
IMPLEMENTATION OF A SUBSET

OF MODES IN AN ALGOL 68

COMPILER

By

WALTER MICHAEL SEAY
1\ '

Bachelor of Science

Troy State University

Troy, Alabama

1974

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1976

' . I ' '

IMPLEMENTATION OF A SUBSET

OF MODES IN AN ALGOL 68

COMPILER

Thesis Approveda

Thes~~e:ser

~~

'
953416

ii

PREFACE

This thesis is a description .of the mode facilities

which have been added to the Oklahoma State University

ALGOL 68 Compiler. Also included is a description of the

changes that were required to update the language accepted

by the compiler in accordance with the newest definition.

I would like to thank the faculty of the Computing

and Information Sciences Department for their assistance

and their desire to teach. A special th~ks is in order

to my advisor, Dr. G. E. Hedrick, for his invaluable

assistance and understanding during my stay at Oklahoma

State University. I would also like to thank my two sons,

Bobby and Johnny, who often were required to be quieter

than little boys should ever .have to be. It is impossible

for me to express properly my thanks to my wife, Kathy,

who did so much more than type.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ••••••••• • • • • • • • • • 1

II.

III.

Objectives • • • • • • • • • • , • . • - • • • • 1
History of the Oklahoma State University

ALGOL 68 Compiler • • • • • • • • • • • • 2
Literature Review • • • • • • • • • • • • • 4

ALGOL 68 MODES • • • • • • • • • • • • • • • • • 7

Introduction • • • • • • • • ~ • • • • • • • 7
Tools for Building New Modes • • • • • • • • 8
The Subset of Modes Chosen for

Implementation • • • • • -. • • • • • • • • 10
Coercion • • • • • • • • • • • • • • • • • • 11
Determining the Proper Coercion Sequence • • 15
Balancing • • • • • • • • • • • • • • • • • 20

SYMBOL TABLE STRUCTURE • • • • • • • • • • • • • 22

Original Structure • • • • • • • • • • • • • 22
Revised Structure • • . • • • • • • • • • . 24
Identifier List ~odes and the Mode Table • • 29

IV. FEATURES OF THE REVISED OKLAHOMA STATE UNIVERSITY
ALGOL 68 COMPILER • • • • • • • • • • • • • • • • 32

v.

VI.

Introduction • • • • • • • • • • • • • • • • 32
Changes to Declarations and Modes . • • • • 33
Collateral, Conditional and Loop Clauses • • 39
Identity Relations and Casts • • • • • • • • 42

PLANNING FOR THE IMPLEMENTATION • ~ . . . • • • •

Introduction • • • • • • •
Modes • • • • • • • • • •

• • •
• • •

• • • • • •
• • • • • •

Syntactic Analysis • • • • • • • • • • • • •

IMPLEMENTATION • • • • • • • • • • • • • • • • •

General Structure
Modifications Made

Phase 2 • • •
Phase 3 • • •

iv

• • • • • • • • • • • • •
to Phases 2 and 3 • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •

45

45
45
47

48

48
52
52
53

Chapter Page

Phase 3· 5 • • • • • • • • • • • • • • • • • 55
Determine Nesting Level of the

ALGOL 68 Source Program • • • • • • • 55
Symbol and Mode Table Manipulation • • 56
Loop Clause Processing • • • • • • • • 58
Declaration Processing • 1 • • • • • • • 58

Phase 4 • • • • • • • -. • o • • _ • • • • • • 6 3
Phase 5 • • • o • • • • • • • • • • • • • • 65

VII. SUMMARY, CONCLUSIONS AND FUTURE WORK • • • • • • 67

Summary • • • • • • • • • • • 1 o • • • o o • 67
Conclusions o • • • • • o • • • • • • • • • 67
Future Work • • • • • • • o • • • o o • o • 68

Implementation of United Modes • • • • 68
Implementation of Structured .Modes • • '69
Source Program Representation by a

Syntax Tree • • • • • • • o • o • • • 70
String Implementation • • • • • • • • • 73

REFERENCES • •

APPENDIXES • •

• •

• •

• • • •

• • • •

• • • • • • • • • • • • • • •

• • • • • • 0 • • • •
• • • APPENDIX A - GLOSSARY OF ALGOL 68 TERMS • o

APPENDIX B - MODE PROCESSING ALGORITHMS • • • • •

APPENDIX C - SAMPLE OUTPUT OF THE MODE
PROCESSING ALGORITHMS o o

APPENDIX D - A GRAMMAR FOR THE LANGUAGE
ACCEPTED BY THE OKLAHOMA
STATE UNIVERSITY ALGOL 68

• • • • •

COMPILER • • . • • • • • • • o • • • •

76

78

79

85

108

119

APPENDIX E - USER'S GUIDE ••••• • • • • • • • 125

APPENDIX F - SYSTEM PROGRAMMER'S GUIDE • • • • • 132

v

LIST OF TABLES

Table Page

I. Functions of' Addec;l Subprograms • • • • • • • • • 137

vi

LIST OF FIGURES

Figure Page

1. Formal Grammar for Modes Allowed in the Subset • • 12

2. Example of the Three Cases Which Arise in Voiding • 16

Coercions Allowed for Each Syntactic Position • • • 17

4. Soft State Diagram • • • • • • • • • • • • • • • • 18

5· Weak State Diagram • • • • • • • • • • • • • • • • 18

6. Meek and Firm State Diagram • • • • • • • • • • • • 19

7• Strong State Diagram •••••• ~ • • • • • • • • 19

8. Allowable Modes for Previous Versions • • • • • • • 23

9· Example of Block Nesting Table • • • • • • • • • • 25

10. Tree Structure Node • • • • • • • • • • • •

11. Example Program Structure • • • • • • • • •
12. Determining Type of an Enclosed Clause • • • • • •

13.

14.

15.

16.

18.

19.

20.

Determining the Context of an Enclosed Clause • • •

Identifier List Node • • • • • • • • • • • • • • •

Mode 'rable ~trykfor Modes of the Form
REF1 ~ _7 REF BASIC~MODE • • • • • • • • • • •

Mode Table Entry for Modes of the Form
REFi ~ _7J REFk PROC (MODES) moid • • • • • • • •

Mode Table Entry for Modes of the Form
REF1 ~ _7J REFk MODE_NAME • • • • • • • • • • • •

Some Valid Mode Declarations • • • • • • • • • • •

Use of a Procedure Variable • • • • • • • • • • • •

A Program Example Using a Row-of-Procedure
Constant •

vii

26

27

28

28

29

30

31

31

34

36

38

Figure Page

21. Allowable Uses of the Collateral Clause • • • • • • 39

22. Ranges of Two Conditional Clauses • • • • • • • • • 41

23. Ranges in the Loop Clause • • • • • • • • • • • • • 42

24. Some Examples Using Identity Relators • • • • • • • 43

25. Phase 1-Job Card Analysis • • • • • • • • • • • • • 48

26. Phase 2-Lexical Analysis • • • • • • • • • • • • • 49

27. Phase 3-Keyword Recognition • • • • • • • • • • • • 50

28. Phase 3·5-Declaration Recognition •• o • • • • • • 51

29. Phase 4-Code Generation • • • • • 0 • • • • • • • • 52

JO. Phase 5-Interpretive Execution • • • • • • • • • • 52

Jl. Recognition of Stropped Symbols • • • • . • • • • • 53

J2. Modes Derived From REF REF ~,_7 REF INT by
Coercion and Slicing • • • • • • • • • • • • • • 57

33. Related Mode Algorithm • • • • • • • o • • • • • • 59

J4.

35·

J6.

37·

J8.

Status of the Runtime Stack During Elaboration of
the Declaration ~uls u2,, uJa u4, u5_7 INTI • o 60

Example of Output Text for the Exajle Array
Declaration z-ula u2, uJa u4, u5 INTI • • • •

Two Different Results Using the Same Mode
Definition • • • • • • • • • • • • • • • • • • •

Mode Table Entry for the United Mode UNION
(INT, REAL, CHAR, UNION (COMPL, INT)) •• • • • •

Mode Table Entry for the Structured Mode
MODE .A = STRUCT (REF INT a,b, STRUCT
(REAL x, REF .A y) c) ••••••••• • • 0 • •

62

63

68

69

39· Tree Structure and Code File for the Simplified
Example • • • • • • • • • • • • • • • • • • . • • 70

40. Tree Structure With Code Appended •••• • • • • • 71

41. Tree Structure After Conversion of Code Segments
to Prefix Polish o • • ~ • • • • • • • • • • • • 71

viii

Figure Page

42. Syntax Tree for Sample Program Segment • • • • • • 72

43. Possible. String Descriptor Format ••••••••• 74

44. Job Control Language for IBM 360/65 Execution ••• 127

45.

46.

Sample Procedure Declarations • • • •
Example Program Illustrating Possible Uses of

REF Amode Variables • • • • • • • • • • • • • •

• 129

• 131

47. Operator Declaration Structure •••••••••• 135

48. Formal Parameters for Subprogram ALGZO • • • . •• 136

ix

CHAPTER I

INTRODUCTION

Objectives

Since 1973 a project has been underway at Oklahoma

Sta~e University to write a portable compiler for the

ALGOL 68 language (1) (2) (J). This very powerful pro­

gramming language gives the programmer the capability of

defining ·and using his own set of data types in addition

to a predefined set. The treatment of data types and values

of these data types has been formalized in ALGOL 68 to the

concept of a mode (4) (5).

Prior to 1976 the Oklahoma State University ALGOL 68

Compiler had the capability to recognize a very limited set

of modes. One objective of this thesis is to show how a

greater number of modes can be accepted while allowing the

compiler to remain within the (size and portability) con­

~traints which have been placed on the compiler by its orig­

inal implementer (1). Another objective of this thesis is

to detail some changes necessary to allow the Oklahoma State

University ALGOL 68 Compilkr to conform to the language de­

fined in the "Revised Report on the Algorithmic Lang1fage

ALGOL 68" (5), rather than the original ALGOL 68 language

1

defined in the "Report on the Algorithmic Language ALGOL

68 II (4) o ..

2

It is assumed that the reader is familiar with the

basic rules of ALGOL 68 and has some familiarity with the

terminology. Appendix A contains a glossary of terms which

are used in this thesis in order to facilitate its reading.

Familiarity i~ assumed with the features implemented in the

Oklahoma State University ALGOL 68 Compiler also. If the

reader has a limited knowledge of the compiler's features•

then John Jensen (1) is the best source to obtain the nec­

essary bac-kground information. The thesis_ by Alan Eyler (3)

may also be helpful.

History of the Oklahoma State, University

ALGOL 68 Compiler

The Oklahoma State University ALGOL 68 Compiler origi­

nally was implemented as a master's thesis py Jensen (1)_in

July of 1973· The original ALGOL 68 subset compiler was a

scientific subset of ALGOL 68. A major design criterion was

to develop a portable compiler; in order to achieve this

goal, the compiler was written using IBM 1130 Basic FORTRAN.

The compiler was implemented on an IBM 1130 computer with 8K

16-bit words of storage, a card reader/punch, and a

console typewriter as the principal output device. The

compiler also uses a single disk storage device for storage

of intermediate code and simulated program memory. In order

to insure portability, the code generated from the compiler

is "machine code" for a pseudo-machine which is then inter­

pretively executed by a FORTRAN program. The small size of

the IBM 1130 computer, while enhancing the portability

characteristics of the compiler, restricted the set of

features which could be implemented. by Jensen.

At the same time Jensen was implementing the Oklahoma

State University ALGOL 68 Compiler, Roger Berry (2) com­

pleted his master's thesis regarding the implementation of

formatted transput. ALGOL 68 formatted transput is an

extremely sophisticated and versatile input/output format­

ting package. Berry's implementation is a package capable

of interpretive execution independent of any~ ALGOL 68

compiler.

Berry's (2) formatted transput package is in the

process of being incorporated with the Oklahoma State

University ALGOL 68 Compiler on the IBM 360/65 computer

system. The combined system will allow the ALGOL 68 pro­

grammer to use the formatted input/output package directly.

The combined version will not execute on the IBM 1130 due

to its large size and due to the use of full standard

FORTRAN in the transput package.

In the spring of 1975, Eyler (3) completed implemen­

tation of procedures for the IBM 11JO version of the com­

piler. The procedure facility which he implemented allows

procedure constants--a facility approximately equivalent to

ALGOL 60 or PL/I procedures. It supports recursive proce­

dure invocations.

3

4

Several students have volunteered time to improve the

original compiler of Jensen. Major work has been accom­

plished by these people. This work includes implementation

of the CASE statement, rewriting the file handling capabil­

ity (standard input and standard output files only) of the

compiler, and now the incorporation of Mr. Berry's transput

package as -an integral part of the compiler.

There are currently several versions of t~e Oklahoma

State University compiler; the IBM 1130 versio~ with pro­

cedures, the IBM)60 ve~sion without procedures, and the

IBM 360 version with procedures. These versions also are

operational on the TI ASC computer and the XDS Sigma 5 com­

puter. Currently work is under way to provide a single

version on the IBM)60/65 which includes formatted transput

and procedures. When this version is completed, the result

will be an extremely versatile and powerful programming

tool.

Literature Review

The ALGOL 68 language is defined in the "Revised Report

on the Algorimthic Language ALGOL 68" (5). Two good books

which survey the ALGOL 68 language are an ALGOL 68 Compan­

ion (6) and An Informal Int~oduction to ALGOL 68 (?). Of

these two, the ALGOL 68 Companion is the easier to compre­

hend. Another excellent source of information is the high­

ly readable ALGOL 68-R Users Guide (8). This users guide

introduces the basic language features without introducing

much of the new terminology found in the other documents

mentioned above.

Information about the Oklahoma State University

5

ALGOL 68 subset compiler can be found in the master's theses

by Jensen (1), Berry (2) and Eyler (J). Details concerning

other implementations of ALGOL 68 can be found in proceed­

ings of several conferences held for ALGOL 68 implementers.

For example, the proceedings edited by J. E. L. Peck enti­

tled ALGOL 68 Implementation (9) contains a description .of

one of the most successful production compilers of ALGOL 68-

-ALGOL 68-R. The ALGOL 68-R compiler was produced for the

Royal Ra.dar Establishment, Malvern, England. It contains

many of the features of the full language and it is used as

the primary programming language at the Royal Radar Estab­

lishment. Descriptions of se,veral other operational (and

almost operational) compilers can be found in the Proceed­

ings of the 1975 International Conference on ALGOL 68 (10).

Much of the literature which has been written about

ALGOL 68 has been concerned with the treatment of modes.

Many of the methods which implement full ALGOL 68 modes

require complex storage struct-ures for their representation

and also require considerable processing time.

Peck (11) suggested that an ALGOL 68 mode could be

represented by a Greibach Normal Form Grammar. The disser­

tation by Mary Zosel (12) utilized the grammatical repre­

sentation of modes to develop algorithms for equivalencing,

coercion, balancing and operator identification in an

6

ALGOL 68 program. The methods developed by Zosel provide a

comprehensive treatment of modeSJ they are, however, diffi­

cult to implement in FORTRAN due to FORTRAN's lack of recur­

sive procedures and list processing facilities. The

algorithms presented by Zosel are based upon the original

report which specified a slightly differe·nt treatment of

modes than that specified by the revised report. This

thesis is based on the revised report (5).

J. Kral (13) shows that ALGOL 68 modes can be repre­

sented by a finite automaton. This allows an implementer to

use the existing algorithms for manipulating finite automata

upon ALGOL 68 modes, such as reducing the automaton (mode)

to a canonical representation (i.e., equivalencing modes).

H. J. Lane (14) presents methods which allow coercion

sequences to be determined by using boolean matrix tech­

niques upon modes which have been represented in grammar

form. The amount of storage required for these matrices can

be quite large if the number of modes is large.

This thesis specifies how a limited (but useful) mode

facility can be implemented in a portable compiler with less

overhead than a full mode implementation would require.

CHAPTER II

ALGOL 68 MODES

Introduction

Most higher level programming languages embrace the

concept of data type. A data type names a class of values

which may be represented in the machine (either by the hard­

ware or by software implementation). For example, FORTRAN

allows a variable declared ,with the integral data type

(e.g •• INTEGER X) to possess positive or negative integral

values. Some programming languages allow the programmer to

define structures; structures are aggregates of other prede­

fined data types. PL/I and COBOL for example, allow struc­

tures to be declared. Both languages provide mechanisms for

manipulating a structure as an aggregate and also_provide

for manipulating the individual elements (15) (16).

ALGOL 68 has generalized the concept of data type.

This generalization is the concept of mode. There are five

basic modes in ALGOL 68a BOOL (boolean), INT (integral),

REAL (floating point). FORMAT, and CHAR (character). The

programmer may construct new modes using the notions of row,

reference-to, procedure, unipn, and structure (these are de­

fined below). In full language implementations of ALGOL 68

the programmer is allowed to apply the notions (row,

7

8

reference-to, etc.) to modes which he has previously defined

to form more intricate modes.

Tools for Building New Modes

The notion row may be applied to a mode to obtain a new

mode which specifies a multiple set of values of the old

mode. The row notion is displayed by the square brackets

(~ _7). Since INT is a basic mode which specifies an inte­

gral value, then·~ _7 INT specifies a multiple of integral

values (commonly called a vector). Values of a row-ed mode

may be indexed to obtain a single value of the mode or

sliced to obtain a subset multiple of the original set of

values.

A mode·(such as REAL) may be preceded by the symbol

REF to form a new mode REF REAL (read reference-to-real

mode). When an object does not have the REF symbol as the

first symbol of its mode, then that object is a value of the

mode; e.g., 3·5 is of mode REAL. If an object has the form

REF amode (where amode is a user defined mode or a basic

mode)., t,hen that object is a name (address) which may refer

to a value of the mode amode. An object of mode REF amode

is usually called an amode variable since it performs the

.same function as a variable.in other programming languages.

If the mode of an object nas the form REF REF amode, then

the object is similar to a PL/~ pointer variable; that is,

the object may reference (point to) a variable of mode amode.

It is possible for an object which has the form REFn amode

9

(n REFs preceding amode) to yield an object which possesses
n n 1 n-2 any of the modes REF amode, REF - amode, REF amode,

••• ,REF amode, amode. The actual mode of the object yield­

ed in an·ALGOL 68 program is determined by the syntactic

position of the object.(For a more detailed explanation see

coercion~)

ALGOL 68 procedures require that the. modes of each of

the parameters (if any) and also the mode of the value

yielded by the procedure be specified for every procedure

declaration. A procedure which accepts an integral value

as its first parameter and a real variable as its second

parameter and returns a value of mode boolean would be rep-

resented bya PROC (INT, REF REAL) BOOL. This representa-

tion names a new mode• a value of this new mode is an

appropriate routine denotation. Since PROC (INT, REF REAL)

BOOL is a new mode,it may be used as a building block in the

creation of other modes (i.e.,~ _7 PROC (INT, REF REAL)

BOOL, REF PROC (INT, REF REAL) BOOL, etc.).

A variable declared to be of a united mode (using the

union notion) may contain at any time a value of one of the

constituent modes of the union. For example, a variable de­

clared with the mode REF UNION (INT,.REAL) may possess a

value of mode INT or of mode REAL (only one at any particu~

lar time). Language facilities are provided to allow the

programmer to test a variable of a united mode to see which

mode it possesses at any particular time and to extract its

value. Notea there are no values of a mode which begin

10

with UNION; all values assigned and retrieved from a united

variable are values of one of its constituent modes.

In ALGOL 68 a structure is a mode. The following is

a representation of a structured modea STRUCT (REAL a,

INT b,c). Unlike PL/I or COBOL the field names a, b, and c

are part C?f the mode itself. To select a particular field

from a structured variable such as STRUCT(REAL a, !NT b,c)x,

the programmer writes~ for example, b of x. Assuming the

above declaration for x, ALGOL 68 facilities allow the use

of structured modes as aggregates as well as allowing for

the selec.tion of individual fields.

The Subset of Modes Chosen

for Implementation

Prior to this implementation, the Oklahoma State Uni­

versity ALGOL 68 Compiler had a very limited mode capacity.

