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CHAPTER I 

INTRODUCTION 

Problem Definition 

A well known problem to certain segments of society is the 

"Transportation Routing Problem" or simply "Routing Problem." This 

problem can be stated as follows: 

Goods are to be distributed from a source to a known 
set of destinations. These goods are carried by a fleet of 
carriers of known capacity. An analyst must assign each 
carrier one or more destinations so that the carriers, 
starting at the source, deliver the goods to each of the 
assigned destinations and returns to the source. Each 
destination is traveled to only once. The objective is 
to minimize the total distance traveled during delivery. 
[24, p. 288 J 

Manifestations of this problem appear in many diverse sectors of 

the economy. In the public sector, analysts are constantly routing 

school buses, street sweepers, snow plows, refuse collection vehicles, 

and other service vehicles. In the private sector, industries route 

vehicles to serve warehouses or branch stores. In the quasi private 

sector, the u.s. Post Office Department is faced with a multitude of 

different routing problems. Finally, many production scheduling 

problems can be given a vehicle routing formulation. The problem, 

therefore, is one that is presently receiving a great deal of interest. 

The majority of real life situations deal with symmetrical 

distances. That is, if d .. denotes the distance between destinations 
lJ 
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(nodes) i and j, then 

d.. = d . . vi and j 
l.J Jl. 

( 1.1) 

The asymetric case allows for the possibility of 

d .. I d .. 
l.J Jl. 

(1.2) 

This is not frequently encountered in real world situations except when 

the problem involves one way streets or bridges. This research is 

applicable only to the symmetric case although it would be simple to 

alter for asymmetric problems. 

Regardless of symmetry, all routing problems are combinatoric in 

nature. This means an exceedingly large number of combinations is 

possible. Assuming each pair of nodes is linked and distances are 

symmetric, the total number of different possible routes through N 

points is ~1. For example, a group of 12 nodes can be serviced by 

any one of 239,500,800 routes. As can be seen, exhaustive enumeration 

is infeasible for all but the smallest problems. 

Objectives of the Research 

Many people have developed procedures, manual and computer, that 

will optimally or heuristically solve routing problems. Optimal seeking 

procedures are interesting intellectually but, so far, unrewarding 

realistically. A problem involving 20 to JO nodes can be solved 

optimally but with large storage and computational time requirements. 

Problems of more than about 50 nodes simply cannot be solved optimally 

.with today's technology. 

Heuristic procedures, however, seem to offer hope for good solu-

tions to large scale problems. Thus, the basic objectives of this 
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research are to explore existing heuristic procedures and attempt to 

discern those that offer the most promise. Then, the next objective is 

to efficiently program the chosen technique or combination of techniques 

in order to produce a procedure that: 

(a) handles "large" symmetric problems, 

(b) produces good solutions, 

(c) is easy and economical to use. 

Another objective is to allow the analyst to interact with the 

solution procedure so that he does not have to blindly accept an answer. 

This increases the validity of the solution and the faith of the analyst 

in the final result. 

A computer program is developed in this thesis that combines two of 

the better heuristic procedures into one effective and efficient 

program. Interaction is allowed and encouraged. Computation results 

are presented. 

Assumptions 

The following assumptions are made: 

1) Capacity of each carrier is known. (Usually all carriers 

have the same capacity but this is not a requirement.) 

2) Distance between any two nodes, including the source (depot), 

is known. The distances are usually put into the form of a 

\ 
matrix and must be symmetric. 

3) Demand at each node is known. 

~) All carriers or vehicles start and end at the depot. There 

can be only one depot. 

5) Each node is serviced once and only once by some vehicle. 

l 



The above assumptions are consistent with the problem definition 

previously given and the literature search to be covered in Chapter II. 

Outline of Thesis 

The results are presented in seven chapters. Chapter I, this 

chapter, defines the problem and states the objectives of the research. 

Chapter II reviews the existing literature on Routing Problems. 

Chapter III discusses the Clarke and Wright route building algorithm 

and programming procedures. Chapter IV presents the Lin route improve

ment procedure. Chapter V details the computational experience. 

Chapter VI discusses the "interaction phase" and its use. Chapter VII 

presents the summary, conclusions, and ideas on extensions and future 

research. 



CHAPTER II 

LITERATURE SEARCH 

Introduction 

.The vehicle routing problem was probably first formulated by 

Dantzig and Ramser [9]. In this early paper, they showed the vehicle 

routing problem to be a generalization of the classical traveling 

salesman problem (TSP). Since much of the work on vehicle routing 

problems draws heavily from traveling salesman literature, a brief 

review is given below and is followed by the review of vehicle routing 

literature. 

Traveling Salesman Problem 

The TSP is one where a salesman, starting in his home city, wishes 

to establish an itinerary such that he visits each of N other cities 

once and only once and travels a minimum distance. Many solution 

procedures have been developed but all can be classified as either an 

"optimal seeking" or "heuristic" procedure. 

Qptimal Seeking Procedures 

Optimal seeking procedures are those methods that guarantee an 

optimal solution. Since the problem is combinatoric in nature, 

however, optimal seeking procedures require excessive computational 

5 



time and storage requirements except for small textbook type 

problems. 

Eastman [lo] was the first to solve the TSP exactly. His method 

is based on a branch and bound strategy where the assignment algorithm 

is used for ·computing bounds. 

Little, et al. [19], use an approach similar to Eastman's in that 

bounds are used on the assignment problem. The procedure begins by 

reducing the associated cost or distance matrix until a zero exists in 

every row and column. The total reduction is a lower bound on the 

solution. Penalties are then created for each zero in the matrix by 

calculating a cost, or penalty, associated with~ choosing the 

corresponding (i,j) of a zero entry. The zero entry with the highest 

penalty is then placed in a "tree". The tree (Figure 1) contains two 

sets of branches. One branch contains all tours including (i,j); the 

other contains all tours excluding (i,j), i.e., (i,j). As branches 

are eXPlored, the penalty associated with not traveling (i,j) is added 

to the previous lower bound. In addition, as (i,j) is added to the 

branching tree, the corresponding row and column are deleted from the 

cost matrix. A continuation of this "branch and bound" technique 

results in the optimal tour. 

Bellman [2] discusses the formulation of the TSP as a dynamic 

programming problem. The procedure begins by considering the problem 

as a 'multistage" decision problem. Then, starting at any node and 

using dynamic programming, Bellman shows the resulting tour to be 

optimal. 

6 
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Figure 1. Branch and Bound Tree 
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Heuristic Traveling Salesman Algorithms 

Bellman, Eastman, and Little, et al., all were able to solve the 

TSP optimally. However, the computation time and storage requirements 

increased exponentially in each case. For this reason, only problems 

with a small number of nodes could be solved. Large problems, 

approximately 50 nodes or more, must be handled by heuristic techniques. 

Ashour and Parker [1] suggest using a heuristic where, after starting 

with some initial node, the .~~~-!_ unvisited node is traveled to next. 

This procedure continues until a cycle exists producing the route of 

the traveling salesman. The procedure is repeated with different 

initial nodes until all have been used as a starting point. The best 

of the tours is chosen as the solution. 

The most importan·t heuristic, with respect to this thesis, was. 

proposed by Croes [8] and extended by Lin [18]. Croes' algorithm 

revolves around the idea of removi~g two arcs from a route and replacing 

with two different arcs such that the distance of the route is reduced. 

The Lin algorithm is discussed thoroughly in Chapter IV. Other pro

cedures for solving the TSP, exact and heuristic, have been found and 

are discussed by Bellmore and Nemhauser [4]. It is recommended as a 

reference. 

Routing Problem 

Optimal Seeking Procedures 

As previously stated, computation time for solving the TSP 

increases quite rapidly as the number of nodes increases. This same 

problem occurs in routing problem algorithms. Still, optimal seeking 
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routines have been developed. Eilon, et al. [11], use a procedure 

similar to Little, et al. [19], to optimally solve small routing 

problems. Svestka and Hudkfeldt [22] extended the work of Bellmore and 

Malone [J] to solve a multiple traveling salesman problem (MTSP), which 

is very similar to the vehicle routing problem. 

There are other optimal seeking procedures, but this research 

concentrates on heuristic procedur-es for solving large scale vehicle 
. ' 

routing problems. Therefore, the majority of the literature search 

is in the next section where heuristic algorithms are covered. 

Heuristic Procedures 

The solution of a problem with a large number of nodes requires a 

technique that: 

{a) is fast, 

(b) produces good results, and. 

(c) uses reasonable computer time and storage space. 

There are many heuristic solution procedures to the Routing Problem that 

meet at least one and possibly all of the above requirements. The 

algorithms relevant to this thesis are discussed here. For a more 

exhaustive survey of the Routing Problem see Turner, et al. [24], or 

Bodin [5 ]. 

As previously mentioned, Dantzig and Ramser [9] were the first to 

formulate the Routing Problem. In addition to their formulation, 

Dantzig and Ramser also proposed a heuristic solution procedure. Their 

heuristic was based on building routes that filled trucks to capacity 

rather than minimizing the total distance. Clarke and Wright [7] 

extended this work to consider the minimization of distance as the sole 
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objective. Clarke and Wright first assume the existence of one carrier 

for each node. Then, if one truck services any two nodes, the 

following savings can be calculated for that pair of nodes: 

S .. 
1J 

d . + d. - d .. , V i and j, i -J j 
01 JO 1J 

(2.1) 

In the savings equation, d .. is the distance or cost from node i to 
1J 

node j and o denotes the depot. All savings are then arranged in 

descending order. The procedure, starting with the pair of nodes 

having the largest saving, builds routes by combining feasible pairs of 

nodes in the above order. At every combination, capacity and distance 

constraints are checked and the procedu're continues until all nodes 

are on a route. A more detailed examination of the Clarke and Wright 

heuristic follows in Chapter III. 

Gaskell [12] proposed a heuristic that is a slight modification of 

the Clarke and Wright algorithm. He proceeds in the same manner as 

Clarke and Wright except the savings are calculated as either: 

where 

A . . = S . . ( D + I d . - d . \ - d . . ) , or 
1J 1J 01 OJ 1J 

TT. • s .. - d .. 
1J 1J 1J 

N 

\ d. L o1 

(2.2) 

(2.3) 

i=l 
N 

and S .. is the Clarke and Wright savings. 
1J 

Gaskell calculations give more weight to nodes with high d. 's. 
10 

Robbins, et al. [21 ], have shown, using randomly generated problems, 

.th.e Clarke and Wright method to be at least as good as Gaskell 1 s first 

savings calculations on the problems examined. 
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Tillman and Cochran [23] also extended the work of Clarke and 

Wright. Their method chooses the pair of nodes with the best savings 

such that the secon.d best feasible pair may be chosen. This manner of 

choosing the best two feasible pairs of nodes maximizes the savings over 

four nodes, not two. 

Golden, et al. [14], proposed a heuristic that modifies the Clarke 

and Wright algorithm in three ways: 

1) by using a 'route shape' parameter Y to calculate a new 

savings 

s. . = d . + d . - Yd. . • 
1J 01 JO 1J 

The value of Y is varied over some range and the best set of 
routes are selected; 

2) by only calculating a savings between nodes close to each 
other; and 

J) by storing the savings calculations in a 11heap structure" to 
reduce comparisons and improve the speed of the algorithm. 

Robbins C2oJ has shown it possible to generate better Clarke and 

Wright solutions using the second modification above. It should be 

stated,-though, that this happens rarely and the quality of the solution 

will in general be worse than when all savings are calculated. 

