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CHAPTER I 

BACKGROUND 

Introduction 

After harvesting and before storage of peanut pods, moisture 

content must be reduced to approximately 10%. Storage at higher 

moisture contents provide an environment favorable to mold growth. and 

insect attack. The most common method of reducing moisture content is 

to add supplemental heat to peanuts placed in deep bed dryers. Cur

rently a major portion of the peanuts dried in the southwest are dried 

at commercial installations. Due to heavy demands placed on commercial 

dryers during peak harvest periods, maximum recommended drying tempera

ture is often exceeded and a decrease in peanut quality results. The 

maximum constant drying temperature is generally accepted as 35 °C. 

As a result of these quality losses, an increase has been noted in 

return to bag drying and in smaller on-the-farm drying installations. 

Under favorable weather conditions, bag drying is a good method of 

drying. The main concerns with·bag drying are uncontrollable weather 

conditions, time required to dry, 'and high labor requirements. During 

unfavorable weather conditions, peanut pods may not dry below 20% 

moisture content. As previously mentioned, if peanuts are left at 

moisture contents above approximately 10% for sustained time periods, 

insect and mold damage may result. 

1 



Researchers from the United States Department of Agriculture 

Agricultural Research Station at Tifton, Georgia (4, 15) have shown 

that peanut pods may reach temperatures of 49 oc or higher for three 

hours or more p~r day under good weather conditions when field drying 

without flavor damage and only a slight increas~ in splits when com

pared to constant temperature deep bed drying. Their research suggest 

cycling periodic high and low temperatures may reduce drying time 

(compared to constant 35 oc drying) without significantly increasing 

damage. 

Because of the current energy crisis, solar drying has recently 

been proposed as a method to dry peanuts. Use of a solar collectbr at 

recommended drying air flow rates in the southwest can easily produce 

drying temperatures in excess of 35 oc during drying season. Because 

of high temperatures reached, a laboratory experiment was needed to 

simulate a solar drying day. Results from these tests would be used 

to help determine maximum cycle temperature and time combination which 

would not significantly reduce quality. These results could also be 

used by corrnnercial dryers to reduce dr~ing time without affecting 

quality. 

Objectiv~s 

The specific objectives of this research were: 

1. Determine whether diurnal cyclic drying decreases quality 

compared to constant 35 oc drying. 

2. Determine whether diurnal cyclic drying decreases total 

drying time as compared to constant 35 oc drying. 

2 



CHAPTER II 

REVIEW OF LITERATURE 

Mechanisms of Peanut Drying 

Drying agricultural products is basically a heat and mass transfer 
' ' . 

process. Heat is applied to the product which causes an increase in 

the partial pressure of water vapor in the product. If the partial 

pressure of water vapor in the product is greater than the water vapor 

pressure in drying air, then a gradient exists and drying occurs. If 

the partial pressure of water vapor in the product is less than water 

vapor pressure in the drying air, then the direction of mass transfer 

is reversed and the product gains moisture. When the partial pressure 

of water vapor in the product and water vapor pressure in drying air 

are equal, no mass transfer occurs and the product is considered to be 

at its equilibrium moisture content. 

Drying can be divided into two classes: constant-rate drying 

period and falling-rate drying period (7). In constant-rate drying 

period, the product contains so much water that liquid surfaces exist. 

When liquid surfaces exist, drying is comparable to the drying of water 

from a free surface. Wet sand, soil, and washed seed are examples of 

materials that initially dry at a constant rate (7). 

Nearly all agricultural drying falls 'in the fall ing-rate period. 

Some products, such as washed seed, may initially dry at a constant 

3 
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rate, but compared to the total drying process this portion is negli

gible. In falling-rate drying period, moisture is initially trans

ferred from within the product to the surface. After moisture has been 

transferred to the surface, the moisture is removed from the surface. 

This process is continued until the equilibrium moi~ture content is 

reached or until the material is removed from the drying environment. 

Peanuts can be dried in either thin layers or deep beds. In thin 

layer drying, peanuts are placed in beds at depths two to three layers 

deep and heated air is then passed through.the peanuts. In this 

method there are no drying zones and all peanuts are being dried at the 

same time. 

In deep bed drying, peanuts are placed in beds of depths greater 

than 1 meter. Drying of peanuts in deep beds takes place in stages. 

Drying zones or fronts develop and move through the bed. A drying zone 

starts at the bottom of the bed and progresses upward through the pea

nuts as drying continues. However, if the air flow rate becomes large 

the complete bed may become the drying zone and then the drying process 

is similar to thin layer drying. 

Previous Research in Peanut 

Drying and Shelling 

Previous research in peanut drying has been directed at improving 

drying procedures in order to ·increase peanut drying rate and quality. 

Some early work in peanut drying was conducted by MYers and Rogers 

(10). Myers and Rogers dried peanut pods in depths up to 1.2 meters 

(4 ft) and quantities up to 182 kilograms. Temperature ~ffects were 

studied at 35 oc, 38 °C, 41 oc, 43 °C 1 46 oc, 49 °C 1 52 oc. 54 °C, 
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57 °C, and 60 oc. Air flow rate was'held a constant 12.2 cubic meters 

per minute per square meter {40 cfm/ft2) of drying area throughout the 

tests. After analyzing their data, Myers and Rogers concluded that 

drying temperatures should not exceed 46 °C. Since their research 

effort, other researchers have revised the maximum constant tempera

ture to 35 °C. 

