty with contained marl or sand (Young 194,5). Cooke 

(1956) and Sladeckova (1962) discussed periphyton terminology. Several 

reviews of methodology are also available (Lund and Talling 1957, 

Sladeckova 1962, Sladecek and Sladeckova 1964,). Current recommended 

methods for periphyton collection are detailed by Weber (1973). 

Early studies of stream periphyton were qualitative since removal 

of periphyton for quantitative analysis from rough and uneven natural 

substrate is difficult. Thus, many authors resorted to using submerged 

artificial substrates. The first documented use of artificial substrate 

was in 1915 (Naumann, cf. Cooke 1956); however, the method was not 

popularized until several years later by Butcher in a series of papers 

(1932, 1932a, 194,0, 194,6, 194,7). Many different types of artificial 

substrates have been used such as concrete cylinders (McConnell and 

Sigler 1959) 1 wooden platforms (Weigert and Fraleigh 1972), and styro­

foam floats (Hahn and Hellerman 1963). The two most common types of 

substrates used today are glass slides (Butcher 1932) and plexiglass 
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plates (Grzenda and Brehmer 1960). Artificial substrates are typically 

either attached to a horizontal bar on a,stake driven into the stream 

bed (Butcher 1932) or attached on floats called diatometers where the 

substrate is suspended just below the surface of the water (Patrie~, 

et al. 1954). Since artificial substrates are of known area, quantita­

tive samples can be taken. 

The pattern of succession on artificial substrates prior to algal 

attachment has been well studied. It is probable that sorption of 

dissolved organic matter on. to the artificial substrate precedes bac­

terial colonization (Hutchinson 1975). After about 1 day's exposure 

there is an appreciable population of bacteria, then as other organisms 

appear bacteria tend to decline in numbers (Karsinkin 1934, cf. 

Hutchinson 1975). The first eucaryotic colonists are flagellates and 

sessile protozoa, followed by rotifers, motile ciliates, and diatoms 

(Ivlev 1933). The diatoms begin to develop after about 2 days (Patrick 

1967) 0 

Douglas (1958) questioned whether the same species occur in the 

6 

same quantity and with the same spatial relationships on artificial 

substrate as on natural substrate. Between 75 to 85% of the diatom taxa 

collected from natural substrates are collected on glass slides (Patrick, 

et al. 1954). It has also been suggested that at low water temperatures, 

styrofoam substrates prove more representative than smooth artificial 

substrateso However, Dillard (1969, 1971) determined that the glass 

slide method was superior because of its simplicity and reproducibility 

and that low temperatures did not significantly affect the results of 

the glass slides. Castenholtz (1961) evaluated periphyton attachment 

and production on both smooth and frosted glass and plexiglass. In 
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addition, he looked at black-backed, white-backed, and clear plates and 

found no significant differences. He also suggested that in lakes 

horizontal slides come closer to duplicating natural epilithic 

assemblages than vertical slides. However, artificial substrate in 

streams are usually placed in a vertical position, parallel to the 

current, to avoid siltation (Patrick, et al. 1954). 

There are several factors that influence attachment of periphyton 

to artificial substrates. The kinds of organisms present, the number of 

available propagules, and the succession before algal attachment seem to 

be the most important biological factors. Several investigators have 

shown that fast currents retard the initial attachment of algae to glass 

slides, but after 3 to 4 weeks the problem was alleviated and the faster 

cvrrents produced the greater biomass (Mcintire 1966, Reisen and Spencer 

1970). Detergents may also interfere with the adhesion of periphyton 

to a substrate (Cooper and Wilhm 1975). 

The artificial substrate method has been used to produce estimates 

of production. Newcombe (1949, 1950) was among the first to use arti-

ficial substrate to estimate lake periphyton production. He realized 

that the ash-free dry weight of periphyton was an estimate of net 

primary production. Sladecek and Sladeckova (1964) reviewed the dif-

ferent methods used for the analysis of production on artificial sub~ 

strate. The instantaneous biomass accumulation method (Kevern, et al. 

1966) provided a refinement of production estimates in that only the 

acceleration phase of periphyton growth is considered. Thus, estimates 

from.the instantaneous biomass accumulation method are higher. Cooper 

and Wilhm (1975) found that production, estimated by this method ranged 

-2 -1 from 0.53 to 3.73 g m day in Skeleton Creek, Oklahoma. In the 



-2 -1 
Jordan River, Michigan, production values ranged from 0.01 g m day in 

-2 -1 
a non-polluted area to 0.10 g m day in an area influenced by fish 

hatchery effluent (Ball et al. 1973). In addition to perturbation 

studies the method holds promise as a bioassay technique (So L .. Burks, 

personal communication). 

Because chlorophyll ~· roughly approximates the rate of photosyn-

thesis, it has been used as a measure of productivity (Ryther 1956, 

Waters 1961, Yount 1956). Several studies have shown a strong positive 

correlation between chlorophyll content and biomass (McConnell and 

Sigl,er 1959, Grzenda and Brehmer 1960). This relationship has enabled 

8 

biomass to be used as a predictor of chlorophyll ~ (Fraleigh and Weigert 

1975). Yount (1956) used the rate of chlorophyll accumulation on arti-

ficial substrate as a measure of productivity. McConnell and Sigler 

(1959) used chlorophyll on concrete cylinders to measure productivity. 

They demonstrate the superiority of this method in shallow streams over 

Odum 1 s ( 1956) diurnal oxygen curve technique. Chlorophyll a has been 

substituted for ash-free dry weight in the instantaneous biomass accumu~ 

lation method, in order to eliminate the biomass of consumers (Wilhm and 

Long 1969). A few studies have used this method in laboratory situa-

tions (Wilhm and Long 1969, Kehde and Wilhm 1972), but not until 

recently has it been applied to a natural situation (Tilley and Haushild 

1975a, 1975b). However, the variability of chlorophyll ~is a drawback. 