Christofides and Eilon [6] developed an algorithm that solves routing 

problems by a three-optimal tour method •. The three-opt method, as it 

is called in the literature, begins with a set of random routes. The 

procedure continues by removing three arcs from a route and replacing 

With three d1"fferent arcs. F1"gure 2 ·1 f th t d , an examp e o ree unconnec e 

arcs, demonstrates eight ways they can be reconnected to form a 

route. When this is repeated for all combinations of three arcs, a 

three-optimal tour is obtained. 
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Gillett and Miller [13] recently proposed a procedure called the 

~~~~~P C:llg()!:i_t]:~m"~, The method involves.l.al>.E:!!ing every node with its 

polar coordinates. The nodes are then numbered according to polar co

ordinate with the depot considered as location 1. A sweep is made such 

that nodes 2, 3, 4, ••• , K are placed on the first route. Node K is .the 

last node on the route that can be serviced without exceeding·the 

carrier's capacity. This process continues until all nodes are on a 

route. A swapping routine then follows where stops are transferred 

between wedges if a reduction in distance is realized. A useful aspect 

of the algorithm is the time it takes to solve a problem. The authors 

report a linear increase in time with respect to the number of nodes 

if the number of nodes per route remains approximately constant. 

Krolak, Felts, and Nelson [16] have developed a man-machine two 

phased procedure for routing problems. The procedure is very similar 

to that proposed by Krolak, Felts, and Marble [15] for the TSP. The 

first phase consists of a heuristic, called the "Truck-Route Generator", 

to aggregate n·odes according to their location. Grouping sizes are 

kept small to create many clusters. Aggregates are combined where the 

total demand does not exceed the capacity of the largest vehicle. 

Results are probably not feasible but a TSP is solved for each group. 

Swaps between routes are then analyzed and made where possible. 

Finally, feasible one and two arc swaps are made within each route. The 

second phase of solution takes place at a cathode ray tube. The CRT 

displays the solution so an analyst can alter the routes in any way he 

desires as long as they remain feasible. This sort of interaction allows 

experience and intuitive knowledge to achieve better solutions. This, 



in turn, makes the results more acceptable to an analyst as he plays a 

part in deriving the routes. 

International Business Machines (IBM) [17] has a computer package 

called Vehicle Scheduling Program (VSP) that has been used to route 

vehicles. The progra!ll is primarily based on the Clarke and Wright 

procedure discussed earlier. Different factors can be minimized such 

as time, distance, or number of vehicles used. Where the designated 

factors cannot be minimized, the program tries to achieve a balance 

among them. In addition, VSP is well programmed and can handle over 

1000 nodes. 

Summary 

Routing problems can be solved by many algorithms. Some pro

cedures are exact while others are heuristic. Exact solution pro~ 

cedures generate optimal answers but are only practical for problems 

up to about 50 nodes. Large scale problems must be solved by heuristic 

techniques. Of the heuristics, the Clarke and Wright [7] method has 

been given the most attention. Gaskell C12J, Tillman and Cochran [23], 

Golden [14], and IBM [17] have extended Clarke and Wright to produce 

procedures of their own. Other methods include those proposed by 

Gillett and Miller bJJ, Krolak, et al. b6], and Christofides and 

Eilon [6]. 

The next chapter presents the Clarke and Wright algorithm in 

detail. Also, an efficient program of the procedure is outlined. 



CHAPTER III 

THE CLARKE AND WRIGHT ALGORITHM 

Introduction 

This chapter discusses the Clarke and Wright algorithm [?] 

mentioned in Chapter II. The theory behind the algorithm.and an example 

showing its use are presented along with the advantages and disad-

vantages. In addition, a computer program of the Clarke and Wright 

method is outlined. 

The Clarke and Wright Algorithm 

The Clarke and Wright routing procedure is based upon the calcu-

lation of a "saving" between every pair of nodes. The method initially 

assumes the existence of one vehicle to service each node. This is 

unrealistic as a vehicle usually can serve a great number of nodes. 

Clarke and Wright realized this and asked the question, 11How much 

distance will be saved ifone truck services two nodes instead of one?" 

As shown in Figures 3 and 4:, the savings associated with pairs of two 

nodes can be calculated as: 

s .. 
l.J 

d . + d .. - d .. 
Ol. JO l.J 

Vi and j , i /: · j (J .1) 

where S .. is the savings associated with pairing i and j on one route, 
l.J 

d .. is the distance from ito j, and o denotes the depot. "Distance" 
l.J 

may be replaced by 'money, 11 11 time," or any other scarce resource. 

15 
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Equation 3.1 is valid for symmetric or asymmetric distances. Since 

this research deals with symmetric distances, the asymmetric case will 

not be discussed further. For symmetric distances, the savings 

equation may be rewritten as: 

s. = d 
oi + d .. - d .. , or 

1j OJ 1J 
(3.2) 

s. = d. + d. - d. 
1j 10 JO 1j 

(3.3) 

Once the S .. are calculated for all pairs of nodes, the savings 
1J 

are ranked in non-increasing order. Going down the savings list, each 

pair of nodes is examined.* For any given pair, an attempt is made to: 

1) create a new route, or 

2) add a node to the front or back of a route, or 

3) join two routes to form one. 

If none of the above can be accomplished, the nodes are discarded. This 

procedure continues until all pairs of nodes have been considered. An 

example is given below. 

Example 

Table I is a matrix of symmetric distances. Since the distances 

are symmetric, only half the matrix is needed. From the distance matrix 

the savings in Table II can be generated. For example, the savings for 

nodes 3-4 is: 

* 

= 9 + 13 - 6 

= 16 

s 
4,3 

Ties are broken by randomly selecting a pair. 
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TABLE I 

DISTANCE MATRIX 

2 3 

15 9 

11 9 

10 

TABlE II 

SAVINGS MATRIX 

2 

18 

3 

llj, 
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12 

12 

16 

13 

15 

16 

6 

5 

10 

8 

8 

8 

5 

5 

9 

12 

6 

10 

The savings of Table II are arranged in non-increasing order in 

Table III. The pair of nodes with the largest saving is 1-2. These 

stops become the first combination and form a route of 0-1-2-0. 

18 



TABLE III 

ORDERING OF SAVINGS 

Stops Savings Stops Savings 

1-2 18 2-4 12 

3-4 16 1-5 10 

1-3 14 2-5 8 

2-3 14 3-5 8 

1-4 12 4-5 8 

Next on the list is the combination 2-1. The addition of 2-1 to 
J. 

the first route creates a "subtour" which is not permitted. The next 

19 

pair is 3-4. Since route 1 has no stop in common with this pair, a new 

route must be formed. Thus 0-3-4-0 forms route 2. Thus far, the 

routes appear as follows: 

Route # Stops 

1 0-1-2-0 

2 0-3-4-o 

The next pair, 4-3, is dropped due to subtours. 1-3 is dropped 

since stop 1 has previously been traveled from. Likewise, 3-1 is 

dropped. If 1-2 were considered as 2-1, since the distance is sym-

metrical, the link 1-3 could be used to create one route from two: 

0-2-1-3-4-o. This flexibility is difficult to incorporate into a 

program. Thus, a rule for the program is established: Once an order 

of arcs is estabiished, the sequence will not be reversed. 
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The next pair, 2-3 allows two routes to become one: 0-1-2-3-4-o. 

Continuing down the list, all pairs are dropped except 5~1. Stop 5 is 

appended to the front of the route. Thus, after adding the depot, the 

path.becomes 0-5-1-2-3-4-o with a distance of 54 units. The location of 

nodes is shown in Figure 5 with the tour in Figure 6. Table I contains 

rectalinear distances while Figure 6 shows the route with directed 

arcs. 

Advantages and Disadvantages 

The Clarke and Wright algorithm has been very popular as indicated 

in Chapter II. Because of this exposure, many strengths and weaknesses 

have come to light. The following is a summary of the advantages and 

disadvantages of the procedure: 

Advantages: 

1) The procedure is simple to use. 

2) A realistic constraint can be added easily. 

3) The procedure provides a "good" starting solution which 
can be used as input to an improvement algorithm. 

Disadvantages! 

1) Once an arc or link is created it cannot be broken. 

2) Results can be, but generally are not, optimal. In 
some cases where the constraints are tight, results 
are far from optimal. 

3) A computer is required for most problems due to size 
(but this is true for most procedures). 

The first advantage needs little elaboration. The procedure is 

straightforward and based on simple calculations. Realistic 

• .. 
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constraints, such as maximum route length or required times of pickup, 

are easy to add. The ability to provide a good initial solution to a 

following improvement algorithm is crucial to this thesis. The Clarke 

and Wright algorithm generates a starting solution for use by the Lin 

two-opt procedure which is outlined in the next chapter. 

The two-opt procedure attempts to improve an initial solution. 

If the starting solution is poor, the final solution may be poor. 

Likewise, a good starting solution will result in at least a good final 

solution. Primarily, it is this reason why the Clarke and Wright 

algorithm was chosen to build routes. 

The disadvantages, while valid for the Clarke and Wright procedure, 

are partially' remedied by the Lin two-opt algorithm. With respect to the 

