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PREFACE 

In the search for more fire-resistant clothing materials, a 

study of fabric ignition is essential. Prior work has commonly 

used the ignition of fabrics as a measure of fire safety. In this 

work, the smoke initiation point as a correlating basis for fabric 

destruction has been studied. 

In order to develop correlations between smoke initiation time 

and the irradiance, data were collected using different fabrics. 

The experimental equipment, the experimental procedure, and the 

results obtained from the correlation of the data are discussed in 

this thesis. 

I wish to record my grateful thanks to Dr. Kenneth J. Bell and 

Dr. Don Adams for the guidance and encouragement given in attempting 

this project. I also express gratitude to my cousin Sreenivasan 

and parents for watching my dreams turn into reality. 

I am indebted to the Edgewood Arsenal, u. S. Army for providing 

the financial assistance received during the course of this research 

project. 
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CHAPTER I 

INTRODUCTION 

Fire is a word embracing in its widest sense any manifestation 

of glowing heat. Early human civilization saw fire as a natural 

manifestation and apotheosized it. At a later stage of human know­

ledge it was believed to be an element of nature. However, its 

original use was as a defense against wild beasts, later extended 

constructively to warming the person, cooking, hardening implements 

and utensils, and producing artificial light. Human development 

has also unfortunately seen fire being used destructively and many 

a times Mother Nature has been unkind·too, resulting in a tragedy. 

Too often, people are the "things" that burn. So, it is not surprising 

to find fire as the subject of concentrated research over the cen­

turies. 

Heat transfer in fires is predominantly 1n the form of thermal 

radiation, which caused investigators to use thermal radiation 

sources for research. Usually when a textile material is subjected 

to thermal radiation, it first darkens, smokes, glows and then 

ignites. All the studies in the past record data based on ignition 

point as the defeat of the target. However, the work done by Bell 

and Adams (3) on unwashed fabrics at low thermal radiation intensities 

shows an interesting behavior wherein the fabric first darkens and 

then smokes, leaving ashes. · 
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This unusual behavior of fabrics, poses a question, 'What is 

ignition?' Unfortunately, the terminology used in the literature 

on 'ignition' is not standardized. Ignition, as defined by the 

Encyclopedia of Modern Science (5), is the process of raising the 

temperature of combustible or inflammable substances to the point 

at which combustion proceeds. The present investigation is a 

study of the smoke initiation point as a criterion of fabric des­

truction. The question of the reproducibility of the smoke ini­

tiation point is also addressed. 

Two other reasons for undertaking this study are: 

A. The government standards on non-inflammable fabrics (7). 

The Flammable Fabrics Act demands that the Secretary of Commerce 

establish standard tests to be imposed on fabrics so as to pro-

tect people from hazards of fabric-related burn injuries. 

B. The importance of ignition at low heating rates 1n flame 

weapon applications against combustible targets (11). 

The parameters affecting the smoke initiation point, can be 

classified in two categories. 

A. PRIMARY VARIABLES: Properties of the fabric 

1. Composition 

2. Color 

3. Fabric surface texture 

4. Multiple layers of the fabric 

5. Fabric: washed or unwashed 

6. Density (weight per unit area) 

7. Moisture content 
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8. Presence or absence of flameproofing materials 

9. Contact with backing material, such as wood, metal 

or skin 

10. Fabric pre-exposed to heat or not 

11. Thermophysical properties of the fabric 

B. SECONDARY VARIABLES: Experimental procedure 

1. Mode of ignition: piloted or unpiloted 

2. Intensity of radiation 

3. Humidity 

4. Rate of air flow over the sample surface 

5. Self--shielding by smoke 

This research project has involved the first six primary 

variables and some of the secondary ones. 

The following goals were set for the project: 

A. Construct and operate experimental equipment to obtain 

heat flux smoke initiation time data for civilian and military 

fabrics of different colors and surface textures. 

B. Using the above data, 

1. To develop correlations of smoke initiation time as 

a function of incident flux 

2. To study the effects of color and surface texture on 

the civilian fabrics. 



CHAPTER II 

REVIEW OF THE LITERATURE 

ON IGNITION BEHAVIOR 

No work has been reported in the literature on the defeat 

of a target, based on the smoke initiation point. However, a 

comprehensive survey of the literature has shown that numerous 

investigators have studied the ignition process of cellulosic 

materials, especially wood. These studies have provided back­

ground material for the present study. 

The investigators have used thermal radiation sources for 

irradiating cellulosic materials. When combustible solids are 

exposed to radiant energy, the following sequence of events 

takes place (4): First, a part of the radiation is absorbed 

by the solid, part is reflected and the remainder transmitted. 

Of the incident energy absorbed, a part will be reradiated, a 

part lost due to convective cooling effects and the rest re­

tained within the target. The amount of energy retained de­

pends on the absorptance of the solid surface, the spectral 

distribution of the incident energy, thickness and other thermo­

physical properties of the solid. This fraction of the incident 

energy that is retained, depending primarily on the level of 
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irradiance (13), produces changes within the solid. Thus at low 

irradiance the retained energy is conducted through the solid, 

resulting in the increase in temperature of the solid, thereby 

eventually causing thermal damage or initiating chemical reactions 

which lead the sample to darken, smoke liberating volatiles, glow 

and possibly ignite, leaving behind ashes. 

At high irradiance, the temperature of the solid rises to a 

point where volatiles are liberated which mix with the surrounding 

air and ignite leaving behind ashes (12). 

At intermediate levels of irradiance, the temperature of the 

solid is high enough to liberate volatiles, but not high enough 

to spontaneously ignite. However when a pilot source like a 

hydrocarbon flame or heated wire is placed in front of the sample, 

the volatiles are ignited and the flames spread to the sample. 

This is called piloted ignition (6). In the present investigation 

the pilot sources used were a natural gas flame and a heated 

platinum wire. 

Usually flameproofing materials are added to the fabric, so 

that upon exposure to heat, the fabric does not flame, but smokes 

leaving behind ashes. In general, the flameproofing agents de­

compose at low temperatures and are often poisonous. Stepniczka 

and Dipietro (14) have dealt with this aspect in greater depth. 

They concluded that polyester fabrics generate far more smoke than 

cotton fabrics without the phenomenon of afterglow and that as 

the temperature increases, the smoke density of cotton fabrics 
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1ncreases as well, but in the case of polyester fabrics the opposite 

relationship was obtained. 

Wulf and Durbetaki (15) have presented a stochastic model on 

fabric ignition as a potential health hazard and concluded that 

fabric response to heating under laboratory conditions is highly 

determinis~ic. 