Only variables of the modes REF BOOL, REF !NT, REF REAL,

REF CHAR, and REF COMPL (complex) and constants of mode

PROC (procedure) were available. COMPL is not one of the

basic modes of ALGOL 68; it is defined in the report to be

of mode STRUCT (REAL re,im) ~ However, COMPL has a full set

of operators, so it does not hurt a programmer to think of

COMPL as if it were a basic mode.

The design goal of this project was to increase the

mode handling capacity of the compiler by a significant

amount·without adding the general list processing of modes

which is required by a full mode implementation. The subset

11

selected adds the REF REF amode (pointers) and amode (con­

stant) declaration facilities. Every mode (except proce­

dured modes) of this subset can be represented by a.

descriptor of fixed size (see Chapter III). Procedured

modes require linked lists to retain the modes of each pa­

rameter and the mode of the value yielded by the procedure.

All modes which may legally be declared in the subset

must
. . k

develop to a mode of the form REF1 L JJ REF BASIC_

MODE or REFi L Jj REFk PROC_MODE.(REFi, for example, means

that there are i occurrences of the symbol REF with i being

any integral value such that i > o.) Figure 1 provides a

formal grammar in modified Backus-Naur Form (17) of the sub­

set of m·odes allowed in this implementation.

Coercion

Coercion is the ALGOL 68 term for the automatic modifi-

cation of an internal object during the elaboration of a

program. Most higher level languages allow some form of

data conversion to occur, such as, converting integral val-

ues to real values and vice versa 05) (18). There are five

coercions allowed in the subset• deproceduring, derefer-

encing, widening, rowing and voiding.

It is often useful to create procedured modes which

have no parameters. An example is the built-in procedure

random, when random is invoked, a REAL value in the interval

(0,1) is yielded. In order to invoke a procedure which has

parameters in ALGOL 68, the programmer simply writes the

<:@ODJt> 11= <LIST_OF_REF$>

<)..IST_OF.,...ROW$>

~IST_OF_REF~

~HOICE_OF_BASIC_OR_PROQ:>

<tiST_OF_REFS> 11= ~IST_OF_REFS> REF

.EMPTY **

<trsT_OF_Rows:>* 11= ~rsT_OF_ROW$>£" J I
.EMPTY

<tHOICE_OF_BASIC_OR_PROC> II. <13ASIC_MODS> I
<:l>ROC MODE>

<j3ASIC_MODt> II= INT I REAL I COMPL I CHAR I BOOD I FORMAT

qROC_MODJ!> I •.= PROC <QPTIONAL_PARAMETER_LIS't>

~orO>

<1JOill> I I= <Q10DP,

VOID

~PTIONAL_PARAMETER_LISt> II= (<!10DE_LIST_PROPEP)

.EMPTY

~ODE_LIST_PROPEit> I I= ~ODE_LIST_PROPE!f:xWODE>

<1JODJ!>

* "L J L J" may be abbreviated "L,J•
"L J L J L J" may be abbreviated "L ,J", etc.

**.EMPTY represents the empty string.

Figure 1. Formal Grammar for Modes
Allowed in the Subset

12

13

identifier symbol (or a unit which returns an object of mode

procedure) followed by the actual parameters (i.e.,

A{ 2. 0, "the string")). The appearance of an object of mode

PROC REAL (no parameters) in the elaboration of the program

does not always require its invocation. For example, if the

assignation as=b occurs where a is mode REF PROC REAL and b

is mode PROC REAL, then the object which is to be assigned

is the routine {b) which is specified by the right hand side

of the assignation, not the value yielded by a ca·ll to that

routine. The proper processing of procedured modes which

have no parameters is the function of th.e deproceduring

coercion. When the coercion deprocedure is applied to a

mode, the resulting action is to invoke the procedure being

coerced.

The dereferencing coercion ·causes an object of the mode

REF amode to become an object of mode amode. That is, it

causes the object to be modified, to possess the value to

which it refers. For example, an object of the mode

REF REF BOOL is a pointer which refers to a BOOL variable.

If this mode is dereferenced, the result is the name (ad­

dress) of the logical variable to which it refers. The mode

of this new object is REF BOOL; if this mode is derefer­

enced, the result will be the value (TRUE or FALSE) which is

possessed by the variable.

If a value of mode REAL is required and a value of mode

INT is supplied, then in the proper syntactic positions the

INT value will be widened to become a value of mode REAL.

14

Mode REAL may be widened to mode COMPL,.: Widening may only

be applied to a value of the model it may not be applied to

a variable. ·However, any syntactic position which allows

widening also allows dereferencing. Thus, if a variable or

pointer is provided, it will be dereferenced until a value

is obtained.

Rowing allows a value of mode CHAR to become a value of

mode ~ _7 CHAR or a name of mode REF CHAR to become a name

of mode REF ~ _7 CHAR. This enables a programmer to use a

scalar value (or name) in some positions where a multiple
-

valued object is required. A prime example of this is where

an object of mode CHAR is to be assigned to a variable of

mode REF STRING (mode STRING is equivalent to mode z-_7

CHAR). The CHAR value is rowed to become mode ~1al_7 CHAR;

then the assignation may take place. This coercion is re-

quired because the denotation "A" is a mode CHAR value and

it is often necessary or desirable to assign a GHAR of this

type to a STRING variable. Another use of rowing is in pa­

rameter passing where a procedure of mode PROC (~ _7 INT)

REAL is provided a scalar INT value as an actual parameter.

The INT value will be rowed and the resulting "multiple"

value will be supplied to .the procedure.

Voiding is used when the ,object yielded by some piece

of code (such as, a routine or unitary clause) is to be

discarded. There are three casesa

1) The object .is of mode REFi PROC moid (moid = amode

or VOID) and the name was not yielded by a

15

confrontation (assignation, identity relation' or

cast).

2) The object is of mode REFi PROC moid; however, its

value was yielded by a confrontation.

3) The object is not of mode REFi PROC moid.

In case 1 the object is dereferenced i times, then deproce-

dured; the resulting value from the routine invocation is
' then voided. In-cases 2 and 3 the mode is simp~y changed to

VOID and any value is discarded. Figure 2 shows examples of

the 3 cases and describes the actions to be taken.

Determining the 1Proper Coercion Sequence

There are- three things which uniquely determine the

coercion sequence to be applied to a value of some modea

1) The a priori mode of the available object (coer-

end).

2) The a posteriori mode of the object required by

the coercion (coercee).

3) The syntactic position (or sort) of the object.

There are five sorts of syntactic position, they area

strong, firm, meek, weak, and soft. Figure 3 shows, for

each sort the valid coercions which may be applied and also

some of the language constructs which give rise to each

sort. Figures 4 through 7 are state diagrams which show

the valid coercions allowed in the subset. In order to

determine if it is possible to coerce mode A to mode B given

a particular syntactic position, it is necessary to select

16

Case 1--Mode REFi PROC moid (not yielded by confrontation).

PROC XI= REALI yl= 2.0 * y;

x;

The mode of x is REF PROC REAL, because
of the last ";" (occurring in the 2nd
line),,the name is to be voided.

ACTIONS
Step 1--Dereference to mode PROC REAL.
Step 2--Deprocedure - The routine

"REALI ys= 2.0 * y~ is now
invoked.

Step 3--The real value yielded is
discarded.

Case 2--Mode REFi PROC moid (yielded by a confrontation).

PROC REAL x; # x is of mode REF PROC REAL #

XI= REALI y•= 2.0 * y;

ACTIONS
Step 1--The value of mode PROC REAL is

assigned to the variable x.
Step 2--Step 1 yields an object of mode

REF PROC REAL
discard the result.

Case 3--0bject not of mode REFi PROC moid

REF REAL x;

REAL y;

x is of mode- REF REF REAL #

y is of mode REF REAL #

XI= y;

ACTIONS
Step 1--Assign the name y to the

pointer x.
Step 2--Void the pointer of mode

HEF REF REAL.

Figure 2. Example of the Three Cases
Which Arise in Voiding

. 17

the appropriate diagram and beginning in state 1 follow the

available arcs modifying the mode according to the label of

the arc followed.

Sort

Strong

Firm

Meek

Weak

Soft

Coercions

De procedure
Dereference
Row
Widen
Void

De procedure
Dereference

Deprocedure
Dereference

Deprocedure
Dereference

De procedure

Constructs

Actual parameter, the
enclosed clause of a
cast, the right hand
side of an assignation,
statements.

Operands in a formula

Units in FROM, BY and
TO clauses, and trim­
scripts ,

Primary of a slice

Left hand side of an
assignation, one side
of an identity relation

Figure J. Coercions Allowed for Each
Syntactic Position

For example, assume we are to coerce the mode REF PROC REF

REAL to the mode REAL and further assume we are in a firm

position. First, we select the ,graph of Figure 6 (sort is
\

Firm), the coercion sequence is as follOWS I

REF PROC REF REAL (a priori mode)

PROC REF REAL Ml to M2 (dereference)

REF REAL M2 to MJ (deprocedure)

REAL M3 to M2 (dereference)

18

It is therefore possible to coerce mode REF PROC REF REAL

to mode REAL in a firm position.

*

Deprocedure

Figure 4. Soft State Diagram

* Dereference

* Dereference

Dereference - means amode may not be coerced from REF amode

Figure 5· Weak State Diagram

Notes that in many states of the diagrams there is more than

one possible arc to traverse from arty node. This ambiguity

can always be resolved by examination of the a priori and a

posteriori modes (the coercion algorithm is shown in

Appendix B).

19

Figure 6. - Meek and Firm State Diagram

-------~-

Figure 7• Strong State Diagram

20

Balancing

Conditional clauses, case clauses, and serial clauses

which have multiple completion points (EXIT symbols) provide

the capability of .yielding values from different parts of

the clause. For example, the conditional clause

IF p THEN x + 1.0 ELSE 4.0 FI

can return a value of x + 1.0 if pis TRUE or a value of4.0

if p is FALSE. It is -required that all alternative yields

of a clause be of the same mode. Balancing provides the

automatic mechanism for determining the mode of the yield

of such a clause. In order to achieve a balance, it is

necessary to know the mode of each of the alternative yields

of the clause. The syntactic position of the clause is also

required since the coercions applied to at least one of the

alternatives must be only those coercions allowed upon a

coercend in the same syntactic position as the clause. All

other alternative yields in the clause are assumed to be in

a strong position.

Appendix B contains a balancing algorithm for modes of

the subset. The essential method of the balancing algorithm

is to compute a target mode m = REFi ~ _7j REFk BASIC_MODE.

Where i, j, and k are the maximum values of the correspond-

ing fields in all of the alternative yielding modes. The

computed value of BASIC_MODE is the widest mode of each of

the constituent BASIC_MODES wit~ the BASIC_MODES arranged in

the ~ollowing order (widest last)• PROC, BOOL, FORMAT,

CHAR, INT, REAL, and COMPL. After the target mode is

21

computed the algorithm attempts to coerce all of the alter­

native modes to the target mode, recording the greatest

coercion strength required. If all alternatives can be

coerced to the target mode and the smallest strength coer• ;;·

cion is less than or equal to the coercions allowed for the

syntactic position of the. clause, then the clause is bal­

anced. If failure was due to the strength of the required

syntactic position, then the clause cannot be balanced. If

failure was due to failure of one or more of the modes of

the alternatives to be coerced to the target mode, a new

target mode is computed by applying either dereferencing or

deproceduring to the target mode and the process is restart­

ed. It should be noted that due to the manner in which the

target mode was selected th~re is only one possible coercion

which can be applied to it. If no coercion can be performed

upon the target mode the balance fails.

This description of the balancing algorithm is over­

simplified and does not account for the correct treatment

of procedured modes. The balancing algorithm has been im- _.

plemented_ in PL/I. Appendix C contains some examples of

balancing using the PL/I implementation.

CHAPTER III

SYMBOL TABLE STRUCTURE

Original Structure

The most restrictive data structure of the previous

versions of the ALGOL 68 ~ompiler at Oklahoma State Univer­

sity was the symbol table. In order to reduce processing

time the decision was made to retain the symbol table in

internal memory (except for superceeded e~tries). Since the

original version was implemented on an 8K machine, only a

minimum amount of information about a variable could be

maintained.

The logical structure of the symbol table consisted of

three partsa the active symbol table, inactive symbol table

and the block nesting table. Each unique non-keyword symbol

was assigned a value for its internal identifier. The val­

ues assigned were integral values which began at minus one

and decreased by one for each new symbol. The number which

has been assigned to a symbol becomes ite internal identifi­

er and the key to the symbol table. A symbol table entry

consisted of two words• word one contained the mode of the

variable and word two contained the block for which the

identifier was declared. The mode was encoded in the word

and was of the form 10 * R + M where R is the number of rows

22

23

in a rowed mode and M is the basic mode of the variable.

Figure 8 contains the allowable basic mode codes used in the

previous version of the compiler.

Mode Number Mode Internal Coded S;ymbol

1 INT 409

2 REAL 411

3 COMPL 401

4 BOOL 405

5 CHAR 406

6 STRINy* 404

7 LABEL

8 PROC 410

*Not used

Figure 8. Allowable Modes for Previous
Versions

When a declaration for a symbol was encountered in a

new block a symbol table entry which was made for a previous

instance of that symbol needed to be saved. For example,

given the following segme'nt of code 1

(1) BEGIN
'

(2) INT a
\ I

I

(3) BEGIN

24

(4) REAL a
•
•
•

(5) END

(6) END

after line 4 has been parsed a new declaration for the

symbol a was indicated. Provisions for saving superseded

declarations in new blocks and restoring the old symbol

table entries upon block exit were made in the overflow

symbol table. The overflow symbol table was physically

located on a file (the simulated program memory file on

disk). As a new declaration was encountered the old symbol

table entry was saved. The format of the overflow symbol

table entry wasa current blOck number, identifier

number, mode of the old. declaration, and block in which the

old declaration was made.

The block nesting table was created prior to the rec­

ognition of declarations and was physically located at the

end of the active symbol table area in main memory. , Each

block in the program was numbered according to the position

of its beginning symbol. The block nesting table:consisted

of the humber of the block whic.h immediately surrounded the

current block as shown in Figure 9··

Revised Structure

It was necessary not only to expand the symbol table

entries to retain more information, but the basic table

maintenance method had to be revised, if a·separate pass

' 25

to recognize declarations was to be made. With the previous

symbol table structure when a block was exited all symbols

which had been declared in that block were lost. A more

permanent method was necessary in order to retain the infor­

mation for code generation.

(1) BEGIN Block Containing Block

(2) BEGIN 1 0

(J) BEGIN 2 1

END J 2

(4) BEGIN 4 2

END

END

END

Figure. 9· Example of Block Nesting
Table

The current symbol table comprises three partsa a tree

of the source program structure, identifier lists and mode

table. The symbol table is physically located on disk which

is accessed through a .softw~e implemented paged memory sys­

tem. The program structure tree is a binary tree which is

built during the declaration recognition phase. This data

structure replaces the block nesting table and represents

the various ranges included in the ALGOL 68 program. The

node used for the tree structure is shown in Figure 10.

26
•

successor predecessor

1 3

open ~dentifier last next not label r.ot
symbol list symbol symbol, used encount-used

ered
7 8 9 10 11 12 1 -1 3 6

Figure 10. Tree Structure Node

A ~escription of the uses of each field in the tree

structure node follows. The successor, right link and pred­

ecessor fields are used to maintain the bipary tree struc­

ture. Figure 11 shows the binary tree_ st~ucture generated

for an example program, along with a representation of what

the tree pointer fie~ds would contain. Notice in Figure 11

that two blocks which are on the same level (such as 2 and

3) are connected by right link pointers. When the nesting

level increases, a successor pointer is used. The predece&•

sor pointer provides the same information as the old block

nesting table provided previously.

The visited field is used to provide an easy method for

traversing the tree structure after it has been built and in

the cross reference listing phase. The field is initial­

ized to zero and is increased by one when the current node

has been processed.

The fields nameda comma count, then count, and open

symbol type have the purpose of determining the type of

enclosed clause this symbol table node represents.

(1 ~ BEGIN y
(2) BEGIN

END 0·-0
(3) IF I
(4) THEN G}----0
(5) ELSE

FI
Right Pre de-

END Node Successor Link cessor

1
I

2 I - J -

2 3 I 1 - I
I

3 4 - 1

4 - 5 3

5 - - 3

Figure 11. Example Program Structure

Figure 12 provides a table which shows how the data from

these fields are combined to determine the clause type.

The identifier list field points to the head of the

identifier-list associated with this block. If the field

27

is null (a minus one) then there·are no declarations in this

range· and block entry or block exit instructions are not

generated.

The last symbol and next symbol fields are used in

combination to determine in which syntactic position

28

the enclosed clause appears. Figure 13 shows some of the

combinations which are used to signal the various positions.

Comma Count Then Count Open Symbol Type Clause

not used

not used

0

0

>o
>o

~0

Last Symbol

; or (

r or (

; or (

OPERATOR

•=

0

O,

0

>o
0

>o
not used

Figure 12.

1 (up to symbol)

(

WHILE LOOP CLAUSE

DO LOOP CLAUSE

(SERIAL CLAUSE

(CONDITIONAL CLAUSE

(COLLATERAL CLAUSE

(CASE CLAUSE

C TRIMSCRIPT

Determining Type of an
enclosed Clause

Next Symbol Sort

; VOID

•= SOFT

OPERATOR FIRM

J or) FIRM

; or) STRONG

J or , MEEK

) (same as the context of
the surrounding range)

Figure 13. Determining the Context of
an Enclosed Clause

The label encountered field is initialized to zero;

when a label is inserted in the identifier list this value

is set to a one. After the label encountered field is a

one, it is not possible for a user declared symbol to be

placed in the. symbol table for the current range, although

a temporary variable may be inserted in the table at any

time.

Identifier List Nodes and trte Mode Taple

29

Figure 14 shows the fields used in the identifier list

nodes. One node is created for each identifier declared in

a range.

Identifier Mode ' Statement Cross
Number Table Number Reference

Number Identifier List
Defined Pointer

1 ·2 3 q.

I

I
' Link Reserved Reserved Not

To Next
I

Used
Identifier
Node I

I
I

5 6 7 8

Figure 14. Identifier List Node

A description of each of the fields comprising the

identifier node follows. The identifier number field is

JO

assigned during the lexical analysis of the source program.

The identifier list nodes are maintained in descending se­

quence of the identifier number.

The mode table number is the index of the mode table

entry which defines the mode for this identifier. The

statement number and cross. reference list pointer fields

provide data for a cross reference listing which the pro­

grammer may specify as an optional output of the compila­

tion. The two reserved words (5 and 7) are for the later

addition of operator declarations to the compiler.

The mode table is physically located in the symbol

table disk file. The mode table is assigned contiguous

storage in order to allow fast access. Several standard

modes are loaded into the table to provide compatability

with existing mode references. The mode table entry for a

mode of the form REFi ~ _7j REFk BASIC_MODE is shown in

Figure 15. The mode table entries for modes of the form

REFi ~ _7j REFk PROC (MODES) moid are fiven in Figure 16.

REFs before
rows
(=i)

Number of
1

.REFs after
rows rows
(=j) (=1t)

Negative of the
BASIC MODE number
(see Figure 8)

Figure 15. Mode Table Entry for Modes
of the Form
REF1 ~ _7J REFk BASIC_MODE

REFs
before
rows
(=i)

1

'31

-
Number REFs Linked list of i Mode number
of rows after -8 mode numbers I of the
(=j) rows of each yielding

(=k) parameter i mode
2 3 4 5 6

Figure 16. Mode Table Entry for Modes
of the Fo~m .
REF1 f: JJ REFk PROC (MODES) moid

Declarations of the form MODE.A =REF B (where B is a

user defined mode or a basic mode) are allowed, the general

form for a mode of this type is REFi f: Jj REFk MODE_NAME.

Figure 17 displays the mode table entry for this type of

mode .. d~plaz:oation.

REFs Number REFs Negative of Linked I Mode
before of after basic mode list of number
rows rows rows number or a node of * (=i) (=j) (=k) pointer to numbers yielding

another mode of each mode
table entry parameter

1 2 3 4 5 6 7

*Pointer to the list of symbols which constitute the actual
: row bounds.