first disadvantage, the two-opt procedure, which is a within-route 

swapping or perturbation routine, is used to break up links. Also, 

the third phase, man-machine interaction, allows further alteration of 

routes. 

The second disadvantage must be kept in proper context. As 

previously discussed, optimal seeking algorithms use excessive computer 

time and normally are not practical. Thus, any attempt to find the 

optimal solution to a large scale routing problem is usually not 

feasible •. As the third advantage states, this procedure provides a 

11good 11 starting solution for an improvement algorithm. The-Lin two-opt 

procedure will, in general, improve the results enough to make the 

solution reasonable. The man-machine interactive phase may improve it 

even more. 
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Programming Strategies 

In this section the programming strategies incorporated in coding 

the Clarke-Wright algorithm are discussed. The program is written in 

FORTRAN with particular eff'ort directed at reducing storage require-

ments and improving execution speed and efficiency. A flowchart of the 

program appears in Figure 7. Usage instructions are given in Appendix A 

while the program appears in Appendix B. 

In order to efficiently carry out the Clarke-Wright procedure, it 

is necessary to retrieve specific information about nodes, distances, 

and routes without extensive searching. In order to accomplish thi~ the 

program incorporates a concept known as "linked list processing". 

Simply stated, linked list processing employs a set of pointers which 

provide rapid access to stored data. Use of these pointers generally 

results in less data manipulation and therefore faster execution times. 

The program requires as input the number of nodes in the system, 

demand at each node, and a distance matrix. This distance matrix 

consists of the distances between all nodes in the system. Since these 

systems may be quite large, all distances and related route information 
\·. 

are stored in 'half-word integer variables, i.e., INTEGER*2. This 

,J_J 
reduces storage requirements by roughly one-half. Also by limiting 

computations to strictly integer variable~ execution speed is greatly 

enhanced. 

After the data has been read in, the savings calculations are 

performed. Nex~ these savings must be ordered. During this sorting 

process, an initial set of pointers is established. Through the 

remainder of the program, these and other pointers will be revised to 
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Figure 7. Flowchart of Clarke and Wright Algorithm 



yield such information as: 

(a) Is a node on a route? 

(b) Which route is a node on? 

(c) Where on a route is the node located? 

This information is then used to generate or improve potential 

routes. The updating of routes and pointers continues until the 

procedure iterates to completion. 
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CHAPTER IV 

THE TWO-OPT ALGORITHM 

Introduction 

As originally conceived, the Lin two-opt algorithm [Is] attempts to 

improve a traveling salesman tour. Given a route through·N nodes, 

two arcs are removed from the circuit and replaced with two different 

links. If a reduction in total distance is realized by this swapping 

of arcs, the new links are retained and the tour is reexamined. Other-

wise, the proposed links are discarded and examination of arcs 

continues. The procedure stops when a tour has been totally examined 

and no swaps have been made. 

The two-opt procedure can be easily extended to routing problems. 

A feasible solution to a routing problem contains M routes, where M >1. 

The case where M = 1 is a traveling salesman problem. By considering 

each route independently of the others, a two-opt procedure can be used 
' 

for possible improvement. Figure 8 shows two routes which, when 

considered independently, cannot be improved further by the two-opt 

method. If a swap of arcs between routes is considered though (7-0 and 

9-q to replace 7-q and 0-9), the total distance might be reduced. 

Figure 9 shows the results of making the proposed swap. Unfortunately, 

between-route swapping is difficult to program. Thus, it is not 

included in this thesis. Instead, the man-machine interaction phase 

is incorporated which allows for analysis of between-route swapping. 
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Figure 10 shows two routes, one of which can be improved with the 

two-opt procedure. Route A is two-optimal (when considered indepen

dently) while route B can be improved since it has two links that 

intersect, 6-4 and 3-0. Lin [18] states that any route containing an 

intersection of two or more links cannot be two-optimal. By swapping 

iinks 6-4 and 3-0 (the dashed lines, Figure 10) for 6-3 and 4-0 

(Figure 11), route B becomes independently two-optimal. 

Two-Opt Requirements 

The two-opt procedure, like most other improvement algorithms, 

starts with an initial feasible solution, which in this case is the 

Clarke and Wright algorithm. In addition to the starting solution, a 

distance matrix must also be provided so the feasibility of swaps can 

be determined. 

A swap of links can be made two ways within a route, but only one 

of the swaps is realistically possible as shown in Figure 12. The 

feasible swap in the middle of Figure 12 may result in a better route 

while the infeasible swap at the bottom of Figure 12 results in sub

tours, which are not allowed. Assuming I-J and K-L are the arcs 

considered for replacement, the initial route is L-N-M-I-J-T-S-K-L 

while the possible replacement route is L-N-M-I-K-S-T-J-L. These two 

routes are identical except for the links between I and L which includes 

those being considered. (The links I-J and K-L are being considered 

for replacement by I-K and J-L.) The remaining links in the replacement 

route are K-S-T-J. Upon examination of the initial route, the links 

J-T-S-K are found, which are the reverse of those in the replacement 

route. Since distances are symmetric, the links from K to J are the same 
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distance as from J to K. Thus, the links from K to J need not be 

considered when examining a swap. This leaves the arcs I-J and K-L 

as the ~s for a swap. Since I-K and J-L are being considered to 

take the place of I-J and K-L, the following equation must be satisfied: 

If equation 4.1 is satisfied, a swapping of arcs takes place. Other-

wise, the route remains in its present form. Swapping arcs results in 

just two new arcs. All other links retain their initial sequence or 

are the reverse of their original order. It should be pointed out that 

the entire examination process could be reversed since the distances 

are symmetric; but the end result wohld be identical. 

Example 

Figure 13 is a diagram showing how a route may be 
improved by the two-opt method. The initial solution 
(iteration 1) is a route of 68 miles. In iteration 1, 
the arcs 0-1 and 3-2 are considered for removal. The 
replacement links are 0-3 and 1-2. Since a reduction 
in distance can be made (from 68 to 63 miles) the swap 
is made in iteration 2. This swapping of arcs continues, 
where swapped arcs are dashed lines, in iterations 3 and 
4 until the minimum distance of 5~ miles is reached. 

Programming Strategies 

Since the first phase of the program is a Clarke and Wright pro-

cedure, a good initial solution is obtained. This is then used to feed 

into the two-opt within-route procedure, a flowchart of which is shown 

in Figure 14. The two-opt algorithm makes use of the pointers estab-

lished in the Clarke and Wright procedure. Whenever a swap is deemed 

feasible, the pointers are rearranged and the ro~te is reexamined 

starting from the beginning. This reexamination is necessary because 
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new links are introduced into the route which may make more swaps 

feasible. The algorithm ends when a route is examined and no swaps 

are made. 



C1IAPTER V 

COMPUTATIONAL RESULTS 

Introduction 

This chapter presents some computational experience of the program 

developed in this thesis. Problems solved by Christofides and Eilon [6], 

Gaskell [12], and Gillett and Miller [13] are examined. 

Background of Problems 

Christofides and Eilon [6] solve ten vehicle routing problems 

with their three-opt procedure (and other procedures) and compare the 

results to those obtained by one of Gaskell's savings algorithms [12]. 

In most cases, the three-opt procedure produces better results but 

takes considerably more time for solution. Of the ten problems, seven 

have less than fifty nodes and are not examined here. The three 

remaining problems (50, 75, and 100 nodes) are solved by Gillett and 

Miller [13] along with five others. These eight problems are presented 

in Table IV. Problems 3, ~' and 5 are the same as 2 except the maximum 

load is altered. Likewise, problem 7 is the same as 6 except for the 

load constraint. Solution results are presented in Table V. 
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TABLE IV 

LIST OF PROBLEMS 

Problem Number 
a 

Maximum 
Number 

Author 
of Nodes Load 

1 Christofides and Eilon [6] 50 160 

2 Gillett and Miller [13] 75 100 

3 Christofides and Eilon [6] 75 140 

4 Gillett and Miller [13 J 75 180 

5 Gillett and Miller [13 J 75 220 

6 Gillett and Miller [13 J 100 ll2 

7 Christofides and Eilon [6] 100 200 

8 Gillett and Miller [13] 249 500 

~xcludes depot. 



TABlE V 

COMPARISON OF ALGORITHMS 

Three-Opt Gaskell Sayings Swee;12 Algorithm 

Problem 
Sol. Rts. Min. Sol. Rts. Min. Sol. Rts. Min. Avg. No. 

Number nodes/route 

1 556 5 2.0 585 6 .6 5~6 5 2.00 10.0 

2 1127 15 .68 5.0 

3 876 10 ~.o 900 10 1.3 865 10 .1.23 7-5 