Keeny (9) has worked on the effect of a1r velocity upon 

ignition of multilayer clothing. He concluded that the combination 

of garment arrangements and increased air velocity increased the 

afterflaming and the resulting fabric damage, and that the flame 

retardant treatments were effective in controlling burning of single 

fabrics but quite ineffective on two layer fabric arrangements. 

Finley, et al. (8) has also worked on the effect due to multi­

layer clothing and concluded that layered garments produced differ­

ent flammability characteristics arising from combinations of 

fiber content, garment-torso spacing, and fabrics with and without 

flame retardant finishes. 

For heat transfer mechanisms 1n the ignition of cellulosic 

materials by radiant energy Afgan (1) and Martin (10) have concluded 

that: At low irradiances there is heat loss due to convection 

primarily and the solid takes a long time to absorb the energy 

required for ignition. At intermediate levels of irradiance the 

heat absorbed is high enough but not sufficient to spontaneously 

ignite the solid and the heat is primarily diffusing through the 

solid. At high levels of irradiance, the mechanism is ablation 
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'controlled as sufficient volatiles are liberated which mixing with 

the air form an explosive mixture and ignite. Thus at low irradiance 

levels the mechanism of heat transfer is convection controlled, at 

intermediate levels of irradiance it is diffusion controlled and 

at high levels of irradiance it is ablation controlled. 
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CHAPTER III 

EXPERIMENTAL APPARATUS 

A block diagram for the test apparatus is shown in Figure 1. 

A. TEST ENCLOSURE: The test enclosure 1s 61 em wide, 92 em 

high and 46 em deep. The back and th'e two sides of the enclosure 

are made of transite (asbestos-cement), which is very hard and 

0 highly resistant to temperatures upto 1500 c. The back side 

has a small opening to allow the lamps to be fitted into the en-

closure.,· While the right side is fixed, the left side operates 

as a door to facilitate manipulations inside the enclosure. In 

order to alter the irradiance at the sample position, the front 

side made of aluminum was made adjustable, so as to vary the 

separation distance between the radiation source and the sample. 

The front side, Figure 2 has a square opening 10.16 em on a side, 

which is closeable on the rear side by the sample holder. 

B. SAMPLE HOLDER: The sample holder, Figure 3 made of 

aluminum, is a square 12.70 em on a side and 0.953 em thick. 

It has two holes, each of 2.54 em diameter: the left hole 

for the test specimen and thermocouple and the right hole is threaded 

hole for the calorimeter. The sample holder is attached to the 

front side of the test enclosure and opens as a door. 
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The thin ring (R), Figure 3, is made of steel and serves to 

hold the sample. It has an internal diameter of 2.54 em and an 

external diameter of 5.08 em. It is held in place by four screws 

(N) Figure 3. The test specimen is held in place, by placing a 

similar ring in front of the s.ample and tightening it with nuts. 

C. THERMOCOUPLE: A chromel-alumel thermocouple madE: by the 

Store-room Manager Mr. Eugene McCroskey and diameter 16 mm was 

used for ?btaining the temperature behind the sample, by connecting 

it to the recorder. 

The thermocouple holder consists of two parts. The outer part, 

Figure 4, is a 15.24 em long aluminum tube, which fits into the 

sample hole from the rear. The inner part of the thermocouple 

holder, Figure 5, 1s a 6.35 mm copper tubing fitted with a 6.35 mm 

thick disc to fit inside the aluminum tube. The thermocouple 

wire passes through the tubing. 

D. CA.LORIMETER: An asymptotic calorimeter, Hy-Cal Engineering 

Model C-1118-B-15-072, having an absorptivity of 0.89, was connect­

ed to the potentiometer, for obtaining a millivolt output of the 

incident radiant flux. 

E. POTENTIOMETER: Leeds and Northup Company Model 8690 milli­

volt potentiometer having a range from -11 mv to +101 mv was used 

to measure the millivolt output of the calorimeter response. 

F. SHIELD: Inorder to expose the samples to an uniform 

irradiance of known magnitude and also to protect the test spec1men 

from radiation prior to the test. The sample was shielded during 
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the transient warm-up. period of the quartz lamps by a water-cooled 

aluminum shield, Figure 6, placed immediately in front of the 

sample. The shield is movable in a vertical direction by a pulley 

mechanism. 

G. LAMPS: Two Research Inc. Controls Model AUB-612B quartz 

lamps, each 31.12 em wide and 15.24 em high with gold-surfaced 

reflectors were used as sources of radiant energy. Model 2000T3/CL 

lamps containing eight 2000 watt tungsten filaments were used. 

The two lamps were connected in series and cooled by using compressed 

H. CONTROLLER: Research Inc. Model 5562 temperature/power 

control system was used to control the input, which included model 

5310 Data-Trak card programmer, and Model 624A Thermae temperature 

controller. The temperature controller could be operated in any 

one of the following modes: a) Program b) Set point c) Manual. 

I. RECORDER: A Gould Brush 2400 recorder was used ln con­

junction with Model 13461530 d.c. bridge preamplifier to record 

the thermocouple output. It uses a pressurized ink writing system 

and has a variable chart speed. 

J. OTHER EQUIPMENT: A Brenet Number 65 stopwatch with a 

10-second sweep and 1/10 second sub-divisions was used for noting 

the smoke initiation time. 
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Piloted ignition was attempted both with a platinum wire and 

a natural gas flame. The voltage to the plathu m wire was 

varied with the help of a variable autotransformer (Variac) 

type 116B of Superi.or Electric company. The natural gas was 

taken from the regular laboratory gas connections. A hypoder­

mic needle was used to obtain a thin gas flame. 

The Lufkin Rule Company Model 1811 micrometer with a least 

count of 0.0125 inch was used to measure the thickness of the 

sample. 

The Mettler Instrument Corporation weighing balance was 

used to weigh the sample. Weighings between 0.0001 g and 

100 g could be made by using the balance. 

For safety purposes, asbestos gloves and goggles were used. 

A pair of scissors was used to prepare the samples of required 

size. 
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CHAPTER IV 

EXPERIMENTAL PROCEDURE 

A. CALORIMETER CALIBRATION: 

Hy-Cal Engineering provided the calibration curve for the 

calorimeter used. In view of the extensive use of CGS units, 

a new calibration curve was drawn, after converting the absorbed 

2 2 energy from Btu/ft -sec to cal/cm -sec. This curve has been 

reproduced in Appendix C. 

B. SAMPLE PREPARATION: 

Civilian fabrics of known composition, color and surface 

texture were purchased. Samples of military cloth for test 

studies was provided by Edgewood Arsenal, u. s. Army. A disc, 

3.81 em in outer diameter was used to draw a round circle with 

a marking pencil in the desired cloth. The cloth was then 

cut along the marked line using scissors to give a test specimen 

3.81 em in diameter. The sample thickness was then measured 

at three different places using a micrometer. The sample was 

weighed and then fixed in the sample holder. The effective 

diameter of the sample exposed to irradiance was 2.54 em. 

