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PREFACE 
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CHAPTER I 

INTRODUCTION 

Objectives 

Since 1973 a project has been underway at Oklahoma 

Sta~e University to write a portable compiler for the 

ALGOL 68 language (1) (2) (J). This very powerful pro­

gramming language gives the programmer the capability of 

defining ·and using his own set of data types in addition 

to a predefined set. The treatment of data types and values 

of these data types has been formalized in ALGOL 68 to the 

concept of a mode (4) (5). 

Prior to 1976 the Oklahoma State University ALGOL 68 

Compiler had the capability to recognize a very limited set 

of modes. One objective of this thesis is to show how a 

greater number of modes can be accepted while allowing the 

compiler to remain within the (size and portability) con­

~traints which have been placed on the compiler by its orig­

inal implementer (1). Another objective of this thesis is 

to detail some changes necessary to allow the Oklahoma State 

University ALGOL 68 Compilkr to conform to the language de­

fined in the "Revised Report on the Algorithmic Lang1fage 

ALGOL 68" (5), rather than the original ALGOL 68 language 

1 



defined in the "Report on the Algorithmic Language ALGOL 

68 II ( 4) o .. 

2 

It is assumed that the reader is familiar with the 

basic rules of ALGOL 68 and has some familiarity with the 

terminology. Appendix A contains a glossary of terms which 

are used in this thesis in order to facilitate its reading. 

Familiarity i~ assumed with the features implemented in the 

Oklahoma State University ALGOL 68 Compiler also. If the 

reader has a limited knowledge of the compiler's features• 

then John Jensen (1) is the best source to obtain the nec­

essary bac-kground information. The thesis_ by Alan Eyler (3) 

may also be helpful. 

History of the Oklahoma State, University 

ALGOL 68 Compiler 

The Oklahoma State University ALGOL 68 Compiler origi­

nally was implemented as a master's thesis py Jensen (1)_in 

July of 1973· The original ALGOL 68 subset compiler was a 

scientific subset of ALGOL 68. A major design criterion was 

to develop a portable compiler; in order to achieve this 

goal, the compiler was written using IBM 1130 Basic FORTRAN. 

The compiler was implemented on an IBM 1130 computer with 8K 

16-bit words of storage, a card reader/punch, and a 

console typewriter as the principal output device. The 

compiler also uses a single disk storage device for storage 

of intermediate code and simulated program memory. In order 

to insure portability, the code generated from the compiler 



is "machine code" for a pseudo-machine which is then inter­

pretively executed by a FORTRAN program. The small size of 

the IBM 1130 computer, while enhancing the portability 

characteristics of the compiler, restricted the set of 

features which could be implemented. by Jensen. 

At the same time Jensen was implementing the Oklahoma 

State University ALGOL 68 Compiler, Roger Berry (2) com­

pleted his master's thesis regarding the implementation of 

formatted transput. ALGOL 68 formatted transput is an 

extremely sophisticated and versatile input/output format­

ting package. Berry's implementation is a package capable 

of interpretive execution independent of any~ ALGOL 68 

compiler. 

Berry's (2) formatted transput package is in the 

process of being incorporated with the Oklahoma State 

University ALGOL 68 Compiler on the IBM 360/65 computer 

system. The combined system will allow the ALGOL 68 pro­

grammer to use the formatted input/output package directly. 

The combined version will not execute on the IBM 1130 due 

to its large size and due to the use of full standard 

FORTRAN in the transput package. 

In the spring of 1975, Eyler (3) completed implemen­

tation of procedures for the IBM 11JO version of the com­

piler. The procedure facility which he implemented allows 

procedure constants--a facility approximately equivalent to 

ALGOL 60 or PL/I procedures. It supports recursive proce­

dure invocations. 
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Several students have volunteered time to improve the 

original compiler of Jensen. Major work has been accom­

plished by these people. This work includes implementation 

of the CASE statement, rewriting the file handling capabil­

ity (standard input and standard output files only) of the 

compiler, and now the incorporation of Mr. Berry's transput 

package as -an integral part of the compiler. 

There are currently several versions of t~e Oklahoma 

State University compiler; the IBM 1130 versio~ with pro­

cedures, the IBM )60 ve~sion without procedures, and the 

IBM 360 version with procedures. These versions also are 

operational on the TI ASC computer and the XDS Sigma 5 com­

puter. Currently work is under way to provide a single 

version on the IBM )60/65 which includes formatted transput 

and procedures. When this version is completed, the result 

will be an extremely versatile and powerful programming 

tool. 

Literature Review 

The ALGOL 68 language is defined in the "Revised Report 

on the Algorimthic Language ALGOL 68" (5). Two good books 

which survey the ALGOL 68 language are an ALGOL 68 Compan­

ion (6) and An Informal Int~oduction to ALGOL 68 (?). Of 

these two, the ALGOL 68 Companion is the easier to compre­

hend. Another excellent source of information is the high­

ly readable ALGOL 68-R Users Guide (8). This users guide 

introduces the basic language features without introducing 



much of the new terminology found in the other documents 

mentioned above. 

Information about the Oklahoma State University 

5 

ALGOL 68 subset compiler can be found in the master's theses 

by Jensen (1), Berry (2) and Eyler (J). Details concerning 

other implementations of ALGOL 68 can be found in proceed­

ings of several conferences held for ALGOL 68 implementers. 

For example, the proceedings edited by J. E. L. Peck enti­

tled ALGOL 68 Implementation (9) contains a description .of 

one of the most successful production compilers of ALGOL 68-

-ALGOL 68-R. The ALGOL 68-R compiler was produced for the 

Royal Ra.dar Establishment, Malvern, England. It contains 

many of the features of the full language and it is used as 

the primary programming language at the Royal Radar Estab­

lishment. Descriptions of se,veral other operational (and 

almost operational) compilers can be found in the Proceed­

ings of the 1975 International Conference on ALGOL 68 (10). 

Much of the literature which has been written about 

ALGOL 68 has been concerned with the treatment of modes. 

Many of the methods which implement full ALGOL 68 modes 

require complex storage struct-ures for their representation 

and also require considerable processing time. 

Peck (11) suggested that an ALGOL 68 mode could be 

represented by a Greibach Normal Form Grammar. The disser­

tation by Mary Zosel (12) utilized the grammatical repre­

sentation of modes to develop algorithms for equivalencing, 

coercion, balancing and operator identification in an 
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ALGOL 68 program. The methods developed by Zosel provide a 

comprehensive treatment of modeSJ they are, however, diffi­

cult to implement in FORTRAN due to FORTRAN's lack of recur­

sive procedures and list processing facilities. The 

algorithms presented by Zosel are based upon the original 

report which specified a slightly differe·nt treatment of 

modes than that specified by the revised report. This 

thesis is based on the revised report (5). 

J. Kral (13) shows that ALGOL 68 modes can be repre­

sented by a finite automaton. This allows an implementer to 

use the existing algorithms for manipulating finite automata 

upon ALGOL 68 modes, such as reducing the automaton (mode) 

to a canonical representation (i.e., equivalencing modes). 

H. J. Lane (14) presents methods which allow coercion 

sequences to be determined by using boolean matrix tech­

niques upon modes which have been represented in grammar 

form. The amount of storage required for these matrices can 

be quite large if the number of modes is large. 

This thesis specifies how a limited (but useful) mode 

facility can be implemented in a portable compiler with less 

overhead than a full mode implementation would require. 



CHAPTER II 

ALGOL 68 MODES 

Introduction 

Most higher level programming languages embrace the 

concept of data type. A data type names a class of values 

which may be represented in the machine (either by the hard­

ware or by software implementation). For example, FORTRAN 

allows a variable declared ,with the integral data type 

(e.g •• INTEGER X) to possess positive or negative integral 

values. Some programming languages allow the programmer to 

define structures; structures are aggregates of other prede­

fined data types. PL/I and COBOL for example, allow struc­

tures to be declared. Both languages provide mechanisms for 

manipulating a structure as an aggregate and also_provide 

for manipulating the individual elements (15) (16). 

ALGOL 68 has generalized the concept of data type. 

This generalization is the concept of mode. There are five 

basic modes in ALGOL 68a BOOL (boolean), INT (integral), 

REAL (floating point). FORMAT, and CHAR (character). The 

programmer may construct new modes using the notions of row, 

reference-to, procedure, unipn, and structure (these are de­

fined below). In full language implementations of ALGOL 68 

the programmer is allowed to apply the notions (row, 

7 
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reference-to, etc.) to modes which he has previously defined 

to form more intricate modes. 

Tools for Building New Modes 

The notion row may be applied to a mode to obtain a new 

mode which specifies a multiple set of values of the old 

mode. The row notion is displayed by the square brackets 

(~ _7). Since INT is a basic mode which specifies an inte­

gral value, then·~ _7 INT specifies a multiple of integral 

values (commonly called a vector). Values of a row-ed mode 

may be indexed to obtain a single value of the mode or 

sliced to obtain a subset multiple of the original set of 

values. 

A mode·(such as REAL) may be preceded by the symbol 

REF to form a new mode REF REAL (read reference-to-real 

mode). When an object does not have the REF symbol as the 

first symbol of its mode, then that object is a value of the 

mode; e.g., 3·5 is of mode REAL. If an object has the form 

REF amode (where amode is a user defined mode or a basic 

mode)., t,hen that object is a name (address) which may refer 

to a value of the mode amode. An object of mode REF amode 

is usually called an amode variable since it performs the 

.same function as a variable.in other programming languages. 

If the mode of an object nas the form REF REF amode, then 

the object is similar to a PL/~ pointer variable; that is, 

the object may reference (point to) a variable of mode amode. 

It is possible for an object which has the form REFn amode 
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(n REFs preceding amode) to yield an object which possesses 
n n 1 n-2 any of the modes REF amode, REF - amode, REF amode, 

••• ,REF amode, amode. The actual mode of the object yield­

ed in an·ALGOL 68 program is determined by the syntactic 

position of the object.(For a more detailed explanation see 

coercion~) 

ALGOL 68 procedures require that the. modes of each of 

the parameters (if any) and also the mode of the value 

yielded by the procedure be specified for every procedure 

declaration. A procedure which accepts an integral value 

as its first parameter and a real variable as its second 

parameter and returns a value of mode boolean would be rep-

resented bya PROC (INT, REF REAL) BOOL. This representa-

tion names a new mode• a value of this new mode is an 

appropriate routine denotation. Since PROC (INT, REF REAL) 

BOOL is a new mode,it may be used as a building block in the 

creation of other modes (i.e.,~ _7 PROC (INT, REF REAL) 

BOOL, REF PROC (INT, REF REAL) BOOL, etc.). 

A variable declared to be of a united mode (using the 

union notion) may contain at any time a value of one of the 

constituent modes of the union. For example, a variable de­

clared with the mode REF UNION (INT,.REAL) may possess a 

value of mode INT or of mode REAL (only one at any particu~ 

lar time). Language facilities are provided to allow the 

programmer to test a variable of a united mode to see which 

mode it possesses at any particular time and to extract its 

value. Notea there are no values of a mode which begin 
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with UNION; all values assigned and retrieved from a united 

variable are values of one of its constituent modes. 

In ALGOL 68 a structure is a mode. The following is 

a representation of a structured modea STRUCT (REAL a, 

INT b,c). Unlike PL/I or COBOL the field names a, b, and c 

are part C?f the mode itself. To select a particular field 

from a structured variable such as STRUCT(REAL a, !NT b,c)x, 

the programmer writes~ for example, b of x. Assuming the 

above declaration for x, ALGOL 68 facilities allow the use 

of structured modes as aggregates as well as allowing for 

the selec.tion of individual fields. 

The Subset of Modes Chosen 

for Implementation 

Prior to this implementation, the Oklahoma State Uni­

versity ALGOL 68 Compiler had a very limited mode capacity. 

Only variables of the modes REF BOOL, REF !NT, REF REAL, 

REF CHAR, and REF COMPL (complex) and constants of mode 

PROC (procedure) were available. COMPL is not one of the 

basic modes of ALGOL 68; it is defined in the report to be 

of mode STRUCT (REAL re,im) ~ However, COMPL has a full set 

of operators, so it does not hurt a programmer to think of 

COMPL as if it were a basic mode. 

The design goal of this project was to increase the 

mode handling capacity of the compiler by a significant 

amount·without adding the general list processing of modes 

which is required by a full mode implementation. The subset 
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selected adds the REF REF amode (pointers) and amode (con­

stant) declaration facilities. Every mode (except proce­

dured modes) of this subset can be represented by a. 

descriptor of fixed size (see Chapter III). Procedured 

modes require linked lists to retain the modes of each pa­

rameter and the mode of the value yielded by the procedure. 

All modes which may legally be declared in the subset 

must 
. . k 

develop to a mode of the form REF1 L JJ REF BASIC_ 

MODE or REFi L Jj REFk PROC_MODE.(REFi, for example, means 

that there are i occurrences of the symbol REF with i being 

any integral value such that i > o.) Figure 1 provides a 

formal grammar in modified Backus-Naur Form (17) of the sub­

set of m·odes allowed in this implementation. 

Coercion 

Coercion is the ALGOL 68 term for the automatic modifi-

cation of an internal object during the elaboration of a 

program. Most higher level languages allow some form of 

data conversion to occur, such as, converting integral val-

ues to real values and vice versa 05) (18). There are five 

coercions allowed in the subset• deproceduring, derefer-

encing, widening, rowing and voiding. 

It is often useful to create procedured modes which 

have no parameters. An example is the built-in procedure 

random, when random is invoked, a REAL value in the interval 

(0,1) is yielded. In order to invoke a procedure which has 

parameters in ALGOL 68, the programmer simply writes the 



<:@ODJt> 11= <LIST_OF_REF$> 

<)..IST_OF.,...ROW$> 

~IST_OF_REF~ 

~HOICE_OF_BASIC_OR_PROQ:> 

<tiST_OF_REFS> 11= ~IST_OF_REFS> REF 

.EMPTY ** 

<trsT_OF_Rows:>* 11= ~rsT_OF_ROW$>£" J I 
.EMPTY 

<tHOICE_OF_BASIC_OR_PROC> II. <13ASIC_MODS> I 
<:l>ROC MODE> 

<j3ASIC_MODt> II= INT I REAL I COMPL I CHAR I BOOD I FORMAT 

qROC_MODJ!> I •.= PROC <QPTIONAL_PARAMETER_LIS't> 

~orO> 

<1JOill> I I= <Q10DP, 

VOID 

~PTIONAL_PARAMETER_LISt> II= ( <!10DE_LIST_PROPEP ) 

.EMPTY 

~ODE_LIST_PROPEit> I I= ~ODE_LIST_PROPE!f:xWODE> 

<1JODJ!> 

* "L J L J" may be abbreviated "L,J• 
"L J L J L J" may be abbreviated "L ,J", etc. 

**.EMPTY represents the empty string. 

Figure 1. Formal Grammar for Modes 
Allowed in the Subset 

12 
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identifier symbol (or a unit which returns an object of mode 

procedure) followed by the actual parameters (i.e., 

A{ 2. 0, "the string")). The appearance of an object of mode 

PROC REAL (no parameters) in the elaboration of the program 

does not always require its invocation. For example, if the 

assignation as=b occurs where a is mode REF PROC REAL and b 

is mode PROC REAL, then the object which is to be assigned 

is the routine {b) which is specified by the right hand side 

of the assignation, not the value yielded by a ca·ll to that 

routine. The proper processing of procedured modes which 

have no parameters is the function of th.e deproceduring 

coercion. When the coercion deprocedure is applied to a 

mode, the resulting action is to invoke the procedure being 

coerced. 

The dereferencing coercion ·causes an object of the mode 

REF amode to become an object of mode amode. That is, it 

causes the object to be modified, to possess the value to 

which it refers. For example, an object of the mode 

REF REF BOOL is a pointer which refers to a BOOL variable. 

If this mode is dereferenced, the result is the name (ad­

dress) of the logical variable to which it refers. The mode 

of this new object is REF BOOL; if this mode is derefer­

enced, the result will be the value (TRUE or FALSE) which is 

possessed by the variable. 

If a value of mode REAL is required and a value of mode 

INT is supplied, then in the proper syntactic positions the 

INT value will be widened to become a value of mode REAL. 
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Mode REAL may be widened to mode COMPL,.: Widening may only 

be applied to a value of the model it may not be applied to 

a variable. ·However, any syntactic position which allows 

widening also allows dereferencing. Thus, if a variable or 

pointer is provided, it will be dereferenced until a value 

is obtained. 

Rowing allows a value of mode CHAR to become a value of 

mode ~ _7 CHAR or a name of mode REF CHAR to become a name 

of mode REF ~ _7 CHAR. This enables a programmer to use a 

scalar value (or name) in some positions where a multiple 
-

valued object is required. A prime example of this is where 

an object of mode CHAR is to be assigned to a variable of 

mode REF STRING (mode STRING is equivalent to mode z-_7 

CHAR). The CHAR value is rowed to become mode ~1al_7 CHAR; 

then the assignation may take place. This coercion is re-

quired because the denotation "A" is a mode CHAR value and 

it is often necessary or desirable to assign a GHAR of this 

type to a STRING variable. Another use of rowing is in pa­

rameter passing where a procedure of mode PROC (~ _7 INT) 

REAL is provided a scalar INT value as an actual parameter. 

The INT value will be rowed and the resulting "multiple" 

value will be supplied to .the procedure. 

Voiding is used when the ,object yielded by some piece 

of code (such as, a routine or unitary clause) is to be 

discarded. There are three casesa 

1) The object .is of mode REFi PROC moid (moid = amode 

or VOID) and the name was not yielded by a 
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confrontation (assignation, identity relation' or 

cast). 

2) The object is of mode REFi PROC moid; however, its 

value was yielded by a confrontation. 

3) The object is not of mode REFi PROC moid. 

In case 1 the object is dereferenced i times, then deproce-

dured; the resulting value from the routine invocation is 
' then voided. In-cases 2 and 3 the mode is simp~y changed to 

VOID and any value is discarded. Figure 2 shows examples of 

the 3 cases and describes the actions to be taken. 

Determining the 1Proper Coercion Sequence 

There are- three things which uniquely determine the 

coercion sequence to be applied to a value of some modea 

1) The a priori mode of the available object (coer-

end). 

2) The a posteriori mode of the object required by 

the coercion (coercee). 

3) The syntactic position (or sort) of the object. 

There are five sorts of syntactic position, they area 

strong, firm, meek, weak, and soft. Figure 3 shows, for 

each sort the valid coercions which may be applied and also 

some of the language constructs which give rise to each 

sort. Figures 4 through 7 are state diagrams which show 

the valid coercions allowed in the subset. In order to 

determine if it is possible to coerce mode A to mode B given 

a particular syntactic position, it is necessary to select 
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Case 1--Mode REFi PROC moid (not yielded by confrontation). 

PROC XI= REALI yl= 2.0 * y; 

x; 

The mode of x is REF PROC REAL, because 
of the last ";" (occurring in the 2nd 
line),,the name is to be voided. 

ACTIONS 
Step 1--Dereference to mode PROC REAL. 
Step 2--Deprocedure - The routine 

"REALI ys= 2.0 * y~ is now 
invoked. 

Step 3--The real value yielded is 
discarded. 

Case 2--Mode REFi PROC moid (yielded by a confrontation). 