~ 75~ 8 2.23 9-~ 

5 715 7 3.68 10.7 

6 1170 1~ 1.83 7.1 

7 863 8 10.0 887 8 2.5 862 8 6.00 12.5 

8 579~ 25 9.70 10.0 

Sol. 

580 

107~ 

892 

790 

728 

1162 

897 

5~57 

(Proposed A1 gori thm) 
Clarke-Wri~htLLin 

Rts. Min. 
Avg. No. 

nodes/route 

6 .07 8.3 

1~ .12 5-~ 

11 .12 6.8 

8 .12 9-~ 

7 .12 10.7 

1~ .20 7.1 

8 .20 12.5 

26 2.7~ 9.6 

\,;.) 

--J 
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Examination of Results 

Table V shows the results of four different sol uti on procedures on 

eight problems. The four procedures are: 

(a) Three-Opt Procedure (results available on only three problems), 

(b) Gaskell Savings Procedure (results available on only three 

problems), 

(c) Gillett and Miller Sweep Algorithm, 

(d) Clarke and Wright-Lin Algorithm (procedure developed in 

this thesis). 

The sweep algorithm outperforms the three-opt and Gaskell savings 

routine for problems where comparisons can be made (1, 3, and 7). 

Computer times are difficult to contrast since each algorithm was 

programmed on a different computer. Thus, one might conjecture 

(unscientifically) that the sweep algorithm is at least as good on the 

eight problems as the other two procedures. 

For that reason, the Clarke and Wright-Lin program will be compared 

to the sweep algorithm. 

The Clarke and Wright-Lin program was run on an IBM 360-65 at 

Oklahoma State University,. Gillett and Miller ran the sweep program 

on an IBM 360-67. The only significant advantage the !EM 360-67 has 

over the IBM 360-65 is the ability to handle more programs. Storage 

capability and execution speed are virtually the same. Thus, for 

practical purposes, the two programs were executed on the same computer. 

As shown in Table V, the sweep algorithm produces better solutions 

for all problems except 2, 6, and 8. The maximum difference in 

solutions is 5.8% (problem 8) while the sweep algorithm produces 
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results averaging 1% better than the Clarke and Wright-Lin procedure. 

Thus, on the eight problems examined, these two methods perform almost 

equally as far as solution is concerned. 

Another factor of interest is the computer time of the two programs. 

Computer time is defined as the execution time of the program. Gillett 

and Miller report a linear increase in computer time with an increase 

in the number of nodes if the number of nodes per route remains rela-

tively constant. Also, for arty given route, the computer time increases 

as the number of nodes per route increases. This can be seen in Table V 

for the 75 node problem. Computer time ranges from .68 minutes to 3.68 

minutes while the average number of nodes per route varies from 5 to 

10.7. Thus, computer time may become excessive for a problem with a 

large number of nodes per route. 

Computer time for the Clarke and Wright-Lin procedure is indepen-

dent of the number of nodes per route. Thus, although the average 
\')I 

number of nodes per route increases from 5.4 -to 10.7 (Table V), the 

time for solution of the four 75 node problems remains constant 

(.12 minutes). Additionally, computer time for the Clarke and Wright-

Lin procedure is significantly less than the sweep algorithm for each 

of the eight problems considered. As in most heuristic solutions though, 

computer time increases exponentially with the number of nodes. 

Table V shows computer time increasing' from .07 minutes for 50 nodes to 

2.74 minutes for a 249 node problem. For some number of nqdes, the 

execution time for the two procedures should be approximately equal. 

These results show that this probably occurs somewhere around 350 nodes. 

Thus, for problems containing less than 350 nodes, the Clarke and 

Wright-Lin algorithm is probably best to us~ as computer time will be 



smaller than for the sweep algorithm. Past 350 nodes, the sweep 

algorithm is probably best to use. 

Statistical Analysis 

For a statistical comparison of the proposed algorithm and the 

sweep procedure, it is probably best to turn to non-parametric tests. 

The sign test is used to test two hypotheses. The first, which is 

based on solutions generated by the eight problems, can be stated as: 

H0 : P(X1 > X2) = P(X1 < X2) = .5 

H1 : P(X2 < X1 ) > .5 

4:0 

where x1 and x2 are the solutions of the Clarke and Wright-Lin program 

and sweep algorithm resp.:ectively. This is a one tailed test and the 

critical test value, for a 5% significance level, is 3.84:. Table VI 

shows three positive and five negative signs. The experiment's 

statistic can be calculated as: 

== • 5 

Since .5 is less than 3.84:, the null hypothesis, H0 , cannot be rejected. 

Thus, there is no statistical difference between the solutions of the 

Clarke and Wright-Lin algorithm and the sweep algorithm. 

The second hypothesis can be stated as: 

H0 : P(X1 > X2) = P(X1 < X2 ) = .5 

H1 : P ( x1 < x2 ) > • 5 

where x1 and x2 are the execution times of the Clarke and Wright-Lin 

program and sweep algorithm respectively. This is also a one tailed 



TABLE VI 

SOLUTION RESULTS AND DIFFERENCES FOR SIGN TEST 

Problem Sweep Clarke-Wright/ Sign of 
Number Algorithm Lin Difference 

1 546 580 

2 1127 1074 + 

3 865 892 

~ 754 790 

5 715 728 

6 1170 1162 + 

7 862 897 

8 5794 5457 + 
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test with a critical test value of 3.84: for a 5% significance level. 

Since Table VII shows eight positive signs, the following statistic 

can be calculated: 

= B.o 

Since 8.0 is greater than 3.84:, the null hypothesis can be rejected. 

Thus, it seems safe to suggest the Clarke and Wright-Lin program is at 

least as fast in execution time as the sweep algorithm. 

Ad'di tional Computational Experience 

Computational experience using the program proposed in this thesis 

has also been gained by solving six randomly generated problems. Node 

coordinates and demands are given in Appendix C and the solution results 

are presented in Table VIII. Note that as the number of nodes increases, 

the execution time and required storage increase exponentially. 

Figure 15 is a graph of the execution time versus number of nodes while 

Figure 16 shows the graph of storage requirements versus number of 

nodes. In both cases, the curvature is the classical exponential curve. 



TABLE VII 

EXECUTION TIMES AND DIFFERENCES FOR SIGN TEST 

Problem Sweep Clarke-Wright/ Sign of' 
Number Algorithm Lin Dif'f'erence 

1 2.00 .07 + 

2 .68 .12 + 

3 1.23 .12 + 

4 2.23 .12 + 

5 3.68 .12 + 

6 1.83 .20 + 

7 6.00 .20 + 

8 9.70 2.74 + 

TABI.E VIII 

SOLUTIONS TO RANDOMLY GENERATED PROBLEMS 

Problem Number of' Execution Time Memory 

Number Nodes Solution 
Routes (seconds) 

Requirements 
(Bytes) 

1 10 275.5 2 2.27 30,548 

2 30 612.0 4 2.65 36,160 

3 50 1011.4 8 4.12 46,160 

4 70 1147.6 9 6.57 60,164 

5 90 1495.6 13 11.05 80,104 

6 150 2338.5 20 36.69 172,254 



0 
I.C) 

0 0 0 
~ rt') C\J 

(SaN 0J3 S ) 3 ~ LL NO I.L '1.L n d ~OJ 

0 
I.C) 

0 
(1) 

0 
1"-

0 
I.C) 

0 
rt') 

0 

0 

V> 
w 
0 
0 
z 
LJ.... 
0 

0:: 
w 
m 
~ 
::> 
z 

Cll 
N 

•.-i 
Ul 

8 
Cll 

...-! 

.a 
0 
~ 

p.. 

Ul 
::l 
Ul 
~ 
Cll 
> 

Cll 
8 

·.-i 
E-l 

s:: 
0 

•.-i 
+' m 
+' 
::l 

~ 
0 

(.) 

. 
lf\ 
...-! 

Cll 
~ 
::l 
Cl 

·.-i 

"" 



2 50,0QQ.---r-------r----r------r--r---------,..----. 

-
(/) 

w .... 
>- 200,00 
m -
(/) .... 
2 
w 
~ 
w 
0: 
:::> 
0 w 
0: 

w 
~ 
0: 
0 .... 
(/) 

,' 
I 

I ,' 
/ 

0 10 30 50 70 . 90 ·. 150 

NUMBER OF NODES 

Figure 16. Storage Requirements Versus Problem Size H=
Vl 



CHAPTER VI 

MAN-MACHINE INTERACTION 

Description 

Solution .of a large scale routing problem generally requires the 

use of a computer. Information is fed in, an algorithm executed, and 

final .results are printed. In other words, an analyst gathers the data 

and the computer does the work. The analyst, by examining the computer 

solution, may be able to recommend changes that result in a reduction 

of distance since large scale computer solutions usually are not optimal. 

This implementation of changes in a discourse between analyst and computer 

is called "man-machine interacti9n 11 • In this interaction, an analyst 

(man) examines the results of a computer (machine) and tries to create 

a better solution. This is then given to the computer which tries to 

improve the solution further. This interaction can be continued as 

long as desired. This chapter discusses the reasons for using an 

interactive phase and how it occurs. 

Reasons For Use 

This third phase of the computer program allows an analyst to 

interact with the computer to improve the first generated solution. 

After examination of the results provided by the Clarke and Wright-Lin 

phases, changes may be desired. For example, a route may be too long 

4:6 
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or a vehicle may not serve enough nodes. These are only two of the 

many reasons a dispatcher may wish to alter the computer's results. 

Usually, for example, it is human nature for a dispatcher to have more 

faith in a solution he helps derive than in the results of a machine. 

Also, a dispatcher is usually very familiar with his territory as he 

may have spent years learning his trade and gaining experience. For 

example, he may know a certain road is dangerous in high water and 

should be avoided or a bridge may be overloaded with a full bus but not 

an empty one. The interaction phase allows this experience to be put 

to use. Also, many times a dispatcher may be interested in experi

menting with his routes in the hope of finding a better solution. 

Experimentation can be done easily through the interaction phase. The 

effects of adding or deleting nodes, adding additional routes, or 

transferring nodes within the system can be realized very quickly and at 