C. TEST PROCEDURE: 

The fabrics tested are listed 1n Table I. Appendix B gives 

16 
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TABLE I 

FABRICS INVESTIGATED 

FABRIC COMPOSITION COLOR SURFACE TEXTURE 

White Corrugated 

Red Corrugated 

Cotton 100% Red Velour Plane 

Navy Blue Corrugated 

Marine Blue Corrugated 

White Plane 

Red Plane 
Cotton 
and 50'Yo-50% Navy Blue Plane 
Polyester 

Marine Blue Plane 

White Plane 
Polyester 100% 

Black Plane 

Military Green Plane 



the rationale for the fabric coding system. 

The test is carried out with the sample placed 20.3t em 

away from the nearest lamp face. The procedure is as follows: 

1. When the experiment is not being performed: 

a) ~ the potentiometer switch in "Galvanometer 

off" position, and the controller, recorder and 

main switches in "Off" position. 

b) Keep the coolant air and water supply valves closed. 

c) Keep the radiation shield in "Down" position, so 

that it covers the sample holder. 

2. Keep the exhaust fan on at all times. 

3. Before st~i!'ting the experiment, verify that: 

a) All connections are made correctly. 

b) Insulation is as good as possible. 

c) Cooling water and air are turned on. 

d) Potentiometer s-witch is in "emf measure" position. 

e) The sample, calorimeter and thermocouple are set 

in their right positions. 

f) The recorder, potentiometer and stopwatch are set 

to zero and are ·ready for use. 

4. 'fhe experimenter and observers (if any), should wear 

the proper goggles and gloves,at·an times that the 

apparatus is being prepared for operation, is operating, 

or has just been shut down. 

5. The main electrical switch is turned on. 

18 



6. The controller is turned on and the output is ln­

creased to the desired level and allowed to warm up 

for 5 minutes. 

7. For unpiloted ignition the controller is operated using 

the manual mode. 

8. For piloted ignition using a platinum wire, the variac 

is also adjusted to the voltage required to make the 

wire red hot. In the case of piloted ignition using 

natural gas flame, the flame is started using a lighter, 

just before the controller is turned on. 

In both cases the pilot source is placed 3 mm away 

from the sample and about a third of the way down from 

the top of the sample as shown in Figure 7. 

9. The recorder is started, set at the desired speed, and 

the pointers set in the proper positions at the begin­

ning of the abscissa and ordinate. 

10. The shield is opened, simultaneously marking the event 

on the recorder and starting the stop watch. 

11. While the irradiation is proceeding observe the changes 

the sample is undergoing. 

12. At the first indication of smoke initiation, the stop 

watch is stopped, and the calorimeter response noted 

as indicated by the potentiometer. 

13. After the sample is reduced to ~shes, the sample holder 

is shielded and the radiant energy source switched off. 

The recorder is then stopped. 

19 



• 

(a) 

(b) 

Figure 7. Location of the pilot source 3 mm away from 
the sample 

(a) Platinum Wlre (b) Natural gas flame 
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14. The sample is removed and the sample holder and lamps 

are cooled by an air jet. 

15. Before starting the next run, verify that: 

a) The lamps, sample holder and thermocouple are 

back at room temperature. 

b) All the smoke in the thermocouple tube has been 

driven out. 

c) The rings holding the sample, sample holder and 

thermocouple are clean. 

21 



CHAPTER V 

EXPERIMENTAL OBSERVATIONS 

100% COTTON: 

At lower fluxes~ typically between 0.7 to 0.8 cal/cm~-sec, 

the sample browns, blackens and then smokes. Smoking stops for 

some seconds and then smokes again continuously, the sample 

eventually being reduced to ashes. At higher fluxes, typically 

2 between 1.1 to 1..4 cal/cm -sec, the sample smokes continuously 

as it blackens and is reduced to as·hes. For fluxes above 1.3 

2 
cal/cm -sec, the sample continues to smoke, even after shielding, 

with occasional glowing and bursting into flames, leaving behind 

ashes. 

50% COTTON - 50% POLYESTER: 

This fabric is reduced in a similar manner as 100% cotton 

except that, after the sample blackens, there is bubbling ( or 

fusing in the sample. The bubbling starts at the center, about 

a third of the way down from the top of sample, Figure 7, and spreads 

outwards. The sample left behind in this case is a fragile 

black mass. 

100% POLYESTER: 

Independent of the value of the incident flux above the 

threshold flux, the sample just melts, with bubbling as was 
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observed in the case of 50% cotton - 50% polyester fabrics .. 

Fluxes upto 2.95 cal/cm2-sec were studied by moving the sample 

closer to the lamps. The higher the flux, the faster the melting. 

The sample does not smoke at all. Piloted ignition with platinum 

wire and natural gas flame yielded the same results as long as the 

pilot was not in direct contact with the sample: the sample 

only melted and did not smoke. However when either the platinum 

wire or the natural gas flame was brought in direct contact with 

the sample, the sample smoked profusely and ignition was almost 

instantaneous. The sample smoked and burned, leaving behind a 

hard, black residue. 

MILITARY CLOTH: 

The military cloth 1s reduced exactly as the .50% cotton -

50% polyester fabric when subjecteJ to radiation: the sample 

blackens, bubbles, smokes and reduces to a fragile black mass. 

MULTIPLE LAYERS OF 100% COTTON RED CORDUROY: 

When subjected to irradiance, the exposed layer first turned 

yellow, then blackened, smoked and was destroyed. An ash colored 

fibrous residue was left behind. At fluxes around 0.8 cal/cm2-sec 

the damage in the subsequent layers was almost negligible. At 

fluxes around 1.2 cal/cm2-sec, all the layers were destroyed and 

occasional flaming was observed after shielding; in all the cases 

the sample glowed. 

23 



CHAPTER VI 

PRESENTATION, ANALYSIS AND DISCUSSION OF RESULTS 

The raw data for the experimental runs are tabulated in 

Appendix D (tables III through XII) Appendix A gives the no-

menclature, Appendix B gives the rationale for the fabric coding 

system, and Appendix E is the computer program used for the curve 

fitting. 

As reported earlier, no previous work has been reported based 

on the smoke initiation point as the criterion of defeat of the 

target. When a fabric is subjected to a low level of irradiance, 

a very slow reaction occurs between the fabric and oxygen in the 

surrounding a1r. This combustion reaction produces heat which 

tends to raise the temperature of the fabric and thus increases 

the rate of reaction. Simultaneously opposing this tendency 

toward increasing the temperature is the energy loss by convection. 

