
PREPARATION OF CERTAIN HIGHLY STEREOSPECIFIC 

POLYMERS OF ACRYLIC, METHACRYLIC AND 

ITACONIC ACIDS AS POTENTIAL 

ANTITUMOR AGENTS 

By 

MANZAR SABERI 
II 

Bachelor of Science in Chemistry 

National University of Iran 

Tehran, Iran 

1972 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 
MASTER OF SCIENCE 

July, 1976 



PREPARATION OF CERTAIN HIGHLY STEREOSPECIFIC 

POLYMERS OF ACRYLIC, METHACRYLIC AND 

ITACONIC ACIDS AS POTENTIAL 

ANTITUMOR AGENTS 

Thesis Adviser 

953411 

ii 



"ACKNOWLEDGEMENTS 

I wish to express my deep love and gratitude for my departed father 

whose encouragement and concern was wholly responsible for my success. 

My sincere thanks is also due to Dr. E. M. Hodnett f.or his help and 

guidance in my research. 

I would like to thank Majid, my husband, for.his continued interest 

and support. The constant love and affection of my family which have 

been a sustaining force in the course of my degree studies are gratefully 

acknowledged. 

I am highly thankful to Dr. 0. c. Dermer for proofreading this 

thesis. I gratefully acknowledge Dr. K. D. Berlin and Dr. T. E. Moore 

for serving as members of my Advisory Committee. 

Special thanks is expressed to the following for Summer Fellowship: 

Alumni Fellowship,Summer 1975 and Gulf Oil Co.,Summer 1976. I am also 

thankful for the financial support from the Chemistry Department in the 

form of a Teaching Assistantship throughout my graduate career. I sin­

cerely thank my fellow graduate students, particularly Prem Vuppalapaty, 

for their comments and suggestions during my study. 

iii 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION 1 

II. HISTORICAL • 3 

III. EXPERIMENTAL 31 

IV. RESULTS AND DISCUSSIONS. 51 

BIBLIOGRAPHY. 100 

iv 



Table 

I. 

II. 

III. 

IV. 

v. 

VI. 

VII. 

VIII. 

IX. 

x. 
XI. 

XII. 

XIII. 

XIV. 

XV. 

XVI. 

LIST OF TABLES 

Polymerization of Methyl Methacrylate by 1,1-Diphenyl­
~-hexyllithium in Toluene •••••••••••••• 

Effect of Polymerization Conditions on Polymer Tacticity(l28) 

Temperature Dependence of Isotacticity in Poly(methyl 
methacrylate) Made with Free-radical Initiation ••••• 

Melting Points vs. Tacticity of Polymers(l07) ••• 

Some Properties of Stereoregular Poly(methyl metha-
cry-late). . . . . . . . . . . . . . . . . . .. 

Second-order Transition Temperature for Polyacrylates 
and Polymethacrylates • • • • • • • • • • • 

The Phases Used for Determining Infrared Spectra of Polymer 
Samples . . . . . . . . . . . . . . . . . 

Conditions for NMR Studies of Polymers. 

LD50 of Polymers for Swiss Mice . . . . . . 
Polymers Prepared . . . . . . . . . . 
Infrared Absorption Spectra (in 

-1 
em ) of Polymers I-XII 

The Proton Magnetic Resonance Spectrum and Peak Assignment 
of Polymer I. . . . . . . . . . . . . . . . . . . . . . . 

The Proton Magnetic Resonance Spectrum and Peak Assignment 
of Polymer II . . . . . . . . . . . . . . . . . . . . . . 

The Proton Magnetic Resonance Spectrum and Peak Assignment 
of Polymer IV . . . . . . . . . . . . . . . . . . . . . . 

The Proton Magnetic Resonance Spectrum and Peak Assignment 
of Polymer V. . . . . . . . . . . . . . . . . 

Stereoregularity in Po~y(methyl methacrylate) (I and II) and 
Poly (butyl acrylate) (IV and V) • • • • • • • • 

v 

Page 

14 

15 

19 

26 

27 

28 

47 

48 

50 

52 

56 

58 

59 

65 

66 

73 



# 

LIST OF TABLES (Continued) 

Table Page 

XVII. Number-Average-Molecular Weight of Polymers • • • • 75 

XVIII. Hydrolysis of Polymers ••••• • •• 77 

XIX. Henderson-Hasselbalch Parameters for Titration of Polymer 
IX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 

XX. Henderson-Hasselbalch Parameters for Titration of Polymer 
VIII. . . . . . . . . . . . . . . . . . . . . . . . . . 92 

XXI. Henderson-Hasselbalch Parameters for Titration of Polymer 
X . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 

XXII. Henderson-Hasselbalch Parameters for Titration of Polymer 
XI. . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 

XXIII. Henderson-Hasselbalch Parameters for Titration of Polymer 
XII . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 

vi 



LIST OF FIGURES 

Figure Page 

1. Tactici ty of Poly (methyl methacrylate) Polymerized in the 
Presence of ~-Pentyl Magnesium Bromide at Various Temper-
atures • • • • • • • • • . • 6 

2. Preferred Monomer Conformation in an SN2-Type Reaction 
With a Lithium Atom(S) • • • • • • • • • 11 

3. Formation of a Helix by Coordination With a Pair of Methoxyl 
Groupings in the Propagating Chain • • • • 21 

4. "Pseudo-termination" by Forming a Cyclic Intermediate. • 53 

5. Proton Magnetic Resonance of Isotactic Poly(methyl metha-
crylate) (I) - 100 MHz • • • • • • • • • • • 60 

6. Infrared Spectrum of Isotactic Poly(methyl methacrylate) 
(I) , KBr Pellet. • • • • • • • • • • • • • • • • • • 61 

7. Proton Magnetic Resonance of Syndiotactic Poly(methyl 
methacrylate) (II) - 100 MHz • • • • • • . • • • • • 62 

B. Infrared Spectrum of Syndiotactic Poly(methyl methacrylate) 
(II), KBr Pellet • • • • • • • • • . • • • • • • • • • • • 63 

9. Proton Magnetic Resonance of Isotactic Poly(butyl acrylate) 
(IV) - 100 MHZ • • • • • • • • • • . • • • • • • • • • 67 

10. Infrared Spectrum of Isotactic Poly(butyl acrylate) (IV) 68 

11. Proton Magnetic Resonance of Syndiotactic Poly(butyl 
acrylate) (V) - 100 MHz • • • • • • • • • • • • • • 69 

12. Infrared Spectrum of Syndiotactic Poly(butyl acrylate) (V) • 70 

13. Proton Magnetic Resonance of Poly(dibutyl itaconate) 
(VII) - 100 MHz. • • • • • • • • • • • • • • • • 71 

14. Infrared Spectrum of Poly(butyl itaconate) . (VII) . . . 72 

15. Proton Magnetic Resonance of Isotactic Poly(methacrylic 
acid) (IX) - 100 MHZ • • • • • • • • • • • • • • • • • 78 

vii 



LIST OF FIGURES (Continued) 

Figure Page 

16. Infrared Spectrum of Isotactic Poly(methacrylic acid) (IX), 
KBr Pellet . . . • . . . . • . . . . • . . . . . . . . . . 79 

17. Proton Magnetic Resonance of Syndiotactic Poly(methacrylic 
acid) (VIII) - 100 MHZ • • • • • • • • • • • • • 80 

18. Infrared Spectrum of Syndiotactic Poly(methacrylic acid) 
(VIII) , KBR Pellet • • • • • • • • • • • • • • • • • • • • 81 

19. Proton Magnetic Resonance of Isotactic Poly(acrylic acid) 
(X) - 100 MHZ. • • • • • • • • • • • • • • • • • • • 82 

20. Infrared Spectrum of Isotactic Poly(acrylic acid) (X), 
KBr Pellet . . . . . . • . • • . . . . . . . . . . . 83 

21. Proton Magnetic Resonance of Syndiotactic Poly(acrylic 
acid) (XI) - 100 MHz • • • • • • • • • • • • • • • • 84 

22. Infrared Spectrum of Syndiotactic Poly(acrylic acid) (XI), 
KBr Pellet • • • • • • • • • • • • • • • 85 

23. Proton Magnetic Resonance of Poly(itaconic acid) (XII) -
100 MHZ •••••• 86 

24. Infrared Spectrum of Poly(itaconic acid) (XII), KBr Pellet • 87 

25. pH vs. a for Polymers IX (G)) and VIII ( m >. . . 96 

26. pH vs. log[ (1-a) /a] for Polymers IX (f)) and VIII (EJ) . . . . 97 

27. pH vs. a for Polymers X (G)), XI (tO) ' and XII ( ~). . 98 

28. pH vs. log[ (1-a)/a] for Polymers X ((!)) 1 XI (GJ), and XII (A). 99 

viii 



CHAPTER I 

INTRODUCTION 

The great changes in the properties of polymers which result from 

ordered polymerization (94) led us to undertake the stereospecific poly­

merization of acrylic and methacrylic esters. Isotactic poly(acrylic 

acid) and poly(methacrylic acid) were prepared from isotactic poly­

(butyl acrylate) and poly(methyl methacrylate) respectively. Syndic­

tactic poly(acrylic acid) and poly(methacrylic acid) were also prepared 

by hydrolysis of the corresponding esters. 

The potentiometric titration behavior of a polyelectrolyte solution 

is complex, needing for its explanation the·consideration of first (61, 

72, 77) and possibly second-neighbor interaction (73). A comparison of 

electrolytes differing only in stereospecificity is of considerable 

interest. The theory for this has been developed by Lifson (74). 

Recently the difference between stereoregular and atactic poly­

(acrylic acid) has been studied (88). No difference in the potentio­

metric titration between solutions of the two forms was found. The 

marked difference in titration behavior betw:een isotactic and "atactic" 

poly(methacrylic acid) as compared to the pbsence of such a difference 

in the case of poly(acrylic acid) may tentatively be attributed to the 

special steric effects in the case of po.ly·(methacrylic acid) (124) . 

The outstanding differences between isotactic and atactic poly(acrylic 

acid) are (a) ability of isotactic acid to' crystallize and, (b) its 
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lower solubility. Iso~actic poly(acrylic acid) also differs from atactic 

polymer in the precipitation temperature and in the effect of neutral­

ization and viscosity. 

In 1968 De Somer~ al. (25, 26) compared the antiviral activities 

of poly(acrylic acid) and poly(methacrylic acid) with those of other 

types of synthetic polyelectrolytes (e.g., dextran). They found that 

poly(acrylic acid) and poly(methacrylic acid) are more antivirally 

active than the other poly anions. 

The aim of our study was to synthesize some stereospecific polymers 

in order to examine the change of their molecular structure with poly­

merization conditions (initiator, solvent, and temperature) and also 

to investigate differences in th~ biological activities, if any, between 

atactic and stereoregular structures. 



CHAPTER II 

HISTORICAL 

In 1958 Fox and co-workers (27) reported the synthesis of crystal­

lizable poly(methyl methacrylate) by free-radical as well as anionic 

polymerization. Depending upon the reaction conditions, they obtained 

three different polymers to which the following configurations could 

be assigned according to x-ray analysis (114). 

Type I: Syndiotactic, obtained with 9-fluorenyllithium at -60° 

in 1,2-dimethoxyethane, and also in free-radical polymerization at low 

temperature. 

Type II: Isotactic, obtained with 9-fluorenyllithium at -60° in 

hydrocarbon solvents, for instance, toluene. 

Type III: A block copolymer consisting of isotactic and syndic­

tactic blocks formed with 9-fluorenyllithium at low temperature (-70°) 

in toluene in the presence of small amount of dioxane. 

Numerous later investigations with different initiator systems 

all showed that anionic polymerization of methyl methacrylate in non­

polar solvents yields primarily isotactic polymer, whereas in polar 

solvents syndiotactic propagation is favored. Besides metallic sodium 

and alkali metal-alcohol, organometallic compounds of the alkali metals 

were the initi9tors primarily employed in stereospecific polymerization 

of methyl methacrylate. In polymerizing'methyl methacrylate at the 

S).lrface of solid sodium in toluene at 30° Okamura and Higashumura (96) 

3 
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found an acetone-insoluble portion of polymer that exhibited x-ray 

crystallinity. This comprised up to 12.8% of the entire polymer formed, 

the amount depending upon the monomer concentration. According to Gall 

and McCrum (38), syndiotactic polymer is formed under these conditions. 

