IMPLEMENTATION OF A SUBSET
OF MODES IN AN ALGOL 68

——— e

COMPILER

By
WALTER MICHAEL{§EAY
Bachelor of Science
Troy State University
Troy, Alabama
1974

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
~the Degree of
MASTER OF SCIENCE
July, 1976

IMPLEMENTATION OF A SUBSET
OF MODES IN AN ALGOL 68
COMPILER

Thesis Approved:

. N o
2 & M%
Thesis Adyiser

leéks(}«w:;¥\ 0\~
%w..&wu

;Dean of Graduéte College

053416

ii

PREFACE

This thesis is a description of the mode facilities
which have been added to the Oklahoma State University
ALGOL 68 Compiler. Also included is a description of the
changes that were required to update the language accepted
by the compiler in accordance with the newest definition. /

I would like to thank the faculty of the Computing
and Information Sciences Department for their assistance
and their desire to teachﬂ A special thanks is in order
to my advisor, Dr. G. E.‘Hedfick, forlﬁis invaluable
assistance and’understanding during my stay at Oklahoma
State University. I woﬁld also like to thank my two sons,
Bobby ana Johnny, who often were required to be quieter
“than 1little boys should ever have to be. It is impossible
for me to express pfoperlynmy thanks to my wife, Kathy,

who did so much more than type.

iii

Chapter Page
I- INTRODUCTION . . . ° 0 o . 3] . . ‘o 3 . /o . . . 1
ObJeCtlveS e o 'o ¢ e e o ¢ ¢ ' & o e o o o o 1
History of the Oklahoma State University
ALGOL 68 Compller []] [] L] L] L] [] L] [] (] * L] 2
Literature ReVieW « o o o ¢ ¢ o o o o o o o 4
II. ALGOL 68 MODES L L] L] [] . L] L] L] L] L]] [] L] L] L] L] L[] 7
IntrOduction L] (] (] (] (] L] L] . .‘. o L] L] L] L] L] (] 7
Tools for Building New ModesS « « o« ¢ ¢ « & 8
The Subset of Modes Chosen for
Implementation « ¢ o o « ¢« ¢ ¢ ¢« ¢ ¢« o« o o 10
CoerClon © @ o e e o e e o e 6 o o o o e o o 11
Determining the Proper Coercion Sequence . . 15
Balancing * e [] [] [] . L L[] L[] L[] [] [] L] [] L] [] L] 20
IIIO SYMBOL TABLE STRUCTURE e @& o o o o e e o o o o 22
Original Structure « « « ¢ ¢ ¢ o o ¢ o o o o 22
Revised Structure . . . ¢« o o o o o o o 24
Identifier List Nodes and the Mode Table . . 29
IV. FEATURES OF THE REVISED OKLAHOMA STATE UNIVERSITY
ALG‘OL 68 CONPILER L] L] L] [] [] L] [] L] L] L] L] * L] [] [] L] 32
Introduction « « ¢« o« « o o ¢ o o o o o o « 32
Changes to Declarations and Modes . ¢« ¢« o « 33
Collateral, Conditional and Loop Clauses . . 39
Identity Relations and Casts « « « o ¢ o o o 42
V. PLANNING FOR THE IMPLEMENTATION « o ¢ o o o « o o« U5
Introduction « o o « o o o o o o o o o s o o U5
Modes ® e ¢ o e e 8 e o e o e o o e o o o o 45
Syntactic AnalysSis « o o ¢ o ¢ o o o o o o o 47
VI L] IMPLEIENTATION [] L] L] L] L] [] L] L L] L[] L]] . [] L] L] [] 48
G’eneral Structure ® 6 o o o o o o o & o o o L|’8
Modifications Made to Phases 2 and 3 « « « « 52
Phase 2 L[] [] L] L] [] [] L] L] L] [] [] . . L] L[]] 52
Phase 3 L] L] L] L] L] L] [] [] L] [] L] L] [] L] L] [] 53

TABLE OF CONTENTS

iv

Chapter

Phase

3 5 .] L[] [] [] [[] o (] [] L] [} [] L]

Determine Nesting Level of the

Declaration Processing /

Phase
Phase

Vii. SUMMARY, C
Summa,

Concl
Futur

REFERENCES . . .

APPENDIXES . . .
APPENDIX A
APPENDIX B
APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

ALGOL 68 Source Program« .
Symbol and Mode Table Manlpulatlon
Loop Clause Processing .« « « « «

u’ [] L] [] [] [] [] L] e L] L] L o o L] [] L]

500.-....-.

ONCLUSIONS AND FUTURE WORK . « « &

ry o e e e o o e o o o o/ o o o o
USIONS ¢ o ¢ o o ¢ o o o o o o
e Work™ « « o & o« o s e .
Implementation of United Modes» .
Implementation of Structured Modes
Source Program Representation by a

Syntax Tree o« « « o o o o o o o o

String Implementation « «

GLOSSARY OF ALGOL 68 TERMS . . .

MODE PROCESSING ALGORITHMS . . .

SAMPLE OUTPUT OF THE MODE
PROCESSING ALGORITHMS . « o o &

A GRAMMAR FOR THE LANGUAGE
ACCEPTED BY THE OKLAHOMA

- STATE UNIVERSITY ALGOL 68
COMPIIIER e @ ¢ o o o e e o o o o

USER'S GUIDE ¢ ¢ ¢ o o o o o o o

SYSTEM PROGRAMMER'S GUIDE . «

108

119
125
132

LIST OF TABLES

Table | . Page

I. Functions of Added Subprograms ¢ « ¢ o« o o ¢ » o 137

vi

LIST OF FIGURES

Figure
1. Formal Grammar for Modes Allowed in the Subset
2. Example of the Three Cases Which Arise in Voiding
3. Coercions Alldwed for Each Syntacfic Position . ;
4, Soft State Diagram .« « s« « o ¢ o o o o o o o
5. Weak State Diagraﬁ o o o o & o s o e o o o o
6. Meek and Firm State Diagram « « « « ¢ ¢ o « o
7. Strong State Diagram .« « « « o ¢ 4 o o o o
8. Allowable Modes for Previous Versions
9. Example of Block Nesting Table + ¢« ¢ « ¢ o &
10, Tree Structure Node « o « o o o ¢ o « o o o &
11. Example Program Structure « « ¢« ¢ o « o o o &
12, Determining Type of an Enclosed Clause .« .
13. Determining the Context of an Enclosed Clause
14, TIdentifier List Node o o o « ¢ o o o « o o &
15. Moge ?able gntrykfor Modes of the Form
EFL /7 7Y REFX BASIC_MODE &« « & o o & o &
16. Mode Table Entry for Modes of the Form
REF1 /= 7J REFEK PROC (MODES) moid . « o« o &
17. Mode Tabde Entry. for Modes of the Form
REFL /= 7J REFK MODE NAME « ¢ ¢ ¢ o o o o
18. Some Valid Mode Declarations o « « o o + o &
19. Use of a Procedure Variable « « o« « o o o o &
20. A Program Example Using a Row-of-Procedure

Constant [] L] [] L] o L (] [] L] L] [] . . L] . L .

vii

Page
; 12
. 16
. 17
. 18
. 18
« 19
. 19
. 23
. 25
. 26
.« 27
. 28
. 28
e 29
. 30
. 31
. 31
o 34
. 36
. 38

Figure

21,
22,
23.
24,
25,
26.
27.
28,
29.
30.
31.
32.

33.
34

38.

39.

4o.
b1,

Allowable Uses of the Collateral Clause

Ranges of Two Conditional Clauses

Ranges in the Loop Clause « « « «

Some Examples Using Identity Relators

Phase 1-Job Card Analysis « « «
Phase 2-Lexical Analysis .+ ¢ o o
Phase 3-Keyword Recognition . . .
Phase 3.5-Declaration Recognition
Phase 4-Code Generation . « . o .

Phase 5-~Interpretive Execution .

Recognition of Stropped Symbols .

Modes Derived From REF REF / , / REF INT by

Coercion and Slicing .« « « «

Related Mode Algorithm . « « o &

[

Status of the Runtime Stack During Elaboration of

the Declaration /uls u2, u3s uk, u5_/

Example of Output Text for the Exam

Declaration / uls u2, u3s: uld, us

Two Different Results Using the Same Mode

Definition e e o o & & & ® ¢ o

Mode Table Entry for the United Mode UNION

(INT, REAL, CHAR, UNION (COMPL, INT))

Mode Table Entry for the Structured Mode
STRUCT (REF INT a,b, STRUCT

MODE .A =
(REAL Xy REF .A y) C) e o o o .

le Array
INT I

INT I

Tree Structure and Code File for the Simplified

Example e o ¢ ¢ 6 o o ¢ o o o o

Tree Structure With Code Appended

Tree Structure After Conversion of Code Segments

10 Prefix Polish ¢ « ¢« 5 o ¢ &

viii

L[]

Pagé

39
L1

L2
43
48
49
50
51
52
52
53

57
59

60

62

63

68

69

70
71

71

Figure

42,
43,
bl
us,
46,

L7.
L8.

Syntax Tree for Sample Program Segment

Possible String Descriptor Format . «

Job Control Language for IBM 360/65 Execution

Sample Procedure Declarations « « « « « « « .

Example Program Illustrating Possible Uses of

REF Amode Variables « ¢ o« ¢ o o o &
Operator Declaration Structure . . .

Formal Parameters for Subprogram ALGZO

ix

Page

72
74
127
129

131

135 .
136

CHAPTER 1
INTRODUCTION
Objectives

Since 1973 a project has been underway at Oklahoma
State University to write a portable compilerrfor the
ALGOL 68 language (1) (2) (3). This very powerful pro-
gramming language gives the programmer the capability of
defining and using his own set of data types in addition
to a predefined set. The treatment of data types and values
of these data types has been formalized in ALGOL 68 to the
concept of a mode (4) (5).

Prior to 1976 the Oklahoma State University ALGOL 68
Compiler had the capability to recognize a very limited set
of modes. One objective of this thesis is to show how a
greater number of modes can be accepted while allowing the
compiler to remain within the (size and portability) con-
‘straints which have been placed on the compiler by its orig-
inal implementer (1). Another objective of this thesis is
to detail some changes necessary to allow the Oklahoma State
University ALGOL 68 Compiler to conform to the language de-
fined in the "Revised Report on the Algorithmic Language
ALGOL 68" (5), rather than the original ALGOL 68 language

defined in the "Report on the Algorithmic Language ALGOL
68" (4). - |

It is assumed that the reader is familiar with the
basic rules of ALGOL 68 and has some familiarity with the
terminology- Appehdix A contains a glossary of terms which
are used in fhis thesis in order to facilitate iﬁs reading.
Familiarity is assumed with the features implemented in the
Oklahoma State University ALGOL 68 Compiler also. If the
reader has a limited knowledge of.the compiler's features:s
then John Jensen (1) is the best source to obtain the nec-
essary background information. The thesis,by Alan Eyler (3)

may also be helpful.

History of the Oklahoma State. University
' ALGOL 68 Compiler

The Oklahoma State University ALGOL 68 Compiler origi-
nally was implemented as a master's thesis by Jensen (1).in
July of 1973. The original ALGOL 68 subset compiler was a
scientific subset of ALGOL 68. A major design criterion was
to develop a portable compiler; in order to achieve this
goal, the compiler was written using IBM 1130 Basic FORTRAN.
The compiler was implemented on an IBM 1130 computer with 8K
~ 16-bit words of storage, a card reader/punch, and a
console typewriter as the principal output device. The
compiler also uses a single disk storage device for storage
of intermediate code and simulated program memory. In order

to insure portability, the code generated from the compiler

is "machine code" for a pseudo-machine which is then inter-
pretively executed by a FORTRAN program. The small size of
the IBM 1130 computer, while enhancing the portability
characteristics of the compiler, restricted the set of
features which could be implemented by Jensen.

At the same time Jensen was implementing the Oklahoma
State University ALGOL 68 Compiler, Roger Berry (2) com-
pleted his master's thesis regarding the impleméntation of
formatted transput. ALGOL 68 formatted transput is an
extremely sophisticated and versatile input/butput format-
ting package. Berry's implementation is a package capable
of interpretive execution independent of any ALGOL 68
compiler._ | | v

Berry's (2) formatted transput package is in the
process of being incorporated with the Oklahoma State
University ALGOL 68 Compiler on the IBM 360/65 computer
system. The combined system will allow the ALGOL 68 pro-~
grammer to use the formatted input/output package directly.
The combined version will not execute on the IBM 1130 due
to its large size and due to the use of full standard
FORTRAN in the transput package.

In the spring of 1975, Eyler (3) completed implemen-
tation of procedures for the IBM 1130 version of the com-
pilér. The procedure facility which he implemented allows
procedure constants--a facility approximately equivalent to
ALGOL 60 or PL/I procedures. It supports recursive proce-

dure invocations.

Several students have volunteered.time to improve the
original cqmpiler of Jensen. Ma jor work has been accom-
plished by these people. This work includes implementation
of the CASE statement, rewriting the file handling capabil-
ity (standard input and standard output files only) of the
compiler, and now the incorporation of Mr. Berry's transput
package as -an integral part of the compiler.

There are currently several versions of the Oklahoma
State University compiler; the IBM 1130 version with pro-
cedures, the IBM 360 version without procedures, and the
IBM 360 version with procedures. These versions also are
operational on the TI ASC computer and the XDS Sigma 5 com-
~ puter. Currently work is under way to pfovide a single
version on the IBM 360/65 which includes formatted transput
and procedures. When this version is completed, the result
will be an extremely versatile and powerful programming

tool.
Literature Review

The ALGOL 68 language is defined in the "Revised Report
on the Algorimthic Language ALGOL 68" (5). Two good books

which survey the ALGOL 68 language are an ALGOL 68 Compan-

ion (6) and An Informal Introduction to ALGOL 68 (7). Of

these two, the ALGOL 68 Companion is the easier to compre-

hend. Another excellent source of information is the high-

ly readable ALGOL 68-R Users Guide (8). This users guide

introduces the basic language features without introducing

much of the new terminology found in the other documents
mentioned above.

Information about the Oklahoma State University
ALGOL 68 subset compiler can be found in the master's theses
by Jensen (i), Berry (2) and Eyler (3). Details concerning
other implementations of ALGOL 68 can be found in proceed-
ings of several conferences held for ALGOL 68 implementers.
For example, the proceedings edited by J. E. L. Peck enti-
tled ALGOL 68 Implementation (9) contains a deécription»of

1

one of the most successful production compilers of ALGOL 68-

-ALGOL 68-R. The ALGOL 68-R compiler was produced for the
Royal Radar Establishment, Malvérn, England. It contains
many of the features of the full language and it is used as
the primary programming language at the Royal Radar Estab-’
lishment. Descriptions of several other operational (and
almost operational) compilers can be found in the Proceed-

ings of the 1975 International Conference on ALGOL 68 (10).

‘Much of the literature which has been written about
ALGOL 68 has been concerned with the treatment of modes.
Many of the methods which implement full ALGOL 68 modes
require complex storage structures for their representation
and also reguire considerable processing time.

Peck (11) suggested that an ALGOL 68 mode could be
represented by a Greibach Normal Form Grammar. The»disser-
tation by Mary Zosel (12) utilized the grammatical repre-
sentation of modes to develop algorithms for equivalencing,

coercion, balancing and operator identification in an

ALGOL 68 program. The methods developed by Zosel provide a
comprehensive treatment of modes; they are, however, diffi-
cult to implement in FORTRAN due to FORTRAN's lack of recur-
sive procedures and list processing facilities. The
algorithms presented by}Zosel are based upon the original
report which—specified a slightly different treatment of
modes than that specified by the revised report. This
thesis is based on the revised report (5).

J. Kral (13) shows that ALGOL 68 modes can be repre-
sented by a finite automaton. This allows an implementer to
use the existing algorithms for‘manipulating finite automata
upon ALGOL 68 modes, such as reducing fhe'automaton (mode)
to a canoniéal representétion (i.e., equivalencing modes).

He J. Lane (14) presents methods which allow coercion
sequehces to be determined by using boolean matrix tech-
niques upon modes which have been represented in grammar
form. The amount of storage required for these matrices can
be quite large if the number of modes is large.

This thesis specifies how a limited (but useful) mode
facility can be implemented in a portable compiler with less

overhead than a full mode implementation would require.

CHAPTER II
ALGOL 68 MODES
Introduction

Most'higher level programming languages embrace thé
concept of data type. A data type names a class of values
which may be represented iﬁ the machine (either by the hard-
‘ware or by soffware implementation). For example, FORTRAN
allows a variable declared with the integral data type
(e.g.» INTEGER X) to possess positive or negative integral
values. Some programming languages allow the programmer to
define structures; structures are aggregates of other.prede-
fined data types. PL/I and COBOL for example, allow struc-
tures to be declared. Both languages provide mechanisms for
manipulating a structure as an aggregate and also provide
for manipulating the individual elements (15) (16).

ALGOL 68 has generaiized the concept of data type.

This generalization is the concept of mode. There are five
basic modes in ALGOL 683 BOOL (boo1ean), INT (integral),
REAL (floating point), FORMAT, and CHAR (character). The
programmer may construct new modes using the notions of row,
reference-to, procedure, union, and structure (these are de-
fined below).. In full language implementations of ALGOL 68

the programmer is allowed to apply the notions (row,

reference-to, etc.) to modes which he has previously defined

to form more intricate modes.
Tools for Building New Modes

The notion row may be applied to a mode to obtain a new
mode which specifies a multiple set of values of the old
mode. The row notion is displayed by the square brackets
(/ /). Since INT is a basic mode which specifies an inte-
gral valué. then / _/ INT specifies a multiple of integral
values (commonly called a vector). Values of a row-edbmode
may be indexed to obtain a single value of the mode or
sliced to obtain a subset multiple of the original set of
values. ‘

A mode (such as REAL) may be preceded by the symbol
REF to form a new mode REF REAL (read reference-to-real
mode). When an object does not have the REF symbol>as the
- first symbol of its mode, then that object is a value of the
mode; e.gey 3.5 is of mode REAL. If an object has the form
REF amode (where amode is a user defined mode or a basic
mode), then that object is a name (address) which may refer
to a value of the mode amode. An object of mode REF amode
is usually called an amode variable since it performs the
‘same function as a variable. in other programming languages.
If the mode of an object has the form REF REF amode, then
the object is similar to a PL/I pointer variable; that is,
the object may reference (point to) a variable of mode amode.

It is possible for an object which has the form REF" amode

(n REFs preceding amode) to yield an object which possesses
any of the modes REF"® amode, REFn'1 amode, REFn-Z amode,
eesss REF amode, amode. The éctual mode of the object yield-
ed in an ALGOL 68 program is determined by the syntactic
position of the object.(For a more detailed explanation see
coercion.) /

ALGOL 68 procedures require that the modes of each of
the paramétefs (if any) and also the mode of the value
yielded by the procedure be specified for every procedpre
declaration. A procedure which accepts an integral value
as its first parameter and a real variable as its second
parameter and returns a value of mode boolean would be rep-
resented by: PROC (INT, REF REAL) BOOL. This representa-
tion names a new modej a GaIUe of this new mode is an
appropriate routine denotation. Since PROC (INT, REF REAL)
BOOL is a new mode,it may be used as a building block in the
creation of other modes (i.e., / _/ PROC (INT, REF REAL)
BOOL, REF PROC (INT, REF REAL) BOOL, etc.).