This variation is attributed to a combination of organic detritus 

accumulation and death of individuals in the assemblage (Grzenda and 

Grehmer 1960). 

Succession is an incessant process which results in temporal 

changes in both the environment and community (Margalef 1960). It is 
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also an orderly, directional process which is predictable and culminates 

in a stabilized ecosystem (E. P. Odum 1969, 1971). The strategy of 

succession is to obtain homeostasis with the physical environment. The 

relegation of increasingly more energy to maintenance during succession 

is one means by which a system reaches homeostasis (H. T. Odum and 

Pinkerton 1955). Succession starts when there are enough nutrients to 

support a heavy growth and continues until those nutrients are used up 

(Margalef 1958). This depletion of nutrients along with the shift from 

inorganic to organic nutrients causes the above mentioned shift in 

energy flows (E. P. Odum 1969). 

The best studied type of succession is temporal. In the first 

stage of succession in marine phytoplankton, small-celled organisms 

have a high surface/volume ratio, simple life histories, and rapid rates 

of increase dominate. This stage is then followed by increasingly 

larger organisms of the same species or of different species with more 

complex life cycles, smaller surface/volume ratios, and lower rates of 

potential increase (Margalef 1958). The shift in nutrients from in­

organic to organic may be the cause of size changes during succession. 

The selective advantage given to small sized organisms in early succes~ 

sion is that they have a greater surface/volume ratio and are therefore 

more efficient at taking up the nutrients (Frank 1968, E. P. Odum 1969). 

As succession proceeds the inorganic nutrients become tied up in biomass, 

thus large organisms with large storage capacities for exploiting new 

situations are selected (E. P. Odum 1969). 

Longitudinal succession is the only general and unifying biological 

characteristic of streams (Margalef 1960). Eddy (1925) found diatoms 

(mostly Synedra), Euglena and Phacus were dominants at the source of a 
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glacial stream. At a descent of 6 m filamentous algae first appeared. 

Attempts have been made to delineate successional stages in a stream by 

identification of algal communities (Margalef 1960). Johnson et al. 

(1975) studied diatom populations in rhithron and potamon regions of 

Oak Creek, Arizona. Rhithron regions have lower temperatures, higher 

dissolved oxygen, and faster currents than the downstream potamon region. 

They point out that Meridian circulare, Nitzschia palea, Gomphonema 

parvulum, and Fragilaria vaucheriae are representative of the rhithron~ 

and that Epithemia sorex, !• turgida, and Amphipleura pellucida are 

representative of the potamon. In addition, 34 species were found at 

rhithron stations and only 20 at potamon stations. The number of 

species in the Metolius River, Oregon, tended to increase downstream and 

then level off, with no filamentous algae at the headwaters (Sherman and 

Phinney 1971). In a lake-fed mountain stream in the Rila Mountains, 

Bulgaria, the number of species tended to decrease with decreasing 

altitudes (Kawecka 1974). However, blue-green algae dominated along 

with diatoms at the headwaters. Gomphonema olivaceum, Diatoma vulgare, 

Hannaea arcus, Hydrurus foetidus, and Eunotia pectinalis have all been 

recognized as pioneer organisms in streams (Blum 1954, Margalef 1960, 

Dillard 1969). 

Seasonal variation of periphyton in streams is well. studied. 

Butcher (1932) found two annual phases in a large fast-flowing English 

river, the diatom phase in spring and the Cocconeis-Ulvella-Chamesiphon 

phase in the winter. Butcher (1940) found no seasonal variation in a 

slow-flowing English canal. In an unpolluted stretch of the Saline 

River, Cladophora glomerata was the dominant in spring and Diatoma 

vulgare and Gomphonema olivaceum were dominants in winter. In a 
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polluted stretch Nitzschia palea and Stigeoclonium tenue were the summer 

dominants, with Tetraspora sp., Navicula atomus, and Spirogyra sp. as 

dominants at other seasons (Blum 1957). Douglas (1958) discusses 

periodicity of Achnanthes spp. In the West Gallatin River numbers of 

algae varied somewhat proportionally to water temperature, except during 

periods of high discharge when numbers were lowest (Gumtow 1955). Hynes 

(1970) points out that temperature and light influence seasonal changes 

1n flora, but are difficult to disentangle from one another. 

An increase in the number of niches occurs during succession 

(Margalef 1958). Odum (1969) states that the behavior of species di-

versity may depend on whether the increase in potential niches resulting 

from increased biomass, pattern diversity, and other biological para­

meters exceeds the countereffects of increasing size and competition. 

Some authors have found that species diversity steadily increases during 

succession (Margalef 1968), while others have found that it increases 

during early succession and then decreases in the later stages (Whitaker 

1965). With an increase in the number of niches, an increased variety 

of organisms can be developed and the dominance of any one species or 

any small group of species is reduced (Odum 1969). 

A few reviews of d~val.ues are available for benthic macroinverte­

brates (Wilhm and Dorris 1968, Wilhm 1970), phytoplankton (Staub~ et al. 

1970), and fish (Wilhm 1976). Diversity values for benthic macro­

invertebrates of less than one have been found in areas of heavy pollu­

tion, with values exceeding three in clean water (Wilhm and Dorris 1968). 

Staubj et al. reported d values of less than one in areas of severe 

pollution 7 from one to two areas of moderate pollution, from two to 

three in areas of light pollution, and values from three to four in 
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slightly polluted areas. 