At higher levels of irradiance, the rate of reaction be-

tween the fabric and the oxygen is high resulting in the rate of 

heat generated exceeding the rate of heat loss, and the temperature 

of the fabric rises faster than it would due to external heating 

effects alone. Thus under favorable conditions the fabric ignites. 

In between these two extremes, the ignition lS controlled by 

diffusion of heat. Thus, going from low to high levels of irradiance, 



the first is controlled by convective energy losses and hence 

the fabric does not ignite. The second is controlled by diffusion 

of heat in the fabric and under favorable conditions igintion re­

sults; for instance ignition by the use of a pilot source. The 

third is ablation controlled as the temperature is so high that 

it predominates over the relatively small diffusion of heat in 

the fabric. Moreover the increase in temperature of the fabric 

is so rapid compared to intermediate or low levels of irradiance 

that the fabric gets reduced before it can lose heat to the 

surroundings or the diffusion of heat through the solid. 

In view of the rapid increase in temperature of the fabric 

with increasing irradiances, an exponential relation was assumed 

between the smoke initiation time and the incident flux. The 

relations assumed were as follows: 

T = a Exp(bF) T = a Exp(b/F) and 
b 

T = a(F) 

Then, from the data collected, curve fits were run to see if any 

one of the above forms of the equation is satisfied~ The first 

equation was best satisfied. The computer program used to obtain 

the equations and the percent error is given in Appendix E. The 

resulting equations are summarized in Table II and the results are 

plotted and presented graphically in figures 8 through 17. Figure 

18 gives a comparison of all the cotton fabrics while Figure 19 

gives the comparison for cctton-polyester fabrics. 
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TABLE II 

CURVE FITS AND THEIR VALIDITY FOR THE FABRICS TESTED 

DATA 
FABRIC COLOR POINTS. 

WHITE 15 

RED 
CORDUROY 21)· 

100% RED 

COTTON VELOUR 16 

MARINE 
BLUE 15 

NAVY 
.. Bb.IJE 15 

WHITE 12 

50% RED 14 
COTTON-
50% MARINE 
POLYESTER BLUE 16 

NAVY 
BLUE 16 

MILITARY GREEN 15 

CURVE FIT 

T = 63. 58'~xp{--2.50F) 

T = 31.47 Exp(-1.79F) 

T = 38.30 Exp(-1.99F) 

T =: 28.66 Exp(-1.68F) 

T = 21.70 Exp(~1.29F) 

T = 23.92 Exp(-1.42F) 

T = 51.29 Exp(-1.77F) 

T 43.24 Exp(-2.10F) 

T = 30.82 Exp(-1.82F) 

T = 29.58 Exp(-1.72F) 

Average absolute value of the percent error 

-;,': 

%ERROR 

5.06 

6.78 

2.40 

5.21 

2.77 

5.44 

4.04 

5.09 

7.02 

3.80 
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Experiments · were also conducted with multilayer clothing. 

Here, the flux was held constant and the thickness of the sample 

exposed was varied. The raw data are tabulated in Appendix D 

(Table IV). In this case equation of the form: T =a Exp(bW/A) 

was tested to see if fit the data. 

Based on five runs made at an average flux of 1.07 cal/ 

2 em -sec. on 100% cotton narrow wale red corduroy gave the 

following equationf T = 4.65 Exp(3.59W/A) 

which had an average error of 0.24%. The related curve has 

been plotted in Figure 20. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS: 

Examination of Figures 8 through 19, Table II and the Appendix 

D, yields the following for 100% cotton, military and a blend of 

50% cotton-50% polyester fabrics: 

1. There is a minimum flux, the threshold flux, below which 

the fabric does not smoke. This was observed to be around 

0.6 cal/cm2-sec, independent of the materials tested. 

2. There is a certain flux above which the sample smokes, 

glows and/or bursts into flames and 1s reduced to ashes 

after shielding. This was observed to be around 1.15 cal/ 

3. Every fabric has an unique smoke initiation time for a 

given flux above the threshold flux. 

4. An equation of the type: T =a Exp(bF), describes satis-

factorily the time for smoke initiation in the range of 

fluxes between 0.6 and 1.4 cal/cm2-sec. 

5. There is no significant effect of surface texture within 

the range of flux studied. 

6. 100% polyester fabrics melt down to a hard mass, independent 

of the level of irradiance above the threshold flux. They 
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srr,oke profusely and ignite only on direct contact with a 

pilot source. 

7. Smoke initiation times can be correlated satisfactorily 1n 

multiple layers of the same fabric, by equations of the form, 

T = a Exp(bW/A). 

8. The statistical scatter at the smoke initiation point may 

be due to: a) Not controlling all the effects of the pri­

mary and secondary variables listed in chapter I. b) Error 

in observing and recording the smoke initiation times, es­

pecially at higher fluxes. c) Deviation of the controller 

from the set point. 

B. RECOMMENDATIONS: 

1. To eliminate the statistical scatter at the smoke initiation 

point, 

a) All the pr1mary and secondary variables listed in 

chapter I should be studied in detail. 

b) As far as possible, everything should be automated 

to eliminate human error. For instance, magnetic 

shutters or similar high speed devices should be 

used to control the exposure of the sample. 

2. Various compositions of cotton and polyester, patterns and 

other fibers should be studied. 

3. Correlations should be developed for smoke initiation time 

as a function of absorptivity and spectra of the materials. 
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NOMENCLATURE 

A area exposed to radiation 

a constant 

b constant 

e base of natural logarithm [ 2.71828 

F incident flux 

' 
T smoke initiation time 

w Weight of the ?ample 

2 em 

dimensionless 

dimensionless 

dimensionless 

2 cal/cm -sec 

sec 

g 
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47 



RATIONALE OF FABRIC CODING 

In the present investigation, samples of 100% cotton, 100% 

polyester, 50% cotton-50% polyester and military unwashed fabrics 

of different colors were tested. Thus the type of fabric is the 

first part of the code: C - 100% cotton, P - 100% polyester, 

CP - 50% cotton-50% polyester and M -military. The second part 

of'the code represents the color of the fabric: W- white, R- red, 

RV - red velour, BM - marine blue, BN - navy blue and B - black. 

Thus a 100% cotton white fabric was coded as CW. To differentiate 

prewashed from unwashed fabrics, the letter 'U' was added after the 

color code, which was followed by the sample number. Military 

green cloth was coded as MG. Thus the fourth sample of 100% cotton 

fabric was denoted by CWU4. 

Attached below with labels are specimens of the materials 

studied, as received. 