Figure 17. Mode Table Entry for Modes
of the Fo:r:m
REF1 ~ _7J REFk MODE_NAME

CHAPTER IV

FEATURES OF THE REVISED OKLAHOMA STATE

UNIVERSITY ALGOL 68 COMPILER

Introduction

This chapter presents a description of the new and

revised features of the ALGOL 68 compiler implemented as

a part of this thesis. The new features are conce'rned

generallywith the extended, mode handling, capacity which

was described in Chapters II and III. The original Oklahoma

State University ALGOL 68 Compiler was based upon the def­

inition in the original defining document of ALGOL 68 (4).

The designers of the original definition felt a need to re­

vise it slightly after the Oklahoma State University imple­

mentation effort had begun. Since it was necessary to add a

new pass to the compiler (see Chapter V) in order to recog­

nize properly declarations, the syntax recognized by the

revised version is that of the revised report (5). This

chapter also describes those features which have been mod­

ified to conform to the revised report. Appendix D contains

a description of the grammar recognized by the revised ver­

sion of the Oklahoma State University ALGOL 68 Compiler.

When a capitalized word appears in this thesis surrounded by

•< 11 and ">~~ (such as <1JNI'f>) , it refers to a meta-symbol

.32

33

in the· grammar described in Appendix D.

Changes to Declarations and Modes

The previous v~rsions of the compiler required that all

declarations in an <::::l;NCLOSED CLAUSE> preceed any other

<UNIT> s in the clause. This restriction was the result of

a size limitation imposed upon the original implementation.

With the addition of a new pass to :recognize declarations,

this ·restriction is now removed. ~he only restriction im­

posed upon mixing<UNI't> s and declarations in an <::ENCLOSED

CLAUSE:>is the ALGOL 68 language restriction that all dec­

larations must preceed the first label in a<SERIAL CLAUSE>.

Previous versions of the compiler- seve-rly restricted

the types of initialization expressions and row-bounds

expressions which could' be used in declarations. These

expressions were limited to denotations, simple variables

and simple variables preceededby a monadic plus or a mon­

adic minus operator. The current version allows full uni­

tary clause (<l:JNI':C>) facilities to be used both in row­

declarers and in initialization of variables.

A limited form of mode ·declarations has been implement­

ed for this thesis. A mode declaration allows the program~

mer to define a symbol to represent a user defined mode.

The programmer may then use the symbol to stand for the

newly defined mode in declarations, casts, and routine

texts. Figure 18 provides some examples of valid mode

declarations.

)4

'Declaration Defined Mode

MODE .A =LiJ INT L J INT

MODE .B = REF .A REF L J INT

MODE .c = CHAR; CHAR

MODE .D =LiJ .c L J CHAR

MODE .E =LiJ .D J:,J CHAR

Figure 18. Some Valid Mode Declarations

A symbol which is used to represent a mode in a mode

declaration must be a stropped identifier. A stropped

identifier is a standard identifier immediately preceeded

by one of the stropping characters (;·or-··). The symbol

.A is distinct from the symbol A and the two symbols may

not be used interchangeably.

There are three important implementation restrictions

upon mode declarations• no mode declaration may contain its

own mode indication (symbol which stands for the mode), the

developed mode must be a legal mode as defined for this

implementation (see Chapter II), and no mode indication may

be used before it is defined. Examples of mode declarations

violating the first restriction area

MODE .A = REF .A and

MODE .B = PROC (.B) REAL.

This restriction is consistant with full ALGOL 68 when the

mode indication is not shielded within a struct or a union

(this is not yet implemented).

An example of a .mode declaration violating the second

restriction is•

MODE .A = REF ~i_7 !NT,

.B = ~jJ .A.

35

The developed mode for this example would be ~j_7 REF ~i_7

INT, but this implementation does not allow any symbols to

occur between two row-of symbols ("~ J").
The third restricti~n is violated by a mode declaration

of the follwing type•

MODE .X.= REF .y,

.y = REF INT.

The effect of this particula± declaration may be achieved by

simply reversing the order of the symbol declarations

MODE .y =REF !NT,

.x = REF .y.
This restriction is necessary because the mode definitions

are not recognized prior to the declarations being parsed.

The previous versions of the compiler made no distinc­

tion between identity declarations and variable declara­

tions. This allowed (!NT a = 3; a•= 2) to be accepted as a

valid prQgram. The revised version will correctly identify

the assignation aa= 2 to be in error.

Procedure declarat,ions which utilize procedure vari­

ables, row-of-procedure variables and constants may be made.

In addition, the pre-existing facility of procedure con­

stants remains available.· Figure 19 displays an example of

how a procedured variable may be declared, assigned

routines, and invoked.

(1) BEGIN

(2) PROC (REAL) REAL trig;

(3) INT SWJ

(4) REAL nbr;

(5) read ((sw ,nbr));

(6) trig 1= IF sw = 0 THEN sin ELSE cos FI;

(?) print (trig(nbr))

(8) END

Figure 19. Use o.:f a Procedure Variabl,e

Line 2 declares the identi:fier "trig" to be of mode

REF PROC (REAL) REAL· Trig is a variable capable of pos- ~

sessing a routine. The :function of the routine is not de­

:fined; however, any routine which is assigned to trig must

have one REAL formal parameter and it must return a REAL

result. Lines J, 4, and 5 declare two variables (sw and

nbr) and input values for those variables from the Standard

Input file (STANDIN). Line 6' is an assignation, the right

hand side o:f this assignation is a conditional clause. If
I

the value of sw is zero then the routine sin (mode PROC
'

.(REAL) REAL) will be yielded by the' clause; the routine

cos (mode PROC (REAL) REAL) will be yielded, otherwise.

Since the ·modes o:f both alternative yields are identical,

37

the clauf?e will return a value of mode PROC (REAL) REAL

which is either the routine sin or cos depending upon the

value of sw. The yield of the clause is compatible with the

left hand side of the assignation (the variable trig) so

that the routine yielded by the conditional clause is as­

signed to the procedure,variable trig. Line 7 causes the

procedure variable trig to be invoked with an actual param­

eter value of nbr. The action taken (which routine is

elaborated) depends upon which routine was assigned to trig ·

in line 6.

Row-of procedure constants and var~a9les were included

to maintain the orthogonality of the ALGOL 68 language.

That is,· given that amode is a valid mode then L J amode is

also a valid mode (this is not necessarily true in this

subset). A value of a L J amode mode consists of a vector

of amode values. PROC (REAL, INT) BOOL is a valid mode;

therefore, a programmer might desire to declare an object of

mode L J PROC (REAL, INT) BOOL or REF L J PROC (REAL, INT)

BOOL. The valu.e of a row-of-procedure object consists of a

vector of routines, each assigned to an element of the row­

of-procedure constant or variable. Figure 20 provides an

example of a situation where a row-of-procedure constant is

used. Line 2 declares the;identifier "func" to be of the

mode L _7 PROC (REAL,REAL) REAL. The virtual parameters are

required on all declarers of row-of-procedure constants and

variables because there is no <.ROUTINE TEX'r.> for row-of­

procedure modes. Lines 3 through 6 comprise a special

38

-
clause called a collateral clause. The collateral clause

is being used here as ~'row display. The collateral claus'e

is discussed below. At this time, the a~sumption that the

collateral clause yields a vector of routines which ~re

assigned to the constant func is sufficient. Line 12 causes

the jth routine in the row~of-procedure variable to be in­

voked, passing as actual parameters the REAL values possess-

ed by the variables a and b.

(1) BEGIN

(2) L J PROC (REAL, REAL) REAL func =
(3) ((REAL x,y) REAL. 1 x + y,

(4) (REAL x,y) REAL 1 x - y,

(5) (REAL x,y) REAL 1 x * y,

(6) (REAL x,y) REAL 1 x / y);

(7) INT j,

(8) REAL a,b,CJ

(9) WHILE read (j);

(1 o) j ') o and j < 5

(11) DO read ((a,b));

(12)

(13) "

cr= func £"jJ (a,b);

print ((j,a,b,c))

(14) OD

(15) END

Figure 20. A Program Example Using a
Row-of-Procedure Constant

39

Collateral, Conditional and Loop Clauses

A collateral clause is a clause which returns a value

for each of the comma separated <fJNI':t> s in the clause. The

value returned is treated as a value of a rowed mode (row

display). The mode of the row display is normally deter­

mined by the balance of the clause; ho~ever, due to imple­

mentation restraints the balance mode of a collateral clause

is assumed to be the same as the mo~e of its first unit.

ALGOL 68 permits collateral clauses to be used in strong

positions. Figure 21 shows some of the valid uses of

collateral clauses.

Initializing a ~ _7 INT variable

~5_7 INT aa= (1,2,3,4,5);

The right hand side of an assignation

aa= (2 * a ~1_7, 3 *a ~2_7, a ~3_7 +a ~4_7,0,0);

As an actual parameter of a call

PROC sum : (~ _7 REAL x) REALa

(REAL tote= 0;

FOR i TO upb x DO tot + a= x ~i_7 OD;

tot);

print (sum (1.2, 2.3, J.4))

#value printed = 3·9#

Figure 21. Al·lowable Uses of the
Collateral Clause

40

Futher restrictions which are placed upon row displays area

they must not be used as actual parameters in calls to

transput routines (print, put, putf, etc.), nor can they be

nested to obtain row-row mode values.

The ·syntax for a <CONDITIONAL CLAUSE> has been changed

in this implementation to·· allow a <SERIAL CLAUSE!> in posi­

tions where only a list of unitary clauses was previously

permitted. As an example, the following conditional clause

would now be valid•

IF p THEN INT a; read (a); a ELSE 2.0 FI.

There are several ranges .defined within conditional clauses,

they area between the IF and the FI, the THEN clause, the

ELSE c-lause, and between an ELIF and its corresponding FI.

Figure 22 displays the ranges of two example conditional

clauses.

The changes made to the loop clause structure represent

changes which make the revised version and the previous

versions of the compiler incompatible. The syntax according

to the original report allowed a single<jpNit> as the object

of the loop clause (4). The revised report introduced the

symbol OD to match the symbol DO and allows a<$ERIAL

CLAUSS>as the object of the loop (5). New syntax allows

the following loop clause•

TO 5 DO REAL a; read (a); sum+ a= a OD

The previous version would have required the following

statements to achieve the same result•

TO 5 DO BEGIN

END I

REAL a;

read (a);

sum + r=·a

IF scl THEN sc2 ELSE sc3 FI

IF scl

THEN ec2 ELSE scJ
_:::.

,_!t ~·
Inner ran es-g Outer ran !:e'' g

IF scl THEN sc2

FI

IF scl

l'HEN sc2

Figure 22.

ELIF sc3

THEN sc4

ELSE sc5

ELIF sc3

Ranges of Two Conditional
Clauses

41

42

Along with the new syntax is a new definition of ranges

in the loop clause. Figure 23 illustrates this new range

definition.

FOR
identifier

WHILE

FROM unit BY unit TO unit

<SERIAL ClkAUSE>

I DO <SERIAL CLAUSE!> OD

Figure 23. Ranges in the Loop Clause

The identifier defined in the FOR part can be accessed only

in the WHILE and DO parts. Any declarations made in the

WHILE part may be referenced in the DO part. The syntax

accepted by the new version will also allow a loop clause to

be the outermost range in the program i.e., the program

DO SKIP OD is correct; however, the lexical analyzer will

not accept this since it does not treat loop clauses as

ranges. Due to time constraints this was not changed.

Identity Relations and Casts

Identity relations allow the testing of two REF amode

variables to see if they refer to the same location (have

the same name). There are two identity relation

operators• the IS relator (a=a) and the IS NOT relator

(a•=a). Given the declarations

REAL x a=).14, y a= J.l4;

the identity relation x •=• y yields false·because the ad­

dresses (names) of x and·y are different even though the

values contained in those addresses are the same. It is

not possible to use an identity relation between variables

of two different modes (after balancing). Figure 24. is a

sample program which displays the features of ide.nti ty

relators.

BEGIN

REF !NT a, !NT b ·a= 3, c a= 3;

43

a a= b; #'a' now refers to the location of 'b'#

END

a •=• b; #yields true#

a 1-, = 1 b J #yields false#

print (a); #prints the value J#

a •=• c; #yields false#

a 11 =a c; #yields true#

a = c #yields true#

Figure 24. Some Examples Using
Identity Relators

A cast allows the programmer to change the strength of

the position of an enclosed clause. The enclosed clause of

a cast is a strong position; therefore, any legal coercion

may be applied to the value yielded by the enclosed clause.
. .

A cast is created by a mode indication followed by an en-

closed clause .such asa REAL (1 + 2). ·The enclosed/clause

will return an integral result which will then be widened

to a real value (regardless of the available syntactic

strength).

CHAPTER V

PLANNING FOR THE IMPLEMENTATION

Introduction

The planning for this implementation comprised t 1hree

stepsc 1) overall familiarization with the exist~ng com­

piler, 2) designing th~ mode facility to be implemented,

and 3) devising the syntactic analysis needed to recognize

the program block structure.

Familiarity with th~ existing compiler was obtained by

examining the theses of Jensen (1), Berry (2), and Eyler (J)

and also by examination of the compiler code.

Modes

Planning for mode implementation required two major

decisions, they werea selecting the subset of modes to be

allowed and designing algorithms to perform the required

mode manipulations and designing the symbol and mode tables.

An objective of this thesis is to introquce an enhancement

in the mode handling facilities for the Oklahoma State

University ALGOL 68 Oompiler. This was to be. done without

requiring a major rewrite of the code generation and inter­

pretive execution phases of the compiler. The existing code

relies heavily upon the codes used for the modes (see

46

Figure 8); therefore, any changes made had to preserve these

numbers. This was attained by using the position of the de­

fining mode entry in the mode table as the mode symbol and

entering the modes listed in Figure 8 into the first eight

locations in the mode table. With this convention a real

mode, for example, still is represented by the number·· 2.

The mode subset was selected to allow REF amode entries

as the major enhancement. This feature along with the

orthogonalization of modes is a suitable beginning to the

task of adding a full mode handling facility to the com­

piler.

After designing the subset of modes the compiler would

accept, algorithms which would perform.the functions ofa v

coercion, balancing, and determining mmdes in assignations

were devised. These algorithms were implemented in PL/I,

and tested to insure that they were acceptable. The

algorithms coded in ALGOL 68 can be found in Appendix B and

test results of the PL/I implementation can be found in

Appendix c.
The symbol table structure was chosen because this same

type of symbol table was implemented for a class project.

It is versatile enough to handle the block structuring of

ALGOL 68. The symbol table structure ~lso figures heavily

into some recommendations for future enhancement of the

compiler (see Chapter VII).

Syntactic Analysis

In order to recognize declarations in a pass prior to

code generation, it was necessary to perform enough syntac­

tic analysis to determine the blocking structure of the

program. Several attempts where made at devising a grammar

for the language, that would also be acceptable to the

SLR(1) table generator developed by Joseph Gray-(19). After

substituting some "terminal symbols" for some syntactic

entities which were not i~ fact terminals (and invoking

other parsing algorithms to recognize these "terminal

symbols"), ~twas possible to generate a grammar which would

perform the required analysis. The resulting parser was;

however, too large to be used practically, given the size

restrictions imposed upon the compiler. It would have been

possible to have used sparse matrix techniques to reduce the

size of the parsing tables from 15,000 words (0J150 states

by 100 symbols) to about 3400 words but considering the size

of the semantic routines, the author felt it was impractical

to implement on a computer with 8K words of memory.

The syntactic analysis used is essentially a hand coded

push down automaton which is similar to the methods used in

the other phases of the compi~er.

CHAPTER -VI

IMPLEMENTATION

General Struct~re

In this chapter the modifications which have been made

to the compiler are discussed. The compiler is a four pass

compile'r with an interpre~ive execution phase (Phase 5).

Figures 25-JO are diagrams of the flow of data through the

phases of the compiler. The flow of control for the com­

piler is Phases 1. 2. J, 3.5, and 4. Execution is accom­

plished by Phase 5 which may be directly invoked (using

actual pseudo machine code) or executed after compilation.

Phase 1 reads the aJOB card, performs analysis of the

options selected by the programmer, prints the compiler

options and sets various flag fields to be used by later

phases of the compilation.

Phase 1 Option l
Listing I

..... --~----1
...... ____ .. ~""" ~·

Figure 25. Phase 1-Job Card Analysis

48

Phase 2 performs a lexical analysis of the ALGOL 68

source program. Output consists of one integer per symbol

in the source program. The only key words recognized as

reserved symbols at this point are BEGIN, END, IF, FI, CASE,

and ESAC. A source program listing is printed if it was

requested on the job card. Any denotations encountered

during the lexical analysis are converted to internal form

and stored into the simulated program memory for Phase 5·
'

A table of all symbols wh1ch were encountered in the lexical

analysis is also passed to Phase 3 in common storage.

Phase 2 G6L6y· urce
---·-

·--·----··- ... ·- I
i I
' I

(simulated Program
Memory 1\

{Denotations) --·

/coded A tomi~---17
Unit File l
(Source Program)
\ ~

Figure 26. Phase 2-Lexical Analysis

Phase 3 performs two functions• first the table of

symbols (received from Phase 2) is examined and all key­

word symbols are identified, n~xt a pass is made through the

50

source code file updating the keyword symbol numbers to re­

flect their special values (see Jensen (1)). The identifier

table is also compressed (removing keyword symbols) and the

corresponding changes are made to the source code.

The second part of Phase J changes a colon symbol which

is preceded by a mode declaration to another code, to indi~

cate that a routine follows. The left parenthesis of a

formal parameter pack (if one exists) also is changed to a

special symbol at this time. As a final function Phase J

writes the variable name symbols to a disk file for debug

output purposes.

Source
Program

\ ____ _

Figure 27.

...../rdentifie1.
~File
1 \ ! '--- ---

Phase J ~~
~ 1Progr~m . I

. Error~
l ____ __.

Phase J-KeyWord Re,cogni tion

Phase 3•5 is an entirely new pass written for this

project. It has the primar~ function ofrecognizing decla­

rations and building the symbol table entries for these

declarations. Phase 3·5 also ~alyzes the blocking struc­

ture of the program in order to build the symbol table tree

51

structure. The output code file has all declara.tion symbols

deleted. This phase modifies some other symbols in order to

make Phase 4 parsing easier (such as u,sing. separate symbols

for each different meaning of the colon symbol). Some

object text is included as a part of the source text. This

object text is never seen by the main section of Phase 4,

but instead is placed immediately in simulated·program

memory by the Phase 4 input routine.

·- ;I Source
Program; and
Object text \

-· --·-- ·-· ·-'

! ,- . YError i
I Messages 1

~
Figure 28. Phase 3·5-Declaration Recognition

Phase 4 is the main syntactic recognition and code

generation phase of the compiler. The input consists of the

modified source text and symb~l table output from Phase 3·5·

Output from Phase 4 consists of the generated object code

and any applicable error messages.

The code generated by Phases 3·5 and 4 consists of

instructions defined for a pseudo machine. Phase 5 performs

the simulation of the generated pseudo machine code.

52

Phase 5 may also be executed as a stand alone program which

executes object code loaded from cards.

;--~ Source
Program and·
Object Text\
'-------- _1

I
>i Phase 4

(simulated · -~(
~--~·Program Memory

(Generated Code~

!Error . r

~
Figure 29. Phase 4-Code Generation

Phase 2

Simulated,
Program

\Memory

Phase 5
-1

Printed J
Ou~-

Figure JO. Phase 5-Interpretive Execution

Modifications Made to Phases 2 and J

No modifications were made to Phase 1. Phase 2

53

modifications were concerned with stropping symbols. The

symbols for.stropping (• and.) immediately preceeding an

identifier symbol cause that symbol to be treated different­

ly from the same identifier symbol which' is not stropped.

".ABC" is not the same as "ABC"; however, ".ABC" is equiva-

lent to "!ABC". Stropped identifiers may be used as mode

indicants. Figure 31 is the finite state automaton used to

recognize stropped symbols.