Even though Wilhm (1976) does not evaluate d on a pollutional 

basis, it can be seen that values are lower for fish than other 

organisms. Patrick (1968) found that diversity values were similar in 

similar ecological conditions. In a relatively eutrophic lake d values 

of 2.03 to 3.17 were found (Brown 1973). Ball et al. (1973) looked at 

periphyton species diversity and equitability in three Michigan streams 

varying from undisturbed to heavily polluted. They found high diversity 

indices were associated with low water quality and vice versa, and that 

equitability showed no trends related to disturbances. However, others 

have shown the species diversity of periphyton improves with improving 

water quality (Bahls 1973, Cooper and Willun 1975). 



CHAPTER III 

DESCRIPT!ON OF OTTER CREEK 

General Description 

Otter Creek, an intermittent, sixth-order stream in northcentral 

Oklahoma (Figure 1), flows southward from near Covington into Skeleton 

Creek, a tributary of the Cimarron River. It is ~1.8 km long with an 

average gradient of 1.8 m/km. The basin has an irregular perimeter of 

2 
106.2 km and an area of 302.1 km • Underlying the entire area is the 

"Permian red beds" named for their color and geologic time period when 

formed (Fitzpatrick, et al. 1939). The Hennessey formation, made up 

primarily of shales with some gypsum and lenticular sandstone, is 

exposed in the upper parts of the basin. In the rest of the basin, the 

Garber formation is exposed, which consists of alternating sandstone and 

shales with interstratified beds of limestone and gypsum (USGS 19~5). 

Although Garber sandstone is one of the most important aquifers in the 

state, the water is hard and high in sulfates and chlorides (USGS 19~5). 

The soils are of the Renfrow-Zaneis-Vernon association and are composed 

of sandy or clayey silts and loams (Gray and Galloway 1959). The basin 

is part of the mixed-grass prairie association with trees being mainly 

restricted to the valleys. Much of the land in the area is either 

pasture or cultivated. 

The climate is long-summer continental with an average precipita-

tion of 81 em per year and an average temperature of 16 C. Wide 

13 
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4 km 

Skeleton Creek 

Figure 1. Otter Creek Drainage Basin and Collecting 
Stations. Stations are as follows: 11 
and 12 are Jrd order, 8 and 10 are 4th 
order, 6 and 7 are 5th order, 1 and 2 
are 6th order. 

14 
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fluctuations of annual precipitation and daily temperatures occur with 

severe droughts being common (Fitzpatrick, et al. 1939, Galloway 1960). 

Stream Order Analysis 

Table I shows a stream order analysis of Otter Creek. The bifur-

cation ratio, the ratio between the number of streams in a certain order 

and the number in the next higher order, is 3.97. This is high and 

indicates a well-dissected basin (Horton 1945). The stream-length 

ratio, the ratio of the average length of streams in a certain order to 

the average length in the next lower order, is 2.08. The ratio is low 

indicating a well-drained basin. A low drainage density (total stream 

length/area) of 2.04 and a high stream frequency (number of streams/area) 

of 3.25 verify that it is a well-drained basin. 

TABLE I 

STREAM ORDER ANALYSIS OF OTTER CREEK DRAINAGE BASIN (Harrel 1966) 

Order Number of Streams Total Length Average Length Mean Drainage Area 
(km) (km) (km2) 

1 74A 300.6 o.4o 

2 189 16).8 0~87 

3 39 83.4 2.14 5.3 

4 7 35.2 5.04 27.9 

5 2 19.5 9-75 126.2 

6 1 14.6 14.60 302.1 
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Sampling Stations 

Eight stations were selected from the stations established by 

Harrel (1966). Stations land 2 are in the sixth order, 6 and 7 1n the 

fifth order, 8 and 10 are in the fourth order, and 11 and 12 are in the 

third order. 



CHAPTER IV 

MATERIALS AND METHODS 

Periphyton samples were taken from two stations each at third, 

fourth, fifth, and sixth order streams~ At each station four diato­

meters were exposed for 3 wk periods in winter, spring, and summer. 

Each diatometer consisted of six 8 x 11 em plexiglass plates supported 

by two parallel threaded rods, 30.5 em in length. The rods were 

attached on each end to two 20 x 2.5 x 5.0 em redwood slats which pro­

vide flotation. The plates were separated on the rods by 2.5 em lengths 

of polyethylene tubing. A ~ em length of tubing separated the end 

plates from the slats. The samplers were set in the stream so that the 

plexiglas plates were parallel 'to the current. Two samples each were 

collected at each station for determining species identification, ash­

free weight, and chlorophyll ~· Each sample was taken by scraping two 

plates randomly selected from two diatometers into collection jars 

containing FAA, ethanol, and distilled water, respectively. Chlorophyll 

a and ash-free weight were analyzed immediately. 

Ash-free weight was determined by washing the periphyton into a 

tared crucible and drying in an oven at 105 C for 2~ h (Weber 1973). 

The material was then ashed at 500 C for 1 h, the ash rewetted, and 

redried at 105 C for ~ h. Before dry and ash weights were determined 

the crucibles were cooled in a desiccator. 

Chlorophyll a and pheophytin ~ were extracted in 20 ml of 90% 

17 
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aqueous acetone (Weber 1973). The extraction was done at 4 C for 24 h 

in the dark. A Beckman DBG spectrophotometer was used to determine the 

concentrations of chlorophyll ~ and pheophytin ~ by the equations of 

Lorenzen (1967). 

Periphyton identification samples were analyzed on cleared 

Millipore membrane filters with pore size 0.45 IJ.. Permanent mounts 

were made with Arochlor 5442. From each sample two aliquots were 

filtered. From each filter 200 individuals were counted. The numbers 

from each filter were pooled and used for calculations. 