Military green 
cloth unwashed 

100% polyester 
white unwashed 

100% polyester 
black unwashed 
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100% cotton 
white unwashed 

100% cotton 
marine blue 
unwashed 

50% cotton-50% 
polyester red 
unwashed 

100% cotton red 
corduroy unw,ashed 

100% cotton navy 
blue unwashed 

50% cotton-50% 
polyester marine 
blue unwashed 

100% cotton red 
velour unwashed 

.. __ -----

50% cotton-50% 
polyester white 
unwashed 

50% cotton-50% 
polyester navy 
blue unwashed 
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TABLE III 

RAW DATA FOR 100% COTTON WHITE NARROW WALE CORDUROY UNWASHED 

SAMPLE # AVERAGE WEIGHT OF DENSITY CALORIMETER INCIDENT SMOKE 
THICKNESS SAMPLE g/sq em RESPONSE FLUX INITIATION 

em g· mv cal/cm2-sec TIME 
sec 

CWU1 0,.0452 0.2472 0.0217 1.40 0.575 NO SMOKE 

CWU2 0.0454 0.2531 0.0222 1.78 0.730 10.20 

CWU3 0.0461 0.2514 0.0221 1.90 0.775 8.40 

CWU4 0.0445 0.2434 0.0214 1.92 0.780 8.20 

CWU5 0.0450 0.2521 0.0221 2.25 0.920 7.45 

CWU6 0.0445 0.2515 0.0221 2.34 0.950 6.56 

CWU7 0.0465 0.2479 0.0217 2.56 1.040 4.50 

CWU8 0.0442 0.2471 0.0217 a.24 0.920 7.60 

CWU9 0.0436 0.2557 0.0224 2.40 0.980 5.25 

CWU10 0.0428 0.2379 0.0209 2.47 1.010 5.10 

CWU11 0.0422 0.2393 0.0210 2.46 1.000 5.14 

01 
<N 
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TABLE III (continued) 

SAMPLE # AVERAGE WEIGHT OF DENSITY CALORIMETER INCIDENT SMOKE· 
THICKNESS SAMPLE g/sq em RESPONSE FLUX INITIATION 

em g mv cal/em2-sec TIME 
sec 

CWU12 0.0412 0.2396 0.0210 2.62 1.075 4.15 

CWU13 0.0425 0.2379 0.0209 2.61 1.070 4.20 

CWU14 0.0444 0.2621 0.0230 2.64 1.080 4.10 

CWU15 0.0450 0.2585 0.0227 2.60 1.060 4.04 

I 

CWU16 0.0433 0.2594 0.0228 1.78 0.730 10.02 
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TABLE IV 

RAW DATA FOR 100% COTTON RED CORDUROY UNWASHED 

SAMPLE # AVERAGE WEIGHT OF DENSITY CALORIMETER INCIDENT SMOKE 
THICKNESS SAMPLE glsq em RESPONSE FLUX INITIATION 

em g· mv cal/cm2-sec TIME 
sec 

CRU1 0.0437 o. 2770 0.0243 2.760 1.120 3.30 

CRU61 0.0459 0.2550 0.0224 2.650 1.080 3.90 

CRU7 0.0457 0.2673 0.0235 2.140 0.875 6.10 

CRU9 0.0489 0.2650 0.0232 2.120 0.870 6.00 

CRU10 0.0459 0.2522 0.0221 2.73"5 1.101 4.80 

CRU15 0.0423 0.2529 0.0222 2. 560 1.050 5.20 

CRU17 0.0479 0.2732 0.0240 3.450 1.400 3.00 

CRU18 0.0457 0.2591 0.0227 2.860 1.165 3.95 

CRU19 0.0465 0.2627 0.0230 2. 580 1.050 4.70 

CRU20 0.0469 0.2702 0.0237 2.350 0.955 5.69 

CRU21 0.0461 0.2622 0.0230 2.250 0.925 6.80 

CJl 
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TABLE IV (continued) 

SAMPLE # AVERAGE WEIGHT OF DENSITY CALORIMETER INCIDENT SMOKE 
THICKNESS SAMPLE g/sq em RESPONSE FLUX INITIATION 

em g mv cal/cm2-sec TIME 
sec 

CRU22 0.0468 0.2675 0.0235 2.110 0.860 6.95 

CRU23 0.0495 0.2715 0.0238 2.000 0.835 7.80 

CRU24 0.0474 0.2739 0.0240 1.760 0.715 8.95 

CRU25 0.0478 0.2591 0.0227 1.840 0.750 8.40 

CRU26 0.0465 0.2636 0.0231 2.115 0.864 6.90 

CRU27 0.0465 0.2578 0.0226 2.200 0.895 6.85 

CRU28 0.0417 0.2576 0.0226 2.320 0.950 5.60 

CRU29 0.0485 0.2634 0.0234 2.280 0.930 6.00 

CRU30 0.0482 0.2650 0.0232 2.540 1.025 5.05 

CRU31 0.0483 0.2632 0.0231 2.680 1.085 4.35 

CRUll 0.0877 0.5136 0.0450 2.600 1.060 5.60 

CRU13 0.2542 1.0680 0.0937 2.675 1.080 6.45 

CRU14 0.2989 1.3170 0.1155 2.63.5 1.070 7.05 (.}1 
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TABLE V 

RAW DATA FOR 100% COTTON RED VELOUR UNWASHED 

SAMPLE # AVERAGE WEIGHT OF DENSITY CALORIMETER INCIDENT SMOKE 
THICKNESS SAMPLE g/sq em RESPONSE FLUX INITIATION 

em g mv cal/cm2-sec TIME 
sec 

CRVU1 0.0428 0.2440 0.0214 2.30 0.935 6.00 

CRVU2 0.0457 0.2403 0.0211 2.70 1.100 4.10 

CRVU3 0.0439 0.2435 0.0214 2.66 1.075 4.50 

CRVU4 0.0451 0.2466 0.0216 1.82 0.790 8.00 

CRVU5 0.0456 0.2500 0.0219 2.04 0.840 7.15 

CRVU6 0.0448 0.2495 0.0219 2.46 1.000 5.25 

CRVU7 0.0449 0.2394 0.0299 2.68 1.085 4.20 

CRVU8 0.0442 0.2481 0.0218 2.66 1.075 4.50 

CRUV9 0.0429 0.2371 0.0280 3.14 1.275 3.00 

CRVU10 0.0434 0.2414 0.0212 3.00 1.225 3.50 

CRVU11 0.0433 0.2447 0.0215 2.94 1.200 3.80 
CJl 
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SAMPLE # AVERAGE WEIGHT OF 
THICKNESS SAMPLE 

em g 

CRVU12 0.0430 0.2468 

CRVU13 0.0440 0.2397 

CRVU14 0.0436 0.2396 

CRVU15 0.0434 0.2488 

CRVU16 0.0436 0.2438 

TABLE V (continued) 