Space
•

recognize REAL
~~,denotation

!---?>Stropped Symbol

Alternative
--------------~Representation

for Quote Symbol

Figure 31. Recognition of Stropped Symbols

When a symbol is determined to be a stropped symbol the

Code 617 is placed in the code file preceeding the identi­

fier number for the symbol.

Phase 3

Phase 3 modifications consisted of minor modifications

to the keyword identification routine to identify correctly

the additional symbols required to implement mode declara­

tions and modifications required by the revised report (5)·
. .

The additional symbols and their codes area

Symbol

OD

MODE

Code

616

62)

The pass to update the source code after the keywo~ds

have been recognized was rewritten completely in order to

support five functional modifications•

1) The keyword OD is recognized as the symbol which

terminates a loop clause.

2) The stropping symbol is removed 'from the source

text if it precedes a keyword (.IF is equivalent to

IF).

J) If the colon symbol is immediately preceded by a

mode indication then the colon symbol is a routine

symbol. The source text is then scanned from right

to left to find the opening parenthesis of the

formal parameters pack (if one exists). After the

open symbol has been found it is replaced by a

special code (Code=47) so Phas~ 3·5 will be able

to immediately recognize a routine denotation. The

previous version of the compiler required routine

denotations to occur only in PROC constant declara-

tions so this type distinction was not necessary

(all routines were preceded by ·the symbol PROC).

4) Previous versions of the compiler used this pass

to identify labels, which were then ou~put on a

special label file. Entries in the label file

indicated the block number.of each label declared

55

in the program. Phase 4 needs this information at

the beginning of a block in order to generate the

allocate symbol instruction upon block entry.

The revised version performs label identifi-

cation in Phase 3·5· Here labels are entered in

the symbol table along with other declarations.

Phase 4 then searches the identifier list associ~
I

ated with a plock and generates the allocate symbol

instructions.

5) Phase 3 was also used to recognize the block struc­

ture of the prpgram in order to create the block

nesting table. The need for this table has been

eliminated with the inclusion of the tree struc-

tured symbol table.

Phase 3·5

This phase consists of four major sections of Codea

Determine Nesting Level of ·the

ALGOL 68_Source Program

A hand coded push down automaton recognizes the nest­

ing level. of the program which is reflected in the tree

associated with the symbol table. This section analyzes

special symbols to determine Whether they are loop clause

symbols or declaration symbols. If a symbol is in one of

these two categories then the appropriate subprogram to

parse the construct is called. If the symbol is related

to the nesting structure of the program (except for loop

clauses) it handles the processing directly.

If the currerJ.t symbol is a symbol which terminates a

unit (such as ; , I etc.) then the status of the parse is

examined and control returns to the location in the analysis

which was interrupted dtie to the need to recognize a unit.

If a symbol does not fall into one of the previous classes

it is simply copied onto the output file.

Symbol and Mode Table Manipulation

Subprograms are included which allow for.the manipula­

tion of the symbol table. These subprogram functions com-

prise a

1)

2)

3)

4)

5).

increasing the nesting level of.the tree structure

(build the tree structure),

decreasing the nesting level of the tree structure,

inserting an identifier into the symbol table,

searching the symbol table for the occurance of

an identifier, and

allowing access to the simulated virtual storage

which contains the symbol table.

In addition to the subroutines to manipulate the symbol

table several routines are included which manipulate the

57

mode table. Given the number associated with a mode it is

possible ·to fetch the mode table entry or given the mode

table entry it is possible to obtain the corresponding mode

number.

Special processing is required for the insertion of'a'

mode entry into the mode table. Not only must 'the mode

entry being processed be added to the table, but any modes

which can be derived from .that mode by the standard coer-

cions or by slicing, also must be added. The insertion

routine automatically derives these related modes and in-

serts them into the mode table. Given the mode REF REF

L ,J REF INT, Figure 32 displays all o_f the related modes

which must be inserted into the mode table.

Mode
Number

1

2

3

4

5

6

7

Mode

REF REF f:,J REF INT

REF f:,J REF INT

REF L J REF INT

f:,J REF INT

L J REF INT

REF INT

INT

Comment

original mode

dereference mode 1

slice mode 2

dereference mode 2

slice mode 4

subscript mode 5

dereference mode 6

Figure)2. Modes Derived From
REF REF f:,J REF INT
by Coercion and Slicing

Figure 33 is a flowchart which presents the algorithm re­

quired for th~ insertion of derived modes.

Loop Clau~e Processing

58

This section of code provides all processing necessary

to recognize the nesting level associated with loop clauses.

The loop clause recognizer also makes the necessary symbol

table entries for the 1 index of the FOR loop as well as any

labels encountered in the serial clauses of the WHILE and

DO ••• OD parts of the loop clause.

Declaration Processing

Declaration processing accounts for·over 50% of the

code of Phase 3·5· A large part of the complexity involved

in the processing of declarations is a result of the recur­

sive nature of the language. It is possible for declaration

processing to be .suspended .ln order to recognize a unitary

clause (which may of course contain other declarations), and

then be resumed after the unitary clause has been recog­

nized. This facility requires mutually recursive co-rou-

tines which tend to obscure the clarity of FORTRAN

subprograms. An example of a situation where this occurs

isr REF (/ (INT I; READ (I); I) /) INT J. Upon encoun-

tering the first left parenthesis, recognition of the first

declaration (declaration of J) is suspended and partial

results saved (in the symbol table area). Flags are set to
' indicate the state of the parse, then the routine to process

___ . . . , #ode. enr;; 10 be
-L /~ ;J v T ,.41 ode roi'M Z¥5 ~d/

R E:;::' fl)c u/J ;{ t rK 8Asic_J'lcoE

I.n.:,o.2te.T Mod~
/?EF/-t N'.
8/fSIC_ MODE

,Moae. A.Ju.u.ee..e
or I...t~:. E:.r<.feD

44od~

L175et>T AAod~
REF/
BIISL c_ MoDE

L._. --..---_J

.
I ~ I<

J ~ e1
t<. f- ~

y

save..
C. (..I,.., fie 17 T

;Uode..

Lv sell r ;I-(ode.
REF/ Ro~-'/?f
84Sic_MoDE:

.
J ~ j - 1

Zn~et<.T .Mode..
REFl-tt?oW.J I?EPI(

8As-rc.'_ A-'tod £ 1

i ~ i- 1

59

I 1(;5<:'1'7 A/l.,d e.

Rowj !?EF1<

BASIC_ MODE

/? e. s h) f' e...
.51/Ved

.1110 de.

Figure JJ. Related Mode Algorithm

60

program nesting structure is invoked. After the unit within

the parenthesis has been recognized control returns to the '

location in the parse which was suspended.

The declaration parsing phase generates the code neces­

sary for the allocation of variables during program execu­

tion. Code is also generated to update the statement number

of any statements which have been deleted because they

contained only declaration symbols.

The added feature of allowing any unit in array bounds

declarations has forced modification to the previous methods

of handling array allocation. A new source symbol (=49) has

been introduced which, when encountered in Phase 4 causes

the current unit being evaluated to be completed and the

mode of the result is co~rced meekly to mode INT. The lower

and upper bounds of each row are left on the runtime stack.

Figure 34 shows an example of the status of the runtime

stack for the row declaration

Row 1

Row 2

Row 3

~ula u2, U31 u4, u5_7 INTI.

Notea ul, u2, ••• , u5
are any arbitrary
units. (ul) repre­
sents the value
yielded by ul.

Figure 34. Status of the Runtime Stack During
Elaboration of the Declaration
~ulr u2, u3r u4, u5_7 INTI

The missing lower bound from the third row of the declara­

tion of Figure 34 is assumed to be one. This requires a

special instruction sequence to be generated whenever a

comma or bus symbol (_7) follows the first unit of a row

61

· bounds pair. The special processing generates code to cause

a constant of one to be loaded onto the runtime stack fol-

lowed by a new pseudo machtne instruction consisting of an

operation code of a 67 (with all other fields set to zero).
\

This new instruction will cause the top two integral values

on the stack to be exchanged. Figure 35 provides an example

of the output text generated from the array declaration

given ~n Figure 34.

A mode declaration such asa

MODE .x = LYJ INT

poses some special processing problems during Phase 3·5·

The units in the row declaration must be elaborated each

time the mode indication occurs as a variable declaration.

For example, given the above definition of the mode .x,

Figure 36 shows two very different results depending upon

the local declaration of y. The implementation of this is

accomplished by saving the _source code symbols of the mode

declaration in a list which may be accessed through the mode

table ent~y for the mode being defined. When the mode indi-

cation occurs as an actual variable declarer the reading of

source text symbols switches from the source code file to

the list associated with the mode entry. The current set of

source text being accessed is determined from a stack.

ul

49

49

u3

49

u4

49

u5

49

"301, 1, 1, 0"

"67' 0' o, 0"

"501, -1, 3, XXX"

Source code for unit 1

End of unit 1

Source code for unit 2

End of unit 2

Source code for unit 3

End of'unit 3

Source code for unit 4

End of unit 4

Source code for unit 5

End of unit 5

Push a 1 onto the stack

Exchange top two integral values

Allocate descriptor for array

(xxx is the address of the skeleton

descriptor).

Figure 35· Example of Output Text for the Example
Array Declaration
£"ull u2, u3• u4, u5J INTI

62

When the stack is empty, source code· is obtained from

the input disk file. If the stack is not empty the stack

contains pointers to the list associated with the mode being

developed. A null symbol (-999) causes the stack top to be

decreased and input resumes from the point at which it was

last suspended.

BEGIN

END

MODE .x = ~y_7 INT;

BEGIN

END;

BEGIN

END

INT y = J;

.x z; #z is a vector of size J#

.x zl; #zl is also a vector of size J#
•

•

INT aa= 2;

PROC y = INTa a * •= 2;

.x z; #this z is a vector of size 4#

.x zl; #this zl is a vector of size 8#
•
•
•

Figure J6. Two Different Results Using
the Same Mode Definition

Phase 4

6)

There are five major functions of Phase 4 which re­

quired significant modifications. Three of the five func­

tions which were modified have been explained earlier in

this thesis, they area

1) Declaration processing was removed from Phase 4.

2) Symbol table access was provided to the new tree

structured symbol table.

J) The mode coercion and balancing algorithms were

implemented in FORTRAN.

64

Mr. Eyler's (3) implementation of procedures, partic­

ularity with respect to parameter passing, was restricted

due to the fact that no descriptor containing the modes of·

formal parameters could be maintained at compile time. A

procedure call was executed by placing the actual parameters

upon the runtime stack followed by an end of parameter flag.
\

The routine contained retrieve parameter instructions which

fetched the actual parameter, performed any required coer­

cions and stored the value either in the symbol table or a

local area depending upon ,the. mode of the formal parameter.

If the wrong number of parameters was passed or the mode of

an actual parameter could not be coerced to the mode of the

formal parameter the error was not detected until execution

time.

The runtime symbol table uses one word to represent the

actual mode of an object. This does not provide sufficient

capacity to store all of the information about the expanded

modes during execution. It was therefore necessary to mod­

ify the parameter passing mechanism to perform coercions

upon parameters at the point of invocation. This is possi­

ble because the new compile, time symbol table contains a

descriptor of the modes of all formal parameters. It is

therefore possible to announce at compile time when param­

eters have modes which do not match formal parameters, or

when the incorrect number of actual parameters is used.

The runtime mode descriptor does not allow for the

indication of all of the modes allowed in the new subset.

This is especially true for reference-to modes (pointers).

The implemented solution ha~ several drawbacks in the area

of possible expansion to the runtime system. Reference-to

variables are treated as integer modes by the runtime code.

There is no confusion in handling the variables since the

code generator does know the actual mode of the object and

will not dereference a true integral value. The best solu­

tion would have been to revise the runtime mode descriptor

to contain all of the required information.

Phase 5

Modifications to Phase 5 include implementing the code

necessary to provide for the coe;rci.ons which have been mod­

ified or added and modification of parameter passing mech­

anisms. New instructions include code to perform rowing and

dereferencing.

When rowing is indicated, an array descriptor which has

~ls1_7 in all row bounds is created. The address in the

descriptor is set to point to the object being rowed. If

the object being rowed is a variable, then the result is the

address of the descriptor. If the object being rowed is a

value, the descriptor itself is the result.

There are two different actions which can result from

dereferencing. Given a mode of the form REFi amode, when i

is greater than one, a dereference instruction yields an

address of mode REFi-l amode. If i is equal to one a

dereference instruction yields an amode va~ue.

Modifications in the parameter passing algorithm con­

form to the changes detailed in the discussion of Phase 4.

66

·cHAPTER VII

SUMMARY, CONCLUSIONS AND FUTURE WORK

Summary

An implementation has been completed upop the

IBM 360/65 which meets the criteria of limited portability

and a significant expansion of the mode processing capabili­

ties of the Oklahoma State University ALGOL 68 Compiler.

The improvements made for this implementation include the

following a

1) allows the use of full unitary clauses in declara­

tions;

2) allows mixed unitary clauses and declarations in a

range;

3) includes mode declarations for a subset of ALGOL 68

modes;

4) allows row displays to be used in a restricted

context;

5) procedure variables have been implemented.

Conclusions

The mode processing capability of the Oklahoma State

University ALGOL 68 Compiler has been enhanced significant­

ly. A considerable amount of work-will be required before

6?

68

a full mode processing facility can be added to the Oklahoma

State University ALGOL 68 Compiler.

Future Work

Implementation of United Modes

The mode table will handle the addition of united modes

as shown in Figure 37·

Mode Number REFs1 ROWs REFs2 BASIC Mode List

1 0 0 0 INT 0

2 0 0 0 REAL 0

3 0 0 0 CHAR 0

4 0 0 0 COMPL 0

5 0 0 0 UNION 1 ----?-4

(6 0 0 0 UNION 1~2~3~5)
Unresolved

6 0 0 0 UNION 1~2--73~4
Resolved

Figure 37· Mode Table Entry for the United Mode
UNION (INT, REAL, CHAR, UNION(COMPL, INT))

The mode list would be kept in numerical sequence; so when

an attempt is made to add a mode to the list which matches

a mode that is already on the list, it is not added. If one

of the modes of a mode list for a mode table entry is a

united mode the mode lists should be merged. Problems which

must be solved prior to successful implementation of united

modes include• adding uniting to the coercion and balancing

algorithms, and detection of related modes in a union. Two

modes are related if they both can be coerced firmly from a

common mode, such as PROC REF INT and REF INTJ they both may

be derived REF PROC PROC REF INT, for example.

Implementation of Structured Modes

The mode table representation of a structured mode

would be very similar to that of a united mode. Figure 38

. shows -a possible method of managing structured modes.

Mode Field Se-
Number REFs1 ROWs REFs2 BASIC Mode List lector List

1 1 0 0 INT 0 0

2 0 0 0 REAL 0 0

J 1 0 0 .A 0 0

4 0 0 0 STRUCT 2~3 X--:;>y

5 0 0 0 STRUCT 1~1~4 a~b~c

Figure)8. Mode Table Entry for the Structured Mode
MODE .A • STRUCT (REF INT a, b, STRUCT
(REAL x, REF .A y) c)

In the case of united modes, when a mode list referred to

another united mode, the mode lists are merged; however,

the mode lists are not merged for structured modes. The

structured mode entry contains a list of the field selector

70

names which correspond to a mode list entry. A potential

problem which must be resolved prior to successful structure'

implementation is the identification of structure displays

(how to distinguish it from a row display).

Source Program Representation by a

Syntax Tree

Consider the symbol table tree structure representation

for the example program segment given in Figure 39·

Example program• (A•= (A+ B) * (C + D))

Tree structure (nesting levels of

Code File

+ B

Figure 39· Tree Structure and Code File
for the Simplified Example

The numbers within the tree structure nodes point to the

position of the code file which contains the first symbol
' following the symbol which caused the tree structure node to

be created. Using a ~ symbol .. to represent a left parenthe­

sis and a 1 symbol to represent a right parenthesis, we

append the code for a particular nesting level to the tree

structure nodes for that level. The results are shown in

Figure 40. :.::.

•·= I \li I * I \k I if\ I

' Figure 40_. Tree Structure with Code
Appended

71

A segment of code appended to a structure node may contain

several-.~ symbols; however, a segment will contain exactly

one t symbol (which may be used to signal end of that

particular code segment).

Figure 41 shows the tree after each individual code

segment has been translated into prefix polish notation

(preferable to postfix because it is easier to build a tree

from). The t symbols are treated as operands for the pur­

pose of the polish string conversion.

-vfa= Al*l\k[·J 1f\

I+IAIB 1/f\ I -o'\) -~ + I c I D I ij\ I

Figure 41. Tree Structure After Conversion
of Code Segments to Prefix Polish

72

Figure 42 shows how the code segments can be translated

into trees and interconnected with the tree structure nodes.

0

Figure 42. Syntax Tree for Sample
Program Segment

After the entire program has been converted into a syntax

tree, mode information can be appended to the various nodes

(identifiers can be replaced by pointers to the symbol

table). This structure would allow for coercion and bal-

ancing to be performed prior to actual code generation.

Code generation becomes relatively simple after all coer­

cions and balances have been added to the tree.

Implementation of unions and structures could be done

in the time required to complete a masters thesis. Con­

version of the source program to a syntax tree and code

generation from that tree should be attempted only by

73

someone with sufficient time to complete the task.

String Implementation

The implementation of strings in the Oklahoma State

University ALGOL 68 Compiler could be accomplished by sever­

al methods. One method would be to allocate a section of

program storage for a string space. The method explained

by David Gries (2~) could then be used to manage strings.

The amount of string storage space allocated could qe con­

trolled by an option in the sJOB card with an appropriate

default value (say 2K words).

Another possible. method of string implementation would

be to- use ·string descriptqrs as shown in Fiugre 4). With

this method strings could be allocated on the stack in the

same way as any other local variable. This would make

possible automatic recovery of unused string space when a

block which contains a string is exited. If a string

expands beyond its boundary, a new segment of storage would

be allocated and linked to the original segments.

New string segments may occur in storage areas reserved

for blocks which are newer in scope than the original string

segments. If this occurs, special treatment must be given

to those segments at the time a block exit occurs from an

inner block. These string segments must be moved from their

previous location to the end of the storage area for the

block which immediately surrounds the block being exited.

Total Strin_g Len~th

LeMth of This Se~ment

Amount Used in This Se~ment

Address of Next Se~ment

String Segment

Length of This Segment

Amount Used in This Segment

Address of Next Segment

String Segment

., ..

•
•
•

Figure 4J. Possible String
Descriptor Format

74

No matter which method is used for·string implementa­

tion, new mode processing for mode STRING will be required.

Mode STRING is equivalent to. FLEX f:laOJ CHAR. Mode equiv-

alence implies that two objects of equivalent modes will

have the same storage structure. L _7 CHAR is currently

implemented very different from any·reasonable method of

string implementation; therefore, it will be necessary to

introduce two new coercions, they area string and unstring.

These coercions would be valid in any strong or firm context

•

and would convert L J CHAR to STRING and STRING to L J
CHAR respectively.

75

REFERENCES

(1) Jensen, J. c. "Implementation of a Scientific Subset
of ALGOL 68." (Unpub. M.s. thesis, Oklahoma
University, 1973.)

(2) Berry, R. "A Practical Implementation of Formatted
Transput in ALGOL 68." (Unpub. M.s. thesis,
Oklahoma State University, 1973.)

(3) Eyler, A. D. "The ~mplementation of a Subset of
Procedures in ah ALGOL 68 Compiler." (Unpub.
M.s. thesis, Oklahoma State University, 1975.)

(4) van Wijngaarden, A. (Editor), B. J. Mailloux, J. E. L.
Peck and c. H. A. Koster. "Report on the
Algorithmic Language ALGOL 68." Numerische
Mathematik, Vol. 14 (1969), PP• 79-218.

(5) van Wijngaarden, A. (Editor), B. J. Mailloux, J. E. L.
Peck, c. H. A. Koster, M. Sintzoff, c. H.
Lindsey, L. G. L. T. Meertens and R. G. Fisker.
"Revised Report on the Algorithmic Language
ALGOL 68." Su-eplement to ALGOL Bulletin No.)6.
Vancouver• Un~versity of British Columbia, 1974.