The following split-plot in time analysis of variance was used 

(Steel and Torrie 1960): 

Source d. f. 

Total 35 

Orders 3 

Stations 1 

Station x Order 3 

Error(a) 8 

Periods 2 

Period X Order 6 

Period X Station 2 

Period X Station x Order 4 

Error(b) 6 

A protected Least Significant Difference was used where significant 

differences occurred. 



CHAPTER V 

RESULTS 

Several samples were not collected because of vandalism and bad 

weather. During winter pnly one sample per station was collected and 

inclement weather prevented the resetting of samplers. In spring 

stations 1, ~' 77 and 8 were lost because of heavy rains and were 

reestablished. Heavy rains again destroyed the samplers at stations 1 

and 8 and they were not reset. Only in summer were all samplers col-

lected. The stations in order 3 through 5 did not dry up as was found 

by Harrel (1966). 

Species Composition 

Eighty-five taxa o:f periphyton were identified from Otter Creek 

(Table II), 78 belonging to the Bacillariophyta. There were 52, 56, and 

69 taxa identified in winter, spring, and summer, respectively. During 

winter Gomphonema olivaceum comprised 2~% of the total taxa collected 

and Stigeoclonium tenue made up over 1~%. Navicula tripunctata and 

Nitzschia palea were the most abundant taxa present in the whole study 

as well as in spring, making up 2o% and 11%, respectively, in spring. 
! 

In summer, Diploneis smithii constituted 17% and N. palea 11% of the 

number of taxa. 

Using the method of Williams and Scott (1962) the species composi-

tion in Otter Creek was compared among orders (Table III). During the 

19 



TABLE II 

PERIPHYTON TAXA COLLECTED 
IN OTTER CREEK, 1975* 

BACILLARIOPHYTA 

Centrales 

Coscinodiscus sp. 
Cyclotella atomus Hust. 
Cyclotella stelligera Cl. & Grun. 
Cyclotella meneghiniana Kutz. 
Melosira italica (Ehr.) Kutz. 
Melosira varians Ag. 
Stephanodiscus astrea (Ehr.) Grun. 
Stephanodiscus hantzschii Grun. 

Pennales 

Achnanthes exigua var. heterovalva Krasske 
Achnanthes haukiana Grun. 
Achnanthes lanceolata (Breb.) Grun. 
Achnanthes-minutissima Kutz. 
Amphipleura pellucida Kutz. 
Amphora ovalis (Kutz.) Kutz. 
Bacillaria paradoxa Gmel. 
Caloneis bacillum (Grun.) Cl. 
Caloneis lewisii Patr. 
Caloneis ventricosa (Ehr.) Meist. 
Cocconeis placentula Ehr. 
Cymatopleura elliptica (Breb.) W. Sm. 
Cymbella minuta Hilse ex Rabh. 
Diatoma vulgare Bory 
Diploneis smithii (Breb. ex W. Sm.) Cl. 
Entomoneis paludosa (W. Sm.) Reim. 
Eunotia curvata (Kutz.) Lagerst. 
Frustulia vulgaris (Thwaites) DeT. 
Gomphonema olivaceum (Lyngb.) Kutz. 
Gomphonema parvulum Kutz. 
Gomphonema subclavatum (Grun.) Grun. 
Gomphonema truncatum Ehr. 
Gyrosigma spencerii (Quek.) Griff. & Henfr. 
Meridion circulare (Grev.) Ag. 
Navicula angusta Grun. 
Navicula capitata Ehr. 
Navicula cryptocephala Kutz. 
Navicula cuspidata (Kutz.) Kutz. 
Navicula laevissima Kutz. 
Navicula minima Grun. 
Navicula mutica Kutz. 
Navicula pelliculosa (Breb. ex Kutz.) Hilse 
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TABLE II (Continued) 

Navicula pupula Kutz. 
Navicula pygmaea Kutz. 
Navicula salinarum Grun. 
Navicula tenera Hust. 
Navicula tripunctata (0. Mull.) Bory 
Navicula sp •. 1 
Navicula sp. 2 
Neidium affine (Ehr.) Pfi tz. 
Nitzschia acicularis W. Sm. 
Nitzschia amphibia Grun. 
Nitzschia angustata (W. Sm.) Grun. 
Nitzschia apiculata (Greg.) Grun. 
Nitzschia denticula Grun. 
Nitzschia filiformis (W. Sm.) Hust. 
Nitzschia hungarica Grun. 
Nitzschia linearis W. Sm. 
Nitzschia obtusa var. scalpelliformis Grun. 
Nitzschia palea (Kutz.) W. Sm. 
Nitzschia parvula Lewis 
Nitzschia sigma (Kutz.) W. Sm. 
Nitzschia sigmoidea (Ehr.) W. Sm. 
Nitzschia tryblionella Hantz. 
Nitzschia sp. 1 
Nitzschia sp. 2 
Pinnularia braunii (Grun.) Cl. 
Pleurosigma delicatulum W. Sm. 
Rhoicosphenia curvata (Kutz.) Grun. ex Rabh. 
Rhopalodia gibba (Ehr.) 0. Mull. 
Rhopalodia gibberula (Ehr.) 0. Mull. 
Surirell a angustata Kutz. 
Surirella brightwellii W. Sm. 
Surirella ovata Kutz. 
Surirella ovalis Breb. 
Surirella robusta var. splendida (Ehr.) V.He 
Surirella sp. 
Synedra f asci cul at a (Ag. ) Kutz. 
Synedra rumpens Kutz. 
Synedra ~ (Nitz.) Ehr. 