A variable declared to be of a united mode (using the
union notion) may contain at any time a vélue of one of the
constituent modes of the union. For example, a variable de-
clared with the mode REF UNION (INT,'REAL) may possess a
value of mode.INT or of mode REAL (only one at any particu-
lar time). Language facilities are provided to allow the
programmer to test a variable of a ﬁnited mode to see which
mode it possesses at any particular time and to extract its

value. Note: there are no values of a mode which begin

10

with UNION; all values assigned and retrieved from a united
variable are values of one of its constituent modes.

In ALGOL 68 a structure is a mode. The following is
a representation of a structured mode: STRUCT (REAL a,
INT b,c). Unlike PL/I or COBOL the field names a, b, and ¢
are part of the mode itself. To select.a parficular field
frdm a structured variable such as STRUCT(REAL a, INT b,c)X,
the programmer writesi for example, b of x. Assuming the
above declaration for x, ALGOL 68 facilities allow the use
of structured modes as aggregates as well as allowing for

the selection of individual fields.

The Subset of Modes Chosen

for Implementation

Prior to this implementation, the Oklahoma State Uni-
versity ALGOL 68 Compiler had a very limited mode capacity.
Only variables of the modes REF BOOL, REF INT, REF REAL,
REF CHAR, and REF COMPL (complex) and constants of mode
PROC (procedure) were available. COMPL is not one of the
basic modes of ALGOL 68; it is defined in the report to be
of mode STRUCT (REAL re,im). However, COMPL has a full set
of operators, so it does not hurt a programmer to think of
COMPL as if it were a basic mode.

The design goal of this project was to increase‘the
mode handling capacity of the compiler by a significant
amount: without adding the general list processing of modes

which is required by a full mode implementation. The subset

11

selecied adds the REF REF amode (pointers) and amode (con-
stant) declaration facilities. Every mode (except proce-
dured modes) of this subset can be represented by a
descriptor of fixed size (see Chapter III). Procedured
modes require linked lists to retain the modes of each pa-
rameter and the mode of the value yielded by thé procedure.
All modes which may legally be declared in the subset_

must develop to a mode of the form REF1 /[7 REFK

BASIC_
MODE or REF' /~_7J REFK PROC_MODE.(REF', for example, means
that there are i occurrences of the symbol REF\witﬁ i being
any integral value such that i >0,) Figure 1 provides a

formal grammar in modified Backus-Naur Form (17) of the sub-

set of modes allowed in this implementation.
Coercion

Coercion is the ALGOL 68 term for the automatic modifi-
cation of an internal object during the elaboration of a
program. Most higher level languages allow some form of
data conversion to oécuf, such as, converting integral val-
ues to real values and vice veréa (¥5) (18). There are five
coercions allowed in the suBsetz deprbceduring. derefer-
encing, widening, rowing and voiding.

It is often useful to create procedured modes which
have no parameters. An example is the built-in procedure
randomg when random is invoked, a REAL value in the interval
(0,1) is yielded. In order to invoke a procedure which has

parameters in ALGOL 68, the programmer simply writes the

<ﬂ@0DE:>zs;<<LIST_0F_REFS:>
<LIST_OF_ROWS>
<1IST_OF_REFS>
<CHOICE_OF_BASIC_OR_PROC>

<:ZIST_OF_REFS>>a:=<CLIST_OF_REFS>>REF‘I

.EMPTY" "
<1IST OF ROWSS' 1= <LIST OF ROWSS/ 7|
| +EMPTY
<<©HOICE_OF_BASIC;OR_PROC>-s:e<:5Asxc_M0DE>-|

<PROC_MODE> ,
<BASIC_MODE> 11= INT | rear. | cower. | cuar | Boor | Formar
<PROC_MODE™ t 1= PROC <OPTIONAL_PARAMETER_LIST>

o <MOID> |
<MOID> 1 3= <WMODE>
VOID
<OPTIONAL_PARAMETER_LIST> s:= (<MODE_LIST PROPER>)
_ ~ «EMPTY
<WODE_LIST PROPEE> 1 1= <[JODE_LIST PROPER><HODE> |
| <MODE> ,
* v/~ 7 [7" may be abbreviated "/ , 7/,
7 [/7 [_7" may be abbreviated "/ ,,_/", etc.

%% ,EMPTY represents the empty string.

Figure 1, Formal Grammar for Modes
Allowed in the Subset

13

identifier symbol (or a unit which.returns an iject‘of mode
procedure) followed by the actual parameters (i.e.,
A(2.0,"the string")). The appearance of an object of mode
PROC REAL (no parameters) in the elaboration of the bfbgram
does not always reduire its invocation. For example, if the
assignation at=b occurs where a is mode REF PROC REAL and b
is mode PROC REAL, then the object which is to be assigned
is the routine (b) which is specified by the right hand side
of the assignation, not the value yielded by a call to that
routine. The proper prqcessing of procedured modes which
have no parameters is the function of the depfoceduring
coercions. When the coercion deprocedure is applied to a
mode, the resulting action is to invoke the procedure being
coercgd.

The dereferencing coercion 'causes an object of the mode
REF amode to become an object of mode amode. That is, it
causes the object to be modified, to possess the value to
which it refers. For example, an object of the mode
REF REF BOOL is a pointer which refers to a BOOL variable.
If this mode is dereferenced, the result is the name (ad- |
dress) of the logical variable to which it refers. The mode
of this new object is REF BOOL; if this mode is derefer-
enced, the result will be the value (TRUE or FALSE) which is
possessed by the variable;

If a value of mode REAL is required and a value of mode
INT is supplied, then in the propér syntactic positions the

INT value will be widened to become a value of mode REAL.

14

Mode REAL may be widened to mode COMPLe« Widening may only
be applied to a value of the mode; it may not be applied to
a variable. However, any syntactic position which alléwé
widening also allows dereferencing. Thus, if a variable or
pointer is provided, it will be dereferenced until a vaiue
is obtained.

Rowing allows a value of mode CHAR to become a value of
mode / _/ CHAR or a name of mode REF CHAR to become a name
of mode REF / _/ CHAR. This enables a programmer to use a
scalar value (or name) in some positions‘where a multiple
valued object is required. A prime example of this is where
an object of mode CHAR is to be assigned to a variable of
mode REF STRING (mode STRING is equivalent to mode Z 7
CHAR). The CHAR value is rowed to become mode / 1:1_/ CHAR;
then the assignation may take place. This coercion is re-
quired because the denotation "A" is a mode CHAR value and
it is often necessary or desirable to assign a GHAR of this
type to a STRING variable. Another use of rowing is in pa-
rameter passing where a procedure of mode PROC (/ _/ INT)
REAL is provided a scalar INT value as an actual parameter.
The INT value will be rowed and the resulting "multiple”
value will be supplied to .the procedure. |

Voiding is used when the object yielded by some piece
of code (such as, a routine or unitary clause) is to be
discarded. There are three cases:

1) The object is of mode REFl PROC moid (moid = amode

or VOID) and the name was not yielded by a

15

confrontation (assignation, idéntity relation, or'
cast). |
2) The object is of mode REF' PROC moid; however, its
value was yielded by a confrontation.
3) The object is not of mode REF® PROC moid.
In case 1 the object is dereferenced i times, then deproce-
dured; the resulting value from the routine invocation is
then voided. 1In cases 2 and 3 the mode is simﬁ;y changed to
VOID and any value is discarded. Figure 2 shows examples of

the 3 cases and describes the actions to be taken.
Determining the\Proper Coercion Sequence

There are three things which uniquely determine the
coercion sequence to be applied to a value of some modes

1) The a priori mode of the available object (coer-

end).

2) The a posteriori mode of the object required by

the coercion (coercee).

3) The syntactic position (or sort) of the object.
There are five sorts of syntactic position, they are:
strong, firm, meek, weak, énd soft. Figufe 3 shows, for
each sort the valid coercigns which may be applied and also
some of the language constructs which give rise to each
sort. Figures 4 through 7 are state diagrams which show
the valid coercions allowed in the subset. In order to
determine if it is poséible to coerce mode A to mode B given

a particular syntactic position, it is necessary to select

16

Case 1--Mode REF1 PROC moid (not yielded by confrontation).
PROC xs= REALs yt= 2.0 * y;

X3

The mode of x is REF PROC REAL, because
of the last ";" (occurring in the 2nd
line),. the name is to be voided.

ACTIONS -
Step l1--Dereference to mode PROC REAL.
Step 2--Deprocedure - The routine
"REALs ys= 2.0 * y" is now
, invoked.
Step 3--The real value yielded is
discarded.

Case 2--Mode REF' PROC moid (yielded by a confrontation).
PROC REAL x5 # x is of mode REF PROC REAL #
x3= REALs ys3= 2.0 ¥ y;
' ACTIONS |
Step 1--The value of mode PROC REAL is
assigned to the variable x.
Step 2--Step 1 yields an object of mode

REF PROC REAL
discard the result.

Case 3--Object not of mode REF' PROC moid

REF REAL x; # x is of mode REF REF REAL #
REAL y3; ' # y is of mode REF REAL #
Xs= y;
ACTIONS
Step 1--Assign the name y to the
pointer x.

Step 2--Void the pointer of mode
REF REF REAL.

Figure 2. Example of the Three Cases
Which Arise in Voiding

17

the appropriate diagram and beginning in state 1 follow the

available arcs modifying the mode according to the label of

the arc followed.

Sort Coercions
Strong Deprocedure
Dereference
Row
Widen
Void
Firm Deprocedure
" Dereference
Meek Deprocedure
Dereference
Weak Deprocedure
Dereference
Soft Deprocedure

Constructs

Actual parameter, the
enclosed clause of a
cast, the right hand
side of an assignation,
statements.

Operands in a formula
Units in FROM, BY and
TO clauses, and trim-
scripts

Primary of a slice
Left hand side of an

assignation, one side
of an identity relation

Figure 3. Coercions Allowed for Each
Syntactic Position

For example, assume we are to coerce the mode REF PROC REF

REAL to the mode REAL and further assume we are in a firm

position. First, we select the graph of Figure 6 (sort is

Firm), the coercion sequence is as follows:

REF PROC REF REAL
PROC REF REAL
REF REAL

REAL

(a priori mode)

M1 to M2 (dereference)

M2 to M3 (deprocedure)

M3 to M2 (dereference)

18

It is therefore possible to coerce mode REF PROC REF REAL

to mode REAL in a firm positioﬁ.

Deprocedure

))

N\

e

Figure 4. Soft State Diagram

*
Dereference

*
Dereference

Deprocedure—7

Deprocedure
¥*
Dereference - means amode may not be coerced from REF amode

Figure 5. Weak State Diagram

Note: that in many states of the diagrams there is more than
one possible arc to traverse from any node. This ambiguity
can always be resolved by examination of the a priori and a
posteriori modes (the coercion algorithm is shown in

Appendix B).

19

Denesere nce

)

03/9/’0.(:6 dene

Figure 6. ~Meek and Firm State Diagram

Deneserence.

@ < /".(_)
% "
e Deprecedeire
\\"\ /‘&
.
o ~
A \=.
Rot

AN

Low s{S73 Ko

4 e r - —

wiaen)

Figure 7. Strong State Diagram

20

Balancing

Conditional clauses, case clauses, and serial clauses
which have multiple completion points (EXIT symﬂols) provide
the capability of yielding values from different parts of
the clausef; For example, the conditional clause

lIF p THEN x + 1.0 ELSE 4.0 FI
can return a value of x + 1.0 if p is TRUE or a vélue of 4.0
if p is FALSE; It is required that all alternative yields
of a clause be of the same mode. Balancing provides the
automatic mechanism for determining the mode of the yield
of such a clause. In order to achieve é balance, it is
necessary to know the mode of each of the alternative yields
of the clause. ~The syntactic position of the clause is also
required since the coercions applied to at least one of the
alternatives must be only ‘those coercions allowed upon a
coercend in the same syntactic position as the clause. All
other alternative yields in the clause are assumed to be in
a strong position.

Appendix B contains a balancing algorithm for modes of
the subset. The essential method of the balancing algorithm
is to compute a target mode m = REFl /= 79 REF® BASIC_ MODE.
Where i, j, and k are the maximum values of the correspond-
ing fields in all of the alternative yielding modes. The
computed value of BASIC_MODE is the widest mode of each of
the constituent BASIC_MODES with the BASIC_MODES arranged in
the following order (widest last)s PROC, BOOL, FORMAT,
CHAR, INT, REAL, and COMPL. After the target mode is

‘21

computed the algorithm attempts to coerce all of the alter-
native modes to the target mode, recording the greatest
coercion strength required. If all alternatives can be
coerced to the taréét mode and the smallest strength coer-.:
cion is iéss than or’équal to the coercions allowed for the
syntactic position of the clause, then thé clause is bal-
anced. If failure was due to the strength of the required
syntactic position, fhen the clause cannot be balaﬁéed. If
failure was due to failure of one or more of the modes of
the alternatives to be coerced to the target mode, a new
target mode is computed by applying either dereferencing or
deproceduring to the target mode and the process is restart-
ed. It should be noted that due to the manner in which the
target mode was selected there is only one possible coercion
which can be applied to it. If no coercion can be performed
upon the target hode the balance fails.

This description of the balancing algorithm is over-
simplified and does not account for the correct treatment
of procedured modes.' The balancing algorithm has been im-_.
plemented in PL/I. Appendix C contains some examples of

balancing using the PL/I implementation.

CHAPTER III
SYMBOL TABLE STRUCTURE
Original Structure

The most restrictive data structure of the previous
versions of the ALGOL 68 compiler at Oklahoma State Univer-
sity was the symbol table. In order to reduce processing
time the deéisién was made to retain the symbol table in
internal memory (except for superceeded entries). Since the
original version was implemented on an 8K ﬁachine, only a
minimum amount of infermation about a variable could be
maintained.

The logical structure of the symbol table consisted of
three partss +the active symbol table, inactive symbol table
and the.block nesting table. Each unique non-keyword symbol
" was assiéned a value for its internal identifier. The val-
ues assigned were integral values which began at minus one
and decreased by one for each new symbol. The number which
has been assigned to a symbol becomes its internal identifi-
er and the key to the symbol table. A symbol table entry
consisted of two words: word one contained the mode of the
variable and word two contained the block for which the
identifier was declared. The mode was encoded in the word

and was of the form 10 ¥ R + M where R is the number of rows

22

23

in a rowed mode and M is the basic mode of the variable.
Figure 8 contains the allowable basic mode codes used in the

previous version of the compiler.

Mode Number Mode Internal Coded Symbol

1 INT ko9

2 'REAL 411

3 COMPL 401 /
b BOOL | 405

5 CHAR 406

6 STRING” 4Ok

7 LABEL

8 PROC 410

*Not used

Figure 8. Allowable Modes for Previou
' Versions -

When a declaration for a symbol was encountered in a
new block a symbol table entry which was made for a previous
instance of that symbol needed to be saved. For example,
given the following segment of codes

(1) BEGIN
(2) INT a

(3) BéGIN

2L

(4) REAL a

(5) END

(6) END
after line 4 has been parsed a new declaration for the
symbol a was indicated. Provisions for saving superseded
declarations in new blocks and restoring the old symbol
table entries upon block exit were made in the overflow
symbol table. The overflow symbol table was physically
located on a file (the simulated program memory file on
disk). As a new declaration was encountered‘the old symbol
table entry was saved. The format of th; overflow symbol
table entry wass current block number, identifier
number s, mode of the old declaration, and block in which the
old declaration was made.

The block nesting table was created prior to the rec-
ognition of declarations ahd was physically located at the
end of the active symbol table area in main memory. Each
block in the program was numbered according to the position
of its beginning symbol. The block nesting table consisted
of the humber of the block which immediately surrounded the

current block as shown in Figure 9.
Revised Structure

It was necessary not only to expand the symbol table
entries to retain more information, but the basic table

maintenance method had to be revised, if a separate pass

25

to recognize declarations was to be made. With the previous
symbol table structure when a block was exited all symbols
which had been declared in that block were lost. A more
permanent method was necessary in order to retain the infor-

mation for code generation.

(1) BEGIN Block Containing Block
(2) BEGIN 1 0
(3) BEGIN 2 1

| END | 3 2
(4) BEGIN b 2

END
END
END

Figure 9. Example of Block Nesting
: Table

The current symbol table comprises three partss a tree
of the source program structure, identifier lists and mode
tablé. The symbol table is physically located on diék which
is accessed through a software implemented paged memory sys-
tem. The program structure tree is a binary tree which is
built during the declaration recognition phase. This data
structure replaces the block nesting table and represents

the various ranges included in the ALGOL 68 program. The

node used for the tree structure is shown in Figure 10.

26

successor | right | predecessor |visited | comma | then
link count | count
1 2 3 L 5 6
open identifier | last next not label ot
symbol | list symbol | symbol | used | encount-used
: . ered :
7 8 9 10 11 . 12 13-16

Figure 10. Tree Structure Node

A description of the uses of each field in the tree
structufe node follows. The successor, right link and pred-
ecessor fields are used to maintain the binary tree struc-
ture. Figure 11 shows the binary tree structure generatéd
for an example program, along with a representation of what
the tree pointer fields would contain. thice in Figure 11
that two blocks which are on the same level (such as 2 and
3) are connected by right link pointers. When the nesting
level increases, a successor pointer is used. The predecess
sor pointer provides the same information as the o0ld block
nesting table provided previously.

The visited field is used to provide an easy method for
traversing the tree structure after it has been built and in
the cross reference listing phase. The field is initial-
ized to zero and is increased by one when the current node
has been processed.

The fields nameds comma count, then count, and open

symbol type have the purpose of determining the type of

enclosed clause this symbol table node represents.

27

(1) BEGIN | |
(2) BEGIN S
o O
(3) IF |
(%) THEN <::>~———~<::>
(5) ELSE
FI ,
Right Prede-
END : Node Successor Link cessor
1 2 - -
2 - 3 1
3 b - 1
L - 5 3
5 - - 3

Figure 11. Example Program Structure

Figure:lz provides a table which shows how the data from
these fields are combined to determine the clause type.

The identifier list field points to the head of the
identifier list associated with this block. If the field
is null (a minus one) then there are no declarations in this
rangejand block entry or block exit instructions are not

generated.

The last symbol and next symbol fields are used in

combination to determine in which syntactic position

28

the enclosed clause appears. Figure 13 shows some of the

combinations which are used to signal the various positions.

Comma Count Then Count Open Symbol Type Clause

not used 0 WHILE LOOP CLAUSE
not used 0. DO LOOP CLAUSE
0 0 (SERIAL CLAUSE
0 >0 (CONDITIONAL CLAUSE
>0 0 (COLLATERAL CLAUSE
>0 >0 (CASE CLAUSE
>0 not used e TRIMSCRIPT

Figure 12. Determining Type of an
Enclosed Clause

Last Symbol - Next Symbol ‘ Sort

3 or (H VOID
3 or (. ‘ = SOFT
3 or (OPERATOR FIRM
OPERATOR 3 or) FIRM
s 3 or) STRONG
1+ (up to symbol) _J or , MEEK
() (same as the context of

the surrounding range)

Figure 13. Determining the Context of
an Enclosed Clause

29

The label encountered field is initialized to zefo;
when a label is inserted in the identifier list this value
is set to a one. After the label encountered field'is a
one, it is not possible for a‘user declared. symbol to be
placed in the symbol table for the current range, although
a temporary variable may be inserted in the table at any

timeo
Identifier List Nodes and the Mode Table

Figure 14 shows the fields used in the identifier list

nodes. One node is created for each identifier declared in

a range.
Identifier Mode ~ Statement Cross
Number Table Number Reference

Number Identifier | List

‘ Defined Pointer

1 2 3 L
Reserved Link Reserved‘ Not

To Next Used

Identifier

Node
5 6 7 8

Figure 14. 1Identifier List Node

30

A description of each of the fields comprising the
identifier néde follows. The identifier number field is
assigned during the lexical analysis of the source program.
The identifier 1list nodes are maintained in desceﬁding se-
quence of the identifief number. ' o ’

The mode table number is the index of the mode table
entry which defines tﬁe mode for this identifier. The
statement number and cross reference list pointer fields
provide data for a cross reference listing which the pro-
grammer may specify as an optional output of the compila-
tion. The two reserved words (5 and 7) are for the later
addition of operator declarations to the compiler.