In 1948, researchers at Texas A & M {8) dried peanut pods at 

temperatures ranging from 47 oc to 60 oc. A burner using butane and 

propane as fuels was used to heat the drying air. Their temperatures 

were not held constant due to varying gas pressure, but the range of 

temperature for each test was recorded. They concluded that the tem

perature of the air in the peanut pods can be as high as 54 °C for one 

hour without detrimental effects on germination. They did not study 

the effects of these temperatures on milling quality. 

In 1949 Beattie (2) studied factors which affect splitting, 

breaking, and skinning of peanuts during shelling. Beattie determined 

that as the moisture content decreased the damage due to shelling 

increased. For final moisture contents between 7 and 13.5%, damage was 

approximately halved for each 3% increase in moisture content. Beattie 

also noticed a tendency for more damage at higher drying temperatures 

and faster drying rates. 

Mcintosh and others (9) investigated the effect of drying air 

temperature on splits and shelling efficiency based on weight of the 

peanuts shelled on the first pass •. After harvesting and drying, peanut 

pods were stored in walk-in coolers at temperatures of 2 oc, 7 oc, 
13 °C, and 18 °C. Each lot was stored in appropriate containers to 

prevent any change in final moisture content. When shelling was 
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started, each lot was shelled; at the same temperature~ (1.0 oc) that 

it was stored. It was determined that between 2 .oc and 18 oc milling 

damage increased as peanut temperature decreased. However, for this 

same range of temperature shelling efficiency increased as peanut 

temperature decreased. For Spanish peanuts there was 1.8% difference 

between peanuts shelled at 18 oc_ and 2 °C. Shelling efficiency changed 

about 4.9% for this same temperature range. From these results 

Mcintosh concluded that a compromise between splits and shelling effi

ciency was needed. 

Tests performed by Person and Sorenson (11) at Texas A & M 

concluded that peanut pods dried quicker in inverted windrows than in 

conventional windrows. Their research also showed that peanut pods in 

conventional windrows which were exposed to direct sunlight and in 

contact with the ground rea~h temperatures of 54 oc during the d~. 

Ambient temperature at this level was 36 °C. In inverted windrows the 

maximum temperature reached was 48 °C. This was obtained by those 

peanut pods exposed to direct sunlight. As can be seen from the above 

results, temperatures may exceed recommended maximums while field 

drying. 

Butler, Pearman, and Williams (4) studied windrow configuration 

effects on peanuts. Their investigation included inverted and 

non-inverted or random windrows. A standard commercial digger-shaker 

was used for random windrows while an experimental chain-type inverter 

was used to create inverted windrows and keep the pods off of the 

ground. Thermocouples were used to measure temperature at various 

places in the windrows. These various places were the ambient air, 

the pods in contact with the ground, the pods shaded by the vine mass, 



but off of the ground, and the pods exposed to direct sunlight and off 

of the ground. Temperatures were recorded every 30 minutes during the 

day and every hour at night. Imnediately after digging and each mor

ning thereafter samples were taken from exposed, shaded, and exposed 

in contact with the ground pods • 

. It was determined.that the widest range in temperature occurred 

in random windrows. Maximum temperature recorded was 54 oc and was 

7 

measured from pods in contact with the ground. Pods exposed to the sun 

and off of the ground (inverted) reached 49 °C. Those shaded within 

the vines, but off of the ground, reached approximately 44 oc. The 

above values are all extremes; however, temperatures of 43 °C and 41 oc 
were commonly measured in the inverted and shaded peanuts, respec

tively. Also, kernel temperatures greater than 49 oc were not 

uncomnon for peanuts exposed to the sun and in contact with the 

ground. 

Person and Sorenson (12) studied the effects of air flow rate on 

drying time and fuel consumption. Their investigation concluded that 

increasing the air flow rate up to a point resulted in shorter drying 

times. Fuel consumption also increased as air flow rate increased. 

It was concluded that flow rates greater than'0.39 cubic meters per 

second per square meter (76 cfm/ft2) had small and diminishing effects 

on the drying rate. 

' ' ' 

Multi phase ·Or Cyc 1 i c Drying 

Beasley and Dickens (1) used a two-phased approach in their study 

of multiphase drying. The first phase was dried rapidly in order to 

help control or prevent mold and rot. Their second phase was dried at 
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a slower rate in an effort to preserve milling quality and flavor. 

Each test was performed by taking approximately 68 k·i log rams of 

peanuts and placing them 1.2 to 1.6 centimeters deep in a dryer. Tem

perature was held at 35 oc and the relative humidity lowe.red to 15%. 

Every two hours 2 ki 1 ograms were removed from the rapid drying 

environment, moisture content recorded, and placed in a slow drying 

environment at 21 oc and 60 to 70% relative humidity. After reaching 

approximately 10% moisture content, t~ree 0.5 kilogram subsamples were 

taken from each sample and shelled. It was concluded that rapidly 

drying to 13 to l5%·moisture content had very little effect on quality. 

Drying beyond this point increases milling damage; therefore, two-phase 

drying is feasible from a milli'ng quality standpoint. 

In 1967,·Farouk {6) investigated a method of cyclic drying by 

alternately heating, tempering, and aerating peanuts. Farouk used 

two methods to accomplish his' drying cycle. In one method, peanut_s 

were heated, aerated and then tempered. For the other method, the 

peanuts were heated, tempered and then aerated. His investigations 

showed that at 49 °C the heating-tempering-aerating sequence produced 

faster drying rates than the.heating-aerating-tempering sequence. At 

38 °C there was negligible difference between drying rates. It was 

also shown that the heating-tempering-aerating sequence was more 

detrimental to germination at 49 °C while at 38 °C it was negligible. 