(6) Peck, J. E. L. An ALGOL 68 Companion. Vancouverr
University of British Columbia, 1971.

(7) Lindsey, c. H. and s. G. van der Meulen. Informal
Introduction to ALGOL 68. Amsterdama North
Holland Publishing Company, 1973.

(8) Woodward, P. M. and s. G. Bond. ALGOL 68-R Users
Guide. London• Her Majesty's Stationery Office,
1974.

(9) Currie, I. F., s. G. Bond and J. D. Morison. "ALGOL
68-R." ALGOL 68 'Implementation. J. E. L.

, Peck (ed). Amsterdam• North Holland Publishing
Co., 1971, PP• 21-34.

(10) Hedrick, G. E. (Editor). Proceedings of the 1975
International Conference on ALGOL 68.
Stillwater• Oklahoma·state University, 1975·

(11)

(12)

(13)

(14)

(15)

(16)

(17)

77

Peck, J. E· L. "On Storage of Modes and Some Context
Conditions." Proceedings Informal Conference on
ALGOL 68 Implementation. Vancouver• University
of British Columbia, 1969, PP• 70-79·

Zosel, M. E. "A Formal Grammar for the Representation
of Modes and its Application to ALGOL 68."
(Unpub. Ph.D. dissertation, University of
Washington, 1971.)

/

Kral, J. "The Equivalence of Modes and the Equiva-
lence of Finite Automata." ALGOL Bulletin No •
..12• Manchester• University of Manchester, 197,3,
PP• 34-35·

Lane, H. J. ••coercion Methods Using Boolean Ma­
trices." Proceedings Informal Conference on
ALGOL 68 Implementatioh. San Francisco•
University of San Francisco, 1973.

IBM OS Full American National Standard COBOL
(GC28-6)96-4).

Backus, J. w. "The Syntax and Semantics of the Pro­
posed International Algebraic Language of the
Zurich ACM-GAMM Conference." Proceeding ofthe
International Conference on Information Process­
ing, UNESCO, Paris, 1959· Municha R.
Oldenbourg, 1960.

(19) Gray, J. L. "Implementation of a SLR(1) Parsing
Algorithm." (Unpub. M.s. thesis, Oklahoma State
University, 197.3.)

(20) Gries, o. Computer Construction for Digital Comput­
~· New York•' John Wiley and Sons, Inc., 1971,

. PP• 180-181. ,

APPENDIXES

78

APPENDIX A

GLOSSARY OF ALGOL 68 TERMS

79

Alternative yields - Every clause yields a value. Some

clauses have only one point from which a value can

be yielded, others (such as conditional clauses) have

two or more points in the code from which the value
"

can be yielded. Each possible location from which a·

value can be yielded is termed an alternative yield.

Amode - Symbol used to stand for an arbitrary mode.

Assignation - Causing a vari~ble of some mode to possess

a value of the same mode.

80

Balancing- Clauses which yield:values from more than one

point must be balanced to insure that all of the yields

a:re Qf a common mode.

Case clause - A simple case clause provides the capability

to select a unitary clause to elaborate based upon an

integral value. If the integral value is outside of­

the·range of unitary clauses provided (i.e., less than

1 or greater than the number of unitary clauses provid­

ed) a serial clause (the OUT part) is elaborated. An

extend~d case clause allows the nesting of case clauses

in the OUT part (OUSE).

Cast - A cast allows a unit to be placed in a strong posi­

tion (see Chapter II) and causes the value yielded by

the unit to be coerced to the specified mode.

Coercee - The result after .. applying a coercion to a coercend

is a coercee.

Coercend - The basic building blocks out of which units are

constructed such asa assignations, formulas,

81

denotations and applied identifiers.

Coercion - Modifying the mode of a coercend to that required

by its context with a corresponding modification to the

valu~.

Conditional clause - A simple conditional clause provides

the facility for making a true or false decision as to

which program path will be elaborated (IF THEN ELSE

FI). The extended .conditional clause (ELIF) allows the

nesting of conditional clauses in the ELSE path of

elaboration.

Denotation - A construct strongly resembling a constant in

other programming languages.

Deprocedure - This coercion causes a procedure which has no

parameters to be invoked.

Dereference - This coercion removes one or more REFs from an

object (yielding the value at which the REF amode

object was pointing).

Develop - Mode declarations which contain mode indicants in

their definitions must be developed by replacing the

indicant by its corresponding definition.

Elaborate - The act of carrying out the actions defined by

a program in a suitable. environment.

Enclosed clause - A clause which is wholly contained between

two bracketing symbols. Examples are CONDITIONAL

CLAUSES, LOOP CLAUSES, etc.

Equivalencing - There are often many ways of defining the

same mode. Mode equivalencing identifies the different

82

definitions to be the same mode.

Identity relation - An identity relat.ion allows two names to

be tested for equality·or inequality.

Mode - Specifies the class to which a value belongs.

Name - The loca~ion or address of a value in the compiler.

Object - An object is either a value or a name (address)

which refers to a value.

Orthogonality - The language design principle which requires

that a given language construct should be allowed

everywhere it is logically consistant.

Possess - An object is po~sessed by the symbol in the source
'

program which causes it to exist.
.. '

Primary - A primary is !a denotation, applied identifier or

an enclosed clause.

Range - A range defines a segment of a program which con­

tains local declarations. Any declarations found with­

in a range may be. accessed by other ranges contained

within the original range. Objects declared within a

range may not be accessed by any references which are

contained in code which is external to the range.

Reference - An object of mode REF REF amode performs func­

tions similar to the PL/I pointer variable. This

object is said to reference the .object at which it is
'

pointing.

Routine denotation - The formal parameters, mode of the

yield of the routine and the code comprising a routine.

Routine text - The code comprising a routine.

83

Rowing - This coercion allows a multiple value (or name) to

be cons~ructed from a scalar value (or name).

Serial clause - A serial clause is constructed from <UNIT> s

and <l>ECLARATIONS>' • The individual <lJNIT> s and

<DECLARATIONS> · can be intermixed and must be separat­

ed by go on symbols (J).

Slice - A slice is an object which refers to a subset of a

multiple value.·

Sort - Same as syntactic position.

Syntactic position - The syntactic position of a coercend

refers to the type of language construct in which the

~oercend appears. The syntactic position of a coercend

determines the coercions which may be applied.

Trimscript - A subscri~t or a slice.

Virtual parameters - The mode of all parameters in a proce­

dured mode must be specified in a declaration. The

specification may be indirect by the formal parameter

list of the routine denotation used to initialize a

procedured constant or variable. In the absence of a

routine denotation for procedure initialization the

mode of each p~ameter must. be specified by a virtual

parameter pack. The virtual parameter pack follows the

PROC symbol and consists of a list of the modes of each

parameter (in order). The modes are separated by

commas.

Voiding - This coercion causes a value yielded from some

section of code to be discarded.

84

Widening - This coercion converts a value of mode INT to

a value of mode REAL, also INT may be widened to COMPL,

and REAL may be widened to COMPL.

Yield ~. ~he yield of a section of code is the value which

that code makes available for further computation.

AP:PENDIX B

MODE PROCESSING ALGORITHMS

85

86

SUBJECT: MUOE VMOCESSING ALGORITHM~ FUK THE USU ALGOL 6U SU~SET COMPILER

AUTHOR: WALTER M. SEAY

1NSTALLAT IUN: OKLAHOMA STATE UNIVERSITY

DATE: SUMMER SEMESTER 197b

PROJECT ADVISOR: OR. GEGRGE HEDRICK

l*

~PECIAL NGTE: THESE ALGORITHMS HAVE otEN HANU TRANSLATED FROM
A Plll IMPltMtNTATION. THERI:: IS NLl SUITAtlLE COMPILtR
AVAILAdLE AT OKLAHOMA STATE UNIVERSITY TO TtST THE:
VALIDITY CF THE: lMANSLATION.

l*/*1*1*1*1*1*1*

THIS PROGRAM ALLOWS FOR THE TI::STING Or THREE MODE MANIPULATION
ALGORITHMS, THtY ARE:

l) CG£l<C I ON
' 21 UALANCING

3J ASSIGNATION.

INPUT CONSISTS JF AN ARBITRARY ~UMbER OF lNPUT StTS. tACH lNPUT
SET CONSISTS 3F A FUNCTIUN DEFINITION CARO FOLLOWED BY CARJS
CCNTAINING VARIABLE UATA DEPENDING UPON THE FUNCTION SELECTED •

.(.;J.l£.&..100
CAIW l
CARD l
CARD 3
CARD 4

COLUMNS 1-6 = "COERCE"
COLUMNS 1-HO = PUNCH THE A PR10~l MOOt
COLUMNS 1-dO = PU~CH THE A POSTEklOKI MUD~

COLUMNS 1-b =PUNCH THE STRENGTH UF fHE SYNTACTIC POSIT[QN

..d.A.Lllli.u&i
CARll 1
CARC 2

COLUMNS l-7 = "dALANCt"
COLUMNS l-6 =PUNCH THE STRENGTH UF THE SYNTACTIC POSITION

d·-9 ; PI.JI~Crl THE NUMdt:R GF UNITS T 0 ~E BAL ANCEO
CARD 3 TO 2 + !NUMdER Uf UNITS TOut: BALANCcOI

COLUMNS 1-HO = PUNCH THl MOOt UF J~ UNIT

~l.G.&.UJ.lf)J
CARU l COLUMNS l-6 = "ASSIGN"
CARD 2 COLUMNS 1-80 = UtSTINATION MUUt := SOURCE MOOt

VALID MOUES WHICH MAY BE INPUT ARE UEflNt:ri BY TH[FOLLOWING
~Nf GRAMMAR. UNOERL!NEU SYMdOLS JN THE GRAM~AR REPRLSENTS NUN TERMINAL
SYMBOLS. t~EIY REPREStNTS Th~ tMPTY STRING.

~.L.l.Ll .MO.Ut.S

~u~ l'.BU.C

£RlJ.C. lW.Ilf

.B.EE.S

::= aff~, B.Ll~~. RfE~. ilA.Si~ MUD~

R.E..E:.S • RG1i.S • .E.EE.S , £.BJ:l.C..S. , tHlli R~J.l(.

REF, &f£~ I .EMfiY

I#

I#

.BQ.rLS

.C..Ol:I.MA.S

.tlA.S..rr. mrut
II ' II ' .C.Q.MllA.S. . I

.~;aeii

.EM£H

FLL~ I FORMAT I tiYTtS I CHAR I STRING
BITS I BOOL I lNT I REAL I COMPL

•• - PROC, .£E.C.C..S.

VALIU SYNTACTIC POSITION STRENGTHS tSTRONGEST LAST)
ARc!

ll SOFT
2) wEAK
3) MEEK
4 J FIRM
5 J STRONG

.811Q..Uf REPRESENTS THt: COOED VERSION OF A MODE

~U..Uf AMQUE = .S.IB~kl l ltll RErSl,
ROWS,
REt- SZ,

.S.IBl~~ SIMPLEMOOE,
lbl N~_OF_PRU~_LEVELS,

Y_R t:fS 1
Y_RCwS •
Y_REFS2o

.S.IB~~ Y_SIMPlEMuOEl;

87

fliU.C PARSE I Ill.E ll.l:litl.G STRI f\G, B.t.E 1\.tl.IJ.JJ..t i'IOUCl ll!.ll.l.l!

THI~ PKOCEUUKE ACCEPTS A STRING wHICH CONTAIN~ A~ EXTERNAL
REPRESENTATION Of A MOUE ANU PEKFURMS A CONV~RSION (USING AN fSAl
TO INTERNAl FORM.

tilliltl
~..I.!Utl.G SYMBOL,
ll:il ACTION,ITEMP,STATE := ltKEY,
(/ , /l ltll TABLE= ((8,7,2,4,0,0,31,

!o,o,o,o,o,o,oJ,
(d,7,Q,4,0,J,3l.
(O,o,o,o,5,4,0J,
(8,7,o,o,o,o,6lr
(d,7,o,o,o,o,61,
!J,o,o,o,o,o,oJ,
(8,T,Z,1J,0,0,9l,
l 0,1, a, 10r0t 0,9),
(Q,O, o,o, ll, 10,0 lt
!0,7,c,o,o,o,1LJ,
1 a, 1, o,o, o,o,121 J,

ATABLE ((1,3,3,5~0,0,7),

!o,u,o,o,o,o,ol,
1 1,3,o,s,o,o, 11,
lO,o,o,o,o,s,oJt
11,3 ,o,o,o,o,el,
tl,J,o,o,o,o,aJ,
1o,u ,o,o·,o, o,o J,
(2,'t,4,b,0,0,9l'
(0,4,0r6t0t0t9l'
<o,o,o,o,o,6,aJ,
lU,4,o,o,o,u,toJ,
t0,4,o,o,o,o,lOll;

SIMPLEMCUE .!Jt 1'10DI:: := Y_SlMPLtMOUE .Qt. MUUE := "";
KtfS1 Uf MODE := ROWS ~E MOUe := RtrS2 tic MOOt := o;
Y_RErS1 .Uf. MOOt: := Y_ROWS ll MOUE .- Y_REFSZ UE MUOc .- O;
NR_OF_PROC_LEVELS Ut MUDE :~ O;

.ril::l.iJ.£ (SYMbOL :=SCAN lSTRlNGil -.= ""
.DU

KtY := lE SYMBOL = "PRL.iC"
Il::IUJ 1
illE SYMBOL = "VOIIJ"

lJ:jJ:.tJ 3

f-.1;

llli SYMuCL "l"
..IlJf.bl 4
.L.l..J.£ SYI"Lllll "I"

..I.tlf.bl 5
ill£ SYMLlUL "• II

..I..tli;tl 6
f~l£ ~YMBOL = "Rlf"

I.t!.E.tli 7
t...LS..I: 2

IH:MP := TAtlLE (/STATEr K.EY/ l;
ll 1 TEMP = Q

l.tl.E~ PRI~l ((NEWll~E. "PARSE [kMGK"l);

88

STOP
£1;
ACTIUN := ATABLE (/SlAT~. KEY/I;
STATE := ITEI"'P;
.C.A.S.E A C Tl 0 N

HI
#l#
ISlMPLEMUOE Df MOOE := "PkOC";

NR_UF_PHOC_LEVE:LS 1lf MUOE := ll,
#211
NR_GF_PRUC_LEFELS UE ~ODE +:= 1,
#3#
SIMPLEMODE Qf MUOE := SYMBOL,
#4#
Y_SIMPLEMUOE ~E MODE := SYMbOL,
f/.511
ROWS .Qt MODE +:= l,
IJ.6#
Y_ROWS tf MODE +:= 1,
117#
REFSl ~E MODE +:= 1,
#8#
REFS2 ~f MODE +:= 1,
#9#
Y_REFS1 .Q£ MOUE +:= 1,
/1.10#
Y_RErS2 Of MOUE +:= 1

QlJl
1£ ACT ION ..,: 0

l~f~ PRINT ((NEWLINE, "PA~SE ERRUR"II;
STOP

ti

QU;
1£ ~!STATE 2 OR STATE= 7}

.El

lHE~ PRINT ((~E~llNE, "PARSE ERRUR"Il;
STOP

89

II

£KU.L. SCAN

THIS PROCEUURE RETURNS TH~ NEXT COMPLETE SYMbOL !NO IMtlEDOED OR
U:AOII~G BLAi'AKS) f-OUND IN THE .:ilrl.HJ.G PARAMETER TO TilE INVOKING
PRO(.EOURE.

li~l.b
Sl.Bl~ii SYMBOL : = "", 52;
1£ STRING = ""

lJ::lf.~ SYMBOL
.EJ..SJ: xllil.L.f. s T R l NG II l/ ~ = It II

.QQ

STRINl> :=STRING (12: /) ,
.l.:l.l..!;
SYMBOL :=
lt STRING (/1/J = "("

El

ltlf~ STR1NG := STRING (/2: /); .. , ..
.l:..L.lt s T KING (/ l I) = ")II

lJj.El::J STRING := STKING 112: I); .. , ..
f..Llt s T I{ (1\JG (/1/) : = II ' "

l.tt.E;~ STRING:= SriUNG (12: /l;
.' rtf II I

f.L,SJ;, lJH I = IN DE: X I S T R I NG , " " l ;
52 : = S T R I i'.JG (I 1.: 1 I);
STRINv := STRING 1/I+i: /);
52

90

.!!.H.!JC. COERCE Rtf A~£ FRUM, TO,
Rll ..S.I.Bl.r:ffi SLlR. T,
B.ff l.ltl lARGt.ST,

II

B.fE ~DOL MFLAbl ~UlU:

THIS PR.OCEUURf COMPUTES THE ~NIQUE COERCION PATH FROM MUOE "FRGM"
ro MOUE "TO" GIVEN THE STRENGTH Uf THE SYNTACTIC POSITION "SORT"
PROVIDED A VALID COERCION SEQUENCE EXISTS.

ll.E.Il.lli
JlllllL ERR,
l~l STATE :: lr FIRST := o,
(/5/l allUL POS_VEC,
I/ /J ~~ TO_STATE = (4,2,6,3,5);
MFLAG := .t.AL.s.f;
LARGEST. := O;
jJJJ

I.E SIMPU:MCDE 0£ fROM = "SKIP" AND SURT "STR.ONG"
lH~ LARGEST := 5;

fHOM := TO;
PRINT ((NEWLINE, "MODE SKIP CO.l:.kCED TO "ll;
PRINT_MOuE !FROM};
RETURN

.t.Ll£ FROM = TC
li:tEN PRINT ((NEwliNE, "MOOtS MATCH"Jl;

RETURN
.EL..s.t. POSS (STATE, SORT, POS_VECI;

PRINT l(NEWLINEr STATEr" "• SORT," "• POS_\IECll;
SIFT (FROM, TO, POS_Vt:C9 SORT};
PIUNT ((NEWLINE, STATI::t " "• SUfU, 11 "• POS_Vt:Cll;
fOE I .10 5

JlQ
l.E POS_VEC l/1/J

Itit~ J£ FIRST~= 0

El
.l.JJ.);

.IH~ 'PRINT I !NEWLINE.
"MULTIPLE POSSlblllTIES"ll

LARGEST := -1;
,{f: TURN

.f;L..s.f f I R S T : = I

lE FIRST = 0
IH.Elll PRINT ((NEWLINE, "NO POSSldLE COERpuN"lJ;

LARGEST := -1;
RETUKN

.EI;
LARGEST := (fiRST> LARGtST I FIRST I LARGEST);
.CAll FIRST

1~
#1#
(DEPRUCEUURE IF~OM, ERR),
PRINT ((('lt:..rllNt. "OEPROCEDURt"ll It

112#
IDEREFERE~CE IFK01~, cRRI;
l£ REFSl ~t fRuM = 0
Ib~ MFLAG := I~~.E

91

f.l·
jJJ:);

RET URN: .sJS.1£
.t~JJ;

E.l;
PRINT I!NcwLINt-, "Ui::kE:ftkENCl 11 ll l,

#3#
(WlOtN !FROM, ERR I;

PRINT IINI:wLlNt. "riWEf\j")l 1,
#4# .
(ROW (fRUM, l::KRI;

PRINT (I NEWL INt,. "ROW" l I l,
115#
(V010 !FROM, EKRI;

PRINT (!NEWLINE, "VOlO"ll
.fSA,k;
PRINT liNEWLlNt:. "MOUE AFTEk COER(. IGN"l I;
PRINT_MOOE. !FROM I;
.IE ERR

fl

lilf.t4 PRINT ((NEWLINE, "COI:KCION ERROR")!;
LAKGI:!>T := -1;
RETURN

ll.lE SORT = "SOFT"
.ll:l.E~ STA H: : = 2;
ll.l£ SORl = "WEAK" UR S·UtU "MEI:K" OR

SORT = "FIRM"
IH.E.t:4 STATE .- !fiRST = 1 I 3 I 21
.E.L..Sf STAT!::: := TO_STATI: 1/f-IRST/l

92

If.

..e.BlJ.C PKINT_MUD£

THIS PRUC~UURE PRINTS THE EXTERNAL REPRESENTATION U~ A MCDE.