The kinetics of the methyl methacrylate polymerization with organa­

alkali metal compounds are difficult to follow because of rapidity of 

these reactions and because of possible side reaction of the initiator 

with the ester group of the monomer. Trekonal and Lim (117) overcame 

these difficulties by using as the initiator the lithium salt 1,1-di­

methylbutanol. With this initiator they obtained highly isotactic 

polymers in toluene at temperatures between -60° and -20°. The tert­

butyl methacrylate polymer was found to be less stereoregular (9). 

The first to investigate intensively the stereospecific polymeri­

zation of methyl methacrylate initiated by organometallic compounds were 

Goode and co-workers (45). They observed that as the solvent was changed 

from tetrahydrofuran to 1,2-dimethoxyethane to diethyl ether to toluene, 

the type of poly(methyl methacrylate) obtained changed from syndiotactic 

to isotactic polymer. Korotkov and co-workers (65) observed similar 

results using other solvents. Thus, in the case of weakly solvating 

solvents such as toluene and hexane isotactic poly(methyl methacrylate) 

is obtained with ~-butyllithium. When strongly solvating solv~nts such 

as liquid ammonia and pyridine are used, syndiotactic polymer results. 

With solvents of medium solvating power such as diethyl ether and 

ethylene glycol dimethyl ether, block polymers of these two configu­

rations are obtained in various proportions. In toluene isotactic 

polymer is, predominantly formed whereas in mixtures of toluene and 

tetrahydrofuran the fraction of .isotactic links decreases rapidly with 
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increasing proportion of tetrahydrofuran (43, 44). Highly stereospecific 

catalysts are relatively insensitive to changes in temperature, but the 

stereoregulating ability of less stereospecific catalysts is changed by 

changing the temperature. When isobutylmagnesium bromide initiates 

the polymerization of methyl methacrylate, the tacticity of the polymer 

is the same whether the temperature is -78° or 0° but when isobutylmag-

nesium chloride, a less sterospecific catalyst, is used the polymer 

obtained at 0° is more isotactic than the one at -78°. The manner in 

which polymerization temperature affects the tacticity of poly(methyl 

methacrylate) is shown in Figure 1, which is based on the data of 

Watanabe and associates (95). 

These workers used NMR spectroscopy to measure tacticity and ex-

pressed their results as percentages of the three triads, ddd or 111 

(isotactic), ldl or dld (syndiotactic) and ddl, dll, lld, or dld (heter-

atactic). It can be noticed that the percentage of isotactic polymer 

0 0 
decreases as the polymerization temperature decreases from +20 . to -50 

(curve a). As seen by comparison to curve b which is a plot of the per-

centage of syndiotactic polymer against the temperature of polymeriza-

tion, the decrease in isotacticity is accompanied by a parallel increase 

in syndiotacticity. The effects of temperature on stereoregularity have 

been discussed by Fordham (33) and Matsumoto (78). It was indicated 

that syndiotactic propagation should be slightly favored energetically 

over isotactic in free species (32). In the polimerization of methyl 

methacrylate with 9-fluorenyllithium in toluene Glusker and co-workers 

(40) obtained polymers that, according to spectroscopic analysis, had 

one terminal fluorenyl group per macromolecule. Initiation takes place 

via a form of Michael reaction by addition of 1the alkyl group of the 
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Figure 1. Tacticity of Poly(methyl methacrylate) Poly­
merized in the Presence of !!_-Pentyl Mag­
nesium Bromide at Various Temperatures. 
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initiator to a monomer molecule. 

+ 
Ll 

Propagation now occurs by further addition of the monomer. 

ycH3 

H L.c' + 
CH2 -c ... :_ -~0 

., Ll+ 

CH3 

The termination reaction is extremely slow under the usual conditions 
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of polymerization, and chain transfer with monomer is of little signifi-

cance. The kinetics of methyl methacrylate polymerization with organa-

lithium initiators have been investigated by several authors. According 

to Wiles and Bywater (126, 127), the reaction is complicated in that 

the initiator may cleave the ester group to yield methylate anion, which 

affects the tacticity of the polymer. The extent of additon of ~-butyl-

lithium to monomer carbonyl group is small under the polymerization con-

ditions in ~-hexane, but in tetrahydrofuran it is not to be neglected 

entirely (62). A more simple kinetic behavior is displayed when 1,1-di-

phenylhexyllithium is used as the initiator, since here an attack on the 

ester group is hindered (107). Braun and co-workers (18) compared the 



initiator effects of several alkali-metal alkyls. With alkyl lithiums 

in toluene they obtained polymers with a high fraction of isotactic 

linkage of monomer units. In.initiation with alkyl sodiums or potas­

siums, on the other hand, the frequency of isotactic links decreased 

8 

and that of syndiotactic links increased. The fraction of monomer units 

with heterotactic links increases with the alkali metal employed in the 

order lithium, sodium and potassium, which means that the stereo-specifi­

city of the alkali metal alkyls decreases in the same order. In dimeth­

oxyethane and in pyridine mainly syndiotactic polymers are formed, with 

the proportion of hetercitactic links also increasing from lithium to 

alkali metal of higher atomic weight. Poly(methyl methacrylate) obtained 

with potassium alkyls are nearly atactic. From these findings it is evi­

dent that the stereospecificity of the propagation reaction does not 

depend solely on the extent of polarization of the carbon-metal bond 

and on the solvation of the terminal anionic groups of the chain, but 

is influenced also by the radius of the cation. 

Despite numerous studies, the mechanism of the stereospecific 

polymerization of methyl methacrylate with alkali metal alkyls is not 

yet completely clarified. In fact, we have no more than hypothetical 

con¢epts regarding the causes of stereoregulation (118). According to 

Glusker (41) isotactic linking of monomer molecules in polymerization 

initiated by alkyl lithiums is due to the formation of a complex of 

the lithium counterion with the carbonyl oxygen of both ultimate and 

penultimate ester group. In the presence of Lewis bases, the formation 

of this complex is inhibited and a decrease in isotacticity results. 

Cram and Kopecky (23) assume an enolization of the active chain end re­

sulting in a cyclic structure. 
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It is necessary to consider the type of ionization that occurs in 

the metal-carbon bond in these initiators. Thus, neglecting intermolecu-

lar association, we may represent the ionization of alkyllithium deriva-

tives as follows (129) : 

RLi R-Li+ - + Li+ R /Li . R + 

covalent intimate-ion solvent-separated free ions 
pair ion-pair 

I II !II IV 

In solutions of low dielectric constant, it would be expected that forms 

I and II would be predominant. These forms should initiate polymeriza-

tion at a slower rate and with more steric requirements than forms III 

and IV. The later should predominate in polar solvents. When reaction 

conditions favor stero-regularity, the covalent and the intimate ion-

pair forms generally lead to the isotactic structure (nonpolar solvent) . 

As the polarity of the medium increases, the syndiotactic placement is 

favored at low temperatures. Temperature also affects the equilibrium 

between forms II and III. In more polar solvents, the polymeric anion 

may be considered to be a free propagating species and the requirements 

for stereospecific polymerization should be similar to those formulated 

for free-radical interaction. In free-radical polymerization, Bovey 

(11) found that for methyl methacrylate syndiotactic propagation became 

increasingly important as the reaction temperature was lowered. The 

activation energy for the isotactic placement was about 0.8 kcal/mole 

greater than for syndiotactic placement. Once the alkyllithium has re-

acted with a monomer e.g., methyl methacrylate, the growing polymeric 

alkyllithium may be expected to possess enolic character, as shown in 

the following equation: 
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Also, the lithium atom can coordinate with the carbonyl oxygen of the 

penultimate monomer unit. The cyclic intermediate involves intramolecu-

lar solvation of the lithium atom, and because of intramolecular shield-

ing of one side of the lithium atom, nucleophilic attack by monomer unit 

will take place on the opposite side to give a transition state which is 

analogous to that of SN2 reactions. As the bond-forming reaction between 

lithium and the incoming olefin develops, the 0-Li coordinate linkage 

will break. Simultaneously, the polymer anion will migrate from the 

lithium atom to the methylene group of the monomer molecule. The newly 

formed lithium enolate system is then rapidly stabilized by intramolecu-

lar sQlvation. In this way, configuration retention will be maintained 

providing that the monomer molecule always presents the same conformation 

toward the lithium atom. For methyl methacrylate, it appears that the 

conformation involving the least steric hindrance is the one in which 

the a-methyl group is trans to the a-methyl group of the carbanion as 

depicted in Figure 2. 

In the absence of an a-methyl group, the latter condition would 

not be attained and it would be difficult to form an isotactic polymer, 



Figure 2. Preferred Monomer Conformation in an S 2-
N 

Type Reaction With a Lithium Atom(S) 

e,g., in the case of methyl acrylate. For other acrylate monomers in 

which branching at the a-carbon of the ester group occurs, e.g., iso-

11 

propyl acrylate, similar requirements for stereospecific polymerization 

will apply. In such cases, monomer conformation will be determined by 

the bulky ester group, which shields one side of the double bond and 

causes the opposite side to approach the' lithium atom. Cram and Kopecky 

(23, 24) proposed a mechanism in which the growing lithium enolate is 

' ' 
consider~d to have a great amount of alkoxide character and this is 

stabilized by the formation of a six-membered ring due to attack of the 

alkoxide group on the carbonyl group of the penultimate monomer units 

(Equations 1 and 2). Stereospecific growth is then believed to proceed 

by means of Diels-Alder type reactions in which the six-membered ring 

is destroyed while a new ring is formed simultaneously, as in Equation 

3. 



+ Cll3 CH OCf.L CH CH 
0 ' Li I I 3 I -"3 I 3 I :t 

'\:~C-CH2-~-CH2 P, -E~~~C--C-CH2-~-cH2 Pn 

' COOCH3 t. b- -. COOCH3 . 
0CH3 

P = Chain with 'n' units) 
n 

12 

(1) 

(3) 

Scott (111) found that sodium and other alkali metals form intensely 

colored 1:1 complexes with aromatic hydrocarbons such as naphthalene, 

biphenyl, and anthracene. Recently (128), the polymerization of methyl 

methacrylate intoluene by means of 1,1-diphenyl-~-hexyllithium was 

studied. Rapid fonnation of low-molecular-weight polymer was found. 

It seems plausible to assume that the attack of 1,1-diphenyl-~-hexyl-

lithium on monomer carbonyl groups would be small owing to steric factors 

and that there could therefore be a large difference between the poly-

merizations of methyl methacrylate initiated by ~-butyllithium and by 

1,1-diphenyl-~-hexyllithium. such differences have been found: the 
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fo:nnation of alkoxides was much less in the case of 1,1-diphenyl-,!!_-hexyl­

lithium and no bimodel molecular weight distribution was observed for 

polymer produced by 1,1-diphenyl-~-hexyllithium. The stereospecificities 

of the polymers produced by the two catalysts were different in degree. 

The kinetic relationships obtained were not as complex for 1,1-diphenyl­

,!!_-hexyllithium as for ~butyllithium. Thus, for the fo:nner, the poly­

merization rate was first order in both monomer and initiator concen­

tration up to at least 70% monomer consumption. Kinetic data obtained 

from experiments at 0°, -30° and -80° are summarized in Table I. 

Since there is much less fo:nnation of alkoxide with 1,1-diphenyl-~ 

hexyllithium, attack on the vinyl double bond occurs to a larger extent. 

Furthe:nnore, it is assumed that the interaction is rapid and that there 

exists a steady concentration of growing polymer chains which is a con­

stant fraction of the 1,1-diphenyl-,!!_-hexyllithium added, the first-order 

dependencies would be expected. Evidence for this has been obtained by 

Glusker and co-workers (40, 41) and is shown in Table II. This table 

is a summary of results which indicate how the isotacticity of poly­

(methyl methacrylate) varies according to the initial monomer initiator 

concentration ratio and, hence, according to the concentration of lithi­

um methoxide. 