low cost. With the use of a computer's speed and memory, many solutions 

can be generated with the best result chosen for use. Appendix D 

outlines the steps to be taken when altering the solution generated by 

the Clarke and Wright-Lin phases. 

Usage 

The first two phases of the program provide a solution to the 

routing problem. The Clarke and Wright algorithm (first phase) 

generates a solution and the Lin procedure (second phase) attempts to 

improve it. The interaction phase is also used for route improvement 

purposes. An analyst first receives the Clarke and Wright-Lin solution 

and examines it. If any changes are desired, the alterations are made 

and punched on data cards which are fed back into the computer. The 



48 

computer then skips the Clarke and Wright phase and attempts t() improve 

the inputted solution using the within-route two-opt procedure. Results 

are again printed and the analyst decides what changes, if any, need to 

be made. This process continues until the analyst is satisfied with the 

results provided by the computer. 

Real World Implementation 

Recently, the program of this thesis was used to find new routes 

for the school district of Yale, Oklahoma. Figure 17 is a picture of 

the school district with the location of nodes. Presently, six buses, 

each with a fifty-five student capacity, travel 166 miles to pick up 

two hundred nineteen children. Since the location and demand of nodes 

(school bus stops) is known, the only data needed is the distance 

matrix. Using a map and roughly forty man-hours, the matrix was 

generated and coded on data cards. After coding the other necessary 

data, the program was ready for use. The initial result, provided by 

the Clarke and Wright-Lin phases and shown in Figure 18, yielded a 

total distance of 148.5 miles and five buses. Every route is reason-

able except route one which is too long (52.5 miles). Thus, the 

solution is deemed impractical. Were an interaction phase not avail-

able, the procedure would be a failure for this problem or at least. 

manual changes would be necessary. Using the interaction phase, an 

examination of routes one and two (Figure 18) reveals some unnecessary 

overlapping near nodes 72 and 73. Keeping this in mind and the fact 

that route one must somehow be shortened, a new solution can be 

proposed. Route one can be broken into two routes. The first route 

consists of nodes 67, 66, 64, ••• , 76, 74 in addition to 73 and 72. 
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Nodes 73 and 72 formally were part of old route two. The second new 

route is composed of nodes 89, 91, 93, ••• , 79 and 75. These changes 

are fed into the computer and reapplication of the Lin procedure yields 

another solution. This revised solution is shown in Figure 19 with a 

distance of 152.5 miles and six buses. Even though an extra route iE:; 

added to the system, the total distance increases by only four miles 

and the solution is acceptable. This is a good example of an analyst 

recognizing a constraint of the system and altering the solution 

accordingly. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE RESEARCH 

Conclusions 

The first six chapters of this thesis present a three phase 

procedure called the Clarke and Wright-Lin Interaction Program for 

solution of routing problems. Problems presented in papers by Gillett 

and Miller [13] and Christofides and Eilon [6] have been solved with 

the proposed algorithm. Results presented in Chapter V show the 

proposed procedure to be competitive with the Gillett-Miller sweep 

algorithm as far as quality of solution is concerned. Both perform well 

on the same problems ru1d no statistical difference can be determined for 

a significance level of 5%. The program developed in this research, 

however, has been shown, statistically, to be faster than the sweep 

algorithm for the problems solved. This should be taken in proper 

context as the proposed algorithm was intended to be programmed 

efficiently while the sweep algorit~ may or may not have been. 

Chapter VI discusses the third phase of the proposed program, the 

interaction phase. This phase opens up many alternatives for an 

analyst. Probably one of the most important aspects is the addition of 

another resource to help solve routing problems: the analyst's 

experience. This is a virtually untapped resource that can be turned 

into an asset if properly used. The Clarke and Wright-Lin Interaction 
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Program is designed to assist an analyst in solving problems, not 

blindly force him to accept generated answers. The analyst is led in 

the direction of better solutions; but ultimately, the final results 

are only as good as the analyst. In summary, the qualities of the 

program proposed in this thesis can be stated as follows: 

(a) Produces good results, 

(b) Is programmed efficiently so. computational requirements 

are small, and 

(c) Allows for use of the dispatcher's eXperience. 

Future Research and Extensions 

As discussed in Chapter II, Christofides and Eilon [6] have used 

a three-opt procedure to solve routing problems. Using a random set of 

routes as an initial solution, the three-opt method is used to generate 

the final routes. Unfortunately, the final results are a function of 

the initial solution and thus are usually not very good. An area of 

exploration is the use of the three-opt procedure for route improvement 

instead of route generation. For example, the sweep algorithm could be 

followed with a three-opt procedure. Actually, any algorithm that 

generates routes can be followed by the three-opt procedure. Also, a 

three-opt procedure could be used in: conjunction with the Clarke and 

Wright algorithm. 

Probably the most difficult aspect of using any routing algorithm 

is the generation of a distance matrix. Recall that a distance matrix 

contains the mileage or cost of traveling from node i to node j for all 

i and j. In a private conversation with the author, Dr. James K. Byers 

of the University of Missouri-Rolla has recommended the use of a 
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distance plotter to calculate distance matrices. Given a set of nodes 

and a distance scale (one inch equals one mile, for example), a matrix 

can be generated by tracing with a special pen each d... Byers reports 
1J 

generating a one hundred node matrix in roughly three man hours. As 

stated in Chapter VI, the author spent forty man hours generating a 

one hundred and two node distance matrix. Clearly, Byers' procedure 

f.or creating a distance matrix warrants eXploration. 

As outlined in Appendix A, an analyst must number each node in a 

system before generating the distance matrix. It is probably best to 

use a map to do this. This means the map must be referred to each time 

a solution is generated. A more efficient means of analysis is to allow 

the analyst a visual display where results can be seen without referring 

to a map. This can be accomplished through the use of a Cathode Ray 

Tube (CRT) or a plotter routine. A CRT is a tube that displays results 

on an apparatus similar to a television set. The CRT also may contain 

a keyboard which allows an analyst to interact with the computer. 

Clearly, a CRT lends itself to maximum utilization of the analyst's 

time. Since results are displayed visually, reference to a map is not 

required. Also, possible node changes can be seen and implemented 

quickly. Thus, an area of investigation is the computer software and 

hardware requirements. for use of the proposed algorithm on a CRT. 

.. 
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APPENDIX A 

USER INSTRUCTIONS 

The first step in reading in the required data is to number each 

node starting at one and ending with N, where N is the total number of 

nodes excluding the depot. The data must be read in the following 

order: 

(1) Number of stops and vehicle capacity; 

(2) Demand at each node; and 

(J) Distance matrix. 

(1) Number of stops and vehicle capacity. 

The number of stops (NSTOP) and vehicle capacity (NCAP) are the 

first variables read, respectively. Both variables are INTEGER and 

must be read according to the format 2110. 

(2) Demand at each node. 

The demand at each node is read into the INTEGER array NUSTUD. 

Sixteen demands are put on each data card as the format is 16I5. 

Demands must be read in from node one to N. Continuation cards must be 

used for problems containing more than sixteen nodes. 

(J) Distance matrix. 

The symmetric distance matrix is read into a dummy real variable 

called DUMY. Sixteen distances are put on each data card as the format 

is 16F5.2. Continuation cards must be used for problems containing 
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more than sixteen nodes. Only the top half of a distance matrix is 

read in. That is, for stop i the distances i to i + 1, i to i + 2, 

ito i + 3, ••• , i'to N are used. Thus, for programming purposes, the 

two matrices below are equivalent. 

1 

2 

3 

4 

1 

0 

J-5 

5 

1 

2 

3.5 

0 

2 

8 

3 

5 

2 

0 

4 

4 

1 

8 

4 

0 

1 

2 

3 

4 

1 2 

3.5 

3 

5 

2 

4 

1 

8 

4 

The use of half the distance matrix saves keypunch and computer read in 

time. Note the distance from any node to itself is zero. This 

notation is used for an infeasible route. If any links are deemed 

infeasible, the zero distance should be used. 

Example 

The data cards for an eight node routing problem are to be prepared. 

Vehicle capacity is twenty units while the node demands are shown in 

Table IX. The distance matrix is given in Table X. The nodes are 

numbered one through eight with the depot numbered nine. Table XI shows 

the data cards that must be prepared and read into the computer. 