Thé mode table is physically located in the symbol
table disk file. The mode table is assigned contiguous
storage in order te allow fast access. Several standard
modes are loaded into the table to provide compatability
with existing mode references. The mode table entry for a

mode of the form REFL /= 73 REFE

BASIC_MODE is shown in
Figure 15. The mode table entries for modes of the form

REF' Zf;73 REFE PROC (MODES) moid are fiven in Figure 16.

REFs before | Number of ,REFs after Negative of the
rows ‘ rOWS rows . BASIC_MODE number
(=i) (=1) (=k) (see Figure 8)
Figure 15. Mode Table Entry for Modes
of the Form

REF! /79 REFX BASIC_MODE

31

REFs Number REFs Linked list of | Mode number
before | of rows | after | -8 |mode numbers of the
rows (=3) rows of each . yielding
(=1) (=k) parameter mode
2 3 4 5 6
Figure 16. Mode Table Entry for Modes

of the Form
REFL /- JJ REFK PROC (MODES) moid

Declarations of the form MODE.A = REF B (where B is a
user defined mode or a basic mode) are allowed, the general
form for a mode of this type is REFL /~_7J REFK MODE_NAME.

Figure 17 displays the mode table entry for this type of

mode declaration.

REFs Number | REFs | Negative of | Linked Mode
before | of after | basic mode list of number
rows rows rows number or a node of k
(=1) (=3) (=k) pointer to numbers yielding
- another mode | of each mode]
‘ table entry | parameter _
1 2 3 L ' 5 6 7

*¥Pointer to the list of symbols which constitute the actual
. row bounds.

Figure 17. Mode Table Entry for Modes
of the Form
REFY /~_7J REFK MODE_NAME

CHAPTER IV

FEATURES OF THE REVISED OKLAHOMA STATE
UNIVERSITY ALGOL 68 COMPILER

Introduction

This chapter presents a description of the new and
revised features of the ALGOL 68 compiler implemented aé
a part of this thesis. The new features are concerned
generally with the extended mode handling. capacity which
was described in Chapters II and III. The original Oklahoma
State University ALGOL 68 Compiler was based upon the def-
inition in the original defining document of ALGOL 68 (4).
The designers of the ofiginal definition felt a need to re-
vise it slightly after the Okiahoma State University imple-
mentation effort had begun. Since it was necessary to add a
new pass to the compiler (see Chapter V) in order to recog-
nize properly declarations, the syntax recognized by the
revised version is that of the revised report (5). This
chapter aléo describes those féatureé which have been mod-
ified to conform to the revised report. Appendix D contains
a description of the grammar récognized by the revised ver-
sion of the Oklahoma State University ALGOL 68 Compiler.
When a capitalized word appears in this thesis surrounded by

w® and "> (such as<{NIT>), it refers to a meta-symbol

32

33
in the grammar described in Appendix D.
Changes to Declarations and Modes

The.previous‘fersions of the compiler required_that all
decléfétioﬁg in an <ENCLOSED CLAUSE> preceed any other
<UNIT> s in the clause. This restriction was the result of
a size limitation imposed upon the original implementatioﬂ.
With the addition of a new pass to recognize declarations,
this restriction is now removed. The only restricfion im-
posed upon mixing<{UNIT>s and declarations in an<ENCLOSED
CLAUSE™ is the ALGOL 68 language restriction that all dec-
larations must preceed the first label in a <SERIAL CLAUSE>.

PfeviéUs versions of the compiler"éévefly'restrictea
the types of initialization expressions and row-bounds
expressions which could be used in declarations. These
expressions were limited to denotations, simple variables
and simple variables preceeded by a monadic plus or a mon-
adic minus operator. The current version allows full uni-
tary clause (<UNIT>) féoilities to be used both in row-
declarers and in initialization of variables.

A limited form of mode declarations has been implement-
ed for this thesis. A mode declaration allows the program-
mer to define a symbol to represent a user defined mode.

The programmer may then use the symbol to stand for the
newly defined‘mode in declarations, casts, and routine
texts. Figure 18 provides some examples of valid mode

declarations.

34

‘Declaration Defined Mode
MODE «A = /i_/ INT / _/ INT
MODE .B = REF .A REF; /[_/ INT
MODE .C = CHAR; CHAR

MODE .D = [i/ -C [7 CHAR
MODE .E = /i_/ .D '/ s_/ CHAR

Figure 18. Some Valid Mode Declarations

A symbol which is used to represent a mode in a mode
declaration must be a stropped identifier. A stropped
identifier is a standard identifier immediately preceeded
by one of the stropping characters (. or ™"). The symbol
A is distinct from the syhbol A and the two symbols may
not be used interchangeably.

There are three important implementation restrictions
upon mode declarations: no mode declaration may contain its
own mode indication (symbol which stands for the mode), the
developed mode must be a legal mode as defined for this>
implementation (see Chapter II), and no mode indication may
be used before it is defined. Examples of mode declarations
violating the first restriction ares

MODE .A = REF .A and

i

MODE .B

PROC (.B) REAL.
‘This restriction is consistant with full ALGOL 68 when the
mode indication is not shielded within a struct or a union

(this is not yet implemented).

35

An example of a mode declaration violating the second

restriction iss

"

MODE .A = REF / i_/ INT,
“B = /i A
The developed mode for this example would be / j_/ REF /i _/
INT, but this implementation does not allow any symbols to

occur between two row-of symbols (“/ _/").
The third restriction is violated by a mode aeplaration
of the follwing types | |
o MODE .X.

REF .Y,

Y = REF INT.

The effect of this particular declaration may be achieved by
simply reversing the order of the symbol declarations

MODE .Y

REF INT,

]

X = REF .Y.
This restriction is necessary because the mode definitions
are not recognized prior to the declarations being parsed.

The previous versions of the compiler made no distinc-
tion between identity declarations and vafiable declara-
tions. This ailowed'(INT a = 3; as= 2) to be accepted as a
valid program. The revise@ version will correctly identify
the assignation as= 2 tb bé in error.

Procedure declarations which utilize procedure vari-
ables, row-of-procedure variables and constants may be made.
In addition, the pre-existing facility of procedure con-
stants remains available. Figure 19 displays an example of

how a procedured variable may be declared, assigned

36

routines, and invoked.

(1) BEGIN

(2) PROC (REAL) REAL trigs

(3) INT sw;

(4) REAL nbr;

(5) read ((sw,nbr));

(6) ‘ trig s= IF sw = O THEN sin ELSE coé FI;
(7) print (trig(nbr))

(8) END

Figure 19. Use of a Procedure Variable

Line 2 declares the identifier "trig" to be of mode
REF PROC (REAL) REAL. Trig is a variable capable of pos-
sessing a routine. The function of the routine is not de-
fined; however, any routine which is assigned to trié must
have one REAL formal parameter and it must return a REAL
result. Lines 3, 4, and 5 declare two variables (sw and
‘nbr) and input values for those variables from the Standard
Input file (STANDIN). Line 6 is an assignation, the right
hand sidg of this assignat}on is a conditional clause. If
the value of sw is zero thén the routine sin (mode PROC
(REAL) REAL) will be yielded by the clause; the routine
cos (mode PROC (REAL) REAL) will be yielded, otherwise.

Since the modes of both alternative yields are identical,

37

the clause will return a value of mode PROC (REAL) REAL
which is either the routine sin or cos depending upon the
value of sw. The yield of the cléuse is compatible with the
left hand side of the assignation (the variable trig) so
that the routine yiglded by the conditional clause is as-
signed to the procedure. variable trig. Line 7 causes the
procedure variable trig to be invoked with an actual param-
eter value of nbr. The action taken (which routine is
elaborated)'depends upon which routine was assigned to trig
in lihe ‘6. |

Row-of procedure constants and variables were included
to maintain the orthogonality of the ALGOL 68 language.
That is, given that amode is a valid mode then /7 amode is
also a valid mode (this ié ndt necessarily true in this
subset). A value of a / _/ amode mode consists of a vector
of amode‘values. PROC (REAL, INT) BOOL is a valid mode;
therefore, a programmer might desire to declare an object of
mode / _7 PROC (REAL, INT) BOOL or REF /7 PROC (REAL, INT)
BOOL. The value of a row—of;procedure object consists of é
vector of routines, each assigned to an element of the row-
of-procedure constant or variable. Figure 20 provides an
example of a situation where a row-of-procedure constant is
used. Line 2 declares the ‘identifier "func” to be of the
mode / _/ PROC (REAL,REAL) REAL. The virtual parameters are
required on all declarers of row-of;procedure constants and
variables because there is no <ROUTINE TEXT> for row-of-

procedure modes. Lines 3 through 6 comprise a special

38

" clause called a collateral clause. The collateral clause

is being used here as a 'row display. Thévcollateral clause
is discussed below. At this time, the assumption that the
collateral clause yields a vector of routines which are
assigned %o the constant func is sufficient. Line iz causes
the jth routine in the row-of-procedure variable to be in-
voked, passing as actual parameters the REAL values possess-

ed by the variables a and b.

(1) BEGIN |
(2) / _/ PROC' (REAL, REAL) REAL func =
3) ((REAL x,y) REAL & x + ¥,
(4) (REAL x,y) REAL s x - ¥y,
(5) _ (REAL x,y) REAL x * y,
(6) (REAL z,y) REAL &+ x / y);
(7) INT j,

(8) REAL a,b,cs

(9) WHILE read (j);

(10) j»0 and j <5

(11) DO read ((a,b));

(12) ci= func / j_/ (a,b);
(13) print ((j,a,b,c))

(14) oD

(15) END

Figure 20. A Program Example Using a
Row-of-Procedure Constant

39

Collateral, Conditional and Loop Clauses

A collateral clause is a clauée which returns a value
for each of the comma separated <UNIT> s in the clause. The
value returned is freated as a value of a rowed mode (row
display). The mode of the row display is normally deter-
mined by the balance of the clause; however, due to imple-
mentatioﬁ restraints the balance mode of a collateral clause
is assumed to be the same as the mode of its first unit.
ALGOL 68 permits collateral clauses to be used in strong
positions. Figure 21 shows some of the valid uses of

collaterai clauses.

Initializing a / _/ INT variable
/5.7 INT as= (1,2,3,4,5); |
The right hand side of an assignation
as= (2*a /1 /,3%a/2/,a/3/+a/4/,0,0);
As an actual parameter of a call
PROC sum = (/ _/ REAL x) REALs
(REAL tot:= 0;
FOR i TO upb x DO tot + s= x [1_7 0D;
tot); | ‘ i
print (sum (1.2, 2.3, 3.4))
#value printed = 3.9#

Figure 21. Allowable Uses of the
Collateral Clause

10

Futher restrictions which are placed upon row displays ares
they must hot be used as actual parameters in calls to
transput routines (print, put, pﬁtf; etc.), nor can they be
nested to obtain row-row mode values.

The syntax for a<{CONDITIONAL CLAUSE> has been changed
in this implementation to allow a~<SERIA$ CLAUSE>>in posi-
tions where only a list of unitary clauses was previously
permitted. As an example, the following conditional clause
would now be valids " |

IF p THEN INT a3 read (a); a ELSE 230 FI.
There are several ranges\defined within conditional clauses,
they afet between the‘IF and the FI, the THEN clause, the
ELSE clause, and between an ELIF and its corresponding FI.
Figure 22 displays the raﬁges of two example conditional
clauées.

The changes made to the loop clause structure represent
changes which make the revised version and the previous
versions of the compiler incompatible. The syntax according
to the original report allowed a single <UNIT> as the object
of the lobp clause (4). The revised report introduced the -
symbol OD to match the symbol DO and allows a <SERIAL
CLAUSE> as the object of the loop (5). New syntax allows
the following loop clauses '

TO 5 DO REAL a; read (a); sum + s= a OD
The previous version would have required the following

statements to achieve the same result:

L1

TO 5 DO BEGIN
REAL a3
read (a);
sum + s="a

ENDs

IF scl THEN sc2 ELSE sc3 FI

IF scl
THEN sc2 . ELSE sc3
A '
Inner ranges— Outer range”

IF scl THEN sc2

ELIF sc3
THEN scb4
ELSE sc5
FI
IF scl
ELIF sc3
FHEN sc2\ '

THEN ELSE
scl sch

Figure 22. Ranges of Two Conditional
Clauses

42

Along with the new syntax is a new definition of ranges

in the loop clause. Figure 23 illustrates this new range

definition.
‘FROM unit BY unit T0 unit
FOR | |
identifier
WHILE . <SERIAL CLAUSE>

DO <SERIAL CLAUSE> OD

Figure 23. Ranges in the Loop'Clause

The identifier defined in the FOR part can be accessed only
in the WHILE and DO parts. Any declarations made in the
WHILE part may be referenced in the DO part. The syntax
accepted by the new version will also allow a loop clause to
be the outermost range in the program i.e., the program

DO SKIP OD is correct; however, the lexical analyzer will
not accept this since it does not treat loop clauses as

ranges. Due to time constraints this was not changed.
Identity Relations and Casts

Identity relations allow the testing of two REF amode

variables to see if they refer to the same location (have

the same name). There are two identity relation

43

operatorss +the IS relator (:=:) and the IS NOT-relator
(s9=3). Given the declarations

REAL x 1= 3.14, y 1= 3.14;
the identity relation x s=3: y yields false because the ad-
dresses (names) of x and y are different even though the
values contained in those addresses are the same. It is
not possible to use an identity relation between variables
of two different modes (after balancing){ ‘Figufe 24 is a -
sample program which displéys’the features of identity

relators.

BEGIN
REF INT a, INT b 3= 3, ¢ 1= 33
a 1= b; #'a’ now refers to the location of 'b'#
a\:=: b; #ylelds true#
a t1=t b; #yields false#
print (a); #prints the value 3#
a 1=1 ¢c; #yields false#
a t—1=: c3 #yieids true#
a = ¢ #ylelds true#
END

Figure 24. Some Exahples Using
Identity Relators

A cast allows the programmer to change the strength of

the position of an enclosed clause. The énclosed clause of

lely

i
N\

a cast is a strong position; thefefore. ahy legal coercion
may be applied to the value yielded by the enclosed clause.
A cast is created by a mode indication fbllpwed by an en- |
closed clause such ass REAL (i + 2). ' The enclosed-clause
will return an integral result which will then be wideﬁed
to a real value (regardless of the available syntactic

strength).

CHAPTER V
PLANNING FOR THE IMPLEMENTATION
Introduction~

The planning for this implementation comprised three
stepss 1) overall familiarization with the existing com-
piler, 2) designing the mode facility to be implemented,
and 3) devising the syntéctic,analysis needed to recognize
the program block structure.

| Familiarity with the éxisting cqmpiler was obtained by
examining the theses of Jensen (1), Berry (2), and Eyler (3)

and also by examination of the compiler code.
Modes

Planning for mode implementation required two major
decisions, they weres selecting the subéét of modes to be
allowed and designing algorithms to perform the required
mode manipulations and designing the symbol and mode tables.
An objective of this thesis is to introduce an enhancement
in the mode'handling facilities for the Oklahoma State
University ALGOL 68 Gompiler. This was to be done without
requiring a major rewrite of the co@e generation and inter-

pretive execution phases of the compiler. The existing code

relies heavily upon the codes used for the modes (see

b5

L6

Figure 8); therefore, any changes made had to‘preserve these
numbers. This was attained by usinglthe position of the de-
fining mode entry in the mode table as the mode syﬁbol and
entering the modes listed in Figure 8 into the first eight
locations in the mode table. With this convention a real
mode, for example, still is represented by the number-2.

The mode subset was selected to allow REF amode entries
as the major enhancement. This featufe alqng with the
orthogonalization of modeé is a suitable beginning to the
task of adding a full mode handling facility to the com-.
piler. o \ |

After;designing the subset of modes the compiler would
accept, algorithms which would perform the functions ofs -
coercion, balancing, and determining medes in assignations
were devised. These algorithms were implemented in PL/I,
and tested to insure that they were acceptable. The
algorifhms coded in ALGOL 68 can be found in Appendix B and
test results of the PL/I implementation can be found in
Appendix C.

The symbol table structure was chosen because this same
type of symbol table was implemented for a class project.

It is versatile enough to handle the block structuring of
ALGOL 68. The symbol table strﬁcture also figures heavily
into some recommendations for future enhancement of the

compiler (see Chapter VII).

47

Syntactic Analysis

In order to recognize declarations in a pass prior to
code generation, it was.ﬁecessary to perform enough syntac-
tic anaiyéis to determine the blocking structure of the
program. Several attempts wheré made at devising a grammar
for the language, that would also be acceptable to the
SIR(1) table generator developed by Joseph Gray (19). After
substituting some "terminél symbols* for some syntactic
entities.which were not in fact.terminais (and invoking
other parsing algorithms to recognize these “terminal
symbols"), it was possible to generate a grammar which would
perform the requifed analysis. The resuifing parser wasj;
however, too large to be used practically, given the size
restrictions imposed upon the compiler. It would have been
possible to have used sparse matrix techniques to reduce the
size of the parsing tables from 15,000 words (~~150 states
by 100 symbols) to about 3400 words but considering the size
of thé semantic routines, the author felt it was impractical
to implement on a computer with 8K words of memory.

The syntactic analysis used is essentially a hand coded
push down automaton whiéh is similar to the methods used in

the other phases of the compiler.

CHAPTER -VI
IMPLEMENTATION
General Structure

In this chapter the modifications which have been made
to the‘compilef are discuésed. The compiler is a four péss
compiler with an interpretive execution phase (Phase 5).
Figures 25-30 are diagrams of the flow of data through the
phases of the compiler. The flow of control for the com-
piler is Phases 1, 2, 3, 3.5, and L, Execution is accom-
plished by Phase 5 Which may be directly invoked (using
actual pseudo machine code) or executed after compilation.

Phase 1 reads the 3JOB card, performs analysis of the
options selected by the programmer, prints the compiler
options and sets various flag fields to Be used by later

phases of the compilation.

/ .
tJOB card > Phase 1 |—> Option |
| Listing |

~. o
-~ _—

Figure 25. Phase 1-Job Card Analysis

48

k9

Phase 2 performs a lexical analysis of the ALGOL 68

source program. Output consists of one integér per symbol

in the sdurce program. The only key words recognized as

reserved symbols at this point are BEGIN, END, 1IF, FI, CASE,

and ESAC. A source program listing is printed if it was

requested on the job card. Any dendtations encountered

during the lexical analysis are converted to internal form

and stored into the simulated program memory for Phase 5.

A table of all symbols whfch were encountered in the lexical

analysis is also passed to Phase 3 in common storage.

ALGOL 68
Source

Figure 26.

Phase 2

4 - T T
/ /

Simulated Program
Memory ‘
(Denotations)

) .
/Coded Atomic {

>lunit File
\6Source Programs
PO

§Source 1

Phase 2-Lexical Analysis

Phase 3 performs two functionss: first the table of

symbols (received from Phase 2) is examined and all key-

word symbols are identified, next a pass is made through the

50

source code file updating the keyword symbql numbers to re-
flect their special values (see Jensen (1)). The identifier
table is also compressed (removingkkeyword symbols) and the
corresponding changes are made to the source code.