PROC REAL x; # x is of mode REF PROC REAL # 

XI= REALI y•= 2.0 * y; 

ACTIONS 
Step 1--The value of mode PROC REAL is 

assigned to the variable x. 
Step 2--Step 1 yields an object of mode 

REF PROC REAL 
discard the result. 

Case 3--0bject not of mode REFi PROC moid 

REF REAL x; 

REAL y; 

# x is of mode- REF REF REAL # 

# y is of mode REF REAL # 

XI= y; 

ACTIONS 
Step 1--Assign the name y to the 

pointer x. 
Step 2--Void the pointer of mode 

HEF REF REAL. 

Figure 2. Example of the Three Cases 
Which Arise in Voiding 
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the appropriate diagram and beginning in state 1 follow the 

available arcs modifying the mode according to the label of 

the arc followed. 

Sort 

Strong 

Firm 

Meek 

Weak 

Soft 

Coercions 

De procedure 
Dereference 
Row 
Widen 
Void 

De procedure 
Dereference 

Deprocedure 
Dereference 

Deprocedure 
Dereference 

De procedure 

Constructs 

Actual parameter, the 
enclosed clause of a 
cast, the right hand 
side of an assignation, 
statements. 

Operands in a formula 

Units in FROM, BY and 
TO clauses, and trim­
scripts , 

Primary of a slice 

Left hand side of an 
assignation, one side 
of an identity relation 

Figure J. Coercions Allowed for Each 
Syntactic Position 

For example, assume we are to coerce the mode REF PROC REF 

REAL to the mode REAL and further assume we are in a firm 

position. First, we select the ,graph of Figure 6 (sort is 
\ 

Firm), the coercion sequence is as follOWS I 

REF PROC REF REAL (a priori mode) 

PROC REF REAL Ml to M2 (dereference) 

REF REAL M2 to MJ (deprocedure) 

REAL M3 to M2 (dereference) 
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It is therefore possible to coerce mode REF PROC REF REAL 

to mode REAL in a firm position. 

* 

Deprocedure 

Figure 4. Soft State Diagram 

* Dereference 

* Dereference 

-----

Dereference - means amode may not be coerced from REF amode 

Figure 5· Weak State Diagram 

Notes that in many states of the diagrams there is more than 

one possible arc to traverse from arty node. This ambiguity 

can always be resolved by examination of the a priori and a 

posteriori modes (the coercion algorithm is shown in 

Appendix B). 
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Figure 6. - Meek and Firm State Diagram 

-------~-

Figure 7• Strong State Diagram 
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Balancing 

Conditional clauses, case clauses, and serial clauses 

which have multiple completion points (EXIT symbols) provide 

the capability of .yielding values from different parts of 

the clause. For example, the conditional clause 

IF p THEN x + 1.0 ELSE 4.0 FI 

can return a value of x + 1.0 if pis TRUE or a value of4.0 

if p is FALSE. It is -required that all alternative yields 

of a clause be of the same mode. Balancing provides the 

automatic mechanism for determining the mode of the yield 

of such a clause. In order to achieve a balance, it is 

necessary to know the mode of each of the alternative yields 

of the clause. The syntactic position of the clause is also 

required since the coercions applied to at least one of the 

alternatives must be only those coercions allowed upon a 

coercend in the same syntactic position as the clause. All 

other alternative yields in the clause are assumed to be in 

a strong position. 

Appendix B contains a balancing algorithm for modes of 

the subset. The essential method of the balancing algorithm 

is to compute a target mode m = REFi ~ _7j REFk BASIC_MODE. 

Where i, j, and k are the maximum values of the correspond-

ing fields in all of the alternative yielding modes. The 

computed value of BASIC_MODE is the widest mode of each of 

the constituent BASIC_MODES wit~ the BASIC_MODES arranged in 

the ~ollowing order (widest last)• PROC, BOOL, FORMAT, 

CHAR, INT, REAL, and COMPL. After the target mode is 
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computed the algorithm attempts to coerce all of the alter­

native modes to the target mode, recording the greatest 

coercion strength required. If all alternatives can be 

coerced to the target mode and the smallest strength coer• ;;· 

cion is less than or equal to the coercions allowed for the 

syntactic position of the. clause, then the clause is bal­

anced. If failure was due to the strength of the required 

syntactic position, then the clause cannot be balanced. If 

failure was due to failure of one or more of the modes of 

the alternatives to be coerced to the target mode, a new 

target mode is computed by applying either dereferencing or 

deproceduring to the target mode and the process is restart­

ed. It should be noted that due to the manner in which the 

target mode was selected th~re is only one possible coercion 

which can be applied to it. If no coercion can be performed 

upon the target mode the balance fails. 

This description of the balancing algorithm is over­

simplified and does not account for the correct treatment 

of procedured modes. The balancing algorithm has been im- _. 

plemented_ in PL/I. Appendix C contains some examples of 

balancing using the PL/I implementation. 



CHAPTER III 

SYMBOL TABLE STRUCTURE 

Original Structure 

The most restrictive data structure of the previous 

versions of the ALGOL 68 ~ompiler at Oklahoma State Univer­

sity was the symbol table. In order to reduce processing 

time the decision was made to retain the symbol table in 

internal memory (except for superceeded e~tries). Since the 

original version was implemented on an 8K machine, only a 

minimum amount of information about a variable could be 

maintained. 

The logical structure of the symbol table consisted of 

three partsa the active symbol table, inactive symbol table 

and the block nesting table. Each unique non-keyword symbol 

was assigned a value for its internal identifier. The val­

ues assigned were integral values which began at minus one 

and decreased by one for each new symbol. The number which 

has been assigned to a symbol becomes ite internal identifi­

er and the key to the symbol table. A symbol table entry 

consisted of two words• word one contained the mode of the 

variable and word two contained the block for which the 

identifier was declared. The mode was encoded in the word 

and was of the form 10 * R + M where R is the number of rows 

22 
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in a rowed mode and M is the basic mode of the variable. 

Figure 8 contains the allowable basic mode codes used in the 

previous version of the compiler. 

Mode Number Mode Internal Coded S;ymbol 

1 INT 409 

2 REAL 411 

3 COMPL 401 

4 BOOL 405 

5 CHAR 406 

6 STRINy* 404 

7 LABEL 

8 PROC 410 

*Not used 

Figure 8. Allowable Modes for Previous 
Versions 

When a declaration for a symbol was encountered in a 

new block a symbol table entry which was made for a previous 

instance of that symbol needed to be saved. For example, 

given the following segme'nt of code 1 

(1) BEGIN 
' 

(2) INT a 
\ I 

I 

(3) BEGIN 
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(4) REAL a 
• 
• 
• 

( 5) END 

(6) END 

after line 4 has been parsed a new declaration for the 

symbol a was indicated. Provisions for saving superseded 

declarations in new blocks and restoring the old symbol 

table entries upon block exit were made in the overflow 

symbol table. The overflow symbol table was physically 

located on a file (the simulated program memory file on 

disk). As a new declaration was encountered the old symbol 

table entry was saved. The format of the overflow symbol 

table entry wasa current blOck number, identifier 

number, mode of the old. declaration, and block in which the 

old declaration was made. 

The block nesting table was created prior to the rec­

ognition of declarations and was physically located at the 

end of the active symbol table area in main memory. , Each 

block in the program was numbered according to the position 

of its beginning symbol. The block nesting table:consisted 

of the humber of the block whic.h immediately surrounded the 

current block as shown in Figure 9·· 

Revised Structure 

It was necessary not only to expand the symbol table 

entries to retain more information, but the basic table 

maintenance method had to be revised, if a·separate pass 
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to recognize declarations was to be made. With the previous 

symbol table structure when a block was exited all symbols 

which had been declared in that block were lost. A more 

permanent method was necessary in order to retain the infor­

mation for code generation. 

( 1) BEGIN Block Containing Block 

(2) BEGIN 1 0 

(J) BEGIN 2 1 

END J 2 

(4) BEGIN 4 2 

END 

END 

END 

Figure. 9· Example of Block Nesting 
Table 

The current symbol table comprises three partsa a tree 

of the source program structure, identifier lists and mode 

table. The symbol table is physically located on disk which 

is accessed through a .softw~e implemented paged memory sys­

tem. The program structure tree is a binary tree which is 

built during the declaration recognition phase. This data 

structure replaces the block nesting table and represents 

the various ranges included in the ALGOL 68 program. The 

node used for the tree structure is shown in Figure 10. 
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successor predecessor 

1 3 

open ~dentifier last next not label r.ot 
symbol list symbol symbol, used encount-used 

ered 
7 8 9 10 11 12 1 -1 3 6 

Figure 10. Tree Structure Node 

A ~escription of the uses of each field in the tree 

structure node follows. The successor, right link and pred­

ecessor fields are used to maintain the bipary tree struc­

ture. Figure 11 shows the binary tree_ st~ucture generated 

for an example program, along with a representation of what 

the tree pointer fie~ds would contain. Notice in Figure 11 

that two blocks which are on the same level (such as 2 and 

3) are connected by right link pointers. When the nesting 

level increases, a successor pointer is used. The predece&• 

sor pointer provides the same information as the old block 

nesting table provided previously. 

The visited field is used to provide an easy method for 

traversing the tree structure after it has been built and in 

the cross reference listing phase. The field is initial­

ized to zero and is increased by one when the current node 

has been processed. 

The fields nameda comma count, then count, and open 

symbol type have the purpose of determining the type of 

enclosed clause this symbol table node represents. 



( 1 ~ BEGIN y 
(2) BEGIN 

END 0·-0 
(3) IF I 
(4) THEN G}----0 
(5) ELSE 

FI 
Right Pre de-

END Node Successor Link cessor 

1 
I 

2 I - J -

2 3 I 1 - I 
I 

3 4 - 1 

4 - 5 3 

5 - - 3 

Figure 11. Example Program Structure 

Figure 12 provides a table which shows how the data from 

these fields are combined to determine the clause type. 

The identifier list field points to the head of the 

identifier-list associated with this block. If the field 
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is null (a minus one) then there·are no declarations in this 

range· and block entry or block exit instructions are not 

generated. 

The last symbol and next symbol fields are used in 

combination to determine in which syntactic position 
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the enclosed clause appears. Figure 13 shows some of the 

combinations which are used to signal the various positions. 

Comma Count Then Count Open Symbol Type Clause 

not used 

not used 

0 

0 

>o 
>o 

~0 

Last Symbol 

; or ( 

r or ( 

; or ( 

OPERATOR 

•= 

0 

O, 

0 

>o 
0 

>o 
not used 

Figure 12. 

1 (up to symbol) 

( 

WHILE LOOP CLAUSE 

DO LOOP CLAUSE 

( SERIAL CLAUSE 

( CONDITIONAL CLAUSE 

( COLLATERAL CLAUSE 

( CASE CLAUSE 

C TRIMSCRIPT 

Determining Type of an 
enclosed Clause 

Next Symbol Sort 

; VOID 

•= SOFT 

OPERATOR FIRM 

J or ) FIRM 

; or ) STRONG 

J or , MEEK 

) (same as the context of 
the surrounding range) 

Figure 13. Determining the Context of 
an Enclosed Clause 



The label encountered field is initialized to zero; 

when a label is inserted in the identifier list this value 

is set to a one. After the label encountered field is a 

one, it is not possible for a user declared symbol to be 

placed in the. symbol table for the current range, although 

a temporary variable may be inserted in the table at any 

time. 

Identifier List Nodes and trte Mode Taple 
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Figure 14 shows the fields used in the identifier list 

nodes. One node is created for each identifier declared in 

a range. 

Identifier Mode ' Statement Cross 
Number Table Number Reference 

Number Identifier List 
Defined Pointer 

1 ·2 3 q. 

I 

I 
' Link Reserved Reserved Not 

To Next 
I 

Used 
Identifier 
Node I 

I 
I 

5 6 7 8 

Figure 14. Identifier List Node 



A description of each of the fields comprising the 

identifier node follows. The identifier number field is 
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assigned during the lexical analysis of the source program. 

The identifier list nodes are maintained in descending se­

quence of the identifier number. 

The mode table number is the index of the mode table 

entry which defines the mode for this identifier. The 

statement number and cross. reference list pointer fields 

provide data for a cross reference listing which the pro­

grammer may specify as an optional output of the compila­

tion. The two reserved words (5 and 7) are for the later 

addition of operator declarations to the compiler. 

The mode table is physically located in the symbol 

table disk file. The mode table is assigned contiguous 

storage in order to allow fast access. Several standard 

modes are loaded into the table to provide compatability 

with existing mode references. The mode table entry for a 

mode of the form REFi ~ _7j REFk BASIC_MODE is shown in 

Figure 15. The mode table entries for modes of the form 

REFi ~ _7j REFk PROC (MODES) moid are fiven in Figure 16. 

REFs before 
rows 
(=i) 

Number of
1

.REFs after 
rows rows 
(=j) (=1t) 

Negative of the 
BASIC MODE number 
(see Figure 8) 

Figure 15. Mode Table Entry for Modes 
of the Form 
REF1 ~ _7J REFk BASIC_MODE 



REFs 
before 
rows 
(=i) 

1 
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-
Number REFs Linked list of i Mode number 
of rows after -8 mode numbers I of the 
(=j) rows of each yielding 

(=k) parameter i mode 
2 3 4 5 6 

Figure 16. Mode Table Entry for Modes 
of the Fo~m . 
REF1 f: JJ REFk PROC (MODES) moid 

Declarations of the form MODE.A =REF B (where B is a 

user defined mode or a basic mode) are allowed, the general 

form for a mode of this type is REFi f: Jj REFk MODE_NAME. 

Figure 17 displays the mode table entry for this type of 

mode .. d~plaz:oation. 

REFs Number REFs Negative of Linked I Mode 
before of after basic mode list of number 
rows rows rows number or a node of * (=i) (=j) (=k) pointer to numbers yielding 

another mode of each mode 
table entry parameter 

1 2 3 4 5 6 7 

*Pointer to the list of symbols which constitute the actual 
: row bounds. 

Figure 17. Mode Table Entry for Modes 
of the Fo:r:m 
REF1 ~ _7J REFk MODE_NAME 



CHAPTER IV 

FEATURES OF THE REVISED OKLAHOMA STATE 

UNIVERSITY ALGOL 68 COMPILER 

Introduction 

This chapter presents a description of the new and 

revised features of the ALGOL 68 compiler implemented as 

a part of this thesis. The new features are conce'rned 

generallywith the extended, mode handling, capacity which 

was described in Chapters II and III. The original Oklahoma 

State University ALGOL 68 Compiler was based upon the def­

inition in the original defining document of ALGOL 68 (4). 

The designers of the original definition felt a need to re­

vise it slightly after the Oklahoma State University imple­

mentation effort had begun. Since it was necessary to add a 

new pass to the compiler (see Chapter V) in order to recog­

nize properly declarations, the syntax recognized by the 

revised version is that of the revised report (5). This 

chapter also describes those features which have been mod­

ified to conform to the revised report. Appendix D contains 

a description of the grammar recognized by the revised ver­

sion of the Oklahoma State University ALGOL 68 Compiler. 

When a capitalized word appears in this thesis surrounded by 

•< 11 and ">~~ (such as <1JNI'f> ) , it refers to a meta-symbol 
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in the· grammar described in Appendix D. 

Changes to Declarations and Modes 

The previous v~rsions of the compiler required that all 

declarations in an <::::l;NCLOSED CLAUSE> preceed any other 

<UNIT> s in the clause. This restriction was the result of 

a size limitation imposed upon the original implementation. 

With the addition of a new pass to :recognize declarations, 

this ·restriction is now removed. ~he only restriction im­

posed upon mixing<UNI't> s and declarations in an <::ENCLOSED 

CLAUSE:>is the ALGOL 68 language restriction that all dec­

larations must preceed the first label in a<SERIAL CLAUSE>. 

Previous versions of the compiler- seve-rly restricted 

the types of initialization expressions and row-bounds 

expressions which could' be used in declarations. These 

expressions were limited to denotations, simple variables 

and simple variables preceededby a monadic plus or a mon­

adic minus operator. The current version allows full uni­

tary clause ( <l:JNI':C> ) facilities to be used both in row­

declarers and in initialization of variables. 

A limited form of mode ·declarations has been implement­

ed for this thesis. A mode declaration allows the program~ 

mer to define a symbol to represent a user defined mode. 

The programmer may then use the symbol to stand for the 

newly defined mode in declarations, casts, and routine 

texts. Figure 18 provides some examples of valid mode 

declarations. 
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'Declaration Defined Mode 

MODE .A =LiJ INT L J INT 

MODE .B = REF .A REF L J INT 

MODE .c = CHAR; CHAR 

MODE .D =LiJ .c L J CHAR 

MODE .E =LiJ .D J:,J CHAR 

Figure 18. Some Valid Mode Declarations 

A symbol which is used to represent a mode in a mode 

declaration must be a stropped identifier. A stropped 

identifier is a standard identifier immediately preceeded 

by one of the stropping characters ( ;·or-··). The symbol 

.A is distinct from the symbol A and the two symbols may 

not be used interchangeably. 

There are three important implementation restrictions 

upon mode declarations• no mode declaration may contain its 

own mode indication (symbol which stands for the mode), the 

developed mode must be a legal mode as defined for this 

implementation (see Chapter II), and no mode indication may 

be used before it is defined. Examples of mode declarations 

violating the first restriction area 

MODE .A = REF .A and 

MODE .B = PROC (.B) REAL. 

This restriction is consistant with full ALGOL 68 when the 

mode indication is not shielded within a struct or a union 

(this is not yet implemented). 



An example of a .mode declaration violating the second 

restriction is• 

MODE .A = REF ~i_7 !NT, 

.B = ~jJ .A. 
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The developed mode for this example would be ~j_7 REF ~i_7 

INT, but this implementation does not allow any symbols to 

occur between two row-of symbols ("~ J"). 
The third restricti~n is violated by a mode declaration 

of the follwing type• 

MODE .X.= REF .y, 

.y = REF INT. 

The effect of this particula± declaration may be achieved by 

simply reversing the order of the symbol declarations 

MODE .y =REF !NT, 

.x = REF .y. 
This restriction is necessary because the mode definitions 

are not recognized prior to the declarations being parsed. 

The previous versions of the compiler made no distinc­

tion between identity declarations and variable declara­

tions. This allowed (!NT a = 3; a•= 2) to be accepted as a 

valid prQgram. The revised version will correctly identify 

the assignation aa= 2 to be in error. 

Procedure declarat,ions which utilize procedure vari­

ables, row-of-procedure variables and constants may be made. 

In addition, the pre-existing facility of procedure con­

stants remains available.· Figure 19 displays an example of 

how a procedured variable may be declared, assigned 



routines, and invoked. 

( 1 ) BEGIN 

(2) PROC (REAL) REAL trig; 

(3) INT SWJ 

(4) REAL nbr; 

( 5) read ( ( sw ,nbr)); 

(6) trig 1= IF sw = 0 THEN sin ELSE cos FI; 

(?) print (trig(nbr)) 

(8) END 

Figure 19. Use o.:f a Procedure Variabl,e 

Line 2 declares the identi:fier "trig" to be of mode 

REF PROC (REAL) REAL· Trig is a variable capable of pos- ~ 

sessing a routine. The :function of the routine is not de­

:fined; however, any routine which is assigned to trig must 

have one REAL formal parameter and it must return a REAL 

result. Lines J, 4, and 5 declare two variables (sw and 

nbr) and input values for those variables from the Standard 

Input file (STANDIN). Line 6' is an assignation, the right 

hand side o:f this assignation is a conditional clause. If 
I 

the value of sw is zero then the routine sin (mode PROC 
' 

.(REAL) REAL) will be yielded by the' clause; the routine 

cos (mode PROC (REAL) REAL) will be yielded, otherwise. 