The milling test results also showed greater damage for the heating

tempering-aerating sequence. The most economical results were obtained 

by using the heating-aerating-tempering sequence and keeping the 

aerating period less than six hours per cycle. 

Troeger and Butler {15) studied periodic high temperature drying 
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of peanut pods during the 1966 to 1969 seasons. Troeger and Butler 

used a high temperature drying cycle and a low temperature drying 

cycle. The high cycle was defined as standard drying to 20% moisture 

content then continuous high heat. The low cycle is defined as con

tinuous high heat until 20% moisture content is reached and then 

standard drying. 49 oc was the high temperature and standard drying 

was heat added whenever the relative humidity exceeded 65%, but maximum 

temperature held to 35 °C. The peanuts were dried in boxes with 0.093 

square meters (1 ft2) of floor area and 0.3 meters deep (1 ft). Air 
' 

flow was 1.4 cubic meters per minute (50 cfm) for all tests. Wet and 

dry bulb measurements were recorded at one-half hour intervals and 

periodic weight recordings were made to determine the moisture content. 

After drying was completed, shelling and flavor tests were conducted. 

By periodically cycling the drying air temperature the following 

drying times were observed. Standard drying required 77 hours to dry 

to final moisture content while continuous drying at 49 oc required 

23 hours. The low cycle drying method required 61 hours to dry to 

final moisture content with 15 of these hours being at 49 oc. The 

high cycle required 50 hours to dry with 19 hours at 49 °C. 



CHAPTER III 

EXPERIMENTAL EQUIPMENT 

A view of the drying equipment is shown in Figure 1. The equip

ment consists ·of an Aminco environment ch.amber, drying containers, 

platform scales, humidifier, supplemental air heater, temperature and 

humidity monitoring devices, and data·recorders. 

Environment.Chamber 

The Aminco environment chamber is depicted in Figure 2. This 

environment chamber controls the condi.tioning of the drying air~ Dif-
, 

ferent air temperatures and humidities are obtained by controlling 

water temperature and dry bulb temperature. As shown in Figure 3 the 

water chamber temperature is controlled by heating and cooling coils 

along the bottom of the chamber. The nozzles spray a fine mist into 

the air bringing it to· its desired dew point temperature and then 

passes over or around the air heating coils bringing it to its desired 

dry bulb temperature •. Air leaves at the desired humidity and.drying 

temperature through an insulated flexible duct at a rated 4.3 cubic 

meters per minute (1~0 cfm). This air passes through the peanut dryers 

and is then returned to the environment chamber. and recycled. 

Dr,yers 

The drying bins, ~ee Figure 4, are constructed of steel drums and 

10 



Figure 1. Drying Equipment. Numbers 1 and 2- Dryers, 
Number 3 - Environment Chamber, Number 4 -
Humidifier, Number 5 - Supplemental Air 
Heater, Recorders - Left Side of Figure 
Below Number 2. 
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Figure 2. Aminco Environment Chamber. Control Panel 
at Left End, Water Temperature Dial 
Indicator with Set Point at Riqht. 
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Figure 3. Environment Control Chamber. Air Heating 
Coils on the Left. Water Temperature 
Control Coils at the Bottom of the Water 
Tank and to the Right. 

13 



. 
Figure 4. Qryer Located on Platform 

Scales. 
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hold from 45 to 55 kilograms of wet peanuts. The dryers were insulated 

with fiberglas insulation to minimize heat loss. Air enters the dryers 

at the bottom and exits at the t{)p. . Both the top and bottom are remo

vable for ease of loading and unloading. The dryers are placed on 

. platform scales so tha~ periodic _weight measurements can be taken. 

Data can be taken such that it is possible to detennine the moisture 

content at various times during drying. 

Humid i fi··er 

The humidifier and supplemental air heater are shown as items 4 

and 5, respectively, in Figure 1. The humidifier is used to resupply 

moisture to the exhausting air before it is reheated by the supple

mental air heater. This reheated air is then used to dry a second 

container of peanuts (item 2) before the air re-enters the environment 

chamber. 

Temperature and Dew Point Monitors 

Nickel-resistance temperature probes and dew point probes were 

used to monitor the condition of the air both entering and exiting the 

dryers. Figure 5 shows a temperature probe and dew point probe 

attached to a dryer. Both monitoring devices were checked for cali

bration by placing them in an .environment controlled container, see 

Figure 6, under various conditions and comparing the known conditions 

against the instrument readings. 

The dry bulb and dew point temperature were co~tinuously recorded 

by a Honeywell multipoint recorder and circular temperature recorder, 

respectively. The recorders are shown ·in the left side of Figure 1. 



Figure 5. A Nickel-resistance Temperature Probe at 
the Left End and a Dew Point Probe on 
the Right. · 
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Figure 6. Environmental Controlled Calibration 
Container with Grain Probe, Nickel
Resistant~ Temperature Probe, and Dew 
Point Probe. 

17 



Oven 

All initial and final moisture contents were determined by the 

oven dried method. Sample sizes averaged approximately 175 grams. 

Temperature of the oven was 130 °C and the pods were left in the oven 

for approximately 12 hours. 

Sizer and Sheller 

Upon completion of the tests, pods were removed from storage and 

milling tests were performed. A pre-sizer of the type shown in 

18 

Figures 7a and 7b were used to size the peanut pods. The pre-sizer 

divides the pods into three size groups. The sheller shown in Figure 8 

has three different sizes of shelling screens with each screen corres

ponding to one of the three pre-sized groups. The peanuts were sized 

and then placed in the appropriate shelling compartment. After shel

ling, United States Department of Agriculture grade factors were 

determined. 
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Figure 7a. Peanut Pre-Sizer, Side View. 
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Figure 7b. Peanut Pre-sizer, Top View. 
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Figure 8. Peanut Sheller. 