The second part of Phase 3 changes a colon symbol which
is preceded by a mode declaration to another code, to indi-
cate that a routine follows. The left parenthesis of a
formal parameter pack (if one exists) also is changed to a
special symbol at this time. As a final function Phase 3
writes the variable name symbols to a disk file for deﬁug

output purposes.

Identifier
(Flle

Source
Program |&> Phase 3

\ Program .
,>Errors

_.._____.J

N,

e

Figure 27. Phase 3-Keyword Recognition

Phase 3.5 is an entirely new pass written for this
project. It has the primary function of recognizing decla-
rations and building the symbol table entries for these

declarations. Phase 3.5 also analyzes the blocking struc-

ture of the program in order to build the symbol table tree

51

structure; The outpﬁt code file has all declaration symbols
deleteds This phase modifies some other symbols in order to
make Phase 4 parsing easier (such as using separéte symbols
for each different meaning of the colon symbol). Some
object text is included as a part of the source text. This
object text is never seeﬁ by the main sectioﬁ of Phase 4,
but instead is placéd immediately ih simulated program

memory by the Phase 4 input routine.

Source Source
| Program _~ Phase 3.5| | Program and
Object text !

. !

[Error
Messages

7

N/

i

- 7

Symbol and
Mode Tables

Figure 28. Phase 3.5-Declaration Recognition

Phase 4 is the main syntactic recognition and code
generation phase of the compiler. The input consists of the
modified source text and symbél table output from Phase 3.5.
Output from Phase 4 consists of the generated object code
and any applicable error messages. |

The code generated by Phases 3.5 and 4 consists of
instructions defined for a pseudo machine. Phase 5 performs

the simulation of the generated pseudo machine code.

52

Phase 5 may also be executed as a stand alone program which

executes object code loaded from cards.

/ ,

Source ’ Simulated (

Program and|——> Phase 4 rogram Memory

Object Text| =~ &Generated Code&
\ i

Symbol and Error ‘
Mode Tables| ">Messages \

_// i

Figure 29. Phase 4-Code Generation

Slmulated/
Program
\ Memory
\‘t
(Card Input > Phase‘5 L———~%> Printed ‘:
Output -
= | —

Figure 30. Phase 5-Interpretive Execution

Modifications Made to Phases 2 and 3
Phase 2

No modifications were made to Phase 1. Phase 2

53

modifications were concerned with stropping symbols. The
symbols f;r}stropping (* and .) immediately preceéding an
identifier symbol cause that symbol towbe freated different-
ly from the same identifier symbol which is not stropped.
".ABC" is not‘the same as "ABC"; however, J.ABC" is equiva-
ient to "!ABC". Stropped identifiers may be used as mode
indicants. Figure 31 is the finite state automaton used to

recognize stropped symbols.

fecognize REAL
denotation

\E—————éstropped Symbol

Alternative
Representation
for Quote Symbol

Figure 31. Recognition of Stropped Symbols

When a symbol is determined to be a stropped symbol the
Code 617 is placed in the code file preceeding the identi-

fier number for the symbol.

Phase 3

Phase 3 modifications consisted of minor modifications

54

to the keyword identification routine to identify correctly
the additional symbols required to implement mode declara-
tions and modifications required by the revised report (5).

The additional symbols and their codes aret

Symbol Code
oD | 616
MODE , . 623

The pass to update the source code after the keywords
have been recoghized was rewritten completely in order tb
support five functional modifications:

1) The keyword OD is recognized as the symboi which

terminates a loop clause.

2) The stropping symbol is removed from the source
text if it precedés a keyword (.IF is equivalent to
1F).

3) If the colon symbol is immediately preceded by a
mode indication.tﬁen the colon symbol is a routine
symbol. The source text is then scanned from right
to left to find the opening parenthesis of the
formal parameters pack (if one exists). After the
open symbol has been found it is replaced by a
special code (Code=47) so Phase 3.5 will be able
to immediately recognize a routine denotation. The
previous version of the compiler required routine
denotations to occur only in PROC constant declara-
tions so this type distinction was not necessary

(all routines were preceded by the symbol PROC).

55

4) Previous versions of the compiler used this pass
to identify labels, which were then output on a
special label file. Entries in the label file
indicated the block number of each label declared
in the program. Phase 4 needs this information aﬁ
the beginning of a block in order tovgenerate the
allocate symbol instruction upon block entry.

The revised version performs labél identifi-
cation in Phase 3.5. Here labels are entered in
the symbol table along with other declarations.
Phase 4 then searches the identifier list associs
ated with a block and generates the allocate symbol
instructions. _

5) Phase 3 was also used to recognize the block struc-
ture of the program in order to create the block
nesting table. The need for this table has been
eliminated with the inclusion of the tree struc-

tured symbol table.
Phase 3.5
This phase consists of four major sections of Code:

Determine Nesting Level of the

ALGOL 68 Source Program

A hand coded push down automaton recognizes the nest-
ing level of the program which is reflected in the tree

associated with the symbol table. This section analyzes

56

special symbols to determine whether they are loop clause

symbols or declaration symbols. If a symbol is in one of

these two categories then the appropriate subprogram to

parse the construct is called. If the symbol is related

to the nesting structure of the program (except for loop

clauses) it handles the processing directly.

If the current symbol is a symbol which terminates a

unit (such as 3 , I etc.) then the status of the parse is

examined and control returns to the location in the analysis

which was interrupted due to the need to recognize a unit.

If a symbol does not fall into one of the previous classes

it is simply copied onto the output file.

Symbol and Mode Table Manipulation

Subprograms are included which allow for the manipula-

tion of the symbol table. These subprogram functions com-

prises

1)

2)

3)
k)

5)

increasing the nesting level of the tree structure
(build the tree structure),

decreasing the nesting level of the tree structure,
inserting an identifier into the symbol table,
searching the symbol table fo? the occurance of

an identifier, and |

allowing access to the simulated virtual storage

which contains the symbol table.

In addition to the subroutines to manipulate the symbol

table several routines are included which manipulate the

57

mode table. Given the number associated with a mode'it is
possible to fetch the mode table entry or giveh the mode
table entry it is possible to obtain the corresponding mode
~numbers.

Special processing is required for the insertion of ‘a’
mode entry into the mode table. Not only must the mode |
entry being processéd be added to the table, but any modes
which can be derived from that mode by the standérd coer-
‘cions or by slicing, also must be added. The insertion
routine automatically derives these related modes and in-
serts them into the mode table. Given the mode REF REF
/ »_/ REF INT, Figure 32 displays all of the related modes

which must be inserted into the mode table.

Mode
Number Mode Comment
1 REF REF [’,;7 REF INT original mode
2 REF / ,_7 REF INT dereference mode 1
3 REF / 7/ REF INT slice mode 2
4 [/ s_/ REF INT dereference mode 2
5 / _/ REF INT slice mode 4
6 REF INT subscript mode 5
7 INT dereference mode 6

Figure 32. Modes Derived From
REF REF / ,_/ REF INT
by Coercion and Slicing

58

Figure 33 is a flowchart which presents the algorithm re-

quired for the insertion of derived modes.

Loop Clause Processing

This section of code provides all processing necessary
to recognize the nesting level associated with loop clauses.
The loop clause recognizer also makes the necessary symbol
table entries for the index of the FOR loop as well as any
labels encountered in the serial clauses of the WHILE and

bo . .. OD parts of the loop clause. X

Declaration Processing

}Declaration processiﬂg accounts for over 50% of the
code of Phase 3.5. A large part of the complexity involved
in the processing of declarations is a result of the recur-
sive nature of the language. It is possible for declaration
processing to be suspended in order to recognize a unitafy
clause (which may of course contain other declarations), and
then be resumed after the unitary clause has been recog-
"nized. This facility requires mutually recursive co-rou-
tines which tend to obscure the clarity of FORTRAN
subprograms. An example of a situation where this occurs
iss- REF (/ (INT I; READ (I); I) /) INT J. Upon encoun-
tering the first left parenthesis, recognition of the first
declaration (declaration of J) is suspended and partial
results saved (in the symbol table area). Flags are set to

indicate the state of the parse, then the routine to process

/V,ouT ///ade /70/7/;4
KEF' /{cw REFS Baszc_Mepe

LI?b;/&T Mmode
REF’ =1
BASIC_MODE

\

Z/V,&/JI'
OriG: ha./
#lode.

Mode AumBeR

oF ZvSERTeD
Mod e_

Mode enTry 75 be
vselTed

Znsgar Aode
REFRo wJ REF

BASTC _ MOJE

59

j e (-1

Save

Z/75e; h7 Mode

KEF'
ISASIC_MoDE

=
24

Figure 33.

CurrenrTl !
Mode
~L B
Teear l
LyserR] #tode
REF ¥ Ron~REFY
(BASIC_MODE e &

z)
S ZyserT Mede
e -t Row’ Ree”

BASIC_ MODE
ResTore
SAved
Mode

Related Mode Algorithm

60

program nesting structure is invoked. After thelunit within
the parenthesis has been recognized control returns to the
location in the parse which was suspended.

Thé declaration parsing phase generates the code neces-
sary for the allocation 6f variables during program execu-
tion. Code is also generated to update the statement number
of any statements which have been deleted because they
contained only declaration symbols.

The added feature of allowing any unit in array bounds
declarations has fqrced modification to the previous methods
of handling array allocation. A new source symbol (=49) has
been introduced which, when encountered in Phase 4 causes
the current unit being evaluated to be completed and the
mode of the result is coerced meekly to mode INT. The lower
and upper bounds of each row are left on the runtime stack.
Figure 34 shows an example of the status of the runtime
stack for the row declaration

/[uls u2, u3s ub, us_/ INT I.

o)

Row 1 . Notes ul, u2, « « « » us
(u2) are any arbitrary
(u3) units. (ul) repre-
Row 2 ‘ sents the value
(ul) yielded by ul.
1
Row 3
(us)

Figure 34. Status of the Runtime Stack During
Elaboration of the Declaration
/ ul:s u2, u3s ub, us / INT I

61

The missing lower bound from the third row of the declara-
tion of Figure 34 is assumed to be one;’ This requires a
special instruction sequence to be generated whenever a
comma or bus symbol (_7) follows the first unit of a row
" bounds ﬁaif. Tﬁe_special processing generates code to cause
a constant of one to be loaded onto the runtime stack fol-
lowed by a new pseudo machine instruction consisting of an‘
operation code of a 67 (w;th_all other fields set to zero).
This new instruction will cause the top two integral values
on the stack to be exchanged. Figure 35 provides an example
of the output text generated from the array declaration
given in Figure 34.

A mode declaration such as: v

MODE .x = / y_/ INT

poses some special processing problems during Phase 3.5.
The units in the row declaration must be elaborated each
time the mode indication occurs as a variable declaration.
For example, given the above definition of the mode .x,
Figure 36 shows two very different results depending upoﬁ
the local declaration of y; Theﬁimplementation of this is
accqmplished by saving thevsourCe code symbols of the mode
declaration in a list which may be accessed through the mode
table entry for the mode being defined. When the mode indi-
cation occurs as an actual variable declarer the reading of
source text symbols switches from the source code file to
the list associated with the mode entry. The current set of

source text being accessed is determined from a stack.

62

ul Source code for unit 1
L9 . End of unit 1
uz2 Source code for unit 2
49 End of unit 2
u3 - Source code for unit 3
49 End of unit 3
ub Source code for unit 4
;. 49 End of unit i
us ' Source code for unit 5
49' End of unit 5
“301, 1, 1, O" Push a 1 onto the stack
"67, 0, 0, O" Exchange top two integral values
"501, -1, 3, xxx" Allocate descriptdf fof array

(xxx 1is the address of the skeleton
descriptor).
Figure 35. Example of Output Text for the Example

Array Declaration
/ uls u2, u3s ub, us_/ INT I

When the stack is empty, source code is obtained from
the input disk file. If the stack is not empty the stack
contains pointers to the list associated with the mode being
deveioped. A null symbol (-999) causes the stack top to be
decreased and input resumes from the point at which it was

last suspended.

63

BEGIN
MODE .x = / y_/ INT;
BEGIN |
INT y = 33
.X 23 #z is a vector of size 3#
.x zl; #z1 is also a véctor of size 3#
END; .
BEGIN
INT as= 2;
PROC y = INT: a * 1= 2;
«X 23 #this 2z is‘a vector of size 4#
«x zl; #this z1 is a vector of size 8#
END)
END

Figure 36. Two Different Results Using
the Same Mode Definition

Phase 4

There are five major functions of Phase 4 which re-
- quired significant modifications. Three of the five func-‘
tions which were modified_have been explained earlier in
this thesis, they are:s

1) Declaration processing was removed from Phase 4.

2) Symbol table access was provided to the new tree

64

structured symbol table.

3) The mode coercion and balancing algorithms were

| implemented in FORTRAN. |

Mr. Eyler's (3) implementation of proéedures, partic-
ularit& wifh respect to parameter passiné; was restricted
due to the fact that no descriptbr containing the modes of
formal parameters could be maintained at compile time. A
procedure call was executed by placing fhe actual parameters
upon the runtime stack fo}lowed by an end of parameter flag.
The routine contained retrieve parameter instructions which
fetched the actual parameter, performed any required coer;
cions and stored the value either in the symbol table or a
local afea depending upon the mode of thé formal parameter.
If the wrong number of parameters was passed or the mode of
an actual parameter could not be coerced to the mode of the
formal parameter the error was not detected until execution
- time.

The runtime symbol table uses one word to represenf the
actual mode of an object. This does not provide sufficient
capacity to store all of the information about the expanded
modes during execution. It was therefore necessary to mod-
ify the parameter passing mechanism to perform coercions
upon parameters.at the point of invocation. This is possi-
ble because the new compile time symbol table contains a
descriptor of the modes of all formal parameters. It is
therefore possible to announce at compile time when param-

eters have modes which do not match formal parameters, or

65

when the incorrect number of actual parameters is used.

The runtime mode descriptor does not allow for the
indication of all of the modes allowed in fhe new subset.
This is especially true for reference-fo modes (pointers).
The implemented solution has several drawbacks in the area
of possible expansion to the runtime system. Reference-to
variables are treated és integer modes by the runtime éode.
There is no confusion in handling the variables since the
code generator does know the actual mode.of the object and
will not dereference a true integral value. The bést solu-
tion would have been to revise the runtime mode descriptor

to contain all of the reQuired information.
Phase 5

Modifications to Phase 5 include implementing the code
necessary to provide for the coercions which have been mod-
ified or added and modification of parameter passing mech-
anisms. New instructions include code to perform rowing and
dereferencing.

When rowing is indicated, an array descriptor which has
4_1:1_7 in all row bounds is created. The address in the
descriptor is set to point to the object being rowed. If
the object being rowed is a variable, then the result is the
address of the descriptor. If the objéct being rowed is a
value, the descriptor itself is the result.

There are two different actions which can result from

dereferencing. Given a mode of the form 12}_?:17"l amode, when i

66

is greater than one, a dereference instruction yields an

address of mode REFi~! amode. If i is equal to one a

dereference instruction yields an amode value.
Modifications in the parameter passing algorithm éon-

form to the changes detailed in the discussion of Phase 4.

CHAPTER VII
SUMMARY, CONCLUSIONS AND FUTURE WORK

Summary

An implementation has been compléted upon the |
IBM 360/65 which meets the criteria of limited portability
and a significant expansion of the mode processing capabili-
ties of the Oklahoma State University ALGOL 68 Compiler.
The improvements made for this implementation include the
followings |
1) allows the use of full unitary clauses in declara-
tionss |
2) allows mixed unitafy clauses and declarations in a
range ;
3) includes mode declarations for a subset of ALGOL 68
modes; . .
L) alloWs row displays to be used in a restricted
context;

5) procedure variables have been implemented.
Conclusions

The mode processing capability of the Oklahoma State
University ALGOL 68 Compiler has been enhanced significant-

ly. A considerable amount of work.will be required before

67

68

a full mode processing facility can be added to the Oklahoma

State University ALGOL 68 Compiler.
Future Work

Implementation pf‘United Modes

The mode table will handle the addition of united modes

as shown in Figure 37.

Mode Number REFsl ROWs REFs2 BASIC Mode List

1 0 0 0 INT 0
2 0 0 0 REAL 0
3 0 0 0 CHAR 0
[0 0 0 COMPL 0
5 0 0 0 UNION 1—>4
(6 0 0 0 UNION 1—=>2—>3—>5)
Unresolved
6 0 0 0 UNION 1—>2-—>3>4
Resolved

Figure 37. Mode Table Entry for the United Mode
UNION (INT, REAL, CHAR, UNION(COMPL, INT))

The mode list would be kept in numerical sequence; so when
an attempt is made to add a mode to the list which matches
a mode that is already on the list, it is not added. If one
of the modes of a mode list for a mode table entry is a

united mode the mode lists should be merged. Problems which

69

must be solved prior to successful implementation of united

modes includes adding uniting to the coercion and balancing
~algorithms, and detection of related modes in a union. Two

modes are related if they both can be coerced firmly from a

common mode, such as PROC REF INT and REF'INT3 they both may
be derived REF PROC PROC REF INT, for example.

Implementation of Structured Modes

The mode table representation of a structured mode
would be very Similar to that of a united mode. Figure 38

. shows -a possible method of managing structured modes.

Mode Field Se-
Number REFsl ROWS REFs2 BASIC Mode List lector List
1 1 0 0 INT 0 0,
2 0 0 0 REAL 0 0
3 1 0 0 A 0 0
i 0 0 0 STRUCT 2—>3 Xx—>y
5 0 0 0 STRUCT 1—>1-—>4 a->b-s>c

Figure 38. Mode Table Entry for the Structured Mode
MODE «A = STRUCT (REF INT a, b, STRUCT
(REAL x, REF .A y) c)

In the case of united modes, when a mode list referred to
another united mode, the mode lists are merged; however,
the mode lists are not merged for structured modes. The

structured mode entry contains a list of the field selector

70

names which correspond to a mode list entry. A potential
problem which must be resolved prior to successful structure’
implementation is the identification of structure displays

(how to distinguish it from a row display).

Source Program Representation by a

Syntax Tree

Consider the symbol table tree structure representation

for the example program segment given in Figure 39.

Example programs (As= (A + B) * (C + D))
Tree structure (hesting levels of
the program)

D@

Code File N

(lals=|¢lal+]|s « (lcl+l D))

11213 Lis|6]7]18|9 iO 11 (12(13(14 15

Figufe 39.‘ Tree Structure and Code File
for the Simplified Example

The numbers within the free structure nodes point to the
position of the code file wﬁich contains the first symbol
following the‘symbol‘whichbcauSed the tree structure node to
be created. Using a ¢ symbol to represent a left parenthe-
sis and a ¢ symbol to represent a right parenthesis, we

append the code for a particular;nesting level to the tree

71

structure nodes for that level. The resuits are shown in

Figure L"O .

A=l * (LT

FEE T O—()~

' Figure 40. Tree Structure with Code
Appended

A segment of code appended t6 a stfucture node may contain
sevefa1—® symbols; however, a segment will contain exactly
one T symbol (which may 5e used to signal end of that
particular code segment). |

Figure 41 shows the tree after each individual code
segment has been translated into prefix polish notation
(preferable to postfix because it is easier to build a tree
from). The ¢ symbols are treated as operands for the pur-

pose of the polish string conversion.