The discovery in 1958 of a crystalline form of poly(methyl methac­

rylate) prepared with the free-radical initiator at a low temperature 

focused attention on this topic and indicated that free-radical polymers 

did not necessarily have the random atactic structure that was usually 

assumed. The factors which control the orientation of the incoming mono­

mer molecules in free-radical polymerization namely, steric or dipole 

interaction, are not as important as in ionic polymerization. In most 



1, 1-Diphenyl-..!1.-
Run hexyllithium 

-1 3 
mole liter x 10 

1 3.2 

2 1.6 

3 1.6 

4 0.8 

5 2.4 

6 2.4 

TABLE I 

POLYMERIZATION OF METHYL METHACRYLATE. BY 
1,1-DIPHENYL-£-HEXYLLITHIUM IN TOLUENE 

Methyl Polymerization 
methacrylate Temperature 

mole liter -1 oc 

0.125 -30 

0.125 -30 

0.125 -30 

0.125 -30 

0.125 -80 

0.125 0 

-d ln [Methyl 
methacrylate]/dt 

·- -1 102 m1.n x 

11.10 

5.60 

5.50 

2.80 

0.29 

13.00 

1-' 
ol::> 



TABLE II 

EFFECT OF POLYMERIZATION CONDITIONS ON POLYMER TACTICITY(l28) 

1, 1-Diphenyl-~- Methyl Polymerization 
hexyllithium methacrylate Temperature Conversion % Triads CHPH 

-1 3 
mole liter 

-1 oc -1 3 mole liter x 10 % I s mole liter x 10 

3.2 . 0.125 -30 100 88 4 0.6 

1.6 0.125 -30 100 85 3 0.3 

1.6 0.250 -30 91 84 3 0.3 

0.8 0.125 -30 72 87 3 0.1 

2.4 0.125 -80 70 87 3 0.4 

2.4 0.125 0 32 76 5 0.5 
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free-radical polymerization there is no intermediate complex of well-de-

fined geometry in the addition of a monomer to the growing chain, such 

as exists in many ionic systems. The configuration of an entering mono-

mer unit will be determined by its direction of approach, and preferred 

orientation may result if there are steric or electronic interactions 

between the substituents. 

In fact, only if these are negligible in the transition state will 

a completely random structure be obtained. The addition to a polymer 

chain of successive units of D and L configuration can thus be linked 

to a copolymerization (100), and if there are significant energy differ-

ences between them, the composition, in terms of configurational isomers, 

will change with temperature. The addition of a monomer to a free-radi-

cal chain is shown diagrammatically as follows: 

or /R2 
c~ 

or R1 

B 

Presentation of the monomer with its substituents on the same side as 

those of the terminal carbon atom c-1 (mirror approach A) will give iso-

tactic placement, whereas if these are on opposite sides (non-mirror ap-
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preach B) syndiotactic addition will result (2). The geometry of ap-

preach of the monomer is further defined by the angle of its axis to 

that of the chain axis, the lateral distance, o, between c-1 and the 

bonding carbon atom of the monomer, and the separation distance,d,between 

. them. The configuration of c-1 is determined only at the moment of 

attachment of the monomer., and whether it is isotactic or syndiotactic 

depends on the configuration of the penultimate unit (carbon atom C-2). 

The minimum interaction between the substituents on c-1 and C-2 could 

favor one mode of addition over the other. This aspect of minimum 

steric interaction in the growing polymer chain in the propagation re-

action has been emphasized by Cram and Kopecky (23). A more sophisti-

cated attempt was made by Bawn ~~· (7), who took into account the 

3 
effect of sp hybridization on the terminal car~on atom and the effect 

of radical addition at the end of the double bond (p-cr reaction, o=O) 

as well as p-~/addition. Syndiotactic addition was found to be favored 

at all separation distances and was roughly in accord with experimental 

values (about 1 kcal) at 3 R separation. Bawn, James and North (7) also 

calculated penultimate unit interactions. 

Methyl methacrylate forms a polymer with considerable steric hin-

drance, and it was calculated that the energy barrier for rotation of 

the terminal unit exceeds 20 kcal/mole. This is much greater than the 

activation energy for propagation, so that the chance of a rotation oc-

curing before addition of the next monomer molecule would be negligible. 

Twp stable rotational isomers were predicted, one corresponding to syn-

diotactic addition and the other leading to isotactic arrangement, but 

in the latter case minimum energy necessitated a rotation of about 30° 

by the penultimate unit (C-2). The calculation indicated that with the 
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planar sp2 structure in the radical chain end, control of configuration 

would depend on the terminal unit-monomer interaction, but that if 

there were a substantial proportion of sp3 character in the transition 

state the interaction energies between terminal and penultimate monomer 

unit would be increased. Even so, syndiotactic addition would be favored 

by about 1.5 kcal/mole. 

Fox and co-workers (27) found that poly(methyl methacrylate) formed 

by light or a free-radical-initiated reaction showed a progressive change 

in infrared spectra with polymerization temperature, and samples prepared 

below 0° were crystalline. The infrared assignments were not absolute 

measurements, and x-ray data could give no more than an indication of 

the degree of tacticity, but Fox et al. suggested that syndiotactic ad-

dition was favored by 1-2 kcal/mole (28). The first determination of 

the configuration of the polymer was made by Bovey (11) using high-reso-

lution NMR. From the temperature dependence of the structure it was 

i i estimated that DH = 0.75 kcal/mole and DS = 0. Fox and Schnecko (29) s s 
i subsequently reported slightly different values, DH = 1.07 + 0.05 kcal/ 
s -

i mole and DS = 0.99 + 0.1 eu, but the estimates of isotactic addition s 

do not differ greatly, as can be seen from the data in Table III. 

' i Watanable found DH from the infrared spectra to be comparable but 
s 

somewhat higher at 1.38- 1.44 kcal/mole (122). The predominance of 

syndiotactic structure in poly(methyl methacrylate) is thus firmly estab-

lished, although even at the lowest temperature employed average sequence 

lengths of less than ten are to be expected. The relative proportion 

of isotactic, syndiotactic, and heterotactic triads in these polymers 

indicated that the stereochemistry of the addition step was controlled 

only by the interaction of the terminal radical with the incoming mono-



TABLE III 

TEMPERATURE DEPENDENCE OF ISOTACTICITY IN POLY(METHYL 
METHACRYLATE) MADE WITH FREE-RADICAL INITIATION 

Polymerization 
Temperature Isotacticity, I 
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oc Bovey(ll) Fox and Schnecko(29) 

-78 0.13 

-40 0.14 

0 0.22 

50 0.24 

60 0.24 

100 0.27 0.27 

150 0.33 

250 0.36 
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mer. 

If the proportion of the triads DDD and LLL7 DLD and LDL; and DDL, 

DLL, LLD, and LDD are represented by pi' Ps' and Ph, it is clear that 

the probability of an isotactic triad, P., will be related to the iso­
l. 

tacticity, I, which refers to diads, by P. 
l. 

2 
=I, and that Ph • 2 I(l-I). 

The relationship is used to test whether the polymer stereochemistry has 

a statistical distribution determined only by the terminal chain unit 

(21) • 

The structure of poly(methyl methacrylate) appears to be independent 

of whether it is polymerized in bulk or in solvents such as toluene, 

acetaldehyde, and ether (6); this suggests that solvents do not partici-

pate in the propagation reaction, although there is some evidence to 

indicate that they complex with the monomer (110). 

The interactions that lead to mainly syndiotactic polymer change 

markedly where polymerization is carried out at very low pressures,or 

at very low temperatures when the monomer is frozen. Thus, isotactic 

poly(methyl methacrylate) has a higher density than the syndiotactic 

form (1.23 g/ml compared with 1.18 g/ml) and would be the favored struc-

ture in polymerization at very high pressures. Zulov et al. (134) have 

found that polymers produced at high pressures indeed have a higher den-

sity than normal and the isotactic fraction changes from 0.25 at atmos­

pheric pressure (polymerization temperature 51°) to 0.48 at 8000 kg/cm2 

pressure (121). At temperatures in the region of -100° in the presence 

of magnesium metal (58) or zinc chloride with photoinitiation (59) a 

crystallizable polymer was obtained, claimed to be isotactic from its 

density, glass-transition temperature, and x-ray diffraction pattern. 

The reaction was inhibited by hydroquinone, and a free-radical mechanism 
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is probable. It was suggested that zinc chloride aids the formation of 

a helix by coordination with a pair of methoxyl groups in the propagating 

chain as shown as in Figure 3. 

,ZnC12 ... 
,~ ........ _ 

..,' ...... . , ... ... 
,,' .... QMe 

,,,'' \~=o 
MeO' 

Me / 

I 0-C, Me 1/CMe 

l"c~c . \. cH2 
u=c ·j "-c:H2_.,.....-c'\ 

tvte ~-o 

', ,/ ... -
', ,, ~Me ', ,, 

' , ' , ZnCI2'· 

Figure 3. Formation of a Helix by Coordination With a Pair of 
Methoxyl Groupings in the Propagating Chain. 

Later work, however, has thrown considerable doubt on these find-

ings. A polymer prepared under similar conditions by Bovey .(12) was 

predominantly syndiotactic, and Bovey suggested that Kargin ~ al. as-

signed the wrong structure to the polymer. 

Imoto ~ al. (52) reported that a complex is formed between monomer 
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and zinc chloride but stated that its effect is only to increase the 

rate of polymerization (K is increased by a factor of about three) (10). 
p 

The crystallinity of the polymer was not affected by the presence of 

zinc chloride. Polymer tacticities were found to be independent of 

zinc chloride concentration whether polymerization was conducted in 

bulk, in ethyl acetate solution, or in aqueous suspension (116). Values 

obtained (using NMR) were very comparable with those obtained in the 

absence of zinc chloride, and, since the relationship Ph = 2 I (1-I) was 

found to hold, the configuration of the growing chain is determined only 

by the last unit in the propagating chain. The 1:1 complex of methyl 

methacrylate and zinc chloride gave a less syndiotactic polymer, but it 

was more nearly atactic in structure than stereospecific. 

Benzophenone ketyls, too, initiate the polymerization of methyl 

methacrylate (53, 133). If tetrahydrofuran or dimethoxyethane is used 

as the solvent, polymers in which syndiotactic links somewhat predomi-

nant over isotactic ones are obtained. According to Tsuruta and co-

workers (118), highly isotactic polymer is formed with the sodium ketyl 

(not, however with the lithium or potassium ketyl) at -70°. In tetra-

hydrofuran or dimethoxyethane, polymerization of methyl methacrylate 

is also initiated by radical ions obtained from arenes and alkali metals. 

With increasing polymerization temperature the amount of syndiotactic 

linkage decreases. Furthermore, the lengths of the syndiotactic se-

quence decrease with the type of alkali metal in the order: Li > Na > 

K > Cs. (48) • 

Methyl acrylate and acrylic acid as well as methacrylic esters 

having bulky alkyl ester groups are also subjected to stereospecific 

polymerization. Thus crystalline poly(isopropyl acrylate) and poly-
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(isopropyl methacrylate) can be prepared by polymerization with organo­

lithium or organomagnesium compounds. According to Miller and Rauhut 

(88) ~-butyl acrylate yields a crystalline product with lithium dis-

persion or ~-butyllithium, whereas methyl acrylate as well as normal, 

secondary, and isobutyl acrylate yield amorphous polymers. Polymeri­

zation of normal and ~-butyl methacrylates by ~-butyllithium at -50° 

yields isotactic polymer, and sodium naphthalene in tetrahydrofuran 

and lithium in liquid ammonia lead to syndiotactic polymer (3). Poly­

merization of phenyl methacrylate by butyllithium in toluene at -30° 

gives an isotactic polymer (71). 

Nishioka ~ al. (95) observed that the stereoregularity of poly 

(mehtyl methacrylate) can be controlled over a wide range by selecting 

Grignard reagents with appropriate alkyl groups and suitable reaction 

temperatures. Thus, isotactic polymer was obtained when Grignard 

reagents were used that contained branched alkyl groups such as isobutyl, 

secondary, butyl and cyclohexyl at -80° to +20° or with phenylmagnesium 

bromide at ambient temperatures. Stereoblock polymer containing iso­

tactic and syndiotactic units could be synthesized by the use of a rea­

gent with a linear alkyl group, e.g., n-butyl magnesium bromide. 