CHAPTER IV 

METHODS AND PROCEDURE 

Experimental Design 

Since temperature settings on the Aminco environment unit had to 

be made manually, a limited number of adjustments were made to simu

late a solar drying day. A medium temperature rise occurring twice a 

day (treatment OM), a medium temperature rise occurring once a day, 

but for a longer period (treatment ML), and a high temperature rise 

occurring once a day for a short time (treatment HS) were the three 

treatments designed for use in this study. The three treatments are 

shown in Figure 9. 

For all treatments, the environment chamber controlled temperature 

ranged between 35 and 57 °C. The combination of temperature greater 

than 35 oc and the time held above 35 oc (defined as the degree-hours) 

was the same for all tests. This was done in an effort to determine 

wh~ther or not the manner in which the degree hours was obtained had 

any significant effect on peanut milling quality. 35 oc was used as .a 

baseline, because previous research has shown this to be the maximum 

recommended constant drying temperature. 

The initial relative humidity was 37% and decreased as the tempe

rature increased in an attempt to simulate a drying day. The moisture 

content was measured throughout the test by weighing the drying samples 

22 
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Figure 9. Experimental Design. 
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at regular intervals. The time required to dry the peanut pods was 

· recorded and used to help compare different drying cycles. Throughout 

the test flow rate was a constant 14 cubic meters per minute per square 

meter (46 cfm/ft2) and Spanish peanuts were the only variety tested. 

All peanuts for this study were obtained from the Oklahoma State 

University Agricultural Research Station at Stratford, Oklahoma, and 

the C. J. Collum farm near Perkins, Oklahoma. 

Drying Procedure 

The following procedure was used to obtain the required drying 

data for each run: 

1. Set environmental chamber to the predetermined temperature 

and humidity settings. 

2. Take moisture samples of freshly dug peanuts. 

3. Place peanuts in the drying containers. 

4. Record weight of the peanuts placed in the dryers. 

5. Change environmental conditions at the specified time 

intervals. 

6. Make periodic weight measurements to determine the 

average moisture content. 

7. Dry the peanuts until the moisture content is 

approximately 10% wet basis. 

8. Remove the dried peanuts and take samples needed for 

mi 11 i ng tests. 

9. Dry a sample to use as a base of comparison in quality 

analysis. 



Storage 

Each sample was placed in a cloth bag, had two plastic bags 

around the cloth bag, and placed in a stainless steel container. The 

containers were then stored in a walk-in cooler at 4 oc. Under these 

·conditions, further moisture loss is prevented. 

Shelling 

After all drying tests were completed, milling tests were 

conducted to determine different treatment effects. A standard 

grading procedure was developed and is shown in Appendix A. 

25 



CHAPTER V 

PRESENTATION OF ANALYSIS OF DATA 

. Quality Analysis 

As the drying season progressed, difficulty was encountered in 

controlling the drying_ temperature in dryer number two. One reason for 

this was a poorly designed supplemental heater (item 5, Figure 1). The 

heater box was not well insulated and whenever the room temperature 

changed the dryer temperature would also change. The dryer was used 

to dry excess peanut pods and prevent mold damage, but due to the 

uncontrollable drying temperature, the data obtained was not used. 

Before comparison of treatments, an adjustment for grade changes 

was made. As can be seen in Figure 10, percent splits are affected by 

United States Department of Agriculture grade (defined as percent sound 

splits +percent sound mature kernels). The example in Appendix B 

shows how not correcting for grade could result in a 17% error, when 

grade ranged from 60 to 70%, in determining percent sound splits. To 

compensate for error due to grade changes, the splits were weighed by 

grade. The new variable to be used in place of splits was defined as 

SSR = (percent sound splits/grade) X 100. 

It is known that final moisture content has a large influence on 

percentage splits; therefore, the data was placed in one data set and 

a least squares regression analysis was used to determine the 
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relationship between final moisture content and percent splitso The 

student "t" test was used to test significance of regression coeffi-

28 

. dents at the 90% confidence level. Transformations were made so that 

log-log ~nd semi-log regressions could be compared with the standard 

linear regression. Comparison of standard error, correlation coeffi

cients, and values of the student "t" indicated that the data fit a 

linear plot as well as the log-log or semi-log. This is because at 

the range for average final moisture content (6-10%) the crying curves 

become nearly straight lines. The linear regression model was selected 

due to its simplicity. 

In order to prevent final moisture content from influencing the 

different treatments, it was desired to dry each treatment to the same 

final moisture content. However, difficulty was encountered in obtain

ing exact desired final moisture contents. The testing procedure used 

resulted in only an estimate of final moisture content; therefore, all 

peanuts had to be adjusted to the same final moisture cofltent before 

comparison of percent splits. 

To correct for differences in final moisture content, a correction 

equation was developed that adjusted each data point along an imaginary 

line parallel to a fitted slope. This procedure, shown in Figurell, 

allowed each point to be adjusted to the desired final moisture content 

and at the same time preserved deviations from the mean. 

It was desired to have one general correction equation. In order 

to do this, it was necessary to run a least squares regression on each 

treatment and determine whether or not a common slope existed. Equa

tion [1] is the general form of the regression model. 