Since the ·modes o:f both alternative yields are identical, 
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the clauf?e will return a value of mode PROC (REAL) REAL 

which is either the routine sin or cos depending upon the 

value of sw. The yield of the clause is compatible with the 

left hand side of the assignation (the variable trig) so 

that the routine yielded by the conditional clause is as­

signed to the procedure,variable trig. Line 7 causes the 

procedure variable trig to be invoked with an actual param­

eter value of nbr. The action taken (which routine is 

elaborated) depends upon which routine was assigned to trig · 

in line 6. 

Row-of procedure constants and var~a9les were included 

to maintain the orthogonality of the ALGOL 68 language. 

That is,· given that amode is a valid mode then L J amode is 

also a valid mode (this is not necessarily true in this 

subset). A value of a L J amode mode consists of a vector 

of amode values. PROC (REAL, INT) BOOL is a valid mode; 

therefore, a programmer might desire to declare an object of 

mode L J PROC (REAL, INT) BOOL or REF L J PROC (REAL, INT) 

BOOL. The valu.e of a row-of-procedure object consists of a 

vector of routines, each assigned to an element of the row­

of-procedure constant or variable. Figure 20 provides an 

example of a situation where a row-of-procedure constant is 

used. Line 2 declares the;identifier "func" to be of the 

mode L _7 PROC (REAL,REAL) REAL. The virtual parameters are 

required on all declarers of row-of-procedure constants and 

variables because there is no <.ROUTINE TEX'r.> for row-of­

procedure modes. Lines 3 through 6 comprise a special 
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clause called a collateral clause. The collateral clause 

is being used here as ~'row display. The collateral claus'e 

is discussed below. At this time, the a~sumption that the 

collateral clause yields a vector of routines which ~re 

assigned to the constant func is sufficient. Line 12 causes 

the jth routine in the row~of-procedure variable to be in­

voked, passing as actual parameters the REAL values possess-

ed by the variables a and b. 

(1) BEGIN 

(2) L J PROC (REAL, REAL) REAL func = 
(3) ((REAL x,y) REAL. 1 x + y, 

(4) (REAL x,y) REAL 1 x - y, 

(5) (REAL x,y) REAL 1 x * y, 

(6) (REAL x,y) REAL 1 x / y); 

(7) INT j, 

(8) REAL a,b,CJ 

(9) WHILE read (j); 

( 1 o ) j ') o and j < 5 

(11) DO read ((a,b)); 

(12) 

(13) " 

cr= func £"jJ (a,b); 

print ((j,a,b,c)) 

(14) OD 

(15) END 

Figure 20. A Program Example Using a 
Row-of-Procedure Constant 
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Collateral, Conditional and Loop Clauses 

A collateral clause is a clause which returns a value 

for each of the comma separated <fJNI':t> s in the clause. The 

value returned is treated as a value of a rowed mode (row 

display). The mode of the row display is normally deter­

mined by the balance of the clause; ho~ever, due to imple­

mentation restraints the balance mode of a collateral clause 

is assumed to be the same as the mo~e of its first unit. 

ALGOL 68 permits collateral clauses to be used in strong 

positions. Figure 21 shows some of the valid uses of 

collateral clauses. 

Initializing a ~ _7 INT variable 

~5_7 INT aa= (1,2,3,4,5); 

The right hand side of an assignation 

aa= (2 * a ~1_7, 3 *a ~2_7, a ~3_7 +a ~4_7,0,0); 

As an actual parameter of a call 

PROC sum : (~ _7 REAL x) REALa 

(REAL tote= 0; 

FOR i TO upb x DO tot + a= x ~i_7 OD; 

tot); 

print (sum (1.2, 2.3, J.4)) 

#value printed = 3·9# 

Figure 21. Al·lowable Uses of the 
Collateral Clause 
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Futher restrictions which are placed upon row displays area 

they must not be used as actual parameters in calls to 

transput routines (print, put, putf, etc.), nor can they be 

nested to obtain row-row mode values. 

The ·syntax for a <CONDITIONAL CLAUSE> has been changed 

in this implementation to·· allow a <SERIAL CLAUSE!> in posi­

tions where only a list of unitary clauses was previously 

permitted. As an example, the following conditional clause 

would now be valid• 

IF p THEN INT a; read (a); a ELSE 2.0 FI. 

There are several ranges .defined within conditional clauses, 

they area between the IF and the FI, the THEN clause, the 

ELSE c-lause, and between an ELIF and its corresponding FI. 

Figure 22 displays the ranges of two example conditional 

clauses. 

The changes made to the loop clause structure represent 

changes which make the revised version and the previous 

versions of the compiler incompatible. The syntax according 

to the original report allowed a single<jpNit> as the object 

of the loop clause (4). The revised report introduced the 

symbol OD to match the symbol DO and allows a<$ERIAL 

CLAUSS>as the object of the loop (5). New syntax allows 

the following loop clause• 

TO 5 DO REAL a; read (a); sum+ a= a OD 

The previous version would have required the following 

statements to achieve the same result• 



TO 5 DO BEGIN 

END I 

REAL a; 

read (a); 

sum + r=·a 

IF scl THEN sc2 ELSE sc3 FI 

IF scl 

THEN ec2 ELSE scJ 
_:::. 

,_!t ~· 
Inner ran es-g Outer ran !:e'' g 

IF scl THEN sc2 

FI 

IF scl 

l'HEN sc2 

Figure 22. 

ELIF sc3 

THEN sc4 

ELSE sc5 

ELIF sc3 

Ranges of Two Conditional 
Clauses 

41 



42 

Along with the new syntax is a new definition of ranges 

in the loop clause. Figure 23 illustrates this new range 

definition. 

FOR 
identifier 

WHILE 

FROM unit BY unit TO unit 

<SERIAL ClkAUSE> 

I DO <SERIAL CLAUSE!> OD 

Figure 23. Ranges in the Loop Clause 

The identifier defined in the FOR part can be accessed only 

in the WHILE and DO parts. Any declarations made in the 

WHILE part may be referenced in the DO part. The syntax 

accepted by the new version will also allow a loop clause to 

be the outermost range in the program i.e., the program 

DO SKIP OD is correct; however, the lexical analyzer will 

not accept this since it does not treat loop clauses as 

ranges. Due to time constraints this was not changed. 

Identity Relations and Casts 

Identity relations allow the testing of two REF amode 

variables to see if they refer to the same location (have 

the same name). There are two identity relation 



operators• the IS relator (a=a) and the IS NOT relator 

(a•=a). Given the declarations 

REAL x a= ).14, y a= J.l4; 

the identity relation x •=• y yields false·because the ad­

dresses (names) of x and·y are different even though the 

values contained in those addresses are the same. It is 

not possible to use an identity relation between variables 

of two different modes (after balancing). Figure 24. is a 

sample program which displays the features of ide.nti ty 

relators. 

BEGIN 

REF !NT a, !NT b ·a= 3, c a= 3; 
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a a= b; #'a' now refers to the location of 'b'# 

END 

a •=• b; #yields true# 

a 1-, = 1 b J #yields false# 

print (a); #prints the value J# 

a •=• c; #yields false# 

a 11 =a c; #yields true# 

a = c #yields true# 

Figure 24. Some Examples Using 
Identity Relators 

A cast allows the programmer to change the strength of 

the position of an enclosed clause. The enclosed clause of 



a cast is a strong position; therefore, any legal coercion 

may be applied to the value yielded by the enclosed clause. 
. . 

A cast is created by a mode indication followed by an en-

closed clause .such asa REAL (1 + 2). ·The enclosed/clause 

will return an integral result which will then be widened 

to a real value (regardless of the available syntactic 

strength). 



CHAPTER V 

PLANNING FOR THE IMPLEMENTATION 

Introduction 

The planning for this implementation comprised t 1hree 

stepsc 1) overall familiarization with the exist~ng com­

piler, 2) designing th~ mode facility to be implemented, 

and 3) devising the syntactic analysis needed to recognize 

the program block structure. 

Familiarity with th~ existing compiler was obtained by 

examining the theses of Jensen (1), Berry (2), and Eyler (J) 

and also by examination of the compiler code. 

Modes 

Planning for mode implementation required two major 

decisions, they werea selecting the subset of modes to be 

allowed and designing algorithms to perform the required 

mode manipulations and designing the symbol and mode tables. 

An objective of this thesis is to introquce an enhancement 

in the mode handling facilities for the Oklahoma State 

University ALGOL 68 Oompiler. This was to be. done without 

requiring a major rewrite of the code generation and inter­

pretive execution phases of the compiler. The existing code 

relies heavily upon the codes used for the modes (see 
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Figure 8); therefore, any changes made had to preserve these 

numbers. This was attained by using the position of the de­

fining mode entry in the mode table as the mode symbol and 

entering the modes listed in Figure 8 into the first eight 

locations in the mode table. With this convention a real 

mode, for example, still is represented by the number·· 2. 

The mode subset was selected to allow REF amode entries 

as the major enhancement. This feature along with the 

orthogonalization of modes is a suitable beginning to the 

task of adding a full mode handling facility to the com­

piler. 

After designing the subset of modes the compiler would 

accept, algorithms which would perform.the functions ofa v 

coercion, balancing, and determining mmdes in assignations 

were devised. These algorithms were implemented in PL/I, 

and tested to insure that they were acceptable. The 

algorithms coded in ALGOL 68 can be found in Appendix B and 

test results of the PL/I implementation can be found in 

Appendix c. 
The symbol table structure was chosen because this same 

type of symbol table was implemented for a class project. 

It is versatile enough to handle the block structuring of 

ALGOL 68. The symbol table structure ~lso figures heavily 

into some recommendations for future enhancement of the 

compiler (see Chapter VII). 



Syntactic Analysis 

In order to recognize declarations in a pass prior to 

code generation, it was necessary to perform enough syntac­

tic analysis to determine the blocking structure of the 

program. Several attempts where made at devising a grammar 

for the language, that would also be acceptable to the 

SLR(1) table generator developed by Joseph Gray-(19). After 

substituting some "terminal symbols" for some syntactic 

entities which were not i~ fact terminals (and invoking 

other parsing algorithms to recognize these "terminal 

symbols"), ~twas possible to generate a grammar which would 

perform the required analysis. The resulting parser was; 

however, too large to be used practically, given the size 

restrictions imposed upon the compiler. It would have been 

possible to have used sparse matrix techniques to reduce the 

size of the parsing tables from 15,000 words (0J150 states 

by 100 symbols) to about 3400 words but considering the size 

of the semantic routines, the author felt it was impractical 

to implement on a computer with 8K words of memory. 

The syntactic analysis used is essentially a hand coded 

push down automaton which is similar to the methods used in 

the other phases of the compi~er. 



CHAPTER -VI 

IMPLEMENTATION 

General Struct~re 

In this chapter the modifications which have been made 

to the compiler are discussed. The compiler is a four pass 

compile'r with an interpre~ive execution phase (Phase 5). 

Figures 25-JO are diagrams of the flow of data through the 

phases of the compiler. The flow of control for the com­

piler is Phases 1. 2. J, 3.5, and 4. Execution is accom­

plished by Phase 5 which may be directly invoked (using 

actual pseudo machine code) or executed after compilation. 

Phase 1 reads the aJOB card, performs analysis of the 

options selected by the programmer, prints the compiler 

options and sets various flag fields to be used by later 

phases of the compilation. 

Phase 1 Option l 
Listing I 

..... --~----1 
...... ____ .. ~""" ............ ~· 

Figure 25. Phase 1-Job Card Analysis 
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Phase 2 performs a lexical analysis of the ALGOL 68 

source program. Output consists of one integer per symbol 

in the source program. The only key words recognized as 

reserved symbols at this point are BEGIN, END, IF, FI, CASE, 

and ESAC. A source program listing is printed if it was 

requested on the job card. Any denotations encountered 

during the lexical analysis are converted to internal form 

and stored into the simulated program memory for Phase 5· 
' 

A table of all symbols wh1ch were encountered in the lexical 

analysis is also passed to Phase 3 in common storage. 

Phase 2 G6L6y· urce 
---·-

·--·----··- ... ·- I 
i I 
' I 

(simulated Program 
Memory 1\ 

{Denotations) --· 

/coded A tomi~---17 
Unit File l 
(Source Program) 
\ ~ 

Figure 26. Phase 2-Lexical Analysis 

Phase 3 performs two functions• first the table of 

symbols (received from Phase 2) is examined and all key­

word symbols are identified, n~xt a pass is made through the 
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source code file updating the keyword symbol numbers to re­

flect their special values (see Jensen (1)). The identifier 

table is also compressed (removing keyword symbols) and the 

corresponding changes are made to the source code. 

The second part of Phase J changes a colon symbol which 

is preceded by a mode declaration to another code, to indi~ 

cate that a routine follows. The left parenthesis of a 

formal parameter pack (if one exists) also is changed to a 

special symbol at this time. As a final function Phase J 

writes the variable name symbols to a disk file for debug 

output purposes. 

Source 
Program 

\ ____ _ 

Figure 27. 

...../rdentifie1. 
~File 
1 \ ! '--- ---

Phase J ~~ 
~ 1Progr~m . I 

. Error~ 
l ____ __. 

Phase J-KeyWord Re,cogni tion 

Phase 3•5 is an entirely new pass written for this 

project. It has the primar~ function ofrecognizing decla­

rations and building the symbol table entries for these 

declarations. Phase 3·5 also ~alyzes the blocking struc­

ture of the program in order to build the symbol table tree 
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structure. The output code file has all declara.tion symbols 

deleted. This phase modifies some other symbols in order to 

make Phase 4 parsing easier (such as u,sing. separate symbols 

for each different meaning of the colon symbol). Some 

object text is included as a part of the source text. This 

object text is never seen by the main section of Phase 4, 

but instead is placed immediately in simulated·program 

memory by the Phase 4 input routine. 

·- ;I Source 
Program; and 
Object text \ 

-· --·-- ·-· ·-' 

! ,- . YError i 
I Messages 1 

~ 
Figure 28. Phase 3·5-Declaration Recognition 

Phase 4 is the main syntactic recognition and code 

generation phase of the compiler. The input consists of the 

modified source text and symb~l table output from Phase 3·5· 

Output from Phase 4 consists of the generated object code 

and any applicable error messages. 

The code generated by Phases 3·5 and 4 consists of 

instructions defined for a pseudo machine. Phase 5 performs 

the simulation of the generated pseudo machine code. 
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Phase 5 may also be executed as a stand alone program which 

executes object code loaded from cards. 

;--~ Source 
Program and· 
Object Text\ 
'-------- _1 

I 
>i Phase 4 

(simulated · -~( 
~--~·Program Memory 

(Generated Code~ 

!Error . r 

~ 
Figure 29. Phase 4-Code Generation 

Phase 2 

Simulated, 
Program 

\Memory 

Phase 5 
-1 

Printed J 
Ou~-

Figure JO. Phase 5-Interpretive Execution 

Modifications Made to Phases 2 and J 

No modifications were made to Phase 1. Phase 2 
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modifications were concerned with stropping symbols. The 

symbols for.stropping (• and.) immediately preceeding an 

identifier symbol cause that symbol to be treated different­

ly from the same identifier symbol which' is not stropped. 

".ABC" is not the same as "ABC"; however, ".ABC" is equiva-

lent to "!ABC". Stropped identifiers may be used as mode 

indicants. Figure 31 is the finite state automaton used to 

recognize stropped symbols. 

Space 
• 

recognize REAL 
~~,denotation 

!---?>Stropped Symbol 

Alternative 
--------------~Representation 

for Quote Symbol 

Figure 31. Recognition of Stropped Symbols 

When a symbol is determined to be a stropped symbol the 

Code 617 is placed in the code file preceeding the identi­

fier number for the symbol. 

Phase 3 

Phase 3 modifications consisted of minor modifications 



to the keyword identification routine to identify correctly 

the additional symbols required to implement mode declara­

tions and modifications required by the revised report (5)· 
. . 

The additional symbols and their codes area 

Symbol 

OD 

MODE 

Code 

616 

62) 

The pass to update the source code after the keywo~ds 

have been recognized was rewritten completely in order to 

support five functional modifications• 

1) The keyword OD is recognized as the symbol which 

terminates a loop clause. 

2) The stropping symbol is removed 'from the source 

text if it precedes a keyword (.IF is equivalent to 

IF). 

J) If the colon symbol is immediately preceded by a 

mode indication then the colon symbol is a routine 

symbol. The source text is then scanned from right 

to left to find the opening parenthesis of the 

formal parameters pack (if one exists). After the 

open symbol has been found it is replaced by a 

special code (Code=47) so Phas~ 3·5 will be able 

to immediately recognize a routine denotation. The 

previous version of the compiler required routine 

denotations to occur only in PROC constant declara-

tions so this type distinction was not necessary 

(all routines were preceded by ·the symbol PROC). 



4) Previous versions of the compiler used this pass 

to identify labels, which were then ou~put on a 

special label file. Entries in the label file 

indicated the block number.of each label declared 
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in the program. Phase 4 needs this information at 

the beginning of a block in order to generate the 

allocate symbol instruction upon block entry. 

The revised version performs label identifi-

cation in Phase 3·5· Here labels are entered in 

the symbol table along with other declarations. 

Phase 4 then searches the identifier list associ~ 
I 

ated with a plock and generates the allocate symbol 

instructions. 

5) Phase 3 was also used to recognize the block struc­

ture of the prpgram in order to create the block 

nesting table. The need for this table has been 

eliminated with the inclusion of the tree struc-

tured symbol table. 

Phase 3·5 

This phase consists of four major sections of Codea 

Determine Nesting Level of ·the 

ALGOL 68_Source Program 

A hand coded push down automaton recognizes the nest­

ing level. of the program which is reflected in the tree 

associated with the symbol table. This section analyzes 



special symbols to determine Whether they are loop clause 

symbols or declaration symbols. If a symbol is in one of 

these two categories then the appropriate subprogram to 

parse the construct is called. If the symbol is related 

to the nesting structure of the program (except for loop 

clauses) it handles the processing directly. 

If the currerJ.t symbol is a symbol which terminates a 

unit (such as ; , I etc.) then the status of the parse is 

examined and control returns to the location in the analysis 

which was interrupted dtie to the need to recognize a unit. 

If a symbol does not fall into one of the previous classes 

it is simply copied onto the output file. 

Symbol and Mode Table Manipulation 

Subprograms are included which allow for.the manipula­

tion of the symbol table. These subprogram functions com-

prise a 

1) 

2) 

3) 

4) 

5). 

increasing the nesting level of.the tree structure 

(build the tree structure), 

decreasing the nesting level of the tree structure, 

inserting an identifier into the symbol table, 

searching the symbol table for the occurance of 

an identifier, and 

allowing access to the simulated virtual storage 

which contains the symbol table. 

In addition to the subroutines to manipulate the symbol 

table several routines are included which manipulate the 
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mode table. Given the number associated with a mode it is 

possible ·to fetch the mode table entry or given the mode 

table entry it is possible to obtain the corresponding mode 

number. 

Special processing is required for the insertion of'a' 

mode entry into the mode table. Not only must 'the mode 

entry being processed be added to the table, but any modes 

which can be derived from .that mode by the standard coer-

cions or by slicing, also must be added. The insertion 

routine automatically derives these related modes and in-

serts them into the mode table. Given the mode REF REF 

L ,J REF INT, Figure 32 displays all o_f the related modes 

which must be inserted into the mode table. 