.B.t.G.l~
I~ REFS! DE MCUE UD PRINT !"REF "l QlJ;
.lf RUNS .Uf MODE -.-= 0

IJ:l.Ebl PM IN T (" (") ;

E.l;

IU KOwS .1JE MODE- l il.U PRINT (11 , 11 1 .Q.i.l;
PRINT 1"1 "l

ID REFS2 .UE MOUE UQ'PKINT !"Rtf "l OO;
PRINT ISIMPLEMUOt Lf MCOEJ;
.lE SIMPL~MOOE Uf MOCE = "PRUC"

93

.ll:fr.bl lU NR_OF_PROC_LEVELS .Uf MODE- 1_ .l.H:l PRINT (" PROC"l QJ.H
PRINT I" "I ;

E.l
tbiU;

lD Y_REFSl .QE MCOE 00 PRINT ("REF "I U.Ui
lE Y_ROwS Uf MOOt -.= 0

.IJ:l.E~ pRINT 'II ("I ;
f.l;

lD Y_ROwS ~E MODE- 1 UD PRlNT (","J .QQ;
PRINT l"l "l

1.~ Y_Rt:FS2 Df MOUe UU PKINT !"REF "J OU;
PRINT (Y_SIMPL~MOOE DE MODEl

' THIS OPERATOR PeRFORMS THE E~UAl CUMPAkiSUN fOR TwU OBJECTS Or
M OU E AMUD..E....

1£ RtFSl Qt Ml ~= REFSl ~ M2 OR

tJ;

ROWS U£ Ml ~= RO~S DE M2 UR
REFS2 DE Ml -,: REFS2 Uf M2 OR
SIMPLEMODE UE Ml -,: SIMPLtMOUE OE M2
~EAJ....s.t.
ll.lE SIMPLEMOOE .Uf Ml ~= "PRUC"

.IH.E.ill JKU.E.
LLlE Y_REFSl .UE Ml -.= Y_RtFSl DE M2 OR

Y_RUwS Uf Ml ,: Y_ROWS .U£ M2 OR
Y_REFS2 .UE Ml -.= Y_RtFS2 .UE MZ OR
NR_CF_PRUC_LEVELS .UE Ml -.= NR_Of_PROC_LEVELS Of M2 JR
Y_SIMPLEMOOI:: .G£. Ml -.= LSIMPUMUOE .DE M2

l.l:l..E.1:1 .EAi.s.f
f.J....S.E .IB.U.E

If.

If.

95

~.B.U!:. POSS (l~l STATE, ~lBlb~ SOKTl 1/ /l a~~:

THIS PROCEUI.JRt: KHURNS A VE:CTOR OF t>OOLI:AN VALUES wHICH lNDICAltS
WHE:THEK OR NJT A PARTICULAR COtRCIUN IS VALlO IN THE GIVEN SYNTACTIC
PUS IT ION.

Ji~~.H:I
tiL~L T = l~~t. F = E~L~t;
(151} Ji.U.QL POS_VEC := (f, F, F, F, fl;
.1£ SORT = "SOFT" ,

I.l:i~ PJS_Vt:C 1/1/1 .- T
£Llf SORT = "WEAK" OR

SORT = "MEI:K" OR
SORT·= "FIRM"

.Il:I.EN POS_VEC (11:2/) .- (T, l)

.E..l..ll SORT -..= "ST RCNG"
l.l::J.Elll PRINT IISORT, " IS INVAlW"ll;

STCP
l;;.Ut l.A..s.t STATE

l1ll
/1.1#
POS_VEC .- (T, T, T, T, Tlt
#2#
POS_ VE:C • - IT, T, T, T, F l,
113#
POS_IIt:C (/4/l := T,
#4#
POS_VEC := IT, T, T, T, Fl,
#5#
..S.Kl.Er
#611
POS_VE:C (13!4/l .- (T, Tl

.E.~M

£~Ui. SIFT lif.E A.MU.ilf lN_MClJE, uT_MUDt:,
1/ /1 ~DDL PO~_VEC,
~lli~~ SORTI ~DIU:

fHIS PKOCEDUKc EXAIIHNS THE A PRIORI MODE, THE A POSHRIORI MODE:,
AND THE POSSIHILITY VECTOR ANO SIFTS THE POSSIBILITlt:S UNTIL AT MUST
ONE COERCION EXISTS.

Ji.E.Ul.I:ll
lE PU5_Vtl. l/1/ I

lHttll lE REFSl .lJE !~_MODE ,= 0 UK
ROWS Qf IN_MODE ,: 0 OR
RHSZ U.E !~_MODE ,.: 0

.El
tli

IH.EI:ll POS_VE~ 1/l/J := EAL~~
E~.E. l.E S I /'I.PLEMCDE J.l£ OT _MOOt = "PROC" AND

NR_UF_PRO~_LEVELS DE IN_MODE <=
NR_Of_PRUC_LEVELS llE OT_MODE

ll::lf.I:ll POS_VEC 1/l/J := EAL.s.t.
El

l.E POS_ VtC (/2/ I
IJ:Jf..I:ll lt (SORT = "wEAK" I 1 I Ol >= REFSl QE IN_MODt

lliftll PGS_VEC 1/2/) := EAl~l
fl

Eli
lf POS_VEC (/3/l

llifl:ll

El;

lf NUT ISIMPLEMODE Uf lN_MUOE = "l~T" ANU
SlMPLEMODE U.E OT_MUUE = "KEAL") Ok
ISIMPLEMLlOE Dt lN_MUOE ="!NT" AND
~IMPLEMCOE Qf UT_MOOt: = "COMPL"I OR
ISlMPLEMGUt .QE IN_MUJt: = "REAL" AND
SlMPLEMUOE Df UT_MODE = "COMPL"I

1Hf~ POS_vEC (/3/1 := fAL~t
tLlE ROWS Df OT_MUOE = 0

Eli

ll::lt.I:ll POS_vtC (/3/1 := tAl~f
ill£ NOT ISIMPLEMOJE DE IN_MODt = "BITS" AND

SIMI'Lt:MOOE QE UT_MOOE = "tiOOL"I OR
(SIMPLEMOUE DE IN_MOOt: = "BYTES" AND
SlMPLEMODt UE OT_MUOt = "LHARl

Ll::lf~ POS_VEC l/3/l := fAL~~

l.E RU~S U.E IN_MUC(,= 0 OR
REFSl DE IN_MOOt: ~= 0 UK
REFS2 Df IN_MOOE ~= 0

l~E~ OUS_vEC (/3/l := EAL~~
f:l

l.E POS_VtC 1/4/ I
lHt.I:ll lf ROWS i.lf lN_MOOt' ,,= 0 ANO

REFSl U.E IN_MOCE ~= 0 ANO
RHSl .lJf UT_MUDE -.= U

lH.EI:ll POS_VEC l/4/l := EAl~.E
.El
1£ ROWS DE IN_MOOE = 0 ANO

f..l;

REFS l Qf. I N_MU Dt -.= F. tF S2 .Uf._Ql_MQUJ;;.
II:I.E~ PCS_VEC. (/4/l := £.8.1..5..£

£.1;
1£ (SI MPU:MGDt .!Jf:. IN_i'lUOt -..:=

SlMPL~MOUE Uf. OT_MUO~J OR
I RO~S .Of:. I 1\i_MUDE >= tU.JwS !.i.E GT _MODel

II:I.E~ PCS_VtC 1/4/J := EA.l.~.E
.E1.;
.lf. S lMPLl:MCJLJt .U£ IN_MLJDE = "PKUC" AND

INR_O~_PRCC_Ll::Vl:LS Q£ IN_MUUE -.=
NR_UF_PROC_LEVELS DE UT_MOUl: OR

Y_Rf:FSl .D£ lN_MuDE -.= Y_RE:MOOI: OR
Y_REFS2 QE IN_MUOl: -.= Y_REFS2 OE OT_MUOl: OR

97

Y_ROWS QE IN_MGOl: -.= Y_ROwS .UE OT_MUOl:: OR
Y_SIMPLEMOLlE lJ.t lN_MODt -.= Y_SIMPLEMODI: DE OT_MCull

lH.E~ PCS_VEL 1/4/l := £A~t
tl

.1£ POS_Vl:CI/S/J AND SIMPLl:MUUt: Llt OT_MGOl: -.= "VOID"
LJ:I.E~ POS_VEC 1/5/J := EAiS.E

u
.£1i1H

£&.U.L. UEPKOCEOUKf (.IU1 iH:lU.U£ MOOt, &.E;E .i.iiJ.QJ.. t:RR UR l Y.QlU:

THIS PKOCEOU~E UPOATES ThE GIVEN MOOt TU REFLECT IT"S STATUS
AFTtR THE DEPRUCEUUREING COERCION HAS BEEN APPLIED.

.tl..L.i.iil
ERROR .- l.t kHSl .Qf 1\IODE +

KEFSZ .0£ MOOt +
R.OwS .U.t MUOE -..= 0

I.l:l.UJ IB.U£
£1.1£ SIMPLEMOOE .UE MOOE -.= 11 PROC"

lll£!::1 I.BJ.!.E
t~JE NR_OF_PRUC_LEVELS OE MOUE -:= 1 = 0

lJ:J.EJj (KEFSl Uf MODE := Y_REfSl .Ut MODEl := O;
REFS2 .UE MUOE := Y_REFSZ .Qf MOOt:) := O;

98

(ROwS OE MOOt := Y_kOWS .QE MOUE) .- O;
(SIMPLEMOUE .Qf MLJOE: := Y_SIMPLEMUDI: Of MOUE) .- "";
UU£

.El

l Kt..l: .8!1UJJ.;; M L.J iJ E:, Rt.E .lli.J.DL t kR 0 R: lli.U.l.l:

THIS PROCEUURE UPDATES TliE GIVI:o~ MlJiJt TU RI:FLECT 1111 5 STATUS
AFTER THE ulRtFERENCING COERCluN HAS 6EEN APPlll:u.

ERROR := ~f REFSl Uf MODE < 1
_ltlLts IKU£
.EL.S.f REFSl Uf MODI:-:'= 1

£1;

99

If.

Ell.LJ.C W IUE:N = &t.£ AMUJ.lf MOO E. Kt.t .tiDJJ.L E: RROR) .ll!HJ:.l:

THIS FHOCEDURE UPCATES I!-·E GIVI:N MUDE TO RE:FLECT IT"S STATUS
AfTER IT HAS BEEN WIDENEO.

EKRUR := lt REFSl_llf MODE+
REFS 2 .C£ MODE +
RUWS Of. MOUE
I~ ..s.I.f:U.Iili s =

S I MPL EMOlJE
.1£ S = 11 11\T"

l.l:lt.~ "REAL"

0
SIMPLEMOOE: JJ£ MODE;
.QE MOOl: .-

lll£ S = "REAL"
l.liE~ "CDMPL"
.EJ..l£ s = 11 8115 11

lH.E~ ROwS ill: MOOt := l;
"BOCL"

t...l..lE S = "BYTES"

l:l;
EA..L.S.E

t...I...St E.AL.S.£
El;

IH.EN ROWS Qf MOUE .- 1;
"CHAR"

100

fBQ~ KUW = (&ff AM~Qt MOOE, &tt ~U~l tRROHl ~Qlu:

THIS PROCEDURE UPDATES ThE GIVEN MUOE TO RtFLELT IT"S STATUS
AFTER THE MODE HAS BEEN ROWED.

ERROR := 1£ ROWS L£ MODE = 0
lbt~ l£ REFSl ~E MODE ~= 0

.I.1:I.f1:j REFS2 i.1E MOOt • - REFSl .D.E MODE; .
REFSl .UE MODE .- O;
ROWS J.lE MOOt: .- 1

£1~£ ROWS QE MOOt: .- l
E.l.O
.EAL.s..E

J.:.ll.E REFSl .Q.E MOUE '= 0
IH£~ ROWS L£ MODE +:= 1;

.EA.L..S£
.EL.s..E .I&J.J.E

.E .. U

101

II

£.d.UL vo llJ =I rl.J;£ A~.lJ.llJ;; MJDE' BlE J.HJJJ1. 1: KROIU)l!Jlil.:

THIS PKUCEUURI: UPOAH:S ThE GIVEN r-1001: TU Rl:FLECT IT"S SJATUS
AFTI:K THE MOJI: HAS .fJEEN VGIUELJ.

li.t.l..i..lli
l.E SIMPLEMODt:: JJ£ MOUE "PKOC"

.Il:lf.~ Arlilllf. NEw:= IV_IUFSl JJ.f MOUI:t Y_ROwS Of MODE,
V_RI:FS2 QE MUUI:, SIMPLEMODE Qf MODE,
o, c, o, o, "");

COERCE tMOOl::., Nt:w, "STRUNG", 1..UC. HH• .LQ' l.tl!II
E.l;
MODI:.- 10, o, O, "VOID", O, J, O, O, ""I

.t;.lSJ.ll
£BU.C BALANCt: = I (/ ll ll.M.lJ.lJ.(; uNl TS,

ll.Ml:J.l.l.E MODE,
l~ ~oR_Gf_MUDI:S,

SIBl~~ SORTJ ~U1U:

THIS PROCEDURE WILL COMPUll: THE ~ALANCE MODI: OF THE UNITS
IN THE VECTOR CLAUS!:.

l:l..EH~
tillU1. MFLAG, I:~ROK,
..}..lB.lbi.G SORT, KEWUIRt:tl_SURT,
1/ ll SIIUI\i.l..i SUKT_Ktl.hJ!REU = I"EMPTV", 11 SUFT 11 , "WEAK",

"STRONG", "STRONG", "STKGNG"l ~Or

102

STRI:NGTH = I 11 SDFT 11 , 11 WI:AK", "MEEK", "FIRM", "STRONG"),
(/ II li\II S T R_ VAL = I 1, 2, 2, C., 51 ,
1~1 LARGE, MINCONV;
CALC_T ARGET IU"' ITS, MOUE, l'lllR_Of _MOUt:S J;

KETRY:
PRINT ((NEWLINE, "TA~GET MOUl::."ll;
PRINT_MODt !MODEl;
PRINT l(;~t:WLlNE, NEwLll\ll:, NtrlliNl:, "ATTEMPT l>ALANCE TO TARGET MUUE"II;
•'11NCONV := 9;
tll.B I TO ~l>K_Cf _MGOES

.110 PRINT ((NEwLINE, NEliLL'>ltt "UNIT-", Ill;

DU;

COERCE (UNITS 111/l, :-lOUE, "STKGNG", LARGE, MFLAGI;
lf LARGE < 0 ltit~ FAILEO El;
MI NCONV := I MC~CC"'V < LARGE I M l~CUNV I LARGE I

PRINT liNEW~INE, Ni:WL1,..,Eo NEWLINE!!;
PRINT_MOuE !MOUE);
PRINT (" l S THE MOuE OF THt tlALANCE:"J;
Rt~UIREO_SORT := SGRT_RE~UIREO (/MINCONV/J;
lE MFLAG AND REQUIKEU_SORT = 11 SOfT"

lti.E.b kECUIREU_SORl := ".-IEAI\ 11

fl;
PRlNT (PlEWLINt, SCI<T_KE:UUIREO, " WAS THE: REI.IUIKEO STRENGTH",

"'EWLlNE, SOkT, "WAS THE AVAILABLE STRENGTH"));
ELB I LQ UPB STRENGTH

UQ

lf SORT= STRENvTH (/1/)
I.l::l.Eb

.EJ.
.Qll;

lf STR_ VAL (ll /l < Ml NCUNV

El

l.l::lf:.bl FA l U:D
f..L..S.E PRINT ((Nt::WLINE, "dALANCE VALlD"));

RETURN

PRINT IINEWLINE, "INVALID SORT"));
RE fURl'\;

FAILI::D:
lt RtFSl ~f,MOOE > 0

l.l::lf..bi DI::REfERE"'CE (MODE, EKRURl
llJ£ SlMPLEMOOE .Of MODi: = "PROC"

~.bi DEPROCEuURE (MUCI::, ERRURl

E.l;

.EJ...S..E; PRINT !INEWL,INt. "TARGET MODI: CANNUT dl: COERU'L)"));
RI::TURI\

lf ERRCR
l.l::lf.!j PRli'H ({NEv.LINI::, 11 TARGI::T MUDE CAI'IINUT llE COERCI::Dll;

RETURN
El;
RETRY;

IU: T UR"' : S K 1 f'
.EUQ;

103

£~D~ ~ALC_TARGET = l (/ II 8~Q' CLAUSE,
AliQU.l; MO Of: ,
lHI NBR_CF_MOOESI ~DlU:

THIS P~UtEUURE WILL CALCULATE A POSSIBLE ~ALANCE ~UOE GIVEN.
A VECTUR Of MODES TO BE BALANCED.

Ji..Ei.iill
(/ /) SIB1~~ SlMPLE_PkiOk = !"SKIP", "PROC", "FILE. "FC~MAT",

"tlVTES 11 , ''CHAR", "STRING", "tHTS",
"dOOL", "INT", "REAL", "CJ.''IPL"I aJ o,

lbJ: PRIOK_VAL, PKI0tl._VAL2, It J t
.liDD~ PROC_SW := £A~~J;,
£Rr~ LOCK_UP = I SIBl~~ SIMPLEMOOEJ 1~1:

ll.tli.llll
.ilil I := O, Jl
~~lLt SIMPLE_PRIOK (/I /I ,= SIMPLEMOUE

iu: I +== u
lf l > UPtl SIMPLE_P~IOR

Il:lf.ts J : = 0;
RETLtl.N

£1
QJ.H

J ·- I;
RETURN:

J
.fN.!J;

fRU.C MAX I (/ /l l~l SETl ~1:

THIS PK~CEDURE CUMP~TES THE LA~GEST INTEGER IN A VECTOR.

JiEJ.ij_.bJ
l.bll ~VAL := SET 1/LWB SET/I;
EDB I f.lli.J.M LWB S I:T + 1 Hl U Ptl S f:r

.!JQ
Lt SE T II II l > M VAL

lli.E.bl MVAL := SET 1/1/l
tl

Qj,J;

MVAL
.El'.Hl;

fBQ.C MIN = I (/ /J l~l SETJ 11111:

THIS PROCEDURE COMPUlES THE SMALLEST INTEGER IN A VECTOR.

.d.t,;.iil.bl
l~l MVAL := SET 1/LWB SET/J;
EQB I f.Bll.M LWB SET + l IQ UPB SET

.llU
lE SET (/1/l < MVAL

104

IH~ MVAL .- SET 1/I/l
t.l.