SSR = bo (FMC) + bl [l] 
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where 

SSR = (Percen~ sound splits/grade) X 100 

FMC = Final moisture content 

b0 , b1 = Regression coefficients 

30 

Data was placed in subsets, each subset being one treatment. Each 

treatment was adjusted for time of harvest and final moisture content 

as described previously. If the student 11 t 11 test revealed 

non-significant regression coefficients, then no adjustment for mois-

ture content was made. Table I shows the regression coefficients that 

were significant at the 90% confidence level, correlation coefficients, 

and standard errors for equation [1]. 

TABLE I 

REGRESSION COEFFICIENTS AND STATISTICS 
OF FIT FOR EQUATION 1 

Treatment bo bl R2 

ML .32.50 -2.78 0.822 

HS 41.13 -3.62 0.970 

Standard 37.10 -3.35 0.811 

All Data Combined 33.24 -2.86 0.800 

s. E. 

3.04 

1.40 

1.94 

2.29 

The correlation coefficient (R2) shown in Table I is defined as 
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the sum of squares due to regression .dtvided by the total sum ·of 

squares corrected for mean. It measures the proportion of total varia

tion about the mean explained by regression. 

The standard error (SE) term of Table I is defined as 

·[E(Xi _ X)2J l/2 
SE = 1 . . n- [2] 

This is a measure of the variation of each data point about the mean of 

the data points. 

Before a common slope could be determined, a confidence interval 

for each treatment slope was needed. The confidence intervals were 

constructed acco.rding to the procedure described by Draper and Smith 

(5). The confidence interval for the regression coefficient b1 (slope) 

was determined by equation [3] .. 

CI = b1 ~ (t X SE) [3] 

where 

CI =Confidence interval-for b1 

b1 = Regression coefficient (slope) 

t = Tabulated value of student "t" at n-2 

~egrees of freedom 

SE = Estimated standard error of b1 

Table II lists the confidence intervals of b1 for each treatment and 

the confidence interval of b1 for the combined data. Figure 12 is a 

graph of the confidence intervals.~ As can be seen, the confidence 

interval of b1 for the combined data includes values contained in the 

confidence intervals of bl for each individual treatment. For this 
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TABLE II 

CONFIDENCE INTERVALS FOR REGRESSION 
COEFFICIENT bl ' 

Est. Std. t 
Error of 0. 1 c. I. 

n Treatment bl bl Level 90% 

39 All Data -2.86 0.235 1. 685 -2.46 
-3.26 

6* OM -0.63 1.180 2.132 1.89 
-3.15 

9 ML -2.78 0.490 1.895 -1.85 
-3.71 

6 HS -3.62 0.320 2.132 -2.94 
-4.30 

18 Standard -3.35 0.235 1.685 -2.46 
-3.26 

* Treatment OM 1 regression coefficient was non-significant at the 
0. 1 level. 
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reason, the equation resulting from the combined data was used to 
' 

develop a single general correction equation. Equation [4] is the 

general correction equation that was developed to correct the final 

moisture content of each treatment of 9% wet basis and to correct for 

grade. 9% was arbitrarily selected because it is in the range· of safe 

storage moisture contents. 

where 

SSAJ = 7.52 + [SSR - (33.24 - 2.86 (FMC))] 

SSAJ = Percent sound splits adjusted for grade and moisture 

content 

SSR = Split ratio = (splits/grade) X 100 

FMC = Percent final moisture content 

[4] 

Table III shows the actual average final moisture content of each 

treatment, the standard deviation of the average final moisture con

tent, the average percent splits a.fter adjusted by equation [4] for 

each treatment, and the standard deviation of the adjusted splits. 

Figure 13 is a bar graph showing the results from Table III. 

Two methods were used to test for statistically significant dif

ferences between treatments shown in Figure 13. Initially, the dif

ference between treatment. means with unknown and unequal population 

variances was used to determine any significant difference. The 

procedure used is described in detail, by chapter 7 of Remington and 

Schork (13). 

Table IV gives the results of the difference between means analy

sis. To interpret Table IV, the absolute value of the calculated 11 t 11 
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TABLE III 

COMPARISON OF AVERAGE FINAL MOISTURE CONTENT, AVERAGE ADJUSTED 
PERCENT SPLITS ADJUSTED'TO 9% MOISTURE CONTENT, 

AND THEIR RESPECTIVE 'STANDARD DEVIATIONS 

Avg. s. D. Avq. s. o. 
Final Fina,l % Snlits ~b Sp 1 its 

Tre-1tment M. c. r~. c. Adjusted Adjusted 

OM 6.23 0.45 5.73 1. 45 

ML 7. 51 2.20 7.35 2.85 

HS 8.30 1.96 9.05 1.,96 

STANDARD 6.88 1.06 7.69 1. 97 



Compared Treatments 

OM ML 

OM HS 

OM STANDARD 

ML HS 

ML STANDARD 

HS STANDARD 

TABLE IV 

TEST OF SIGNIFICANT DIFFERENCE 
BETWEEN TREATMENT MEANS 

t-Tab. 
t-Ca1. ( 0. 1 ) 

-1.449 1. 761 

-3.341 1. 796 

-2.601· 1. 746 

-1.368 1. 753 

-0.318 1. 796 

1. 476 1. 812 
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Confidence 
Interval 

(90%) 

0.350 
-3.600 

-1.537 
-5. 111 

-0.645 
-3.277 

1. 003 
-4.401 

1. 565 
-2.237 

3.036 
-0.310 



12~ 

10~ 
r 

8 ~ 
(/) -a. 