Mode 
Number 

1 

2 

3 

4 

5 

6 

7 

Mode 

REF REF f:,J REF INT 

REF f:,J REF INT 

REF L J REF INT 

f:,J REF INT 

L J REF INT 

REF INT 

INT 

Comment 

original mode 

dereference mode 1 

slice mode 2 

dereference mode 2 

slice mode 4 

subscript mode 5 

dereference mode 6 

Figure )2. Modes Derived From 
REF REF f:,J REF INT 
by Coercion and Slicing 



Figure 33 is a flowchart which presents the algorithm re­

quired for th~ insertion of derived modes. 

Loop Clau~e Processing 
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This section of code provides all processing necessary 

to recognize the nesting level associated with loop clauses. 

The loop clause recognizer also makes the necessary symbol 

table entries for the 1 index of the FOR loop as well as any 

labels encountered in the serial clauses of the WHILE and 

DO ••• OD parts of the loop clause. 

Declaration Processing 

Declaration processing accounts for·over 50% of the 

code of Phase 3·5· A large part of the complexity involved 

in the processing of declarations is a result of the recur­

sive nature of the language. It is possible for declaration 

processing to be .suspended .ln order to recognize a unitary 

clause (which may of course contain other declarations), and 

then be resumed after the unitary clause has been recog­

nized. This facility requires mutually recursive co-rou-

tines which tend to obscure the clarity of FORTRAN 

subprograms. An example of a situation where this occurs 

isr REF (/ (INT I; READ (I); I) /) INT J. Upon encoun-

tering the first left parenthesis, recognition of the first 

declaration (declaration of J) is suspended and partial 

results saved (in the symbol table area). Flags are set to 
' indicate the state of the parse, then the routine to process 
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I 1(;5<:'1'7 A/l.,d e. 

Rowj !?EF1< 

BASIC_ MODE 

/? e. s h) f' e... 
.51/Ved 

.1110 de. 

Figure JJ. Related Mode Algorithm 
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program nesting structure is invoked. After the unit within 

the parenthesis has been recognized control returns to the ' 

location in the parse which was suspended. 

The declaration parsing phase generates the code neces­

sary for the allocation of variables during program execu­

tion. Code is also generated to update the statement number 

of any statements which have been deleted because they 

contained only declaration symbols. 

The added feature of allowing any unit in array bounds 

declarations has forced modification to the previous methods 

of handling array allocation. A new source symbol (=49) has 

been introduced which, when encountered in Phase 4 causes 

the current unit being evaluated to be completed and the 

mode of the result is co~rced meekly to mode INT. The lower 

and upper bounds of each row are left on the runtime stack. 

Figure 34 shows an example of the status of the runtime 

stack for the row declaration 

Row 1 

Row 2 

Row 3 

~ula u2, U31 u4, u5_7 INTI. 

Notea ul, u2, ••• , u5 
are any arbitrary 
units. (ul) repre­
sents the value 
yielded by ul. 

Figure 34. Status of the Runtime Stack During 
Elaboration of the Declaration 
~ulr u2, u3r u4, u5_7 INTI 



The missing lower bound from the third row of the declara­

tion of Figure 34 is assumed to be one. This requires a 

special instruction sequence to be generated whenever a 

comma or bus symbol (_7) follows the first unit of a row 
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· bounds pair. The special processing generates code to cause 

a constant of one to be loaded onto the runtime stack fol-

lowed by a new pseudo machtne instruction consisting of an 

operation code of a 67 (with all other fields set to zero). 
\ 

This new instruction will cause the top two integral values 

on the stack to be exchanged. Figure 35 provides an example 

of the output text generated from the array declaration 

given ~n Figure 34. 

A mode declaration such asa 

MODE .x = LYJ INT 

poses some special processing problems during Phase 3·5· 

The units in the row declaration must be elaborated each 

time the mode indication occurs as a variable declaration. 

For example, given the above definition of the mode .x, 

Figure 36 shows two very different results depending upon 

the local declaration of y. The implementation of this is 

accomplished by saving the _source code symbols of the mode 

declaration in a list which may be accessed through the mode 

table ent~y for the mode being defined. When the mode indi-

cation occurs as an actual variable declarer the reading of 

source text symbols switches from the source code file to 

the list associated with the mode entry. The current set of 

source text being accessed is determined from a stack. 



ul 

49 

49 

u3 

49 

u4 

49 

u5 

49 

"301, 1, 1, 0" 

"67' 0' o, 0" 

"501, -1, 3, XXX" 

Source code for unit 1 

End of unit 1 

Source code for unit 2 

End of unit 2 

Source code for unit 3 

End of'unit 3 

Source code for unit 4 

End of unit 4 

Source code for unit 5 

End of unit 5 

Push a 1 onto the stack 

Exchange top two integral values 

Allocate descriptor for array 

(xxx is the address of the skeleton 

descriptor). 

Figure 35· Example of Output Text for the Example 
Array Declaration 
£"ull u2, u3• u4, u5J INTI 
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When the stack is empty, source code· is obtained from 

the input disk file. If the stack is not empty the stack 

contains pointers to the list associated with the mode being 

developed. A null symbol (-999) causes the stack top to be 

decreased and input resumes from the point at which it was 

last suspended. 



BEGIN 

END 

MODE .x = ~y_7 INT; 

BEGIN 

END; 

BEGIN 

END 

INT y = J; 

.x z; #z is a vector of size J# 

.x zl; #zl is also a vector of size J# 
• 

• 

INT aa= 2; 

PROC y = INTa a * •= 2; 

.x z; #this z is a vector of size 4# 

.x zl; #this zl is a vector of size 8# 
• 
• 
• 

Figure J6. Two Different Results Using 
the Same Mode Definition 

Phase 4 

6) 

There are five major functions of Phase 4 which re­

quired significant modifications. Three of the five func­

tions which were modified have been explained earlier in 

this thesis, they area 

1) Declaration processing was removed from Phase 4. 

2) Symbol table access was provided to the new tree 
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structured symbol table. 

J) The mode coercion and balancing algorithms were 

implemented in FORTRAN. 
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Mr. Eyler's (3) implementation of procedures, partic­

ularity with respect to parameter passing, was restricted 

due to the fact that no descriptor containing the modes of· 

formal parameters could be maintained at compile time. A 

procedure call was executed by placing the actual parameters 

upon the runtime stack followed by an end of parameter flag. 
\ 

The routine contained retrieve parameter instructions which 

fetched the actual parameter, performed any required coer­

cions and stored the value either in the symbol table or a 

local area depending upon ,the. mode of the formal parameter. 

If the wrong number of parameters was passed or the mode of 

an actual parameter could not be coerced to the mode of the 

formal parameter the error was not detected until execution 

time. 

The runtime symbol table uses one word to represent the 

actual mode of an object. This does not provide sufficient 

capacity to store all of the information about the expanded 

modes during execution. It was therefore necessary to mod­

ify the parameter passing mechanism to perform coercions 

upon parameters at the point of invocation. This is possi­

ble because the new compile, time symbol table contains a 

descriptor of the modes of all formal parameters. It is 

therefore possible to announce at compile time when param­

eters have modes which do not match formal parameters, or 



when the incorrect number of actual parameters is used. 

The runtime mode descriptor does not allow for the 

indication of all of the modes allowed in the new subset. 

This is especially true for reference-to modes (pointers). 

The implemented solution ha~ several drawbacks in the area 

of possible expansion to the runtime system. Reference-to 

variables are treated as integer modes by the runtime code. 

There is no confusion in handling the variables since the 

code generator does know the actual mode of the object and 

will not dereference a true integral value. The best solu­

tion would have been to revise the runtime mode descriptor 

to contain all of the required information. 

Phase 5 

Modifications to Phase 5 include implementing the code 

necessary to provide for the coe;rci.ons which have been mod­

ified or added and modification of parameter passing mech­

anisms. New instructions include code to perform rowing and 

dereferencing. 

When rowing is indicated, an array descriptor which has 

~ls1_7 in all row bounds is created. The address in the 

descriptor is set to point to the object being rowed. If 

the object being rowed is a variable, then the result is the 

address of the descriptor. If the object being rowed is a 

value, the descriptor itself is the result. 

There are two different actions which can result from 

dereferencing. Given a mode of the form REFi amode, when i 



is greater than one, a dereference instruction yields an 

address of mode REFi-l amode. If i is equal to one a 

dereference instruction yields an amode va~ue. 

Modifications in the parameter passing algorithm con­

form to the changes detailed in the discussion of Phase 4. 
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·cHAPTER VII 

SUMMARY, CONCLUSIONS AND FUTURE WORK 

Summary 

An implementation has been completed upop the 

IBM 360/65 which meets the criteria of limited portability 

and a significant expansion of the mode processing capabili­

ties of the Oklahoma State University ALGOL 68 Compiler. 

The improvements made for this implementation include the 

following a 

1) allows the use of full unitary clauses in declara­

tions; 

2) allows mixed unitary clauses and declarations in a 

range; 

3) includes mode declarations for a subset of ALGOL 68 

modes; 

4) allows row displays to be used in a restricted 

context; 

5) procedure variables have been implemented. 

Conclusions 

The mode processing capability of the Oklahoma State 

University ALGOL 68 Compiler has been enhanced significant­

ly. A considerable amount of work-will be required before 

6? 
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a full mode processing facility can be added to the Oklahoma 

State University ALGOL 68 Compiler. 

Future Work 

Implementation of United Modes 

The mode table will handle the addition of united modes 

as shown in Figure 37· 

Mode Number REFs1 ROWs REFs2 BASIC Mode List 

1 0 0 0 INT 0 

2 0 0 0 REAL 0 

3 0 0 0 CHAR 0 

4 0 0 0 COMPL 0 

5 0 0 0 UNION 1 ----?-4 

(6 0 0 0 UNION 1~2~3~5) 
Unresolved 

6 0 0 0 UNION 1~2--73~4 
Resolved 

Figure 37· Mode Table Entry for the United Mode 
UNION (INT, REAL, CHAR, UNION(COMPL, INT)) 

The mode list would be kept in numerical sequence; so when 

an attempt is made to add a mode to the list which matches 

a mode that is already on the list, it is not added. If one 

of the modes of a mode list for a mode table entry is a 

united mode the mode lists should be merged. Problems which 



must be solved prior to successful implementation of united 

modes include• adding uniting to the coercion and balancing 

algorithms, and detection of related modes in a union. Two 

modes are related if they both can be coerced firmly from a 

common mode, such as PROC REF INT and REF INTJ they both may 

be derived REF PROC PROC REF INT, for example. 

Implementation of Structured Modes 

The mode table representation of a structured mode 

would be very similar to that of a united mode. Figure 38 

. shows -a possible method of managing structured modes. 

Mode Field Se-
Number REFs1 ROWs REFs2 BASIC Mode List lector List 

1 1 0 0 INT 0 0 

2 0 0 0 REAL 0 0 

J 1 0 0 .A 0 0 

4 0 0 0 STRUCT 2~3 X--:;>y 

5 0 0 0 STRUCT 1~1~4 a~b~c 

Figure )8. Mode Table Entry for the Structured Mode 
MODE .A • STRUCT (REF INT a, b, STRUCT 
(REAL x, REF .A y) c) 

In the case of united modes, when a mode list referred to 

another united mode, the mode lists are merged; however, 

the mode lists are not merged for structured modes. The 

structured mode entry contains a list of the field selector 
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names which correspond to a mode list entry. A potential 

problem which must be resolved prior to successful structure' 

implementation is the identification of structure displays 

(how to distinguish it from a row display). 

Source Program Representation by a 

Syntax Tree 

Consider the symbol table tree structure representation 

for the example program segment given in Figure 39· 

Example program• (A•= (A+ B) * (C + D)) 

Tree structure (nesting levels of 

Code File 

+ B 

Figure 39· Tree Structure and Code File 
for the Simplified Example 

The numbers within the tree structure nodes point to the 

position of the code file which contains the first symbol 
' following the symbol which caused the tree structure node to 

be created. Using a ~ symbol .. to represent a left parenthe­

sis and a 1 symbol to represent a right parenthesis, we 

append the code for a particular nesting level to the tree 



structure nodes for that level. The results are shown in 

Figure 40. :.::. 

•·= I \li I * I \k I if\ I 

' Figure 40_. Tree Structure with Code 
Appended 
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A segment of code appended to a structure node may contain 

several-.~ symbols; however, a segment will contain exactly 

one t symbol (which may be used to signal end of that 

particular code segment). 

Figure 41 shows the tree after each individual code 

segment has been translated into prefix polish notation 

(preferable to postfix because it is easier to build a tree 

from). The t symbols are treated as operands for the pur­

pose of the polish string conversion. 

-vfa= Al*l\k[·J 1f\ 

I+IAIB 1/f\ I -o'\ ) -~ + I c I D I ij\ I 

Figure 41. Tree Structure After Conversion 
of Code Segments to Prefix Polish 
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Figure 42 shows how the code segments can be translated 

into trees and interconnected with the tree structure nodes. 

0 

Figure 42. Syntax Tree for Sample 
Program Segment 

After the entire program has been converted into a syntax 

tree, mode information can be appended to the various nodes 

(identifiers can be replaced by pointers to the symbol 

table). This structure would allow for coercion and bal-

ancing to be performed prior to actual code generation. 

Code generation becomes relatively simple after all coer­

cions and balances have been added to the tree. 

Implementation of unions and structures could be done 

in the time required to complete a masters thesis. Con­

version of the source program to a syntax tree and code 

generation from that tree should be attempted only by 
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someone with sufficient time to complete the task. 

String Implementation 

The implementation of strings in the Oklahoma State 

University ALGOL 68 Compiler could be accomplished by sever­

al methods. One method would be to allocate a section of 

program storage for a string space. The method explained 

by David Gries (2~) could then be used to manage strings. 

The amount of string storage space allocated could qe con­

trolled by an option in the sJOB card with an appropriate 

default value (say 2K words). 

Another possible. method of string implementation would 

be to- use ·string descriptqrs as shown in Fiugre 4). With 

this method strings could be allocated on the stack in the 

same way as any other local variable. This would make 

possible automatic recovery of unused string space when a 

block which contains a string is exited. If a string 

expands beyond its boundary, a new segment of storage would 

be allocated and linked to the original segments. 

New string segments may occur in storage areas reserved 

for blocks which are newer in scope than the original string 

segments. If this occurs, special treatment must be given 

to those segments at the time a block exit occurs from an 

inner block. These string segments must be moved from their 

previous location to the end of the storage area for the 

block which immediately surrounds the block being exited. 



Total Strin_g Len~th 

LeMth of This Se~ment 

Amount Used in This Se~ment 

Address of Next Se~ment 

String Segment 

Length of This Segment 

Amount Used in This Segment 

Address of Next Segment 

String Segment 

., .. 

• 
• 
• 

Figure 4J. Possible String 
Descriptor Format 
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No matter which method is used for·string implementa­

tion, new mode processing for mode STRING will be required. 

Mode STRING is equivalent to. FLEX f:laOJ CHAR. Mode equiv-

alence implies that two objects of equivalent modes will 

have the same storage structure. L _7 CHAR is currently 

implemented very different from any·reasonable method of 

string implementation; therefore, it will be necessary to 

introduce two new coercions, they area string and unstring. 

These coercions would be valid in any strong or firm context 

• 



and would convert L J CHAR to STRING and STRING to L J 
CHAR respectively. 
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Alternative yields - Every clause yields a value. Some 

clauses have only one point from which a value can 

be yielded, others (such as conditional clauses) have 

two or more points in the code from which the value 
" 

can be yielded. Each possible location from which a· 

value can be yielded is termed an alternative yield. 

Amode - Symbol used to stand for an arbitrary mode. 

Assignation - Causing a vari~ble of some mode to possess 

a value of the same mode. 
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Balancing- Clauses which yield:values from more than one 

point must be balanced to insure that all of the yields 

a:re Qf a common mode. 

Case clause - A simple case clause provides the capability 

to select a unitary clause to elaborate based upon an 

integral value. If the integral value is outside of­

the·range of unitary clauses provided (i.e., less than 

1 or greater than the number of unitary clauses provid­

ed) a serial clause (the OUT part) is elaborated. An 

extend~d case clause allows the nesting of case clauses 

in the OUT part (OUSE). 

Cast - A cast allows a unit to be placed in a strong posi­

tion (see Chapter II) and causes the value yielded by 

the unit to be coerced to the specified mode. 

Coercee - The result after .. applying a coercion to a coercend 

is a coercee. 

Coercend - The basic building blocks out of which units are 

constructed such asa assignations, formulas, 
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denotations and applied identifiers. 

Coercion - Modifying the mode of a coercend to that required 

by its context with a corresponding modification to the 

valu~. 

Conditional clause - A simple conditional clause provides 

the facility for making a true or false decision as to 

which program path will be elaborated (IF THEN ELSE 

FI). The extended .conditional clause (ELIF) allows the 

nesting of conditional clauses in the ELSE path of 

elaboration. 

Denotation - A construct strongly resembling a constant in 

other programming languages. 

Deprocedure - This coercion causes a procedure which has no 

parameters to be invoked. 

Dereference - This coercion removes one or more REFs from an 

object (yielding the value at which the REF amode 

object was pointing). 

Develop - Mode declarations which contain mode indicants in 

their definitions must be developed by replacing the 

indicant by its corresponding definition. 

Elaborate - The act of carrying out the actions defined by 

a program in a suitable. environment. 

Enclosed clause - A clause which is wholly contained between 

two bracketing symbols. Examples are CONDITIONAL 

CLAUSES, LOOP CLAUSES, etc. 

Equivalencing - There are often many ways of defining the 

same mode. Mode equivalencing identifies the different 
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definitions to be the same mode. 

Identity relation - An identity relat.ion allows two names to 

be tested for equality·or inequality. 

Mode - Specifies the class to which a value belongs. 

Name - The loca~ion or address of a value in the compiler. 

Object - An object is either a value or a name (address) 

which refers to a value. 

Orthogonality - The language design principle which requires 

that a given language construct should be allowed 

everywhere it is logically consistant. 

Possess - An object is po~sessed by the symbol in the source 
' 

program which causes it to exist. 
.. ' 

Primary - A primary is !a denotation, applied identifier or 

an enclosed clause. 

Range - A range defines a segment of a program which con­

tains local declarations. Any declarations found with­

in a range may be. accessed by other ranges contained 

within the original range. Objects declared within a 

range may not be accessed by any references which are 

contained in code which is external to the range. 

Reference - An object of mode REF REF amode performs func­

tions similar to the PL/I pointer variable. This 

object is said to reference the .object at which it is 
' 

pointing. 

Routine denotation - The formal parameters, mode of the 

yield of the routine and the code comprising a routine. 

Routine text - The code comprising a routine. 
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Rowing - This coercion allows a multiple value (or name) to 

be cons~ructed from a scalar value (or name). 

Serial clause - A serial clause is constructed from <UNIT> s 

and <l>ECLARATIONS>' • The individual <lJNIT> s and 

<DECLARATIONS> · can be intermixed and must be separat­

ed by go on symbols (J). 

Slice - A slice is an object which refers to a subset of a 

multiple value.· 

Sort - Same as syntactic position. 