CHLOROPHYTA 

Cosmarium sp. 
Oedogonium sp. 
Spirogyra sp. 
Stigeoclonium tenue Huber 

EUGLENOPHYTA 

Euglena sp. 
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TABLE II (Continued) 

CYANOPHYTA 

Oscillatoria sp. 

Unknown 

Unidentifiable filament 

* Nomenclature follows Hustedt (1930), Prescott (1962), and 
Patrick and Reimer (1966, 1975). 



PERIOD 
3 

Winter Stigeoclonium ~ 33 

Gomphonema olivaceum 14 

Navicula cryptocephala 13 

Navicula sp. 1 6 

66 

Spring Gomphonema parvulum 22 

Nitzschia palea 18 

Nitzschia tryblionella 15 

Nitzschia amphibia _,2. 

64 

Summer Oscillatoria sp. 25 

Rhopalodia gibba 13 

Nitzschia obtusa 9 

Gomphonema parvulum _,2. 

56 

TABLE III 

FOUR MOST ABUNDANT SPECIES PER ORDER AND 
PERCENT COMPOSITION OF EACH 

ORDER 

4 5 --
~omph9ne~a oliva~e~_ 30 Gomphonema olivaceum 

Stigeoclonium tenue 25 Navicula c~toce~hala 

Cymbella minuta 8 Cymbella minuta 

Nitzschia amphibia ...]_ Navicula salinarum 

70 

Navicula tripunctata 56 Achnanthes lanceolata 

Bacillaria paradoxa 11 Cocc:oneis placentula 

Nitzschia amphib~ 8 !chn@thes minutissima 

Cyclotella meneghiniana -2. Nitzschia palea 

80 

DjplQ_nei_~ smi thii 33 Qip1Qn~i_s smi thii_ 

Nitzschia obtusa 18 Nitzschia palea 

Bacillaria paradoxa 8 Gomphonema subclavatum 

Nitzschia pale a ...]_ Bacillaria paradoxa 

66 

6 

36 Meridian circulare 16 

12 Gomphonema olivaceum 15 

9 Synedra ~ 15 

...]_ Navicula sp. 2 ~ 
64 58 

30 Cyclotella atomus 32 

16 Navicula tripunctata 23 

10 fiji tzsc:hia pale a 12 

...]_ Nitzschia amphibia 4 

63 71 

20 !1/itz.schia palea 20 

13 Navicula cryptocephala 17 

8 Navicula sp. 2 9 

...]_ Navicula tenera _,2. 

48 56 
1.\) 
\...:> 



winter G. olivaceum was abundant in all orders, while Meridian circulare 

was abundant only in the sixth order and ~· tenue only in the third and 

fourth orders. In spring ~· palea was abundant in all but the fourth 

order where N. tripunctata occurred in large numbers.· Diploneis smithii 

was abundant in summer only in the fourth and fifth orders. Nitzschia 

palea numbers increased with order and Oscillatoria sp. and Rhopalodia 

gibba were present as dominants only in the third order. 

When a split-plot in time Analysis of Variance (AOV) was conducted 

on the total number of species (S), stream order was found to have a 

significant effect [Observed Significance Level (OSL) < 0.005], but not 

period. However, when only the number of diatom species (Sd) were 

analyzed both order and period were significant (OSL < 0.05). When 

orders were compared by Least Significant Difference (LSD) for both S 

and Sd fourth and fifth order streams were not significantly different 

from each other (Table IV). When Sd was tested over periods, winter and 

spring values were not significantly different. 

Diversity Indices 

Species diversity (d) va1ues ranged from 2.45 to ).64 and averaged 

3.19 (Table IV). Values generally increase with an increase in stream 

order. In spring a significant decrease occurred between third and 

fourth order streams. The minimum diversity, observed in spring in the 

fourth order stream, resulted from the diatom Navicula tripunctata which 

comprised 56% of the total number collected. The dominance of this 

species also resulted in the mean diversity of the spring value to be 

less than the mean of winter or summer. The AOV revealed that there 

were significant differences due to period and stream order. Third and 



TABLE IV 

MEAN NUMBER OF SPECIES (S), NUMBER OF DIATOM SPECIES (Sd), SPECIES DIVERSITY (d), EQUITABILITY (J), 
AND VARIETY (d) OF PERIPHYTON ASSEMBLAGES BY STREAM ORDER AND PERIOD FOR OTTER CREEK, 1975* 

Variable 

s 

sd 

d 

Sampling 
Period 

Winter 

Spring 

Summer 

x 
Winter 

Spring 

Summer 

x 
Winter 

Spring 

Summer 

x 

3 4: 

24:.0 26.oO 

22.5 20.0 

21.5 29.5 

22.4: 26.3 

21.5 24:.0 

20.5 20.0 

20.8 28.8 

20.8 25.4: 

3.13 3.23 

3.00 2.4:5 

2.95 3.08 

3.01 2.96 

Order 
5 6 x 

23.5 23.5 24:.8 

26.0 27.5 24:.1 

29.3 31.5 27.9 

26.8 29.0 25.9 

23.0 25.0 23.4: 

26.0 27.5 23.4: 

28.3 31.5 27.3 

26.3 28.9 25.1 

3.16 3.50 3.26 

3. 13 3.25 2.99 

3.56 3.64: 3.31 

3Q31 3.51 3.19 [\J 
\Jl 



Variable 

J 

d 

*Sample size·: 

TABLE IV (Continued) 

Sampling Order 
Period 3 4: 5 6 x 

Winter 0.69 0.69 0.70 0.75 0.71 

Spring 0.67 0.57 0.66 0.68 0.65 

Summer 0.67 0.63 o. 73 0.74: 0.69 

x 0.67 o.63 0.70 0.73 0.68 

Winter 3.84: 4:.18 3.76 4:.09 3.96 

Spring 3.59 3.17 4:.18 4:.4:3 3.85 

Summer 3.4:2 4:.76 4:.72 5.09 4:.50 

x 3-57 4:.22 4:.31 4:.67 4:.16 

Winter--values are the average of two sainples; Spring--average of two samples for fourth 
and sixth orders, four samples for third and fifth orders; Summer--average of four samples. 

tv 
0'\ 
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fourth order values and winter and summer values were not significantly 

different. 