DENSITY CALORIMETER 
g/sq em RESPONSE 

mv 

0.0216 2.50 

0.0211 2.27 

0.0210 2.70 

0.0218 2.82 

0.0214 2.15 

INCIDENT 
FLUX 

cal/cm2-sec 

1.025 

0.920 

1.090 

1.150 

0.880 

SMOKE 
INITIATION 

TIME 
sec 

5.05 

6.50 

4.20 

3.85 

6.70 

(]1 

00 



TABLE VI 

RAW DATA FOR 100% COTTON NARROW WALE MARINE BLUE CORDUROY UNWASHED 

SAMPLE # AVERAGE WEIGHT OF DENSITY CALORIMETER INCIDENT SMOKE 
THICKNESS SAMPLE g/sq em RESPDNSE FLUX INITIATION 

em g mv cal/cm2-sec TIME 
sec 

-
CBMU1 0.0445 0.2589 0.0227 1.830 0.750 8.25 

CBMU2 0.0449 0.2771 0.0243 1. 700 0.695 9.30 

CBMU3 0.0444 0.2743 0•0241 1.695 0.690 9.40 

CBMU4 0.0450 0.2739 o. 0240' 2. 215 0.895 5.75 

CBMU5 0.0436 0.2741 0.0240 2.160 0.875 6.90 

CBMU6 0.0439 0.2670 0.0240 2.220 0.900 6.30 

CBMU7 0.0437 0.2813 0.0247 2.225 0.905 6.15 

CBMU8 0.0437 0.2704 0.0237 2.720 1.100 5.10 

CBMU9 0.0434 0.2777 0.0244 2.840 1.160 3.80 

CBMU10 0.0439 0.2765 0.0243 2. 900 1.180 3.67 

CBMU11 0.0434 0.2724 0.0239 3.200 1.300 3.50 

c.n 
{!) 



SAMPLE # AVERAGE WEIGHT OF 
THICKNESS SAMPLE 

em g 

CBMU12 0.0445 0.2846 

CBMU13 0.0439 0.2750 

CBMU14 0.0440 0.2669 

CBMU15 0.0446 0.2861 

TABLE VI (continued) 

DENSITY CALORIMETER 
g/sq em RESPONSE 

mv 

0.0250 2.74 

0.0241 2.30 

0.0234 2.04 

0.0251 2.28 

INCIDENT 
FLUX 

cal/cm2-sec 

1.115 

0.940 

0.835 

0.935 

SMOKE 
INITIATION 

TIME 
sec 

4.50 

5.30 

7.00 

5.80 

CJ) 

0 



TABLE VII 

RAW DATA FOR 100% COTTON NARROW WALE NAVY BLUE CORDUROY UNWASHED 

SAMPLE # AVERAGE WEIGHT OF DENSITY CALORIMETER INCIDENT SMOKE 
THICKNESS SAMPLE @~q em RESPONSE FLUX INITIATION 

2 
em g mv cal/cm -sec TIME 

sec 

CBNU1 ··1.0434 0.2634 0.0231 3.20 1.300 3.90 

CBNU2 0.0434 0.2739 0.0240 3.12 1.265 4.50 

-.. \ 
CBNU3 0.0423 0.2606 0.0229 2.80 1.145 5.35 

CBNU4 0.0504 0.2618 0.0230 2.50 1.020 5.70 

CBNU5 0.0417 0.2812 0.0247 2.22 0.900 6.75 

CBNU6 0.0418 0.2652 0.0233 2.20 0.895 6.90 

CBNU7 0.0412 0.2496 0.0219 1.72 0.700 9.00 

CBNU8 0.0413 0.2680 0.0235 1.90 0.775 8.00 

CBNU9 0.0422 0.2564 0.0225 2.20 0.895 6.90 

CBNU10 0.0411 0.2581 0.0226 2.40 0.980 5.90 

CBNU11 0.0410 0.2594 0.0228 2.60 1.060 5.25 

0'> 
I-' 



SAMPLE # AVERAGE WEIGHT OF 
THICKNESS SAMPLE 

em g 

CBNU12 0.0419 0.2634 

CBNU13 0.0411 0.2514 

CBNU14 0.0408 0.2586 

CBNU15 0.0410 0.2685 

TABLE VII (continued) 

DENSITY CALORIMETER 
g/sq em RESPONSE 

mv 

0.0231 3.20 

0.0221 2.76 

0.0227 3.00 

0.0236 2.08 

INCIDENT 
FLU~ 

cal/cm -sec 

1.300 

1.103 

1.225 

0.850 

SMOKE 
INITIATION 

TIME 
sec 

3.90 

4.95 

4.50 

7.30 

()) 
N 



TABLE VIII 

RAW DATA FOR MILITARY GREEN CLOTH UNWASHED 

SAMPLE # AVERAGE WEIGHT OF DENSITY CALORIMETER INCIDENT SMOKE 
THICKNESS SAMPLE g/sq em RESPONSE FLUX INITIATION 

em g mv cal/cm2-sec TIME 
sec 

--
MGU1 0.0341 0.2232 0.0196 2.455 0.995 5.90 

MGU2 0.0329 0.2180 0.0191 2.620 1.065 4. 28 

MGU3 0.0327 0.2132 0.0187 2.100 0.855 7.05 

MGU4 0.0323 0.2155 0.0189 2.200 0.895 6.40 

MGU5 0.0318 0.2215 0.0194 2.720 1.105 4.40 

MGU6 0.0320 0.2185 0.0192 3.100 1.260 3.65 

MGU7 0.0315 0.2189 0.0192 2.578 1.050 4.65 

MGU8 0.0318 0.2156 0.0189 2.040 0.835 7.00 

MGU9 0.0317 o. 2113 0.0185 2.010 0.825 7.50 

MGU10 0.0312 0.2138 0.0188 2.125 0.875 6.50 

MGU11 0.0310 0.2310 0.0203 2.300 0.940 5.35 

Ol 
I:N 



SAMPLE # AVERAGE WEIGHT OF 
THICKNESS SAMPLE 

em g 

MGU12 0.0310 0.2129 

MGU13:__.. 0.0310 0.2223 

MGU14 0.0310 0.2140 

MGU15 0 •. 0310 0.2140 

MGU16 0.0320 0.2253 

TABLE VIII (continued) 

DENSITY CALORIMETER 
g/sq em RESPONSE 

mv 

0.0187 2.520 

0.0195 1.670 

0.0188 1.980 

0.0188 1.800 

0.0198 1.500 

INCIDENT 
FLUX 

cal/cm2-sec 

1.025 

0.685 

0.810 

0.740 

0.620 

SMOKE 
INITIATION 

TIME 
sec 

5.10 

9.20 

7.50 

8.20 

NO SMOKE 

Ol ..,. 