Above room temperature, the rate of polymerization is high and 

large amounts of catalyst are required. The alkyl groups on the Grig­

nard reagent are listed in the order of decreasing polymerization rate 

they cause. 

In ether solution: 

sec.-cetyl > sec.-butyl > .isopropyl > isobutyl > ~cetyl > phenyl > 

ethyl > ~-butyl > ~-propyl ~ ~-butyl. 

In toluene solution: 
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sec.-octyl > sec.-butyl > isopropyl > isobutyl > phenyl > ~.-butyl > 

~-octyl > ethyl > ~-butyl > ~-propyl. 

' 0 0 The polymerization rate increases over the range -50 to -25 but de-

creases above -25°. 

Monomers of the formula CH2 = CHR may polymerize in either of two 

ways to give Structure 1 or 2 or mixture of these forms. 

-------CH -CH-CH-CH -CH -CH-CH-------
211 2 2 11 

R R R R 

Structure 1 

-------CH -CH-CH -CH-CH -CH-CH -CH-------
21 21 21 21 

R R R R 

Structure 2 

Structure 1 is head-to-head (tail-to-tail) and Structure 2 is head-to-

tail. Experiment shows that vinyl polymerization in the presence of 

ionic or free-radical initiators occurs almost exclusively head-to-tail. 

Anhydropoly(methacrylic acid) prepared by dehydration of poly(methacrylic 

acid), was examined by IR spectroscopy (47). The examination showed 

that only the six-membered rings of Structure 3 were present, and not 

the five-membered rings of Structure 4. Since head-to-tail linkage 

would have formed six-membered rings, the Structure 3 was supported. 

Structure 3 
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Structure 4 

Stereoregularity has such a marked influence on the melting points 

of polymers that a method of estimating isotacticity from melting points 

has been suggested (19). In general the packing density is greater for 

syndiotactic polymer than the corresponding isotactic conformation and 

this results in a higher melting point (49). Melting points as a 

function of tacticity for several polymers are listed in Table IV. It 

follows that atactic polymers exhibit lower melting points than those 

of their isotactic species. 

When poly(methyl methacrylate) films were degraded in a temperature 

0 0 range of 275 - 400 , it was found (56) that the chain length of the 

isotactic species was about 20 times that of the syndiotactic species. 

The physical properties of these polymers depend to a large degree on 

the type of alcohol from which the acrylic or methacrylic ester has 

beeri prepared. Poly (methyl acrylate) is a tough, ;rubbery and fairly 

hard polymer forming a plastic film that can be stretched 750%. n-

Butyl acrylate polymers are the first in the acrylate series to display 

tackiness. In contrast to the softness of poly(methyl acrylate) the 

polymer of methyl methacrylate is a hard material. Its glass transition 

temperature, T , melting point, T , and density, d, are listed in Table 
g m 

V. The second order transition temperatures for the polymer of methyl 

methacrylate and methyl acrylate are listed in Table VI. 

Some polyanions possess antitumor (93, 102, 103, 104) and antiviral 
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TABLE IV 

MELTING POINTS VS. TACTICITY OF POLYMERS(l07) 

Polymer Melting point, 0 c 
Syndiot~ctic Isotactic 

. Poly (tert.-butyl methacrylate) 150-160 ' 100 

cis-1,4-Poly(l,3-pentadiene) 52-53 44 

1,2-Poly(l,3-butadiene) 154 120-125 

Poly(methyl methacrylate) >200 160 
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TABLE V 

SOME PROPERTIES OF STEREOREGULAR POLY (METHYL METHACRYLATE) 

Glass Transition Melting 
Density 

Temperature Point 

oc oc g/ml 

Syndiotactic 115 200 1.190 

Is atactic 45 160 1.220 

Stereoblock 60-95 170-190 1. 20-1.22 

Atactic 104 1.188 



Poly acrylate 

Methyl 

Ethyl 

n-Propyl 

,!!-Butyl 

,!!-Tetradecyl 

_Q-Hexadecyl 

TABLE VI 

SECOND-ORDER TRANSITION TEMPERATURE FOR 
POLYACRYLATES AND POLYMETHACRYLATES 

Glass Transition 
Temperature Polymethacrylate 

oc 

3 Methyl 

-23 Ethyl 

-51.5 _!!-Propyl 

-70 E_-Butyl 

20 _!!-Octyl 

35 _!!-Decyl 

_!!-Tetradecyl 

28 

Glass Transition 
Temperature 

0 
c 

105 

47 

33 

17 

-70 

-70 

-9 
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activity (67, 68). Kleinschmidt et al. -- (105, 125) have shown induction 

of interferon by statolen, an anionic polysaccharide that inhibits 

Friend leukemia virus (125). 

A divinyl ether-maleic anhydride copolymer of molecular weight 

17,000, poly (pyran-3 ,4-dicarboxylic anhydride), is undergoing clinical 

trial against advanced cancer in man. Its animal and clinical pharma-

cology indicates uptake in the nucleated elements of the blood and 

stimulation of reticuloendothelial activity in liver, spleen, and bone 

marrow. The action of these polyanions may be similar to that of kidney 

bean phytohemagglutinin which similarly inhibits Friend virus spleno-

megaly (120) , and which has been shown by Wheelock to induce interferon-

like activity in vitro (50). 

The action of polyanions may also be mediated through inhibition of 

enzymes important for viral adsorption. However, attempts to correlate 

anti-viral action with inhibition of ribonuclease, hyaluronidase, and 

anti-thrombin activity have not been successful (68, 105). 

Anionic polysulfonates and polyphosphates of either natural or syn-

thetic origin have been shown to be potent inhibitors of transplanted 

tumors in mice (4, 93, 101, 102). This inhibition of tumor growth may 

be a function of the density and distribution of ionic charges within 

the polyelectrolyte molecule. Two kinds of synthetic polymers were 

chosen: polycarboxylates derived from ethylene/maleic anhydride co-

polymers and those derived from polyacrylic acid. In most experiments, 

sarcoma 180 was the tumor system used. It appears that at least one 

ionizable carbonyl group is required for the polymer to manifest signifi-

cant tumor inhibition. Tumor inhibition for the two polymer series was 

strongly dependent on carboxyl substitution which varied molecular con-
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figuration in solution. Within each series, charge density may govern 

tumor-inhibiting effectiveness and toxicity. Optimum activity was ob­

tained where carboxamide and ionizable carboxyl groups were interdis­

persed along the polymer backbone. When all carboxyl groups are con­

verted to carboxamides, significant loss in tumor inhibition was experi­

enced. In addition, proper carboxamide-carboxyl balance broadens the 

scope of activity against a variety of transplanted tumors. Synthetic 

polyelectrolytes also inhibit certain vital enzymes such as ribonuclease 

and deoxyribonuclease (50, 51, 101). Clinically, the pyran copolymer 

has been given to more than sixty patients at a high dosage, 12 mg/kg/ 

day. Pyran induces fever and blocks the conversion of fibrinogen to 

fibrin, but interestingly, no patient has suffered hemorrhage despite 

significant prolongation of clotting time. Pyran has interferon-inducing 

capacity and pretreatment prior to inoculation with Friend virus leukemia 

or Raucher leukemia inhibits subsequent tumor growth induced by these 

viruses. Similar inhibition of tumors has been found for acrylic acid 

and styrene-maleic anhydride copolymers (105). 



CHAPTER III 

EXPERIMENTAL 

Materials 

Benzene (Eastman) • Reagent-grade benzene was dried over calcium 

hydride, distilled, and used as a solvent. 

Butyl acrylate (Eastman). Lot# D4B was dried with anhydrous cal­

cium sulfate and then distilled under reduced pressure. 

Dimethyl itaconate (Aldrich Chemical Company)_. Lot # 10,953-3, 

assaying 97%, was dried over anhydrous calcium sulfate and then distil­

led under reduced pressure. 

Fluorene (Eastman Kodak Co.). Technical-grade fluorene was crystal­

lized from ethanol before use. 

Methyl methacrylate (Amend Drug and Chemical Co.). Methyl metha­

crylate was dried over anhydrous calcium sulfate and then distilled 

under reduced pressure. 

Tetrahydrofuran (Fisher Scientific Co.). Reagent-grade tetrahydro­

furan was used as a solvent, purification was performed by refluxing 

over calcium hydride and then dist~lling. 

Toluene (J. T. Baker Chemical Co.). Reagent-grade toluene was 

purified by refluxing over calcium hydride and then distilled. 

~-Butyllithium (Foote, Mineral Co.): Lot# 708-18 1.6M in hexane. 

The following reagents were used without further purification: 

acetone (Fisher Scientific Co.), 2,2·'-azobis[2-methylpropionitrile] 

31 
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(Matheson, Coleman and Bell), benzoin (Fisher Co.), calcium hydride 

(Matheson, Coleman and Bell) , calcium sulfate anhydrous (W. A. Hammond 

Drierite Co.), chlorobenzene (Fisher Scientific Co.), ethanol (U.S. 

Industrial Chemical Co.), phenylmagnesium bromide (Arapahoe Co.), 3~ in 

diethyl ether, 1-propanol (Fisher Scientific Co.), methylmagnesium brom­

ide (Arapahoe Co.), 3~ in diethyl ether, and sodium hydroxide (Mallin­

ckrodt Chemical Works). 

Instrumentation 

Infrared spectra were obtained with a Beckman IR-SA spectrophoto­

meter. Proton magnetic resonance spectra were obtained on a Varian 

model XL-100 analytical nuclear magnetic resonance spectrometer. 

Potentiometric titrations were performed with a Beckman Research 

pH meter equipped with a Brinkman Instrument heater-circulator and 

thermoelectric cooler and a magnetic stirrer by Precision Scientific 

Co. Number-average molecular weight determinations were made using a 

Coleman 115 Molecular Weight Apparatus. 

Preparation of Polymers 

Prepa~ation of 9-fluorenyllithium (115). 9-Fluorenyllithium was prepared 

by the exchange reaction between fluorene and !!.'""£utyllithium in dry tol­

uene. The apparatus consists of a three-necked flask equipped with a 

magnetic stirrer, a condenser, a nitrogen inlet and a serum cap. Toluene 

(107.8 ml) dried over calcium hydride' was placed in the flask. Then 

5.2 g (0.031 mole) of fluorene, previously purified by recrystallization, 

was added. To this mixture 1.76 g (0.0275 mole) of ~butyllithium in 

17.2 ml of hexane was added by,means of a hypodermic syringe. There-
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action mixture was refluxed for 8 hours under nitrogen. The product was 

only slightly soluble in toluene and separated as a bright orange, finely 

divided solid. The solution was stored in a bottle sealed with a rubber 

serum cap. 

Preparation of isotactic poly(methyl methacrylate) (I) (40,45). Methyl 

methacrylate(l3 g, 0.13 mole) purified and dried over anhydrous calcium 

sulfate was placed in a three-necked round~bottomed flask equipped with 

a magnetic stirrer, a thermometer, and an inlet and an outlet for nitro-

gen gas. One neck of the flask was covered by a rubber serum cap. Then 

170 ml of toluene, dried over calcium hydride and redistilled, was added. 

The flask was flushed with dry nitrogen and the contents were cooled to 

-60°. A 30-ml portion of a 0.22 ~suspension of 9-fluorenyllithium 

(0.0066 mole) in toluene was added by means of a hypodermic syring in-

serted through the rubber cap. The temperature of the reaction mixture 

0 0 was maintained at -40 + 6 for 6 hours. During this period the solution 

became viscous. A small amount (5 ml) of mehtanol was added in order to 

destroy the initiator, and the reaction mixture was permitted to warm up 

to room temperature. The polymer was precipitated by pouring the so-

lution into 600 ml of methanol and water (6:1). The swollen solid which 

separated was redissolved in 100 ml of acetone, and precipitated in 

500 ml of water. The solid was then dried under reduced pressure at 

room temperature. The polymer was then blended into a white powder. 

The yield was 8.6 g, 66% of theory. 