Equitability (J) varied from 0.57 to 0.75 with an average of 0.68 

(Table IV). Winter values were fairly constant except for an increase 

of 0.05 between fifth and sixth order. The spring values in the fourth 

order were the lowest, probably for the same reasons as the low value 

of d. In summer, values were again the lowest in the fourth order 

resulting from the diatom Diploneis smithii which made up 33% of the 

total number collected. A difference existed due to stream order and 

the LSD disclosed that third order values were not significantly 

different from either fourth or fifth order values and that the fifth 

order was not different from the sixth order. No period differences 

existed (a.;= 0.05). 

Variety (d) varied from 3.17 to 5.09 and averaged 4.16 (Table IV). 

Winter values of d showed no trends. In spring the fourth order values 

were the lowest reflecting the low number of species. Stream order had 

an effect, but fourth and fifth order values were not significantly 

different. No period differences were observed (a.= 0.05). 

Biomass and Chlorophyll 

The mean for chlorophyll a (CHL A) - '- ~ 

2 
was 5.64 mg/m and the range was 

from 2 
0.21 to 15.34 mg/m , both extremes occurring in spring (Table V). 

The low value in spring was probably caused by scour during high dis-
-: 

charge. Values of chlorophyll a decreased with stream order. An AOV 

revealed only the third order was significantly different from the rest. 

A significant period x station interaction was disclosed, resulting from 

upstream values being significantly higher in spring. 



TABLE V 

CHLOROPHYLL !!, (CHL_A), PHEOPHYTIN !!. (PHEO_A), DRY WT (DW), ASH-FREE WT (AFW), AND PERCENT ASH (PA) OF 
PERIPHYTON ASSEMBLAGES BY STREAM ORDER AND PERIOD FOR OTTER CREEK, 1975* 

Variable 
Sampling Order 
Period 3 4 5 6 x 

CHL A Winter 2.8** 1.7 1.2 0.6 1.6 

Spring 15.3 - 5.2 3.7 0.2 7-3 

Summer 10.6 6.4 6.3 2.6 6.5 

x 10.9 4.9 4.2 1.5 5.6 

PHEO A Winter 0.8** 0.3 0.4 0.2 0.4 

Spring 2.6 o.o 0.1 0.1 0.9 

Summer 0.9 0.1 0.3 0.3 0.4 

x 1.6 0.1 0.2 0.2 0.6 

DW Winter 6.03*** 1.99 2.01 2.22 3.06 

Spring 25.66 30.79 5.48 1.79 15.81 

Summer 25.34 7.65 9.68 9.83 13.12 

x 21.61 12.02 6.46 5.92 11.78 

[IJ 
co 



TABLE V (Continued) 

V~riable 
Sampling Order 
Period 3 4, 5 6 x 

AFW Winter 0.86*** 0.68 o.4,2 0.31 0.57 

Spring 3.36 2.18 1.4,5 0.35 2.03 

Summer 3.51 1.13 1.13 0.86 1.66 

x 2.92 1.28 1.12 0.59 1.54, 

PA Winter 31.0 38.2 25.5 17.8 28.1 

Spring 14,.4, 7.2 30.1 28.2 20.7 

Summer 14,.3 14,.8 14,.3 9.2 13.2 

x 17.7 18.7 22.8 16.1 19.0 

*Sample size~ Winter--values are the average of two samples; Spring--average o.f two samples for fourth 
and sixth orders, four samples for third and fifth orders; Summer--average of four 
samples. 

**values in mg/m2 
~ 

. 2 
***values 1n g/m 

[\) 
'-[) 



2 
Pheophytin ~ (PHEO_A) ranged from 0.00 to 2.62 mg/m and averaged 

2 
0.58 mg/m (Table V). The extremes were found in the third and fourth 

orders of spring. 

Values of dry weight (DW) varied from 1.79 to 30.79 g/m2 and had 

2 
a mean of 11.78 g/m (Table V). In the fourth order stream in spring, 

values were maximum when a gritty discolored growth occurred on the 

plates. Significant order and period differences were found. Winter 

values were significantly lower than the other periods and only the 

third order was judged different from the other orders. Significant 

period x order, period x station, and period x order x station inter-

actions were also found. 

2 
Mean ash-free weight (AFW) was 1.54 g/m and values ranged from 

3o 

2 
0.31 to 3.51 g/m (Table V). Mean order values increased with decreased 

stream order. Significant order differences were found and only the 

fourth and fifth order values were not significantly different from each 

other. The upstream stations in all orders had a significantly higher 

value than downstream stations. 

The percent ash (PA) ranged from 7.2 to 38.2% and averaged 19.0% 

(Table V). The PA was smallest in fourth order streams in spring and 

is probably due to the gritty nature of the growth. No trends for 

orders were found; ~owever, period differences were significant. All 

periods were significantly different with the highest period mean being 

in the winter and lowest in summer. 

Partial Correlations 

The partial correlations, adjusted for effects and interactions of 

the design, reveal several significant linear relationships (Table VI). 