Card one contains the number of stops in column ten (NSTOP-8) and 

the vehicle capacity in columns nineteen and twenty (NCAP=20). Card 

two contains the demand at each node. Columns four and five contain 

the demand at node one (NUSTUD(l)=lO), column ten has the demand at 



1 

2 

3 

4 

5 

6 

7 

8 

9 

Node 

1 

2 

3 

4 

1 

0 

4.50 

2.0 

9.0 

15.75 

1.25 

0 

8.0 

3.0 

2 

4.50 

0 

6.25 

7-75 

11.50 

3.0 

3.0 

1.0 

4.0 

TABLE IX 

NODE DEMANDS 

Demand Node 

10 

3 

8 

7 

3 

2.0 

6.25 

0 

0 

2.50 

9.50 

14.0 

5.0 

1.0 

5 

6 

7 

8 

TABLE X 

NODE DISTANCES 

4 5 

9.0 15.75 

7-75 11.50 

0 2.50 

0 1.0 

1.0 0 

11.25 9.50 

0 8.50 

5.50 3.0 

5.0 4.0 

6 

1.25 

3.0 

9.50 

11.25 

9.50 

0 

2.50 

0 

10.0 

Demand 

7 

0 

3.0 

14.0 

0 

8.0 

4 

15 

8 

5 

2.50 

0 

1.50 

4.50 

8 

8.0 

1.0 

5.0 

5.50 

3.0 

0 

1.50 

0 

12.0 

60 

9 

3.0 

4.0 

1.0 

5.0 

4.0 

10.0 

4.50 

12.0 

0 
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TABLE XI 

DATA CARDS 

Column llllllllll22222222223333333333lt B 
123lt567B90123lt567B90123lt567B90123lt567B90 0 

Card 

1 B 20 

2 10 3 B 7 lt 15 B 5 

3 Lt.5 2. 9. 15.75 1.25 B. 3. 

lt 6.25 7-7511.5 3. 3. I. Lt. 

5 2.5 9.5 !Lt. 5. I. 

6 I. 11.25 5.5 5. 

7 9.5 B. 3. Lt. 

B 2.5 10. 

9 1.5 lt.5 

10 12. 



node two (NUSTUD(2)=J), etc. If the problem had contained more than 

sixteen nodes, the demands for nodes 17, 18, ••• , Nwould be placed, 

in the same format, on continuation cards. 

The distances from Table X are recorded on cards three through 

ten. Note that only the top half of the matrix is used. For example, 

card three contains the distances from node one to nodes two through 

nine where node nine is the depot. Card four contains the distances 

from node two to nodes three through nine. For problems larger than 

sixteen nodes, continuation cards must be used for all nodes past the 

sixteenth node. 
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The storage requirements for usage of the program must be watched 

very carefully. Naturally, the larger the number of nodes, the larger 

the storage requirements. If a problem should become too large for a 

computer in terms of the storage needed, the program could be run in 

two parts (see Chapter VII). Should the problem still be too large, 

a computer with more storage capability should be used. Other 

alternatives are explored in Chapter VII. 

DIMENSION statements are used by the program to set up arrays. 

There are nine subroutines used and thus nine sets of DIMENSION 

statements. Each set contains four cards of which three can be used 

for any problem up to three hundred and fifty nodes and one hundred 

routes. The remaining card in each set must be changed each time the 

number of nodes changes. This card, for fifty nodes, appears below: 

DIMENSION DIST(51,5l),ISAVE(51,5l),IX(2601),DUMY(51) 

Note the arguments of the arrays are fifty-one, not fifty. This is 

because the depot must be included. Should a problem with one hundred 

, 
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nodes be solved after the fifty node problem, the DIMENSION card above 

must be replaced with the following: 

DIMENSION DIST(l01,10l),ISAVE(l01,101),IX(l0201),DUMY(l01) 

For problems of over three hundred and fifty nodes or one hundred 

routes, all DIMENSION statements must be replaced. 



APPENDIX B 

C<»iPUTER PROGRAM 

C********************************************************************** 
C********************************************************************** 
C THIS PROGRAM CREATES ROUTES BY THE CLARK-WRIGHT PROCEDURE AND 
C IMPROVES THE ROUTES "ITH A 2-0PT WITHIN ROUTE SWAPING PROCEDURf. 
C THIS PROGRAM WILL HANDLE, AS DIMENSIONED, 400 STOPS AND 100 ROUTES. 
C THI: ONLY ITEM THAT MUST BE CHANGED IS TI-E DIMENSION STATEMENT 
C CONTAINING 'DIST', 'ISAVE'o 1 1X 1 , AND 'DUMY'• THESE VARIABLES MUST 
C BE SUBSCMIPTEO ACCORDING TO THE NUMBER OF STOPS PLUS HOMEBASE IN THE 
C PROBLEM. 'IX' IS EQUAL TO: (NUMBER OF STOPS+ HOMEBASEI**2• 
C********************************************************************** 
C********************************************************************** 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

MAN: TELLS THE COMPUTER If THE INP~TS ARE FOR THE INTERACTION PHASE 
NSTOP: NUMBER OF STOPS IN SYSTEM 
NCAP: CAPACITY OF VEHICLE 
NSTUD(II: NUMBER OF STUDENTS AT STOP I 
NUSTU(J): NUMBER Of STUDENTS ON THE J'TH ROUTE 
DIST(I,Jl: DISTANCE BETWEEN STOPS I AND J 
SET: APR.AY THAT KEEPS TRACK OF THE STOPS AND WHICH ROUTE THEY ARE ON. 

THE FIRST LOCATION ,QF THE ARRAY TELLS THE STOP NUMBER 
AND THE SECOND ARG TELLS ~HIGH ROW OF SET THE FOLLOWING 
STOP SITS IN. 

!l;(i.JWIII: POINTER; 0= HAVE NOT TRAVELLED FROM I TO SOME J. 
>O= HAVE TRAVELLED FROM I TO SOME J 

!ROW( l) ALSO TELLS WHICH ROW OF SET STOP I SITS IN. 
JCOL(JI: POINTER; =0 MEANS HAVE NOT TRAVELLED FROM SOME I TO J. 

>O MEANS HAVE PREVt'OLSLY TRAVELLED FRCfo! SCME I TO J 
JCOL(Jt ALSO TELLS WHICH ROW OF SET THE STOP AHEAD OF J 
SITS IN ONCE J HAS BEEN T~AVELLED TOe 

NXTRQW: THE NEXT ROW OF SET TO BE FILLED. 
DI SROU (It: DISTANCE OF ROUTE I 
NXTRT: NEXT ROUTE TO PUT STUDENTS ONe I 1'\XTRT-11 ROUTES EXIST ALREADY 
NNSTPSIJI #OF STOPS ON THE J 1 TH ROUTE 

INTEGER*2 ISAVE,tROUTE,IROW,JCGLoSEToi\BEGoNEND,NUSTU,NSTUDoiXo M35 
lDIST,NNSTPS 

DIMENSION DIST I 10lolOllolSAVEI101,101), IXI 1020lt oDUMYI lOll, 
lSE:H 400,21 

DIMENSION NSTUDI400toNUSTU(l00loNENDilOOI,NBEG(l001oNNSTPSC1001, 
1IRUW(400J,JCOLI400loiROUTEI4001tDISROU(lOOI 

COMMON DISROL,DUMY,NXTROW,NXTRT,NCAP 1 IX 0 NNSTPS,IROUTE 0 NUSTU 1 NSTUD,~41 
lNBEG,NENDoJCCLoiROW,SET,DISTolSAVE M42 
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c 
C READ INPUT OAT A 
c. 

READI 5,101NSTOP,NCAP,MAN M47 

c 

10 FO~MATC3110) 
M48 

WRITEC6~91NSTOF,NCAP 

9 FORMATC'l',TlO,•NUMBER OF STOPS IN SYSTEM: 1 1 I3 1 /1 1 Tl0 1 

l'C.<l.PACITY OF VEHICLE: 1 .I3,//I) 
READI5,151CNSTUDIII,I=l,NSTOPI 

1 5 FORM AT ( 16 I. 5 ) 
NENT RY=NS TOP+1 
DO 22 I=l,NSTOP 
!ROW I I 1=0 
JCCLIII=O 
DISTC I, 11=0 
11=1+1 
READ( 5,161 IDUM\'IJI ,J=Il ,NENTRY) 

16 FORMATC16F5.11 
DO 21 J=I1,NENTRY 
DISTII,JI=DUMYIJI*lOO.~.S 

21 DtST CJ, li=DISTl I,J I 
22 CONTINUE 

DISTINENTRV,NENTRVI=O 
IFIMAN.EQ.OIGO TO 25 
CALL INPUTINENTRYI 
00 2 4 I= 1 , N X TR T 
IFINUSTUIII.LE.NCAPIGO TO 24 
WRITE 16,231 I ,NUSTU (II 

23 FORMATC//1//,TlO,'***** ROUTE •,!3,• IS OVERLOADED WITH 1 oi3,' STU 

lDENTS *****'I 
GO TC 2 

24 CONTINUE 
GO TO 72 

C COMPUTE SAVINGS 
c 

c 

25 CONTINUE 
INC=O 

C CALCULATE 'INC', THE NUMBER OF FEASIBLE ARCS 

c 
DO 30 l=l,NSTOP 
DO 30 J=I ,NSTOP 
!SAVEl I,J I =-9999 
IFIDISTII,JI.EQ.O IGO TO 29 
I NC=I NC+2 
ISAVEI loJI=OISH !,NENTRVI+DI STINENTRY,JI-DISTI I ,J) 

29 CONTINUE 
I SAVE I J ,1 I =I SAVE C I , J I 

30 CONTINUE 
DO 31 l=loNENTRV 
ISAVEIJ,NENTRVI=-9999 
ISAVEINENTRV,I I=ISAVEI J,NENTRYI 

31 CONTINUE 
c 
C ORDER SAVINGS IN DESCENDING ORDER 

c 
N=NENTRV*NENTRV 
CAll SORTCN,ISAVE,JXI 

c 



C BUILD ROUTES 
c 

c 

NXTRT=l 
NXTROW:l 
DO 60 K=l, INC 
IXK:JX(K) 
I=lXK-(IXK/NENTRYI*NENTRY 

C CALCULATING I AND .J TRAVEl FROM 110ME TO I OR J IS PROHIBITED 
c 

c 
c 
c 

c 

IFII.EO.OIGO TO 60 
IFIIROW(II.GT.OIGO TO 60 
J=IIXK-11/NENTRY+l 
IF!J.EO.NENTRYIGO TO 60 

CHECK POINTERS TO SEE IF 

IFIJCOL(JI.GT.OIGO TO 60 
IFIJCOL(li.EO.OIGO TO 45 
lFIIROW(JI.EQ.OIGO TO 36 
C A ll C 0 MB NE ( I , J I 

OR J HAS BEEN INCLUDED IN PREVIOUS ROUTE 

C MAY BE ABLE TO JOIN TWO ROUTES 
c 

GO TO 60 
36 CALL ADO( [,J,Q) 

c 
C ADD J ON END OF A ROUTE 
c 

GO TO 60 
45 IF IIROw(JI.EQ.OIGC TO 50 

CALL AODIJ.I.ll 
c 
C AOD I ON FRCNT OF A ROUTE 
c 

GO TO 60 
50 CALL NWRCUT (I, J) 

c 
C START NEW ROUTE 
c 

c 
c 
c 

60 CONTINUE 

FINISH BUILDING ROUTES 

NXTRT=NXTRT-1 

NOW PRINT THEM OUT 

72 CONTINUE 
IFINXTROW-l.NE.NSTCPIWRITEC6,78) 

78 FORMAT(/1//'ALL STOPS ARE NOT INCLUDED IN THE ROUTES'///) 
c 
C PLACE HO~E BASE IN ARRAY CALLED SET AT BEGINNING AND END OF ROUTE. 
C SET UP POINTERS. 
c 

TlJ I S=O. 
DO 75 Kl= l,NXTRT 
M=NENOIKLI 
J=SET(M,l) 
IROW ( J I=M 
SET(M,ZI=NXTROW 
SETINXTROW,li=NENTRY 
NEND(KL I=NXTROW 
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c 
c 

NX TROW=NX TROW+ l 
M=NBEGI KL I 
ScTINXTROW,ll=NENTRY 
5tH NXTROPJ ,2 l=fr 
J= SET( M, l) 
J COL I J I =NXTR OW 
IRDWINENTRYI=NXTRCW 
NBEG IKL I =NXTkOW 
NX T ROW=NXT ROW+ 1 
NNSTPSCKLI=NNSTPSIKLI+2 
CALL PRTOUTIKL;NENTRYI 
TDIS=TCIS+OISROUIKLl 
WRITEC6,741 

74 FORMAT! //II 
75 CONTINUE 

WR IT E I 6 , l I TD I S 
1 FJRMATilOX, 1 TOTAL DISTANC~ OF ROUTES= 1 oFl0.21 

C CALL WITHIN ROUTE SWAPPING SUBROUTINE 
CALL WRTZOPINENTRYl 

2 ClJNTI NUE 
'~ETURN 

END 
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c 
c 
c 

c 

SURROUTINE ACDIL,J,NKEYI 
INTEGER*2 ISAVE,IROUTE,IROW,JCOL,SET,NBEG,NEND,NUSTU,NSTUO,IX, 

lDIST ,NNSTPS 
DIMENSION DIST(lOl,lOli,ISAVEUOlt1011,IXU020lltDUMYI1011, 

1SETI400, 21 
DIMENSION NSTUCI400I,NUSTUilOOI,NENDilOOI,NBEGI1001,NNSTPS(l00) 1 

11 ROW I 400 I, JCOLI 400 I, I ROUTE (400 I ,OISROU I 100 I 
COMMON .,0 IS ROU, DUMY, NXTROW, NXTRT, NCAP, I X,NN STP S, I RuUTE, NUSTU ,NSTUO ,AB 

1 NBEG ,NENO, JCCL, I ROW,SET 1 OIST, IS AVE A 9 

ADD J TO L'S ROUTE NKEY SAYS EITHER BACK OR FRONT OF RUUTE 

K=lROUTEILI 
IFCNUSTUIKI+NSTUDIJI.GT.NCAPIGO TO 20 
IROUTE(JI=K 
NUSTUCKI=NSTLDI JI+NUSTUI Kl 
NNSTPSIKI=NNSTPSfKI+l 
IF(NKEY.EQ.liGG TO 10 

C ADD ON END OF ROUTE 
c 

c 

M=NENDIKI 
SET(M,21=NXTRUW 
NENDIKI =NXTRCW 
IROWI Ll =M 
JCOLIJl=M 
WRITEI6olliJ,K 

11 FORMATI/TlO,•ADO STOP ',13 ,• ON END 
GO T 0 15 

Of ROUTE 1 ,!31 

C ADD ON FRONT OF ROUTE 
c 

10 SETINXTROW,21=NAEGIKI 
NflEGIKI=NXTROW 
IROW(JI=NXTROW 
JCOL Ill =NXTRCW 
WRITE( 6, l2IJ 1 K 

12 fl)RMAT(JT10e 'ADO STOP •, 13,' ON FRONT OF ROUTE 1 .131 
15 SE Tl NX TROW ,1) =J 

NX TROW=NXTROW+ 1 
20 CONTINUE 

RETURN 
END 
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SUR~OUTINE N~ROUT(l,JI 

c 