TABLE IX 

RAW DATA FOR 50% COTTON-50% POLYESTER WHITE TEXTURE UNWASHED 

SAMPLE # AVERAGE WEIGHT OF DENSITY CALORIMETER INCIDENT SMOKE 
THICKNESS SAMPLE g/sq em RESPONSE FLUX INITIATION 

em g mv cal/cm2-sec TIME 
sec 

CEWi.· 0.0363 0.2104 0.0185 1.980 0.810 7.10 

CPWU2 0.0361 0.2081 0.0183 2.065 0.840 7.00 

CPWU3 0.0379 0.2151 0.0189 2.200 0.900 6.85 

CPWU4 0.0386 0.2136 0.0187 2.300 0.940 6.76 

CPWU5 0.0377 0.2151 0.0189 2.385 0.970 6.50 

CPWU6 0.0371 0.2101 0.0184 2.445 0.990 6.29 

CPWU7 0.0381 o. 2103 0.0185 2.480 1.010 6.00 

CPWU8 0.0411 o. 2115 0.0186 2.695 1.095 5.20 

CPWU9 0.0378 0.2097 0.0184 2.900 1.180 4.10 

CPWU10 ··0.0365 0.2076 0.0182 2.960 1.215 4.00 

CPWU11 0.0358 0.2130 0.0187 1.500 0.620 NO SMOKE 

(j) 

01 



SAMPLE # AVERAGE WEIGHT OF 
THICKNESS SAMPLE 

em g 

CPWU14 0.0370 0.2118 

CPWU15 0.0337 0.2028 

TABLE IX (continued) 

DENSITY CALORIMETER 
g/sq em RESR.ONSE 

mv 

0.0186 1.910 

0.0178 1.820 

INCIDENT 
FLUX 

cal/cm2-sec 

0.770 

0.750 

SMOKE 
INITIATION 

TIME 
sec 

NO SMOKE 

8.05 

CJ) 
(j) 



TABLE X 

RAW DATA FOR 50% COTTON-50% POLYESTER RED DUCK UNWASHED 

SAMPLE # AVERAGE WEIGHT OF DENSITY CALORIMETER INCIDENT SMOKE 
THICKNESS SAMPLE g/sq em RESPONSE FLUX INITIATION 

em g mv cal/cm2-sec TIME 
sec 

-
CPRU1 0.0312 0.2312 0.0203 2.800 1.140 7.50 

CPRU2 0.0310 0.2301 0.0202 2.700 1.090 8.00 

CPRU3 0.0309 0.2360 0.0207 2.560 1.040 8.70 

CPRU4 0.0303 0.2252 0.0198 2.380 0.970 9.20 

CPRU5 0.0308 0.2319 0.0203 2.030 0.830 11.20 

CPRU6 0.0306 0.2344 0.0206 1.600 0.650 NO SMOKE 

CPRU7 0.0307 0.2288 0.0201 3.040 1.240 5.50 / 

CPRU8 0.0309 0.2358 0.0207 2.910 1.180 6.10 

CPRU9 0.0308 0.2341 0.0205 2.890 1.175 6.30 

CPRU10 0.0306 0.2337 0.0205 2.380 0.980 9.20 

CPRU11 0.0306 0.2313 0.0203 2.200 0.900 10.50 

Ol 
....;J 



SAMPLE # AVERAGE WEIGHT OF 
THICKNESS SAMPLE 

an g 

CPRU12 0.0309 0.2274 

CPRU13 0.0305 0.2211 

CPRU14 0.0312 0.2322 

CPRU15 0.0382 0.2095 

CPRQ16 0.0307 0.2330 

TABLE X (continued) 

DENSITY CALORIMETER 
g/sq em RESPONSE 

mv 

0.0199 1.580 

0.0194 2.950 

0.0204 2.640 

0.0184 3.100 

0.0243 2.960 

INCIDENT 
FLUX 

cal/cm2-sec 

0.645 

1.200 

1.080 

1.260 

1.220 

SMOKE 
INITIATION 

TIME 
sec 

NO SMOKE 

6.20 

7.00 

5.30 

6.10 

0'1 
00 



TABLE XI 

RAW DATA FOR 50% COTTON-50% POLYESTER MARINE TEXTURE UNWASHED 

SAMPLE # AVERAGE WEIGHT OF 
THICKNESS SAMPLE 

em g 

CPBMU1 0.0527 0.2380 

CPl3MU2 0.0512 0.2391 
' 

,C.PBMU3 0.0526 0.2312 

CPBMU4 0.0470 0.2331 

CPBMU5 0.0510 0.2390 

CPBMU6 0.0474 0.2504 

CPBMU7 0.0475 0.2319 

CPBMU8 0.0469 0.2309 

CPBMU9 0.0516 0.2297 

CPBMU10 0.0511 0.2264 

CPBMU11 0.0456 0.2221 

\ 

DENSITY CALORIMETER INCIDENT SMOKE 
g/sq em RESPONSE 

mv 
FLUX INITIATION 

cal/cm2-sec TIME 
sec 

0.0209 2.460 1.000 5.20 

0.0210 2.700 1.100 4.70 

0.0208 2.760 1.125 4.20 

0.0204 2.740 1.109 4.35 

o. 0210 2.800 1.145 3.95 

0.0220 1.880 0.770 8.20 

0.0203 2.080 0.850 6.80 

0.0203 2.450 0.999 5.30 

0.0202 2.515 1.025 4.95 

0.0199 2.475 1.010 5.10 

0.0195 2.295 0.935 6.00 
O'l 
CD 



SAMPLE # AVERAGE WEIGHT OF 
THICKNESS SAMPLE 

an g 

CPBMU12 0.0479 o. 2119 

CPBMU13 0.0482 0.2151 

CPBMU14 0.0476 0.2198 

CPBMU15 0.0488 0.2145 

CPBMU16 0.0501 0.2201 

TABLE XI (continued) 

DENSITY CALORIMETER 
g/sq em RESPONSE 

mv 

0.0186 2.060 

0.0188 1.860 

0.0193 1.520 

0.0188 1.860 

0.0193 2.060 

INCIDENT.-
FLUX 

caVcm2-sec 

0.8350 

0.760 

0.625 

0.760 

0.835 

SMOKE 
INITIATION 

TIME 
sec 

6.85 

8.40 

14.70 

8.40 

6.80 

.....:] 