TABLE VI 

PARTIAL CORRELATIONS OF VARIABLES ADJUSTED FOR ALL EFFECTS AND INTERACTIONS OF THE DESIGN 

CHL A PHEO A . DW AFW PA d J d s 

CHL A - -0.56* 0.07 0.30 0.11 0.08 o.oo 0.20 0.20 

PHEO A - -0.16 -0.4o7 -0.18 -0.32 -0.32 -0.03 -0.03 

DW - 0.17 -0.22 0.07 0.05 o.o6 . 0.06 

AFW - 0.50 0.13 0.18 -0.03 -0.03 

PA - -0.01 -0.05 0.16 0.17 

d - 0.93* 0.18 0.18 

J - -0.19 -0.18 

d - 1.00* 

s -

sd 

*Values significantly different from zero (~ = 0.05). 

sd 

0.24o 

o.o4o 

-0.09 

o.oo 

0.18 

0.13 

-0.21 

0.96* 

0.96* 

\...) 

~ 
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Values of chlorophyll ~were inversely related to pheophytin ~· Variety 

and the number of species were almost perfectly correlated, reflecting 

the equivalence of the two parameters. Values of species diversity were 

highly correlated with equitability but not with variety or number of 

species. The number of diatoms were significantly correlated with both 

variety and total number of species, reflecting the preponderance of 

diatoms found in the study. No significant correlations existed between 

diversity indices and biomass or chlorophyll measurements. 



CHAPTER VI 

DISCUSSION 

The 85 taxa of periphyton, 78 of which were diatoms, collected in 

Otter Creek is comparable to the number found in other lotic studies 

in the state. In Byrd's Mill Spring, 1JJ total taxa, with 113 taxa of 

diatoms, were collected from glass slides and leaf detritus (Koch and 

Risser 1974). Koch (1975) found 68 taxa of diatoms in the Red River, of 

which J6 were halophilic. An environmental assessment of the Verdigris 

River revealed 116 species of periphyton, 78 of which were diatoms 

(Ecology Consultants, Inc. 1975). Another environmental assessment on 

the Arkansas River and two tributaries, near Ponca City, Oklahoma, 

revealed 80 total and 77 diatom taxa (Benham, Blair, and Affiliates, Inc. 

1976). However, Cooper and Wilhm (1975) found only 22 taxa of algae, 

15 of which were diatoms, in Skeleton Creek, a heavily polluted stream. 

The number of total taxa in Otter Creek increased with order, while 

the number of taxa other than diatoms decreased. Data from the Metolius 

River, Oregon, showed that the number of taxa increased downstream below 

a spring and then leveled off (Sherman and Phinney 1971). However, the 

number of taxa other than diatoms followed the same pattern, which is 

the reverse of the trend for Otter Creek. 

Diatom species may be replaced by more resistant forms of blue­

green, filamentous green, and flagellate algae in polluted areas 

(Fjerdingstad 1950, Blum 1957). The number of taxa is also usually 

JJ 



reduced below an effluent and then increases downstream (Hynes 1960). 

The trends in taxa and types of taxa appear to be similar to what is 

found in mildly polluted streams. In earlier studies on the basin 

benthic macroinvertebrate and fish species tended to increase with order, 

these trends were attributed to physiographic succession (Harrel et al. 

1967, Harrel and Dorris 1968). 

The following species, in order of decreasing abundance, made up 

over 47% of the taxa identified: Nitzschia palea, Diploneis smithii, 

Gomphonema olivaceum, Navicula cryetocephala, Gomphonema parvulum, and 

Stigeoclonium tenue. Of the taxa listed above ~· parvulum, ~· cryeto­

cephala, !· palea, and ~· tenue were listed as being among the top 20 

most pollution-tolerant taxa of algae (Palmer 1969). In addition, 

Cyclotella meneghiniana, Melosira varians, Nitzschia acicularis, and 

Synedra ~ also in the top 20, were present in the study. Species 

found in Otter Creek that seem to grow best when nitrate concentrations 

are high include Di~toma vulgare, N. palea, Surirella ovata and 

especially G. parvulum which is found particularly in waters containing 

sanitary or farm wastes (Patrick and Reimer 1966, 1975). Meridian 

circulare was the only pollution sensitive diatom that occurred in 

abundance. 

Species diversity increased from the fourth to sixth order, but 

third order values were not significantly different from fourth order 

values. Fish species diversity tends to increase with stream order in 

natural streams (Whiteside and McNatt 1972, Lotrich 1973). Harrel and 

Dorris (1968) showed that the benthic macroinvertebrate diversity in 

Otter Creek increased from fourth to sixth order, but was slightly 

higher in the third than the fourth order. They noted that the 
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diversity trend was similar to what might be found below a domestic 

effluent, but evidence showed it to be due to physiographic succession. 

Cooper and Wilhm (1975) found that d was usually lowest directly below 

the source of effluent and improved downstream. In Red Rock and Greasy 

Creeks, two undisturbed tributaries of the Arkansas River, diversity 

tended to be higher in the upstream stations than in the downstream 

stations (Benham, Blair, and Affiliates, Inc. 1976). 

Values of d in Skeleton Creek and the two Arkansas River tributar­

ies ranged from 0.3 to 2.2 and 1.57 to 3.82, respectively (Cooper and 

Wilhm 1975, Benham, Blair, and Affiliates, Inc. 1976). The Arkansas 

River and Verdigris River values ranged from 0.11 to 2.97 and 1.17 to 

3.03, respectively (Benham, Blair, and Affiliates, Inc. 1976, Ecology 

Consultants, Inc. 1975). The range in the present study, 2.45 to ).64, 

more closely compares to the values in the two small tributaries than in 

the large rivers. Staub et al. (1970) used phytoplankton species 

diversity to describe pollutional effects. They considered values from 

0.00 to 1.00 to indicate heavy pollution, 1.00 to 2.00 to indicate 

moderate pollution, 2.00 to 3.00 to indicate light pollution, and values 

from 3.00 to 4.50 indicate slight pollution. Using this scheme the mean 

annual diversity values for the third and fourth orders might be con­

sidered lightly polluted, since values there were near 3.00. 