C THIS SUBROUTINE CREATES A NEW ROUTE 
c 
C THE NEW ROUTE, NUMBERED 1 NXTRT 1 CONTAINS, INITIALLY, TWO STOPS, 1-J. 
c 

INTEGER*2 ISAVE,IRCUTE,IROW,JCCL,SET,~BEGoNENDoNUSTU,NSTUD,IX, 

lDIST,NNSTPS . . . 
UI MENS ION CIST 1101,1011. IS AVEC 101,101 It IXC 1020U ,OUMYC lOU, 

1SETC400,21 
OIMENSION NSTUOI400I,NUSTUI1001oNENOClOOI,NBEGC1001~NNSTPSClOOio 

11ROWC4001oJCOLC400ioiROUTEI400loDISROUC1001 
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COMMON DISROU,OUMY,NXTROW,NXTRT,~CAPoiX,NNSTPS,IROUTE,NUSTU,NSTUD,Nl3 
lNBEG,NENO,JCUL,IROW,SET,OIST,ISAVE Nl4 

c 
C UPDATING POIN1ERS 
c 

SETCNXTROwoli=I 
SETINXTROW,li=NXTROW+l 
~BEGCNXTRTI=NXTROW 
IROWCll=l\iXTRCW 
JCDLIJI·=NXTROW 
NXTRUW=NXTkOW+l 
SEHNXTROw,11=J 
NENDCNXTRTI=NXTROW 
NX TROW=NXTROW+ 1 
IROUTEili=NXTRT 
IROUTECJI=NXTRT 
NUSTUCNXTRTI=NSTUDCli+NSTUQCJI 
NNSTPSC NXTRT) =2 
WRITEibolOII,J,NXTRT 

10 FORMATC/,Tl0, 1 STOPS 1 tl4 1 1 AND 1 .14o' FORM NEW RJUTE 'tl31 
NXTRT=NXTRT+1 
RETURN 
END 



c 

SUBROUTINE COMBNECI,JI 
INTEGER*2 ISAVE,IRCUTEoiROW,JCOL,SET,~BEG,NENO,NUSTU,NSTUD,IX, 

lDIST,NNSTPS 
DI Mt: NS ION Dl ST UOlt 1011, ISAV E l 101.10 llolX 1102011, OUMY( 1011 , 

lS!:::TI400,21 
lliMENSION NSTUOC400I,NUSTUClOOI,NENOilOOI ,NBEGllOOI,NNSTPSilOOI, 

llROWC400I,JCOLC400i,IROUTE(400),0ISROUC1001 
COMMON DISROU,DUMY,NXTROw,NXTRT,NCAP,lX,NNSTPS,IROUTE,NUSTU,NSTUD,C8 

lNBEG,NEND,JCOL,IROW,SET,DlST,ISAVE C9 

C THIS SUBROUTINE LINKS TWO ROUTES TOGETHER AND UPDATES THE OTHER 
C ROUTE POINTERS 
c 

IFCIROUTEC.II.EQ.IRGUTECJIIGO TO 9 
c 
C MUST BE SURE NOT TO FORM A LOOP 
c 

c 

KK=IROUTEIII 
LL=IROUTECJJ 

C CHECK TO SE!::: IF JOINING TWO ROUTES WILL EXCEED CAPACITY 
c 

IFINUSTUCKKJ+NUSTUILLI.GT.NCAPIGO TO 9 
c 
C NXTRT IS TEMPORARILY USED TO DENOTE THE NUMBER OF EXISTING ROUTES 
C AfTER JOINING TWO RCUTES 
c 

NXTRT=NXTRT-2 
c 
C UPDATING POINTERS 
c 

c 

M=NEND(KK) 
l=NBEG( LLI 
SFTIM,21=L 
I ROW I J I= M 
JC Oll Jl =M 
NENDIKKI=NEND(LLI 
NUSTUIKKI=NUSTUCKKI+NUSTUILLI 
NNSTPSIKKI=N~STPS(KKI+NNSTPSILLI 

NJ=NNSTPSILLI 
CALL FIXUP(KK,LL,NJ,LI 

C KK: .ROUTE NUMRER STOP I IS IN 
C LL: ROUTE NUMBER STOP J IS IN 
C NJ: NUMBER OF STOPS IN J 1 S ROUTE 
C L: ROW OF ARRAY 'SET' THAT THE FIRST STOP IN J'S ROUTE SITS IN 
c 

IF(LL.GT.~XTRTIGO TO 8 
c 
C CHECKING TO SEE IF WE HAVE PUT THE lAST ROUTE ON THE END OF ANCTHER 
C ROUTE, IF SO NO NEED TO CHANGE POINTERS. 
c 

DO 5 JJ=ll, NXT RT 
JK=JJ+ 1 
N=NNSTPSI JKI 
L=NBEG(JKI 
CALL FIXUP(JJ 1 JK,N,LI 
NEND(JJl=NENDCJKl 
NAEG(JJ)=NAEGCJKI 
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NUSTUIJJI =NUSTUIJKI 
NNSTPS(JJI=NNSTPSIJKI 

5 CONTINUE 
8 C)NTINUE 
W~ITE(6,101KKoltoKK 

10 FORMATl/T10o 1 ROUTES •,I3o 1 AND 1 ol3o 1 COMBINE TO FORM NEW ROUTE•, 

ll3ti/Tl0o 1 UPOATE ROUTE NUM!!ERS 1 I 
NXTRT=NXTRT+ 1 

9 CONTINUE 
kETURN 
END 
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SUBROUTINE FIXUP(KK,LL,N,Ll 
c 
C KK: FOUTE N STOP I Sl IN. 
C LL: ROUTE' N STOP J Sl IN. 
C N: NUMBER CF STOPS IN J'S ROUTE. 
C L:ROW OF ARRAY 1 SET 1 THAT THE FIRST STOP IN J'S ROUTE SITS IN. 
c 

I NTEGER*2 I SAVE, I ROUTE, I ROW,JCOltS ET, 1\BEG, NENO, NUSTU,NSTUO, IX, 
lDIST,NNSTPS 

DIMENSION DIST (101,101 It ISAVEI 101,101 It IXI 1020lloDUMYI lOll, 
1SETI400,21 

DIMENSION NSTU0(400),NUSTUC1COI,NENDilOOl,NBEGilOOl,NNSTPSilOOJ, 
1IRCW(400),JCOLI400l,IROUTE(400l,OISROU(l00) 

COMMON IJI SROU, OUMY, NXTROW ,NX TRT, NCAP, IX, NNST PS, I ROUTE, NUSTU, NSTUO, 
lN~EG,NENO,JCOL,IROW,SET,OIST,ISAVE 

c 
C THIS SUBROUTINE REORDERS THE PCINTERS AFTER TWO ROUTES ARE 
C COMBINED INTO ONE 
c 

DO 5 NT=loN 
MM=SET(L, 11 
IRCUTEIMMI=KK 
IFINToF.CoNIGC TO 5 
L=SETIL,21 

5 CONTINUE 
RETURN 
END 
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73 

SUBROUTINE SORTINo X, NOXI 
c 
C N: TOTAL NUMBEF. OF LOCATIONS TO BE IJROERED.(NENTRY**21 
C X: ARRAY TO BE ORDERED FROM HIGHEST TO LOWEST. ARRAY IS THE 
C SAVINGS ARRAY 
C NDX:ARRAY CONTAINING THE SAVINGS IN ORDER. NOX IS SINGLE DIMENSIONED 
C WHILE !SAVE IS TWO DIMENSION. 
c 

c 
c 
c 
c 

INTEGER*2 XtNDX 
DIMENSION X(ll,NDXI1l 

FAST SORT ROUTINE 
RETURNS SORTE:O ARRAY OF PO INTERS 'NDX' 

DO 10 I = 1, N 
10 NOXtii = I 

,_, = N 
20 M = M I 2 

IF(M .EO. 01 GG TO 80 
30 K N-M 

J = 1 
40 I = J 
50 L = I+M 

NI = NDX( ll 
Nl = NDX (L I 
J F ( X ( N I I -X ( 1\L I • G E. u l GO T 0 7 0 

60 NDX( I I = NL 
NDX(LI = NI 
I = I -M 
IFI 1-1 .GEo Cl GO TO 50 

70 J = J+l 
IF (J-Kl 40,40,20 

80 CONTINUE 
RETURN 
END 

ODES NOT EFFECT rxo 
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c 
c 
c 

SUBROUTINE WRT20PI~ENTRYI 
INTEGER*2 ISAVE,IROUTE,IROW,JCOL,SET,~BEG,NEND,NUSTU,NSTUD,IX, 

1 DIST ,NNSTPS 
DIMENSION DlSTilOl,l011tlSAVEI10ltlOlltiXIl020lltDUMYilOll, 

1SETI400,21 . 
DIMENSION NSTUOI400),NUSTUI1001tNENOilOOI,NBEGilDOitNNSTPS(l001t 

11POW( 4001 ,JCOLI400 I, I ROUTE 14001 ,01 SROUilOOI 
COMMON DI SROU, DUMY, NXTROW, NXTRT ,NCAP, I X,NN STPS, I ROUTE, NUSTU tNSTUD, 

1NBEG,NEND 1 JCOL 1 IROW,SET,OIST,ISAVE 

C THIS SECTION DEALS WITH IMPROVING AN EXISTING ROUTE BY USING THE 
C TWO OPT PROCEDURE, WITHIN ROUTES. 
c 
c 
c 
C THIS SUBROUTINE CHECKS FOR SWAPING OF STOPS(I,Jl AND IK,LI SO WE GET 
C NEW STOP ORDER (l,Kl A~D IJ 1 Lle 
c 

c 

WRIT El6 ,6 I 
6 FURMATI 1 1 1 1 

C NXTRT IS NOW TrE NUMBER OF ROUTES IN THE SYSTEM 
C NNSTPS: NUMBER OF STGPS IN ROUTE WITH HOME COUNTED TWICE 
C NSTPS IS THE NUMBER OF LINKS I~ THE KL 1 TH ROUTE. 
C NFLNKS: THE NUMBER OF FEASIBLE LINKS IN THE KL 1 TH ROUTE 
C ~UMBER Of FEASIBLE LINKS TO COMPARE II,JI TO EQUALS NUMBER OF STOPS 
C WITH HOME COUNTED TWICE,MINUS THREE. 
c 
c 
C TDIS: KEEPS TRACK OF THE TOTAL DISTANCE TRAVELLED BY ALL ROUTES. 
c 

c 

TO IS =0 • 
DO 1000 KL=l ,NXTPT 
CDST=O. 
N=NNSTPS IKLI 
N S TP S=N-1 
NFLI\IKS=N-3 
IFINFLNKS.LE.OIGO TO 1000 

104 CUNT INUE 
NP=NBEG(Kll 
DO 107 J=lrNFL~KS 
NI=SETINP,lJ 
NP=SETINP,21 
NJ=SEHNP,ll 
L l=J +2 
N P P= SET IN P, 2 I 
IJO 106 I=Ll,NSTPS 
NK=SET (NPP, 11 
NPP=SETINPP,21 
NL=SET(NPP,ll 
IFINI.EQ.NLIGO TO 107 
IFIDISTINI,NKI.EQ,O.CR.OIST(NJ 1 NLI.EQ,OJGO TO 106 

C CHECKING THE FEASIBILITY OF SWAPING THE LINKS OF II,JI AND (K,Ll TC 
C I I , K I AND I J, L I 
c 

NCOST=DIST(Nl,NJI+DISTINK,NLI-DISTINI,NKI-OlSTINJ,Nll 



c 

IF(NCOST.LE.CIGO TO 106 
COST=COST+NCOS T 
K=I+l 
CALL REOSTP(NI,NJ,NK,NL,KL,NENTRYl 
GO TO 104 

106 CONTINUE 
107 CONTINUE 

COST= COST I 100. 
CALL PRTOUTIKL 1 NENTRYI 
TO IS= TO I S+D I SROU( Kll 

C COST CONTAINS THE SAVINGS REALIZED BY THE 2-0PT WITHIN ROUTE 
C SWAPING FOR THE KL'TH ROUTE. 
c 

WRITEI6,7lCCST 
7 FORMI\Tl 1 + 1 ,Tl22t'SAV= •,Fboltl//1 

1000 CDNT I NU E 
WPITE(6,1 JTDIS 

1 FORMAT(lQX,'TOTAL DISTANCE OF RCUTES 
RETURN 
END 

1 ,Fl0o21 
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c 
c 

S~BkOUTINE REOSTPII,J,K 1 L,KL,NENTRY) 

C THIS SUBROUTINE REORDERS THE STOPS TRAVELLED ON THE KL 1 TH ROUTE. 
C ONCE loJrKr AND L ARE KNCWN THE REORDEP.ING TAKES PLACE. 
C LET 1=1, J=Bo K=4, AND L= 3o THE ROUTE H-7-9-1-8-2-10-5-4-3-H 
C BECOMES H-7-9-1-4-5-10-2-8-3-H WHERE THE SEQUENCE 
C 8-2-10-5-4 IS REVERSED. 
c 
c 

c 
c 
c 

INTEGER*2 ISAVEriROUTEtiROW,JCCL,SET,~BEG,NEND,NUSTU,NSTUD,IXt 

lDIST,NNSTPS 
DIMENSION CIST (101 ,101 I. IS AVE( 101,101), IX( 102011 rDUMYC 1011, 

1SET!400,2l 
DIMENSIUN NSTUDI4001rNUSTU(lOOI,NEN0(100),NBEGI100),NNSTPS(l00) 1 

1 I ROW I 4 00 I , JCOL 1400 I, I ROUTE ( 400), 0 IS ROU ( 100 I 
COMMON DISROU,OUMY,NXTROWrNXTRT,~CAP,IXrNNSTPS,IROUTE,NUSTU,NSTUO, 

lNBEG,NEND,JCOL,IROW,SET,DISTriSAVE 

REARRANGE POINTERS 

lfii.NEoNENTRYJGO TO 2 
M=NBEGIKL) 
G(l T 0 3 

2 M=IROWIII 
3 N= I RCW (K I 
5 SET!M,2l=N 

I I =SET ( N, U 
JJ=JCCLIIII 
JCOUIII=I-l 
If (I I.EO.J IGO TO 6 
M=N 
N=JJ 
GO TO 5 

6 IFIL.EQ.NENTRYIGO TO 8 
SETINo21=IROWCLI 
GO TO 9 

8 SETIN,ZI=NENCIKLI 
9 JCOLILI =I ROW IJI 

RETURN 
END 
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SUBROUTINE PRTOUTIKL,NENTRYI 
I NTEGER*2 I SAVE, !ROUTE, IROW, JCQL, SET, NBEG,NENO,NUSTU,NSTUO, IX, 

lDI ST ,NNSTP S 
OIMENS ION DISH 101.1011, !SAVEl lCl ,101) .IXI1020ll ,QU(oiYilOll, 

lSET(400,21 
D !MENS! ON N STUDI4001 ,NUSTUI 100 I ,1\END I 1001, NBEGUOO I,NNSTPS (1001, 

liROWI4001,JCOLI4001tlROUTE(400l,DISRUUilOOl 
COMMON DISROU, DUMY ,NXT ROW, NXTRT, NCAP, IX,NNSTPS, I ROUTE, NUSTU,NSTUD, 
lNBEG,NEND,JCOL,IRO~,SET,OIST,ISAVE 

c 
C PRINTS OUT THE STOPS,STUDENTS, AND DISTANCE TRAVELLED ON THE KL 1 TH 
C ROUTE. 
c 

c 

WRIT.EI6t701 
70 FORMA TIT s,•ROUTE' ,Tl6, 1 STUDENTS' eT31 ,•DISTANCE' ,//1 

M=NNSTPS IKL I 
Dl SROU I KLI=O. 
N=M-1 
NP=NBEGIKLI 
J=S ET I NP.ll 

C PLACE STOPS Of EACH ROUTE IN ARRAY SO THEY CAN BE WRITTEN OUT 
c 

c 

00 73 KH=l,l\ 
IXIKHI=J 
NP=SET (NP,21 

7l I =J 
J=SETINP, ll 
D I SROU IKLI = 0 IS ROU I Kll +0 I ST I I, J I 

73 CONTINUE 
DISROUIKLI= OISRGU!Kll/100. 
IXIN+li=NENTRY 

C ReDUCE DISTANCE BY 100 SO CAN USE INTEGER*2 
c 

WRITE I 6, 61 KL ,NU STU( Kll ,o IS ROU I Kll , I IX I II, 1=1, M I 
6 FORMATI2I10eT30,F6.1,/,1X,32I41 

R!:TURN 
END 
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SUBROUTINE INP~T!NENTRYI 

INT~GER*2 ISAVE,IROUTE,IROW,JCOL,SET,NBEG,NEND,NUSTU,NSTUD,IX, 
lDI ST ,NNSTPS 

D ! ME N S I ON D i S TC 10 1 , 1 011 , I SAVE ( 1 01 .1 01 I , I X ! 10 2 0 11 , DU MY ( 1 0 1 I , 
1SET(400t2l 

DIMENSION NS TUD (400 l ,NUS TU UOO I, N END (100 l, NBEG( 100 I, NNSTPS ( 1001, 
1 IRUW ( 4001, JC Ol( 400 I, I ROUTE f 4001 ,OJ SROUI 100 I 

COMMON DISROU,OUMY,NXTROW,NXTRT,NCAP,IX,NNSTPS,IROUTE,NUSTU,NSTUO, 
lNBEG,NEND,JCCL,IROW,SET,DIST,ISAVE 

WRITEl6rlOJ 
10 FORMATI///,TJO,'***** INTERACTION PHASE INPUT ***** 1 ,///l 

READ(5tllNXTRT 
1 FORM A Tt I 10 I 

NXTROW=l 
DO 9 I=l,NXTRT 
NUSTU (I l= 0 
Rf AD !5 ,21 N, (IX (J l rJ=1 ,N I 

2 FORMAT!lX,I3,1SI41 
NNST PS (I I=N 
OD 9 J=1 ,I'll 
i•1= IX! J I 
S tT I NXTROWol l= M 
IROW!Ml=NXTRCW 
IF!J.NE.liGO TO 3 
NBEG! I l=NXTROW 
GO TO 4 

3 JCOL !M l =NXTROW-1 
4 NUSTUIIl=NUSTUili+NSTUD(MJ 

M=f\IXTROW 
NXTROW=NXTROk+ 1 
IF!J.EQ.NJGO TO 8 
SET( M ,21 =NXT ROW 
GO TO 9 

8 NEND( I l=\.1 
9 CONTINUE 

RETURN 
END 