~is=lA* W[y [T

EraE T~ Erem T

Figure 41. Tree Structure After Conversion
of Code Segments to Prefix Polish

72

Figure 42 shows how the code segments can be translated

into trees and interconnected with the tree structure nodes.

| & ® © @
Figure 42. Syntax Tree for Sample
_ Program Segment

After the entire program has been converted into a syntax
tree, mode informatioh can be appended to the various nodes
(identifiers can be replaced by pointers to the symbol
table). This structure would allow for coercion and bal-
ancing to be performed prior to actual code generation.
Code generation becomes relatively simple after all coer-
cions and balances have been added to the tree.
Implementation of unions and structures could be done
in the time required to complete a ﬁasters thesis. Con-
version of the source program to a syntax tree and code

generation from that tree should be attempted only by

73

someone with sufficient time to complete the task.

StringfImplementation

The implementation of strings in the Oklahoma State
University ALGOL 68 Compiler could be accomplished by sever-
al methods. One method would be to allocate a section of
program storage for a sfring space. The‘method éxplained
by David Gries (20) could then be used to manage strings.
The amount of string stordge space allocated could bé con-
trolled by an option in the 3JOB card with an appropriate
default value (say 2K words).)

Another possiblé‘method of string implementation would
be to use string descriptqrs.as shown in Fiugre 43. With
this method strings could be allocated on the stack in the
same way as any other local variable. This would make
possible automatic recovery of unused string space when a
block which contains a string is exited.j If a string
expands beyond its boundary, a new segment of storage would
be allocated and linked to the original segments.

New string segments may occur in storége areas reserved
for blocks whidh are newer in scope than the original string
segments. If this occurs, special treatment must be given
to those segments at the time a block exit occurs from an
inner block. These string segments must be moved from their
previous location to the end of the storage area for the

block which immediately surrounds the block being exited.

74

Total String Length

Length of This Segment

Amount Used in This Segment

Address of Next Segment

Stfing Segment

Length of This Segment

Amount Used in This Segment

Address of Next Segment

String Segment

Figure 43. Possible String
Descriptor Format

No matter which method is used for string implementa-
tion, new mode process1ng for mode STRING will be required.
Mode STRING is equivalent to, FLEX / 1:0_/ CHAR. Mode equiv-
alence implies that two objects of equivalent modes will
have the same storage structure. / / CHAR is currently
implemented very different from any reasonable method of
string implementation; therefore, it will be necessary to
introduce two new coercions, they ares string and unstring.

These coercions would be valid in any strong or firm context

and would convert 7/ _7 CHAR to STRING and STRING to /7

CHAR respeétively.

75

(1)
(2)
(3)

(&)

(5)

(6)

(7)
(8)

(9)

(10)

REFERENCES -

Jensen, J. C. "Implementation of a Scientific Subset
of ALGOL 68." (Unpub. M.S. thesis, Oklahoma
University, 1973,)

Berry, R. "A Practical Implementation of Formatted
Transput in ALGOL 68." (Unpub. M.S. thesis,
Oklahoma State University, 1973.)

Eyler, A. D. "The Implementation of a Subset of
Procedures in an ALGOL 68 Compiler.”" (Unpub.
M.S. thesis, Oklahoma State University, 1975.)

van Wijngaarden, A. (Editor), B. J. Mailloux, J. E. L.
Peck and C. H. A. Koster. "Report on the
Algorithmic anguaﬁe ALGOL 68." Numerische
Mathematik, Vol. (1969), pp. 79-218.

van Wijngaarden, A. (Editor), B. J. Mailloux, J. E. L.
Peck, C. H. A. Koster, M. Sintzoff, C. H.
Lindsey, Le G. L. T. Meertens and R. G. Fisker.
"Revised Report on the Algorithmic Language
ALGOL 68." Supplement to ALGOL Bulletin No. 36.
Vancouvers University of British Columbia, 1974,

Peck, J. E. L. An ALGOL 68 Companion. Vancouvers:
University of British Columbia, 1971.

Lindsey, C. H. and S. G. van der Meulen. Informal
Introduction to ALGOL 68. Amsterdam: North
Holland Publishing Company, 1973. ,

Woodward, P. M. and S. G. Bond. ALGOL 68-R Users
Guide. Londons Her Majesty's Stationery Office,
197L.

Currie, I. Fey, Se¢ G. Bond and J. D. Morison. "ALGOL
68-R." ALGOL 68 Implementation. J. E. L.
_ Peck (ed). Amsterdams North Holland Publishing
Co., 1971, PP 21-3’4’.

Hedrick, G. E. (Editor). Proceedings of the 1975
International Conference on ALGOL 68.
Stillwater: Oklahoma State University, 1975.

76

(11)

(12)

(13)

(14)

(15)
(16)

(17)

(18)

(19)

(20)

77

Peck, Je. E. L. "On Storage of Modes and Some Context
Conditions." Proceedings Informal Conference on
ALGOL 68 Implementation. Vancouvers University
of British Columbia, 1969, pp. 70-79.

Zosel, M. E. "A Formal Grammar for the Representation
of Modes and its Application to ALGOL 68."
(Unpub. Ph.D. dissertation, University of
Washington, 1971.) :

7
Kral, J. "The Equivalence of Modes and the Equiva-
lence of Finite Automata.'" ALGOL Bulletin No.
35+ Manchesters University of Manchester, 1973,
pp. 34-35.

Lane, H. J+ "Coercion Methods Using Boolean Ma-
trices." Proceedings Informal Conference on
ALGOL 68 Implementation. San Franciscos
University of San Francisco, 1973.

IBM System/360 Operating System, PL/I (F), Language
Reference Manual (GC28-8201-4).

IBM OS Full American National Standard COBOL
(GC28-6396-4).

Backus, J. W. "The Syntax and Semantics of the Pro-
posed International Algebraic Language of the
Zurich ACM-GAMM Conference." Proceeding of the
International Conference on Information Process-
ing, UNESCO, Paris, 1959. Munichs R.
Oldenbourg, 1960.

IBM S*stemgg60 and System/370 FORTRAN IV Language
GC28-6515-10).

Grays, J. Le "Implementation of a SLR(1) Parsing
Algorithm." (Unpub. M.S. thesis, Oklahoma State
" University, 1973.)

Gries, D. Computer Construction for Digital Comput-
ers. New Yorks John Wiley and Sons, Inc., 1971,

pp. 180-181. .

 APPENDIXES

78

APPENDIX A

GLOSSARY OF ALGOL 68 TERMS

79

80

Alternative yields - Every clause yields a value.f Some
clauses have oniy one point from which a vaiue can
be yielded, others (such as conditidnal clauses) have
two or more points iq(the code from which the value
can be yielded. Each possible location from which a’
value can be yielded is termed an alternative yield.

Amode - Symbol used to stand for an arbitrary mode. |

Assighation - Causing a vériable of some mode to possess
a value of the same mode. .

Balancing - Clauses which yield values from more than one
point must be balanced to insure that all of the yields
are of a common mode.)

Case clause - A simple case clause provides the capability
to select a unitary clause to elaborate based upon an
integral value. If the integral value is outside of"
the range of unitary clauses provided (i.e., less than
1 or greater than the number of unitary clauses provid-
ed) a serial clause (the OUT part) is elaborated. An
extended case clause allows the nesting of case clauses
in the OUT part (OUSE).

Cast - A cast allows a unit to be placed in a strong posi-
tion (see Chapter II) and causes the value yielded by
the unit to be coerced to the specified mode.

Coercee - The result after applying a coercion to a coercend
is a coercee.

Coercend - The basic building blocks out of which units are

constructed such ass assignations, formulas,

81

denotations and applied identifiers.

Coercion - Modifying the mode of a coercend to that required
by its context with a corresponding modification to the
value.

Conditional clause - A simple conditional clause provides
the facility for making altrue or false decision as to
which program‘path will be elaborated (IF THEN ELSE
FI). The extended conditional clause (ELIF) allows the
nesting of conditional clauses in the ELSE path of
elaboration.

Denotatioh - A construct strongly resembling a constant in

_other programming languages.

Deprocedure - This coercion causes a procédure which has no
parameters to be invoked.

Dereference -~ This coercion removes one or more REFs from an
object (yielding the value at which the REF amode
object was pointing). |

Develop - Mode declarations which cohtain mode indicants in
their definitions must be developed by replacing the
indicant by its‘corresponding definition.

Elaborate - The act of carrying out the actions defined by
a program in a suitable‘environmgnt.

Enclosed clause - A clause which is wholly contained between
two bracketing symbols. Examples are CONDITIONAL
CLAUSES, LOOP CLAUSES, etc.

Equivalencing - There are often many ways of defining the

same mode. Mode equivalencing idehtifies the different

82

definitions to be the same mode.

Identity relation - An identity relation allows two names to
be tesfed for equality or inequality.

Mode - Specifies the class to which a value belongs.

Name - The location or address of a value in the compiler.

Object - An object is either a value or a name (address)
which refers to a value.

Orthogonality - The lahguage design principle which requires
that a given language construct should be allowed
-everywhere it is logically consistant.

Possess - An object is'po§sessed by the symbol in the source
program which causes it to exist.

Primary - A primary is .a dénétation, applied identifier or
an enclosed clause.

Range - A range defines a segment of a program which con-
tains local declarations. Any declarations found with-
in a range may be accessed by other ranges contained
within the original range. Objects declared within a
range may not be accessed by any references which are
contaiﬁed in code which is external to the range.

Reference - An object of mode REF REF amode performs func-
tions similar to the PL/I pointer variable. This
object is said to reférence the object at which it is
pointing. | |

Routine denotation - The férmal parameters, mode of the
yield of the routine and the code comprising a routine.

Routine text - The code comprising a routine.

83

Rowing - This coercion allows a multiple value (or name) to
be constructed from a scalar value (or name).

Serial clause - A serial clause is constructed from <UNIT> s
and <DECLARATIONS> . The individual <UNIT> s and
<DECLARATIONS> can be intermixed and must be separat-
ed by go on symbols (3). | | '

Slice - A slice is an object which refers to a éubset of a
multiple value.-

Sort - Same as syntactic position.

Syntactic position - The syntactic position 6f a coefcend
refers to the type of language construct in which the
coercend appears. The syntactic position of a coercend
determines the coercions which may be applied.

Trimscript - A subscript or é slice.

Virtual parameters - The mode of all parameters in a proce-
dured mode must be specified in a declaration. The
specification may be indirect by the formal parameter
list of the routine denotation used to initialize a
procedured constant or variable. In the absence of a
routine denotation for procedure initialization the
mode of each parameter must be specified by a virtual
parameter pack. The virtual parameter pack follows the
PROC symbol and consists of a list of the modes of each
parameter (in order). The modes are separated by
commas. |

Voiding - This coercion causes a value yielded from some

section of code to be discarded.

84

Widening - This coercion converts a value of mode INT to
| a value of mode REAL, also INT may be widened to COMPL,
and REAL may be widened to COMPL.
Yield - The yield-of a section of code is the value which

that code makes available for further computation.

APPENDIX B

MODE PROCESSING ALGORITHMS

85

BEGIN
SUBJECT: MUDE PROCESSING ALGORITHMS FUR THE GSU ALGUL 68 SUBSET CUMPILER
AUTHOR: WALTER M. SEAY
INSTALLATIUN: OKLAHOMA STATE UNIVERSITY
DATE: SUMMER SEMESTER 1976
PROJECT ADVISOR: DR. GEGRGE HEDRICK
/*/*/*/*/*/*/*/*/*/*/#/*/*/*/*/*/#/*/*/*/*/*/*/*/*/*/*/#/*/*/#/*/ &) %
SPECIAL NCTE: THESE ALGORITHMS HAVE BEEN HAND TRANSLATED FROM
A PL/I IMPLEMENTATIUN. THERE IS NU SUITABLE COMPILER
AVAILABLE AT UKLAHOMA STATE UNIVERSITY TO TEST THE
VALIDITY CF THE TRANSLATION.
PHSRELE R RS FR)EL)R F)] P F]H T TSR] E)R] R)5)R] 5[%] %
THI'S PROGRAM ALLOWS FOR THE TESTING OF THREE MGDE MANIPULATION
ALGCRITHMS, THEY ARE:
1) COERCION
2) BALANCING
3) ASSIGNATIUN,
INPUT CONSISTS OF AN ARBITRARY WUMBER OF INPUT SETS. EACH LNPUT

SET CONSISTS 3F A FUNCTIUN DEFINITION CARD +GLLOWED BY CARDS
CONTAINING VARIABLE DATA OEPENDING UPON THE FUNCT IUN SELECTED.

COERCIUN

CARD 1 COLUMNS 1-6 = "(CuUtRCL"

CARD 2 COLUMNS 1-80 = PUNCH THE A PRIORI MODE

CARD 3 COLUMNS . 1-80 = PUNCH THE A PUSTERIORL MUDt

CARD & COLUMNS 1—-6 = PUNCH THE STRENGTH UF THE SYNTALTIC PUSITION
HALANCING

CARD 1 CULUMNS 1-7 = "3ALANCE"™

CARL 2 COLUMNS 1-6 = PUNCH THE STRENGTH UF THE SYNTACTIC PUSITION
§-9 = PUNCH THE NUMBER GF UNITS TGO B€ BALANCED
CARD 3 TO 2 + (NUMBER OF UNITS TO UE€ BALANCED)
COLUMNS 1-80 = PUNCH THE MGOE OF UN UNIT

ASSIGNATION
CARD 1 CULUMNS - 1=6 = ®ASSTIGN®
CARD 2 COLUMNS 1-80 = DESTINATION MUOE = SOURCE MODE

VALID MODES WHICH MAY BE INPUT ARE UtFlNEd 8Y THC FULLUWING

8NF GRAMMAR. UNDERLINED SYMOOLS IN THE GRAMMAR REPRLSENTS NON TERMINAL
SYMBUOLS. EMPIY REPRESENTS THE EMPTY STRING.

VALID MODES ::= NON PROC | PROC MUDE

NUN PROC 132 REES, ROWS» REFS. BASIL MODE

PROL MODE ::= REFS,» RCWS,» REES, PROLS, NON PROC

REES 33= REF, REFS | EMPIY

ROWS ::= (/ LOMMAS /) | EMPTY

COMMAS si= ., COMMAS .| EMPIY

BASIC MODE ::= FILE

| FORMAT | BYTES | CHAR

STRING

BITS | BOOL | INT | REAL | COMPL

"~ PROCLS ::= PROC, PRCCS | EMPIY

VALID SYNTACTIC POSITION STRENGTHS (STRONGEST LAST)

ARE:
1) SOFT
2) WEAK
3) MEEK
4) FIRM
51 STRONG
#
#
AMODE REPRESENTS THt
#

MODE AMODE = SIRUCT |

CUDED VERSION OF A MODE

INT REFS1,
ROWS
REF S2
SIRING SIMPLEMODE,

"INI NR_UF_PROUC_LEVELS,

Y_REFS1
Y_RCWS»
Y_REFS2,
SIRING Y_SIMPLEMUDE)

87

PROUL PARSE =

#

(REE STRING STRING,

THIS PROCEDURE ACCEPTS A STRING

REPRESENTATION OF A MODE ANU PERFURMS A CONVERSION

TU INTERNAL FORM. -

gEGIN
SIRING SYMBOL,
INI ACTIONJITEMP,STATE :=

REE AMODE MGLE) yalD:

WHICH CCNTALNS AN EXTERNAL
(USING AN

LoKEY,

(WA

SIMPLE
REFS1
Y_REFS

NR_CF_
AHILE (SYMBOL
Jole]

) lml TABLE = ((8'7'2'4'000'3,v
(09090909 0,40450),
(89T790e4909093),
(0909 0909594,0), !
(8979040¢40,096),

(B9 79090e0909610
(QtOv0,0vOnO:OJi .
(B89792¢104040,9),
(0e79G0910+04049),
(090909091151040),
(Ov79Co090909l2)y
(Ce79G9090+0912)),
{(1l939395500097)»
(0909090+0404,0),
{1935095409097),
(0909040909590
(1le39090+09098),
{193+0+000+048)
(0909090909090,
(2v49490909049)
{094+0+6909049),
(0909090909640,
(Co4 9090409 010),
(09490909090,100) 3

MCOE CF MODE := Y_SIMPLEMODE QF MUDE

QF MODE := RUWS CF MOt := REFSZ Ur
1 LUE MODE := Y_ROWS LE MODC
PRUC_LEVELS QF MUDE

2= SCAN (STRING)) -~= "o

ATABLE =

o=)=
*= ’

KeYy := IE SYMBOL
IHEN 1
ELIF SyMBOL

JHEN 3

ELLF SYMbCL =

IHEN 4
ELIF SYympoL
JHEN 5
ELIFE SYMsGL = ",n
IBEN 6
ELLIE SYM30OL =
IBEN-7
ELSE 2

= MPRUCH
= "voIu"
"("

= w)n

"REF“

ELs

ITEMP := TABLE (/STATE,
I1E 1TEMP = O
IHEN PRINT

KEY/)3

({NEWL INE»

"PARSE EKROR"));

.

$= Y_REFS2 UE MuDE 3= 03

FSA)

88

89

STOP
ELs
ACTIUN 3= ATABLE (/STATE, KEY/):
STATE := ITEMP;
CASE ACTION
IN
H1l#
(SIMPLEMUDE QF MGUE := "PROCLY™;
NR_UF_PRCOC_LEVELS UE MUODE = 1),
#2H#
NR_UGF_PRUOC_LEFELS UE MUDE +:= 1,
#34
SIMPLEMODE QF MODE := S5YMBOL,
#a#l .
Y_SIMPLEMODE UE MODE := SYMBOL,
#o# '
ROWS GE MODE +:= 1,
Ho# ’ /
Y_ROWS CF MODE +:3= 1,
#T#
REFS1 Qf MODE +:= 1,
#8#
REFS2 OF MODE +:= 1,
#9# ‘
Y_REFS1 QF MODE +:= 1,
#10#
Y_REFS2 QF MQODE +:= 1
QuUY)
IE ACTION == 0
THEN PRINT ((NEWLINE, "PARSE ERRUR"));
STOP
EL
ESAC
Qps
IfE ~(STATE = 2 OR STATE = 7)
IHEN PRINT ((NEWLINE, "PARSE ERRURM™));
STCP
EL . ' . -
END S

PRUL SCAN =

{ REE SIRING STRING) SIRING:

THIS PROCEDURE RETURNS THE NEXT COUMPLETE SYMpOL (NO IMBEDDED OR

LEADING BLANKS) FOUND IN THE
PROCEDURE.

BEGIN
SIRING SYMBOUL
1E STRING = nuv
IHEN SYMBOL
ELSE WHILE STRING(/1/7)
DO
STRING :=
aus
SYMBOL :=
IE STRING (/17)
IHEN STRING ==

" ('l

1= e, 523

ELIE STRING (/1/7)
IHEN STRING :=

ll, n

ELIE STRING (

SIRAING PARAMETER TO THE INVUKING

STRING (/232 /)

= ll("

STRING (/23 /)35

= ")ll

STRING (/22 /)3

JL7) 3= myw

IHEN STRING 3= STRING (/2: /)3
.'n'u\

ELSE INT I = INDEX (STRINGs "™ ");
$2 3= STRING (/1:1/)3
STRINu 2= STRING (/I+L: /)3
S2

END S

90

(REE AMODE FRUOMy TU,
REE SIRING SURT,
REE INI LARGEST,
REE BOOL MFLAG) VOID:

PROC COERCE =

THIS PROCEDURE COMPUTES THE UNIQUE COERCION PATH
TG MODE "TO"™ GIVEN THE STRENGTH UF THE SYNTACTIC
PROVIDED A VALID COERCION SEQUENCE EX1STS.