(f) 

:::Q 
0 6 1-
""0 
<D -(/) 
::J ·-"'0 

c:::x: 
4 1-

Treatments Used In Study 
Figure 13. Effect of Treatment on Adj~sted 

P~rcent Splits and the Standard 
Deviations. Values for Standard 
Deviation~ ar~ Listed in Table III. 

37 



38 

and the tabulated value of the student 11 t 11 at the desired level of 

significance are compared. If the absolute value of t-calculated is 

greater than t-tabulated, then significant difference has been shown at 

the significance level of t-tabulated. An inspection of the confidence 

. interval is another way of testing the significance. To use the confi

dence interval an inspection is ma~e to determine whether or not zero 

is included within the interval. If zero is not included within the 

interval, then the treatment means have been shown to be significantly 

different. As can be seen ,in Table IV, treatments DM and HS have been 
' \ '-, ' ' 

shown significantly different at the 90% confidence level and treat

ments OM and standard have been shown significantly different at the 

90% confidence level. 

The second method used to test for significant difference was the 

conducting of an analysis of variance (AOV). The Statistical Analysis 

System (SAS) was used to perform the AOV. Table V is the results of 

the AOV used to test for significant difference between runs and 

treatments. By use of an AOV, significant difference between treat-

ments could not be shown. However, significant difference between 

runs was shown. This shows that the experimental error was greater 

than the sampling error. As explained in chapter 7 of Steel and 

Torrie (14), this is not an unexpected result. The experimental error 

may· contain an additional unidentified source of variation causing it 

to be greater than the sampling error. In this study, the variation 

due to experimental error was the variation among peanuts treated 

alike and the variation of peanuts for the different treatments. If 

the peanuts did not vary from lot to lot, then the order of magnitude 

of the two variations mean squares should be the same and experimental 



error would not be expected to be larger than the sampling· error. 

However, peanuts do vary from lot to lot because of different g.rowing 

conditions, harvesting conditions, and other uncontrollable factors; 

therefore, as expected, the experimental error is greater than the 

sampling erroro 

TABLE V 

ANALYSIS OF VARIANCE FOR TEST OF 
SIGNIFICANT DIFFERENCE BETWEEN 

RUNS·AND TREATMENTS 

39 

Sum of Mean LSD 
Source DF Squares Square F (O.l) 

Run (Treat) 6 110.24 18.37 13.31* 4.16 

Sampling Error 20 27.61 1.38 

Treatment 3 35.11 11.70 0.64 

Experimental Error 6 11 o. 24 18.37 

* Indicates significance at ~ = 0.1 1 eve 1. 

Figure 14 graphically depicts the results of the AOV. As can be 

seen by observing the least significant difference (LSD), significant 

difference between treatments cannot be shown by this method of 

analysis. The least significant difference is a statistical method 

of determining how great the difference between two observed means 

must be in order to be statistically significant. For example, for 
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any two treatments to be significantly different, their difference 

between respective means would be great~r than the least significant 

difference block shown in Figure 14. The LSD would have to be calcu

lated at the 0.17 level before a significant difference could be 

observed. 

The reasons why the two statistical methods used produced dif-

ferent results may be exp 1 ai ned as fo 11 ows. The difference betv.Jeen 

treatment means with unknown and unequal variances looks at only two 

treatment means at a time and does not take into account for any 

interaction among treatments. When the AOV was performed, it was 
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found that variation among replications was such that significant 

difference between treatments could not be shown at the 90% confidence 

level. As mentioned previously, variation among re~lications is 

largely due to experimental error and peanut population variance and 

is explained in detail by chapter 7 of Steel and Terrie (14). 

Drying Analysis 

Since each lot of peanuts had a different initial moisture content 

and equivalent final moisture contents were not achieved, a moisture 

ratio was used in comparing drying times. The moisture ratio is 

defined by equation [5]. 

where 

MR = Moisture ratio 

MR = MC - r1E 
MI - ME 

MC = Percent moisture content wet basis at any desired time 

[5] 



ME= Percent equilibrium moisture content wet basis = function 

(air relative humidity and air temperature) 

MI = Percent initial moisture content wet basis. 
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At the beginning of a drying test, MC is equal to MI and moisture ratio 

= 1.0. When MC is equal to ME, moisture ratio is zero. Drying time in 

hours was computed from a moisture ratio of 1.0 down to an arbitrary 

0.3. 

The equilibrium moisture content used in determining the value of 

the moisture ratio is explained in detail by several investigators (1, 

7) and is defined by equation [6]. 

(1 - rh) = exp (-KTMn) [6] 

where 

rh = Relative humidity expressed as a decimal 

exp = Base of natura 1 logarithms 

T = Absolute temperature (a R) 

M = Equilibrium moisture content percent wet basis 

K = Constant 

n = Constant 

Beasley and Dickens (1) obtained values forK and n for different 

conditions and their values used in this study were K = 3.81 X 10-5 and 

n = 1.85. 

Figures 15 and 16 are plots showing the time required for each 

treatment to dry peanuts to a desired moisture ratio. Replication 1 is 

not shown because treatments ML and HS were mistakenly stopped before 

the moisture ratio reached the desired level. 
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Figure 15. Time Necessary to Dry Replication 2 to a Moisture Ratio of 
0.3. 



0 
+-
0 a:: 
Q) 
'lo. 
::J -(f) 

0 
~ 

10 

Rep. 3 
o DM 
ll. M L 
c HS 

20 
Time, hrs. 

30 40 

Figure 16. Time Necessary to Dry Replication 3 to a 
Moisture Ratio of 0.3. 