Preparation of syndiotactic poly(mehtyl methacrylate)· (II) (40,45). A 

three-necked round-bottomed-flask was equipped with a magnetic stirrer, 

a thermometer, and an inlet and an outlet for nitrogen gas. One neck 



of the flask was covered by a rubber serum cap. Tetrahydrofuran was 

separately refluxed for 24 hours over calcium hydride, then 250 ml of 
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the dry solvent was distilled into the flask. Fluorene (0.83 g, 0.005 

mole),previously purified by recrystallization, was added to the flask 

and a solution of ~-butyllithium containing 0.0048 moles in 3 ml of hex­

ane was transferred to the flask using a dry syringe. The mixture was 

stirred under nitrogen for 2.5 hours until the metalation of the fluorene 

was complete. The flask was then cooled to -70° (using dry ice and 

acetone) and 41.5 g (0.415 mole) of methyl methacrylate, dried and dis­

tilled under reduced pressure, was added. The polymerization was con­

tinued for 9 hours. The mixture became very viscous. Then 5 ml of 

methanol was added and the viscous solution warmed to room temperature. 

The solution was poured with stirring into 500 ml of petroleum ether 

and the solid was filtered off. The polymer was redissolved in benzene, 

reprecipitated with petroleum ether, and aga:i.n filtered out. The solid 

was dried at room temperature and ground to a white powder. The yield 

was 33 g, 79% of theory. 

Preparation of isotactic poly (butyl acrylate) (III) (86). Toluene (500 

ml), dried over calcium hydride and redistilled, was placed in a four­

necked round-bottomed flask equipped with a magnetic stirrer, a conden­

ser, and an inlet and an outlet for nitrogen gas. One neck of the flask 

was covered by a rubber cap. Fluorene (0.80 g, 0.0048 mole), previously 

purified by recrystallization, was added, then the mixture was deoxygen­

ated with nitrogen) for one hour. ~-Butyllithium, 0.0048 mole in 3 ml 

of hexane, was added to the solut~on. The mixture was then refluxed for 

45 minutes. The contents of the flask were cooled with dry ice and ace-
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tone and the condenser was replaced by a thermometer. The temperature 

0 0 of the mixture was then lowered to -70 ~ 2 .and 32 g (0.250 mole) of 

dried and purified butyl acr¥late was added. The polymerization was 

carried out for 80 hours, 5 ml of methanol was added and the viscous 

solution was warmed to room temperature. The solvent (toluene) was evap-

orated at reduced pressure and then at room temperature. To the residue 

150 ml of acetone was added, and the polymer solution was poured with 

stirring into 500 ml of water. The polymer was then redissolved in ace-

tone, reprecipi tated with water, and separated. The rubbery polymer was 

dried under reduced pressure at room temperature. The yield was 6.5 g, 

20% of theory. 

Preparation of isotactic poly(butyl acrylate) (IV) (80,83,86,89). Tol-

uene (90 ml) , dried over calcium hydride and redistilled, was placed in 

a three-necked flask equipped with a ser•.nn cap, a thermometer, and an 

inlet and an outlet for nitrogen gas. Butyl acrylate (53 ml, 42.4 g, 

0.33.mole), dried and distilled under reduced pressure, was added. The 

mixutre was then cooled to -60° ~ 2° and 4.5 ml of 1.6 ~ ~-butyllithium 

(0.0072 ml) in hexane was injected through the rubber cap. The tempera­

ture was then lowered to -70° + S0 and the mixture was stirred for 6 

hours and then held at -70° ~ S0 for 72 hours without stirring. To the 

viscous solution S ml of methanol was added and the mixture warmed to 

room temperature. The solvent (toluene) ~as evaporated under reduced 

pressure at room temperature. The polymer was dissolved in 200 ml of 

acetone and the solution was poured with stirring into 600 ml of water. 

The rubbery polymer which separated was redissolved in acetone and pre-

cipitated again in water. The tacky polymer was taken out and dried 
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under vacuum at room temperature. The yield was 28 g, 66% of theory. 

Attempted preparation of isotactic poly(butyl acrylate) (37, 80, 106). 

A four-necked round-bottomed flask was equipped.with an inlet and an out­

let for nitrogen gas, a magnetic stirrer, a thermometer, and a graduated 

addition funnel. One neck of the flask and the addition funnel were fit­

ted with rubber caps. In the flask was placed 262.5 ml (228.4 g) of 

toluene. Butyl acrylate (21.5 g, 0.168 mole) was placed in the addition 

funnel. Oxygen was removed from the solvent and the monomer by slowly 

bubbling a stream of nitrogen through the solution for 2 hours. To the 

toluene was added with stirring phenylmagnesium bromide (0.012 equiv.) 

in ether by means of a hypodermic syringe inserted through the serum cap. 

The mixture was cooled at 0°- 5°. From the addition funnel was added 

5 ml of butyl acrylate, and the mixture was allowed to stir at 0° - 5° 

for 4 hours. The solution was cooled to -70° to -80° by means of a dry 

ice and acetone bath. The remaining monomer was added dropwise while 

the temperature was maintained at -70° to -80°. The mixture was stirred·· 

for 2 hours and then held at -70° to -80° overnight without stirring. 

When the solution warmed to room temperature, it was not at all viscous. 

The mixture did not become viscous even after stirring for three days 

at room temperature. It was concluded that polymerization had not oc­

curred. 

Preparation of syndiotactic poly(butyl acrylate) (V) (1, 27, 28, 75, 99, 

106). A three-necked round-bottomed flask was equipped with a magnetic 

stirrer, a thermometer, and an inlet and an outlet for nitrogen gas. 

Toluene (58 ml, 50 g), dried and redistilled, was placed in the flask. 

Butyl acrylate (50 g, 0.39 mole), dried and redistilled, was transferred 
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to the flask. Benzoin (0.42 g, 0.0019 mole), was added to the mixture 

and the reactants were cooled to -95° (using !-propanol and liquid nitro­

gen). The mixture was degassed by bubbling a stream of dry nitrogen 

through it for 2 hours. During degassing the reactant flask was covered 

with paper and aluminum foil in order to protect the reactants from the 

light. The temperature was lowered and maintained at -105° ~ 7° before 

the polymerization was initiated by irradiation with ultraviolet light, 

produced by a GE.S.4. 100-watt ultraviolet lamp. Nitrogen bubbling and 

stirring were maintained throughout the reaction. After 8.5 hours of 

irradiation, the light was turned off, and the reaction mixture allowed 

to warm to room temperature. The viscous solution was then poured into 

200 ml of aqetone, the polymer precipitated by pouring into 500 ml of 

water, and the solid rubbery polymer was separated, redissolved in ace­

tone, and precipitated in water. The polymer was rubbery and white. 

The yield was 21.5 g, 43% of theory. 

Attempted anionic polymerization of dibutyl itaconate (40, 45). Fluorene 

(0.84 g, 0.005 mole), was placed in a three-necked flask equipped with 

a thermometer, inlet for nitrogen, and a serum cap and 250 ml of dry 

redistilled toluene was added. The solution was degassed for 30 minutes 

and 5 ml of ~-butyllithium (0.008 mole) in hexane was transferred to 

the solution. The mixture was stirred for 2 hours at room temperature. 

It was then cooled to -50° + 5° and 40 g (0.165 mole) of dibutyl ita­

conate was added. The polymerization was continued with stirring for 

6 hours and kept for another five d~ys without stirring. No change 

in the viscosity of the solution was noted, indicating-that polymeri­

zation had not occurred. 
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Attempted anionic polymerization of dibutyl itaconate (80). Toluene 

(90 ml), dried and redistilled, was placed in the same apparatus as be-

fore. Dibutyl itaconate (40 ml, 39.3 g, 0.162 mole) dried and distilled, 

was added. The mixture was then cooled to -60° + 2° and 4.5 ml of a 

1.6 ~ solution of ~-butyllithium (0.0072 mole) in hexane was injected 

through the rubber cap. The temperature was then lowered to and main-

. 0 0 
tained at -70 + 5 • The mixture was stirred for 6 hours and was then 

. 0 0 
kept at -70 ~ 5 for 77 hours. Since the solution did not get viscous, 

the mixture was left at room temperature fo~ 6 days more. No viscous 

solution was obtained and the experiment was abandoned. 

Attempted anionic polymerization of dimethyl itaconate (36). Dry tolu-

ene (250 ml) was placed in a four-necked flask equipped with a magnetic 

stirrer, a thermometer, an inlet and an outlet for nitrogen, and a gradu-

ated addition funnel. One neck of the flask was fitted with rubber cap. 

Dimethyl itaconate (18.5 g, 0.117 mole) was charged to the addition fun-

nel, to the solve~t was added with stirring 0.012 equiv. of methylmag­

nesium bromide in ether. The mixture was cooled to 0° - 5°. From the 

addition funnel was added 5 ml of dimethyl itaconate and the mixture 

was allowed to stir at 0° - 5° for 4 hours. The solution was cooled to 

-80° and the remaining monomer was added dropwise while the temperature 

was maintained at -70° to -80°. The mixture was stirred for 2 hours and 

was then held at -80° for .52 hours. The solution was not viscous indi-

eating no reaction. The solution was poured into 300 ml of a mixture 

of methanol, water, and concentrated hydrochloric acid (4:5:1) and the 

solid monomer that separated was recovered. 

Free-radical polymerization of ·dibutyl ·itaconate ·(VI) ·(57). A three-
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necked flask equipped with a stirrer, a condenser, a nitrogen inlet, and 

a thermometer was charged with 25 ml or 24.5 g (0.101 mole) of purified 

monomer and 35.3 ml of dry benzene. The mixture was heated to reflux 

under nitrogen and then 0.25 g (0.0015 mole) of 2,2'-azobis(2-methyl-

propionitrile) was added. Polymerization was allowed to proceed at re-

flux temperature for 4 days. The solution became very viscous during 

this time. It was cooled to room temperature and the viscous solution 

was poured with stirring into 500 ml of water. The polymer collected 

was dried and redissolved in acetone and precipitated from water. The 

purified polymer was white, soft and sticky. The yield was 16 g, 65% 

of theory. 

Syndiotactic poly (dibutyl itaconate) (VII) (106). Toluene (58 ml, 50 g), 

distilled and dried, was placed in a three-necked round-bottomed flask 

(as in experiment VII). Then dibutyl itaconate (50 g, 0.207 mole), dried 

and redistilled, was added to the flask. Benzoin (0.42 g, 0.002 mole) 

was added to the mixture. 0 The reactants were cooled to -95 and oxygen 

removed by bubbling dry nitrogen through it for 2 hours. The reaction 

flask was covered with paper and aluminum foil during this treatment, 

the temperature was lowered to and maintained at -105° ~ 7° before the 

reaction was initiated by irradiation with the ultravilet light source, 

a GE.s.4. 100-watt ultraviolet lamp. Nitrogen bubbling and agitation 

were maintained throughout the reaction. The irradiation was continued 

for 10 hours, then the light turned off and the reaction mixture allowed 

to warm up to room temperature. The reaction mixture was held without 

stirring at room ~emperature for 11 days. The highly viscous solution 

was dissolved in 200 ml of acetone. The polymer was precipitated by 

pouring the solution into 700 ml of water, and purified as usual. The 
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final purified, dried polymer was white and tacky. The yield was 30.5 g, 

61% of theory. 

Attempted alkaline hydrolysis of syndiotactic poly(methyl methacrylate) 

(98). A 20% solution of potassium hydroxide (30 ml) in propanol-water 

(1:1) was placed in a two-necked flask fitted with a condenser, a sep­

aratory funnel and a magnetic stirrer. The flask was heated using a 

heating mantle. To the hot solution 1.8 g of syndiotactic poly(methyl 

methacrylate) in 10 ml of toluene was added slowly. The solution was 

refluxed. After all the polymer had been added, the solution was re­

fluxed for 24 hours. It was then diluted with 30 ml of water, and 20 

ml of liquid was distilled from the solution in order to remove the 

alcohol formed during the saponification. The contents of the flask 

were refluxed again for 6 hours, then a large excess of hydrochloric 

acid was added and the mixture was filtered. The polymer was washed 

with a solution of hydrochloric acid and dried. The NMR spectrum showed 

no hydrolysis of the polymer. 