#

BEGIN
BOOL ERR,
INI STATE := 1, FIRST := 0, ‘

(/5/7) BOUL POS_VEC,

(/7 /) INT TO_STATE = (442+6+345)3

MFLAG := EALSE;
LARGEST. := 03
oo
1f SIMPLEMCDE QF FROM = WSKIPY AND SORT =

IHEN LARGEST := 53

' FRCM := TO;
PRINT ((NEWLINE,
PRINT_MOULE (FROM) ;

RETURN
ELIE FROM = TG .
IBHEN PRINT ((NEWLINE, "MOLES MATCH"));
RETURN
ELSE POSS (STATE, SORT, PUS_VEC);
PRINT ((NEWLINE, STATE, "™ ", SURT,
SIFT (FROMy TO, POS_VEC, SORT);
PRINT ((NEWLINE, STATEs " ", SORT,
EOR I IQ 5
Do

1E POS_VEC (/1/)
IHEN JE FIRST -~= 0
"JHEN "PRINT ((NEWLINE,

"MODE SKIP COUELRLED TO

91

FROM MUDE "™FROM"™
POSITION "SORT®

"STRONG"

")is

¢+ POS_VEC));

"o W, POS_VECI);

"MULTIPLE POSSIBILITIES™))

LARGEST

RETURN

ELSE FIRST := |
El

1= -l;

0D .
IE FIRST = 0

IHEN PRINT ((NEWLINE, “NOC POSSISLE COERCIUN™));

)y

LARGEST := -1
RETURN
El; .
LARGEST := (FIRST > LARGEST | FIRST | LARGEST);
CASE FIRST
AN
#l#
(DEPRUCEDURE (FROMs ERR)y |
PRINT ((NEWLINE, "DEPROCEDURE"™))
#2#

(DEREFERENCE (FROMs ERR)S
1E REFSL G FROM = O
IHEN MFLAG JRUE

92

ELl: -
PRINT ((NEWLINEy "DEREFERENCL™))),
#3#
(WIDEN (FROM, ERR); '
PRINT (UNEwLINEy "WIDEN'")))y
#a#))
(ROW (FRUM, ERR);
PRINT { (NEWL INEy "ROW"))),
#5# ‘ ‘
{ VOiDo (FROM, ERR);
PRINT {{NEWLINEs "VOID")))
ESAC:
' PRINT ((NEWLINE, "MODE AFTER COERCIGN"™));
PRINT_MODE. (FROM) ;
IE ERR : .
IHEN PRINT ((NEWLINEy "COERCION ERROR"));
LARGEST 3= =13
RETURN
ELIE SORT = ®SOFT®
IHEN STATE == 2; ,
ELIF SORT = “WEAK" UR SURT = "MEEK" UOR
SORT = ®FIRM® '
IHEN STATE := (FIRST =1 1| 3 | 2)
ELSE STATE := TU_STATE (/FIRST/)
El :
EL :
aps
RETURN: SKIP
ENDS

PROQC PRINT_MUDE = (REF AMODE MUUE) yOlD:

THIS PRUCEDURE PRINTS THE EXTERNAL REPRESENTATION UF A MCDE.

BEGIN
I0 REFS1 QF MGUE DO PRINT (“REF ") QD;
I1E ROWS UE MODE == 0
IHEN PRINT (“(");

IU ROWS QF MODE - 1 DU PRINT (",") 0D;
PRINT (%) ") ‘

EL;

10 REFS2 UF MOUE DO PRINT ("REF ") 0D; \

PRINT (SIMPLEMUDE CE MCDE):

LE SIMPLEMUDE OF MODE = “PRUC"

JHEN IJ NR_OF_PROC_LEVELS UfF MUDE - 1. DU PRINT (' PROCY)

PRINT (")3 :

IQ Y_REFS1 OF MCOE DU PRINT ("REF ") QD

1E Y_ROwS OF MODE ~= 0 i
THEN PRINT ("(");

I0 Y_ROWS OF MUDE - 1 DO PRINT (",") OD;

PRINT (") ™)
El:
10 Y_REFS2 OF MODE DQ PRINT ("™REF ™) QD3
PRINT (Y_SIMPLEMODE QF MODE)

93

Qs

ok

ap = = (AMODE M1.M2) Q0O0L:

" THIS OPERATCR PERFORMS THE EWUAL CUMPARISUON FOR TwU OBJECTS OF
MOVUE AMODE. ' :

1E REFSL OF ML ~= REFS1 {OF M2 OR
ROWS QF M1l -= ROwS DE M2 OR ~
REFS2 UE M1l -= REFS2 Lf M2 UR
SIMPLEMODE (QF M1 -= SIMPLEMODE QE M2
JHEN EALSE - \
ELIE SIMPLEMODE UE M1 ~= YPRUC"
JHEN TRUE)
ELIE Y_REFS1 OF M1 == Y_REFS1 OF M2 OR
Y_ROWS CF M1 -~= Y_ROWS UF M2 UR
Y_REFS2 OF Ml -= Y_RtEfFS2 O M2 OR .
NR_CF_PRUGC_LEVELS QOF M1 -= NR_OF_PROC_LEVELS (QFE M2 3R~
Y_SIMPLEMODE GE M1 -= Y_SIMPLEMODE QF M2
JHEN FALSE '
ELSE TRUE
£l

PRQC POSS =

THIS PRUCEDURE RETURNS A VECTOR UF BOOLEAN VALUES wHICH INDICATES
WHETHER OR NJT A PARTICULAR COERCIUN

PUSITION.
BEGIN
BGOL T = IRUE, F = EALSLS
(/75/7) B0QL POS_VEC := (F, Fy Fo Fy F)3
L1E SORT = "SOFT"
IHEN POS_VEC (/1/) := 7
ELIE SURT = M"REAK" OR
SOURT = MMEEK" CR
SGRT = "FIRM"
IHEN POS_VEC (/1:2/) := (T, 1)
ELIE SORT -~= “STRUNG"
IHEN PRINT ((SURT, "™ IS INVALID"™));
STCP
ELSE CASE STATE
AN
#1#
PDS_VEC = (T' T' T"Tr T)'
#24#
POS_VEC 2= (Ty Ty Ty Ty F)y
434
POS_VEC (/4/7) =T,
#akt
PUS_VEC 3= (Ty Ty Ty Ty Fly
#54
SKIP,
HO ¥
POS_VEC (/3:24/) := (T, T)
ESAC :
El

(INI STATE, SIRING SORT)

(/7 /) BUUL:

\

95

IS VALID IN THE GIVEN SYNTACTIC

PRUC SIFT = (REE AMUDE IN_MCOE, UT_MUDE,
(/ /) BOOL POS_VEC,
SIRING SORT) NOID:

THIS PROCEDURE" EXAMINS THE A PRIURI MUODEs THE A POSTERIGRI MUDE,
AND THE POSSIBILITY VECTOR AND SIFIS THE POSSIBILITIES UNTIL AT MOST
OiNE COERCION EXISTS.

BEGIN
1E POS_VEC (/1/)
IHEN 1€ REFS1 UE LIN_MODE -= 0 UR
ROWS QF IN_MODE -~= 0 OR
REFS2 UF IN_MODE -~=
IHEN POS_VEC (/1/7) := EALSE ~
ELSE 1f£ SIMPLEMCDE UJE OT_MODt = "PROC™ AND
NR_UF_PROL_LEVELS QF IN_MOUDE <=
NR_OF_PRUC_LEVELS (QF OT_MODE
IHEN POS_VEC (/1/) := EALSE
El
El
Els
I1E POS_VeC (727) :
IHEN IE (SORT = “wgAK™ | 1 |

0) >= REFS1 QE IN_MODt
IHEN PGS_VEC (/2/) := EALSE

El
ELl;
IE POS_VEC (/37)
IHEN
IE NOT (SIMPLEMUDE (QF IN_MUDE = M“INT" AND
SIMPLEMUODE QF OT_MUUE = “REAL") Uk
(SIMPLEMUDE QOF IN_MUDE = ®INT"™ AND
SIMPLEMCDE QOF UT_MODE = "COMPL') UR
(SIMPLEMGDE OF IN_MUOE = "REAL"™ AND
SIMPLEMUCE QF UT_MODE = "COMPL")
IHEN POS_VEC (/3/) := EALSE
ELIE ROWS OF QT_MUDE = 0
IHEN POS_VEC (/3/) := EALSE
ELLIFE NCT (SIMPLEMOOE QF IN_MODE = “BITS"™ AND
SIMPLEMODE QF UT_MODE = "BOGL"™) OR
(SIMPLEMOUE OF IN_MODE = "BYTES™ AND
SIMPLEMCDE UE UT_MUDE = "CHAR)
IHEN POS_VEC (/3/) := EALSE
ElLs
LIE RUAS QOF IN_MGCE == 0 OR
REFS1 QF IN_MODE == 0 OR
REFS2 QF IN_MUDE == 0 ;
IHEN OUS_VEC (/3/) := FALSC
£l
El: '

LE POS_VEC (/4/) :
IHEN 1E RUWS UF IN_MODE == 0 AND
REFS1 OF IN_MGLE -~= 0 AND
REFS1 QF OT_MUDE ~= 0
IHEN POS_VEC (/4/) := EALSE
£l
IE ROWS Df IN_MGODE = 0 AND

REFS1 QF IN_MODE -~= REFS2 OF_QI _MOLE
- IHEN PCS_VEC (/4/) := EALSE :
ElLs ‘
LIE (SIMPLEMGDE QF IN_MUOOt -=
SIMPLEMODE QE OT_MULE) OR
(ROWS 0f IN_MUDE >= ROWS GF OT_MUDE)
IHEN PCS_VEC (74/) := EALSE
ELs .
IE SIMPLEMUDE QOF IN_MUDE = “PRUCY AND
(NR_OF_PRGU_LEVELS QF IN_MUDE ~=
" NR_OF_PROC_LEVELS DE OT_MODE OR
Y_REFSL OF IN_MODE -~= Y_REMODE OR
Y_REFS2 0F IN_MUDE -~= Y_REFS2 QF OT_MOUDE UR
Y_ROWS OF IN_MCDE -~= Y_ROWS UF OT_MODE OR
Y_SIMPLEMOUE UfF IN_MODE ~= Y_SIMPLEMODE OF OV_MGLE)
IHEN PCS_VEL {(/4/) := FALSE
EL

EIL:
1E POS_VEC(/5/7) AND SIMPLEMOUE UF OT_MGDE ~= "vQID®

El
ENDLS

IHEN POS_VEC (/5/) = EALSE

98

PRUC UEPROCEDURE = (REE AMUDE MODE, REE BOOL ERRUR) VOLD:

THLS PROCEOURE UPDATES ThE GIVEN MODE TU REFLECT IT"S STATUS
AFTER THE DEPRUOCEDUREING COERCION HAS BEEN APPLIED.

BEGIN '
ERROR := J¥ REFS1 (F MODE +
REFS2 OF MODt +
ROWS UE MUDE -~= 0
IHEN IRUE E
ELIE SIMPLEMOODE UE MODE -~= "PROCY
IHEN IRUE . :
ELIE NR_OF_PRUC_LEVELS QF MODE -:= 1= 0
IHEN (REFS1 UF MODE := Y_REFS1 UFE MODE)
REFS2 OF MUDE := Y_REFS2 QF MODE) := 0
(ROWS QF MODE := Y_ROWS OF MUDE) := 0
(SIMPLEMOUE QF MUDE := Y_SIMPLEMUDE QF M
EALSE

= 03 -

ODE) 3= ww;
El

LND S

PRUC DEREFERENCE = (REE AMULE MJUvE, REF BOOL EKRUR: VOID:

leS PROCEDURE UPDATES THE GIVEW MOLE TU REFLECT IT"S STATUS
AFTER THE ULEREFERENCING COERCIUN HAS BEEN APPLIEU.

ERROR := IF REFS1 UF MODE < 1
IBEN IRUE
ELSE REFS1 UF MUDE —3= 1
Els

99

100

PROC WIDEN = (REF AMUDE MODE, Rif BOOL ERROR) YOID:

s
~

N

THIS PROCEDURE UPDATES THE GIVEN MUDE TO REFLECT IT®S STATUS
AFTER IT HAS BEEN WIDENED.

ERRUR := LE REFS1 (F MODE +
REFS2 CE MGDE +
RUWS UF MODE =0
THEN STRING S = SIMPLEMOUE QF MODE;
SIMPLEMODE QOF MODt :=
IE S = WINT®
IHEN "REAL"
ELIF S = “REAL"
IHEN "COMPL™
ELIE S = »BITS"
IHEN ROWS QF MODE := 13
"BOCL"
ELIE S = "BYTES™
IHEN ROWS QOfF MOUE := 13
WCHAR"M -
Els
EALSE
ELSE EALSE
EL3

101

PROL RUW = (REE AMODE MODE, REE BUGL ERROR) ¥0lp:

THIS PRGCEDURE UPDATES THE GIVEN MUDE TO REFLECT IT"S STATUS
AFTER THE MUDE HAS BEEN ROWED. ‘

#
ERROR 3= IFf ROWS OF MODE = 0
IHEN IF REFS1 QF MODE -= 0
JIHEN REFS2 UF MODE :
s REFS1 QF MODE
ROWS Q0F Moot
ELSE ROWS QFE MOLE
Els
EALSE ‘
ELLIE REFS1 CF MODE = O
IHEN RUWS CE MODE +:= 1;
EALSE
ELSE IRUE

EFS1 QFE MUDE; .
H

~——Cc X

se 30 ss b
iwohonou

ELs

102

PRUC VUID =(KEF AMODE MOOE, REE BUOL ERROR) YOID:

THIS PRUCEDURE UPDATES ThE GIVEN MOUE TU REFLECT -1T"S STATUS
AFTER THE MOUE HAS BLEN VGIDED. .

BEGIN
AE SIMPLEMODE QF MUODBE = "PROCY
IHEN AMODE NEW := (Y_REFS1 GFE MOUE, Y_ROwS QF MODE,
Y_KREFS2 QF MODE, SIMPLEMODE QF MUDE,
Oe Co Oy 0y m);
COERCE (MODEs NEws "STRUNG™, LUC INIs LOC INI)

EL:
MODE := (0, 0y Oy “VOID"™, Oy Uy 0, 0, "M
END:
PRUC BALANCE = ((/ /) AMUDE UNLTS,

AMURE MOGE.,
INT NoRrR_GF_MUDES,
SIRING SGRT) ¥OID:

THIS PRUCEDURE WILL COMPUTE. THE BALANCE MODE OF THE UNITS
in THE VECTOR CLAUSE.

BEGIN :
BOUL MFLAG, ERROR,
SIRING SORT, REGUIREO_SURT,
{7/ /) SIRING SURT_REQUIRED = (“EMPTY", WSOFT"™, “WEAK"Y,
"STRONG", "STRONG"™, "STRUNG"™) a 0,
STRENGTH = L"SOFT™, “WEAKY", YMEEK®", "F[RM", "STRONG"),
‘/ /) .LNL STR_VAL = (Ll 2 2! 2y 5),
INY LARGE, MINCCNV;
CALC_TARGET {(UNITS, MODE, NBR_OF_MODES):
RETRY 3.
PRINT (UINEWLINEy "TARGET MUDEY));
PRINT_MODE (MODE);
PRINT ((NEWLINE, NEWLINE . NEWLINE, "ATTEMPT BALANCE TO TARGET MUDE®));
MINCONV == 9; ‘
EOR I TC NBR_CF_MGDES
DO PRINT ((NEWLINEs NEALINEs "UNIT-%", 1))
COERCE (UNITS (/1/)y MODEs "STRGONG", LARGE, MFLAG):
IF LARGE < O IHEN FAILED EL:
MINCONV = (MCNCCNV < LARGE | MINCUNV | LARGE)
aps
PRINT ((NEWLINE, NEWLINE, NEWLINE)):
PRINT_MOUE (MQULE);
PRINT (" IS THE MOUE OF THE OBALANCE"™);
REGUIRED_SORT := SCGRTY_REGUIRED (/MINCONV/)3
LE MFLAG AND REQUIREU_SORT = ®SGFTM
IHEN REGQUIREU_SORT := MhAEAK"®
EIls ’
PRINT ((NEWLINE, SOKRT_REQUIREDy " WAS THE REQUIRED STRENGTHMY,
NEWLINE, SORT, " WAS THE AVAILABLE STRENGTH™));
EGR 1 IQ UPB STRENGTH
Jo]e]

103

L1E SORT = STRENGTH (/1/)
THEN |
L1E STR_VAL (/1/) < MINCONV
LHEN FAILED v
ELSE PRINT ((NEWLINE, "BALANCE VALLD®));
RETURN.

EL
EI
oo . '
PRINT ((NEWLINE, "INVALID SORT"));
RETURN; '
FAILED: T
L1E REFS1 OF MODE > 0
IHEN DEREFERENCE {(MODE, ERRUR})
ELLE SIMPLEMOUCE QOF MODE = "PROCM
IHEN DEPROCEDURE (MULE, ERRUR)
ELSE PRINT ((NEWLINE, "TARGET MODE CANNGT ot COERCEUM™));
RETURN ’
EIL:
1E ERRCR . :
' IHEN PRINT ((NEWLINE, "TaRGET MUDE CANNUT QE COERCED)):
RETURN
EL: ‘
RETRY;
RETURN: SKIP
END

104

PROC CALC_TARGET = ((/ /) AMODE CLAUSE,
AMUDE MODE,
INT NBR_CF_MUDES) YOID:

THIS PROCEDURE WILL CALCULATE A POSSIBLE bALANCE~MUUE7GlVEN'
A VECTUR OF MODES TO BE BALANCED.

BEGIN
(/ /) SIRING SIMPLE_PRICGR = (“SKIP", “PROC"™, "FILE, "FCRMATY,
. "BYTESY", “CHAR", "STRING", "BITS",
"300L", YINT", YREAL™, "CUMPLM™) a 0,
INI PRIOR_VAL, PRICR_VALZ2y 1y J,
BOUL PROC_Sw := FALSE.
PRCC LOCK_UP = (SIRING SIMPLEMODE) INI:
BEGIN
INT 1 = 0, J3
WHILE SIMPLE_PRIOR (/ I /) == SIMPLEMODE
DC I +:= 13
IE I > uPB SIMPLE_PRIUR
IHEN J = 03

RETURN
EI
oo
J = I3
RETURN:
J
END

PRUC MAX = ((/ /) INI SET) INI:

THIS PRUCEDURE CUMPUTES THE LARGEST INTEGER IN A VECTOR.

BEGIN . '
INI MVAL := SET (/LWB SET/);
EUR I ERUM LWB SET + 1 I0Q UPB SET
DO
1E SET (/1/7) > MvAL
IBEN MVAL := SET (/1/7)
El
Qus
MvaL
END 3
PROC MIN = ((/ /) INI SET) JINI:

THIS PROCEDURE COMPUTES THE SMALLEST INTEGER IN A VECTOR.