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APPENDIX C 

COORDINATES AND DEMANDS FOR SIX RANDOMLY 

GENERATED PROBLEMS 

TABLE XII 

PROBLEM 1 

Site X y Demand 

1 68. 52. 10 
2 50. 71. 7 
3 72. w. 5 
~ 38. 15. 9 
5 98. 87. 8 
6 63. 55. 3 
7 68. 11. ~ 

8 Bo. 62. 1 
9 99. 99. 7 

10 58. 56. 7 

Depot coordinates (50,50). 
Capacity of vehicle: 50 units. 
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TABLE XIII 

PROBLEM 2 

Site X y Demand 

1 53. 6. 9 
2 77. 5. 11 
3 83. 52. 4 
4 64. 30. 3 
5 65. 98. 6 
6 86. 26. 10 
7 38. 12~ 11 
8 37. 28. 4 
9 44. 99. 4 

10 27. 78. 5 
11 95. Jl. 11 
12 51. 17. 10 
13 45. 52. 7 
14 74. 91. 2 
15 83. 30. 5 
16 45. 31. 7 
17 14. 77. 2 
18 59. 66. 6 
19 J. 35. 4 
20 20. 83. 8 
21 70. 24. 2 
22 66. 82. 3 
23 13. 99. 7 
24 42. 70. 5 
25 35. 44. 2 
26 88. 47. 8 
27 11. 91. 11 
28 43. 70. 6 
29 1. 78. 6 
30 11. 39. 7 

Depot coordinates (50,50). 
Capacity of vehicle: 50 units. 
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TABLE XIV 

PROBLEM 3 

Site X y Demand Site X y Demand 

1 29. 8~. 7 26 80. 6. 6 
2 23. 89. 11 27 ~7- 2~. 9 
3 8. 6~. ~ 28 5~. 6. 11 
~ 95. 21. 6 29 78. 66. 11 

5 38. 29. 8 30 8. 18. 3 
6 77. ~8. 9 31 3. 6~. 11 

7 36. 31. 10 32 7~- 79. 2 
8 3. 66. 9 33. 9. n. 11 

9 ~6. 90. 7 3~ 37. 65. 11 
10 35. 20. ~ 35 39. 92. 8 
11 29. 35. 9 36 o. 29. 9 
12 9. 61. 11 37 65. ~- 7 
13 6~. 13. 10 38 29. 78. 11 
1~ 63. 39. 8 39 97. 77. 5 
15 77. 25. 3 ~0 ~- 56. 11 
16 79- 5. 7 ~1 29. 27. 3 
17 6~. 96. 8 ~2 30. 3. 7 
18 95. 90. ~ ~3 83. ~8. 5 
19 1. 93. 8 ~~ ~~- 25. 5 
20 7~- 82. 11 ~5 39. 17. 3 
21 1. ~- ~ ~6 ~6. 97. 9 
22 15. 13. 2 ~7 38. 39. 5 
23 ~6. 91. 3 ~8 18. 3~. 3 
2~ n. ~8. 8 ~9 85. 62. 9 
25 5~. 3~. 2 50 ~1. 70. 8 

Depot coordinates (50,50). 
Capacity of vehicle: 50 units. 
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TABLE XV 

PROBLF.M 4 

Site X y Demand Site X y Demand 

1 64. 96. 3 36 67. 99. 2 
2 8o. 39. 2 37 48. 83. 5 
3 69. 23. 7 38 75. 81. 4 
4 72. 42. 10 39 8. 19. 8 
5 48. 67. 5 4o 20. 18. 2 
6 58. 43. 9 41 54. 38. 3 
7 81. 34. 2 42 63. 36. 5 
8 79. 17. 5 43 44. 33. 2 
9 30~ 23. 6 44 52. 18. 6 

10 42. 67. 3 45 12. 13. 5 
11 7- 76. 2 46 25. 5. 2 
12 29. 51. 3 47 58. 85. 5 
13 78. 92. 11 48 5. 67. 2 
14 64. 8. 2 49 90. 9. 11 
15 95. 57. 3 50 41. 76. 8 
16 57. 91. 5 51 25. 76. 2 
17 4o. 35. 7 52 37. 64. 3 
18 68. 4o. 4' 53 56. 63. 2 
19 92. 34. 3 54 10. 55. 10 
20 62. 1. 7 55 98. 7- 9 
21 28. 43. 2 56 16. 74. 8 
22 76. 73. 8 57 89. 60. 7 
23 67. 88. 6 58 48. 82. 9 
24 93. 54. 7 59 81. 76. 6 
25 6. 8. 7 60 29. 60. 9 
26 87. 18. 6 61 17. 22. 3 
27 30. 9. 6 62 5. 45. 10 
28 77. 13. 5 63 79. 70. 3 
29 78. 94. 8 64 9.100. 10 
30 55. 3. 7 65 17. 82. 5 
31 82. 88. 10 66 74. 67. 7 
32 73. 28. 6 67 10. 68. 9 
33 20. 55. 2 68 48. 19. 6 
34 27. 43. 11 69 83. 86. 11 
35 95. 86. 9 70 84. 94. 2 

Depot coordinates (50,50). 
Capacity of vehicle: ' 50 units. 
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TABlE XVI 

PROBLEM 5 

Site X y Demand Site X y Demand 

1 4:. 84:. 4: 4:6 75- 95. 11 

2 67. 4:3. 11 4:7 92. 76. 7 
3 16. 57. 10 4:8 4:. 59. 7 
4: 35. 96. 9 4:9 100. 10. 6 
5 4:2. 90. 5 50 59. 20. 6 
6 4:0. 86. 8 51 61. 32. 7 
7 20. 64:. 4: 52 3. 65. 4: 
8 98. 52. 9 53 53. 38. 2 
9 50. 92. 10 54: 98. 72. 9 

10 79. 77. 7 55 66 .. 72. 11 

11 4:3. 4:8. 9 56 4:6. 9. 9 
12 4:9. 53. 3 57 38. 39. 6 
13 86. 96. 2 58 77- 95. 8 
14: 99. 95. 2 59 o. 8. 2 
15 1. 92. 6 60 12. 26. 9 
16 60. 15. 9 61 J. 52. 5 
17 4:o. 25. 6 62 70. 83. 2 
18 84:. 4:7. 9 63 13. 69. 3 
19 68. 99. 2 64: 92. 77. 6 
20 71. 81. 10 65 38. 29. 7 
21 56. 98. 6 66 72. 52. 4: 
22 J. 4:6. 4: 67 4:. 61. 8 
23 24:. 14:. 10 68 28. 24:. 10 
24: 95. 69. 9 69 o. 4:1. 8 
25 30. 21. 3 70 14:. .57. 9 
26 57. 93. 2 71 65. 64:. 7 
27 87. 4:1. 7 72 50. 51. 9 
28 29. 4:2. 8 73 29. 76. 9 
29 97. 7· 10 74: 74:. 30. 4: 
30 93. 56. 2 75 6. 72. 9 
31 29. 93. 6 76 36. 17. 9 
32 65. 67. 2 77 So. 18. 3 
33 55. 59. 9 78 28. 61. 3 
34: 37. 64:. 3 79 70. 34:. 5 
35 16. 55. 4: 80 91. 29. 9 
36 95. 64: •. 10 81 7- 4:9. 3 
37 4:9. 37- 11 82 22. 4:7. 1 
38 2. 23. 11 83 34:. 5. 11 

39 30. 75. 7 84: 95. 67. 10 
4:0 64:. 17. 3 85 32. 11. 4: 
4:1 17. 1. 4: 86 21. 57. 7 
4:2 4:4:. 20. 5 87 97- 74:. 7 
4:3 9. 62. 10 88 61. 52. 4: 
4:4: 57- 93. 9 89 63. 31. 2 
4:5 2. 82. 90 7- 65. 5 

Depot coordinates 50,50 • 
Capacity of vehicle: 50 units. 
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TABLE XVII 

PROBLEM 6 

Site X y Demand Site X y Demand 

1 68. 52. 10 41 95. 31. 11 
2 50. 71. 7 42 51. 17. 10 
J 72. 40. 5 43 45. 52. 7 
4 38. 15. 9 44 74. 91. 2 
5 98. 87. 8 45 8J. JO. 5 
6 6J. 55. J 46 45. 31. 7 
7 68. 11. 4 47 14. 77. 2 
8 8o. 62. 1 48 59. 66. 6 
9 99. 99. 7 49 J. 35. 4 

10 58. 56. 7 5o 20. 8J. 8 
11 55. 18. 9 51 70. 24. 2 
12 18. 47. 10 52 66. 82. 3 
13 71. 78. 7 53 13. 99. 7 
14 26. 7- 2 54 42. 70. 5 
15 6J. 17. 6 55 35. 44. 2 
16 76. 41. 4 56 88. 47. 8 
17 1. 48. _3 57 11. 91. 11 
18 4o. 27. 1 58 43. 70. 6 
19 88. 88. 11 59 1. 78. 6 
20 _34. 3. 10 60 11. 39. 7 
21 47. 99. 7 61 77- 18. 9 
22 83. 1. 2 62 3. 61. 7 
23 64. 60. 8 63 91. 91. 6 
24 16. 1. 2 64 77. 19. 2 
25 74. 8. 7 65 77. J. 6 
26 84. 93. 9 66 21. 68. 9 
27 97. 65. 9 67 51. 31. 4 
28 12. 15. 2 68 28. 90. 4 
29 17. 10. 7 69 74. 7. 8 
30 30. 90. 4 70 7- 33. 2 
31 53. 6. 9 71 51. 100. 6 
32 77. 5. 11 72 69. 58. 3 
33 8_3.. . 52. 4 73 21. 10. 10 
34 64. _30. 3 74 74. 84. 9 
35 65. 98. 6 75 63. J. 5 
36 86. 26. 10 76 56. 18. 4 
37 38. 12. 11 77 96. 50. 11 
38 37. 28. 4 78 .64. 65. 7 
39 44. 99. 4 79 J4. 56. 4 
4o 27. 78. 5 80 79. 95. 6 
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TABLE XVII (Continued) 

Site X y Demand Site X y Demand 

81 33. 10. 3 ll6 79. 5. 7 
82 18. 54. 9 ll7 64. 96. 8 
83 38. 4o. 2 u8 95. 90. 4 
84 97. 89. 10 ll9 1. 93. 8 
85 82. 22. 6 120 74. 82. ll 
86 78. 6o. 9 121 1. 4. 4 
87 32. 81. 5 122 15. 13. 2 
88 23. 15. ll 123 46. 91. 3 
89 14. o. 9 124 n. 48. 8 
90 26. 16. 8 125 54. 34. 2 
91 6o. 51. 9 126 80. 6. 6 
92 94. 24. 4 127 47. 24. 9 
93 92. 77- 3 128. 54. 6. ll 
94 22. 72. 11 129 78. 66. 11 
95 12. 35. 10 130 8. 18. 3 
96 84. 25. 3 131 J. 64. ll 
97 33. 98. 5 132 74. 79. 2 
98 38. 84. 10 133 9. 77. ll 
99 53. 62. 2 134 37. 65. 11 

100 35. 92. 3 135 39. 92. 8 
101 29. 84. 7 136 o. 29. 9 
102 23. 89. 11 137 65. 4. 7 
103 8. 64. 4 138 29. 78. 11 
104 95. 21. 6 139 97. 77- 5 
105 38. 29. 8 140 4. 56. ll 
106 77. 48. 9 141 29. 27. 3 
107 36. 31. 10 142 30. J. 7 
108 J. 66. 9 143 83. 48. 5 
109 46. 90. 7 144 44. 25. 5 
110 35. 20. 4 145 39. 17. 3 
111 29. 35. 9 146 46. 97. 9 
112 9. 61. 11 147 38. 39. 5 
llJ 64. 13. 10 148 18. 34. 3 
114 63. 39. 8 149 85. 62. 9 
ll5 77- 25. 3 150 41. 70. 8 

Depot cordinates (50,50). 
Capacity of vehicle: 50 units. 



. APPENDIX D 

USER INSTRUCTIONS FOR INTERACTION PHASE 

Once the results of the Clarke and Wright-Lin program are received 

by an analyst, changes may be desired. The changes may include a 

different sequencing of nodes, the creation of a new route, or some 

other system perturbation. Once a change is decided upon, the new 

information must be fed into the computer. The data outlined in 

Appendix A must be read in with one alteration. The first data card, 

which contains the number of stops (NSTOP) and vehicle capacity (NCAP), 

also contains a flag v~riable, MAN, which tells the computer whether or 

not the interaction phase is being used. If MAN = o, as in Appendix A, 

the interaction phase is not invoked. On the other hand, MAN > 0 means 

an analyst is reading in a new solution. 

After the data of Appendix A is fed into the computer, an analyst 

must read in information about the new solution. The first data card 

contains the number of routes (NXTRT) in the proposed solution. NXTRT 

is read according to an IlO format using the first ten columns. The 

remaining data cards contain the node sequence of the proposed routes. 

Each card associated with a new route contains the number of nodes (N) 

on the proposed route. N is read according to an IJ format in the 

second, third and fourth columns. The remaining columns contain the 

node sequence of the new route. Each node is read into the array IX_ 

under the format 191~. Should there be more than nineteen nodes on a 
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route, the node sequence is continued on the following data card(s} 

using the 20I4 format. 

Example 

87 

For the eight node problem of Appendix A, the Clarke and Wright-Lin 

program generates the following solution: 

9 - 2 - 8 - 7 - 9 

9 -· 4 - 5 - 3 - 9 

9 - 1 - 9 

9 - 6 - 9 

An analyst is interested in seeing the effect of adding node 6 to the 

first route following node 8. Table XVIII shows the required data 

cards for use of the interaction phase. Notice that card one is the 

same as in Appendix A except for the 1 in column thirty. This tells 

the computer the analyst is proposing his own solution. Cards two 

through ten are identical to the ones of Appendix A. Card eleven is 

the first card of the proposed solution. It contains the number of 

proposed routes (NXTRT=J). Card twelve consists of the number of nodes 

on the first route (N=4) and the node sequence (2-8-6-7). Likewise, 

cards thirteen and fourteen contain the data for routes two and three. 

It should be pointed out that since routes two and three are not 

changed they need not be included in the interaction phase. If some 

nodes are excluded from the interaction phase, the number of nodes in 

the system, NSTOP, must be reduced accordingly. 
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TABLE XVIII 

INTERACTION DATA CARDS 

Column 1111111111222222222233333333334 8 
1234567890123456789012345678901234567890 0 

Card 

1 8 20 1 

2 ·10 3 8 7 4 15 8 5 

3 4.5 2. 9. 15.75 1.25 . a~ 3. 

4 6.25 7-7511.5 3. 3. 1. 4. 

5 2.5 9.5 14. 5. 1. 

6 1. 11.25 . 5.5 5. 

7 9.5 8. 3. 4. 

8 2.5 10. 

9 1.5 4.5 

10 12. 

11 3 

12 4 2 8 6 7 

13 3 4 5 3 

14 1 ~I 
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