44 



45 

Table VI presents the results of the difference between means 

statistical test for drying time required to reach a moisture ratio of 

0.3. The table is interpreted the same way as Table IV discussed in 

the quality analysis section. As can be seen, no statistical dif

ference (at the 90% confidence level) can be shown· between drying times 

for any treatments. 

TABLE VI 

TEST OF SIGNIFICANT DIFFERENCE BETWEEN DRYING TIMES 
BY DIFFERENCE BETWEEN MEANS ANALYSIS 

Confidence 
t-Tab. Interval 

Compared Treatments t-Cal. (0 •. 1) (90%) 

DM ML -0.620 2.132 17.98' 
-32.74 

DM HS -0.687 2.243. 7.99 
-15.05 

ML HS 0.346 2.353 30.05 
-22.35 

Table VII is an AOV u'sed to test for significant difference in 

drying time requiredto reach a moisture ratio of 0.3. The AOV also 

shows no statistical difference between drying times at the 90% level. 

Figure 17 is a bar graph showing the results of the time required to 

dry each treatment to a moisture ratio of 0.3 and the least ~ignificant 



difference at the 0~1 level. 

Source 

Treatment 

Residual 

* Indicates 

TABLE VII 

ANALYSIS OF VARIANCE FOR TEST OF SIGNIFICANT 
DIFFERENCE BETWEEN DRYING TIMES 

Sum of. Mean 
DF Squares Square F 

2 65.68 32.84 *0.346 

4 379.68 94.92 

non-significance. 
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LSD 
( 0.1) 

20.77 

One reason for the large standard deviation for treatment ML is 

the different conditions under which treatment ML was harvested. 

Treatment ML replication 3 was harvested similar to the other lots and 

has a very similar drying time. A typical harvest for these tests 

consisted of digging the peanuts one day, threshing the next, and 

placing in the dryers the third or fourth day. When treatment ML 

replication 2 was harvested, a delay was encountered due to weather 

conditions. After digging, a 0.4-inch rain fell on the freshly dug 

peanuts. The peanuts were not ·~hreshed until the field became dry 

enough to support the threshing equipment (approximately two days after 

the rain had ended). The drying time for replication 2 was much longer 

thereby causing the average imd standard deviation to be larger • 
• 
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Figures 18 through 31 show the effect of introducing high tempera

tures for short durations during the drying of Spanish peanut pods. 

The even numbered figures show how a sudden change indrying tempera

ture causes a change in equilibrium moisture content which in turn 

causes the sudden shift in moisture ratio. The odd numbered figures 

show how the drying rate increases whenever the drying temperature is 

suddenly increased. The net result of this cycling is a decrease in 

the overall drying time. It took approximately52 hours to dry a load 

of Spanish .peanuts when_ drying at a constant 35 oc, as seen pre

viously, in Figure 17. All high ~emperature cycled treatments averaged 

shorter drying time. 

Table VIII is the results .of the difference between means statis

tical test for drying rate and Table IX is an AOV for the same. Both 

statistical tests show no significant difference between drying rate at 

the 90% confi dEmce 1 eve 1 •. 

Figure 32 is a- bar graph showing the average drying rate from a 

moisture ratio of 1.0 to 0.3, standard deviations, and the least 

significant difference required to statistically show significant dif

ference at the 0.1 level. As noted previously, significant statistical 

difference between treatment drying rates could not be shown at the 0.1 

level. 

Discussion of Results 

By using a difference between means statistical test, a signifi

cant difference was shown between treatments OM and HS and between 

treatments OM and standard. When testing for significant difference 

by using an Analysis of Variance (AOV} no significant difference · 
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Figure 18. Effect of High Temperature Cycling on Moisture Ratio for 
Run DM-1. 
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Figure 20. Effect of High· Temperature Cycling on ~1oi sture Ratio for 
Run DM-2. 
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Figure 26. Effect of High Temperature Cycling on Moisture Ratio 
for Run ML-3. 
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Figure 28. Effect of High Temperature Cycling on Moisture Ratio 
for Run HS-2. 
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TABLE VIII 

TEST OF SIGNIFICANT DIFFERENCE BETWEEN DRYING RATES 
BY DIFFERENCE- BETWEEN MEANS ANALYSIS 

t-Tab. 
Compared Treatments t-Ca1. (0.1) 

OM. 

OM 

ML 

Source 

Treatment 

Residual 

ML 0.146 4.617 

HS 2. 777 2.920 

HS 0.668 6.314 

TABLE IX 

ANALYSIS OF VARIANCE FOR TEST OF SIGNIFICANT 
DIFFERENCE BETWEEN DRYING RATES 

Sum of Mean 
Squares Square F 

2 0.00884 0.00442 o. 67731 

4 0.02609 0.00652 

* Indlcates non-significance. 
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Confidence 
Interval 

(90%) 

0.505 
-0.4 74 

o. 171 
-0.004 

0.714 
-0.572 

LSD 
( 0.1} 

o. 17221 
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Figure 32. Average Drying Rate from Moisture Ratio of 

1.0 to 0.3 and the LSD (0.1) = 0.172. 
Standard Deviations are: OM = 0.052, 
ML = 0.144, and HS = 0.005. 

64 



65 ' 

. 
was shown_. These two different results were obtai ned because of the 

difference in the manner that the methods treat the data. The dif-

ference between means analysis does not take into account any inter

action. It looks at two treatments at a time and ignores any other 

treatments or effects. The AOV looks at the complete test and accounts 

for interaction. In the AOV, the variation among replicates sum of 

squares was so large that no significant difference could be shown at 

the desired confidence level. 