BLGIN
INT MVAL := SET (/LWB SET/);
EDB,[EROM LWB SET + 1 IQ UPB SET

¥
L1E SET (/17) < MVAL

105

IHEN MVAL := SET (/1/)
El
0ps
MVAL
END;
J =13
WHILE SIMPLEMGOE QF CLAUSE (/J/) = “SKIp¥
na
J +3= 13
1E J > NBR_UF_MODES
IHEN MGDE := CLAUSE (/1/)3
RETURN
Els '
MODE := CLAUSE (/J4/); : :
1E SIMPLEMCDE UF MODE = “PRUCY IHEN PROC_Sw 3= TRUE EIl;
PRIOR_VAL := LUCK_UP (SIMPLEMODE GF MUDE); :
PRIOR_VAL2 := LCOK_UP {Y_SIMPLEMODE QE MOGDE);
EQR' 1 ERUM J + 1 IC NBR_CF_MODES
Do
LE SIMPLEMGDE QOF CLAUSE {/1/) == "SKIP"
IHEN IE SIMPLEMODE UE MODE = “PROC" IHEN PROC_SwW := IRUE Elj
REFS1 OF MODE := MIN ((REFSL OF MODE,
REFSL UF CLAUSE (/1/)));
REFS2 OF MODE := MIN ((REFS2 UE MUDE,
REFS2 OF CLAUSE (/i/)));
RUWS QF MUDE := MAX ({(ROWS CE MOLE, ,
ROWS OF CLAUSE (11/)))3
-~ Y_REFS1 OF MUDE := MIN ((Y_REFS1 Qf MODE,
Y_REFSL OF CLAUSE (/1/)));
Y_REFS1l QF MUDE := MIN ((Y_REFS2 (E MODE,
Y_REFS2 QF CLAUSE (/1/)));
Y_ROWS DF MUDE := MAX ((Y_RGOWS QF MODE,
Y_ROWS OF CLAUSE (/1/)));
NBR_UF_PRUC_LEVELS QF MUDE := MIN ((
: NBR_UF_PROC_LEVELS OF MODE,
NBR_UF_PROC_LEVELS QF CLAUSE (/1/)));
PRIOR_VAL := MAX ((PRIUR_VAL,
LOOK_UP {SIMPLEMCLE UE CLAUSE (/1/))))3
PRIOR_VAL2 := MAX ((PRIOR_VALZ2,
S LOOK_UP (Y_SIMPLEMODE QE CLu
LOGK_UP (Y_SIMPLEMUDE QF CLAUSE {(/1/))))
E1
Qs
SIMPLEMODE DF MODE = SIMPLE_PRIOR (/PRIOR_VAL/):
1F PRIUR_VAL =~= 0
IHEN Y_SIMPLEMGDE QF MUDE := SIMPLE_PRIUR (/PRIOK_VAL2/);
- ELs .
LE PROC_SW AND SIMPLEMCDE DF PROC ~= "PRUCH
IHEN ROWS QF MOLCE := MAX ((ROWS QF MODE, Y_RGwS GF MODED);
REFS1 QF MODE 3= MIN ({REFS1 QF MODE, Y_REFSL QF MUDE));
REFS2 GF MCDE 3= MIN ((REFS2 0OF MuDE, Y_REFS2 QF MODE));
PRIUR_VAL := MAX ({PRIOR_VAL, PRIGR_VAL2));
SIMPLEMODE CEF MCDE := SIMPLE_PRIOR (/PRIGR_VAL/);
Y_SIMPLEMODE OF MUDE 3= ®w;
Y_RUWS UF MCDE := 0
ELls :
RE TURN:
SKIP
END3

- . 106

BRUC ASSIGN = (REF AMODE Mi, M2) VOIL:
|

THIS PROCEDURE WILL PERFORM THE COcRCIONS NECESSARY 1U PERFORM
ASSIGNMENTS. . :

BEGIN
CINI L3 :
WHILE REFS1 OF Ml + REFS2 UE ML + ROWS Qf M1 = O AND
. STMPLEMODE QF M1 = "“PROC®
DO DEPROCEDURE (M1, LOL BUOL);
PRINT ({NEWLINEs "LHS DEPROCEDURED TU™));
PRINT_MODE (M1)
oD;
REFS1 UF M2 +:= 1;
CCERCE (ML, M2, "STRONG*, L, LOC BOOL):
PRINT ((NEWLINE, (L = -1 | "ASSIGNMENT FALLED"™ | "ASSIGNMENT MADE"™)

£ND3

THLIS IS THE MAIN PROGRAM WHICH READS ALL INPUT VALUES, INVUKES
PARSE WHICH CONVERTS MODE REPRESENTATIONS TU INTERNAL FUR#M,
ANU INVUKES THE PROCEDURE INUICATED BY INPUT PARAMETER

4 .
AMUDE MODE_1, MODE_2,
(710/) AMODE CLAUSE,
STRING SYMBOL, STRING, SORT,
INI NBR_CF_MODES;
Lo
READ ((NEWLINE,STRING));
LE STRING = “COERCE"™
IHEN READ ((NEWLINEsSTRINGI);
PRINT ((NEWLINE, NEWLINE, NEWLINE
"APRIORI MUDE ", STRING));
PARSE (STRING,MCOE_1)3
READ ((NEWLINE.STRING)I);
PRINT ((NEWLINE,» "APCSTERIURI MODE ", STRING));
PARSE (STRING, MODE_2);
READ ((NEWLINE, S0RT)):
PRINT ((NEWLINE, "SORT ",SORT)); R
COERCE (MODE_1, MODE_2, SORT, LOC INT,» LDC SLUL)
ELLIE STRING = “BALANCE")
IHEN READ ({NEWLINE, SORT));
READ (NBR_UGF_MUDES)
NEWPAGE (STANCCUT) ;
EUR I I0 NBR_UF_MODES
Do
READ ((NEWLINES STRING)); :
PRINT [(NEWLINEs "UNIT NUMLER-", I, STRINGJ);
PARSE {(CLAUSE(/I1/), STRING)
QEs
BALANCE (CLAUSE, LOC AMOUE, NBR_UGF_MUDES, SURT)
ELIE STRING = "ASSIGA®
TIHEN READ ((NEWLINE, STRING));
PRINT ((NEWLINE,» "ASSIGNMENT TuU OE PERFORMED v,

STRING)) ;
INT I := INDEX (STRING, ":=u);
PARSE (STRING(/L,I-1/7) + » "yMGDE_1);
PARSE (STRING(/1424 /)y MODE_2);
ASSIGN (MODE_1l, MODE_2)
PRINT ((NEWLINE, "INVALID CUMMANDY)) ;
STQGP

107

APPENDIX C

SAMPLE OUTPUT OF THE MODE
PROCESSING ALGORITHMS

108

109

ASSTUNMENT TU BE PEKFORMEU--->REF REAL := REAL
MODES MATCH ,
ASSIGNAENT MADE

ASSIGNMENT. TU- BE PERFORMED-—-—D>REF KtAL := KREF REAL
DeREFERENCE

MUDE AFTER COERCIUN KEAL

MODES MATCH

ASSIGNMENT MADL

ASSEGNMENT TU BE PErRFURMED——=D>REF Kef REAL $= RekF REAL
MODES MATCH
ASSIGNMENT MADL

ASSIGNMENT TO BE PERFORMED—--->Rp AL = RtF REAL
UDEREFERENCE

MODE AFTER CUERCIUN REAL

NY PUSSI8BLE COERCION

ASSIGNMENT FAILLED

ASSIGNMENT TuU dE PERFURMED--=->KrcAL 3= RrAl
NO PUSSIsLe CGERCIUN
ASSIGNMENT FAILED

ASSIOGNMENT TO BE PERFORMEG——=->REF KCtAL = PRUC Ret+ INT
DEPRUCEUURE

MCUE AFTER CUERCION REF INT

DEREFERENCE

MODE AFTER CUERCION INT

WIDEN

MGDE AFTER CUGERCICN REAL

MODES MATCH

ASSITGNMENT MADE

ASSIUNMENT -TO BE PERFORMED===>PRCC REF Rl RtAL := PrRUC REF REAL
LHS DEPROCEDURED TU REF KREF REAL
DEPROLEUURE

MUDE AFTEK COEKCIUN REF REAL
MCDES MATCH
ASSTIGNMENT MADE

ASSITGNMENT TO ot PERFCRMED--->KEF REF CHAR = CHAR
NG PUSSIBLE CCERCIUN
ASSIGNMENT FAlLED

UNIT NUMBER- 1 REAL
UNIT NUMBER- 2 INT
UNIT NUMBER- 3 CCMPL
TARGET MUODE coMPL

ATTEMPT BALANCE TC TARGET MODE

UNIT=- 1

WIDEN

MODE AFTER COUOERCIGN CuMPL
MEGDES MATCH

UNIT- 2
WIDEN

MODE AFTER COERCICN REAL
wIDEN

MUDE AFTER CUERCION COMPL
MCUES MATCH

UNIT- 3
MODES MATCH

cOoMPL IS THE MODE OF THE BALANCE
EMPTY WAS THE REQUIREUD STRENGTH
STRONG wAS THE AVAILABLE STRENGTH
BALANCE VALID

110

111

UNIT NUMBER= 1 REF (4) INT
UNIT NUMBER= 2 PROC () REF REAL

UNIT NUMBER- 3 REF REF () REF REF CUMPL
TARGET MUDE {,) COMPL ‘

ATTEMPT BALANGCE TC TARGET MODE

UNIT= 1

DEREFERENGE

MOLE AFTER COEKCIUN () INT
NO POSSIBLE CGERGION

TARGET MUDE CANNOT BE COERCED

UNIT NUMBER- 1 REF REAL
UNIT NUMBER- 2 REF.INT

UNIT NUMBER- 3 Ref COMPL
TARGeT MOUDE REF CCMPL

ATTEMPT SALANCE TC TARGET MCDE

UNIT=- 1

DEREFERENCE

MODE AFTER COERCION REAL
WIDEN :
MCDE AFTER COERCION COUMPL
NQ PUSSIBLE COERCION
TARGET MUDE CUMPL

ATTEMPT BALANCE TC TARGET MCUE

UNIT- 1

DEREFERENCE

MODE AFTER COERCIGON REAL
WIDEN

MODE AFTER COERCION CUMPL
MCDES MATCH

UNIT- 2

DEREFERENCE

MODE AFTER CUERCIGN INT
WIDEN

MCLE AFTER COERCIUN REAL
WIDEN

MODE AFTER COERCIUON COMPL
MODES MATCH

UNIT- 3
DEREFERENCE

MODE AFTER COERCION COMPL
MODES MATCH

COMPL IS THE MJDE OF THE BALANCE
MEEK WAS THE REQUIREU STRENGTH
hEAK WAS THE AVAILABLE STRENGTH
TARGET MUDE CANNUOT SE CUERCED

112

UNIT NUMBER- 1 REF PRUC REF REAL
UNIT NUMBER— 2 () (COMPL

UNIT NUMBER- 3 PRGC

PRGC INT

TARGET MUOLE () CuMPL

ATTEMPT BALANCE TC TARGET MGut

UNIT- 1
DEREFERENCE

MUDE AFTER COERCICN
DEPROCEDURE

MUDE AFTER CUERCIUN
DEREFERENCE

MOUE AFTER COERCION
WIDEN :

MODE AFTER COERCICN
ROw .

MODE AFTER CUERCION
"MGDES MATCH

UNLT- 2
MUDES MATCH

UNIT- 3

DEPROCEDURE

MUDE AFTER CUERCICN
UEPRUOCECURE

MODE AFTER COERCIOCN
wIDEN

MODE AFTER COERCION
WIDEN

MUDE AFTER CUERCION
ROW

MOLE AFTER COERCION
MODES MATCH

() COMPL 1S THE MODE OF THE BALANCE

PRCC REF REAL
REF REAL

REAL

CGMPL

{) COMPL

PROL INT
INT

REAL
COMPL

{) CCMPL

EMPTY WAS THE REWUIRED STRENGTH
STRONG wAS THE AVAILABLE STRENGTH

BALANCE VALID

113

REF INT
REF RcAL

UNIT NUMBER-
UNIT NUMBER-
UNIT NUMBER- PROC () REAL
UNIT NUMBER- PRCGC () INT
TARGET MOUDE REAL

SN -

ATTEMPT BALANCE TO TARGET MUDE

UNIT- 1
DEREFERENCE

MODE AFTER COERCION INT
WIDEN

MODE AFTER COUOERCION REAL
MODES MATCH

UNIT- 2

DEREFERENCE

MODE AFTER COERCION REAL
MODES MATCH

UNIT- 3

DEPROLEDURE

MODE AFTER COERCIGN () REAL
NO PUSSIBLE COcRCIUN :
TARGEY MUDEt CANNOT BE COERCED

114

UNIT NUMBER- 1 REF BUOL
UNIT NUMBER- 2 SKIP
TARGET MODE REF BJOL

ATTEMPT BALANCE TC TARGET MGDE

UNIT=- 1
MUDES MATCH

UNIT- 2
MODE SKIP CUERCED TU REF BOGL

REF BUOL IS THE MODE OF THE BALANuE

EMPTY WAS THE REQUIRED STRENGTH
FIRM WAS THE AVAILABLE STRENGTH

BALANCE VALIUD

A PRIURI MuDE PRCC PROC REF REA

APCSTERIORI MUDE VOID
SORT STRONG

DEPRUCEDURE

VEPROCECURL

vOoID

MODE AFTER COERCIUON VOID
MCDES MATCH

A PRIURI MUDE PRUOC REAL
APCSTERIORI MUODE REAL
SORT wWEAK

DEPROCEDURE

MUDE AFTER COERCIUN REAL
MODES MATCH

A PRIORI MUUE PRCC PROC REAL
APCSTERIURI MUuk PROC REAL
SORT WEAK

DEPROCEUURE

MUDE AFTER CUERCION PRUOC REAL
MCDES MATCH

A PRIURI MUUDE PRUC PROC REAL
APUSTERIORI MCDE REAL

SORT WEAK

DEPRUCEUURE

MUDt AFTER CUERCIUON PRCC REAL
DEPROCEVURE

MUUE AFTER CUERCIUN KEAL

MODES MATCH

115

A PRIURI MUDE REF PROC REAL
APUSTERIORI MOuUt PRUC REAL
SORT WEAK

NO PUSSI1IdLE COERCIUN

A PRI0ORI MUDE REF REF REAL
APUSTERIURI MODE REF REAL
SORT SCFT

DEREFERENLE

MODE AFTER CUERCIUN REF REAL
MCODES MATCH

A PRIGRI MUDE REF REAL
APCSTERIURI MCDE REAL
SORT SOGFT '
NC PUSSIBLE CCERCION

A PRIURI MUODE PROC REF REF REAL
APCSTERIORI MODE REF REAL

SCRT SCFT '

DEPRUCEDURE

MODE AFTER CUERCION REF REF REAL
UEKEFCRENCE

MUODE AFTER COERCIGON REF REAL
MODES MATCH

A PRIGRI MCuk REf REF REF REAL
APOSTERIURI MUOULE REF REAL

SORT SCGFT

DEREFERENCE

MODE AFTER CUERCIuUN REF REF REAL
DEREFERENCE

MULUE AFTER COERCICN REF REAL
MODES MATCH

A PRIUGRI MOUE PRCC PROC REAL
APUSTERIURI MUDE KREAL

SURT SCFT

DEPRCCEDURE

MUDE AFTER COERCICN PRCC REAL
DEPRCCEDURE

MODE AFTER COERCICN REAL

MODES> MATCLH

A PRICRI MOUE KREF REF REAL
APUSTERIORI MUOUE REAL
SORT SOFT

116

VDEREFERENCE
MODE AFTER COERCIUN REF REAL
NG POSSIBLE CCERCION

A PRIORI MUDE REF REAL
APOSTERIORI MOLDE REAL
SORT SCFT R
NO POSSIsLE COERCION

A PRIORI MODE REF REF REAL

- APOSTERIURL MODE REF REAL

SORT MEEK

DEREFERENCE

MGCOE AFTER COERCION REF REAL
MUDES MATCH

A PRIORI MODE REF REAL
APOSTERIORI MOLE REAL
SORT MEEK

UEREFERENCE

MODE AFTER COERCICN REAL
MODES MATCH ‘

A PRIORI MODE PROL REF REF REAL
APOSTERIORI MODE REF REAL

SURT MEEK

DEPROCEULURE

MODE AFTER CUERLION REF REF REAL
DEREFERENCE

MUDE AFTER COERCIUN REF REAL
MODES MATCH

A PRIURI MCDE REF REF REF REAL
APOSTERIURI MOt REF REAL

SURT MEEK

CEREFERENCE

MUDE AFTcR COERCIGN REF REF REAL
VDEREFERENCE

MCDE AFTER COERCION REF REAL
MCDOES MATCH

A PRIORI MUDE PROC PROC REAL
APGSTERIORI MODE REAL

SURT. MEEK :

DEPRUCEDURE

MODE AFTER CUERCION PROC REAL
UePROCEDURE

MUDE AFTER CUERCIUN REAL

117

118

MOLES MATCH

A PRIURI MUDE REF REF REAL

APOSTERIURI MCUE REAL

SORT MEEK

DEREFERENCE

MODE AFTER CUERCION REF REAL

VUEREFERENCE

MUUVE AFTER COERCIUN REAL v : :)
MUOES> MATCH : ; -

A PRIORI MUDE REF REAL

APOSTERIORI MOt REAL

SORT MEEK

VEREFERENCE

MODE AFTER COERCION REAL .

MGDES MATCH)

A PRIGRI MODE REF PROC REF INT
APCSTERIURI MUODE (4) CCMPL
SORT STRONG

" DEREFERENCE
MODE AFTER COERCION PROC REF INT
DEPRUC EDURE
MODE AFTER CUERCION REF INT
DEREFERENCE
MODE AFTER COERCION INT
wiDEN
MODE AFTER COERCIUN REAL
WIDEN
MUODE AFTER COERCICN CUMPL
ROW)
MODE AFTER COERCION () COMPL
ROW
MODE AFTER COERCION () COMPL
MODES MATCH

PROGRAM IS STOPPED.

APPENDIX D

A GRAMMAR FOR THE LANGUAGE ACCEPTED
BY THE OKLAHOMA STATE UNIVERSITY
ALGOL 68 COMPILER

119

120

The following is a modified Backus-Naur Form of a
grammar which generates the language which is accepted by
the Oklahoma State University ALGOL 68 Compiler after the
features described in this thesis have been implemented.
The grammar is expressed by rules of the form:

<META SYMBOL>> s1= def
this rule is read " <META SYMBOL> is defined to be (11=)
def." If there are several definitions of the same meta
symbol they may be combined into one rule by the "|" symbol
read "or is a" such as: |

<META SYMBOL> ti1= def 1

<META SYMBOL>> t3= def 2

becomes |

<META SYMBOL> t1= def 1 | def 2.
The definition of a meta symbol may contain any sequence of
meta symbols or terminal symbols (symbols without brackets).
The special symbol ".EMPTY" means that the meta symbol may
be replaced by the empty string. The goal rule for the
grammar 1s<<PROGRAM> ., If the.symbols "'". wIn op W
are required as terminal symbols they will be enclosed

within quotation marks.