!).!);
HVAl

.EtHH
J := l;
~~L.E SIMPLEMODE DE CLAUSE 1/J/l

00
J +!= l;
~f J > NBR_OF_MOOES

Iti.E~ MODE := OLAUSt 1/1/l;
RETURN

EI;
MODE :=CLAUSE 1/J/1;

"SKIP"

.if SIMPU:MCUE J.J£ MODI: = 11 PRUL" 11:11:.~ PROC_Sw := lRUE f~;
PKIOR_VAL != LOGK_UP (Sl~PLEMODI:: DE MODEl;
PRIOR_VAL2 := LCOK_UP IY_SIMPU:MODE JJf MC;Ut);
.t.llli I £Rl.ll:l J + 1 l.C i'IBR_CF_MODI::S

D!l
l.f SIMPU:MODE Df CLAUSE: !II/I -.="SKIP"

105

I.tl.E.~ .if SIMPLEMODI:: ilf MOUE: = "f>ROC" l1Jl:..t::l PRUC_SW := l.Bl.!t. El;
REFS! .Qf MODE .-MIN IIKEFSl Qf MODE,

.El
JJ.Q;

REFSl Uf CLAUSE: 1/I/1 l l;
REfS2 DE MOUE .-MIN ((REFS2 JJt MOUE,

REFS2 Of CLAUSE: !/Ill l l;
ROWS llE MOUE :=MAX {(ROwS~ MOUI::,

ROwS Qf CLAUSE (i I/ l l I;
Y_REFSl !IE MOUE • - 1"1l N I (Y_REFSl Qf MODI:,

Y_REFSl Of CLAUSE 1/l/lll;
Y_REFSl .Q.E MODE .- l~lN ((Y_REFSZ lJf. MODE,

Y_REFSZ Ql: CLAUSE 1/l/lJ);
Y_ROWS ~ MUUE :=MAX IIY~RGwS ilf MODE,

Y_RDWS Qf CLAUSE 1/I/lll;
N~R_Uf_PROC_LEVELS .Qt MODI: := MIN ({

NBR_OF_PROC_LE:VI::LS DE MODE:,
NdR_UF_f>ROC_LEVI::lS D£ ClAUSE: 1/1/lll;

PRIOR_VAL :=MAX ((PRIUR_VAL,
LOOK_UP (SIMPLI:MOUI: l.!t LLAUSE (/1/llll;

PRIOR_VAL2 := MAX ((PKlOR_VAL2,
LOOK_UP (Y_SIMPLEMOOc Qf CLU
LOOK_UP IY_SIMPLEMUOt DE CLAUSE (/!/))))

SIMPLI::i"'ODE .Qf: MOI.lt := SIMPU:_PRIUK 1/PRIOK_VAL/);
~f PRIOK_VAl ,: 0

I.tlf::..tJ Y_SIMPLE:MCDE .llE MllDE :.: SlMPLE_PRIUK (!Pklllf<._VALZ/1;
£J.;
~E PMOC_SW AND Sl~PLEMCOt Df PROC ,: "PRUC"

llifJ~y ROWS Dt MO.CE: :=MAX ((iWwS Qf MOUE, Y_RUwS .WE MODEll;
REFSl .l.lt MODE := MlN {(KEFSl .lJE MOOt, Y_KEFSl .Qf Mi.JOEll;
REFS2 .G£ MCDE :=MIN IIREFS2 JJE .'"lLID[:, Y_fHFS2 Of MOLlE));
PRlOR_VAL :=MAX IIPKIOK_VAL, PR1UR_VAL2JJ;
SlMPLE:MOOE L£ MCUt := SIMPL~_PRlOR 1/PKIOR_VAL/J;
Y_SIMPLEMODE .l.lE MOOt .- "";
CROWS .l.lf MCDE : = 0

El:
RETURN:

Sl.< I P
t-"''Ll;

£BJJ.C ASSIGN

THIS PROCEDURE WILL PERFORW TH~ COeRCIONS NECESSARY lU ~tRFORM
ASSIGfiiMENTS.

·li.f.ill.tli
l.tH L:
WtiiLf REFSl Q£ Ml + R~FS2 ~E Ml + ROWS QE Ml = 0 AND

SIMPLEMODI: !Jf Ml = 11 PROC 11

DU DEPROCEOURE (Mlo LQ.(. dUULli

j:Jj);

PRINT IINEwllNEo "LHS DEPROCEDURI:D Tll"ll i
PRii~T_MllUE IMU

R 1: F S l .U.t i"12 +: = 1 ;
CGtRCE IMlo M2t "STRONG", Lo L.Ul. li.O.QLJ;

106

PKINT (INEiolllNE, (L ~ -1 I 11 ASSIGNMI:I'IT FAlLElJ" I "ASSIGNMENT MI\Ut:"l
J;~.Q;

THIS IS,.THE MAIN PROGRAM WHICH f<l:AOS ALL !NJ>Ul VALUf.::So INVOKES
PAKSE WHICH CONVERTS MODE REPRESENTATIONS TO INTERNAL FORM,
ANU INVOKES THE PROCE:DURE II\IUl~ATED i3Y 1 NPLJT PARAMHf.::R

AMJJU£ MODE_l, MODI:_2,
1/10/J A~Dllf CLAUSE,
~IBl.tli~ SYMBOL, STRING, SORT,
~~J NBR_CF_MOUE:S;
.Ll.O

RI:AU ({I\II:WLINE,STRINGII;
lf STRING = "COERCE"

I~£~ READ IINEwLINE,STRJNGl);
PRINT ((NEWLINE, Nl:wl1NE, NEWLINE

11 APRIORI MLlOE "oSTRINGJI;
PARSE ISTRING 1 MCOI:_ll;
REAU IINEWLINE,SfRINGlli
PRINT {{NEWLINE, "APCSTERIURI MUOt "• SfRINGlJ;
PARSt {STRING, MOUE_2J;
ReAD !!NEWLINE, ~ORTJJ;
PRINT I (I~EWLINb "SORT ",SOKT I J;
COERCt (MOOE_l; MOOE_2, SORl, J..Q!; 1£.111, -J..JJ~ ti.kULI

.£J..l.E STRING = 11 11ALANCE"
l~f~ READ {(NEWLINE, SORTJJ;

RcAO INBR_UF_MLlUESJ;
NEwPAGE ISTAI\CGUTI;
.EU~ I I~ NdR_uf_MODES

.Q.Q
Rf:AD IINEI<.llNt:, STRING) I;
PKINT l{NEWLINb "UNIT NUMt;E:I\-", I, STRING));
PAKSE ICLAUSE(/1/), STK!NGl

IJJ.l;
11ALANCE !CLAUSE, .l.U.I. A~J.JJ.!£, Nl:li<._Of_MllOES, SURf)

~.l.l.t STRING = "ASSIGN"
JD.£~ ~EAO ({NEwLINE, STRING));

PRINT (!NEWLINE, "A~SIGNMENT lU ~E PERfURMEU "•

S TR l NG I I ;
~l I := !NOEX {STRING, "::");
PARSE ISTRI~G(/1,1-l/l + " ",MGDE_lJ;
PARSE ISTRING!/1+2, /Jr MOUE_2j;
ASSIGN IMODE_l, MOOE_21

~LSt PRINT ((~EWLINE, "INVALID COMMAND"));
STOP

107

APPENDIX C

SAMPLE OUTPUT OF THE MODE

PROCESSING ALGORITHMS

108

A~Sl~NM~NT TU BE PtRFOKMtU--->Rt~ ~tAL .- REAL
Mo'OI:;) MATCH
ASSlGI\u>IENT MAUl:

ASSlGNMI:NT TD HE PI:RFORMI:O--->REF keAL .- KlF RtA~
OcKI::FERENCE
1'1UDt AFTER CU~kCllJN i"li:AL
MOOtS I"\ AT CH
ASSiGNMENT MAUl:

ASSIGNMENT TU ~E PeRfURMtO--->REF kLF ~f~l .- Rtf REAL
MUUtS MATCH
A SSI GNME:N T MAUl

ASSlG~MI:NT TO BE PERFORMI::U--->RcAL := Rt~ REAL
iJERE:fERI:NCt:
MOUE AfTER CUEkLIU~ REAL
Nu PUSSidl~ COERCION
ASSIGNMeNT fAILED

ASSIG~MI:Nl TU ut PERFURMED--->KtAL .- KtAL
NO PUSSloLI:: CGE:RCIUN
ASSIGNMENT FAILEU

ASSluM1~NT TO t:E: PERFORMi:::C--->RI:f kt.:AL .- PkuC :<.tl- [,--,T
Di::PRUCtUURE
MCUE ArTEk CUERCION kEF lNT
D!:RlftRI:NCt
MUDE AFTER CUEkClUN lNT
wiDEN
MOUE: AFTI:R CGERClC~ Rt:Al
MOUI:~ MATCH
ASSIGNMENT MADE

ASSlGNM~NT ·TO 8~ PERfORM~U--->PRCC REF ke~ KLAL .- PKUC klf RE~l
LHS UEPROC~DUHLU TU REf klF KiAL
UE Pk Ol..l::uU R l:
MUUI:: AFTEk COERCIGN REF REAL
MCDES MATCH
AS!>IGNMI::NT MAUt

ASS 1 GIIIMHH TO M- Pf:kfORi'1tU---)I<.Ef !U.F CltM< : z UMR
~G PCSSISLE CCLRCION
ASSlGNMlNT 1-'AlllD

109

UNIT NUMBER­
UNIT •\lUMBER­
UNIT NUMdER­
T ARGE: T ~OUE

1 I<.EAL
2 INT
3 CGMPL

COMPL

ATTEMPT BALANCE TO TARGET MOOt

UNIT- 1
wIDEN
MOUE AFTER COERCION CUMPL
MGUt: S MATCH

UNIT- 2
WIDeN
MODE AFTtR COtRCION KEAL
w IUtl-1
MOOt: AFTER COERCION COMPL
MOUI:.:S MATCH

UNIT- 3
MOUES r..,ATCH

COMPL IS THE MODE OF THE BALANCe
EMPT~ wAS THE KEQUIREU SfRENGTH
STRONG wAS THE AVAILA~LE STRENGTH
BALANCE VAllO

110

UNIT ~UMBcK- l REF (,) lNT
UNIT NUMBeR- 2 PROC ()REF REAL
UNIT NUMS~R- 3 REf REF () Rff ~~f COMPL
TARGkT MUOE {,) COMPL

AfT~MPT tiALANGt TC TAR~ET MOOt

UNit~ 1
U~Rtf~R~NCE
MOUl Affh~ COEkClUN '•J lNT
Nd Pd~SlBL~ COERCION
tAROtf MUOt CANNOt BE COtRCtU

111

UNIT NUMBER­
UNIT NUMtiER­
UN IT !\lUMBER­
TARGeT .MOOt

1 REf REAL
2 REf INT
3 Ref CUMPL
kH CCMPL

ATTtMPT dALANCE TC TARGET MCDE

UN IT- l
Ot·RH ERENCE
MOD(AFTtR COEkL10~ REAL
W lt.H:I\1
MOOt AFTER COERCION CUMPL
NO PUSSlBLE GOtkCION
TARGtT MUOE COMPl

ATTEMPT BALANCE TC TARGET MCOE

UNIT- 1
DEREfERENCE
MODE AFTER COERCION REAL
t1 IDI::N
MOOt AFTER COE~CION COMPL
MGUE S MATCH

UNIT- 2
DtREHRENCI::
MODE AFTER COERCION I~T

WlUlN
MOUt AfTER CUERCIUN REAL
t~IDI::f\.

MODE AFTER COERCION COMPL
MODI::S MATCH

UNIT- 3
DEREfE:RI::NCE
MODE AFTER COERCION COMPL
MODES MATCH

COMPL IS THE MJDI:: OF THE BALANCE
MEEK WAS THE REYUIRED STRENGTH
~EAK ~AS TH(AVAILAeLE STRENGTh
TARGET MUOE CANNOT dE LUERCtU

112

UNIT NUMBI:::K­
uNl T NUMBER­
UNIT NUfiBEK­
T AKGf:T MUOE

1 ~EF PRO~ Rtf REAL
2 () COMPL
3 PKOC PROC 1 NT

I I CUMPL

ATTEMPT BALANCE TC TARGET MOOt

UNIT- 1
Lli:::REfERI:::NCE
MOUE AfTER COI:::KCICN PRCC REf REAL
UEPROCI:::UURt
MULlt AFTER COERCION Rl:::f KEAL
OERI::FERENCt
MOUE AfTER COERCION REAL
WIUI:::N
MOUE AfTER COERClCN CCMPL
KUw
MOUE AfTER COERCION {J COMPL
MODES Mill CH

UNIT- 2
MLJUES MATCH

UNIT- 3
DI::PROCEUURE
MUUE A~TER LUERLIUN PROC lNT
l.li::PRUCECURE
MOUE AFTI:::R COERCION INT
i'~IDI::N

MUUI:: AFTER COERCION REAL
WlOt.N
MUDt AFTtR CUERClON COMPL
KOW
MOUE AfTI:::R COEKCIU~ {J CCMPL
MOOI::S MATCH

(J CGMPL IS THE MOUE OF ThE dALANCE
EMPTY ~AS THE REWUIKEU STRENGTH
ST~UNG ~AS THE AVAILABLE STRENGTH
dALANCE VAllO

113

UNIT l'iUMBER­
UNIT NUMBER­
UN IT NUMBER­
UNIT hUf.itlE:R­
TARGET MUOt

1 Rt:t- INT
2 REF REAL
3 PROC ()REAL
4 PROC (J INT

REAL

ATTEMPl BALANCE TO TARGET MDOE

UNIT- 1
0 ERE: FERENC c
MODE AFTER COERCION INT
itjiDI::N
MODE AFTER COERCION REAL
MOUE::. MATCH

UNlT- 2
tJEREFERENCt
MODE: AfTER COERCION REAL
MOUE:S MATCH

UNIT- 3
OEPROCtOURt
MODI:: AfTER COERCION () REAL
NO PUSSI~LE COtRCIUN
TARGE:T MUDt CANNUT BE COERCEU

114

U~IT NUMtiER- 1 REF BUOL
UNIT ~U~Bt:K- 2 SKIP
TARGET MODE KEF BuOL

ATTEMPT tiALANCE fC TA~GET MGDE

UN I T- 1
1-luUES MATCH

UNIT- 2
MOO~ ~KIP COERCED TO REF BOGL

REF BOOL IS THE MOUE Uf THE tiALAN~c
EMPTY ~AS THE REQUIRED STRE~GTH

~IKM ~AS THE AVAILABLE STRENGTH
bALANCE VALl D

A PRIORI MuUE PROC PROC REF REAL
APOSlcRIORl MUD£ VOID
SDK f STRONG
lH:PKUCt:OURE
tJEPRUCcOURL
VUlD
MODE A~TER COERCION VOID
MODES MATCH

A PRIORI MOUE PKOC REAL
APGSTERIORI MODE REAL
SDK T wEAK
OEPROCEOURE
MODE AFTER COERCION REAL
MOUES MATCH

A PRIORI MOUE PRCC PROC REAL
APGSfERlJRl MOUE PRUC REAL
SORT Wt::AK
OEPRUCEUURE
MOOt AFTER COERCION PRUC MEAL
MCOI::S MATCH

A PRIURI MOUE PRUC PROC REAL
APUSIERIORI MODI: RtAL
SORT WI::AK
OEPRUCtUUKE
MUD~ Afl~H CUERClDN PRCC REAL
t.h:PRJCtUURE
MOOE AFTER CUE~ClUN REAL
MOuE:'> MATCH

115

A PRluRl MUOE ~Ef PROC REAL
APOSfEKIORI MOUE PROC R!::AL
SORT ~ t:A K.
NO PJSSltlLE COERCION

A PRIORI MUDE kEF REF REAL
APUSTERlURl MODE REF REAL
SUR T SCF l
OE:kEftK.EN(..E
MOuE AFTER CUERClUN REF REAL
MOUE~ MATCH

A PRIORI MOOt REF REAL
APOSTERlUKl MODE REAL
smcr soF r
~0 POSSibLE COERCION

A PRluRI MUOt PRUC REF REF REAL
APCSTERIURl MOUE REF REAL
SGRT SGF T
UEPRuCEllURE
MOUE AFTER CUEKCION REF REF REAL
OI::Ktr-t:R ENCl:
MUDt AFTlR COERCION K.EF REAL
MOUES r~ATCH

A PklORl MCUt: REf REf REF REAL
APOSTERIURI MOUE REF RtAL
SORT SOfT
OERti-EH.ENI.-1::
MOUE AFTER COERCluN REF REF REAL
OERt.fERHH.E
MUUt AFTER COERCION REF REAL
MOOtS MATCH

A PRIORI ~OUt PRCC PROC REAL
APuSTEKlURI MOUE REAL
.::.GRT SOfT
Ul::iJfi.CCEOURE
MUUE AFTER COE:RCluN PRCC REAL
OEPKOCEDURE
MOOE AFTER COERCICN REAL
MOOtS MA Tl.H

A PRIORI MOUE KEF REF REAL
APUSTERIORI MUUE REAL
SORT SOFT

116

llEKtFI:RI:NCE
MODE AFTER COERCION REF REAL
NO POSSibLe COERCION

A PRIORI MODE RE~ REAl
APOSTERlORI MOllE REAL
:,URT SOFT
NO POSSIBLE COERCION

A PRIORI MOOt kl:f REF REAL
APUSfi:RIURl MOUE KEF RI:AL
SOKl MEEK
DERI:HKENU:
MODE AFTER COERCluN REF REAL
MUUI: S .MATCH

A PRIORI MODI: REF RI:AL
APOSTERlORI MOUI: REAL
SORT MEEK
uEKEfi:RI:NCI:
MOuE AFTER COERCION REAL
1"1001: S MA T(;H

A PRIORI MODE PROC REF REF REAL
APOSTERlORl MODE kEF REAL
:,ORT MEEK
01: PROC El.JUfU:
MODE AFTER CUERLlON REF kEF REAL
DEREFERENCE
MOllE AFTER COERCION REF REAL
MUDI:S MATCH

A PRIORI MODI: kEF REF REF REAL
APOSTI:RIORl MOUt REf REAL
SORT MEEK
DEREFERENCE
MuUE AFTER COERCION RI:F REF REAL
uEREHktNCE
MOUE AFTER COERCION REF REAL
MOOI:S MATLH

A PRIORI MODE PROC PROC REAL
APCSTERIORI MODI: REAl
SUIH MEEK
OEPRLJCEilUKE
MOUE AFTER COERCION PROC REAL
tJt:PROCI::OURE
MODE AFTER CUERClUN REAL

117

~OUtS MATCH

A PRIORI MOOt REF kEF RtAL
APOSTEK.~URI MCGt REAL
SORT M!:E K
IJE Rt.F cK.t.i\1 C E
MOLJ[AFT!:R CUEkCIUN REF REAL
1.H:::KHERENCE
MUUE AFTEK C8!:RCIUN REAL
MODE~ MATCH

A PRIORI MODE kEF REAL
APOSTERIORI MODl REAL
SORT MEEK
LlERi::fi::RENCE
MOUE A~TtR COERCION REAL
MODES MATCH

A PRIUHl MODE REF PROC REF INT
APOSTERIURI MOUE (,1 CCMPL
SORT STRONG
OEREH:RENCE
MODE AFTER COERCION PROC Rtf INT
DEPRUCEUURE
MOLlE AfTER COERCION KEF INT
DERH ERENCt
MOOt AFTER COERCION INT
WlOtN
MODE AfTER COERCION REAL
WlUf::.N
MUDE AFTER COERCION COMPL
ROW
MODE AfTER COERCION (J COMPL
ROW
MODE AFTER COERCION(,) COMPL
MODES MATCH

PROGRAM IS STOPPEU.

118

APPENDIX D

A GRAMMAR FOR THE LANGUAGE ACCEPTED

BY THE OKLAHOMA STATE UNIVERSITY

ALGOL 68 COMPILER

119

The following is a modified Backus-Naur Fo~m of a

grammar whic,h generates the language_ which it;; accepted by

the Oklahoma State_ University ALGOL 68 Compiler after the

features described in this thesis have been implemented.

The grammar is'expressed by rules of the forma

<lVJETA SYMBOL> 1 a:: def

120

this rule is read •• <11ETA SYMBOL> is defined to be (1 a=)

de£' ... If there are several definitions of the same meta

symbol they may be combined into one rule by the ul•• symbol

read 11or is a" suoh asa

<META SYMBOl;:> at= def 1

<)lETA SYMBOJ;:> a 1 • def 2

becomes

<lGTA SYMBOl'> a a• de:f' 1 I de:f' 2.

The definition of a meta symbol may QOntain any sequence of

meta symbols or terminal symbols (symbols without brackets).

The special symbol ... EMPTY" means that the meta symbol may

be replaoed by the empty string. The goal rule for the

grammar is 4ROGRAM> • If the . symbols •• j .. • "< " or ">"
are required as terminal symbols they will be enclosed

within quotation marks.

}

I
I
!

<PROGRAM)::=

<ENLLUSEO CLAUSE>::=

<SERIAL CLAUSE>::=

<UNIT uEC LISTl>::=

<UNIT DEC LIST2>::=

<ENCLUSI:O CLAUSE>

oEGI~ <SEKI4L CLAUSE> ENOl
tiEGlN <COLLATERAL CLAUSE> ~~01
<CL~DITICNAL CLAUSt>l
<CASE CLAuSE> I
<LUOP CLAUSe>

<U~IT UEC LlSTl><L UNIT LIST!>

<U~lT>;<UNlT DEC LISTZ>I
<DECLARATIUNS>;<UNIT DeC LIST2>1
.EMPTY

<UNIT>;<UNI~ DEC LIST2>1
<DECLARATIONS>;<UNIT DEC LIST2>1
<UNIT> I
<OECLARA liONS>

<L UNIT LISTl>::= <L UNIT><L UNIT LISTZ>I
<L UNIT>

<L UNIT LlST2>::= ;<L UNIT><L UNIT LISTZ>l
EXIT<ID>:<JNIT><L UNIT LISIZ>I
; <L UN IT> I . '
EXIT<ID>:<UNIT>.