Syntactic position - The syntactic position of a coercend 

refers to the type of language construct in which the 

~oercend appears. The syntactic position of a coercend 

determines the coercions which may be applied. 

Trimscript - A subscri~t or a slice. 

Virtual parameters - The mode of all parameters in a proce­

dured mode must be specified in a declaration. The 

specification may be indirect by the formal parameter 

list of the routine denotation used to initialize a 

procedured constant or variable. In the absence of a 

routine denotation for procedure initialization the 

mode of each p~ameter must. be specified by a virtual 

parameter pack. The virtual parameter pack follows the 

PROC symbol and consists of a list of the modes of each 

parameter (in order). The modes are separated by 

commas. 

Voiding - This coercion causes a value yielded from some 

section of code to be discarded. 
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Widening - This coercion converts a value of mode INT to 

a value of mode REAL, also INT may be widened to COMPL, 

and REAL may be widened to COMPL. 

Yield ~. ~he yield of a section of code is the value which 

that code makes available for further computation. 
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SUBJECT: MUOE VMOCESSING ALGORITHM~ FUK THE USU ALGOL 6U SU~SET COMPILER 

AUTHOR: WALTER M. SEAY 

1NSTALLAT IUN: OKLAHOMA STATE UNIVERSITY 

DATE: SUMMER SEMESTER 197b 

PROJECT ADVISOR: OR. GEGRGE HEDRICK 

l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l* 

~PECIAL NGTE: THESE ALGORITHMS HAVE otEN HANU TRANSLATED FROM 
A Plll IMPltMtNTATION. THERI:: IS NLl SUITAtlLE COMPILtR 
AVAILAdLE AT OKLAHOMA STATE UNIVERSITY TO TtST THE: 
VALIDITY CF THE: lMANSLATION. 

l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*l*/*1*1*1*1*1*1* 

THIS PROGRAM ALLOWS FOR THE TI::STING Or THREE MODE MANIPULATION 
ALGORITHMS, THtY ARE: 

l) CG£l<C I ON 
' 21 UALANCING 

3J ASSIGNATION. 

INPUT CONSISTS JF AN ARBITRARY ~UMbER OF lNPUT StTS. tACH lNPUT 
SET CONSISTS 3F A FUNCTIUN DEFINITION CARO FOLLOWED BY CARJS 
CCNTAINING VARIABLE UATA DEPENDING UPON THE FUNCTION SELECTED • 

.(.;J.l£.&..100 
CAIW l 
CARD l 
CARD 3 
CARD 4 

COLUMNS 1-6 = "COERCE" 
COLUMNS 1-HO = PUNCH THE A PR10~l MOOt 
COLUMNS 1-dO = PU~CH THE A POSTEklOKI MUD~ 

COLUMNS 1-b =PUNCH THE STRENGTH UF fHE SYNTACTIC POSIT[QN 

..d.A.Lllli.u&i 
CARll 1 
CARC 2 

COLUMNS l-7 = "dALANCt" 
COLUMNS l-6 =PUNCH THE STRENGTH UF THE SYNTACTIC POSITION 

d·-9 ; PI.JI~Crl THE NUMdt:R GF UNITS T 0 ~E BAL ANCEO 
CARD 3 TO 2 + !NUMdER Uf UNITS TOut: BALANCcOI 

COLUMNS 1-HO = PUNCH THl MOOt UF J~ UNIT 

~l.G.&.UJ.lf)J 
CARU l COLUMNS l-6 = "ASSIGN" 
CARD 2 COLUMNS 1-80 = UtSTINATION MUUt := SOURCE MOOt 

VALID MOUES WHICH MAY BE INPUT ARE UEflNt:ri BY TH[ FOLLOWING 
~Nf GRAMMAR. UNOERL!NEU SYMdOLS JN THE GRAM~AR REPRLSENTS NUN TERMINAL 
SYMBOLS. t~EIY REPREStNTS Th~ tMPTY STRING. 

~.L.l.Ll .MO.Ut.S 

~u~ l'.BU.C 

£RlJ.C. lW.Ilf 

.B.EE.S 

::= aff~, B.Ll~~. RfE~. ilA.Si~ MUD~ 

R.E..E:.S • RG1i.S • .E.EE.S , £.BJ:l.C..S. , tHlli R~J.l(. 

REF, &f£~ I .EMfiY 



I# 

I# 

# 

.BQ.rLS 

.C..Ol:I.MA.S 

.tlA.S..rr. mrut 
II ' II ' .C.Q.MllA.S. . I 

.~;aeii 

.EM£H 

FLL~ I FORMAT I tiYTtS I CHAR I STRING 
BITS I BOOL I lNT I REAL I COMPL 

•• - PROC, .£E.C.C..S. 

VALIU SYNTACTIC POSITION STRENGTHS tSTRONGEST LAST) 
ARc! 

ll SOFT 
2) wEAK 
3) MEEK 
4 J FIRM 
5 J STRONG 

.811Q..Uf REPRESENTS THt: COOED VERSION OF A MODE 

~U..Uf AMQUE = .S.IB~kl l ltll RErSl, 
ROWS, 
REt- SZ, 

.S.IBl~~ SIMPLEMOOE, 
lbl N~_OF_PRU~_LEVELS, 

Y_R t:fS 1 
Y_RCwS • 
Y_REFS2o 

.S.IB~~ Y_SIMPlEMuOEl; 
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fliU.C PARSE I Ill.E ll.l:litl.G STRI f\G, B.t.E 1\.tl.IJ.JJ..t i'IOUCl ll!.ll.l.l! 

# 

# 

THI~ PKOCEUUKE ACCEPTS A STRING wHICH CONTAIN~ A~ EXTERNAL 
REPRESENTATION Of A MOUE ANU PEKFURMS A CONV~RSION (USING AN fSAl 
TO INTERNAl FORM. 

tilliltl 
~..I.!Utl.G SYMBOL, 
ll:il ACTION,ITEMP,STATE := ltKEY, 
(/ , /l ltll TABLE= ((8,7,2,4,0,0,31, 

!o,o,o,o,o,o,oJ, 
(d,7,Q,4,0,J,3l. 
(O,o,o,o,5,4,0J, 
(8,7,o,o,o,o,6lr 
(d,7,o,o,o,o,61, 
!J,o,o,o,o,o,oJ, 
(8,T,Z,1J,0,0,9l, 
l 0,1, a, 10r0t 0,9), 
(Q,O, o,o, ll, 10,0 lt 
!0,7,c,o,o,o,1LJ, 
1 a, 1, o,o, o,o,121 J, 

ATABLE ((1,3,3,5~0,0,7), 

!o,u,o,o,o,o,ol, 
1 1,3,o,s,o,o, 11, 
lO,o,o,o,o,s,oJt 
11,3 ,o,o,o,o,el, 
tl,J,o,o,o,o,aJ, 
1o,u ,o,o·,o, o,o J, 
(2,'t,4,b,0,0,9l' 
( 0,4,0r6t0t0t9l' 
<o,o,o,o,o,6,aJ, 
lU,4,o,o,o,u,toJ, 
t0,4,o,o,o,o,lOll; 

SIMPLEMCUE .!Jt 1'10DI:: := Y_SlMPLtMOUE .Qt. MUUE := ""; 
KtfS1 Uf MODE := ROWS ~E MOUe := RtrS2 tic MOOt := o; 
Y_RErS1 .Uf. MOOt: := Y_ROWS ll MOUE .- Y_REFSZ UE MUOc .- O; 
NR_OF_PROC_LEVELS Ut MUDE :~ O; 

.ril::l.iJ.£ (SYMbOL :=SCAN lSTRlNGil -.= "" 
.DU 

KtY := lE SYMBOL = "PRL.iC" 
Il::IUJ 1 
illE SYMBOL = "VOIIJ" 

lJ:jJ:.tJ 3 

f-.1; 

llli SYMuCL "l" 
..IlJf.bl 4 
.L.l..J.£ SYI"Lllll "I" 

..I.tlf.bl 5 
ill£ SYMLlUL "• II 

..I..tli;tl 6 
f~l£ ~YMBOL = "Rlf" 

I.t!.E.tli 7 
t...LS..I: 2 

IH:MP := TAtlLE (/STATEr K.EY/ l; 
ll 1 TEMP = Q 

l.tl.E~ PRI~l ((NEWll~E. "PARSE [kMGK"l); 
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STOP 
£1; 
ACTIUN := ATABLE (/SlAT~. KEY/I; 
STATE := ITEI"'P; 
.C.A.S.E A C Tl 0 N 

HI 
#l# 
ISlMPLEMUOE Df MOOE := "PkOC"; 

NR_UF_PHOC_LEVE:LS 1lf MUOE := ll, 
#211 
NR_GF_PRUC_LEFELS UE ~ODE +:= 1, 
#3# 
SIMPLEMODE Qf MUOE := SYMBOL, 
#4# 
Y_SIMPLEMUOE ~E MODE := SYMbOL, 
f/.511 
ROWS .Qt MODE +:= l, 
IJ.6# 
Y_ROWS tf MODE +:= 1, 
117# 
REFSl ~E MODE +:= 1, 
#8# 
REFS2 ~f MODE +:= 1, 
#9# 
Y_REFS1 .Q£ MOUE +:= 1, 
/1.10# 
Y_RErS2 Of MOUE +:= 1 

QlJl 
1£ ACT ION ..,: 0 

l~f~ PRINT ((NEWLINE, "PA~SE ERRUR"II; 
STOP 

ti 

QU; 
1£ ~!STATE 2 OR STATE= 7} 

.El 

lHE~ PRINT ((~E~llNE, "PARSE ERRUR"Il; 
STOP 
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II 

# 

£KU.L. SCAN 

THIS PROCEUURE RETURNS TH~ NEXT COMPLETE SYMbOL !NO IMtlEDOED OR 
U:AOII~G BLAi'AKS) f-OUND IN THE .:ilrl.HJ.G PARAMETER TO TilE INVOKING 
PRO(.EOURE. 

li~l.b 
Sl.Bl~ii SYMBOL : = "", 52; 
1£ STRING = "" 

lJ::lf.~ SYMBOL 
.EJ..SJ: xllil.L.f. s T R l NG II l/ ~ = It II 

.QQ 

STRINl> :=STRING (12: /) , 
.l.:l.l..!; 
SYMBOL := 
lt STRING (/1/J = "(" 

El 

ltlf~ STR1NG := STRING (/2: /); .. , .. 
.l:..L.lt s T KING (/ l I ) = ")II 

lJj.El::J STRING := STKING 112: I); .. , .. 
f..Llt s T I{ (1\JG ( /1/) : = II ' " 

l.tt.E;~ STRING:= SriUNG (12: /l; 
.' rtf II I 

f.L,SJ;, lJH I = IN DE: X I S T R I NG , " " l ; 
52 : = S T R I i'.JG (I 1.: 1 I); 
STRINv := STRING 1/I+i: /); 
52 

90 



.!!.H.!JC. COERCE Rtf A~£ FRUM, TO, 
Rll ..S.I.Bl.r:ffi SLlR. T, 
B.ff l.ltl lARGt.ST, 

II 

B.fE ~DOL MFLAbl ~UlU: 

THIS PR.OCEUURf COMPUTES THE ~NIQUE COERCION PATH FROM MUOE "FRGM" 
ro MOUE "TO" GIVEN THE STRENGTH Uf THE SYNTACTIC POSITION "SORT" 
PROVIDED A VALID COERCION SEQUENCE EXISTS. 

ll.E.Il.lli 
JlllllL ERR, 
l~l STATE :: lr FIRST := o, 
(/5/l allUL POS_VEC, 
I/ /J ~~ TO_STATE = (4,2,6,3,5); 
MFLAG := .t.AL.s.f; 
LARGEST. := O; 
jJJJ 

I.E SIMPU:MCDE 0£ fROM = "SKIP" AND SURT "STR.ONG" 
lH~ LARGEST := 5; 

fHOM := TO; 
PRINT ((NEWLINE, "MODE SKIP CO.l:.kCED TO "ll; 
PRINT_MOuE !FROM}; 
RETURN 

.t.Ll£ FROM = TC 
li:tEN PRINT ((NEwliNE, "MOOtS MATCH"Jl; 

RETURN 
.EL..s.t. POSS (STATE, SORT, POS_VECI; 

PRINT l(NEWLINEr STATEr" "• SORT," "• POS_\IECll; 
SIFT (FROM, TO, POS_Vt:C9 SORT}; 
PIUNT ((NEWLINE, STATI::t " "• SUfU, 11 "• POS_Vt:Cll; 
fOE I .10 5 

JlQ 
l.E POS_VEC l/1/J 

Itit~ J£ FIRST~= 0 

El 
.l.JJ.); 

.IH~ 'PRINT I !NEWLINE. 
"MULTIPLE POSSlblllTIES"ll 

LARGEST := -1; 
,{f: TURN 

.f;L..s.f f I R S T : = I 

lE FIRST = 0 
IH.Elll PRINT ((NEWLINE, "NO POSSldLE COERpuN"lJ; 

LARGEST := -1; 
RETUKN 

.EI; 
LARGEST := (fiRST> LARGtST I FIRST I LARGEST); 
.CAll FIRST 

1~ 
#1# 
(DEPRUCEUURE IF~OM, ERR), 
PRINT ((('lt:..rllNt. "OEPROCEDURt"ll It 

112# 
IDEREFERE~CE IFK01~, cRRI; 
l£ REFSl ~t fRuM = 0 
Ib~ MFLAG := I~~.E 
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f.l· 
jJJ:); 

RET URN: .sJS.1£ 
.t~JJ; 

E.l; 
PRINT I!NcwLINt-, "Ui::kE:ftkENCl 11 ll l, 

#3# 
(WlOtN !FROM, ERR I; 

PRINT IINI:wLlNt. "riWEf\j")l 1, 
#4# . 
(ROW (fRUM, l::KRI; 

PRINT (I NEWL INt,. "ROW" l I l, 
115# 
( V010 !FROM, EKRI; 

PRINT (!NEWLINE, "VOlO"ll 
.fSA,k; 
PRINT liNEWLlNt:. "MOUE AFTEk COER(. IGN"l I; 
PRINT_MOOE. !FROM I; 
.IE ERR 

fl 

lilf.t4 PRINT ((NEWLINE, "COI:KCION ERROR")!; 
LAKGI:!>T := -1; 
RETURN 

ll.lE SORT = "SOFT" 
.ll:l.E~ STA H: : = 2; 
ll.l£ SORl = "WEAK" UR S·UtU "MEI:K" OR 

SORT = "FIRM" 
IH.E.t:4 STATE .- !fiRST = 1 I 3 I 21 
.E.L..Sf STAT!::: := TO_STATI: 1/f-IRST/l 
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# 

If. 

..e.BlJ.C PKINT_MUD£ 

THIS PRUC~UURE PRINTS THE EXTERNAL REPRESENTATION U~ A MCDE. 

.B.t.G.l~ 
I~ REFS! DE MCUE UD PRINT !"REF "l QlJ; 
.lf RUNS .Uf MODE -.-= 0 

IJ:l.Ebl PM IN T (" ( ") ; 

E.l; 

IU KOwS .1JE MODE- l il.U PRINT ( 11 , 11 1 .Q.i.l; 
PRINT 1"1 "l 

ID REFS2 .UE MOUE UQ'PKINT !"Rtf "l OO; 
PRINT ISIMPLEMUOt Lf MCOEJ; 
.lE SIMPL~MOOE Uf MOCE = "PRUC" 
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.ll:fr.bl lU NR_OF_PROC_LEVELS .Uf MODE- 1_ .l.H:l PRINT (" PROC"l QJ.H 
PRINT I" "I ; 

E.l 
tbiU; 

lD Y_REFSl .QE MCOE 00 PRINT ("REF "I U.Ui 
lE Y_ROwS Uf MOOt -.= 0 

.IJ:l.E~ pRINT 'II ("I ; 
f.l; 

lD Y_ROwS ~E MODE- 1 UD PRlNT (","J .QQ; 
PRINT l"l "l 

1.~ Y_Rt:FS2 Df MOUe UU PKINT !"REF "J OU; 
PRINT (Y_SIMPL~MOOE DE MODEl 



# 

# 

' THIS OPERATOR PeRFORMS THE E~UAl CUMPAkiSUN fOR TwU OBJECTS Or 
M OU E AMUD..E.... 

1£ RtFSl Qt Ml ~= REFSl ~ M2 OR 

tJ; 

ROWS U£ Ml ~= RO~S DE M2 UR 
REFS2 DE Ml -,: REFS2 Uf M2 OR 
SIMPLEMODE UE Ml -,: SIMPLtMOUE OE M2 
~EAJ....s.t. 
ll.lE SIMPLEMOOE .Uf Ml ~= "PRUC" 

.IH.E.ill JKU.E. 
LLlE Y_REFSl .UE Ml -.= Y_RtFSl DE M2 OR 

Y_RUwS Uf Ml ,: Y_ROWS .U£ M2 OR 
Y_REFS2 .UE Ml -.= Y_RtFS2 .UE MZ OR 
NR_CF_PRUC_LEVELS .UE Ml -.= NR_Of_PROC_LEVELS Of M2 JR 
Y_SIMPLEMOOI:: .G£. Ml -.= LSIMPUMUOE .DE M2 

l.l:l..E.1:1 .EAi.s.f 
f.J....S.E .IB.U.E 



If. 

If. 
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~.B.U!:. POSS ( l~l STATE, ~lBlb~ SOKTl 1/ /l a~~: 

THIS PROCEUI.JRt: KHURNS A VE:CTOR OF t>OOLI:AN VALUES wHICH lNDICAltS 
WHE:THEK OR NJT A PARTICULAR COtRCIUN IS VALlO IN THE GIVEN SYNTACTIC 
PUS IT ION. 

Ji~~.H:I 
tiL~L T = l~~t. F = E~L~t; 
(151} Ji.U.QL POS_VEC := (f, F, F, F, fl; 
.1£ SORT = "SOFT" , 

I.l:i~ PJS_Vt:C 1/1/1 .- T 
£Llf SORT = "WEAK" OR 

SORT = "MEI:K" OR 
SORT·= "FIRM" 

.Il:I.EN POS_VEC (11:2/) .- (T, l) 

.E..l..ll SORT -..= "ST RCNG" 
l.l::J.Elll PRINT IISORT, " IS INVAlW"ll; 

STCP 
l;;.Ut l.A..s.t STATE 

l1ll 
/1.1# 
POS_VEC .- (T, T, T, T, Tlt 
#2# 
POS_ VE:C • - IT, T, T, T, F l, 
113# 
POS_IIt:C (/4/l := T, 
#4# 
POS_VEC := IT, T, T, T, Fl, 
#5# 
..S.Kl.Er 
#611 
POS_VE:C (13!4/l .- (T, Tl 

.E.~M 



# 

# 

£~Ui. SIFT lif.E A.MU.ilf lN_MClJE, uT_MUDt:, 
1/ /1 ~DDL PO~_VEC, 
~lli~~ SORTI ~DIU: 

fHIS PKOCEDUKc EXAIIHNS THE A PRIORI MODE, THE A POSHRIORI MODE:, 
AND THE POSSIHILITY VECTOR ANO SIFTS THE POSSIBILITlt:S UNTIL AT MUST 
ONE COERCION EXISTS. 