121

<PROGRAM>: := <ENCLUSED CLAUSE>

<ENCLUSED CLAUSE>::= SEGIN <SERIAL CLAUSE> END|
BEGIN <CULLATERAL CLAUSE> E&ND
KCCADITICNAL CLAUSE>]
<CASE CLAUSE>]
<LUOP CLAUSE>

<SERIAL CLAUSE>::= <UNIT DEC LISTLI><L UNIT LISTL>
<UNIT wEC LISTL>::= KUNIT>i<UNIT DEC LIST2>|

<DECLARATIUNS>;<UNIT DeC LISTZ2>|
<EMPTY

N

<UNIT DEC LIST2>::= <UNIT>3<UNIT DEC LIST2>|
<DECLARATIONS>;<UNIT DEC LIST2>]
<UNIT>|
KOECLARATIONS>

<L UNILIT LISTi>::= <L UNIT><L UNIT LIST2>|
<L UNIT>

<L UNIT LIST2>3:= s<L UNIT><L UNIT LIST2>1
EXITLID> sKUNIT><L UNIT LIST2> |
;<L UNITD>| b
EXITKIDY :<UNIT> '

<L UN[T>::= :) <ID>:<L UNIT>|
<UNIT>

<COLLATcRAL CLAUSE)$.= KUNIT>,<UNIT COMMA LIST>

KUNIT CUMMA LISTD::= CUNIT>,<UNIT CUMMA LIST>|
CUNIT>

<CONDITIONAL CLAUSE>::= [IF <SERIAL CLAUSE> fHEN <SERIAL CLAUSE><LUND ENO>

<CUND ENL>:3:= <ELIF PART LIST>LELSE PART> FI
<ELIF PART LIST>::= ELIF <SERIAL CLAUSE> THEN <SERIAL CLAUSE>
<ELIF PART LIST>|
<EMPTY
<ELSE PART>:i:= ELSE <SERIAL CLAUSE>|
«EMPTY
CCASE CLAUSED>::= CASE <SERIAL CLAUSE> IN <CGLLATERAL CLAUSE>KCASE END>
<CASE END>::= <GUSE PART LIST><0OUT PART>. ESAC
<UUSE PART LIST>::= CUSE <SERIAL CLAUSE> IN <COLLATERAL CLAUSED>
<OUSE PART LIST>|
<EMPTY
<OUT PARTI>::= . CUT <SERIAL CLAUSE>]
<EMPTY
<LOOP CLAUSE>::= <FOR PART><FROM PART><oY PART><TO PART><WHILE PART>

DO <SERIAL CLAUSE> 0L

<FOR PARf)::;‘
CFROM PART>::=
<BY PART>::=

<TO PART>::=
CWHILE PART>::=
<DECLARATIONS>::=

<DECLARATIUND>::=

<MODE DECLARATION>::=

STUENTITY DECLARATIOND>::

KIDENT INIT LIST>:

<VARIABLE DECLARATIGON>

<VAR INIT LIST>::=

<PRUC DECLARATION>

<TYPE INIT>::=

KREF LIST>::=
<ROW LIST>* ::=
<ROW>::=

<MODE INDICANT>::=

<BASIC MUODE>::=

° s =
s=

.o =
e =

FGR <ID> |
LEMPTY

FROM <UNIT>|
<EMPTY

BY <UNIT>]
+EMPTY

TO <UNIT>|
<EMPTY

WHILE <SERIAL CLAUSE>|

-EMPTY

<DECLARATIOND> »<DECLARATIONS>|

<DECLARATION>

<MODE DECLARATION>|

KIDENTITY DECLARATION>|
<VARIABLE DECLARATION>|

<PRGC DECLARATION>

MODE <MODE INDICANT>=<MODE> ,<MODE DECLARATION>|
MODE <MUOLE INDICANT>=<MODE>

<MODE><IDENT INIT LIST>

<ID>=<KUNIT>,<IDENT INIT LIST>I

<ID>=<UNIT>

<MODE><VAR INIT LIST>

<ID>:=<UNIT>,<VAR INIT LIST>|

<ID>:=<UNIT>

PRGC <ID><TYPEV}NIT><R0UT[NE TEXTS>

LI]

<REF LIST><ROW LISTO><REF LIST><KBASIC MODED>

REF <REF LIST>1
+EMPTY N

<RUOWDSRUW LIST>|
JEMPTY

(/ <LNIT> /)|
(/ <UNIT>:<UNIT> /)|
VAVAT -

<MODE INDICATIUN>

INTIREAL |CUMPL | EHAR | BOOL]

<MODE INDICATION>I
<P CEC> o

122

<P DEC>::=

KVIRTUAL PARAMETERS>::=
<MOLE LIST>::=

<UNIT>::=

<ASSIGNATIGN> 2 s=
<RUUTINE TEXT>::3=

<FORMAL PARAMETERS>::=
<FURM PARM>::=

<MODE SET>::=
ILD LIST>::=
<MUIL>::=
KIVUENTITY

RELATIOND>: :=

<JUMPD: =
<GO Tu CPTICON>::=

KTERTIARY>::=

<FURMULAD: :=
<SECONDARY>::=

<PRIMARY>::=

-

<CALL>::=

<ACTUAL PARAMETERS>::=

123

PROC <VIRTUAL PARAMETERS><MUDE>

(<MGDE LIST>) |
JEMPTY

<MUDE>,<MOUE LIST>|
<MGDE>

<ASSIGNATION>|
<ROUTINE TEXT>|
CIDENTITY RELATIUND>|
<JUMP> |

SKIPI

<KTERTIARY>

<KTERTLARY> := <KUNIT>
<FORMAL PARAMETERS><KMOID>:<UNIT>

(<FCRM PARM>)|
<EMPTY

<MOCE SET>,<FORM PARM>|
<MODE SET>

<MGDE>ID LIST>

<KID>y<ID LIST>I
10>

<MODED |
voID

KTERTIARY>:=:<TERTIARY>|
<KTERTIARY>:~=:<TERTIARY>

<6GU TU UPTIOUN>ID>
GO TO

<FGRMULA>]
NIL

KFORMULA>KDYAVIC GPERATUR><FORMULAY |
<FORMULA>|

<KMCNADIC OPERATORD>D<FORMUL A>

RE <PRIMARY>|

IN <PRIMARY>|

<PRIMARY>

10 | DENCTATION | FORMAT_TEXTD |
KCALLY IKCAST>IKSLICE> IKENCLUOSED CLAUSE>

<PRIMARYD>SACTUAL PARAMETERS>

(<UNIT COMMA LIST>)|

< EMPTY

<KMOID> (<UNIT>)

<SLICE>::=

<KSLICER LIST>::=

KSLICER>z:=

<FROM UNIT>:z:=

<UP Tu UNITD>::=

AT UNITD>::=

*SUCCESSIVE RUW ENTITIES

124

<PRIMARY> <SLICER LIST>

KSLICER> o <SLICER LIST>|
<SLICER>

<FROM UNIT>KUP TO UNITO><AT UNIT>

<UNIT>|
<EMPTY

2 KULNIT>

<EMPTY

a <UNIT>|
<EMPTY .

MAY BE COMBINED INTO UNE SET OF (/Z AND /) SYMBOLS

BY SEPARATING THE INNER PARTS 8Y (OMMAS.

EXAMPLES: (/X/) (/0:2X/)
WRITTEN AS (/+/).

MAY BE WRITTEN AS (/X,02:2X/) OR (/ /) (/ /) MAY BE

APPENDIX E

USER'S GUIDE

125

126
Control Cards

A description of the 1JOB CARD options and format can
be found on page 37‘of the thesis bynJensen (1). At this
time the.révised version of the compiler is operational only
on the IBM 360/65 running under 0S/MVT. The job control
language requiredrto‘exgcute the revised version is shown in

Figure 44,
Restrictions

Beginning on page 38 Jensen (1) lists ten restrictions
upon the ALGOL 68 subset which he implemented. The follow-
ing set of restrictions includes those restrictions of Mr.
Jensen which are still applicable and also all restrictions
upon the newly implemented facilities.

1) All ALGOL 68 keywords are reserveds

2) Keywords must be separated from identifiers,
denotations and other keywords by at least
one blank;

3) Keywords, multiple symbol operators and
denotations may not contain embedded blanks
(except of course / _/ CHAR denotations);

4) All identifiers of non-procedured modes must be
declared before they are referenced in order to
produce predictable results;

5) Identifiers may not contain embedded blanks,
but the break character (_) may be used to

‘improve readability.

127

//JOBNAME JOB (XXXXX,XXX-XX-XXXX,X),CLASS=B
/*SETUP DISK=1 '
/*PASSWORD XXXX
//STEPNAME EXEC PGM=ALGOL,REGION=140K
//STEPLIB DD DSN=COMSC.PART.SEAY.LOAD,UNIT=2314,
// VOL=SER=DISK28,DISP=SHR
//FTO3F001 DD DSN=COMSC.SEAY.ERROR.A68,
// VOL=SER=DISK28,UNIT=2314,DISP=SHR
//FTO6F001 DD SYSOUT=A
//FT05F001 DD *
1JOB

ALGOL 68 SOURCE PROGRAM

t$ENTRY

STANDIN DATA (IF ANY)

1IBSYS
/7

Figure 44. Job Control Language for
IBM 360/65 Execution

6) Row displays are limited to one row only, such
as, (1,2,3)3;
7) Balancing is not performed for row displays;

therefore, the mode of the balance is assumed

128

to be of the same mode as its first unit (the
mode of the first unit may of course always
be modified by way of a cast) |
8) Objects of mode ROWi REFj amode may not be
| used in transput operations;
9) Any mode indications used in the program must
be defined before uses
10) Rowing may only be used to create REF Zf;7 amode
values from aﬁode values or REF amode values;
11) A program may not contain more than 25 different

ROW displays.
New Features

Procedure Variables

There are two methods of declaring procedure variables
and constants. They may be declared as outlined by
Eyler (3) in his thesis on procedure implementation, or as
an alternative the programmer may write the following type
declarations
PROC. VIRTUAL PARAMETERS_PACK YIELDING_MOID ID_INIT_LIST.
This declares each of the identifiers contained in the iden-
tifier list to be a procedure variable of the mode indicated
by the virtual parameters pack and yielding mode field.
These variables may be assigned routines (of a suitable
mode) dynamically during the élaboratidn of the program.
The ID_INIT_LIST also allows procedure variables to be

initialized by units yielding the proper mode within the

129

declaration. Figure 45 shows some examples of the types of

procedure declarations currently allowed.

Procedure constant:)
PROC a = (REAL X,y) REALs (x - y)/(x + y) * 100.0;
' Procedure variable initialized by a routines
PROC bt= (REAL x,y) REALs (x - y)/(x + y) * 100.0;
Procedure variable assigned a routine at a
later time:

PROC (REAL,REAL) REAL c3;

.c:; (REAL x,y) REAL: (x - y)/(x + y) * 100.0;
Procedure vériable initialized by a units
PROC (REAL,REAL) REAL ds=
| IF p THEN (REAL x,y) REAL: (x - y)/(x + y) * 100.0

ELSE (REAL x,y) REAL: (y - x)/(x + y) * 100.0
FI;

Figure 45. Sample Procedure Declarations

REF Amode Variables (pointers)

Tﬁe compiler does not currently support structures or
list processing. Pointer variables have only a limited
usefullness under these restrictions. Two valid uses of
pointer variables ares

1) +to achieve the effect of CALL_BY REFERENCE

130

parameters (all ALGOL 68 parameters are CALL BY_
VALUE) and
2) if it is known that a particular element of an
array is to be referenced moré than once,
pointer variables may save mﬁbh processing time.
Figure 46 provides an example of the definition of pointer
variables té_decrease exgcution time. It also provides an

example of mode declarations.

131

BEGIN
MODE .TREE_NODE = / 3_7 INT;
REF .TREE_NODE CUR_NODE3
/ 100_/ .TREE_NODE TREE;
INT ROOTs= 03
PROC SEARCH = (INT ARGUMENT) REF .TREE_NODE:
BEGIN |
REF .TREE_NODE Xt= NIL;
INT SRCHi= ROOT;
WHILE SRCH: =3 NIL
DO
CUR_NODEs= TREE / SRCH, 7
~ REF INT LLINKs= CUR_NODE /1, /;
KEYs= CUR_NODE / 2, /;
RLINKs= CUR_NODE / 3_7;
IF ARGUMENT KEY THEN SRCHs= LLINK
ELIF ARGUMENT = KEY
THEN Xs= CUR_NODE;
OUT_OF _PROC
ELSE SRCHi= RLINK
FI
OD;
OUT_OF_PROC: SKIP
END
END
Figure 46. Example Program Illustrating

Possible Uses of REF Amode
Variables

APPENDIX F

SYSTEM PROGRAMMER'S GUIDE

132

133
Symbol Table Modification

Moving the Symbol Table From Memory

to Disk

The current version of the compilér does not actually
perform any disk input/output for intermediate files. \A
new version of subprogram ALGIO which saves each 80 word
record of output in-an array was written. When an input
'request is made, tables built during output operations are
searched to locate the desired record. After the record has
been located it is moved into the output. parameter area énd
the subroutine is exited.

In order to ailow the input/butput'filés to actually
be written onto disk it is necessary to provide the neces-
sary JOB CONTROL LANGUAGE for each file. It is also neces-
sary to replace the current version of ALGIO by the original

version.

Modifying the Symbol Table Size

If it is found desirable to modify the symbol table
size3 it is necessary to change the data statement found in
subprogram ALGZA to .
| DATA TBSZ/N/
where the N is replaced by the size (in words) desired for
the symbol table (N should be an integfai multiple of 80).

If the symbol table is on disk the only other changes
required are the DEFINE FILE statement for file number 11

134

and of course changing the JOB CONTROL LANGUAGE specifica-
tion for the file. If the symbol table file is located in
memory, then it will be necessary to make the following
changes to ALGIO.

1). The dimension stétement for the variable DISK must
be increased to reflect the total number of words
expected for all intermediate files (DISK should
be an integral multiple of 80);

2) The dimension statement for LOG must be. changed to

DIMENSION LOC (i,3)
where i = DISK/80;

3) The data statement for NRPGS must be changed to
the value DISK/80.

Operator Declarations

The subprogram ALGZO has been included with the modifi-
cations made to the compiler. ALGZO is not currently called
by any existing routine. It has the function of inserting
operator declarations into the symbol table. Figure 47 is a
diagram which shows how the operator declarations would be
placed in the symbol table by ALGZO. Figure 48 is a list of
the formal parameters of subprogram ALGZO along with the
meaning of each parameter. Operator declarations could be
processed by treating it as a procedure declaration. The
declaration OP + = (INT A,B) INT:r\/could conceptually be
parsed as

PROC TEMP_ID = (INT A,B) INT: ~ .

135

A symbol table entry would be made in the normal manner for
the procedured mode identified by TEMP_ID, followed by a
call to ALGZO to enter the routine definition into the

operator routine list.

IDENTIFIER LIST

Tree Structure Operator perator Priority number
Mode Symbol Code _—{(if declared)
/ -

Q—————b L-15 l[l cher 1D EntryPOther ID Entry

lTempIDouononotonl

Opergtor
mmp ID o o ¢ o ¢ o o o o cJ Routine
Definitions

lTempID...---....j

Figure 47. Operator Declaration Structure

Table I gives the functions of the subprograms that

have been added to the compiler.

Formal Parameter

136

Use/Meaning

OPSYM
OPND1

OPND2

YMOID
ROUT

PRIO

PTR

IER

Figure 48,

The internal code for the operator
symbol being defined

The mode number of the left operand
of this operator ‘

The mode number of the right
operand of this operator (use zero
if operator is monodic)

The mode number of the yielding
value of the operator

The temporary identifier assigned
to this particular operator routine

The priority to be assigned to
all dyadic operators using this
symbol (when PRIO is not zero
the only input parameter values
used are OPSYM and PRIO)

Return address-of the symbol table
node created as a result of this
call

Error code
IER = 0 - No error
IER = 1 - Attempt to insert two

routines with same
temporary identifier

L}
N
|

IER AtTempt to define a
routine after a label

in the current block

IER = 3 - Duplicate priority
number definition

Formal Parameters for Subprogram ALGZO

137

TABLE I

FUNCTIONS OF ADDED SUBPROGRAMS

Subprogram

Functions

Phase 3
ALGF5

Phase 3.5
ALGF2

ALGIO

ALGYA

ALGYB

ALGYC

ALGZA

ALGZB

ALGZC

Performs DISK I/0 for the Phase 3 pass
through the source code (has the ability
to access each word of the flle directly
by position).

Fetches next input symbol for Phase 3.5.
Input may come from the symbol table
area (mode declarations on the input
source file).

The incore storage vers1on of the I/0
routine.

Saves space in the symbol table area
by packing up to seven one word entries
into the eight word symbol table node.

Establishes the standard environment by
loading the mode table. (Can also be
modified to load standard operator
definitions.)

Unpacks the data packed by ALGYA.
Repeated calls to ALGYC will make all
values in the list available.

Performs the paging necessary for access
to the symbol table and through AILGIO
performs any necessary input/output
operations (see discussion on symbol
table location).

Provides access to the symbol table
area. Data may not be fetched or
stored in such a way as to span two
symbol table nodes.

Causes the tree structure pointer of
the symbol table to be decreased by
one nesting level.

138

TABLE I (Continued)

Subprogram Functions

ALGZD Increase the nesting level during symbol
table construction. ‘

ALGZF Inserts an identifier into the identifi-
er list associated with the current
block.

ALGZG Search the symbol table for an occur- -
rence of an identifier.

ALGZH Prints the attribute and cross reference
listing (if requested), it also causes
the mode table print routine to be
called.

ALGZI This subroutine blocks the symbols out-
put from Phase 3.5. Source symbols are
output as is; however, object code
symbols are prefixed by a value equal
to (1000 + number of object text words).
Notes It is possible to have the value
1000 if it is necessary to complete a
record and no object text would fit in
the remaining space after the code
symbol. -

ALGZJ Pushes values onto the compile time
stack.

ALGZK Pops values from the compile time stack.

ALGZL Parses loop clauses.

ALGZM Parses declarations.

ALGZN Parses the mode indications.

ALGZS Generates allocate storage instructions
for declared variables.

ALGZU Equivalences user defined modes.

ALGZV Computes the nesting level for each
symbol table node.

ALG3B Main line Phase 3.5

139

TABLE I (Continued)

Subprogram Functions

GETMD Fetches the mode table entry for the
indicated mode number.

INSMD Inserts modes into the mode table
(also computes related modes).

JTST Tests switches to determine if debug-
ging information is to be output.

MDTST Allows tests of various fields of a
mode table entry.

MODET Performs the insertion of a single
mode into the mode table.

PRTMD Converts the coded values of a mode
table entry into Al characters suitable
for printing.

PRTMT Prints the entire mode table using sub-

_ program PRTMD.
Phase 4

ALGZE Increase the symbol table level
(assuming tree structure has been
built).

BAL Computes the balance mode for multiple
completion clauses. (ALGBL generates
the balancing code.)

COERC Calculates the coercion path from the
A PRIORI mode to the A POSTERIORI mode.

DREF4 Computes the mode number of the mode
which has one less REF than the input
mode (generates code if necessary).

POSS Determines the set of all possible
coercions for a given syntactic
position.

ROW4 Completes the mode number of the mode

which has one more row than the input
mode (generates code if necessary).

140

TABLE I (Continued)

Subprogram : Functions

SIFT Reduces the set determined in POSS to
the unique coercion to be performed.

WIDE4 Computes the mode number for the mode
which is one level wider than the input
mode (generates code if necessary).

VOID ' Computes the actions necessary to void
the current mode (generates code if
necessary).

Phase 5
ALGYF ' Implements new pseudo operation codes
901-907.
ALGYG Implements and becomes operators (leav-

ing a REF amode termporary on the stack
top.

"
VITA
Walter Michael Seay
Candidate for the Degree of

Master of Science

Thesis: IMPLEMENTATION OF A SUBSET OF MODES IN AN
ALGOL 68 COMPILER :

_ Major Fields Computing and Information Sciences
Biographical:s

Personal Datas Born in San Diego, California, June 24,
1946, the son of Mr. and Mrs. Sidney E. Seay.

Educations Graduated from James Madison High School,
San Diego, California, in June, 1964; attended
San Diego Junior College, 1963-64; attended
San Antonio College, 1965-66; received Bachelor
of Science degree in Mathematics from Troy State
University in 1974; completed requirements for the
Master of Science at Oklahoma State University in
July, 1976.

Professional Experiences Programming Supervisor and
comﬁuter programmer, United States Air Force,
1964-73; part-time computer operator, Troy State
University, 1973-74; graduate assistant, Computing
and Information Sciences Department, Oklahoma
State University, 1974-76; member of the Associa-
tion for Computing Machinery.