Attempted alkaline hydrolysis of syndiotactic poly(methyl methacrylate) 

(34). Syndiotactic poly(methyl methacrylate) (0.5 g) was placed in 

stainless steel flask equipped with a condenser. Then a 30% solution 

of potassium hydroxide in 100 ml of ethanol-water (1:1) was added. The 

solution was refluxed for 7 days and 3 hours. The mixture was cooled 

to room temperature and enough hydrochloric acid was added to neutralize 

the base. The solution was filtered. The yellow precipitate was not 

soluble in water, showing that the amount of hydrolysis was negligible. 

Attempted alkaline hydrolysis of syndiotactic poly(methyl methacrylate) 

(119). Potassium hydroxide (30 ml of 25% solution in water) was placed 
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in the round-bottomed flask equipped with a magnetic stirrer, a conden-

ser, and an addition funnel. The solution was heated to reflux tempera-

ture. Syndiotactic poly(methyl methacrylate) (1 g) in 10 ml (toluene) 

was added,dropwise to the hot solution. The mixture was refluxed for 

48 hours, then 20 ml of water was added. The alcohol was distilled off 

and replaced by 10 ml of water. The mixture was refluxed again for 24 

hours. The solution was cooled to room temperature and poured into a 

large excess of hydrochloric acid. The solid polymer which separated 

was not hydrolyzed as shown by the NMR spectrum~ 

Attempted acid hydrolysis of syndiotactic poly(methyl methacrylate) (83). 

Syndiotactic poly(methyl methacrylate) (1 g) was placed in a flask fitted 

with a condenser. A 57% solution of hydriodic acid (18 ml) was added to 

the polymer and the solution was refluxed for 52 hours. The mixture was 

then poured into 100 ml of ice water. The recovered polymer was not 

hydrolyzed. 

Preparation of syndiotactic poly(methacrylic acid) (VIII) (112, 113). 

Hydrolysis of syndiotactic po1y(methyl methacrylate) was tried with 96%, 

94%, and 90% sulfuric acid at room temperature. The best results were 

obtained by the following procedure. The.hydrolysis of syndiotactic 

poly(methyl methacrylate) was carried out by placing 200 ml of sulfuric 

acid (80%) in a three-necked flask equipped with an inlet and an outlet 

for nitrogen. and a magnetic stirrer. Poly(methyl methacrylate) (8 g) 

was added to the acid. The solution was stirred until the polymer dis-

solved (2 hours). Then the flask w.as placed in a water bath at 40° -

0 
50 for 170 hours. After the reaction was complete the hydrolyzate was 

poured into 3 liter of ice-water mixture and the precipitate that formed 
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was filtered off. The precipitate was dissolved in a sodium hydroxide 

solution and reprecipitated with hydrochloric acid. The precipitate was 

washed with dilute hydrochloric acid and dried. A white powder was ob-

tained. The yield was 5.5 g or 80% of theory • 

. Preparation of isotactic poly(methacrylic acid) (IX) (46, 55, 76). The 

hydrolysis of isotactic poly(mehtyl methacrylate) was carried out by 

placing 250 ml of sulfuric acid (80%) in a round-bottomed flask equipped 

with a thermometer, and an inlet and an outlet for nitrogen. The polymer 

(7 g) was added and the mixture was stirred for 3 hours until the polymer 

was dissolved. The flask was then placed in a water bath at 30° - 50° 

for 175 hours. The hydrolyzate was poured into a 3 liters of ice-water 

mixture and the poly acid was filtered. The purification was performed 

by redissolving the poly acid in sodium hydroxide solution and precipi-

tating in acid solution. The hydrolyzed polymer was white and powdery. 

The yield was 3.8 g, 63% of theory. 

Attempted hydrolysis of isotactic poly(butyl acrylate) (46, 55). Iso-

tactic poly(butyl acrylate) (0.5 g) was placed in a flask, then 50 ml 

of sulfuric acid (96%) was added. The mixture was stirred at room temp-

erature for 6 days. The solution was poured into 50 g of crushed ice 

and the precipitate that formed was filtered out. The filtered polymer 

was dark but partially hydrolyzed. Different sulfuric acid concen-

trations (80% and 70%) were also tried under nitrogen atmosphere in a 

0 0 water bath at 40 - 50 • Although partial hydrolysis of polymer occur-

red, the polymeric acid was dark in color and the degree of hydrolysis 

could not be improved enough to make the polymeric acid water soluble. 
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Attempted hydrolysis of isotactic poly (butyl acrylate) (86, 88, 89). 

Isotactic poly(butyl acrylate) (1 g) was placed in a flask equipped with 

a magnetic stirrer and a condenser. The polymer was then suspended in 

45 ml of 20% of hydroc:hloric acid. The mixture was refluxed for 6 days, 

and the solution was poured into 150 ml of ice-water. Filtered polymer 

was not soluble in water and the NMR spectrum indicated no hydrolysis. 

Attempted hydrolysis of isotactic poly(butyl acrylate) (60). Isotactic 

poly(butyl acrylate) (1 g) was dissolved in 50 ml of acetic acid and 

water (4:1), E_-toluenesulfonic acid (0.2 g) was added as a catalyst, 

and the solution was refluxed for 161 hours. During this period most of 

the butyl acetate formed by transesterification was removed by distil­

lation. The product was isolated by pouring the solution into a large 

amount of crushed ice (300 g). Partial hydrolysis was achieved by this 

method, but the resulting polymer was not soluble in water. 

Attempted solvolysis of isotactic poly(butyl acrylate). A mixture of 

acetic acid (150 ml) and trifluoroacetic acid (5 ml) was placed in a 

flask and 12 drops of concentrated sulfuric acid was added. The mixture 

was refluxed for 198 hours. The hot solution was cooled and poured in­

to a large excess of crushed ice. The isolated polymer was not aceto­

lyzed as shown by its lack of solubility in water. 

Attempted solvolysis of isotactic poly(butyl acrylate) (60). Isotactic 

poly (butyl acrylate) (1. 5 g) was dissolved in a mixture of 40 ml of 

acetic acid and 40 ml of trifluoroacetic acid and the solution was re­

fluxed for 120 hours. After each 24 hours the butyl acetate formed, if 

any, was removed by distillation and replaced with acetic acid. After 

120 hours the mixture was poured into crushed ice. The isolated polymer 



was found to be not acetolyzed as evidenced by its low solubility in 

water. 
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Attempted solvolysis of isotactic poly(butyl acrylate). Acetic acid 

(88.5 ml) was poured into a flask, then 15 ml of phosphoric acid (86%) 

was added. Isotactic poly(butyl acrylate) was dissolved in the solution 

and the mixture was refluxed for 265.5 hours. The solution was then 

poured into an excess of ice. The filtered polymer was slightly soluble 

in water, indicating partial.reaction. 

Hydrolysis of isotactic poly(butyl acrylate) (X). Isotactic poly(butyl 

acrylate) (9 g) was placed in a round-bottomed flask equipped with a 

condenser and a magnetic stirrer. The polymer was then dissolved in a 

mixture of acetic acid (367 ml) and concentrated hydrochloric acid (133 

ml). The solution was refluxed for 384 hours. The hot mixture was pour­

ed into an excess of crushed ice. The solid collected after filtration 

was dried and ground to a slightly colored powder. The yield was 4.8 g, 

95% of theory. 

Preparation of syndiotactic poly(acrylic acid) (XI). The hydrolysis of 

syndiotactic poly(butyl acrylate) was carried out by placing 367 ml of 

acetic acid and 133 ml of concentrated hydrochloric acid in a round­

bottomed flask equipped with a condenser and a magnetic stirrer, to 

which 10 g of poly(butyl acrylate) was added. The mixture was refluxed 

for 480 hours. The solution was then poured into an excess of ice. The 

solid collected after filtration was dried and ground to a fairly white 

powder. The yield was 4.7 g, 83.5% of theory. 

Attempted hydrolysis of poly(dibutyl itaconate). The hydrolysis of poly-
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(dibutyl itaconate) was carried out by placing 60 ml of sulfuric acid 

(70%) in a three-necked flask. Poly(dibutyl itaconate) (1 g) was added 

to the acid. The solution was stirred under nitrogen atmosphere for 16 

hours until the polymer dissolved. Then the flask was placed in a water 

0 0 . 
bath at 30 - 40 for 139.5 hours. The hydrolyzate was poured into an 

ice-water mixture. The separated polymer was somewhat soluble in water, 

but the color was slightly dark. Sulfuric acid (97%) was also tried 

but again the product was not hydrolyzed enough to be soluble in water. 

Attempted solvolysis of poly(dibutyl itaconate). Poly(dibutyl itaconate) 

(1 g) was dissolved in 100 ml of glacial acetic acid. Trifluoroacetic 

acid (5 ml) was added as a catalyst and the solution was refluxed for 

120 hours. Butyl acetate produced during the solvolysis was removed by 

distillation every 24 hours. The polymer was precipitated by pouring it 

into water. The product was slightly soluble in water, but the desired 

extent of reaction could not be obtained by this method. 

Solvolysis of poly(dibutyl itaconate) (XII). A mixture of acetic acid 

(500 ml) and trifluoroacetic acid (35 ml) was placed in a round-bottom-

ed flask equipped with a condenser. Then 15 drops of concentrated sul-

furic acid was added. Poly(dibutyl itaconate) (10 g) was dissolved in 

the solution. The mixture was refluxed for 21.3 days. Then the so-

lution was poured into an excess of crushed ice. The poly acid was 

washed with dilute hydrochloric acid and dried. A white powder was ob-

tained. The yield was 5.3 g, 99% of theory. 
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Infrared Spectroscopic Studies of Polymers 

The infrared spectra of the polymers were obtained via potassium 

bromide pellets and thin films on a sodium chloride plate. The films 

were initially dried from the solvent by evaporation in a vacuum de-

siccator for 3 hours. The phases used for preparation of polymer samples 

are summari~ed in Table VII. 

Nuclear Magnetic Resonance Studies of Polymers 

A solution of 15% (w/v) was prepared for each polymer in a suitable 

solvent. Tetramethylsilane (TMS) was used as a reference standard either 

externally or internally. The solvent and the method of using the TMS 

standard are summarized in Table VIII. 

Potentiometric Titrations of Poly Acid Solutions 

Poly acid solutions were prepared by dissolving about 0.05 g of 

polymer in 10 ml of standard 0 •. 1 !!_ sodium hydroxide solution. Standard 

hydrochloric acid was added slowly to the mixture with magnetic stir-

ring. Potential readings were made after·each addition of 0.25 to 0.5 

ml. The temperature was kept at 23 + 0.1 c0 • 

Determdnation of Number-Average Molecular 

Weights of Polymers 

The determinations were performed with a Hitachi Perkin-Elmer Cole-

man 115 with dry acetone as the solvent. The- main oven temperature of 

0 0 
the instrument was set at 40 and the sub-oven temperature at 32 • 

A' calibration curve was made by using different concentrations of 

benzil in acetone. Since the calibration curve was linear and passed 
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TABLE VII 

THE PHASES USED FOR DETERMINING INFRARED SPECTRA OF POLYMER SAMPLES 

Polymer Film Pellet 

I KBr 

II KBr 

IV CC14 

v CC14 

VII CC14 

VIII KBr 

IX KBr 

X KBr 

XI KBr 

XII KBr 
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TABLE VIII 

CONDITIONS FOR NMR STUDIES OF POLYMERS 

Polymer Solvent TMS 

I c6H5Cl Internal 

II C6H5Cl Internal 

IV c6H5Cl Internal 

v c6H5Cl Internal 

VII c6H5Cl Internal 

VIII o2o External 

IX 020 External 

X 020 External 

XI o2o External 

XII D20 External 
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through the origin, the instrument was ready for molecular weight meas­

urements of the polymers. Solutions of polymers were made by dissolving 

polymers in dry acetone to make 2% solution. Five readings were taken 

for each solution and the readings averaged. The molar concentrations 

of the polymer solutions were determined from the calibration curve of 

benzil in acetone. 

Determination of Toxicity 

Six male Swiss mice weighing at least 17 g each were used in each 

experiment. Treatment consisted of a single intraperitoneal injection 

of polymer solution. The volume injected was calculated from the weight 

of the mouse and the concentration of the polymer solution in order to 

give each mouse the desired dose level in mg/kg. After 4 days, mortali­

ties were recorded. At this time the surviving mice were weighed again 

and sacrificed. The dose level was varied until the dose causing a mor­

tality rate of 50% was determined. This was recorded as the Lo50 • Any 

Any change in weight was noted. A loss of weight indicated toxicity. 