Ji.E.Ul.I:ll 
lE PU5_Vtl. l/1/ I 

lHttll lE REFSl .lJE !~_MODE ,= 0 UK 
ROWS Qf IN_MODE ,: 0 OR 
RHSZ U.E !~_MODE ,.: 0 

.El 
tli 

IH.EI:ll POS_VE~ 1/l/J := EAL~~ 
E~.E. l.E S I /'I.PLEMCDE J.l£ OT _MOOt = "PROC" AND 

NR_UF_PRO~_LEVELS DE IN_MODE <= 
NR_Of_PRUC_LEVELS llE OT_MODE 

ll::lf.I:ll POS_VEC 1/l/J := EAL.s.t. 
El 

l.E POS_ VtC ( /2/ I 
IJ:Jf..I:ll lt (SORT = "wEAK" I 1 I Ol >= REFSl QE IN_MODt 

lliftll PGS_VEC 1/2/) := EAl~l 
fl 

Eli 
lf POS_VEC (/3/l 

llifl:ll 

El; 

lf NUT ISIMPLEMODE Uf lN_MUOE = "l~T" ANU 
SlMPLEMODE U.E OT_MUUE = "KEAL") Ok 
ISIMPLEMLlOE Dt lN_MUOE ="!NT" AND 
~IMPLEMCOE Qf UT_MOOt: = "COMPL"I OR 
ISlMPLEMGUt .QE IN_MUJt: = "REAL" AND 
SlMPLEMUOE Df UT_MODE = "COMPL"I 

1Hf~ POS_vEC (/3/1 := fAL~t 
tLlE ROWS Df OT_MUOE = 0 

Eli 

ll::lt.I:ll POS_vtC (/3/1 := tAl~f 
ill£ NOT ISIMPLEMOJE DE IN_MODt = "BITS" AND 

SIMI'Lt:MOOE QE UT_MOOE = "tiOOL"I OR 
(SIMPLEMOUE DE IN_MOOt: = "BYTES" AND 
SlMPLEMODt UE OT_MUOt = "LHARl 

Ll::lf~ POS_VEC l/3/l := fAL~~ 

l.E RU~S U.E IN_MUC( ,= 0 OR 
REFSl DE IN_MOOt: ~= 0 UK 
REFS2 Df IN_MOOE ~= 0 

l~E~ OUS_vEC (/3/l := EAL~~ 
f:l 

l.E POS_VtC 1/4/ I 
lHt.I:ll lf ROWS i.lf lN_MOOt' ,,= 0 ANO 

REFSl U.E IN_MOCE ~= 0 ANO 
RHSl .lJf UT_MUDE -.= U 

lH.EI:ll POS_VEC l/4/l := EAl~.E 
.El 
1£ ROWS DE IN_MOOE = 0 ANO 



f..l; 

REFS l Qf. I N_MU Dt -.= F. tF S2 .Uf._Ql_MQUJ;;. 
II:I.E~ PCS_VEC. (/4/l := £.8.1..5..£ 

£.1; 
1£ ( SI MPU:MGDt .!Jf:. IN_i'lUOt -..:= 

SlMPL~MOUE Uf. OT_MUO~J OR 
I RO~S .Of:. I 1\i_MUDE >= tU.JwS !.i.E GT _MODel 

II:I.E~ PCS_VtC 1/4/J := EA.l.~.E 
.E1.; 
.lf. S lMPLl:MCJLJt .U£ IN_MLJDE = "PKUC" AND 

INR_O~_PRCC_Ll::Vl:LS Q£ IN_MUUE -.= 
NR_UF_PROC_LEVELS DE UT_MOUl: OR 

Y_Rf:FSl .D£ lN_MuDE -.= Y_RE:MOOI: OR 
Y_REFS2 QE IN_MUOl: -.= Y_REFS2 OE OT_MUOl: OR 
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Y_ROWS QE IN_MGOl: -.= Y_ROwS .UE OT_MUOl:: OR 
Y_SIMPLEMOLlE lJ.t lN_MODt -.= Y_SIMPLEMODI: DE OT_MCull 

lH.E~ PCS_VEL 1/4/l := £A~t 
tl 

.1£ POS_Vl:CI/S/J AND SIMPLl:MUUt: Llt OT_MGOl: -.= "VOID" 
LJ:I.E~ POS_VEC 1/5/J := EAiS.E 

u 
.£1i1H 



# 

# 

£&.U.L. UEPKOCEOUKf ( .IU1 iH:lU.U£ MOOt, &.E;E .i.iiJ.QJ.. t:RR UR l Y.QlU: 

THIS PKOCEOU~E UPOATES ThE GIVEN MOOt TU REFLECT IT"S STATUS 
AFTtR THE DEPRUCEUUREING COERCION HAS BEEN APPLIED. 

.tl..L.i.iil 
ERROR .- l.t kHSl .Qf 1\IODE + 

KEFSZ .0£ MOOt + 
R.OwS .U.t MUOE -..= 0 

I.l:l.UJ IB.U£ 
£1.1£ SIMPLEMOOE .UE MOOE -.= 11 PROC" 

lll£!::1 I.BJ.!.E 
t~JE NR_OF_PRUC_LEVELS OE MOUE -:= 1 = 0 

lJ:J.EJj (KEFSl Uf MODE := Y_REfSl .Ut MODEl := O; 
REFS2 .UE MUOE := Y_REFSZ .Qf MOOt:) := O; 
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(ROwS OE MOOt := Y_kOWS .QE MOUE) .- O; 
(SIMPLEMOUE .Qf MLJOE: := Y_SIMPLEMUDI: Of MOUE) .- ""; 
UU£ 

.El 



# 

l Kt..l: .8!1UJJ.;; M L.J iJ E:, Rt.E .lli.J.DL t kR 0 R: lli.U.l.l: 

THIS PROCEUURE UPDATES TliE GIVI:o~ MlJiJt TU RI:FLECT 1111 5 STATUS 
AFTER THE ulRtFERENCING COERCluN HAS 6EEN APPlll:u. 

ERROR := ~f REFSl Uf MODE < 1 
_ltlLts IKU£ 
.EL.S.f REFSl Uf MODI:-:'= 1 

£1; 
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If. 

# 

Ell.LJ.C W IUE:N = &t.£ AMUJ.lf MOO E. Kt.t .tiDJJ.L E: RROR) .ll!HJ:.l: 

THIS FHOCEDURE UPCATES I!-·E GIVI:N MUDE TO RE:FLECT IT"S STATUS 
AfTER IT HAS BEEN WIDENEO. 

EKRUR := lt REFSl_llf MODE+ 
REFS 2 .C£ MODE + 
RUWS Of. MOUE 
I~ ..s.I.f:U.Iili s = 

S I MPL EMOlJE 
.1£ S = 11 11\T" 

l.l:lt.~ "REAL" 

0 
SIMPLEMOOE: JJ£ MODE; 
.QE MOOl: .-

lll£ S = "REAL" 
l.liE~ "CDMPL" 
.EJ..l£ s = 11 8115 11 

lH.E~ ROwS ill: MOOt := l; 
"BOCL" 

t...l..lE S = "BYTES" 

l:l; 
EA..L.S.E 

t...I...St E.AL.S.£ 
El; 

IH.EN ROWS Qf MOUE .- 1; 
"CHAR" 
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# 

fBQ~ KUW = ( &ff AM~Qt MOOE, &tt ~U~l tRROHl ~Qlu: 

THIS PROCEDURE UPDATES ThE GIVEN MUOE TO RtFLELT IT"S STATUS 
AFTER THE MODE HAS BEEN ROWED. 

ERROR := 1£ ROWS L£ MODE = 0 
lbt~ l£ REFSl ~E MODE ~= 0 

.I.1:I.f1:j REFS2 i.1E MOOt • - REFSl .D.E MODE; . 
REFSl .UE MODE .- O; 
ROWS J.lE MOOt: .- 1 

£1~£ ROWS QE MOOt: .- l 
E.l.O 
.EAL.s..E 

J.:.ll.E REFSl .Q.E MOUE '= 0 
IH£~ ROWS L£ MODE +:= 1; 

.EA.L..S£ 
.EL.s..E .I&J.J.E 

.E .. U 
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II 

# 

# 

£.d.UL vo llJ =I rl.J;£ A~.lJ.llJ;; MJDE' BlE J.HJJJ1. 1: KROIU )l!Jlil.: 

THIS PKUCEUURI: UPOAH:S ThE GIVEN r-1001: TU Rl:FLECT IT"S SJATUS 
AFTI:K THE MOJI: HAS .fJEEN VGIUELJ. 

li.t.l..i..lli 
l.E SIMPLEMODt:: JJ£ MOUE "PKOC" 

.Il:lf.~ Arlilllf. NEw:= IV_IUFSl JJ.f MOUI:t Y_ROwS Of MODE, 
V_RI:FS2 QE MUUI:, SIMPLEMODE Qf MODE, 
o, c, o, o, ""); 

COERCE tMOOl::., Nt:w, "STRUNG", 1..UC. HH• .LQ' l.tl!II 
E.l; 
MODI:.- 10, o, O, "VOID", O, J, O, O, ""I 

.t;.lSJ.ll 
£BU.C BALANCt: = I (/ ll ll.M.lJ.lJ.(; uNl TS, 

ll.Ml:J.l.l.E MODE, 
l~ ~oR_Gf_MUDI:S, 

SIBl~~ SORTJ ~U1U: 

THIS PROCEDURE WILL COMPUll: THE ~ALANCE MODI: OF THE UNITS 
IN THE VECTOR CLAUS!:. 

l:l..EH~ 
tillU1. MFLAG, I:~ROK, 
..}..lB.lbi.G SORT, KEWUIRt:tl_SURT, 
1/ ll SIIUI\i.l..i SUKT_Ktl.hJ!REU = I"EMPTV", 11 SUFT 11 , "WEAK", 

"STRONG", "STRONG", "STKGNG"l ~Or 
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STRI:NGTH = I 11 SDFT 11 , 11 WI:AK", "MEEK", "FIRM", "STRONG"), 
(/ II li\II S T R_ VAL = I 1, 2, 2, C., 51 , 
1~1 LARGE, MINCONV; 
CALC_T ARGET IU"' ITS, MOUE, l'lllR_Of _MOUt:S J; 

KETRY: 
PRINT ((NEWLINE, "TA~GET MOUl::."ll; 
PRINT_MODt !MODEl; 
PRINT l(;~t:WLlNE, NEwLll\ll:, NtrlliNl:, "ATTEMPT l>ALANCE TO TARGET MUUE"II; 
•'11NCONV := 9; 
tll.B I TO ~l>K_Cf _MGOES 

.110 PRINT ((NEwLINE, NEliLL'>ltt "UNIT-", Ill; 

DU; 

COERCE (UNITS 111/l, :-lOUE, "STKGNG", LARGE, MFLAGI; 
lf LARGE < 0 ltit~ FAILEO El; 
MI NCONV := I MC~CC"'V < LARGE I M l~CUNV I LARGE I 

PRINT liNEW~INE, Ni:WL1,..,Eo NEWLINE!!; 
PRINT_MOuE !MOUE); 
PRINT (" l S THE MOuE OF THt tlALANCE:"J; 
Rt~UIREO_SORT := SGRT_RE~UIREO (/MINCONV/J; 
lE MFLAG AND REQUIKEU_SORT = 11 SOfT" 

lti.E.b kECUIREU_SORl := ".-IEAI\ 11 

fl; 
PRlNT ( PlEWLINt, SCI<T_KE:UUIREO, " WAS THE: REI.IUIKEO STRENGTH", 

"'EWLlNE, SOkT, "WAS THE AVAILABLE STRENGTH")); 
ELB I LQ UPB STRENGTH 

UQ 



lf SORT= STRENvTH (/1/) 
I.l::l.Eb 

.EJ. 
.Qll; 

lf STR_ VAL ( ll /l < Ml NCUNV 

El 

l.l::lf:.bl FA l U:D 
f..L..S.E PRINT ((Nt::WLINE, "dALANCE VALlD")); 

RETURN 

PRINT IINEWLINE, "INVALID SORT")); 
RE fURl'\; 

FAILI::D: 
lt RtFSl ~f,MOOE > 0 

l.l::lf..bi DI::REfERE"'CE (MODE, EKRURl 
llJ£ SlMPLEMOOE .Of MODi: = "PROC" 

~.bi DEPROCEuURE (MUCI::, ERRURl 

E.l; 

.EJ...S..E; PRINT !INEWL,INt. "TARGET MODI: CANNUT dl: COERU'L)")); 
RI::TURI\ 

lf ERRCR 
l.l::lf.!j PRli'H ({NEv.LINI::, 11 TARGI::T MUDE CAI'IINUT llE COERCI::Dll; 

RETURN 
El; 
RETRY; 

IU: T UR"' : S K 1 f' 
.EUQ; 
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# 

# 

# 

£~D~ ~ALC_TARGET = l (/ II 8~Q' CLAUSE, 
AliQU.l; MO Of: , 
lHI NBR_CF_MOOESI ~DlU: 

THIS P~UtEUURE WILL CALCULATE A POSSIBLE ~ALANCE ~UOE GIVEN. 
A VECTUR Of MODES TO BE BALANCED. 

Ji..Ei.iill 
(/ /) SIB1~~ SlMPLE_PkiOk = !"SKIP", "PROC", "FILE. "FC~MAT", 

"tlVTES 11 , ''CHAR", "STRING", "tHTS", 
"dOOL", "INT", "REAL", "CJ.''IPL"I aJ o, 

lbJ: PRIOK_VAL, PKI0tl._VAL2, It J t 
.liDD~ PROC_SW := £A~~J;, 
£Rr~ LOCK_UP = I SIBl~~ SIMPLEMOOEJ 1~1: 

ll.tli.llll 
.ilil I := O, Jl 
~~lLt SIMPLE_PRIOK (/I /I ,= SIMPLEMOUE 

iu: I +== u 
lf l > UPtl SIMPLE_P~IOR 

Il:lf.ts J : = 0; 
RETLtl.N 

£1 
QJ.H 

J ·- I; 
RETURN: 

J 
.fN.!J; 

fRU.C MAX I (/ /l l~l SETl ~1: 

THIS PK~CEDURE CUMP~TES THE LA~GEST INTEGER IN A VECTOR. 

JiEJ.ij_.bJ 
l.bll ~VAL := SET 1/LWB SET/I; 
EDB I f.lli.J.M LWB S I:T + 1 Hl U Ptl S f:r 

.!JQ 
Lt SE T II II l > M VAL 

lli.E.bl MVAL := SET 1/1/l 
tl 

Qj,J; 

MVAL 
.El'.Hl; 

fBQ.C MIN = I (/ /J l~l SETJ 11111: 

THIS PROCEDURE COMPUlES THE SMALLEST INTEGER IN A VECTOR. 

.d.t,;.iil.bl 
l~l MVAL := SET 1/LWB SET/J; 
EQB I f.Bll.M LWB SET + l IQ UPB SET 

.llU 
lE SET (/1/l < MVAL 
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IH~ MVAL .- SET 1/I/l 
t.l. 

!).!); 
HVAl 

.EtHH 
J := l; 
~~L.E SIMPLEMODE DE CLAUSE 1/J/l 

00 
J +!= l; 
~f J > NBR_OF_MOOES 

Iti.E~ MODE := OLAUSt 1/1/l; 
RETURN 

EI; 
MODE :=CLAUSE 1/J/1; 

"SKIP" 

.if SIMPU:MCUE J.J£ MODI: = 11 PRUL" 11:11:.~ PROC_Sw := lRUE f~; 
PKIOR_VAL != LOGK_UP (Sl~PLEMODI:: DE MODEl; 
PRIOR_VAL2 := LCOK_UP IY_SIMPU:MODE JJf MC;Ut); 
.t.llli I £Rl.ll:l J + 1 l.C i'IBR_CF_MODI::S 

D!l 
l.f SIMPU:MODE Df CLAUSE: !II/I -.="SKIP" 
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I.tl.E.~ .if SIMPLEMODI:: ilf MOUE: = "f>ROC" l1Jl:..t::l PRUC_SW := l.Bl.!t. El; 
REFS! .Qf MODE .-MIN IIKEFSl Qf MODE, 

.El 
JJ.Q; 

REFSl Uf CLAUSE: 1/I/1 l l; 
REfS2 DE MOUE .-MIN ((REFS2 JJt MOUE, 

REFS2 Of CLAUSE: !/Ill l l; 
ROWS llE MOUE :=MAX {(ROwS~ MOUI::, 

ROwS Qf CLAUSE ( i I/ l l I; 
Y_REFSl !IE MOUE • - 1"1l N I ( Y_REFSl Qf MODI:, 

Y_REFSl Of CLAUSE 1/l/lll; 
Y_REFSl .Q.E MODE .- l~lN ( (Y_REFSZ lJf. MODE, 

Y_REFSZ Ql: CLAUSE 1/l/lJ); 
Y_ROWS ~ MUUE :=MAX IIY~RGwS ilf MODE, 

Y_RDWS Qf CLAUSE 1/I/lll; 
N~R_Uf_PROC_LEVELS .Qt MODI: := MIN ({ 

NBR_OF_PROC_LE:VI::LS DE MODE:, 
NdR_UF_f>ROC_LEVI::lS D£ ClAUSE: 1/1/lll; 

PRIOR_VAL :=MAX ((PRIUR_VAL, 
LOOK_UP (SIMPLI:MOUI: l.!t LLAUSE (/1/llll; 

PRIOR_VAL2 := MAX ((PKlOR_VAL2, 
LOOK_UP (Y_SIMPLEMOOc Qf CLU 
LOOK_UP IY_SIMPLEMUOt DE CLAUSE (/!/)))) 

SIMPLI::i"'ODE .Qf: MOI.lt := SIMPU:_PRIUK 1/PRIOK_VAL/); 
~f PRIOK_VAl ,: 0 

I.tlf::..tJ Y_SIMPLE:MCDE .llE MllDE :.: SlMPLE_PRIUK (!Pklllf<._VALZ/1; 
£J.; 
~E PMOC_SW AND Sl~PLEMCOt Df PROC ,: "PRUC" 

llifJ~y ROWS Dt MO.CE: :=MAX ((iWwS Qf MOUE, Y_RUwS .WE MODEll; 
REFSl .l.lt MODE := MlN {(KEFSl .lJE MOOt, Y_KEFSl .Qf Mi.JOEll; 
REFS2 .G£ MCDE :=MIN IIREFS2 JJE .'"lLID[:, Y_fHFS2 Of MOLlE)); 
PRlOR_VAL :=MAX IIPKIOK_VAL, PR1UR_VAL2JJ; 
SlMPLE:MOOE L£ MCUt := SIMPL~_PRlOR 1/PKIOR_VAL/J; 
Y_SIMPLEMODE .l.lE MOOt .- ""; 
CROWS .l.lf MCDE : = 0 

El: 
RETURN: 

Sl.< I P 
t-"''Ll; 



# 

# 

£BJJ.C ASSIGN 

THIS PROCEDURE WILL PERFORW TH~ COeRCIONS NECESSARY lU ~tRFORM 
ASSIGfiiMENTS. 