0 



TABLE XII 

RAW DATA FOR 50% COTTON-50% POLYESTER NAVY CHINO UNWASHED 

SAMPLE # AVERAGE WEIGHT OF DENSITY CALORIMETER INCIDENT SMOKE 
THICKNESS SAMPLE g/sq em RESPONSE FLUX INITIATION 

em g mv cal/cm2-sec TIME 
sec 

CPBN1 0.0411 0.2643 0.0232 1.60 0.650 11.38 

CPBN2 0.0417 0.2928 0.0257 1.91 0.780 8.00 

CPBN3 0.0414 0.2650 0.0232 1.92 0.785 7.80 

CPBN4 0.0412 0.2905 0.0255 2.06 0.840 6.20 

CPBN5 0.0410 0.2755 0.0242 1. 95 0.800 7.50 

CPBN6 0.0403 0.2595 0.0228 2.10 0.860 5.80 

CPBN7 0.0406 0.2848 0.0249 2.05 0.835 6.50 

CPBN8 0.04f6 0.2709 0.0238 2.10 0.860 5.80 

CPBN9 0.0409 0.2653 0.0233 2.08 0.855 6.00 

CPBN10 0.0412 0.2697 0.0237 2.06 0.840 6.20 

CPBN11 0.0456 0.2719 0.023 2.79 1.140 3.90 

-..."1 
p 



SAMPLE # AVERAGE WEIGHT OF 
THICKNESS SAMPLE 

em g 

CPBN.t2 0.0405 0.2654 

CPBN13 0.0411 0.2788 

CPBN14 0.0408 0.2859 

CPBN15 0.0400 0.2706 

CPBN16 0.0408 0.2687 

TABLE XII (continued) 

DENSITY CALORIMETER 
g/sq em RESPONSE 

mv 

0.0233 2.72 

0.0245 2.;74 

0.0251 2.64 

0.0237 2.62 

0.0236 2.20 

INCIDENT 
FLUX 

cal/cm2-sec 

1.100 

1.120 

1.075 

1.060 

0.900 

SMOKE 
INITIATION 

TIME 
sec 

4.40 

4.20 

4.60 

4.80 

5.60 

""'' [\;) 



A P P E N D I X E 

SEMI-LOG LEAST SQUARES CURVE FIT 

73 



COMPUTER PROGRAM FOR CORRELATING 

THE SMOKE INITIATION TIME AS 

A FUNCTION OF THE INCIDENT FLUX 

C PROGRAM FINDS A AND B FOR Y=A*EXP(B*X) 
C YA(I) IS DEPENDENT VARIABLE 
C XA(I) IS INDEPENDENT VARIABLE 
C A IS COEFFICIENT 
C B IS EXPONENT OF EXPONENTIAL FUNCTION 
C N IS NUMBER OF DATA POINTS. MAXIMUM NUMBER IS 150 
C AP IS INTERCEPT OF LOG-LOG LINE 
C INP IS INPUT DEVICE NUMBER 
C lOUT IS OUTPUT DEVICE NUMBER 
C NSET = N TERMINATES THE PROGRAM 
c 

c 

DIMENSION YA(150),XA(150),Y(150),X(150),YC(150) 
DIMENSION XX(150),XY(150),DIF(150),PDIF(150),ABDIF(150) 
INP=5 
IOUT=6 

1 READ(INP,100)N 
DO 2 I=1,N 
READ ( INP, 101) YA ( I) , XA (I) 

2 CONTINUE 
READ(INP,102) NSET 

C CONVERT INPUT TO LOGS 
c 

c 

DO 13 I=1,N 
Y(I)=ALOG(YA(I)) 
X(I)=XA(I) 

13 CONTINUE 

C SET ALL SUMMATIONS EQUAL TO ZERO 
c 

c 

SUMX=O.O 
SUMY:::::O.O 
SUMXY=O.O 
SUMXX=O.O 
AN=N 

C CALCULATE AP AND B 
C B=N*SUMXY-SUMX*SUMY DIV BY N*SUMXX-SUMX*SUMX 
C AP=YAV-(B*XAV) 
c 

DO 3 l=1,N 
XX(I)=X(I)*X(I) 
XY(I)=X(I)*Y(I) 
SUMX=SUMX+X(I) 
SUMY=SlJMY+Y( I) 

74 



c 

SUMXX=SUMXX+XX{I) 
SUMXY=SUMXY+XY{I) 

3 CONTINUE 
XAV=SUMX/AN 
YAV=SUMY/AN 
BBB={AN*SUMXY)-{SUMX*SUMY) 
BB={AN*SUMXX)-(SUMX*SUMX) 
B=BBB/BB 
AP=YAV-(B*XAV) 
A=EXP(AP) 
SUMER=O.O 

C BACK CALCULATE Y VALUES USING A AND B 
C YC IS CALCULATED Y VALUE 
c 

c 

DO 4 I=1,N 
YC(I)=A*EXP(B*XA(I)) 
DIF{I)=YA{I)-YC(I) 
PDIF{I)=(DIF(I)*100.0)/{YA{I)) 
ABDIF(I)=ABS{PDIF(I)) 
SUMER=SUMER+ABDIF(I) 

4 CONTINUE 

C AVDIF IS AVERAGE ABSOLUTE VALUE OF PERCENT DIFFERENCE 
c 

AVDIF=SUMER/AN 
WRITE(IOUT,103) 
WRITE(IOUT,200) 
WRITE { IOUT, 201) 
WRITE(IOUT,202)A 
WRITE{IOUT,203)B 
WRITE(IOUT,204) 
WRITE(IOUT,205) 
DO 5 I=1,N 
WRITE(IOUT,206) YA(I),YC(I),XA(I),DIF(I),PDIF(I) 

5 CONTINUE 
WRITE(IOUT,207) 
WRITE(IOUT,208) AVDIF 
WRITE{IOUT,209) 
IF{NSET-150)1,20,1 

100 FORMAT{I4) 
101 FORMAT(2F20.8) 
102 FORMAT(I4) 
103 FORMAT(/////////) 
200 FORMAT(5X,31HLOG-LOG LEAST SQUARES FIT) 
201 FORMAT(5X,12HY=A*EXP(B*X)) 
202 FORMAT(5X,3HA= ,E13.6) 
203 FORMAT(5X,3HB= ,E13.6) 
204 FORMAT(//) 

75 

205 FORMAT(10X,4HYOBS,9X,5HYCALC~10X,1HX,13X,4HDIFF,11X,8HPCT DIFF/) 
206 FORMAT(5X,E11.4, 3X,E11.4, 5X,E11.4, 5X,E11.4/) 
207 FORMAT{//) 



208 FORMAT ( 5X,E11.4 ,4X,,E11.4, 3X,E11.4, 5X,E11.4, 5X,E11.4/) 
209 FORMAT(////////) 

20 STOP 
END 
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