Results are given in Table IX. 

The single dose required to kill 50% of the mice varies from 40-90 

mg/kg for most polymers tested. The Lo50 for syndiotactic poly(metha­

crylic acid) is particularly large, Deing greater than 1600 mg/kg. The 

low toxicity of this polymer may be due to its low molecular weight 

since toxicity is less for polymers of low molecular weight •. However, 

the possibility that its low toxicity is related to its particular steric 

configuration cannot be overlooked. 



TABLE IX 

LDSO OF POLYMERS FOR SWISS MICE 

Compound 

Isotactic Poly(methacrylic acid) 

Syndiotactic Poly(methacrylic acid) 

Isotactic Poly(acrylic acid) 

Syndiotactic Poly(acrylic acid) 

Poly(itaconic acid) 

Dose 
mg/kg 

40 

1600 

80 

70 

90 

50 

Average Weight Change 
On Fourth Day, g 

-1.2 

-1.3 

-4.2 

-0.2 

-1.0 



CHAPTER IV 

RESULTS AND DISCUSSIONS 

Twelve polymers have been prepared from acrylic, methacrylic, and 

itaconic esters; these are listed in Table X. 

Many theories have been proposed in regard to the propagation steps 

of free-radical and anionic polymerizations. Although some of these 

theories conflict, they have not been either disproved or generally ac­

cepted because of lack of sufficient experimental evidence. One of the 

most important and fundamental concepts required for considering the 

reaction mechanism is whether or not monomer double bonds open stereo­

selectively in free-radical or anionic polymerization. 

A rapid attack of anionic initiator on the monomer occurs (22, 40, 

128) , but in some cases the attack is indiscriminate and takes place on 

both olefinic and carbonyl double bonds (45). A high mole percent of 

low molecular weight by-product is thus produced (42). The proportion 

of low molecular weight by-products including alkoxides (or their pre­

cursors) is dependent on the initiator. Both steric hindrance and 

carbanion stability increases the initiator selectivity (123, 126}, 

e.g., butyllithium < fluorenyllithiurn < 1,1-diphenylhexyllithium. 

Another substantial proportion of the growing chains is believed 

to become "pseudo-terminated" (41}, perhaps by forming a cyclic inter­

mediate which propagates only reluctantly, as in Figure 4. In addition 

to pseudo-terminated chains, a smaller fractio~ produces a propagating 
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Polymer 
Number 

I 

II 

III 

IV 

v 

VI 

VII 

VIII 

IX 

X 

XI 

XII 

TABLE X 

POLYMERS PREPARED 

Polymer 

Isotactic Poly(methyl methacrylate) 

Syndiotactic Poly(methyl methacrylate) 

Isotactic Poly(butyl acrylate) 

Isotactic Poly(butyl acrylate) 

Syndiotactic Poly(butyl acrylate) 

Poly(dibutyl itaconate) 

Poly(dibutyl itaconate) 

Syndiotactic Poly(methacrylic acid) 

Isotactic Poly(methacrylic acid) 

Isotactic Poly(acrylic acid) 

Syndiotactic Poly(aqrylic acid) 

Poly(itaconic acid) 
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Experiment 
Number 

2 

3 

4 

5 

7 

11 

12 

17 

18 

25 

26 

29 



Figure 4. "Pseudo-te:rmination" by Forming a Cyclic 
Intermediate. 
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structure which continues to add units rapidly in isotactic .placement to 

fo:rm a high polymer. With suitable precautions, termination can be 

avoided. As a result of these complex processes, even though initiation 

is rapid and all units remain "living", they do not all grow at the 

same rate and a wide molecular weight distribution results even in high-

ly isotactic systems (107) [~/MN = 7 - 18]. 

Alkoxides and ethers (127) tend to compete with monomer for cation 

and complex reaction kinetics result. Their presence also results in 

a change in stereoregularity from isotactic to stereoblock sequences. 

A study by Yoshino and co-workers showed that anionic polymeri-

zation of deuterated methyl acrylate by lithium aluminum hydride ··led 

to a single definite mode of opening (131) which he later established 

as trans (three-meso or isotactic-like al?proach) . U32). Shortly there-
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after, Yoshino demonstrated that the mode of approach of anion to mono-

mer was very sensitive not only to the initiator used but also to any 

added solvent such as ether. Qualitatively, then, it appears that con-

ditions which alter the configurations of a-carbon atom from isotactic 

to stereoblock sequences also alter the direction of approach of anion 

to~monomer and the configuration of the a-carbon atom. Furthermore, the 

a-carbon atom configuration is more sensitive to changes in reaction con-

dition than the a-configuration. The most profound differences in a-

and a-tacticity between polymers produced under different conditions can 

be related to the counterion, the ratio of Lewis base (diethyl ether or 

tetrahydrofuran) to initiator, and the temperature during polymerization. 

Whenever two monomers are polymerized under nearly identical conditions, 

the one with the larger ester function produces the higher proportion 

of erythromeso structures. This result suggests that bulkier ester func-

tion favor a syndiotactic-like approach (30). Branching has only a small 

effect on the isotacticity, except for tert.-butyl methacrylate. This 

polymer gave rise to the lowest degree of isotacticity observed for any 

of the polymers. 

Most of the common polymerization techniques have been applied to 

the various itaconic derivatives. Free radical initiation is accomplish-

ed by peroxides of varying thermal stabilities. The lower reaction tern-

peratures result in higher polymer molecular weight. Azobisisobutyron-

itrile is an effective initiator in nonaqueous systems,. while persulfate 

salts are useful for polymerization in emulsion. Radiation initiation 

has been observed in dimethyl itaconate homopolymerization by gamma rays 

60 
from a Co source (54). 

Several attempts to initiate anionic polymerization of itaconic 
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derivatives, such as esters and bis(!,!-dimethyl)itaconamide, have pro­

duced no polymer (66, 79, 97) although isomerization of mesaconate oc­

cured (79). While strong bases may cause extensive isomerization, free 

radicals apparently do not. 

The higher dialkyl itaconates which have been investigated show an 

Increase both in polymerization rate and intrinsic viscosity with in­

creasing size of the alkyl group in bulk polymerization. Part of the 

rise in rate observed in proceeding from dimethyl to higher dialkyl 

itaconates is due to decreasing rate of termination which results from 

the increase in viscosity of the esters in the order: ethyl < butyl < 

octyl. Initiator concentration does not have a pronounced effect on 

molecular weight in itaconate polymerization. 

The major infrared (IR) ~sorption regions of polymer I-XII are 

summarized in Table XI. Characteristic bands (1725-1765 cm-1) for the 

carbonyl group are found for all polymers. The 0-H stretching bands in 

the 3300 to 2900 cm-l region are found in the case of poly acids. This 

band usually overlays the C-H stretching region and is typical of car­

boxylic acid. Some acid anhydride is found to be present in acrylic 

and methacrylic acids (85). This agrees with the spectrum of dehydrated 

poly(methacrylic acid) which indicates that a great majority of the an­

hydride is cyclic (35). These facts show that poly (acrylic acid) is 

converted to anhydride as easily as the isotactic methacrylic acid (81, 

82}. No change in stereoregularity was found after hydrolysis. 

Much work has been done using NMR for investigation of stereoregu­

lari ty (14-17, 31). Bovey and Tiers (13) were the first to make use of 

NMR to determine the tacticity of poly(methyl methacrylate), and they 

obtained their spectra from polymers dissolved in chloroform in sealed 



TABLE XI 

-1 
INFRARED ABSORPTION SPECTRA (IN em ) OF POLYMERS I-XII 

II III v VII XII XVII XVIII XXV XXVI 

3350 3350 2950 3320 

2910 2950 2900 2910 2950 2950 2940 2860 2875 

2850 2850 2860 3050 

1712 1740 1725 1728 1735 1685 1690 1665 1685 

865 - 880 -

1420 1450 1450 1448 1452 1440 1440 1428 1430 

1130 1170 1160 1158 1175 1165 1160 1135 1140 

1380 1350 1330 1310 1340 1270 1370 - -

* Stretching frequencies unless otherwise marked 

XXIX 

3330 

2990 

1715 

890 

1430 

1180 

-

Assignment* 

0-H 

C-H 

c-o 

0-H bending 

CH2 bending 

c-o-c 
Symmetry 

C-0-C 
Asymmetry 

U1 
0\ 
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0 tubes at 90 • It was noted, however, that resolution could be improved 

by taking the spectra in a-dichlorobenzene at elevated temperature (100). 

The nuclear magnetic resonance of poly(methyl methacrylate) shows this 

fact. The methylene protons resonance in predominantly syndiotactic 

polymers is a singlet as expected, although somewhat broad and compli-

cated by the residual isotactic fraction. The methylene protons in iso-

tactic poly(methylmethacrylate) give the expected quartet with the ad-

ditional peak due to syndiotactic sequences. The peak due to the a-

substituent does not by itself provide an absolute indication of con-

figuration. The chemical shifts of a-substituents commonly vary appreci-

ably with the relative configuration of the nearest neighboring monomer 

units, but this is not always the case. In the expanded spectrum of 

poly(methyl methacrylate) Bovey and Tiers (13) found that the resonance 

of the a-methyl protons (6 0.7-1.3) does not result in a single peak as 

expected but gives three different peaks. These three peaks were assign-

ed to the a-methyl protons appearing in isotactic, heterotactic, and 

syndiotactic triads. The assignment of the signals in the NMR spectra 

of isotactic and syndiotactic poly(methyl methacrylate) in chlorobenzene 

are summarized in Tables XII and XIII. 

Backbone methylene protons (e and f) of isotactic poly(butyl acryl-

ate) produced two quintets; one at o 1.75- 2.00 and the other o 2.04-

2.46. The methine proton (d) shows a quintet centered at o 2.65. The 

analysis of the theoretical NMR spectrum (80, 82) has shown that the 

first two quintets correspond to non-equivalent protons of the methylene 

group and that they do not overlap each other. According to Yoshino ~ 

al. (132), the absorption peaks ranging from o 1.75- 2.00 are due to 

isotactic methylene proton trans to the carbonyl groups, and those from 
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TABLE XII 

THE PROTON MAGNETIC RESONANCE SPECTRUM AND PEAK ASSIGNMENT OF POLYMER I 

Chemical Shift,o Description Integration Assignment 

1.1-1.3 Singlet, 3 H 
Broad a 

2.2-2.5 Doublet 1 Hb 

1.5-1. 76 Doublet 1 H 
c 

3.4-3.7 Singlet 3 Hd 
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TABLE XIII 

THE PROTON MAGNETIC RESONANCE SPECTRUM AND PEAK ASSIGNMENT OF POLYMER II 

I 
I 

c 
I 

I 
COOCHl 

Chemical Shift, o 

0.9-1.3 

1.8-2.16 

3.3-3.7 

3 

Description 

Singlet, 
Broad 

Singlet 

Singlet 

,c, 
I . 

I . 

t.. COOCHl 
3 

(a) (c) 

Integration Assignment 

3 H a 

2 11, 
3 H c 
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o 2.04 - 2.46 are due to the one with the gauche conformation. The 

spectrum of syndiotactic poly(butyl acrylate) shows a multiplet at o 

1.76- 1.96 due to methylene protons, together with weak absorption at 

o 2.06 - 2.30. Absorption due to the methine proton is similar to that 

of isotactic poly(butyl acrylate) and shows a multiplet at o 2.4 - 2.8. 

The assignment of the signals in the NMR spectra of isotactic and 

syndiotactic poly(butyl acrylate) in chlorobenzene is summarized in 

Tables XIV and XV. NMR spectrum of poly(dibutyl itaconate) shows a 

triplet at o 0.7- 1.1 due to the methyl group in the butyl chain and 

another triplet at o 3.8 - 4.3 due to the methylene group attached to 

oxygen. The other methylene groups show absorption at o 1.2 - 1.9. 

Peaks due to the methylene group attached to -C = 0 are centered at o 

2.9. 