·li.f.ill.tli 
l.tH L: 
WtiiLf REFSl Q£ Ml + R~FS2 ~E Ml + ROWS QE Ml = 0 AND 

SIMPLEMODI: !Jf Ml = 11 PROC 11 

DU DEPROCEOURE (Mlo LQ.(. dUULli 

j:Jj); 

PRINT IINEwllNEo "LHS DEPROCEDURI:D Tll"ll i 
PRii~T_MllUE IMU 

R 1: F S l .U.t i"12 +: = 1 ; 
CGtRCE IMlo M2t "STRONG", Lo L.Ul. li.O.QLJ; 
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PKINT ( INEiolllNE, (L ~ -1 I 11 ASSIGNMI:I'IT FAlLElJ" I "ASSIGNMENT MI\Ut:"l 
J;~.Q; 

# 

# 

THIS IS,.THE MAIN PROGRAM WHICH f<l:AOS ALL !NJ>Ul VALUf.::So INVOKES 
PAKSE WHICH CONVERTS MODE REPRESENTATIONS TO INTERNAL FORM, 
ANU INVOKES THE PROCE:DURE II\IUl~ATED i3Y 1 NPLJT PARAMHf.::R 

AMJJU£ MODE_l, MODI:_2, 
1/10/J A~Dllf CLAUSE, 
~IBl.tli~ SYMBOL, STRING, SORT, 
~~J NBR_CF_MOUE:S; 
.Ll.O 

RI:AU ({I\II:WLINE,STRINGII; 
lf STRING = "COERCE" 

I~£~ READ IINEwLINE,STRJNGl); 
PRINT ((NEWLINE, Nl:wl1NE, NEWLINE 

11 APRIORI MLlOE "oSTRINGJI; 
PARSE ISTRING 1 MCOI:_ll; 
REAU IINEWLINE,SfRINGlli 
PRINT {{NEWLINE, "APCSTERIURI MUOt "• SfRINGlJ; 
PARSt {STRING, MOUE_2J; 
ReAD !!NEWLINE, ~ORTJJ; 
PRINT I (I~EWLINb "SORT ",SOKT I J; 
COERCt (MOOE_l; MOOE_2, SORl, J..Q!; 1£.111, -J..JJ~ ti.kULI 

.£J..l.E STRING = 11 11ALANCE" 
l~f~ READ {(NEWLINE, SORTJJ; 

RcAO INBR_UF_MLlUESJ; 
NEwPAGE ISTAI\CGUTI; 
.EU~ I I~ NdR_uf_MODES 

.Q.Q 
Rf:AD IINEI<.llNt:, STRING) I; 
PKINT l{NEWLINb "UNIT NUMt;E:I\-", I, STRING)); 
PAKSE ICLAUSE(/1/), STK!NGl 

IJJ.l; 
11ALANCE !CLAUSE, .l.U.I. A~J.JJ.!£, Nl:li<._Of_MllOES, SURf) 

~.l.l.t STRING = "ASSIGN" 
JD.£~ ~EAO ({NEwLINE, STRING)); 

PRINT (!NEWLINE, "A~SIGNMENT lU ~E PERfURMEU "• 



S TR l NG I I ; 
~l I := !NOEX {STRING, "::"); 
PARSE ISTRI~G(/1,1-l/l + " ",MGDE_lJ; 
PARSE ISTRING!/1+2, /Jr MOUE_2j; 
ASSIGN IMODE_l, MOOE_21 

~LSt PRINT ((~EWLINE, "INVALID COMMAND")); 
STOP 
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APPENDIX C 

SAMPLE OUTPUT OF THE MODE 

PROCESSING ALGORITHMS 
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A~Sl~NM~NT TU BE PtRFOKMtU--->Rt~ ~tAL .- REAL 
Mo'OI:;) MATCH 
ASSlGI\u>IENT MAUl: 

ASSlGNMI:NT TD HE PI:RFORMI:O--->REF keAL .- KlF RtA~ 
OcKI::FERENCE 
1'1UDt AFTER CU~kCllJN i"li:AL 
MOOtS I"\ AT CH 
ASSiGNMENT MAUl: 

ASSIGNMENT TU ~E PeRfURMtO--->REF kLF ~f~l .- Rtf REAL 
MUUtS MATCH 
A SSI GNME:N T MAUl 

ASSlG~MI:NT TO BE PERFORMI::U--->RcAL := Rt~ REAL 
iJERE:fERI:NCt: 
MOUE AfTER CUEkLIU~ REAL 
Nu PUSSidl~ COERCION 
ASSIGNMeNT fAILED 

ASSIG~MI:Nl TU ut PERFURMED--->KtAL .- KtAL 
NO PUSSloLI:: CGE:RCIUN 
ASSIGNMENT FAILEU 

ASSluM1~NT TO t:E: PERFORMi:::C--->RI:f kt.:AL .- PkuC :<.tl- [,--,T 
Di::PRUCtUURE 
MCUE ArTEk CUERCION kEF lNT 
D!:RlftRI:NCt 
MUDE AFTER CUEkClUN lNT 
wiDEN 
MOUE: AFTI:R CGERClC~ Rt:Al 
MOUI:~ MATCH 
ASSIGNMENT MADE 

ASSlGNM~NT ·TO 8~ PERfORM~U--->PRCC REF ke~ KLAL .- PKUC klf RE~l 
LHS UEPROC~DUHLU TU REf klF KiAL 
UE Pk Ol..l::uU R l: 
MUUI:: AFTEk COERCIGN REF REAL 
MCDES MATCH 
AS!>IGNMI::NT MAUt 

ASS 1 GIIIMHH TO M- Pf:kfORi'1tU---)I<.Ef !U.F CltM< : z UMR 
~G PCSSISLE CCLRCION 
ASSlGNMlNT 1-'AlllD 
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UNIT NUMBER­
UNIT •\lUMBER­
UNIT NUMdER­
T ARGE: T ~OUE 

1 I<.EAL 
2 INT 
3 CGMPL 

COMPL 

ATTEMPT BALANCE TO TARGET MOOt 

UNIT- 1 
wIDEN 
MOUE AFTER COERCION CUMPL 
MGUt: S MATCH 

UNIT- 2 
WIDeN 
MODE AFTtR COtRCION KEAL 
w IUtl-1 
MOOt: AFTER COERCION COMPL 
MOUI:.:S MATCH 

UNIT- 3 
MOUES r..,ATCH 

COMPL IS THE MODE OF THE BALANCe 
EMPT~ wAS THE KEQUIREU SfRENGTH 
STRONG wAS THE AVAILA~LE STRENGTH 
BALANCE VAllO 
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UNIT ~UMBcK- l REF (,) lNT 
UNIT NUMBeR- 2 PROC ()REF REAL 
UNIT NUMS~R- 3 REf REF () Rff ~~f COMPL 
TARGkT MUOE {,) COMPL 

AfT~MPT tiALANGt TC TAR~ET MOOt 

UNit~ 1 
U~Rtf~R~NCE 
MOUl Affh~ COEkClUN '•J lNT 
Nd Pd~SlBL~ COERCION 
tAROtf MUOt CANNOt BE COtRCtU 
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UNIT NUMBER­
UNIT NUMtiER­
UN IT !\lUMBER­
TARGeT .MOOt 

1 REf REAL 
2 REf INT 
3 Ref CUMPL 
kH CCMPL 

ATTtMPT dALANCE TC TARGET MCDE 

UN IT- l 
Ot·RH ERENCE 
MOD( AFTtR COEkL10~ REAL 
W lt.H:I\1 
MOOt AFTER COERCION CUMPL 
NO PUSSlBLE GOtkCION 
TARGtT MUOE COMPl 

ATTEMPT BALANCE TC TARGET MCOE 

UNIT- 1 
DEREfERENCE 
MODE AFTER COERCION REAL 
t1 IDI::N 
MOOt AFTER COE~CION COMPL 
MGUE S MATCH 

UNIT- 2 
DtREHRENCI:: 
MODE AFTER COERCION I~T 

WlUlN 
MOUt AfTER CUERCIUN REAL 
t~IDI::f\. 

MODE AFTER COERCION COMPL 
MODI::S MATCH 

UNIT- 3 
DEREfE:RI::NCE 
MODE AFTER COERCION COMPL 
MODES MATCH 

COMPL IS THE MJDI:: OF THE BALANCE 
MEEK WAS THE REYUIRED STRENGTH 
~EAK ~AS TH( AVAILAeLE STRENGTh 
TARGET MUOE CANNOT dE LUERCtU 
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UNIT NUMBI:::K­
uNl T NUMBER­
UNIT NUfiBEK­
T AKGf:T MUOE 

1 ~EF PRO~ Rtf REAL 
2 () COMPL 
3 PKOC PROC 1 NT 

I I CUMPL 

ATTEMPT BALANCE TC TARGET MOOt 

UNIT- 1 
Lli:::REfERI:::NCE 
MOUE AfTER COI:::KCICN PRCC REf REAL 
UEPROCI:::UURt 
MULlt AFTER COERCION Rl:::f KEAL 
OERI::FERENCt 
MOUE AfTER COERCION REAL 
WIUI:::N 
MOUE AfTER COERClCN CCMPL 
KUw 
MOUE AfTER COERCION {J COMPL 
MODES Mill CH 

UNIT- 2 
MLJUES MATCH 

UNIT- 3 
DI::PROCEUURE 
MUUE A~TER LUERLIUN PROC lNT 
l.li::PRUCECURE 
MOUE AFTI:::R COERCION INT 
i'~IDI::N 

MUUI:: AFTER COERCION REAL 
WlOt.N 
MUDt AFTtR CUERClON COMPL 
KOW 
MOUE AfTI:::R COEKCIU~ {J CCMPL 
MOOI::S MATCH 

(J CGMPL IS THE MOUE OF ThE dALANCE 
EMPTY ~AS THE REWUIKEU STRENGTH 
ST~UNG ~AS THE AVAILABLE STRENGTH 
dALANCE VAllO 
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UNIT l'iUMBER­
UNIT NUMBER­
UN IT NUMBER­
UNIT hUf.itlE:R­
TARGET MUOt 

1 Rt:t- INT 
2 REF REAL 
3 PROC ()REAL 
4 PROC ( J INT 

REAL 

ATTEMPl BALANCE TO TARGET MDOE 

UNIT- 1 
0 ERE: FERENC c 
MODE AFTER COERCION INT 
itjiDI::N 
MODE AFTER COERCION REAL 
MOUE::. MATCH 

UNlT- 2 
tJEREFERENCt 
MODE: AfTER COERCION REAL 
MOUE:S MATCH 

UNIT- 3 
OEPROCtOURt 
MODI:: AfTER COERCION () REAL 
NO PUSSI~LE COtRCIUN 
TARGE:T MUDt CANNUT BE COERCEU 
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U~IT NUMtiER- 1 REF BUOL 
UNIT ~U~Bt:K- 2 SKIP 
TARGET MODE KEF BuOL 

ATTEMPT tiALANCE fC TA~GET MGDE 

UN I T- 1 
1-luUES MATCH 

UNIT- 2 
MOO~ ~KIP COERCED TO REF BOGL 

REF BOOL IS THE MOUE Uf THE tiALAN~c 
EMPTY ~AS THE REQUIRED STRE~GTH 

~IKM ~AS THE AVAILABLE STRENGTH 
bALANCE VALl D 

A PRIORI MuUE PROC PROC REF REAL 
APOSlcRIORl MUD£ VOID 
SDK f STRONG 
lH:PKUCt:OURE 
tJEPRUCcOURL 
VUlD 
MODE A~TER COERCION VOID 
MODES MATCH 

A PRIORI MOUE PKOC REAL 
APGSTERIORI MODE REAL 
SDK T wEAK 
OEPROCEOURE 
MODE AFTER COERCION REAL 
MOUES MATCH 

A PRIORI MOUE PRCC PROC REAL 
APGSfERlJRl MOUE PRUC REAL 
SORT Wt::AK 
OEPRUCEUURE 
MOOt AFTER COERCION PRUC MEAL 
MCOI::S MATCH 

A PRIURI MOUE PRUC PROC REAL 
APUSIERIORI MODI: RtAL 
SORT WI::AK 
OEPRUCtUUKE 
MUD~ Afl~H CUERClDN PRCC REAL 
t.h:PRJCtUURE 
MOOE AFTER CUE~ClUN REAL 
MOuE:'> MATCH 
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A PRluRl MUOE ~Ef PROC REAL 
APOSfEKIORI MOUE PROC R!::AL 
SORT ~ t:A K. 
NO PJSSltlLE COERCION 

A PRIORI MUDE kEF REF REAL 
APUSTERlURl MODE REF REAL 
SUR T SCF l 
OE:kEftK.EN(..E 
MOuE AFTER CUERClUN REF REAL 
MOUE~ MATCH 

A PRIORI MOOt REF REAL 
APOSTERlUKl MODE REAL 
smcr soF r 
~0 POSSibLE COERCION 

A PRluRI MUOt PRUC REF REF REAL 
APCSTERIURl MOUE REF REAL 
SGRT SGF T 
UEPRuCEllURE 
MOUE AFTER CUEKCION REF REF REAL 
OI::Ktr-t:R ENCl: 
MUDt AFTlR COERCION K.EF REAL 
MOUES r~ATCH 

A PklORl MCUt: REf REf REF REAL 
APOSTERIURI MOUE REF RtAL 
SORT SOfT 
OERti-EH.ENI.-1:: 
MOUE AFTER COERCluN REF REF REAL 
OERt.fERHH.E 
MUUt AFTER COERCION REF REAL 
MOOtS MATCH 

A PRIORI ~OUt PRCC PROC REAL 
APuSTEKlURI MOUE REAL 
.::.GRT SOfT 
Ul::iJfi.CCEOURE 
MUUE AFTER COE:RCluN PRCC REAL 
OEPKOCEDURE 
MOOE AFTER COERCICN REAL 
MOOtS MA Tl.H 

A PRIORI MOUE KEF REF REAL 
APUSTERIORI MUUE REAL 
SORT SOFT 
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llEKtFI:RI:NCE 
MODE AFTER COERCION REF REAL 
NO POSSibLe COERCION 

A PRIORI MODE RE~ REAl 
APOSTERlORI MOllE REAL 
:,URT SOFT 
NO POSSIBLE COERCION 

A PRIORI MOOt kl:f REF REAL 
APUSfi:RIURl MOUE KEF RI:AL 
SOKl MEEK 
DERI:HKENU: 
MODE AFTER COERCluN REF REAL 
MUUI: S .MATCH 

A PRIORI MODI: REF RI:AL 
APOSTERlORI MOUI: REAL 
SORT MEEK 
uEKEfi:RI:NCI: 
MOuE AFTER COERCION REAL 
1"1001: S MA T(;H 

A PRIORI MODE PROC REF REF REAL 
APOSTERlORl MODE kEF REAL 
:,ORT MEEK 
01: PROC El.JUfU: 
MODE AFTER CUERLlON REF kEF REAL 
DEREFERENCE 
MOllE AFTER COERCION REF REAL 
MUDI:S MATCH 

A PRIORI MODI: kEF REF REF REAL 
APOSTI:RIORl MOUt REf REAL 
SORT MEEK 
DEREFERENCE 
MuUE AFTER COERCION RI:F REF REAL 
uEREHktNCE 
MOUE AFTER COERCION REF REAL 
MOOI:S MATLH 

A PRIORI MODE PROC PROC REAL 
APCSTERIORI MODI: REAl 
SUIH MEEK 
OEPRLJCEilUKE 
MOUE AFTER COERCION PROC REAL 
tJt:PROCI::OURE 
MODE AFTER CUERClUN REAL 
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~OUtS MATCH 

A PRIORI MOOt REF kEF RtAL 
APOSTEK.~URI MCGt REAL 
SORT M!:E K 
IJE Rt.F cK.t.i\1 C E 
MOLJ[ AFT!:R CUEkCIUN REF REAL 
1.H:::KHERENCE 
MUUE AFTEK C8!:RCIUN REAL 
MODE~ MATCH 

A PRIORI MODE kEF REAL 
APOSTERIORI MODl REAL 
SORT MEEK 
LlERi::fi::RENCE 
MOUE A~TtR COERCION REAL 
MODES MATCH 

A PRIUHl MODE REF PROC REF INT 
APOSTERIURI MOUE (,1 CCMPL 
SORT STRONG 
OEREH:RENCE 
MODE AFTER COERCION PROC Rtf INT 
DEPRUCEUURE 
MOLlE AfTER COERCION KEF INT 
DERH ERENCt 
MOOt AFTER COERCION INT 
WlOtN 
MODE AfTER COERCION REAL 
WlUf::.N 
MUDE AFTER COERCION COMPL 
ROW 
MODE AfTER COERCION (J COMPL 
ROW 
MODE AFTER COERCION(,) COMPL 
MODES MATCH 

PROGRAM IS STOPPEU. 
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APPENDIX D 

A GRAMMAR FOR THE LANGUAGE ACCEPTED 

BY THE OKLAHOMA STATE UNIVERSITY 

ALGOL 68 COMPILER 
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The following is a modified Backus-Naur Fo~m of a 

grammar whic,h generates the language_ which it;; accepted by 

the Oklahoma State_ University ALGOL 68 Compiler after the 

features described in this thesis have been implemented. 

The grammar is'expressed by rules of the forma 

<lVJETA SYMBOL> 1 a:: def 

120 

this rule is read •• <11ETA SYMBOL> is defined to be ( 1 a=) 

de£' ... If there are several definitions of the same meta 

symbol they may be combined into one rule by the ul•• symbol 

read 11or is a" suoh asa 

<META SYMBOl;:> at= def 1 

<)lETA SYMBOJ;:> a 1 • def 2 

becomes 

<lGTA SYMBOl'> a a• de:f' 1 I de:f' 2. 

The definition of a meta symbol may QOntain any sequence of 

meta symbols or terminal symbols (symbols without brackets). 

The special symbol ... EMPTY" means that the meta symbol may 

be replaoed by the empty string. The goal rule for the 

grammar is 4ROGRAM> • If the . symbols •• j .. • "< " or ">" 
are required as terminal symbols they will be enclosed 

within quotation marks. 

} 

I 
I 
! 



<PROGRAM)::= 

<ENLLUSEO CLAUSE>::= 

<SERIAL CLAUSE>::= 

<UNIT uEC LISTl>::= 

<UNIT DEC LIST2>::= 

<ENCLUSI:O CLAUSE> 

oEGI~ <SEKI4L CLAUSE> ENOl 
tiEGlN <COLLATERAL CLAUSE> ~~01 
<CL~DITICNAL CLAUSt>l 
<CASE CLAuSE> I 
<LUOP CLAUSe> 

<U~IT UEC LlSTl><L UNIT LIST!> 

<U~lT>;<UNlT DEC LISTZ>I 
<DECLARATIUNS>;<UNIT DeC LIST2>1 
.EMPTY 

<UNIT>;<UNI~ DEC LIST2>1 
<DECLARATIONS>;<UNIT DEC LIST2>1 
<UNIT> I 
<OECLARA liONS> 

<L UNIT LISTl>::= <L UNIT><L UNIT LISTZ>I 
<L UNIT> 

<L UNIT LlST2>::= ;<L UNIT><L UNIT LISTZ>l 
EXIT<ID>:<JNIT><L UNIT LISIZ>I 
; <L UN IT> I . ' 
EXIT<ID>:<UNIT>. 