The analysis for average drying rates and average drying times 

revealed no significant difference at the 90% confidence level. 

However, the experimental error was large as indicated by the amount of 

time reduction necessary to show a significant difference at the 0.1 

level. To dry from a moisture ratio 1.0 to 0.3 the average drying time. 

would have to be reduced by 21 hours to be significantly different. 

Twenty-one hours could be significant to a farmer or commercial dryer, 

but due to large experimental error this time reduction was not enough 

to be statistically significant at the 0.1 level. 

In an attempt to reduce this large experimental error, any future 

work needs to be designed so that more replicates can be obtained and 

each treatment can be performed on the same lot of peanuts. This could 

be accomplished with a manifold design and more drying bins. With more 

replicates the statistical analysis could be performed with greater 

confidence that outliers and uncha~acteriitic data would not signifi

cantly affect the final results. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Summary 

This study was concerned with drying peanut pods with daily short 

durations of temperatures greater than 35 oc and the effect of this 

drying method on quality and drying time. Freshly harvested peanut 

pods were placed in drying bins and the drying environment controlled 

by an Aminco environment chamber. After drying to approximately 10% 

wet basis, the pods were stored in a cooler at approximately 4 oc until 

shelling tests could be performed. 

When the difference between means statistical test was used in the 

quality analysis to test for significant difference between treat

ments, significant difference was found between certain treatments. 

When the AOV was used, the experimental error, due to large variations 

among peanut lots, was so great that significant difference between 

treatments could not be shown. 

A moisture ratio was used in the drying analysis to allow for 

comparing peanut pods with different initial moisture contents. Drying 

curves were made showing the immediate effect of temperature increases 

on the moisture ratio. Average drying times were reduced, but not' 

significantly different statistic~lly, when compared to constant 35 oc 
drying, by introducing the daily high temperature cycle. Treatment MS 
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was not proven statistically different for either quality or drying 

time reduction due to large experimental error. Howevert its average 

percent splits was highest and drying rate lowest indicating that this 

is likely to be a commercially unacceptable procedure. Treatments DM 

and ML were not statistically different for either quality or drying 

time reduction and could possibly be acceptable to commercial instal

lations. This result is supported by the findings of Farouk (6). 

Con~ 1 us i o.ns 

1. Experiments relating to peanut quality are subject to 

large experimental error due to variations in varietyt 

climatic and soil conditionst and maturity. 

2. Final moisture content ~s difficult to control due to 

continued transfer of moisture from kernel to hull after 

drying is stopped. 

3. Comparisons of percentage sound splits are more meaningful 

when corrected for United States Department of Agriculture 

grade. 

4. Experimental error may have masked statistical significant 

differences between treatments. 
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APPENDIX A 

SHELLING PROCEDURE · 
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1. Draw sampl.es from load. 

2. Weigh samples for determining percent of foreign material and 

LSK (need 1500 grams). 

3. Pick out any foreign material and weigh. 

4. Find percent of foreign material. 

5. Pick out LSK, weigh and record. 

6. Find percent of LS K •. 

7. Weigh 500 gram sample of cleaned kernels for cbntent analysis. 

8. Pre-size and shell in the mechanical sheller previously described. 

Be sure to collect hulls as well as kernels. 

9. Inspect hulls to remove any kernels. 

10. Weigh and record percent of hulls. 

11. Determine moisture content of kernel by oven dry technique. 

· 12. Screen the kernels through 15/64 X 3/4 screen (for Spanish 

peanuts). 

13. Weigh and record weight of kernels which ride the screen. 

14. Examine those riding the screen for any damaged kernels. 

15. Weigh and record the damaged kernels. 

16. Determine and record percent of SMK by subtracting damaged from 

total riding the screen. 

17. Pick out sound splits from kernels passing through the screen. 

Weigh and record (also remove damaged splits). 

18. Add SMK and SS to get grade. 

19. Weigh and record rest of peanuts that passed through the screen. 

Determine percent and re~ord as other kernels. 

20. Weigh damaged and dirty splits, add to damaged kernels which rode 

the screen, and find percent damaged. 



- 21. Check accuracy by adding SMK, OK, damage, and hull percentages. 

Should equal approximately 100%. If sum is not approximately 

equal to 100%, an error in weighing or calculations has been 

made. Samples were saved so that reweighing and calculations 

could be made, if necessary. 
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APPENDIX B 

EXAMPLE OF ERROR OCCURRING WHEN CALCULATING 

PERCENT SOUND SPLITS IF COMPENSATION 

FOR VARYING GRADE IS NOT MADE 

73 
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EXAMPLE 

Effects of USDA grade change on percent sound sp 1 its.: Given: 

500 gram sample of peanut pods. Assume grade = 60, then there are 

74 

500 X 0.6 = 300 grams of possible- sound mature kernels (SMK). Suppose 

20% of these possible SMK split due to treatment effects. 300 X 0.20 = 

60 grams = amount of sound splits. United States Department of Agri

culture percent sound splits = (60/500). X 1 oo· = 12%. Now assume 

grade = 70, then there are 500 X 0.7 = 350 grams of po~sible SMK. For 

an identical treatment the percentage of SMK that split should be the 

same, or 20% of SMK would split. 350 X 0.20 ;:: 70 grams = amount of 

splits. United States Department of Agriculture percent.sound splits = 
(70/500) X 100 = 14%. The difference in percent sound splits due to 

grade difference is 14- 12 X 100 = 17%. 
12 
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