Equitability decreased from third to fourth order, but then in­

creased through the sixth order. The four most abundant species always. 

made up a higher percent composition in the fourth order than in any 

other order. Equitability values in the Verdigris River and the 

Arkansas River ranged from 0.27 to 0.71 and 0.03 to 0.70, respectively 

(Ecology Consultants, Inc. 1975, Benham, Blair, and Affiliates, Inc. 



1976). In Greasy Creek and ~ed Rock Creek, values ranged from 0.34 to 

0.79 and tended to be highest in the upstream stations (Behham, Blair, 

and Affiliates, Inc. 1976). As with species diversity the range of 

values for equitability is more comparable to the two creeks than to 

the rivers. 
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Variety increased with stream order and was almost perfectly 

correlated with the number of species. Harrel et al. (1967) found that 

variety of fish also increased with order in Otter Creek. In the East 

Gallatin River, Montana, which receives domestic effluent, variety 

decreased at first then increased downstream (Bahls 1973). Values 

varied from 2.90, 5.3 km below the effluent, to 4.10, 23.5 km below the 

effluent. Values in Otter Creek varied from 3.17 to 5.09. Sample 

sizes were similar in both studies. 

The low correlation between species diversity and variety (r = 0.18) 

and the high correlation between species diversity and equitability 

(r= 0.93), apparently indicates that equitability has far more influence 

on species diversity than variety, as has been suggested by several 

authors (Sager and Hasler 1969, Brown 1973). Brown (1973) found the 

correlation between d and J to be 0.97, between d and S to be 0.34, and 

between J and S to be 0.09. These values are comparable to those found 

in the present study (Table V). 

The range of values for ash-free weight/m2, 0.31 to 3.51 g/m2, was 

comparable to the range found in the two tributaries of the Arkansas 

River, 0.06 to 4.62 g/m2 (Benham, Blair, and Affiliates, Inc. 1976). 

In Skeleton Creek values were highest below an effl~ent and tended to 

decrease downstream (Cooper and Wilhm 1975). The trend of decreasing 

values with increased stream order in Otter Creek is similar to the 
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trend in a polluted stream. Values in the Verdigris and Arkansas Rivers 

ranged from 0.15 to 20.88 g/m2 and 0.06 to 5.02 g/m2 , respectively 

(Ecology Consultants, Inc. 1975, Benham, Blair, and Affiliates, Inc. 

1976). Values in Skeleton Creek, a heavily polluted stream, ranged from 

5.0 to 29.0 g/m2 of ash-free weight (Cooper, personal communication). 

Biomass in the Columbia River varied from 0.24 to 4.00 gjm2 (Cushing 

1967) and from 1.0 to 3.8 g/m2 in the Red Cedar River, Michigan (King 

and Ball 1966). 

Annual stream order means of chlorophyll a decreased with increased 

2 
stream order values ranged from 0.21 to 15.34 mg/m • In Red Rock Creek 

values were highest upstream, while in Greasy Creek values were highest 

downstream (Benham, Blair, and Affiliates, Inc. 1976). Values ranged 

2 
from 0.2 to 30.8 mg/m in both streams. These values are somewhat 

comparable to those in Otter Creek. In the Duwamish Green River, 

2 
Washington, values were smallest in the upper reaches (8.0 mg/m ) and 

consistently ~ncreased downstream to 43.0 mg/m2 (Tilley and Haushild 

1975). This increase was attributed to nutrient accumulation down the 

stream's course and should be expected in other streams. As with ash-

free weight, the trend and. not the magnitude suggests light pollution. 

Also, in the third order pheophytin ~was always highest which may indi-

cate that the assemblage present is in poor physiological condition. 

The diversity indices performed as might be expected for either a 

recovery zone below an effluent or physiographic succession. Species 

composition, number of taxa, biomass, and chlorophyll a values suggest 

mild nutrient enrichment. The upper reaches oi' Otter Creek contains 

considerable pastureland and several small cattle feedlots. It is 

possible that runoff from these may have caused the perturbation. 
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Physiographic succession was masked by this disturbance and could not be 

delineated with stream order. However, stream order did separate the 

stream into convenient segments that had similar characteristics within 

them. 



CHAPTER VII 

SUMMARY 

1. Periphyton was collected from third, fourth, fifth, and sixth order 

streams in Otter Creek, Oklahoma, during winter, spring, and 

summer, 1975. Species composition, diversity, ash-free weight, and 

chlorophyll ~were analyzed for differences among stream orders. 

2. A total of 85 taxa of periphyton were collected. The number of 

taxa, number of diatom taxa, and species composition was similar to 

other studies in the state. The number of taxa other than diatoms 

was always highest in the third order and tended to increase with 

order. A large number of pollution-tolerant algae were also 

present in the study. The trends for species composition, number 

of taxa, and type of taxa suggested some form of mild nutrient 

enrichment. 

3. Species diversity, equitability, and variety were lowest in the 

third and fourth order and then increased with order. The values 

of species diversity in the third and fourth orders were considered 

marginal for light pollution. 

4. Chlorophyll ~and ash-free weight values decreased with increased 

order. These trends also reflected probable nutrient enrichment. 

5. The effects of pollution masked physiographic succession. However, 

stream order did separate the stream into convenient segments that 

had similar characteristics within them. 
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