The nature of me.thylene splitting is an absolute measure of the 

predominant configuration of the polymers. The isotacticities of poly­

(butyl acrylate) and poly(methyl methacrylate) were calculated by com­

paring the area of backbone methylene peaks in isotactic polymer with 

the total area in isotactic and syndiotactic polymers. From the ratio 

of area under the peak due to isotactic polymer to that under the peaks 

of syndiotactic and isotactic polymers the fraction of isotactic config­

uration is estimated. 

In a similar way, the fraction of syndiotactic configuration is 

found from the ratio of the peak area due to syndiotactic to the total 

area. These values are tabulated in Table XVI. 

The number-average-molecular weights of polymers I, II, IV, V, VI 

and VII were determined using the Hitachi Perkin Elmer Coleman 115 

Molecular Weight apparatus by measuring the vapor pressure difference 
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TABLE XIV 

THE PROTON MAGNETIC RESONANCE SPECTRUM AND PEAK ASSIGNMENT OF POLYMER IV 

"', ~H !l)a,,, ~ai•J 

~ (d)H.I /, 
~ 9c, H COOC4Hg 

COOC4Hg 0 'o 

. ~H2-cH2 -cn2-CH3 
(c) (b) (b) (a} 

Chemical Shift, ~ Description Integration Assignment 

0.70-1.00 Triplet 3 H 
a 

1·.10-1.68 Multiplet 4 1), 

3.98-4.24 Triplet 3 H c 

2.46-2.80 Quintet 1 Hd 

2.00-2.40 Quintet 1 H 
e 

1.70-1.90 Quintet 1 Hf 
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TABLE XV 

THE PROTON MAGNETIC RESONANCE SPECTRUM AND PEAK ASSIGNMENT OF POLYMER V 

Chemical Shift, o Description Integration Assignment 

0.90-1.02 Triplet 3 H a 

1.14-1.76 9 Peaks 4 1\, 

4.00-4.24 Triplet 3 H 
c 

2.40-2.80 Multiplet 1 Hd 

1.76-1.96 Multiplet 2 H e 
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TABLE XVI 

STEREOREGULARITY IN POLY (METHYL METHACRYLATE) (I AND II) AND POLY (BUTYL ACRYLATE) (IV AND V) 

Polymer Initiator Solvent % Isotactic % Syndiotactic 

Poly(methyl methacrylate) 9-fluorenyllithium Toluene 97 3 

Poly(methyl methacrylate) 9-fluorenyllithium Tetrahydrofuran 83 17 

Poly(butyl acrylate) n-butyllithium Toluene 92 8 

Poly(butyl acrylate) Benzoin, uv Toluene 27 73 

-...] 

w 



between the solvent and the solution. The results are shown in Table 

XVII. 
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Several studies have been recently reported in which the rates of 

homogeneous hydrolysis of methacrylate {91) and acrylate (20, 108) poly­

mers have been measured. The kinetics observed follow no simple behav­

ior, and it has been proposed {92) that the rate of hydrolysis of a 

given ester group is affected by the configuration of the groups proxi­

mate to it. The different conformations which the isotactic and syndic­

tactic polymers may assume can be the predominant source of difference 

in chemical reactivity. It was reported {81, 82) that isotactic poly­

(methyl methacrylate) forms an anhydride on acid hydrolysis more easily 

than does syndiotactic or atactic polymers. During hydrolysis, the 

carbonyl groups in isotactic polymers can approach each other, on the 

other hand, in syndiotactic polymers, they are apart perhaps due to a 

zig-zag conformation. The poly(methacrylic acid) produced by hydrolysis 

could be esterified to give poly{alkyl methacrylate) with the same tac­

tici ty {36). 

Glavis (39) reported some results concerning the alkaline hydroly­

sis of poly(methyl methacrylate) of various tacticities. He showed 

that syndiotactic polymers hydrolyze relatively slowly, while the hy­

drolysis of isotactic polymer proceeds rapidly and to a higher final 

conversion than syndiotactic polymer. It was implicitly admitted that 

the tacticity of polymeric chain remains unchanged in the course of the 

hydrolysis. Matsuzaki and Ishida {83) examined the stability of carbon­

hydrogen bond during the hydrolysis. They claimed racemized product 

both in acid and alkaline hydrolysis. 

The NMR spectra of the polymeric acids VIII, IX, X, XI and XII 



TABLE XVII 

NUMBER-AVERAGE-MOLECULAR WEIGHT OF POLYMERS 

Polymer 

Isotactic Poly(methyl methacrylate) 

Syndiotactic Poly(methyl methacrylate) 

Isotactic Poly(butyl acrylate) 

Syndiotactic Poly(butyl acrylate) 

Poly(dibutyl itaconate)a 

. b 
Poly(dibutyl itaconate) 

~enzoin, u.v. initiated 

bFree-radical initiated 

75 

10800 

5400 

15200 

52600 

11900 

5100 
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were recorded from approximately 15% (w/v) solution in o2o with TMSas an 

external standard. The Klesper method (69, 70) was used to calculate 

the degree of hydrolysis. 

The peak due to -OCH3 (o 3.4- 3.7) in the spectra of isotactic 

and syndiotactic poly(methacrylic acid) vanished drastically, but there 

is no change in the peak due to -cH3 (o 0.8 - 1.4) or CH2 (o 1.6 - 1.9). 

The triplet peak corresponding to -ocH2 (o 4.4 - 4.24) in poly(butyl 

acrylate) also disappeared in the spectra of isotactic and syndiotactic 

poly(acrylic acid). Since this region is very close to the absorption 

of H-OD, the determination was made based on the decrease in peak area 

due to the methyl portion of the butyl group (o 0.7- 1.0) which also 

completely disappeared in poly(acrylic acid) spectrum. The percentage 

of hydrolysis of the different polymers is summarized in Table XVIII. 

Potentiometric Titration 

The potentiometric titration curves of atactic, isotactic and syn­

diotactic poly(methacrylic acid) have been obtained in the presence of 

various concentrations of sodium chloride (90). The values of pH+ log 

[ (1-a) /a] for the isotactic form are always higher than those of syndic­

tactic, that is, it requires greater work to remove proton from the 

former than from the latter. The difference between the two stereo­

regular poly acids may be accounted for by assuming that the isota~tic 

poly(methacrylic acid) has a "locally" helical structure in solution. 

There are qualitative differences in the potentiometric titration behav­

ior of poly(methacrylic acid) and poly(acrylic acid). The differences 

seem to be due to a difference in the over-all chain flexibility. 

A carboxylic acid in aqueous solution dissociates as 



TABLE XVIII 

HYDROLYSIS OF POLYMERS 

Polymer 

Isotactic Poly(methacrylic acid)· 

Syndiotactic Poly(methacrylic acid) 

Isotactic Poly(acrylic acid) 

Syndiotactic Poly(acrylic acid) 

Poly(itaconic acid) 

77 

Extent of Hydrolysis 
% 

96 

97 

96 

99 

74 
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R-COOH RCOO + + H 

Its thermodynamic dissociation constant, K , is expressed by 
a 

K = a 

- + (R-COO ) (H ) 
(R-COOH) 

88 

(4) 

(5) 

where the parentheses denote the activity of each species. Often, how-

ever, the conventional dissociation constant, K , defined by 
0 

K = [R-COO-][H+] 
0 [R-COOH] 

(6) 

is used instead of K since we do not know the activities of R-COO and 
a 

R-COOH but only their analytical concentrations (in brackets). 

Equation 6 can be re-written as 

pH= pK - log[(l-a)/a] 
0 

where the degree of ionization, a, is defined by 

a= 

(7) 

(8) 

pK may be related to the standard free energy change of the dissociation 
0 

0 
process, ~G , as 

0 pK = -log K = -0~434 ~G /RT 
0 0 

(9) 

;rn the dissociation of polyelectrolytes, however, an additional amount 

of work, ~G0 is required, thus Equation 7 may be modified to 
1 

pH= pK0 - log[(l-a)/a] + 0.434 ~G~/RT 

Here, ~G0 can be expressed as 
1 

(10) 

(11) 

in terms of the electrostatic potential at the place where H+ originally 

existed, ~ • ~G0 can also be expressed by 
b 1 

(12) 
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where ~G~ is the electrostatic free energy of the polyion having v ion­

ized groups. 

It appears from published experimental evidence that the properties 

of poly(methacrylic acid) in aqueous solutions are somewhat peculiar. 

From their viscosimetric investigation on poly(methacrylic acid), Katch­

alsky and Eisenberg (62) concluded that the undissociated acid must be 

a highly coiled molecule, impermeable to the flow of the solvent. On 

ionization of thecarboxylic acid groups the molecule unfolds, to assume 

a highly extended conformation. 

During the first part of the titration (64) of poly(methacrylic 

acid) , the electrostatic repulsion exerted on the chain segments of the 

molecule are counteracted by contractive forces, resulting on one hand 

from the conformational free enthalpy of the chain and on the other hand 

form the intramolecular attractive forces (e.g., hydrogen bonds and 

Vander Waals interaction). It is interesting to note that for poly­

(acrylic acid) the intramolecular interaction does not seem to play a 

similar important role in potentiometric and viscosity behavior. 

This indicates that in the region where poly(methacrylic acid) 

changes from a dense coil to an expanded molecule the Van der Waals 

forc.es due to the methyl groups are important. This region may be 

interpreted as an interval where a conformational transition between 

two different molecular forms of poly(methacrylic acid) occurs. 

The titration curves were all made by plotting pH vs. a (degree of 

ionization). The a was calculated as the ratio of titrant added at a 

specific pH to that required for complete neutralization. The plots of 

pH vs. log[(l-a)/a] are shown in Figures 26 and 28. Figures 23 and 27 

show titration curves of polymers VIII, IX, X, XI and XII, for which 
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the polymers were dissolved ±n excess standard sodium hydroxide and ti-

trated with standard hydrochloric acid. 

pH= pK - log[(l~a)/a] 
0 

The parameters in the above equation for the above polymers are summar-

ized in Tables XIX, XX, XXI, XXII and XXIII. 
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TABLE XIX 

HENDERSON-HASSELBALCH PARAMETERS FOR TITRATION OF POLYMER IX 

pH log[ (1-a) /al 

11.56 1.00 

11.26 0.89 -0.92 

10.32 o.8o -0.60 

9.86 0.74 -0.46 

8.86 0.69 

8.60 0.59 -0.16 

7.29 0.49 

6.84 0.39 

6.56 0.34 0.29 

6.00 0.28 0.41 
" 
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TABLE XX 

HENDERSON-HASSELBALCH PARAMETERS FOR TITRATION OF POLYMER VIII 

pH 1og[(1-cx)/cx] 

11.24 1.00 

10.84 0.94 

10.34 0.89 -0.92 

9.30 0.84 -0.72 

8.22 0.80 

8.10 0.74 -0.46 

7.5 0.69 -0.35 

7.04 0.59 

6.10 0.49 0.02 

5.4 0.39 0.19 

4.6 0.28 0.41 
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TABLE XXI 

HENDERSON-HASSELBALCH PARAMETERS FOR TITRATION OF POLYMER X 

pH log[(1...:a)/a] 

10.90 1.00 

10.45 0.90 -0.96 

9.7 0.84 -0.72 

B. 71 0.80 

8.30 0.69 -0.35 

7.5 0.59 -0.16 

7.0 0.49 0.02 

6.4 0.39 0.19 

5.7 0.28 0.41 

4.2 0.09 
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TABLE XXII 

HENDERSON-HASSELBALCH PARAMETERS FOR TITRATION OF POLYMER XI 

pH a. 1og((1-a.)/a.] 

10.4 1.00 

10.01 0.94 

8.46 0.89 -0.92 

7.08 0~80 -0.60 

6.38 0.69 -0.35 

5.75 0.59 -0.16 

5.1 0.49 0.02 

3.5 0.28 
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TABLE XXIII 

HENDERSON-HASSELBALCH PARAMETERS FOR TITRATION OF POLYMER XII 

pH 1og[(1-a)/a] 

12.3 1.00 

11.70 0.89 -0.92 

9.9 0.69 -0.35 

8.8 0.49 0.02 

8.1 0.39 0.19 

7.5 0.28 0.41 

6.8 0.19 0.63 
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