<L UNIT>::= <IU>:<L UNIT>I
<UNIT>

<COLLATtRAL CLAUSE>::= <UNIT>o<LNIT COMMA LIST>

<UNIT LUMMA LIST>::= <UNIT>,<UNIT GUMMA LIST>I
<UNIT>

<CONDITIONAL CLAUSE>::= IF <SERIAL CLAUSE> THEN <SERIAL CLAUSE><CUNU END>

<CUNO ENlJ)::= <Ellf PART LIST><ELSE PART> FI

<ELIF PART LIST>::= ELIF <SERIAL CLAUSE> THEN <SERIAL CLAUSE>
<ELIF PART LIST>I
• EMPTY

<ELSE PART>::= ELSE <SERIAL CLAUSE>I
.EMPTY

121

<CASE CLAUSE>::= CAS!: <SERIAL CLAUSE> IN <COLLATERAL CLAUSE><CASE END>

<CASt ENO>: := <OUSE PAH LIST><OUT PART>. ESAC

<UUSE PART LIST>::= CUSE <SERIAL CLAUSE) II'. <lOLLATtRAL CLAUSE>
<OUSE PART LIST>I
<EMPTY.

<OUT PART>::= CUT <SERIAL CLAUSE>!
.EMPTY

<LOOP CLAUSE>::= <FOR PART><FROM PART><oY PART><TO PART><WHILE PART>
00 <SERIAL CLAUSE> 00

<FOH. PART>: : =:

<FROM PART>::=

<BY PART>::=

<TO PART>::=

<WHILE PART>::=

•
<OtCLARAfiONS>::=

<DtCLARA T ION>::=

<MODE DECLARATION>::=

FGR <I D> I
.EMPTY

FROM <UN If> I
.EMPTY

BY <UN IT> J
• EMPTY

TO <UNIT >I
.EMPTY

WHILE <SERIAL CLAUSE>l
.EMPTY

<OECLAH.AliON>.<UECLARATIONS>l
<DECLAHAT ION>

<MODE DECLARATIUN>I
<IDENTIT~ UECLARATION>I
<VARIA~LE DECLARATION>!
<PRGC DECLARATION>

MODE <MODE INUICANT>=<MOOb>,<MOOE OECLARATlON>I
MODE <MO~E lNOICANT>=<MOOE>

<IUENTITY OECLARATJON>::=<MOOE><lDENT lNIT LIST>

<IUENT !NIT LIST>::= <IO>=<UNIT>,<IUENT INif LIST>I
<I O>=< UN IT>

<VARIAdLE UECLARATION>::=(MODE><VAR INIT LIST>

<VAR INlT LIST>::=

<PRUC DECLARATION>::=

<TYPE IN H>: :=

<M'UDE>:: =

<REF LIST)::=

<ROW LIST>*::=

<ROW>::=

<MODE INDICANT>::=

<BASIC MDOE:)::=

<ID>:=<UNIT>,<VAR !NIT LlST>I
<IO>: =<Ul'dT> .

PROC <ID><TYPE lNIT><ROUTlNE TEXT>

=I

<Rtf LlST><KOW LIST><H.Ef LIST><BASIC MOOt>

REf <REF Ll S T>l
.EMPTY

<RO~><RU~ LIST>I
.EMPTY

ll <LNIT> Ill
(/ <UNIT>:<UNIT> /)I
II n

<MOOt INUICATIUN>

INTIREALICUMPLICHARIBOOLl
<MOUE INDICATION>I
<P CEC>

122

<P UtC>::= PROC <VIRTUAL PARAMtTERS><MUDE>

<VIRTUAL PARAMETERS>::= I <MOOE LIST>) I
• EMPTY

<MOUE LIST>::= <Muoi>,(MOU~ LIST>I
<MGOE>

<UNI.T>::= <ASSIGNATION>I

<ASSIGNATION>::=

<RUUTINt TEXT>::=

<FORMAL PARAMETERS>::=

<FORM PARM>::=

··'

<ROUliNE TEXT>I
<IDENTITY RELATIUN>I
<JUMP> I
SKIP I
<TERTIARY>

<TERfLARY> := <UNIT>

<FORMAL PARAMETERS><MOIO>:<UNIT>

I <FCRM PAilM> II
.EMPfY

~MODE SET>,<FORM PARM>I
<MODe SET>

<MOOt SET>::= <MODE><ID LIST>

<IU LIST>::= <IO>,<IU LIST>I
<ID>

<MlliO>: ::; <MObt >I
VOID

<lt)ENTITY RELATION>::= <TERTIAR'V>:=:<TERTIARY>I
<TERTIARY>:~=:<TERTIARY>

<JUMP>::= <GO TU OPTIUN><IO>

<GO TU CPTION>::= GO TO

<TtRT lAKY>::= <FORMULA>!
NIL

<fuRMULA>::= <FORMULA><UYAOIC OPERATCR><FORMULA>I
<FORMULA>!
<MC~AUIC OPtRATOR><FORMULA>

<SECONDARY>::: RE <PRIMARY> I
IN <PRIMARY>!
<PRIMARY>

<PRIMARY>::= 10 I DENCTATION I rURMAT_TEXf I
<CALL>I<CAST>I<SLICE>I<ENCLUSEU CLAUSE>

<CALL)::= <PRIMARY><ACTUAL PAKAMETERS>

<ACTUAL PARAMETERS>::= I <uNIT COMMA LIST> I I
.• EMPTY . .

<CASJ>::= <MOIU> I <UNIT> I

123

<SLICE>::=

<SLI~ER LIST>::=

<SLlCt:R>::=

<FROM UN IT>::=

<UP Tu UNIT.>::=

<AT UNIT>::=

<PRIMARY> <SLICER LIST>

<SLICER>,<SLICER LIST>I
<SLICER>

<FROM UNIT><UP TO UNIT><AJ UNIT>

<UNIT> I
.EMPTY

: <LNIT>I
: I
• EMPTY

Gi <LiN IT> I
• EMPTY

124

*SUL,ESS1VE KUW ENTITIES MAY· tiE COMBINEO INTO UNE SET OF il ANO ll S~MBULS
rlY SE~ARATING THE INNER PARTS dY COMMAS.
EXAMPLES: (IX/I (IQ:ZX/1 MAY BE WHITTEN A:;, 1/)(,J!ZX/l OR II II ll II MAY tlE
W R 1 T TEN AS (I t1 l •

APPENDIX E

USER'S GUIDE

_125

126

Control Cards

A description of the •JOB CARD options and format can

be found on page 37 of the thesis by Jensen (1). At this

time the revised version of the compiler is operational only

on the IBM 360/65 running under OS/MVT. The job control

language required to execute the revised version is shown in
I

Figure 44.

Restrictions

Beginning on page 38 Jensen (1) lists ten· restrictions

upon the ALGOL 68 subset which he implemented. The follow-

ing set of restrictions includes those res~rictions of Mr.

Jensen which are still applicable and also all restrictions

upon the newly implemented facilities.

1) All ALGOL 68 keywords are reserved;

2) Keywords must be separated from identifiers,

denotations and other keywords by at least

one blank;

3) Keywords, multiple symbol operators and

denotations may not contain embedded blanks

(except of course~ _7 CHAR denotations);

4) All identifiers of non-procedured modes must be

declared before they are referenced in order to

produce predictable results;

5) Identifiers may not contain embedded blanks,

but the break character (_) may be used to

improve readability.

//JOBNAME JOB (xxxxx,xxx-xx-xxxx,x),CLASS=B

/*SETUP DISK=1

/*PASSWORD XXXX

//STEPNAME EXEC PGM=ALGOL,REGION=140K

//STEPLIB DD DSN=COMSC.PART.SEAY.LOAD,UNIT=2314,

II VOL=SER=DISK28,DISP=SHR

//FT03F001 DD DSN=COMSC.SEAY.ERROR.A68,

II VOL=SER=DISK28,UNIT=2J14,DISP=SHR

//FT06F001 DD SYSOUT=A

//FT05F001 DD *

II

a JOB
•
•
•
ALGOL 68 SOURCE PROGRAM
•
•

a ENTRY
•
•

STANDIN DATA (IF ANY)
•
•
•

tiBSYS

Figure 44. Job Control Language for
IBM 360/65 Execution

6) Row displays are limited to one row only, such

as, (1 , 2, 3) J

7) Balancing is not performed for row displays;

therefore, the mode of the balance is assumed

127

to be of the same mode as its first unit (the

mode of the first unit may of course always

be modified by way of a cast);

8) Objects of mode ROWi REFj amode may not be

used in transput operations;

9) Any mode indications used in the program must

be defined before use;

128

10) Rowing may only be used to create REF ~ _7 amode

values from amode values or REF amode values;

11) A program may not contain more than 25 different

ROW displays.

New Features

Procedure Variables

There are two methods of declaring procedure variables

and constants. They may be declared as outlined by

Eyler (3) in his thesis on procedure implementation, or as

an alternative the programmer may write the following type

declarations

PROC VIRTUAL_PARAMETERS_PACK YIELDING_MOID ID_INIT_LIST.

This declares each of the identifiers contained in the iden-

tifier list to be a procedure .variable of the mode indicated

by the virtual parameters pack and yielding mode field.

These variables may be assigned routines (of a suitable

mode) dynamically during the elaboration of the program.

The ID_LNIT_LIST also allows procedure variables to be

initialized by units yielding the proper mode within the

129

declaration. Figure 45 shows some examples of the types of

procedure declarations currently allowed.

Procedure constant•

PROC a = (REAL x,y) REALa (x'- y)/(x + y) * 100.0;

Procedure variable initialized by a routines

PROC ba= (REAL x,y) REALa (x - y)/(x + y) * 100.0;

Procedure variable assigned a routine at a

later timea

PROC (REAL,REAL) REAL c;
•
•

-· ca= (REAL x,y) REALI (x - y)/(x + y) * 100.0;

Procedure variable initialized by a unit•

PROC (REAL,REAL) REAL da=

IF p THEN (REAL x,y) REALI (x - y)/(x + y) * 100.0

ELSE (REAL x,y) REALa (y - x)/(x + y) * 100.0

FI;

Figure 45. Sample Procedure Declarations

REF Amode Variables (pointers)

The compiler does not currently support structures or

list processing. Pointer variables have only a limited

usefullness under these restrictions. Two valid uses of

pointer variables area

1) to achieve the effect of CALL_BY_REFERENCE

parameters (all ALGOL 68 parameters are CALL_BY_

VALUE) and

2) if it is known ,that a particular element of an

array is to be referenced more than once,

pointer variables may save mu'ch processing time.

130

Figure 46 provides an ,example of the definition of pointer

variables to decrease execution time. It also provides an

example of mode declarations.

BEGIN

END

MODE .TREE_NODE = ~3_7 INT;

REF .TREE_NODE CUR_NODE;

~100_7 .TREE_NODE TREE;

INT ROOTa= 0;

PROC SEARCH = (INT ARGUMENT) REF .TREE NODE&

BEGIN

END

REF .TREE_NODE Xa= NIL;

INT SRCHa= ROOT;

WHILE SRCH1 =a NIL

DO

OD;

CUR_NODEa= TREE ~SRCH,_7;

REF INT LLINKa= CUR_NODE ~1,_7;

KEYa= CUR_NODE ~2,_7;

RLINKa= CUR_NODE ~3_7;

IF ARGUMENT KEY THEN SRCHa= LLINK

ELIF ARGUMENT = KEY

FI

THEN Xa= CUR_NODE;

OUT_OF_PROC

ELSE SROHa= RLINK

OUT_OF_PROCa SKIP

Figure 46. Example Program Illustrating
Possible Uses of REF Amode
Variables

131

APPENDIX F

SYSTEM PROGRAMMER'S GUIDE

132

Symbol Table Modification

Moving the Symbol Table From Memory

to Disk

133

The current version of the compiler does not actually

perform any disk input/output for intermediate files. A

new version of subprogram ALGIO which saves each 80 word

record of output in.an array was written. When an input

request is made, tables built during output operations are

searched to locate the desired record. After the record has

been located it is moved into the output __ parameter area and

the subroutine is exited •
. .

In order to allow the input/output. files to actually

be written onto disk it is necessary to provide the neces-

sary JOB CONTROL LANGUAGE for each file. It is also neces­

sary to replace the current version of ALGIO by the original

version.

Modifying the Symbol Table Size

If it is found desirable to modify the symbol table

sizeJ it is necessary to change the data statement found in

subprogram ALGZA to

DATA TBSZ/N/

where the N is replaced by the size (in words) desired for

the symbol table (N should be an integral multiple of 80).

If the symbol table is on disk the only other changes

required are the DEFINE FILE statement for file number 11

134

and of course changing the JOB CONTROL LANGUAGE specifica­

tion for the file. If the symbol table file is located in

memory, then it will be necessary to make the following

changes to ALGIO.

1) The dimension statement for the variable DISK must

be increased to reflect the total number of words

expected for all intermediate files (DISK sh,ould

be an integral multiple of 80);

2) The dimension statement for LOG must be-changed to

DIMENSION LOC (i,J)

where i = DISK/80;

3) The data statement for NRPGS must be changed to

the value DISK/80.

Operator Declarations

The subprogram ALGZO has been included with the modifi­

cations made to the compiler. ALGZO is not currently called

by any existing routine. It has the function of inserting

operator declarations into the symbol table. Figure 47 is a

diagram which shows how the operator declarations would be

placed in the symbol table by ALGZO. Figure 48 is a list of

the formal parameters of subprogram ALGZO along with the

meaning of each parameter. Operator declarations could be

processed by treating it as a procedure declaration. The

declaration OP + = (INT A,B) INTai'Jcould conceptually be

parsed as

PROC TEMP_ID = (INT A,B) INTI •

135

A symbol table entry would be made in the normal manner for

the procedured mode identified by TEMP_ID, followed by a

call to ALGZO to enter the routine definition into the

operator routine list.

IDENTIFIER LIST

Tree Structure
Mode

ID • • • • • • • • • •

ID • • • • • • • • • •

Operator
Routine
Definitions

Figure 4?. Operator Declaration Structure

Table I gives the functions of the subprograms that

have been added to the compiler.

Formal Parameter

OPSYM

OPNDl

OPND2

YMOID

ROUT

PRIO

PTR

IER

136

Use/Meaning

The internal code for the operator
symbol being defined

The mode number of the left operand
of this operator

The mode number of the right
operand of th~s operator (use zero
if operator is monodic)

The mode number of the yielding
value of the operator

The temporary identifier assigned
to this particular operator routine

The priority to be assigned to
all dyadic operators using this
symbol (when PRIO is not zero
the only input parameter values
used are OPSYM and PRIO)

Return address -·of the symbol table
node created as a result of this
call

Error code

IER = 0 No error

IER • 1 - Attempt to insert two
routines with same
temporary identifier

IER = 2 - Attempt to define a
routine after a label
in the current block

IER = J - Duplicate priority
number definition

Figure 48. Formal Parameters for Subprogram ALGZO

Subprogram

Phase 3

ALGF5

Phase 3·5

ALGF2

ALGIO

ALGYA

ALGYB

ALGYC

ALGZA

ALGZB

ALGZC

1)7

TABLE I

FUNCTIONS OF ADDED SUBPROGRAMS

Functions

P~rforms DISK I/O for the Phase J pass
through the source code (has the ability
to access each word of the file directly
by pQsi tion).

Fetches next input symbol for Phase 3·5·
Input may come from the symbol table
area (mode declarations on the input
source file).

The incore storage version of the I/O
routine.

Saves space in the symbol table area
by packing up to seven one word entries
into the eight word symbol table node.

Establishes the standard environment by
loading the mode table. (Can also be
modified to load standard operator
definitions.)

Unpacks the data packed by ALGYA.
Repeated calls to ALGYC will make all
values in the list available.

Performs the paging necessary for access
to the symbol table and through ALGIO
performs any necessary input/output
operations (see discussion on symbol
table location) •

Provides access to the symbol table
area. Data may not be fetched or
stored in such a way as to span two
symbol table nodes.

Causes the tree structure pointer of
the symbol table to be decreased by
one nesting level.

Subprogram

ALGZD

ALGZF

ALGZG

ALGZH

ALGZI

ALGZJ

ALGZK

ALGZL

ALGZM

ALGZN

ALGZS

ALGZU

ALGZV

ALG3B

138

TABLE I (Continued)

Functions

Increase the nesting level during symbol
table construction.

Inserts an identifier into the identifi­
er list associated with the current
block.

Search the symbol table for an occur­
rence of an identifier.

Prints the attribute and'cross reference
listing (if requested), it also causes
the mode table print routine to be
called.

This subroutine blocks the symbols out­
put from Phase 3·5· Source symbols are
output as is; however, object code
symbols are prefixed by a value equal
to (1000 + number of object text words).
Note• It is possible to have the value
1000 if it is necessary to complete a
record and no object text would fit in
the remaining space after the code
symbol.

Pushes values onto the compile time
stack.

Pops values from the compile time stack.

Parses loop clauses.

Parses declarations.

Parses the mode indications.

Generates allocate storage instructions
for declared variables.

Equivalences user defined modes.

Computes the nesting level for each
symbol table node.

Main line Phase 3·5

Subprogram

GET MD

INS MD

JTST

MDTST

MODET

PRTMD

PRTMT

Phase 4

ALGZE

BAL

COERC

DREF4

POSS

ROW4

TABLE I (Continued)

Functions

Fetches the mode table entry for the
indicated mode number.

Inserts modes into the mode table
(also computes related modes).

Tests switches to determine if debug­
ging information is to be output.

Allows tests of various fields of a
mode table entry.

Performs the insertion of a single
mode into the mode table.

139

Converts the coded values of a mode
table entry into Al characters suitable
for printing.

Prints the entire mode table using sub­
program PRTMD.

Increase the symbol table level
(assuming tree structure has been
built).

Computes the balance mode for multiple
completion clauses. (ALGBL generates
the balancing code.)

Calculates the coercion path from the
A PRIORI mode to the A POSTERIORI mode.

Computes the mode number of the mode
which has one less REF than the input
mode (generates code if necessary).

Determines the set of all possible
coercions for a given syntactic
position.

Completes the mode number of the mode
which has one more row than the input
mode (generates code if necessary).

Subprogram

SIFT

WIDE4

VOID

Phase 5

ALGYF

ALGYG

TABLE I (Continued)

Functions

Reduces the set determined in FOSS to
the unique ooercion to be performed.

140

Computes the mode number for the mode
which is one level wider than the input
mode (generates code if necessary).

Computes the actions necessary to void
the current mode (generates code if
necessary).

Implements new pseudo operation codes
901-907.

Implements and becomes operators (leav­
ing a REF amode termporary on the stack
top.

Walter Michael Seay

Candidate for the Degree of

Master of Science

Thesis• IMPLEMENTATION OF A SUBSET OF MODES IN AN
ALGOL 68 COMPILER

Major Fielda Computing and Information Sciences

Biographical a

Personal Data• Born in San Diego, California, June 24,
1946, the son of Mr. and Mrs. Sidney E. Seay.

Education• Graduated from James Madison High School,
San Diego, California, in June, 1964; attended
San Diego Junior College, 1963-64; attended
San Antonio College, 1965-66; received Bachelor
of Science degree in Mathematics from Troy State
University in 1974; completed requirements for the
Master of Science at Oklahoma State University in
July, 1976.

Professional Experience• Programming Supervisor and
computer programmer, United States Air Force,
1964-73; part~time computer operator, Troy State
University, 197J-74J graduate assistant, Computing
and Information Sciences Department, Oklahoma
State University, 1974-76; member of the Associa­
tion for Computing Machinery.