<L UNIT>::= <IU>:<L UNIT>I 
<UNIT> 

<COLLATtRAL CLAUSE>::= <UNIT>o<LNIT COMMA LIST> 

<UNIT LUMMA LIST>::= <UNIT>,<UNIT GUMMA LIST>I 
<UNIT> 

<CONDITIONAL CLAUSE>::= IF <SERIAL CLAUSE> THEN <SERIAL CLAUSE><CUNU END> 

<CUNO ENlJ)::= <Ellf PART LIST><ELSE PART> FI 

<ELIF PART LIST>::= ELIF <SERIAL CLAUSE> THEN <SERIAL CLAUSE> 
<ELIF PART LIST>I 
• EMPTY 

<ELSE PART>::= ELSE <SERIAL CLAUSE>I 
.EMPTY 
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<CASE CLAUSE>::= CAS!: <SERIAL CLAUSE> IN <COLLATERAL CLAUSE><CASE END> 

<CASt ENO>: := <OUSE PAH LIST><OUT PART>. ESAC 

<UUSE PART LIST>::= CUSE <SERIAL CLAUSE) II'. <lOLLATtRAL CLAUSE> 
<OUSE PART LIST>I 
<EMPTY. 

<OUT PART>::= CUT <SERIAL CLAUSE>! 
.EMPTY 

<LOOP CLAUSE>::= <FOR PART><FROM PART><oY PART><TO PART><WHILE PART> 
00 <SERIAL CLAUSE> 00 



<FOH. PART>: : =: 

<FROM PART>::= 

<BY PART>::= 

<TO PART>::= 

<WHILE PART>::= 

• 
<OtCLARAfiONS>::= 

<DtCLARA T ION>::= 

<MODE DECLARATION>::= 

FGR <I D> I 
.EMPTY 

FROM <UN If> I 
.EMPTY 

BY <UN IT> J 
• EMPTY 

TO <UNIT >I 
.EMPTY 

WHILE <SERIAL CLAUSE>l 
.EMPTY 

<OECLAH.AliON>.<UECLARATIONS>l 
<DECLAHAT ION> 

<MODE DECLARATIUN>I 
<IDENTIT~ UECLARATION>I 
<VARIA~LE DECLARATION>! 
<PRGC DECLARATION> 

MODE <MODE INUICANT>=<MOOb>,<MOOE OECLARATlON>I 
MODE <MO~E lNOICANT>=<MOOE> 

<IUENTITY OECLARATJON>::=<MOOE><lDENT lNIT LIST> 

<IUENT !NIT LIST>::= <IO>=<UNIT>,<IUENT INif LIST>I 
<I O>=< UN IT> 

<VARIAdLE UECLARATION>::=(MODE><VAR INIT LIST> 

<VAR INlT LIST>::= 

<PRUC DECLARATION>::= 

<TYPE IN H>: := 

<M'UDE>:: = 

<REF LIST)::= 

<ROW LIST>*::= 

<ROW>::= 

<MODE INDICANT>::= 

<BASIC MDOE:)::= 

<ID>:=<UNIT>,<VAR !NIT LlST>I 
<IO>: =<Ul'dT> . 

PROC <ID><TYPE lNIT><ROUTlNE TEXT> 

=I 

<Rtf LlST><KOW LIST><H.Ef LIST><BASIC MOOt> 

REf <REF Ll S T>l 
.EMPTY 

<RO~><RU~ LIST>I 
.EMPTY 

ll <LNIT> Ill 
(/ <UNIT>:<UNIT> /)I 
II n 

<MOOt INUICATIUN> 

INTIREALICUMPLICHARIBOOLl 
<MOUE INDICATION>I 
<P CEC> 

122 



<P UtC>::= PROC <VIRTUAL PARAMtTERS><MUDE> 

<VIRTUAL PARAMETERS>::= I <MOOE LIST> ) I 
• EMPTY 

<MOUE LIST>::= <Muoi>,(MOU~ LIST>I 
<MGOE> 

<UNI.T>::= <ASSIGNATION>I 

<ASSIGNATION>::= 

<RUUTINt TEXT>::= 

<FORMAL PARAMETERS>::= 

<FORM PARM>::= 

··' 

<ROUliNE TEXT>I 
<IDENTITY RELATIUN>I 
<JUMP> I 
SKIP I 
<TERTIARY> 

<TERfLARY> := <UNIT> 

<FORMAL PARAMETERS><MOIO>:<UNIT> 

I <FCRM PAilM> II 
.EMPfY 

~MODE SET>,<FORM PARM>I 
<MODe SET> 

<MOOt SET>::= <MODE><ID LIST> 

<IU LIST>::= <IO>,<IU LIST>I 
<ID> 

<MlliO>: ::; <MObt >I 
VOID 

<lt)ENTITY RELATION>::= <TERTIAR'V>:=:<TERTIARY>I 
<TERTIARY>:~=:<TERTIARY> 

<JUMP>::= <GO TU OPTIUN><IO> 

<GO TU CPTION>::= GO TO 

<TtRT lAKY>::= <FORMULA>! 
NIL 

<fuRMULA>::= <FORMULA><UYAOIC OPERATCR><FORMULA>I 
<FORMULA>! 
<MC~AUIC OPtRATOR><FORMULA> 

<SECONDARY>::: RE <PRIMARY> I 
IN <PRIMARY>! 
<PRIMARY> 

<PRIMARY>::= 10 I DENCTATION I rURMAT_TEXf I 
<CALL>I<CAST>I<SLICE>I<ENCLUSEU CLAUSE> 

<CALL)::= <PRIMARY><ACTUAL PAKAMETERS> 

<ACTUAL PARAMETERS>::= I <uNIT COMMA LIST> I I 
.• EMPTY . . 

<CASJ>::= <MOIU> I <UNIT> I 
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<SLICE>::= 

<SLI~ER LIST>::= 

<SLlCt:R>::= 

<FROM UN IT>::= 

<UP Tu UNIT.>::= 

<AT UNIT>::= 

<PRIMARY> <SLICER LIST> 

<SLICER>,<SLICER LIST>I 
<SLICER> 

<FROM UNIT><UP TO UNIT><AJ UNIT> 

<UNIT> I 
.EMPTY 

: <LNIT>I 
: I 
• EMPTY 

Gi <LiN IT> I 
• EMPTY 
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*SUL,ESS1VE KUW ENTITIES MAY· tiE COMBINEO INTO UNE SET OF il ANO ll S~MBULS 
rlY SE~ARATING THE INNER PARTS dY COMMAS. 
EXAMPLES: (IX/I (IQ:ZX/1 MAY BE WHITTEN A:;, 1/)(,J!ZX/l OR II II ll II MAY tlE 
W R 1 T TEN AS (I t1 l • 



APPENDIX E 

USER'S GUIDE 
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Control Cards 

A description of the •JOB CARD options and format can 

be found on page 37 of the thesis by Jensen (1). At this 

time the revised version of the compiler is operational only 

on the IBM 360/65 running under OS/MVT. The job control 

language required to execute the revised version is shown in 
I 

Figure 44. 

Restrictions 

Beginning on page 38 Jensen (1) lists ten· restrictions 

upon the ALGOL 68 subset which he implemented. The follow-

ing set of restrictions includes those res~rictions of Mr. 

Jensen which are still applicable and also all restrictions 

upon the newly implemented facilities. 

1) All ALGOL 68 keywords are reserved; 

2) Keywords must be separated from identifiers, 

denotations and other keywords by at least 

one blank; 

3) Keywords, multiple symbol operators and 

denotations may not contain embedded blanks 

(except of course~ _7 CHAR denotations); 

4) All identifiers of non-procedured modes must be 

declared before they are referenced in order to 

produce predictable results; 

5) Identifiers may not contain embedded blanks, 

but the break character (_) may be used to 

improve readability. 



//JOBNAME JOB (xxxxx,xxx-xx-xxxx,x),CLASS=B 

/*SETUP DISK=1 

/*PASSWORD XXXX 

//STEPNAME EXEC PGM=ALGOL,REGION=140K 

//STEPLIB DD DSN=COMSC.PART.SEAY.LOAD,UNIT=2314, 

II VOL=SER=DISK28,DISP=SHR 

//FT03F001 DD DSN=COMSC.SEAY.ERROR.A68, 

II VOL=SER=DISK28,UNIT=2J14,DISP=SHR 

//FT06F001 DD SYSOUT=A 

//FT05F001 DD * 

II 

a JOB 
• 
• 
• 
ALGOL 68 SOURCE PROGRAM 
• 
• 

a ENTRY 
• 
• 

STANDIN DATA (IF ANY) 
• 
• 
• 

tiBSYS 

Figure 44. Job Control Language for 
IBM 360/65 Execution 

6) Row displays are limited to one row only, such 

as, ( 1 , 2, 3 ) J 

7) Balancing is not performed for row displays; 

therefore, the mode of the balance is assumed 
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to be of the same mode as its first unit (the 

mode of the first unit may of course always 

be modified by way of a cast); 

8) Objects of mode ROWi REFj amode may not be 

used in transput operations; 

9) Any mode indications used in the program must 

be defined before use; 
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10) Rowing may only be used to create REF ~ _7 amode 

values from amode values or REF amode values; 

11) A program may not contain more than 25 different 

ROW displays. 

New Features 

Procedure Variables 

There are two methods of declaring procedure variables 

and constants. They may be declared as outlined by 

Eyler (3) in his thesis on procedure implementation, or as 

an alternative the programmer may write the following type 

declarations 

PROC VIRTUAL_PARAMETERS_PACK YIELDING_MOID ID_INIT_LIST. 

This declares each of the identifiers contained in the iden-

tifier list to be a procedure .variable of the mode indicated 

by the virtual parameters pack and yielding mode field. 

These variables may be assigned routines (of a suitable 

mode) dynamically during the elaboration of the program. 

The ID_LNIT_LIST also allows procedure variables to be 

initialized by units yielding the proper mode within the 
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declaration. Figure 45 shows some examples of the types of 

procedure declarations currently allowed. 

Procedure constant• 

PROC a = (REAL x,y) REALa (x'- y)/(x + y) * 100.0; 

Procedure variable initialized by a routines 

PROC ba= (REAL x,y) REALa (x - y)/(x + y) * 100.0; 

Procedure variable assigned a routine at a 

later timea 

PROC (REAL,REAL) REAL c; 
• 
• 

-· ca= (REAL x,y) REALI (x - y)/(x + y) * 100.0; 

Procedure variable initialized by a unit• 

PROC (REAL,REAL) REAL da= 

IF p THEN (REAL x,y) REALI (x - y)/(x + y) * 100.0 

ELSE (REAL x,y) REALa (y - x)/(x + y) * 100.0 

FI; 

Figure 45. Sample Procedure Declarations 

REF Amode Variables (pointers) 

The compiler does not currently support structures or 

list processing. Pointer variables have only a limited 

usefullness under these restrictions. Two valid uses of 

pointer variables area 

1) to achieve the effect of CALL_BY_REFERENCE 



parameters (all ALGOL 68 parameters are CALL_BY_ 

VALUE) and 

2) if it is known ,that a particular element of an 

array is to be referenced more than once, 

pointer variables may save mu'ch processing time. 
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Figure 46 provides an ,example of the definition of pointer 

variables to decrease execution time. It also provides an 

example of mode declarations. 



BEGIN 

END 

MODE .TREE_NODE = ~3_7 INT; 

REF .TREE_NODE CUR_NODE; 

~100_7 .TREE_NODE TREE; 

INT ROOTa= 0; 

PROC SEARCH = (INT ARGUMENT) REF .TREE NODE& 

BEGIN 

END 

REF .TREE_NODE Xa= NIL; 

INT SRCHa= ROOT; 

WHILE SRCH1 =a NIL 

DO 

OD; 

CUR_NODEa= TREE ~SRCH,_7; 

REF INT LLINKa= CUR_NODE ~1,_7; 

KEYa= CUR_NODE ~2,_7; 

RLINKa= CUR_NODE ~3_7; 

IF ARGUMENT KEY THEN SRCHa= LLINK 

ELIF ARGUMENT = KEY 

FI 

THEN Xa= CUR_NODE; 

OUT_OF_PROC 

ELSE SROHa= RLINK 

OUT_OF_PROCa SKIP 

Figure 46. Example Program Illustrating 
Possible Uses of REF Amode 
Variables 
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APPENDIX F 

SYSTEM PROGRAMMER'S GUIDE 
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Symbol Table Modification 

Moving the Symbol Table From Memory 

to Disk 
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The current version of the compiler does not actually 

perform any disk input/output for intermediate files. A 

new version of subprogram ALGIO which saves each 80 word 

record of output in.an array was written. When an input 

request is made, tables built during output operations are 

searched to locate the desired record. After the record has 

been located it is moved into the output __ parameter area and 

the subroutine is exited • 
. . 

In order to allow the input/output. files to actually 

be written onto disk it is necessary to provide the neces-

sary JOB CONTROL LANGUAGE for each file. It is also neces­

sary to replace the current version of ALGIO by the original 

version. 

Modifying the Symbol Table Size 

If it is found desirable to modify the symbol table 

sizeJ it is necessary to change the data statement found in 

subprogram ALGZA to 

DATA TBSZ/N/ 

where the N is replaced by the size (in words) desired for 

the symbol table (N should be an integral multiple of 80). 

If the symbol table is on disk the only other changes 

required are the DEFINE FILE statement for file number 11 
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and of course changing the JOB CONTROL LANGUAGE specifica­

tion for the file. If the symbol table file is located in 

memory, then it will be necessary to make the following 

changes to ALGIO. 

1) The dimension statement for the variable DISK must 

be increased to reflect the total number of words 

expected for all intermediate files (DISK sh,ould 

be an integral multiple of 80); 

2) The dimension statement for LOG must be-changed to 

DIMENSION LOC (i,J) 

where i = DISK/80; 

3) The data statement for NRPGS must be changed to 

the value DISK/80. 

Operator Declarations 

The subprogram ALGZO has been included with the modifi­

cations made to the compiler. ALGZO is not currently called 

by any existing routine. It has the function of inserting 

operator declarations into the symbol table. Figure 47 is a 

diagram which shows how the operator declarations would be 

placed in the symbol table by ALGZO. Figure 48 is a list of 

the formal parameters of subprogram ALGZO along with the 

meaning of each parameter. Operator declarations could be 

processed by treating it as a procedure declaration. The 

declaration OP + = (INT A,B) INTai'Jcould conceptually be 

parsed as 

PROC TEMP_ID = (INT A,B) INTI • 



135 

A symbol table entry would be made in the normal manner for 

the procedured mode identified by TEMP_ID, followed by a 

call to ALGZO to enter the routine definition into the 

operator routine list. 

IDENTIFIER LIST 

Tree Structure 
Mode 

ID • • • • • • • • • • 

ID • • • • • • • • • • 

Operator 
Routine 
Definitions 

Figure 4?. Operator Declaration Structure 

Table I gives the functions of the subprograms that 

have been added to the compiler. 



Formal Parameter 

OPSYM 

OPNDl 

OPND2 

YMOID 

ROUT 

PRIO 

PTR 

IER 
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Use/Meaning 

The internal code for the operator 
symbol being defined 

The mode number of the left operand 
of this operator 

The mode number of the right 
operand of th~s operator (use zero 
if operator is monodic) 

The mode number of the yielding 
value of the operator 

The temporary identifier assigned 
to this particular operator routine 

The priority to be assigned to 
all dyadic operators using this 
symbol (when PRIO is not zero 
the only input parameter values 
used are OPSYM and PRIO) 

Return address -·of the symbol table 
node created as a result of this 
call 

Error code 

IER = 0 No error 

IER • 1 - Attempt to insert two 
routines with same 
temporary identifier 

IER = 2 - Attempt to define a 
routine after a label 
in the current block 

IER = J - Duplicate priority 
number definition 

Figure 48. Formal Parameters for Subprogram ALGZO 



Subprogram 

Phase 3 

ALGF5 

Phase 3·5 

ALGF2 

ALGIO 

ALGYA 

ALGYB 

ALGYC 

ALGZA 

ALGZB 

ALGZC 

1)7 

TABLE I 

FUNCTIONS OF ADDED SUBPROGRAMS 

Functions 

P~rforms DISK I/O for the Phase J pass 
through the source code (has the ability 
to access each word of the file directly 
by pQsi tion). 

Fetches next input symbol for Phase 3·5· 
Input may come from the symbol table 
area (mode declarations on the input 
source file). 

The incore storage version of the I/O 
routine. 

Saves space in the symbol table area 
by packing up to seven one word entries 
into the eight word symbol table node. 

Establishes the standard environment by 
loading the mode table. (Can also be 
modified to load standard operator 
definitions.) 

Unpacks the data packed by ALGYA. 
Repeated calls to ALGYC will make all 
values in the list available. 

Performs the paging necessary for access 
to the symbol table and through ALGIO 
performs any necessary input/output 
operations (see discussion on symbol 
table location) • 

Provides access to the symbol table 
area. Data may not be fetched or 
stored in such a way as to span two 
symbol table nodes. 

Causes the tree structure pointer of 
the symbol table to be decreased by 
one nesting level. 



Subprogram 

ALGZD 

ALGZF 

ALGZG 

ALGZH 

ALGZI 

ALGZJ 

ALGZK 

ALGZL 

ALGZM 

ALGZN 

ALGZS 

ALGZU 

ALGZV 

ALG3B 

138 

TABLE I (Continued) 

Functions 

Increase the nesting level during symbol 
table construction. 

Inserts an identifier into the identifi­
er list associated with the current 
block. 

Search the symbol table for an occur­
rence of an identifier. 

Prints the attribute and'cross reference 
listing (if requested), it also causes 
the mode table print routine to be 
called. 

This subroutine blocks the symbols out­
put from Phase 3·5· Source symbols are 
output as is; however, object code 
symbols are prefixed by a value equal 
to (1000 + number of object text words). 
Note• It is possible to have the value 
1000 if it is necessary to complete a 
record and no object text would fit in 
the remaining space after the code 
symbol. 

Pushes values onto the compile time 
stack. 

Pops values from the compile time stack. 

Parses loop clauses. 

Parses declarations. 

Parses the mode indications. 

Generates allocate storage instructions 
for declared variables. 

Equivalences user defined modes. 

Computes the nesting level for each 
symbol table node. 

Main line Phase 3·5 



Subprogram 

GET MD 

INS MD 

JTST 

MDTST 

MODET 

PRTMD 

PRTMT 

Phase 4 

ALGZE 

BAL 

COERC 

DREF4 

POSS 

ROW4 

TABLE I (Continued) 

Functions 

Fetches the mode table entry for the 
indicated mode number. 

Inserts modes into the mode table 
(also computes related modes). 

Tests switches to determine if debug­
ging information is to be output. 

Allows tests of various fields of a 
mode table entry. 

Performs the insertion of a single 
mode into the mode table. 

139 

Converts the coded values of a mode 
table entry into Al characters suitable 
for printing. 

Prints the entire mode table using sub­
program PRTMD. 

Increase the symbol table level 
(assuming tree structure has been 
built). 

Computes the balance mode for multiple 
completion clauses. (ALGBL generates 
the balancing code.) 

Calculates the coercion path from the 
A PRIORI mode to the A POSTERIORI mode. 

Computes the mode number of the mode 
which has one less REF than the input 
mode (generates code if necessary). 

Determines the set of all possible 
coercions for a given syntactic 
position. 

Completes the mode number of the mode 
which has one more row than the input 
mode (generates code if necessary). 



Subprogram 

SIFT 

WIDE4 

VOID 

Phase 5 

ALGYF 

ALGYG 

TABLE I (Continued) 

Functions 

Reduces the set determined in FOSS to 
the unique ooercion to be performed. 
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Computes the mode number for the mode 
which is one level wider than the input 
mode (generates code if necessary). 

Computes the actions necessary to void 
the current mode (generates code if 
necessary). 

Implements new pseudo operation codes 
901-907. 

Implements and becomes operators (leav­
ing a REF amode termporary on the stack 
top. 
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